1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/tihdr.h>
28 #include <sys/policy.h>
29 #include <sys/tsol/tnet.h>
30
31 #include <inet/common.h>
32 #include <inet/kstatcom.h>
33 #include <inet/snmpcom.h>
34 #include <inet/mib2.h>
35 #include <inet/optcom.h>
36 #include <inet/snmpcom.h>
37 #include <inet/kstatcom.h>
38 #include <inet/udp_impl.h>
39
40 static int udp_kstat_update(kstat_t *, int);
41 static int udp_kstat2_update(kstat_t *, int);
42 static void udp_sum_mib(udp_stack_t *, mib2_udp_t *);
43 static void udp_clr_stats(udp_stat_t *);
44 static void udp_add_stats(udp_stat_counter_t *, udp_stat_t *);
45 static void udp_add_mib(mib2_udp_t *, mib2_udp_t *);
46 /*
47 * return SNMP stuff in buffer in mpdata. We don't hold any lock and report
48 * information that can be changing beneath us.
49 */
50 mblk_t *
udp_snmp_get(queue_t * q,mblk_t * mpctl,boolean_t legacy_req)51 udp_snmp_get(queue_t *q, mblk_t *mpctl, boolean_t legacy_req)
52 {
53 mblk_t *mpdata;
54 mblk_t *mp_conn_ctl;
55 mblk_t *mp_attr_ctl;
56 mblk_t *mp6_conn_ctl;
57 mblk_t *mp6_attr_ctl;
58 mblk_t *mp_conn_tail;
59 mblk_t *mp_attr_tail;
60 mblk_t *mp6_conn_tail;
61 mblk_t *mp6_attr_tail;
62 struct opthdr *optp;
63 mib2_udpEntry_t ude;
64 mib2_udp6Entry_t ude6;
65 mib2_transportMLPEntry_t mlp;
66 int state;
67 zoneid_t zoneid;
68 int i;
69 connf_t *connfp;
70 conn_t *connp = Q_TO_CONN(q);
71 int v4_conn_idx;
72 int v6_conn_idx;
73 boolean_t needattr;
74 udp_t *udp;
75 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
76 udp_stack_t *us = connp->conn_netstack->netstack_udp;
77 mblk_t *mp2ctl;
78 mib2_udp_t udp_mib;
79 size_t udp_mib_size, ude_size, ude6_size;
80
81
82 /*
83 * make a copy of the original message
84 */
85 mp2ctl = copymsg(mpctl);
86
87 mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
88 if (mpctl == NULL ||
89 (mpdata = mpctl->b_cont) == NULL ||
90 (mp_conn_ctl = copymsg(mpctl)) == NULL ||
91 (mp_attr_ctl = copymsg(mpctl)) == NULL ||
92 (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
93 (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
94 freemsg(mp_conn_ctl);
95 freemsg(mp_attr_ctl);
96 freemsg(mp6_conn_ctl);
97 freemsg(mpctl);
98 freemsg(mp2ctl);
99 return (0);
100 }
101
102 zoneid = connp->conn_zoneid;
103
104 if (legacy_req) {
105 udp_mib_size = LEGACY_MIB_SIZE(&udp_mib, mib2_udp_t);
106 ude_size = LEGACY_MIB_SIZE(&ude, mib2_udpEntry_t);
107 ude6_size = LEGACY_MIB_SIZE(&ude6, mib2_udp6Entry_t);
108 } else {
109 udp_mib_size = sizeof (mib2_udp_t);
110 ude_size = sizeof (mib2_udpEntry_t);
111 ude6_size = sizeof (mib2_udp6Entry_t);
112 }
113
114 bzero(&udp_mib, sizeof (udp_mib));
115 /* fixed length structure for IPv4 and IPv6 counters */
116 SET_MIB(udp_mib.udpEntrySize, ude_size);
117 SET_MIB(udp_mib.udp6EntrySize, ude6_size);
118
119 udp_sum_mib(us, &udp_mib);
120
121 /*
122 * Synchronize 32- and 64-bit counters. Note that udpInDatagrams and
123 * udpOutDatagrams are not updated anywhere in UDP. The new 64 bits
124 * counters are used. Hence the old counters' values in us_sc_mib
125 * are always 0.
126 */
127 SYNC32_MIB(&udp_mib, udpInDatagrams, udpHCInDatagrams);
128 SYNC32_MIB(&udp_mib, udpOutDatagrams, udpHCOutDatagrams);
129
130 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
131 optp->level = MIB2_UDP;
132 optp->name = 0;
133 (void) snmp_append_data(mpdata, (char *)&udp_mib, udp_mib_size);
134 optp->len = msgdsize(mpdata);
135 qreply(q, mpctl);
136
137 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
138 v4_conn_idx = v6_conn_idx = 0;
139
140 for (i = 0; i < CONN_G_HASH_SIZE; i++) {
141 connfp = &ipst->ips_ipcl_globalhash_fanout[i];
142 connp = NULL;
143
144 while ((connp = ipcl_get_next_conn(connfp, connp,
145 IPCL_UDPCONN))) {
146 udp = connp->conn_udp;
147 if (zoneid != connp->conn_zoneid)
148 continue;
149
150 /*
151 * Note that the port numbers are sent in
152 * host byte order
153 */
154
155 if (udp->udp_state == TS_UNBND)
156 state = MIB2_UDP_unbound;
157 else if (udp->udp_state == TS_IDLE)
158 state = MIB2_UDP_idle;
159 else if (udp->udp_state == TS_DATA_XFER)
160 state = MIB2_UDP_connected;
161 else
162 state = MIB2_UDP_unknown;
163
164 needattr = B_FALSE;
165 bzero(&mlp, sizeof (mlp));
166 if (connp->conn_mlp_type != mlptSingle) {
167 if (connp->conn_mlp_type == mlptShared ||
168 connp->conn_mlp_type == mlptBoth)
169 mlp.tme_flags |= MIB2_TMEF_SHARED;
170 if (connp->conn_mlp_type == mlptPrivate ||
171 connp->conn_mlp_type == mlptBoth)
172 mlp.tme_flags |= MIB2_TMEF_PRIVATE;
173 needattr = B_TRUE;
174 }
175 if (connp->conn_anon_mlp) {
176 mlp.tme_flags |= MIB2_TMEF_ANONMLP;
177 needattr = B_TRUE;
178 }
179 switch (connp->conn_mac_mode) {
180 case CONN_MAC_DEFAULT:
181 break;
182 case CONN_MAC_AWARE:
183 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT;
184 needattr = B_TRUE;
185 break;
186 case CONN_MAC_IMPLICIT:
187 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT;
188 needattr = B_TRUE;
189 break;
190 }
191 mutex_enter(&connp->conn_lock);
192 if (udp->udp_state == TS_DATA_XFER &&
193 connp->conn_ixa->ixa_tsl != NULL) {
194 ts_label_t *tsl;
195
196 tsl = connp->conn_ixa->ixa_tsl;
197 mlp.tme_flags |= MIB2_TMEF_IS_LABELED;
198 mlp.tme_doi = label2doi(tsl);
199 mlp.tme_label = *label2bslabel(tsl);
200 needattr = B_TRUE;
201 }
202 mutex_exit(&connp->conn_lock);
203
204 /*
205 * Create an IPv4 table entry for IPv4 entries and also
206 * any IPv6 entries which are bound to in6addr_any
207 * (i.e. anything a IPv4 peer could connect/send to).
208 */
209 if (connp->conn_ipversion == IPV4_VERSION ||
210 (udp->udp_state <= TS_IDLE &&
211 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) {
212 ude.udpEntryInfo.ue_state = state;
213 /*
214 * If in6addr_any this will set it to
215 * INADDR_ANY
216 */
217 ude.udpLocalAddress = connp->conn_laddr_v4;
218 ude.udpLocalPort = ntohs(connp->conn_lport);
219 if (udp->udp_state == TS_DATA_XFER) {
220 /*
221 * Can potentially get here for
222 * v6 socket if another process
223 * (say, ping) has just done a
224 * sendto(), changing the state
225 * from the TS_IDLE above to
226 * TS_DATA_XFER by the time we hit
227 * this part of the code.
228 */
229 ude.udpEntryInfo.ue_RemoteAddress =
230 connp->conn_faddr_v4;
231 ude.udpEntryInfo.ue_RemotePort =
232 ntohs(connp->conn_fport);
233 } else {
234 ude.udpEntryInfo.ue_RemoteAddress = 0;
235 ude.udpEntryInfo.ue_RemotePort = 0;
236 }
237
238 /*
239 * We make the assumption that all udp_t
240 * structs will be created within an address
241 * region no larger than 32-bits.
242 */
243 ude.udpInstance = (uint32_t)(uintptr_t)udp;
244 ude.udpCreationProcess =
245 (connp->conn_cpid < 0) ?
246 MIB2_UNKNOWN_PROCESS :
247 connp->conn_cpid;
248 ude.udpCreationTime = connp->conn_open_time;
249
250 (void) snmp_append_data2(mp_conn_ctl->b_cont,
251 &mp_conn_tail, (char *)&ude, ude_size);
252 mlp.tme_connidx = v4_conn_idx++;
253 if (needattr)
254 (void) snmp_append_data2(
255 mp_attr_ctl->b_cont, &mp_attr_tail,
256 (char *)&mlp, sizeof (mlp));
257 }
258 if (connp->conn_ipversion == IPV6_VERSION) {
259 ude6.udp6EntryInfo.ue_state = state;
260 ude6.udp6LocalAddress = connp->conn_laddr_v6;
261 ude6.udp6LocalPort = ntohs(connp->conn_lport);
262 mutex_enter(&connp->conn_lock);
263 if (connp->conn_ixa->ixa_flags &
264 IXAF_SCOPEID_SET) {
265 ude6.udp6IfIndex =
266 connp->conn_ixa->ixa_scopeid;
267 } else {
268 ude6.udp6IfIndex = connp->conn_bound_if;
269 }
270 mutex_exit(&connp->conn_lock);
271 if (udp->udp_state == TS_DATA_XFER) {
272 ude6.udp6EntryInfo.ue_RemoteAddress =
273 connp->conn_faddr_v6;
274 ude6.udp6EntryInfo.ue_RemotePort =
275 ntohs(connp->conn_fport);
276 } else {
277 ude6.udp6EntryInfo.ue_RemoteAddress =
278 sin6_null.sin6_addr;
279 ude6.udp6EntryInfo.ue_RemotePort = 0;
280 }
281 /*
282 * We make the assumption that all udp_t
283 * structs will be created within an address
284 * region no larger than 32-bits.
285 */
286 ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
287 ude6.udp6CreationProcess =
288 (connp->conn_cpid < 0) ?
289 MIB2_UNKNOWN_PROCESS :
290 connp->conn_cpid;
291 ude6.udp6CreationTime = connp->conn_open_time;
292
293 (void) snmp_append_data2(mp6_conn_ctl->b_cont,
294 &mp6_conn_tail, (char *)&ude6, ude6_size);
295 mlp.tme_connidx = v6_conn_idx++;
296 if (needattr)
297 (void) snmp_append_data2(
298 mp6_attr_ctl->b_cont,
299 &mp6_attr_tail, (char *)&mlp,
300 sizeof (mlp));
301 }
302 }
303 }
304
305 /* IPv4 UDP endpoints */
306 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
307 sizeof (struct T_optmgmt_ack)];
308 optp->level = MIB2_UDP;
309 optp->name = MIB2_UDP_ENTRY;
310 optp->len = msgdsize(mp_conn_ctl->b_cont);
311 qreply(q, mp_conn_ctl);
312
313 /* table of MLP attributes... */
314 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
315 sizeof (struct T_optmgmt_ack)];
316 optp->level = MIB2_UDP;
317 optp->name = EXPER_XPORT_MLP;
318 optp->len = msgdsize(mp_attr_ctl->b_cont);
319 if (optp->len == 0)
320 freemsg(mp_attr_ctl);
321 else
322 qreply(q, mp_attr_ctl);
323
324 /* IPv6 UDP endpoints */
325 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
326 sizeof (struct T_optmgmt_ack)];
327 optp->level = MIB2_UDP6;
328 optp->name = MIB2_UDP6_ENTRY;
329 optp->len = msgdsize(mp6_conn_ctl->b_cont);
330 qreply(q, mp6_conn_ctl);
331
332 /* table of MLP attributes... */
333 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
334 sizeof (struct T_optmgmt_ack)];
335 optp->level = MIB2_UDP6;
336 optp->name = EXPER_XPORT_MLP;
337 optp->len = msgdsize(mp6_attr_ctl->b_cont);
338 if (optp->len == 0)
339 freemsg(mp6_attr_ctl);
340 else
341 qreply(q, mp6_attr_ctl);
342
343 return (mp2ctl);
344 }
345
346 /*
347 * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
348 * NOTE: Per MIB-II, UDP has no writable data.
349 * TODO: If this ever actually tries to set anything, it needs to be
350 * to do the appropriate locking.
351 */
352 /* ARGSUSED */
353 int
udp_snmp_set(queue_t * q,t_scalar_t level,t_scalar_t name,uchar_t * ptr,int len)354 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
355 uchar_t *ptr, int len)
356 {
357 switch (level) {
358 case MIB2_UDP:
359 return (0);
360 default:
361 return (1);
362 }
363 }
364
365 void
udp_kstat_fini(netstackid_t stackid,kstat_t * ksp)366 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
367 {
368 if (ksp != NULL) {
369 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
370 kstat_delete_netstack(ksp, stackid);
371 }
372 }
373
374 /*
375 * To add stats from one mib2_udp_t to another. Static fields are not added.
376 * The caller should set them up propertly.
377 */
378 static void
udp_add_mib(mib2_udp_t * from,mib2_udp_t * to)379 udp_add_mib(mib2_udp_t *from, mib2_udp_t *to)
380 {
381 to->udpHCInDatagrams += from->udpHCInDatagrams;
382 to->udpInErrors += from->udpInErrors;
383 to->udpHCOutDatagrams += from->udpHCOutDatagrams;
384 to->udpOutErrors += from->udpOutErrors;
385 }
386
387
388 void *
udp_kstat2_init(netstackid_t stackid)389 udp_kstat2_init(netstackid_t stackid)
390 {
391 kstat_t *ksp;
392
393 udp_stat_t template = {
394 { "udp_sock_fallback", KSTAT_DATA_UINT64 },
395 { "udp_out_opt", KSTAT_DATA_UINT64 },
396 { "udp_out_err_notconn", KSTAT_DATA_UINT64 },
397 { "udp_out_err_output", KSTAT_DATA_UINT64 },
398 { "udp_out_err_tudr", KSTAT_DATA_UINT64 },
399 #ifdef DEBUG
400 { "udp_data_conn", KSTAT_DATA_UINT64 },
401 { "udp_data_notconn", KSTAT_DATA_UINT64 },
402 { "udp_out_lastdst", KSTAT_DATA_UINT64 },
403 { "udp_out_diffdst", KSTAT_DATA_UINT64 },
404 { "udp_out_ipv6", KSTAT_DATA_UINT64 },
405 { "udp_out_mapped", KSTAT_DATA_UINT64 },
406 { "udp_out_ipv4", KSTAT_DATA_UINT64 },
407 #endif
408 };
409
410 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
411 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
412 0, stackid);
413
414 if (ksp == NULL)
415 return (NULL);
416
417 bcopy(&template, ksp->ks_data, sizeof (template));
418 ksp->ks_update = udp_kstat2_update;
419 ksp->ks_private = (void *)(uintptr_t)stackid;
420
421 kstat_install(ksp);
422 return (ksp);
423 }
424
425 void
udp_kstat2_fini(netstackid_t stackid,kstat_t * ksp)426 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
427 {
428 if (ksp != NULL) {
429 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
430 kstat_delete_netstack(ksp, stackid);
431 }
432 }
433
434 /*
435 * To copy counters from the per CPU udpp_stat_counter_t to the stack
436 * udp_stat_t.
437 */
438 static void
udp_add_stats(udp_stat_counter_t * from,udp_stat_t * to)439 udp_add_stats(udp_stat_counter_t *from, udp_stat_t *to)
440 {
441 to->udp_sock_fallback.value.ui64 += from->udp_sock_fallback;
442 to->udp_out_opt.value.ui64 += from->udp_out_opt;
443 to->udp_out_err_notconn.value.ui64 += from->udp_out_err_notconn;
444 to->udp_out_err_output.value.ui64 += from->udp_out_err_output;
445 to->udp_out_err_tudr.value.ui64 += from->udp_out_err_tudr;
446 #ifdef DEBUG
447 to->udp_data_conn.value.ui64 += from->udp_data_conn;
448 to->udp_data_notconn.value.ui64 += from->udp_data_notconn;
449 to->udp_out_lastdst.value.ui64 += from->udp_out_lastdst;
450 to->udp_out_diffdst.value.ui64 += from->udp_out_diffdst;
451 to->udp_out_ipv6.value.ui64 += from->udp_out_ipv6;
452 to->udp_out_mapped.value.ui64 += from->udp_out_mapped;
453 to->udp_out_ipv4.value.ui64 += from->udp_out_ipv4;
454 #endif
455 }
456
457 /*
458 * To set all udp_stat_t counters to 0.
459 */
460 static void
udp_clr_stats(udp_stat_t * stats)461 udp_clr_stats(udp_stat_t *stats)
462 {
463 stats->udp_sock_fallback.value.ui64 = 0;
464 stats->udp_out_opt.value.ui64 = 0;
465 stats->udp_out_err_notconn.value.ui64 = 0;
466 stats->udp_out_err_output.value.ui64 = 0;
467 stats->udp_out_err_tudr.value.ui64 = 0;
468 #ifdef DEBUG
469 stats->udp_data_conn.value.ui64 = 0;
470 stats->udp_data_notconn.value.ui64 = 0;
471 stats->udp_out_lastdst.value.ui64 = 0;
472 stats->udp_out_diffdst.value.ui64 = 0;
473 stats->udp_out_ipv6.value.ui64 = 0;
474 stats->udp_out_mapped.value.ui64 = 0;
475 stats->udp_out_ipv4.value.ui64 = 0;
476 #endif
477 }
478
479 int
udp_kstat2_update(kstat_t * kp,int rw)480 udp_kstat2_update(kstat_t *kp, int rw)
481 {
482 udp_stat_t *stats;
483 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private;
484 netstack_t *ns;
485 udp_stack_t *us;
486 int i;
487 int cnt;
488
489 if (rw == KSTAT_WRITE)
490 return (EACCES);
491
492 ns = netstack_find_by_stackid(stackid);
493 if (ns == NULL)
494 return (-1);
495 us = ns->netstack_udp;
496 if (us == NULL) {
497 netstack_rele(ns);
498 return (-1);
499 }
500 stats = (udp_stat_t *)kp->ks_data;
501 udp_clr_stats(stats);
502
503 cnt = us->us_sc_cnt;
504 for (i = 0; i < cnt; i++)
505 udp_add_stats(&us->us_sc[i]->udp_sc_stats, stats);
506
507 netstack_rele(ns);
508 return (0);
509 }
510
511 void *
udp_kstat_init(netstackid_t stackid)512 udp_kstat_init(netstackid_t stackid)
513 {
514 kstat_t *ksp;
515
516 udp_named_kstat_t template = {
517 { "inDatagrams", KSTAT_DATA_UINT64, 0 },
518 { "inErrors", KSTAT_DATA_UINT32, 0 },
519 { "outDatagrams", KSTAT_DATA_UINT64, 0 },
520 { "entrySize", KSTAT_DATA_INT32, 0 },
521 { "entry6Size", KSTAT_DATA_INT32, 0 },
522 { "outErrors", KSTAT_DATA_UINT32, 0 },
523 };
524
525 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
526 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
527
528 if (ksp == NULL)
529 return (NULL);
530
531 template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
532 template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
533
534 bcopy(&template, ksp->ks_data, sizeof (template));
535 ksp->ks_update = udp_kstat_update;
536 ksp->ks_private = (void *)(uintptr_t)stackid;
537
538 kstat_install(ksp);
539 return (ksp);
540 }
541
542 /*
543 * To sum up all MIB2 stats for a udp_stack_t from all per CPU stats. The
544 * caller should initialize the target mib2_udp_t properly as this function
545 * just adds up all the per CPU stats.
546 */
547 static void
udp_sum_mib(udp_stack_t * us,mib2_udp_t * udp_mib)548 udp_sum_mib(udp_stack_t *us, mib2_udp_t *udp_mib)
549 {
550 int i;
551 int cnt;
552
553 cnt = us->us_sc_cnt;
554 for (i = 0; i < cnt; i++)
555 udp_add_mib(&us->us_sc[i]->udp_sc_mib, udp_mib);
556 }
557
558 static int
udp_kstat_update(kstat_t * kp,int rw)559 udp_kstat_update(kstat_t *kp, int rw)
560 {
561 udp_named_kstat_t *udpkp;
562 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private;
563 netstack_t *ns;
564 udp_stack_t *us;
565 mib2_udp_t udp_mib;
566
567 if (rw == KSTAT_WRITE)
568 return (EACCES);
569
570 ns = netstack_find_by_stackid(stackid);
571 if (ns == NULL)
572 return (-1);
573 us = ns->netstack_udp;
574 if (us == NULL) {
575 netstack_rele(ns);
576 return (-1);
577 }
578 udpkp = (udp_named_kstat_t *)kp->ks_data;
579
580 bzero(&udp_mib, sizeof (udp_mib));
581 udp_sum_mib(us, &udp_mib);
582
583 udpkp->inDatagrams.value.ui64 = udp_mib.udpHCInDatagrams;
584 udpkp->inErrors.value.ui32 = udp_mib.udpInErrors;
585 udpkp->outDatagrams.value.ui64 = udp_mib.udpHCOutDatagrams;
586 udpkp->outErrors.value.ui32 = udp_mib.udpOutErrors;
587 netstack_rele(ns);
588 return (0);
589 }
590