1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
14 *
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
25 *
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33 *
34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
38 */
39
40 #include "ubifs.h"
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
44
read_block(struct inode * inode,void * addr,unsigned int block,struct ubifs_data_node * dn)45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 struct ubifs_data_node *dn)
47 {
48 struct ubifs_info *c = inode->i_sb->s_fs_info;
49 int err, len, out_len;
50 union ubifs_key key;
51 unsigned int dlen;
52
53 data_key_init(c, &key, inode->i_ino, block);
54 err = ubifs_tnc_lookup(c, &key, dn);
55 if (err) {
56 if (err == -ENOENT)
57 /* Not found, so it must be a hole */
58 memset(addr, 0, UBIFS_BLOCK_SIZE);
59 return err;
60 }
61
62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 ubifs_inode(inode)->creat_sqnum);
64 len = le32_to_cpu(dn->size);
65 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 goto dump;
67
68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69
70 if (IS_ENCRYPTED(inode)) {
71 err = ubifs_decrypt(inode, dn, &dlen, block);
72 if (err)
73 goto dump;
74 }
75
76 out_len = UBIFS_BLOCK_SIZE;
77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 le16_to_cpu(dn->compr_type));
79 if (err || len != out_len)
80 goto dump;
81
82 /*
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
86 */
87 if (len < UBIFS_BLOCK_SIZE)
88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89
90 return 0;
91
92 dump:
93 ubifs_err(c, "bad data node (block %u, inode %lu)",
94 block, inode->i_ino);
95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
96 return -EINVAL;
97 }
98
do_readpage(struct folio * folio)99 static int do_readpage(struct folio *folio)
100 {
101 void *addr;
102 int err = 0, i;
103 unsigned int block, beyond;
104 struct ubifs_data_node *dn = NULL;
105 struct inode *inode = folio->mapping->host;
106 struct ubifs_info *c = inode->i_sb->s_fs_info;
107 loff_t i_size = i_size_read(inode);
108
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode->i_ino, folio->index, i_size, folio->flags);
111 ubifs_assert(c, !folio_test_checked(folio));
112 ubifs_assert(c, !folio->private);
113
114 addr = kmap_local_folio(folio, 0);
115
116 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 if (block >= beyond) {
119 /* Reading beyond inode */
120 folio_set_checked(folio);
121 addr = folio_zero_tail(folio, 0, addr);
122 goto out;
123 }
124
125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 if (!dn) {
127 err = -ENOMEM;
128 goto out;
129 }
130
131 i = 0;
132 while (1) {
133 int ret;
134
135 if (block >= beyond) {
136 /* Reading beyond inode */
137 err = -ENOENT;
138 memset(addr, 0, UBIFS_BLOCK_SIZE);
139 } else {
140 ret = read_block(inode, addr, block, dn);
141 if (ret) {
142 err = ret;
143 if (err != -ENOENT)
144 break;
145 } else if (block + 1 == beyond) {
146 int dlen = le32_to_cpu(dn->size);
147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148
149 if (ilen && ilen < dlen)
150 memset(addr + ilen, 0, dlen - ilen);
151 }
152 }
153 if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio)))
154 break;
155 block += 1;
156 addr += UBIFS_BLOCK_SIZE;
157 if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
158 kunmap_local(addr - UBIFS_BLOCK_SIZE);
159 addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
160 }
161 }
162
163 if (err) {
164 struct ubifs_info *c = inode->i_sb->s_fs_info;
165 if (err == -ENOENT) {
166 /* Not found, so it must be a hole */
167 folio_set_checked(folio);
168 dbg_gen("hole");
169 err = 0;
170 } else {
171 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
172 folio->index, inode->i_ino, err);
173 }
174 }
175
176 out:
177 kfree(dn);
178 if (!err)
179 folio_mark_uptodate(folio);
180 flush_dcache_folio(folio);
181 kunmap_local(addr);
182 return err;
183 }
184
185 /**
186 * release_new_page_budget - release budget of a new page.
187 * @c: UBIFS file-system description object
188 *
189 * This is a helper function which releases budget corresponding to the budget
190 * of one new page of data.
191 */
release_new_page_budget(struct ubifs_info * c)192 static void release_new_page_budget(struct ubifs_info *c)
193 {
194 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
195
196 ubifs_release_budget(c, &req);
197 }
198
199 /**
200 * release_existing_page_budget - release budget of an existing page.
201 * @c: UBIFS file-system description object
202 *
203 * This is a helper function which releases budget corresponding to the budget
204 * of changing one page of data which already exists on the flash media.
205 */
release_existing_page_budget(struct ubifs_info * c)206 static void release_existing_page_budget(struct ubifs_info *c)
207 {
208 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
209
210 ubifs_release_budget(c, &req);
211 }
212
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop)213 static int write_begin_slow(struct address_space *mapping,
214 loff_t pos, unsigned len, struct folio **foliop)
215 {
216 struct inode *inode = mapping->host;
217 struct ubifs_info *c = inode->i_sb->s_fs_info;
218 pgoff_t index = pos >> PAGE_SHIFT;
219 struct ubifs_budget_req req = { .new_page = 1 };
220 int err, appending = !!(pos + len > inode->i_size);
221 struct folio *folio;
222
223 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
224 inode->i_ino, pos, len, inode->i_size);
225
226 /*
227 * At the slow path we have to budget before locking the folio, because
228 * budgeting may force write-back, which would wait on locked folios and
229 * deadlock if we had the folio locked. At this point we do not know
230 * anything about the folio, so assume that this is a new folio which is
231 * written to a hole. This corresponds to largest budget. Later the
232 * budget will be amended if this is not true.
233 */
234 if (appending)
235 /* We are appending data, budget for inode change */
236 req.dirtied_ino = 1;
237
238 err = ubifs_budget_space(c, &req);
239 if (unlikely(err))
240 return err;
241
242 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
243 mapping_gfp_mask(mapping));
244 if (IS_ERR(folio)) {
245 ubifs_release_budget(c, &req);
246 return PTR_ERR(folio);
247 }
248
249 if (!folio_test_uptodate(folio)) {
250 if (pos == folio_pos(folio) && len >= folio_size(folio))
251 folio_set_checked(folio);
252 else {
253 err = do_readpage(folio);
254 if (err) {
255 folio_unlock(folio);
256 folio_put(folio);
257 ubifs_release_budget(c, &req);
258 return err;
259 }
260 }
261 }
262
263 if (folio->private)
264 /*
265 * The folio is dirty, which means it was budgeted twice:
266 * o first time the budget was allocated by the task which
267 * made the folio dirty and set the private field;
268 * o and then we budgeted for it for the second time at the
269 * very beginning of this function.
270 *
271 * So what we have to do is to release the folio budget we
272 * allocated.
273 */
274 release_new_page_budget(c);
275 else if (!folio_test_checked(folio))
276 /*
277 * We are changing a folio which already exists on the media.
278 * This means that changing the folio does not make the amount
279 * of indexing information larger, and this part of the budget
280 * which we have already acquired may be released.
281 */
282 ubifs_convert_page_budget(c);
283
284 if (appending) {
285 struct ubifs_inode *ui = ubifs_inode(inode);
286
287 /*
288 * 'ubifs_write_end()' is optimized from the fast-path part of
289 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
290 * if data is appended.
291 */
292 mutex_lock(&ui->ui_mutex);
293 if (ui->dirty)
294 /*
295 * The inode is dirty already, so we may free the
296 * budget we allocated.
297 */
298 ubifs_release_dirty_inode_budget(c, ui);
299 }
300
301 *foliop = folio;
302 return 0;
303 }
304
305 /**
306 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
307 * @c: UBIFS file-system description object
308 * @folio: folio to allocate budget for
309 * @ui: UBIFS inode object the page belongs to
310 * @appending: non-zero if the page is appended
311 *
312 * This is a helper function for 'ubifs_write_begin()' which allocates budget
313 * for the operation. The budget is allocated differently depending on whether
314 * this is appending, whether the page is dirty or not, and so on. This
315 * function leaves the @ui->ui_mutex locked in case of appending.
316 *
317 * Returns: %0 in case of success and %-ENOSPC in case of failure.
318 */
allocate_budget(struct ubifs_info * c,struct folio * folio,struct ubifs_inode * ui,int appending)319 static int allocate_budget(struct ubifs_info *c, struct folio *folio,
320 struct ubifs_inode *ui, int appending)
321 {
322 struct ubifs_budget_req req = { .fast = 1 };
323
324 if (folio->private) {
325 if (!appending)
326 /*
327 * The folio is dirty and we are not appending, which
328 * means no budget is needed at all.
329 */
330 return 0;
331
332 mutex_lock(&ui->ui_mutex);
333 if (ui->dirty)
334 /*
335 * The page is dirty and we are appending, so the inode
336 * has to be marked as dirty. However, it is already
337 * dirty, so we do not need any budget. We may return,
338 * but @ui->ui_mutex hast to be left locked because we
339 * should prevent write-back from flushing the inode
340 * and freeing the budget. The lock will be released in
341 * 'ubifs_write_end()'.
342 */
343 return 0;
344
345 /*
346 * The page is dirty, we are appending, the inode is clean, so
347 * we need to budget the inode change.
348 */
349 req.dirtied_ino = 1;
350 } else {
351 if (folio_test_checked(folio))
352 /*
353 * The page corresponds to a hole and does not
354 * exist on the media. So changing it makes
355 * the amount of indexing information
356 * larger, and we have to budget for a new
357 * page.
358 */
359 req.new_page = 1;
360 else
361 /*
362 * Not a hole, the change will not add any new
363 * indexing information, budget for page
364 * change.
365 */
366 req.dirtied_page = 1;
367
368 if (appending) {
369 mutex_lock(&ui->ui_mutex);
370 if (!ui->dirty)
371 /*
372 * The inode is clean but we will have to mark
373 * it as dirty because we are appending. This
374 * needs a budget.
375 */
376 req.dirtied_ino = 1;
377 }
378 }
379
380 return ubifs_budget_space(c, &req);
381 }
382
383 /*
384 * This function is called when a page of data is going to be written. Since
385 * the page of data will not necessarily go to the flash straight away, UBIFS
386 * has to reserve space on the media for it, which is done by means of
387 * budgeting.
388 *
389 * This is the hot-path of the file-system and we are trying to optimize it as
390 * much as possible. For this reasons it is split on 2 parts - slow and fast.
391 *
392 * There many budgeting cases:
393 * o a new page is appended - we have to budget for a new page and for
394 * changing the inode; however, if the inode is already dirty, there is
395 * no need to budget for it;
396 * o an existing clean page is changed - we have budget for it; if the page
397 * does not exist on the media (a hole), we have to budget for a new
398 * page; otherwise, we may budget for changing an existing page; the
399 * difference between these cases is that changing an existing page does
400 * not introduce anything new to the FS indexing information, so it does
401 * not grow, and smaller budget is acquired in this case;
402 * o an existing dirty page is changed - no need to budget at all, because
403 * the page budget has been acquired by earlier, when the page has been
404 * marked dirty.
405 *
406 * UBIFS budgeting sub-system may force write-back if it thinks there is no
407 * space to reserve. This imposes some locking restrictions and makes it
408 * impossible to take into account the above cases, and makes it impossible to
409 * optimize budgeting.
410 *
411 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
412 * there is a plenty of flash space and the budget will be acquired quickly,
413 * without forcing write-back. The slow path does not make this assumption.
414 */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)415 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
416 loff_t pos, unsigned len,
417 struct folio **foliop, void **fsdata)
418 {
419 struct inode *inode = mapping->host;
420 struct ubifs_info *c = inode->i_sb->s_fs_info;
421 struct ubifs_inode *ui = ubifs_inode(inode);
422 pgoff_t index = pos >> PAGE_SHIFT;
423 int err, appending = !!(pos + len > inode->i_size);
424 int skipped_read = 0;
425 struct folio *folio;
426
427 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
428 ubifs_assert(c, !c->ro_media && !c->ro_mount);
429
430 if (unlikely(c->ro_error))
431 return -EROFS;
432
433 /* Try out the fast-path part first */
434 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
435 mapping_gfp_mask(mapping));
436 if (IS_ERR(folio))
437 return PTR_ERR(folio);
438
439 if (!folio_test_uptodate(folio)) {
440 /* The page is not loaded from the flash */
441 if (pos == folio_pos(folio) && len >= folio_size(folio)) {
442 /*
443 * We change whole page so no need to load it. But we
444 * do not know whether this page exists on the media or
445 * not, so we assume the latter because it requires
446 * larger budget. The assumption is that it is better
447 * to budget a bit more than to read the page from the
448 * media. Thus, we are setting the @PG_checked flag
449 * here.
450 */
451 folio_set_checked(folio);
452 skipped_read = 1;
453 } else {
454 err = do_readpage(folio);
455 if (err) {
456 folio_unlock(folio);
457 folio_put(folio);
458 return err;
459 }
460 }
461 }
462
463 err = allocate_budget(c, folio, ui, appending);
464 if (unlikely(err)) {
465 ubifs_assert(c, err == -ENOSPC);
466 /*
467 * If we skipped reading the page because we were going to
468 * write all of it, then it is not up to date.
469 */
470 if (skipped_read)
471 folio_clear_checked(folio);
472 /*
473 * Budgeting failed which means it would have to force
474 * write-back but didn't, because we set the @fast flag in the
475 * request. Write-back cannot be done now, while we have the
476 * page locked, because it would deadlock. Unlock and free
477 * everything and fall-back to slow-path.
478 */
479 if (appending) {
480 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
481 mutex_unlock(&ui->ui_mutex);
482 }
483 folio_unlock(folio);
484 folio_put(folio);
485
486 return write_begin_slow(mapping, pos, len, foliop);
487 }
488
489 /*
490 * Whee, we acquired budgeting quickly - without involving
491 * garbage-collection, committing or forcing write-back. We return
492 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 * otherwise. This is an optimization (slightly hacky though).
494 */
495 *foliop = folio;
496 return 0;
497 }
498
499 /**
500 * cancel_budget - cancel budget.
501 * @c: UBIFS file-system description object
502 * @folio: folio to cancel budget for
503 * @ui: UBIFS inode object the page belongs to
504 * @appending: non-zero if the page is appended
505 *
506 * This is a helper function for a page write operation. It unlocks the
507 * @ui->ui_mutex in case of appending.
508 */
cancel_budget(struct ubifs_info * c,struct folio * folio,struct ubifs_inode * ui,int appending)509 static void cancel_budget(struct ubifs_info *c, struct folio *folio,
510 struct ubifs_inode *ui, int appending)
511 {
512 if (appending) {
513 if (!ui->dirty)
514 ubifs_release_dirty_inode_budget(c, ui);
515 mutex_unlock(&ui->ui_mutex);
516 }
517 if (!folio->private) {
518 if (folio_test_checked(folio))
519 release_new_page_budget(c);
520 else
521 release_existing_page_budget(c);
522 }
523 }
524
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)525 static int ubifs_write_end(struct file *file, struct address_space *mapping,
526 loff_t pos, unsigned len, unsigned copied,
527 struct folio *folio, void *fsdata)
528 {
529 struct inode *inode = mapping->host;
530 struct ubifs_inode *ui = ubifs_inode(inode);
531 struct ubifs_info *c = inode->i_sb->s_fs_info;
532 loff_t end_pos = pos + len;
533 int appending = !!(end_pos > inode->i_size);
534
535 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
536 inode->i_ino, pos, folio->index, len, copied, inode->i_size);
537
538 if (unlikely(copied < len && !folio_test_uptodate(folio))) {
539 /*
540 * VFS copied less data to the folio than it intended and
541 * declared in its '->write_begin()' call via the @len
542 * argument. If the folio was not up-to-date,
543 * the 'ubifs_write_begin()' function did
544 * not load it from the media (for optimization reasons). This
545 * means that part of the folio contains garbage. So read the
546 * folio now.
547 */
548 dbg_gen("copied %d instead of %d, read page and repeat",
549 copied, len);
550 cancel_budget(c, folio, ui, appending);
551 folio_clear_checked(folio);
552
553 /*
554 * Return 0 to force VFS to repeat the whole operation, or the
555 * error code if 'do_readpage()' fails.
556 */
557 copied = do_readpage(folio);
558 goto out;
559 }
560
561 if (len == folio_size(folio))
562 folio_mark_uptodate(folio);
563
564 if (!folio->private) {
565 folio_attach_private(folio, (void *)1);
566 atomic_long_inc(&c->dirty_pg_cnt);
567 filemap_dirty_folio(mapping, folio);
568 }
569
570 if (appending) {
571 i_size_write(inode, end_pos);
572 ui->ui_size = end_pos;
573 /*
574 * We do not set @I_DIRTY_PAGES (which means that
575 * the inode has dirty pages), this was done in
576 * filemap_dirty_folio().
577 */
578 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
579 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
580 mutex_unlock(&ui->ui_mutex);
581 }
582
583 out:
584 folio_unlock(folio);
585 folio_put(folio);
586 return copied;
587 }
588
589 /**
590 * populate_page - copy data nodes into a page for bulk-read.
591 * @c: UBIFS file-system description object
592 * @folio: folio
593 * @bu: bulk-read information
594 * @n: next zbranch slot
595 *
596 * Returns: %0 on success and a negative error code on failure.
597 */
populate_page(struct ubifs_info * c,struct folio * folio,struct bu_info * bu,int * n)598 static int populate_page(struct ubifs_info *c, struct folio *folio,
599 struct bu_info *bu, int *n)
600 {
601 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
602 struct inode *inode = folio->mapping->host;
603 loff_t i_size = i_size_read(inode);
604 unsigned int page_block;
605 void *addr, *zaddr;
606 pgoff_t end_index;
607
608 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
609 inode->i_ino, folio->index, i_size, folio->flags);
610
611 addr = zaddr = kmap_local_folio(folio, 0);
612
613 end_index = (i_size - 1) >> PAGE_SHIFT;
614 if (!i_size || folio->index > end_index) {
615 hole = 1;
616 addr = folio_zero_tail(folio, 0, addr);
617 goto out_hole;
618 }
619
620 page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
621 while (1) {
622 int err, len, out_len, dlen;
623
624 if (nn >= bu->cnt) {
625 hole = 1;
626 memset(addr, 0, UBIFS_BLOCK_SIZE);
627 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
628 struct ubifs_data_node *dn;
629
630 dn = bu->buf + (bu->zbranch[nn].offs - offs);
631
632 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
633 ubifs_inode(inode)->creat_sqnum);
634
635 len = le32_to_cpu(dn->size);
636 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
637 goto out_err;
638
639 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
640 out_len = UBIFS_BLOCK_SIZE;
641
642 if (IS_ENCRYPTED(inode)) {
643 err = ubifs_decrypt(inode, dn, &dlen, page_block);
644 if (err)
645 goto out_err;
646 }
647
648 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
649 le16_to_cpu(dn->compr_type));
650 if (err || len != out_len)
651 goto out_err;
652
653 if (len < UBIFS_BLOCK_SIZE)
654 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
655
656 nn += 1;
657 read = (i << UBIFS_BLOCK_SHIFT) + len;
658 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
659 nn += 1;
660 continue;
661 } else {
662 hole = 1;
663 memset(addr, 0, UBIFS_BLOCK_SIZE);
664 }
665 if (++i >= UBIFS_BLOCKS_PER_PAGE)
666 break;
667 addr += UBIFS_BLOCK_SIZE;
668 page_block += 1;
669 if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
670 kunmap_local(addr - UBIFS_BLOCK_SIZE);
671 addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
672 }
673 }
674
675 if (end_index == folio->index) {
676 int len = i_size & (PAGE_SIZE - 1);
677
678 if (len && len < read)
679 memset(zaddr + len, 0, read - len);
680 }
681
682 out_hole:
683 if (hole) {
684 folio_set_checked(folio);
685 dbg_gen("hole");
686 }
687
688 folio_mark_uptodate(folio);
689 flush_dcache_folio(folio);
690 kunmap_local(addr);
691 *n = nn;
692 return 0;
693
694 out_err:
695 flush_dcache_folio(folio);
696 kunmap_local(addr);
697 ubifs_err(c, "bad data node (block %u, inode %lu)",
698 page_block, inode->i_ino);
699 return -EINVAL;
700 }
701
702 /**
703 * ubifs_do_bulk_read - do bulk-read.
704 * @c: UBIFS file-system description object
705 * @bu: bulk-read information
706 * @folio1: first folio to read
707 *
708 * Returns: %1 if the bulk-read is done, otherwise %0 is returned.
709 */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct folio * folio1)710 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
711 struct folio *folio1)
712 {
713 pgoff_t offset = folio1->index, end_index;
714 struct address_space *mapping = folio1->mapping;
715 struct inode *inode = mapping->host;
716 struct ubifs_inode *ui = ubifs_inode(inode);
717 int err, page_idx, page_cnt, ret = 0, n = 0;
718 int allocate = bu->buf ? 0 : 1;
719 loff_t isize;
720 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
721
722 err = ubifs_tnc_get_bu_keys(c, bu);
723 if (err)
724 goto out_warn;
725
726 if (bu->eof) {
727 /* Turn off bulk-read at the end of the file */
728 ui->read_in_a_row = 1;
729 ui->bulk_read = 0;
730 }
731
732 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
733 if (!page_cnt) {
734 /*
735 * This happens when there are multiple blocks per page and the
736 * blocks for the first page we are looking for, are not
737 * together. If all the pages were like this, bulk-read would
738 * reduce performance, so we turn it off for a while.
739 */
740 goto out_bu_off;
741 }
742
743 if (bu->cnt) {
744 if (allocate) {
745 /*
746 * Allocate bulk-read buffer depending on how many data
747 * nodes we are going to read.
748 */
749 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
750 bu->zbranch[bu->cnt - 1].len -
751 bu->zbranch[0].offs;
752 ubifs_assert(c, bu->buf_len > 0);
753 ubifs_assert(c, bu->buf_len <= c->leb_size);
754 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
755 if (!bu->buf)
756 goto out_bu_off;
757 }
758
759 err = ubifs_tnc_bulk_read(c, bu);
760 if (err)
761 goto out_warn;
762 }
763
764 err = populate_page(c, folio1, bu, &n);
765 if (err)
766 goto out_warn;
767
768 folio_unlock(folio1);
769 ret = 1;
770
771 isize = i_size_read(inode);
772 if (isize == 0)
773 goto out_free;
774 end_index = ((isize - 1) >> PAGE_SHIFT);
775
776 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
777 pgoff_t page_offset = offset + page_idx;
778 struct folio *folio;
779
780 if (page_offset > end_index)
781 break;
782 folio = __filemap_get_folio(mapping, page_offset,
783 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
784 ra_gfp_mask);
785 if (IS_ERR(folio))
786 break;
787 if (!folio_test_uptodate(folio))
788 err = populate_page(c, folio, bu, &n);
789 folio_unlock(folio);
790 folio_put(folio);
791 if (err)
792 break;
793 }
794
795 ui->last_page_read = offset + page_idx - 1;
796
797 out_free:
798 if (allocate)
799 kfree(bu->buf);
800 return ret;
801
802 out_warn:
803 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
804 goto out_free;
805
806 out_bu_off:
807 ui->read_in_a_row = ui->bulk_read = 0;
808 goto out_free;
809 }
810
811 /**
812 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
813 * @folio: folio from which to start bulk-read.
814 *
815 * Some flash media are capable of reading sequentially at faster rates. UBIFS
816 * bulk-read facility is designed to take advantage of that, by reading in one
817 * go consecutive data nodes that are also located consecutively in the same
818 * LEB.
819 *
820 * Returns: %1 if a bulk-read is done and %0 otherwise.
821 */
ubifs_bulk_read(struct folio * folio)822 static int ubifs_bulk_read(struct folio *folio)
823 {
824 struct inode *inode = folio->mapping->host;
825 struct ubifs_info *c = inode->i_sb->s_fs_info;
826 struct ubifs_inode *ui = ubifs_inode(inode);
827 pgoff_t index = folio->index, last_page_read = ui->last_page_read;
828 struct bu_info *bu;
829 int err = 0, allocated = 0;
830
831 ui->last_page_read = index;
832 if (!c->bulk_read)
833 return 0;
834
835 /*
836 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
837 * so don't bother if we cannot lock the mutex.
838 */
839 if (!mutex_trylock(&ui->ui_mutex))
840 return 0;
841
842 if (index != last_page_read + 1) {
843 /* Turn off bulk-read if we stop reading sequentially */
844 ui->read_in_a_row = 1;
845 if (ui->bulk_read)
846 ui->bulk_read = 0;
847 goto out_unlock;
848 }
849
850 if (!ui->bulk_read) {
851 ui->read_in_a_row += 1;
852 if (ui->read_in_a_row < 3)
853 goto out_unlock;
854 /* Three reads in a row, so switch on bulk-read */
855 ui->bulk_read = 1;
856 }
857
858 /*
859 * If possible, try to use pre-allocated bulk-read information, which
860 * is protected by @c->bu_mutex.
861 */
862 if (mutex_trylock(&c->bu_mutex))
863 bu = &c->bu;
864 else {
865 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
866 if (!bu)
867 goto out_unlock;
868
869 bu->buf = NULL;
870 allocated = 1;
871 }
872
873 bu->buf_len = c->max_bu_buf_len;
874 data_key_init(c, &bu->key, inode->i_ino,
875 folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
876 err = ubifs_do_bulk_read(c, bu, folio);
877
878 if (!allocated)
879 mutex_unlock(&c->bu_mutex);
880 else
881 kfree(bu);
882
883 out_unlock:
884 mutex_unlock(&ui->ui_mutex);
885 return err;
886 }
887
ubifs_read_folio(struct file * file,struct folio * folio)888 static int ubifs_read_folio(struct file *file, struct folio *folio)
889 {
890 if (ubifs_bulk_read(folio))
891 return 0;
892 do_readpage(folio);
893 folio_unlock(folio);
894 return 0;
895 }
896
do_writepage(struct folio * folio,size_t len)897 static int do_writepage(struct folio *folio, size_t len)
898 {
899 int err = 0, blen;
900 unsigned int block;
901 void *addr;
902 size_t offset = 0;
903 union ubifs_key key;
904 struct inode *inode = folio->mapping->host;
905 struct ubifs_info *c = inode->i_sb->s_fs_info;
906
907 #ifdef UBIFS_DEBUG
908 struct ubifs_inode *ui = ubifs_inode(inode);
909 spin_lock(&ui->ui_lock);
910 ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT);
911 spin_unlock(&ui->ui_lock);
912 #endif
913
914 folio_start_writeback(folio);
915
916 addr = kmap_local_folio(folio, offset);
917 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
918 for (;;) {
919 blen = min_t(size_t, len, UBIFS_BLOCK_SIZE);
920 data_key_init(c, &key, inode->i_ino, block);
921 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
922 if (err)
923 break;
924 len -= blen;
925 if (!len)
926 break;
927 block += 1;
928 addr += blen;
929 if (folio_test_highmem(folio) && !offset_in_page(addr)) {
930 kunmap_local(addr - blen);
931 offset += PAGE_SIZE;
932 addr = kmap_local_folio(folio, offset);
933 }
934 }
935 kunmap_local(addr);
936 if (err) {
937 mapping_set_error(folio->mapping, err);
938 ubifs_err(c, "cannot write folio %lu of inode %lu, error %d",
939 folio->index, inode->i_ino, err);
940 ubifs_ro_mode(c, err);
941 }
942
943 ubifs_assert(c, folio->private != NULL);
944 if (folio_test_checked(folio))
945 release_new_page_budget(c);
946 else
947 release_existing_page_budget(c);
948
949 atomic_long_dec(&c->dirty_pg_cnt);
950 folio_detach_private(folio);
951 folio_clear_checked(folio);
952
953 folio_unlock(folio);
954 folio_end_writeback(folio);
955 return err;
956 }
957
958 /*
959 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
960 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
961 * situation when a we have an inode with size 0, then a megabyte of data is
962 * appended to the inode, then write-back starts and flushes some amount of the
963 * dirty pages, the journal becomes full, commit happens and finishes, and then
964 * an unclean reboot happens. When the file system is mounted next time, the
965 * inode size would still be 0, but there would be many pages which are beyond
966 * the inode size, they would be indexed and consume flash space. Because the
967 * journal has been committed, the replay would not be able to detect this
968 * situation and correct the inode size. This means UBIFS would have to scan
969 * whole index and correct all inode sizes, which is long an unacceptable.
970 *
971 * To prevent situations like this, UBIFS writes pages back only if they are
972 * within the last synchronized inode size, i.e. the size which has been
973 * written to the flash media last time. Otherwise, UBIFS forces inode
974 * write-back, thus making sure the on-flash inode contains current inode size,
975 * and then keeps writing pages back.
976 *
977 * Some locking issues explanation. 'ubifs_writepage()' first is called with
978 * the page locked, and it locks @ui_mutex. However, write-back does take inode
979 * @i_mutex, which means other VFS operations may be run on this inode at the
980 * same time. And the problematic one is truncation to smaller size, from where
981 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
982 * then drops the truncated pages. And while dropping the pages, it takes the
983 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
984 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
985 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
986 *
987 * XXX(truncate): with the new truncate sequence this is not true anymore,
988 * and the calls to truncate_setsize can be move around freely. They should
989 * be moved to the very end of the truncate sequence.
990 *
991 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
992 * inode size. How do we do this if @inode->i_size may became smaller while we
993 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
994 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
995 * internally and updates it under @ui_mutex.
996 *
997 * Q: why we do not worry that if we race with truncation, we may end up with a
998 * situation when the inode is truncated while we are in the middle of
999 * 'do_writepage()', so we do write beyond inode size?
1000 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1001 * on the page lock and it would not write the truncated inode node to the
1002 * journal before we have finished.
1003 */
ubifs_writepage(struct folio * folio,struct writeback_control * wbc,void * data)1004 static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc,
1005 void *data)
1006 {
1007 struct inode *inode = folio->mapping->host;
1008 struct ubifs_info *c = inode->i_sb->s_fs_info;
1009 struct ubifs_inode *ui = ubifs_inode(inode);
1010 loff_t i_size = i_size_read(inode), synced_i_size;
1011 int err, len = folio_size(folio);
1012
1013 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1014 inode->i_ino, folio->index, folio->flags);
1015 ubifs_assert(c, folio->private != NULL);
1016
1017 /* Is the folio fully outside @i_size? (truncate in progress) */
1018 if (folio_pos(folio) >= i_size) {
1019 err = 0;
1020 goto out_unlock;
1021 }
1022
1023 spin_lock(&ui->ui_lock);
1024 synced_i_size = ui->synced_i_size;
1025 spin_unlock(&ui->ui_lock);
1026
1027 /* Is the folio fully inside i_size? */
1028 if (folio_pos(folio) + len <= i_size) {
1029 if (folio_pos(folio) + len > synced_i_size) {
1030 err = inode->i_sb->s_op->write_inode(inode, NULL);
1031 if (err)
1032 goto out_redirty;
1033 /*
1034 * The inode has been written, but the write-buffer has
1035 * not been synchronized, so in case of an unclean
1036 * reboot we may end up with some pages beyond inode
1037 * size, but they would be in the journal (because
1038 * commit flushes write buffers) and recovery would deal
1039 * with this.
1040 */
1041 }
1042 return do_writepage(folio, len);
1043 }
1044
1045 /*
1046 * The folio straddles @i_size. It must be zeroed out on each and every
1047 * writepage invocation because it may be mmapped. "A file is mapped
1048 * in multiples of the page size. For a file that is not a multiple of
1049 * the page size, the remaining memory is zeroed when mapped, and
1050 * writes to that region are not written out to the file."
1051 */
1052 len = i_size - folio_pos(folio);
1053 folio_zero_segment(folio, len, folio_size(folio));
1054
1055 if (i_size > synced_i_size) {
1056 err = inode->i_sb->s_op->write_inode(inode, NULL);
1057 if (err)
1058 goto out_redirty;
1059 }
1060
1061 return do_writepage(folio, len);
1062 out_redirty:
1063 /*
1064 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because
1065 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1066 * there is no need to do space budget for dirty inode.
1067 */
1068 folio_redirty_for_writepage(wbc, folio);
1069 out_unlock:
1070 folio_unlock(folio);
1071 return err;
1072 }
1073
ubifs_writepages(struct address_space * mapping,struct writeback_control * wbc)1074 static int ubifs_writepages(struct address_space *mapping,
1075 struct writeback_control *wbc)
1076 {
1077 return write_cache_pages(mapping, wbc, ubifs_writepage, NULL);
1078 }
1079
1080 /**
1081 * do_attr_changes - change inode attributes.
1082 * @inode: inode to change attributes for
1083 * @attr: describes attributes to change
1084 */
do_attr_changes(struct inode * inode,const struct iattr * attr)1085 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1086 {
1087 if (attr->ia_valid & ATTR_UID)
1088 inode->i_uid = attr->ia_uid;
1089 if (attr->ia_valid & ATTR_GID)
1090 inode->i_gid = attr->ia_gid;
1091 if (attr->ia_valid & ATTR_ATIME)
1092 inode_set_atime_to_ts(inode, attr->ia_atime);
1093 if (attr->ia_valid & ATTR_MTIME)
1094 inode_set_mtime_to_ts(inode, attr->ia_mtime);
1095 if (attr->ia_valid & ATTR_CTIME)
1096 inode_set_ctime_to_ts(inode, attr->ia_ctime);
1097 if (attr->ia_valid & ATTR_MODE) {
1098 umode_t mode = attr->ia_mode;
1099
1100 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1101 mode &= ~S_ISGID;
1102 inode->i_mode = mode;
1103 }
1104 }
1105
1106 /**
1107 * do_truncation - truncate an inode.
1108 * @c: UBIFS file-system description object
1109 * @inode: inode to truncate
1110 * @attr: inode attribute changes description
1111 *
1112 * This function implements VFS '->setattr()' call when the inode is truncated
1113 * to a smaller size.
1114 *
1115 * Returns: %0 in case of success and a negative error code
1116 * in case of failure.
1117 */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1118 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1119 const struct iattr *attr)
1120 {
1121 int err;
1122 struct ubifs_budget_req req;
1123 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1124 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1125 struct ubifs_inode *ui = ubifs_inode(inode);
1126
1127 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1128 memset(&req, 0, sizeof(struct ubifs_budget_req));
1129
1130 /*
1131 * If this is truncation to a smaller size, and we do not truncate on a
1132 * block boundary, budget for changing one data block, because the last
1133 * block will be re-written.
1134 */
1135 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1136 req.dirtied_page = 1;
1137
1138 req.dirtied_ino = 1;
1139 /* A funny way to budget for truncation node */
1140 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1141 err = ubifs_budget_space(c, &req);
1142 if (err) {
1143 /*
1144 * Treat truncations to zero as deletion and always allow them,
1145 * just like we do for '->unlink()'.
1146 */
1147 if (new_size || err != -ENOSPC)
1148 return err;
1149 budgeted = 0;
1150 }
1151
1152 truncate_setsize(inode, new_size);
1153
1154 if (offset) {
1155 pgoff_t index = new_size >> PAGE_SHIFT;
1156 struct folio *folio;
1157
1158 folio = filemap_lock_folio(inode->i_mapping, index);
1159 if (!IS_ERR(folio)) {
1160 if (folio_test_dirty(folio)) {
1161 /*
1162 * 'ubifs_jnl_truncate()' will try to truncate
1163 * the last data node, but it contains
1164 * out-of-date data because the page is dirty.
1165 * Write the page now, so that
1166 * 'ubifs_jnl_truncate()' will see an already
1167 * truncated (and up to date) data node.
1168 */
1169 ubifs_assert(c, folio->private != NULL);
1170
1171 folio_clear_dirty_for_io(folio);
1172 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1173 offset = offset_in_folio(folio,
1174 new_size);
1175 err = do_writepage(folio, offset);
1176 folio_put(folio);
1177 if (err)
1178 goto out_budg;
1179 /*
1180 * We could now tell 'ubifs_jnl_truncate()' not
1181 * to read the last block.
1182 */
1183 } else {
1184 /*
1185 * We could 'kmap()' the page and pass the data
1186 * to 'ubifs_jnl_truncate()' to save it from
1187 * having to read it.
1188 */
1189 folio_unlock(folio);
1190 folio_put(folio);
1191 }
1192 }
1193 }
1194
1195 mutex_lock(&ui->ui_mutex);
1196 ui->ui_size = inode->i_size;
1197 /* Truncation changes inode [mc]time */
1198 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1199 /* Other attributes may be changed at the same time as well */
1200 do_attr_changes(inode, attr);
1201 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1202 mutex_unlock(&ui->ui_mutex);
1203
1204 out_budg:
1205 if (budgeted)
1206 ubifs_release_budget(c, &req);
1207 else {
1208 c->bi.nospace = c->bi.nospace_rp = 0;
1209 smp_wmb();
1210 }
1211 return err;
1212 }
1213
1214 /**
1215 * do_setattr - change inode attributes.
1216 * @c: UBIFS file-system description object
1217 * @inode: inode to change attributes for
1218 * @attr: inode attribute changes description
1219 *
1220 * This function implements VFS '->setattr()' call for all cases except
1221 * truncations to smaller size.
1222 *
1223 * Returns: %0 in case of success and a negative
1224 * error code in case of failure.
1225 */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1226 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1227 const struct iattr *attr)
1228 {
1229 int err, release;
1230 loff_t new_size = attr->ia_size;
1231 struct ubifs_inode *ui = ubifs_inode(inode);
1232 struct ubifs_budget_req req = { .dirtied_ino = 1,
1233 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1234
1235 err = ubifs_budget_space(c, &req);
1236 if (err)
1237 return err;
1238
1239 if (attr->ia_valid & ATTR_SIZE) {
1240 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1241 truncate_setsize(inode, new_size);
1242 }
1243
1244 mutex_lock(&ui->ui_mutex);
1245 if (attr->ia_valid & ATTR_SIZE) {
1246 /* Truncation changes inode [mc]time */
1247 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1248 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1249 ui->ui_size = inode->i_size;
1250 }
1251
1252 do_attr_changes(inode, attr);
1253
1254 release = ui->dirty;
1255 if (attr->ia_valid & ATTR_SIZE)
1256 /*
1257 * Inode length changed, so we have to make sure
1258 * @I_DIRTY_DATASYNC is set.
1259 */
1260 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1261 else
1262 mark_inode_dirty_sync(inode);
1263 mutex_unlock(&ui->ui_mutex);
1264
1265 if (release)
1266 ubifs_release_budget(c, &req);
1267 if (IS_SYNC(inode))
1268 err = inode->i_sb->s_op->write_inode(inode, NULL);
1269 return err;
1270 }
1271
ubifs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1272 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1273 struct iattr *attr)
1274 {
1275 int err;
1276 struct inode *inode = d_inode(dentry);
1277 struct ubifs_info *c = inode->i_sb->s_fs_info;
1278
1279 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1280 inode->i_ino, inode->i_mode, attr->ia_valid);
1281 err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1282 if (err)
1283 return err;
1284
1285 err = dbg_check_synced_i_size(c, inode);
1286 if (err)
1287 return err;
1288
1289 err = fscrypt_prepare_setattr(dentry, attr);
1290 if (err)
1291 return err;
1292
1293 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1294 /* Truncation to a smaller size */
1295 err = do_truncation(c, inode, attr);
1296 else
1297 err = do_setattr(c, inode, attr);
1298
1299 return err;
1300 }
1301
ubifs_invalidate_folio(struct folio * folio,size_t offset,size_t length)1302 static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1303 size_t length)
1304 {
1305 struct inode *inode = folio->mapping->host;
1306 struct ubifs_info *c = inode->i_sb->s_fs_info;
1307
1308 ubifs_assert(c, folio_test_private(folio));
1309 if (offset || length < folio_size(folio))
1310 /* Partial folio remains dirty */
1311 return;
1312
1313 if (folio_test_checked(folio))
1314 release_new_page_budget(c);
1315 else
1316 release_existing_page_budget(c);
1317
1318 atomic_long_dec(&c->dirty_pg_cnt);
1319 folio_detach_private(folio);
1320 folio_clear_checked(folio);
1321 }
1322
ubifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)1323 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1324 {
1325 struct inode *inode = file->f_mapping->host;
1326 struct ubifs_info *c = inode->i_sb->s_fs_info;
1327 int err;
1328
1329 dbg_gen("syncing inode %lu", inode->i_ino);
1330
1331 if (c->ro_mount)
1332 /*
1333 * For some really strange reasons VFS does not filter out
1334 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1335 */
1336 return 0;
1337
1338 err = file_write_and_wait_range(file, start, end);
1339 if (err)
1340 return err;
1341 inode_lock(inode);
1342
1343 /* Synchronize the inode unless this is a 'datasync()' call. */
1344 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1345 err = inode->i_sb->s_op->write_inode(inode, NULL);
1346 if (err)
1347 goto out;
1348 }
1349
1350 /*
1351 * Nodes related to this inode may still sit in a write-buffer. Flush
1352 * them.
1353 */
1354 err = ubifs_sync_wbufs_by_inode(c, inode);
1355 out:
1356 inode_unlock(inode);
1357 return err;
1358 }
1359
1360 /**
1361 * mctime_update_needed - check if mtime or ctime update is needed.
1362 * @inode: the inode to do the check for
1363 * @now: current time
1364 *
1365 * This helper function checks if the inode mtime/ctime should be updated or
1366 * not. If current values of the time-stamps are within the UBIFS inode time
1367 * granularity, they are not updated. This is an optimization.
1368 *
1369 * Returns: %1 if time update is needed, %0 if not
1370 */
mctime_update_needed(const struct inode * inode,const struct timespec64 * now)1371 static inline int mctime_update_needed(const struct inode *inode,
1372 const struct timespec64 *now)
1373 {
1374 struct timespec64 ctime = inode_get_ctime(inode);
1375 struct timespec64 mtime = inode_get_mtime(inode);
1376
1377 if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now))
1378 return 1;
1379 return 0;
1380 }
1381
1382 /**
1383 * ubifs_update_time - update time of inode.
1384 * @inode: inode to update
1385 * @flags: time updating control flag determines updating
1386 * which time fields of @inode
1387 *
1388 * This function updates time of the inode.
1389 *
1390 * Returns: %0 for success or a negative error code otherwise.
1391 */
ubifs_update_time(struct inode * inode,int flags)1392 int ubifs_update_time(struct inode *inode, int flags)
1393 {
1394 struct ubifs_inode *ui = ubifs_inode(inode);
1395 struct ubifs_info *c = inode->i_sb->s_fs_info;
1396 struct ubifs_budget_req req = { .dirtied_ino = 1,
1397 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1398 int err, release;
1399
1400 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1401 generic_update_time(inode, flags);
1402 return 0;
1403 }
1404
1405 err = ubifs_budget_space(c, &req);
1406 if (err)
1407 return err;
1408
1409 mutex_lock(&ui->ui_mutex);
1410 inode_update_timestamps(inode, flags);
1411 release = ui->dirty;
1412 __mark_inode_dirty(inode, I_DIRTY_SYNC);
1413 mutex_unlock(&ui->ui_mutex);
1414 if (release)
1415 ubifs_release_budget(c, &req);
1416 return 0;
1417 }
1418
1419 /**
1420 * update_mctime - update mtime and ctime of an inode.
1421 * @inode: inode to update
1422 *
1423 * This function updates mtime and ctime of the inode if it is not equivalent to
1424 * current time.
1425 *
1426 * Returns: %0 in case of success and a negative error code in
1427 * case of failure.
1428 */
update_mctime(struct inode * inode)1429 static int update_mctime(struct inode *inode)
1430 {
1431 struct timespec64 now = current_time(inode);
1432 struct ubifs_inode *ui = ubifs_inode(inode);
1433 struct ubifs_info *c = inode->i_sb->s_fs_info;
1434
1435 if (mctime_update_needed(inode, &now)) {
1436 int err, release;
1437 struct ubifs_budget_req req = { .dirtied_ino = 1,
1438 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1439
1440 err = ubifs_budget_space(c, &req);
1441 if (err)
1442 return err;
1443
1444 mutex_lock(&ui->ui_mutex);
1445 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1446 release = ui->dirty;
1447 mark_inode_dirty_sync(inode);
1448 mutex_unlock(&ui->ui_mutex);
1449 if (release)
1450 ubifs_release_budget(c, &req);
1451 }
1452
1453 return 0;
1454 }
1455
ubifs_write_iter(struct kiocb * iocb,struct iov_iter * from)1456 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1457 {
1458 int err = update_mctime(file_inode(iocb->ki_filp));
1459 if (err)
1460 return err;
1461
1462 return generic_file_write_iter(iocb, from);
1463 }
1464
ubifs_dirty_folio(struct address_space * mapping,struct folio * folio)1465 static bool ubifs_dirty_folio(struct address_space *mapping,
1466 struct folio *folio)
1467 {
1468 bool ret;
1469 struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1470
1471 ret = filemap_dirty_folio(mapping, folio);
1472 /*
1473 * An attempt to dirty a page without budgeting for it - should not
1474 * happen.
1475 */
1476 ubifs_assert(c, ret == false);
1477 return ret;
1478 }
1479
ubifs_release_folio(struct folio * folio,gfp_t unused_gfp_flags)1480 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1481 {
1482 struct inode *inode = folio->mapping->host;
1483 struct ubifs_info *c = inode->i_sb->s_fs_info;
1484
1485 if (folio_test_writeback(folio))
1486 return false;
1487
1488 /*
1489 * Page is private but not dirty, weird? There is one condition
1490 * making it happened. ubifs_writepage skipped the page because
1491 * page index beyonds isize (for example. truncated by other
1492 * process named A), then the page is invalidated by fadvise64
1493 * syscall before being truncated by process A.
1494 */
1495 ubifs_assert(c, folio_test_private(folio));
1496 if (folio_test_checked(folio))
1497 release_new_page_budget(c);
1498 else
1499 release_existing_page_budget(c);
1500
1501 atomic_long_dec(&c->dirty_pg_cnt);
1502 folio_detach_private(folio);
1503 folio_clear_checked(folio);
1504 return true;
1505 }
1506
1507 /*
1508 * mmap()d file has taken write protection fault and is being made writable.
1509 * UBIFS must ensure page is budgeted for.
1510 */
ubifs_vm_page_mkwrite(struct vm_fault * vmf)1511 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1512 {
1513 struct folio *folio = page_folio(vmf->page);
1514 struct inode *inode = file_inode(vmf->vma->vm_file);
1515 struct ubifs_info *c = inode->i_sb->s_fs_info;
1516 struct timespec64 now = current_time(inode);
1517 struct ubifs_budget_req req = { .new_page = 1 };
1518 int err, update_time;
1519
1520 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, folio->index,
1521 i_size_read(inode));
1522 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1523
1524 if (unlikely(c->ro_error))
1525 return VM_FAULT_SIGBUS; /* -EROFS */
1526
1527 /*
1528 * We have not locked @folio so far so we may budget for changing the
1529 * folio. Note, we cannot do this after we locked the folio, because
1530 * budgeting may cause write-back which would cause deadlock.
1531 *
1532 * At the moment we do not know whether the folio is dirty or not, so we
1533 * assume that it is not and budget for a new folio. We could look at
1534 * the @PG_private flag and figure this out, but we may race with write
1535 * back and the folio state may change by the time we lock it, so this
1536 * would need additional care. We do not bother with this at the
1537 * moment, although it might be good idea to do. Instead, we allocate
1538 * budget for a new folio and amend it later on if the folio was in fact
1539 * dirty.
1540 *
1541 * The budgeting-related logic of this function is similar to what we
1542 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1543 * for more comments.
1544 */
1545 update_time = mctime_update_needed(inode, &now);
1546 if (update_time)
1547 /*
1548 * We have to change inode time stamp which requires extra
1549 * budgeting.
1550 */
1551 req.dirtied_ino = 1;
1552
1553 err = ubifs_budget_space(c, &req);
1554 if (unlikely(err)) {
1555 if (err == -ENOSPC)
1556 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1557 inode->i_ino);
1558 return VM_FAULT_SIGBUS;
1559 }
1560
1561 folio_lock(folio);
1562 if (unlikely(folio->mapping != inode->i_mapping ||
1563 folio_pos(folio) >= i_size_read(inode))) {
1564 /* Folio got truncated out from underneath us */
1565 goto sigbus;
1566 }
1567
1568 if (folio->private)
1569 release_new_page_budget(c);
1570 else {
1571 if (!folio_test_checked(folio))
1572 ubifs_convert_page_budget(c);
1573 folio_attach_private(folio, (void *)1);
1574 atomic_long_inc(&c->dirty_pg_cnt);
1575 filemap_dirty_folio(folio->mapping, folio);
1576 }
1577
1578 if (update_time) {
1579 int release;
1580 struct ubifs_inode *ui = ubifs_inode(inode);
1581
1582 mutex_lock(&ui->ui_mutex);
1583 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1584 release = ui->dirty;
1585 mark_inode_dirty_sync(inode);
1586 mutex_unlock(&ui->ui_mutex);
1587 if (release)
1588 ubifs_release_dirty_inode_budget(c, ui);
1589 }
1590
1591 folio_wait_stable(folio);
1592 return VM_FAULT_LOCKED;
1593
1594 sigbus:
1595 folio_unlock(folio);
1596 ubifs_release_budget(c, &req);
1597 return VM_FAULT_SIGBUS;
1598 }
1599
1600 static const struct vm_operations_struct ubifs_file_vm_ops = {
1601 .fault = filemap_fault,
1602 .map_pages = filemap_map_pages,
1603 .page_mkwrite = ubifs_vm_page_mkwrite,
1604 };
1605
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1606 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1607 {
1608 int err;
1609
1610 err = generic_file_mmap(file, vma);
1611 if (err)
1612 return err;
1613 vma->vm_ops = &ubifs_file_vm_ops;
1614
1615 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1616 file_accessed(file);
1617
1618 return 0;
1619 }
1620
ubifs_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1621 static const char *ubifs_get_link(struct dentry *dentry,
1622 struct inode *inode,
1623 struct delayed_call *done)
1624 {
1625 struct ubifs_inode *ui = ubifs_inode(inode);
1626
1627 if (!IS_ENCRYPTED(inode))
1628 return ui->data;
1629
1630 if (!dentry)
1631 return ERR_PTR(-ECHILD);
1632
1633 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1634 }
1635
ubifs_symlink_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1636 static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1637 const struct path *path, struct kstat *stat,
1638 u32 request_mask, unsigned int query_flags)
1639 {
1640 ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1641
1642 if (IS_ENCRYPTED(d_inode(path->dentry)))
1643 return fscrypt_symlink_getattr(path, stat);
1644 return 0;
1645 }
1646
1647 const struct address_space_operations ubifs_file_address_operations = {
1648 .read_folio = ubifs_read_folio,
1649 .writepages = ubifs_writepages,
1650 .write_begin = ubifs_write_begin,
1651 .write_end = ubifs_write_end,
1652 .invalidate_folio = ubifs_invalidate_folio,
1653 .dirty_folio = ubifs_dirty_folio,
1654 .migrate_folio = filemap_migrate_folio,
1655 .release_folio = ubifs_release_folio,
1656 };
1657
1658 const struct inode_operations ubifs_file_inode_operations = {
1659 .setattr = ubifs_setattr,
1660 .getattr = ubifs_getattr,
1661 .listxattr = ubifs_listxattr,
1662 .update_time = ubifs_update_time,
1663 .fileattr_get = ubifs_fileattr_get,
1664 .fileattr_set = ubifs_fileattr_set,
1665 };
1666
1667 const struct inode_operations ubifs_symlink_inode_operations = {
1668 .get_link = ubifs_get_link,
1669 .setattr = ubifs_setattr,
1670 .getattr = ubifs_symlink_getattr,
1671 .listxattr = ubifs_listxattr,
1672 .update_time = ubifs_update_time,
1673 };
1674
1675 const struct file_operations ubifs_file_operations = {
1676 .llseek = generic_file_llseek,
1677 .read_iter = generic_file_read_iter,
1678 .write_iter = ubifs_write_iter,
1679 .mmap = ubifs_file_mmap,
1680 .fsync = ubifs_fsync,
1681 .unlocked_ioctl = ubifs_ioctl,
1682 .splice_read = filemap_splice_read,
1683 .splice_write = iter_file_splice_write,
1684 .open = fscrypt_file_open,
1685 #ifdef CONFIG_COMPAT
1686 .compat_ioctl = ubifs_compat_ioctl,
1687 #endif
1688 };
1689