xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision a685a263b803012d9546abaca4dcf52f80c6b8d6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 #include <dev/uart/uart_ppstypes.h>
55 #ifdef DEV_ACPI
56 #include <dev/uart/uart_cpu_acpi.h>
57 #include <contrib/dev/acpica/include/acpi.h>
58 #endif
59 
60 #include <dev/ic/ns16550.h>
61 
62 #include "uart_if.h"
63 
64 #define	DEFAULT_RCLK	1843200
65 
66 /*
67  * Set the default baudrate tolerance to 3.0%.
68  *
69  * Some embedded boards have odd reference clocks (eg 25MHz)
70  * and we need to handle higher variances in the target baud rate.
71  */
72 #ifndef	UART_DEV_TOLERANCE_PCT
73 #define	UART_DEV_TOLERANCE_PCT	30
74 #endif	/* UART_DEV_TOLERANCE_PCT */
75 
76 static int broken_txfifo = 0;
77 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
78 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
79 
80 static int uart_noise_threshold = 0;
81 SYSCTL_INT(_hw, OID_AUTO, uart_noise_threshold, CTLFLAG_RWTUN,
82 	&uart_noise_threshold, 0,
83 	"Number of UART RX interrupts where TX is not ready, before data is discarded");
84 
85 /*
86  * To use early printf on x86, add the following to your kernel config:
87  *
88  * options UART_NS8250_EARLY_PORT=0x3f8
89  * options EARLY_PRINTF=ns8250
90 */
91 #if CHECK_EARLY_PRINTF(ns8250)
92 #if !(defined(__amd64__) || defined(__i386__))
93 #error ns8250 early putc is x86 specific as it uses inb/outb
94 #endif
95 static void
uart_ns8250_early_putc(int c)96 uart_ns8250_early_putc(int c)
97 {
98 	u_int stat = UART_NS8250_EARLY_PORT + REG_LSR;
99 	u_int tx = UART_NS8250_EARLY_PORT + REG_DATA;
100 	int limit = 10000; /* 10ms is plenty of time */
101 
102 	while ((inb(stat) & LSR_THRE) == 0 && --limit > 0)
103 		continue;
104 	outb(tx, c);
105 }
106 early_putc_t *early_putc = uart_ns8250_early_putc;
107 #endif /* EARLY_PRINTF */
108 
109 /*
110  * Clear pending interrupts. THRE is cleared by reading IIR. Data
111  * that may have been received gets lost here.
112  */
113 static void
ns8250_clrint(struct uart_bas * bas)114 ns8250_clrint(struct uart_bas *bas)
115 {
116 	uint8_t iir, lsr;
117 
118 	iir = uart_getreg(bas, REG_IIR);
119 	while ((iir & IIR_NOPEND) == 0) {
120 		iir &= IIR_IMASK;
121 		if (iir == IIR_RLS) {
122 			lsr = uart_getreg(bas, REG_LSR);
123 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
124 				(void)uart_getreg(bas, REG_DATA);
125 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
126 			(void)uart_getreg(bas, REG_DATA);
127 		else if (iir == IIR_MLSC)
128 			(void)uart_getreg(bas, REG_MSR);
129 		uart_barrier(bas);
130 		iir = uart_getreg(bas, REG_IIR);
131 	}
132 }
133 
134 static uint32_t
ns8250_get_divisor(struct uart_bas * bas)135 ns8250_get_divisor(struct uart_bas *bas)
136 {
137 	uint32_t divisor;
138 	uint8_t lcr;
139 
140 	lcr = uart_getreg(bas, REG_LCR);
141 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
142 	uart_barrier(bas);
143 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
144 	uart_barrier(bas);
145 	uart_setreg(bas, REG_LCR, lcr);
146 	uart_barrier(bas);
147 
148 	return (divisor);
149 }
150 
151 static int
ns8250_delay(struct uart_bas * bas)152 ns8250_delay(struct uart_bas *bas)
153 {
154 	int divisor;
155 
156 	divisor = ns8250_get_divisor(bas);
157 
158 	/* 1/10th the time to transmit 1 character (estimate). */
159 	if (divisor <= 134)
160 		return (16000000 * divisor / bas->rclk);
161 	return (16000 * divisor / (bas->rclk / 1000));
162 }
163 
164 static int
ns8250_divisor(int rclk,int baudrate)165 ns8250_divisor(int rclk, int baudrate)
166 {
167 	int actual_baud, divisor;
168 	int error;
169 
170 	if (baudrate == 0)
171 		return (0);
172 
173 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
174 	if (divisor == 0 || divisor >= 65536)
175 		return (0);
176 	actual_baud = rclk / (divisor << 4);
177 
178 	/* 10 times error in percent: */
179 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
180 
181 	/* enforce maximum error tolerance: */
182 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
183 		return (0);
184 
185 	return (divisor);
186 }
187 
188 static int
ns8250_drain(struct uart_bas * bas,int what)189 ns8250_drain(struct uart_bas *bas, int what)
190 {
191 	int delay, limit;
192 
193 	delay = ns8250_delay(bas);
194 
195 	if (what & UART_DRAIN_TRANSMITTER) {
196 		/*
197 		 * Pick an arbitrary high limit to avoid getting stuck in
198 		 * an infinite loop when the hardware is broken. Make the
199 		 * limit high enough to handle large FIFOs.
200 		 */
201 		limit = 10*1024;
202 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
203 			DELAY(delay);
204 		if (limit == 0) {
205 			/* printf("uart: ns8250: transmitter appears stuck... "); */
206 			return (EIO);
207 		}
208 	}
209 
210 	if (what & UART_DRAIN_RECEIVER) {
211 		/*
212 		 * Pick an arbitrary high limit to avoid getting stuck in
213 		 * an infinite loop when the hardware is broken. Make the
214 		 * limit high enough to handle large FIFOs and integrated
215 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
216 		 * management board that tend to get a lot of data send
217 		 * to it when the UART is first activated.  Assume that we
218 		 * have finished draining if LSR_RXRDY is not asserted both
219 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
220 		 * asserted, read (and discard) characters as quickly as
221 		 * possible.
222 		 */
223 		limit=10*4096;
224 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
225 			do {
226 				(void)uart_getreg(bas, REG_DATA);
227 				uart_barrier(bas);
228 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
229 			uart_barrier(bas);
230 			DELAY(delay << 2);
231 		}
232 		if (limit == 0) {
233 			/* printf("uart: ns8250: receiver appears broken... "); */
234 			return (EIO);
235 		}
236 	}
237 
238 	return (0);
239 }
240 
241 /*
242  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
243  * drained. WARNING: this function clobbers the FIFO setting!
244  */
245 static void
ns8250_flush(struct uart_bas * bas,int what)246 ns8250_flush(struct uart_bas *bas, int what)
247 {
248 	uint8_t fcr;
249 	uint8_t lsr;
250 	int drain = 0;
251 
252 	fcr = FCR_ENABLE;
253 	if (what & UART_FLUSH_TRANSMITTER)
254 		fcr |= FCR_XMT_RST;
255 	if (what & UART_FLUSH_RECEIVER)
256 		fcr |= FCR_RCV_RST;
257 	uart_setreg(bas, REG_FCR, fcr);
258 	uart_barrier(bas);
259 
260 	/*
261 	 * Detect and work around emulated UARTs which don't implement the
262 	 * FCR register; on these systems we need to drain the FIFO since
263 	 * the flush we request doesn't happen.  One such system is the
264 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
265 	 * https://github.com/rust-vmm/vm-superio/issues/83
266 	 */
267 	lsr = uart_getreg(bas, REG_LSR);
268 	if (((lsr & LSR_THRE) == 0) && (what & UART_FLUSH_TRANSMITTER))
269 		drain |= UART_DRAIN_TRANSMITTER;
270 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
271 		drain |= UART_DRAIN_RECEIVER;
272 	if (drain != 0) {
273 		printf("uart: ns8250: UART FCR is broken (%#x)\n", drain);
274 		ns8250_drain(bas, drain);
275 	}
276 }
277 
278 static int
ns8250_param(struct uart_bas * bas,int baudrate,int databits,int stopbits,int parity)279 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
280     int parity)
281 {
282 	int divisor;
283 	uint8_t lcr;
284 
285 	/* Don't change settings when running on Hyper-V */
286 	if (vm_guest == VM_GUEST_HV)
287 		return (0);
288 
289 	lcr = 0;
290 	if (databits >= 8)
291 		lcr |= LCR_8BITS;
292 	else if (databits == 7)
293 		lcr |= LCR_7BITS;
294 	else if (databits == 6)
295 		lcr |= LCR_6BITS;
296 	else
297 		lcr |= LCR_5BITS;
298 	if (stopbits > 1)
299 		lcr |= LCR_STOPB;
300 	lcr |= parity << 3;
301 
302 	/* Set baudrate if we know a rclk and both are not 0. */
303 	if (baudrate > 0 && bas->rclk > 0) {
304 		divisor = ns8250_divisor(bas->rclk, baudrate);
305 		if (divisor == 0)
306 			return (EINVAL);
307 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
308 		uart_barrier(bas);
309 		uart_setreg(bas, REG_DLL, divisor & 0xff);
310 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
311 		uart_barrier(bas);
312 	}
313 
314 	/* Set LCR and clear DLAB. */
315 	uart_setreg(bas, REG_LCR, lcr);
316 	uart_barrier(bas);
317 	return (0);
318 }
319 
320 /*
321  * Low-level UART interface.
322  */
323 static int ns8250_probe(struct uart_bas *bas);
324 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
325 static void ns8250_term(struct uart_bas *bas);
326 static void ns8250_putc(struct uart_bas *bas, int);
327 static int ns8250_rxready(struct uart_bas *bas);
328 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
329 
330 struct uart_ops uart_ns8250_ops = {
331 	.probe = ns8250_probe,
332 	.init = ns8250_init,
333 	.term = ns8250_term,
334 	.putc = ns8250_putc,
335 	.rxready = ns8250_rxready,
336 	.getc = ns8250_getc,
337 };
338 
339 static int
ns8250_probe(struct uart_bas * bas)340 ns8250_probe(struct uart_bas *bas)
341 {
342 	u_char val;
343 
344 	/* Check known 0 bits that don't depend on DLAB. */
345 	val = uart_getreg(bas, REG_IIR);
346 	if (val & 0x30)
347 		return (ENXIO);
348 	/*
349 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
350 	 * chip, but otherwise doesn't seem to have a function. In
351 	 * other words, uart(4) works regardless. Ignore that bit so
352 	 * the probe succeeds.
353 	 */
354 	val = uart_getreg(bas, REG_MCR);
355 	if (val & 0xa0)
356 		return (ENXIO);
357 
358 	return (0);
359 }
360 
361 static void
ns8250_init(struct uart_bas * bas,int baudrate,int databits,int stopbits,int parity)362 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
363     int parity)
364 {
365 	u_char ier;
366 
367 	/* Disable all interrupt sources. */
368 	/*
369 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
370 	 * UARTs split the receive time-out interrupt bit out separately as
371 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
372 	 */
373 	ier = uart_getreg(bas, REG_IER) & 0xe0;
374 	uart_setreg(bas, REG_IER, ier);
375 	uart_barrier(bas);
376 
377 	/*
378 	 * Loader tells us to infer the rclk when it sets xo to 0 in
379 	 * hw.uart.console. We know the baudrate was set by the firmware, so
380 	 * calculate rclk from baudrate and the divisor register.  If 'div' is
381 	 * actually 0, the resulting 0 value will have us fall back to other
382 	 * rclk methods.
383 	 */
384 	if (bas->rclk_guess && bas->rclk == 0 && baudrate != 0) {
385 		uint32_t div;
386 
387 		div = ns8250_get_divisor(bas);
388 		bas->rclk = baudrate * div * 16;
389 	}
390 
391 	/*
392 	 * Pick a default because we just don't know. This likely needs future
393 	 * refinement, but that's hard outside of consoles to know what to use.
394 	 * But defer as long as possible if there's no defined baud rate.
395 	 */
396 	if (bas->rclk == 0 && baudrate != 0)
397 		bas->rclk = DEFAULT_RCLK;
398 
399 	ns8250_param(bas, baudrate, databits, stopbits, parity);
400 
401 	/* Disable the FIFO (if present). */
402 	uart_setreg(bas, REG_FCR, 0);
403 	uart_barrier(bas);
404 
405 	/* Set RTS & DTR. */
406 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
407 	uart_barrier(bas);
408 
409 	ns8250_clrint(bas);
410 }
411 
412 static void
ns8250_term(struct uart_bas * bas)413 ns8250_term(struct uart_bas *bas)
414 {
415 
416 	/* Clear RTS & DTR. */
417 	uart_setreg(bas, REG_MCR, MCR_IE);
418 	uart_barrier(bas);
419 }
420 
421 static void
ns8250_putc(struct uart_bas * bas,int c)422 ns8250_putc(struct uart_bas *bas, int c)
423 {
424 	int limit;
425 
426 	if (vm_guest != VM_GUEST_HV) {
427 		limit = 250000;
428 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
429 			DELAY(4);
430 	}
431 	uart_setreg(bas, REG_DATA, c);
432 	uart_barrier(bas);
433 }
434 
435 static int
ns8250_rxready(struct uart_bas * bas)436 ns8250_rxready(struct uart_bas *bas)
437 {
438 
439 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
440 }
441 
442 static int
ns8250_getc(struct uart_bas * bas,struct mtx * hwmtx)443 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
444 {
445 	int c;
446 
447 	uart_lock(hwmtx);
448 
449 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
450 		uart_unlock(hwmtx);
451 		DELAY(4);
452 		uart_lock(hwmtx);
453 	}
454 
455 	c = uart_getreg(bas, REG_DATA);
456 
457 	uart_unlock(hwmtx);
458 
459 	return (c);
460 }
461 
462 static kobj_method_t ns8250_methods[] = {
463 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
464 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
465 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
466 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
467 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
468 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
469 	KOBJMETHOD(uart_param,		ns8250_bus_param),
470 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
471 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
472 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
473 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
474 	KOBJMETHOD(uart_txbusy,		ns8250_bus_txbusy),
475 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
476 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
477 	KOBJMETHOD_END
478 };
479 
480 struct uart_class uart_ns8250_class = {
481 	"ns8250",
482 	ns8250_methods,
483 	sizeof(struct ns8250_softc),
484 	.uc_ops = &uart_ns8250_ops,
485 	.uc_range = 8,
486 	.uc_rclk = DEFAULT_RCLK,
487 	.uc_rshift = 0
488 };
489 UART_CLASS(uart_ns8250_class);
490 
491 /*
492  * XXX -- refactor out ACPI and FDT ifdefs
493  */
494 #ifdef DEV_ACPI
495 static struct acpi_spcr_compat_data acpi_spcr_compat_data[] = {
496 	{ &uart_ns8250_class, ACPI_DBG2_16550_COMPATIBLE },
497 	{ &uart_ns8250_class, ACPI_DBG2_16550_SUBSET },
498 	{ &uart_ns8250_class, ACPI_DBG2_16550_WITH_GAS },
499 	{ NULL, 0 },
500 };
501 UART_ACPI_SPCR_CLASS(acpi_spcr_compat_data);
502 
503 static struct acpi_uart_compat_data acpi_compat_data[] = {
504 	{"AMD0020",	&uart_ns8250_class, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
505 	{"AMDI0020", &uart_ns8250_class, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
506 	{"APMC0D08", &uart_ns8250_class, 2, 4, 0, 0, "APM compatible UART"},
507 	{"MRVL0001", &uart_ns8250_class, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
508 	{"SCX0006",  &uart_ns8250_class, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
509 	{"HISI0031", &uart_ns8250_class, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
510 	{"INTC1006", &uart_ns8250_class, 2, 0, 25000000, 0, "Intel ARM64 UART"},
511 	{"NXP0018", &uart_ns8250_class, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
512 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, "Standard PC COM port"},
513 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, "16550A-compatible COM port"},
514 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
515 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, "Generic IRDA-compatible device"},
516 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, "Generic IRDA-compatible device"},
517 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
518 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
519 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
520 	{NULL, 			NULL, 0 , 0, 0, 0, NULL},
521 };
522 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
523 #endif
524 
525 #ifdef FDT
526 static struct ofw_compat_data compat_data[] = {
527 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
528 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
529 	{NULL,			(uintptr_t)NULL},
530 };
531 UART_FDT_CLASS_AND_DEVICE(compat_data);
532 #endif
533 
534 /* Use token-pasting to form SER_ and MSR_ named constants. */
535 #define	SER(sig)	SER_##sig
536 #define	SERD(sig)	SER_D##sig
537 #define	MSR(sig)	MSR_##sig
538 #define	MSRD(sig)	MSR_D##sig
539 
540 /*
541  * Detect signal changes using software delta detection.  The previous state of
542  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
543  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
544  * new state of both the signal and the delta bits.
545  */
546 #define SIGCHGSW(var, msr, sig)					\
547 	if ((msr) & MSR(sig)) {					\
548 		if ((var & SER(sig)) == 0)			\
549 			var |= SERD(sig) | SER(sig);		\
550 	} else {						\
551 		if ((var & SER(sig)) != 0)			\
552 			var = SERD(sig) | (var & ~SER(sig));	\
553 	}
554 
555 /*
556  * Detect signal changes using the hardware msr delta bits.  This is currently
557  * used only when PPS timing information is being captured using the "narrow
558  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
559  * by time the interrupt handler is invoked.  The hardware will latch the fact
560  * that it changed in the delta bits.
561  */
562 #define SIGCHGHW(var, msr, sig)					\
563 	if ((msr) & MSRD(sig)) {				\
564 		if (((msr) & MSR(sig)) != 0)			\
565 			var |= SERD(sig) | SER(sig);		\
566 		else						\
567 			var = SERD(sig) | (var & ~SER(sig));	\
568 	}
569 
570 int
ns8250_bus_attach(struct uart_softc * sc)571 ns8250_bus_attach(struct uart_softc *sc)
572 {
573 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
574 	struct uart_bas *bas;
575 	unsigned int ivar;
576 #ifdef FDT
577 	phandle_t node;
578 	pcell_t cell;
579 #endif
580 
581 #ifdef FDT
582 	/* Check whether uart has a broken txfifo. */
583 	node = ofw_bus_get_node(sc->sc_dev);
584 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
585 		broken_txfifo =  cell ? 1 : 0;
586 #endif
587 
588 	bas = &sc->sc_bas;
589 
590 	ns8250->busy_detect = bas->busy_detect;
591 	ns8250->mcr = uart_getreg(bas, REG_MCR);
592 	ns8250->fcr = FCR_ENABLE;
593 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
594 	    &ivar)) {
595 		if (UART_FLAGS_FCR_RX_LOW(ivar))
596 			ns8250->fcr |= FCR_RX_LOW;
597 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
598 			ns8250->fcr |= FCR_RX_MEDL;
599 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
600 			ns8250->fcr |= FCR_RX_HIGH;
601 		else
602 			ns8250->fcr |= FCR_RX_MEDH;
603 	} else
604 		ns8250->fcr |= FCR_RX_MEDH;
605 
606 	/* Get IER mask */
607 	ivar = 0xf0;
608 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
609 	    &ivar);
610 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
611 
612 	/* Get IER RX interrupt bits */
613 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
614 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
615 	    &ivar);
616 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
617 
618 	uart_setreg(bas, REG_FCR, ns8250->fcr);
619 	uart_barrier(bas);
620 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
621 
622 	if (ns8250->mcr & MCR_DTR)
623 		sc->sc_hwsig |= SER_DTR;
624 	if (ns8250->mcr & MCR_RTS)
625 		sc->sc_hwsig |= SER_RTS;
626 	ns8250_bus_getsig(sc);
627 
628 	ns8250_clrint(bas);
629 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
630 	ns8250->ier |= ns8250->ier_rxbits;
631 	uart_setreg(bas, REG_IER, ns8250->ier);
632 	uart_barrier(bas);
633 
634 	/*
635 	 * Timing of the H/W access was changed with r253161 of uart_core.c
636 	 * It has been observed that an ITE IT8513E would signal a break
637 	 * condition with pretty much every character it received, unless
638 	 * it had enough time to settle between ns8250_bus_attach() and
639 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
640 	 * It's not understood why the UART chip behaves this way and it
641 	 * could very well be that the DELAY make the H/W work in the same
642 	 * accidental manner as before. More analysis is warranted, but
643 	 * at least now we fixed a known regression.
644 	 */
645 	DELAY(200);
646 	return (0);
647 }
648 
649 int
ns8250_bus_detach(struct uart_softc * sc)650 ns8250_bus_detach(struct uart_softc *sc)
651 {
652 	struct ns8250_softc *ns8250;
653 	struct uart_bas *bas;
654 	u_char ier;
655 
656 	ns8250 = (struct ns8250_softc *)sc;
657 	bas = &sc->sc_bas;
658 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
659 	uart_setreg(bas, REG_IER, ier);
660 	uart_barrier(bas);
661 	ns8250_clrint(bas);
662 	return (0);
663 }
664 
665 int
ns8250_bus_flush(struct uart_softc * sc,int what)666 ns8250_bus_flush(struct uart_softc *sc, int what)
667 {
668 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
669 	struct uart_bas *bas;
670 	int error;
671 
672 	bas = &sc->sc_bas;
673 	uart_lock(sc->sc_hwmtx);
674 	if (sc->sc_rxfifosz > 1) {
675 		ns8250_flush(bas, what);
676 		uart_setreg(bas, REG_FCR, ns8250->fcr);
677 		uart_barrier(bas);
678 		error = 0;
679 	} else
680 		error = ns8250_drain(bas, what);
681 	uart_unlock(sc->sc_hwmtx);
682 	return (error);
683 }
684 
685 int
ns8250_bus_getsig(struct uart_softc * sc)686 ns8250_bus_getsig(struct uart_softc *sc)
687 {
688 	uint32_t old, sig;
689 	uint8_t msr;
690 
691 	/*
692 	 * The delta bits are reputed to be broken on some hardware, so use
693 	 * software delta detection by default.  Use the hardware delta bits
694 	 * when capturing PPS pulses which are too narrow for software detection
695 	 * to see the edges.  Hardware delta for RI doesn't work like the
696 	 * others, so always use software for it.  Other threads may be changing
697 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
698 	 * update without other changes happening.  Note that the SIGCHGxx()
699 	 * macros carefully preserve the delta bits when we have to loop several
700 	 * times and a signal transitions between iterations.
701 	 */
702 	do {
703 		old = sc->sc_hwsig;
704 		sig = old;
705 		uart_lock(sc->sc_hwmtx);
706 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
707 		uart_unlock(sc->sc_hwmtx);
708 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
709 			SIGCHGHW(sig, msr, DSR);
710 			SIGCHGHW(sig, msr, CTS);
711 			SIGCHGHW(sig, msr, DCD);
712 		} else {
713 			SIGCHGSW(sig, msr, DSR);
714 			SIGCHGSW(sig, msr, CTS);
715 			SIGCHGSW(sig, msr, DCD);
716 		}
717 		SIGCHGSW(sig, msr, RI);
718 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
719 	return (sig);
720 }
721 
722 int
ns8250_bus_ioctl(struct uart_softc * sc,int request,intptr_t data)723 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
724 {
725 	struct uart_bas *bas;
726 	int baudrate, divisor, error;
727 	uint8_t efr, lcr;
728 
729 	bas = &sc->sc_bas;
730 	error = 0;
731 	uart_lock(sc->sc_hwmtx);
732 	switch (request) {
733 	case UART_IOCTL_BREAK:
734 		lcr = uart_getreg(bas, REG_LCR);
735 		if (data)
736 			lcr |= LCR_SBREAK;
737 		else
738 			lcr &= ~LCR_SBREAK;
739 		uart_setreg(bas, REG_LCR, lcr);
740 		uart_barrier(bas);
741 		break;
742 	case UART_IOCTL_IFLOW:
743 		lcr = uart_getreg(bas, REG_LCR);
744 		uart_barrier(bas);
745 		uart_setreg(bas, REG_LCR, 0xbf);
746 		uart_barrier(bas);
747 		efr = uart_getreg(bas, REG_EFR);
748 		if (data)
749 			efr |= EFR_RTS;
750 		else
751 			efr &= ~EFR_RTS;
752 		uart_setreg(bas, REG_EFR, efr);
753 		uart_barrier(bas);
754 		uart_setreg(bas, REG_LCR, lcr);
755 		uart_barrier(bas);
756 		break;
757 	case UART_IOCTL_OFLOW:
758 		lcr = uart_getreg(bas, REG_LCR);
759 		uart_barrier(bas);
760 		uart_setreg(bas, REG_LCR, 0xbf);
761 		uart_barrier(bas);
762 		efr = uart_getreg(bas, REG_EFR);
763 		if (data)
764 			efr |= EFR_CTS;
765 		else
766 			efr &= ~EFR_CTS;
767 		uart_setreg(bas, REG_EFR, efr);
768 		uart_barrier(bas);
769 		uart_setreg(bas, REG_LCR, lcr);
770 		uart_barrier(bas);
771 		break;
772 	case UART_IOCTL_BAUD:
773 		divisor = ns8250_get_divisor(bas);
774 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
775 		if (baudrate > 0)
776 			*(int*)data = baudrate;
777 		else
778 			error = ENXIO;
779 		break;
780 	default:
781 		error = EINVAL;
782 		break;
783 	}
784 	uart_unlock(sc->sc_hwmtx);
785 	return (error);
786 }
787 
788 int
ns8250_bus_ipend(struct uart_softc * sc)789 ns8250_bus_ipend(struct uart_softc *sc)
790 {
791 	struct uart_bas *bas;
792 	struct ns8250_softc *ns8250;
793 	int ipend;
794 	uint8_t iir, lsr;
795 
796 	ns8250 = (struct ns8250_softc *)sc;
797 	bas = &sc->sc_bas;
798 	uart_lock(sc->sc_hwmtx);
799 	iir = uart_getreg(bas, REG_IIR);
800 
801 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
802 		(void)uart_getreg(bas, DW_REG_USR);
803 		uart_unlock(sc->sc_hwmtx);
804 		return (0);
805 	}
806 	if (iir & IIR_NOPEND) {
807 		uart_unlock(sc->sc_hwmtx);
808 		return (0);
809 	}
810 	ipend = 0;
811 	if (iir & IIR_RXRDY) {
812 		lsr = uart_getreg(bas, REG_LSR);
813 		if (lsr & LSR_OE)
814 			ipend |= SER_INT_OVERRUN;
815 		if (lsr & LSR_BI)
816 			ipend |= SER_INT_BREAK;
817 		if (lsr & LSR_RXRDY)
818 			ipend |= SER_INT_RXREADY;
819 	} else {
820 		if (iir & IIR_TXRDY) {
821 			ipend |= SER_INT_TXIDLE;
822 			ns8250->ier &= ~IER_ETXRDY;
823 			uart_setreg(bas, REG_IER, ns8250->ier);
824 			uart_barrier(bas);
825 		} else
826 			ipend |= SER_INT_SIGCHG;
827 	}
828 	if (ipend == 0)
829 		ns8250_clrint(bas);
830 	uart_unlock(sc->sc_hwmtx);
831 	return (ipend);
832 }
833 
834 int
ns8250_bus_param(struct uart_softc * sc,int baudrate,int databits,int stopbits,int parity)835 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
836     int stopbits, int parity)
837 {
838 	struct ns8250_softc *ns8250;
839 	struct uart_bas *bas;
840 	int error, limit;
841 
842 	ns8250 = (struct ns8250_softc*)sc;
843 	bas = &sc->sc_bas;
844 	uart_lock(sc->sc_hwmtx);
845 	/*
846 	 * When using DW UART with BUSY detection it is necessary to wait
847 	 * until all serial transfers are finished before manipulating the
848 	 * line control. LCR will not be affected when UART is busy.
849 	 */
850 	if (ns8250->busy_detect != 0) {
851 		/*
852 		 * Pick an arbitrary high limit to avoid getting stuck in
853 		 * an infinite loop in case when the hardware is broken.
854 		 */
855 		limit = 10 * 1024;
856 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
857 		    --limit)
858 			DELAY(4);
859 
860 		if (limit <= 0) {
861 			/* UART appears to be stuck */
862 			uart_unlock(sc->sc_hwmtx);
863 			return (EIO);
864 		}
865 	}
866 
867 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
868 	uart_unlock(sc->sc_hwmtx);
869 	return (error);
870 }
871 
872 int
ns8250_bus_probe(struct uart_softc * sc)873 ns8250_bus_probe(struct uart_softc *sc)
874 {
875 	struct uart_bas *bas;
876 	int count, delay, error, limit;
877 	uint8_t lsr, mcr, ier;
878 
879 	bas = &sc->sc_bas;
880 
881 	error = ns8250_probe(bas);
882 	if (error)
883 		return (error);
884 
885 	mcr = MCR_IE;
886 	if (sc->sc_sysdev == NULL) {
887 		/* By using ns8250_init() we also set DTR and RTS. */
888 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
889 	} else
890 		mcr |= MCR_DTR | MCR_RTS;
891 
892 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
893 	if (error)
894 		return (error);
895 
896 	/*
897 	 * Set loopback mode. This avoids having garbage on the wire and
898 	 * also allows us send and receive data. We set DTR and RTS to
899 	 * avoid the possibility that automatic flow-control prevents
900 	 * any data from being sent.
901 	 */
902 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
903 	uart_barrier(bas);
904 
905 	/*
906 	 * Enable FIFOs. And check that the UART has them. If not, we're
907 	 * done. Since this is the first time we enable the FIFOs, we reset
908 	 * them.
909 	 */
910 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
911 	uart_barrier(bas);
912 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
913 		/*
914 		 * NS16450 or INS8250. We don't bother to differentiate
915 		 * between them. They're too old to be interesting.
916 		 */
917 		uart_setreg(bas, REG_MCR, mcr);
918 		uart_barrier(bas);
919 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
920 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
921 		return (0);
922 	}
923 
924 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
925 	uart_barrier(bas);
926 
927 	count = 0;
928 	delay = ns8250_delay(bas);
929 
930 	/* We have FIFOs. Drain the transmitter and receiver. */
931 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
932 	if (error) {
933 		uart_setreg(bas, REG_MCR, mcr);
934 		uart_setreg(bas, REG_FCR, 0);
935 		uart_barrier(bas);
936 		goto describe;
937 	}
938 
939 	/*
940 	 * We should have a sufficiently clean "pipe" to determine the
941 	 * size of the FIFOs. We send as much characters as is reasonable
942 	 * and wait for the overflow bit in the LSR register to be
943 	 * asserted, counting the characters as we send them. Based on
944 	 * that count we know the FIFO size.
945 	 */
946 	do {
947 		uart_setreg(bas, REG_DATA, 0);
948 		uart_barrier(bas);
949 		count++;
950 
951 		limit = 30;
952 		lsr = 0;
953 		/*
954 		 * LSR bits are cleared upon read, so we must accumulate
955 		 * them to be able to test LSR_OE below.
956 		 */
957 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
958 		    --limit)
959 			DELAY(delay);
960 		if (limit == 0) {
961 			/* See the comment in ns8250_init(). */
962 			ier = uart_getreg(bas, REG_IER) & 0xe0;
963 			uart_setreg(bas, REG_IER, ier);
964 			uart_setreg(bas, REG_MCR, mcr);
965 			uart_setreg(bas, REG_FCR, 0);
966 			uart_barrier(bas);
967 			count = 0;
968 			goto describe;
969 		}
970 	} while ((lsr & LSR_OE) == 0 && count < 260);
971 	count--;
972 
973 	uart_setreg(bas, REG_MCR, mcr);
974 
975 	/* Reset FIFOs. */
976 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
977 
978  describe:
979 	if (count >= 14 && count <= 16) {
980 		sc->sc_rxfifosz = 16;
981 		device_set_desc(sc->sc_dev, "16550 or compatible");
982 	} else if (count >= 28 && count <= 32) {
983 		sc->sc_rxfifosz = 32;
984 		device_set_desc(sc->sc_dev, "16650 or compatible");
985 	} else if (count >= 56 && count <= 64) {
986 		sc->sc_rxfifosz = 64;
987 		device_set_desc(sc->sc_dev, "16750 or compatible");
988 	} else if (count >= 112 && count <= 128) {
989 		sc->sc_rxfifosz = 128;
990 		device_set_desc(sc->sc_dev, "16950 or compatible");
991 	} else if (count >= 224 && count <= 256) {
992 		sc->sc_rxfifosz = 256;
993 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
994 	} else {
995 		sc->sc_rxfifosz = 16;
996 		device_set_desc(sc->sc_dev,
997 		    "Non-standard ns8250 class UART with FIFOs");
998 	}
999 
1000 	/*
1001 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
1002 	 * Tx trigger. Also, we assume that all data has been sent when the
1003 	 * interrupt happens.
1004 	 */
1005 	sc->sc_txfifosz = 16;
1006 
1007 #if 0
1008 	/*
1009 	 * XXX there are some issues related to hardware flow control and
1010 	 * it's likely that uart(4) is the cause. This basically needs more
1011 	 * investigation, but we avoid using for hardware flow control
1012 	 * until then.
1013 	 */
1014 	/* 16650s or higher have automatic flow control. */
1015 	if (sc->sc_rxfifosz > 16) {
1016 		sc->sc_hwiflow = 1;
1017 		sc->sc_hwoflow = 1;
1018 	}
1019 #endif
1020 
1021 	return (0);
1022 }
1023 
1024 int
ns8250_bus_receive(struct uart_softc * sc)1025 ns8250_bus_receive(struct uart_softc *sc)
1026 {
1027 	struct uart_bas *bas;
1028 	struct ns8250_softc *ns8250 = (struct ns8250_softc *)sc;
1029 	int xc;
1030 	uint8_t lsr;
1031 
1032 	bas = &sc->sc_bas;
1033 	uart_lock(sc->sc_hwmtx);
1034 	lsr = uart_getreg(bas, REG_LSR);
1035 	while (lsr & LSR_RXRDY) {
1036 		if (uart_rx_full(sc)) {
1037 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1038 			break;
1039 		}
1040 		/* Filter out possible noise on the line.
1041 		 * Expect that the device should be able to transmit as well as
1042 		 * receive, so if we receive too many characters before transmit
1043 		 * is ready, it's probably noise.
1044 		 */
1045 		if ((lsr & (LSR_TXRDY | LSR_TEMT)) == 0 &&
1046 		    uart_noise_threshold > 0) {
1047 			if (++ns8250->noise_count >= uart_noise_threshold)
1048 				break;
1049 		} else
1050 			ns8250->noise_count = 0;
1051 		xc = uart_getreg(bas, REG_DATA);
1052 		if (lsr & LSR_FE)
1053 			xc |= UART_STAT_FRAMERR;
1054 		if (lsr & LSR_PE)
1055 			xc |= UART_STAT_PARERR;
1056 		uart_rx_put(sc, xc);
1057 		lsr = uart_getreg(bas, REG_LSR);
1058 	}
1059 	/* Discard everything left in the Rx FIFO. */
1060 	while (lsr & LSR_RXRDY) {
1061 		(void)uart_getreg(bas, REG_DATA);
1062 		uart_barrier(bas);
1063 		lsr = uart_getreg(bas, REG_LSR);
1064 	}
1065 	uart_unlock(sc->sc_hwmtx);
1066  	return (0);
1067 }
1068 
1069 int
ns8250_bus_setsig(struct uart_softc * sc,int sig)1070 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1071 {
1072 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1073 	struct uart_bas *bas;
1074 	uint32_t new, old;
1075 
1076 	bas = &sc->sc_bas;
1077 	do {
1078 		old = sc->sc_hwsig;
1079 		new = old;
1080 		if (sig & SER_DDTR) {
1081 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1082 		}
1083 		if (sig & SER_DRTS) {
1084 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1085 		}
1086 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1087 	uart_lock(sc->sc_hwmtx);
1088 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1089 	if (new & SER_DTR)
1090 		ns8250->mcr |= MCR_DTR;
1091 	if (new & SER_RTS)
1092 		ns8250->mcr |= MCR_RTS;
1093 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1094 	uart_barrier(bas);
1095 	uart_unlock(sc->sc_hwmtx);
1096 	return (0);
1097 }
1098 
1099 int
ns8250_bus_transmit(struct uart_softc * sc)1100 ns8250_bus_transmit(struct uart_softc *sc)
1101 {
1102 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1103 	struct uart_bas *bas;
1104 	int i;
1105 
1106 	bas = &sc->sc_bas;
1107 	uart_lock(sc->sc_hwmtx);
1108 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1109 		DELAY(4);
1110 	for (i = 0; i < sc->sc_txdatasz; i++) {
1111 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1112 		uart_barrier(bas);
1113 	}
1114 	if (!broken_txfifo)
1115 		ns8250->ier |= IER_ETXRDY;
1116 	uart_setreg(bas, REG_IER, ns8250->ier);
1117 	uart_barrier(bas);
1118 	if (broken_txfifo)
1119 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1120 	else
1121 		sc->sc_txbusy = 1;
1122 	uart_unlock(sc->sc_hwmtx);
1123 	if (broken_txfifo)
1124 		uart_sched_softih(sc, SER_INT_TXIDLE);
1125 	return (0);
1126 }
1127 
1128 bool
ns8250_bus_txbusy(struct uart_softc * sc)1129 ns8250_bus_txbusy(struct uart_softc *sc)
1130 {
1131 	struct uart_bas *bas = &sc->sc_bas;
1132 
1133 	if ((uart_getreg(bas, REG_LSR) & (LSR_TEMT | LSR_THRE)) !=
1134 	    (LSR_TEMT | LSR_THRE))
1135 		return (true);
1136 	return (false);
1137 }
1138 
1139 void
ns8250_bus_grab(struct uart_softc * sc)1140 ns8250_bus_grab(struct uart_softc *sc)
1141 {
1142 	struct uart_bas *bas = &sc->sc_bas;
1143 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1144 	u_char ier;
1145 
1146 	/*
1147 	 * turn off all interrupts to enter polling mode. Leave the
1148 	 * saved mask alone. We'll restore whatever it was in ungrab.
1149 	 * All pending interrupt signals are reset when IER is set to 0.
1150 	 */
1151 	uart_lock(sc->sc_hwmtx);
1152 	ier = uart_getreg(bas, REG_IER);
1153 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1154 	uart_barrier(bas);
1155 	uart_unlock(sc->sc_hwmtx);
1156 }
1157 
1158 void
ns8250_bus_ungrab(struct uart_softc * sc)1159 ns8250_bus_ungrab(struct uart_softc *sc)
1160 {
1161 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1162 	struct uart_bas *bas = &sc->sc_bas;
1163 
1164 	/*
1165 	 * Restore previous interrupt mask
1166 	 */
1167 	uart_lock(sc->sc_hwmtx);
1168 	uart_setreg(bas, REG_IER, ns8250->ier);
1169 	uart_barrier(bas);
1170 	uart_unlock(sc->sc_hwmtx);
1171 }
1172