xref: /freebsd/sys/contrib/openzfs/module/zfs/txg.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Portions Copyright 2011 Martin Matuska
25  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/txg_impl.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/zil.h>
36 #include <sys/callb.h>
37 #include <sys/trace_zfs.h>
38 
39 /*
40  * ZFS Transaction Groups
41  * ----------------------
42  *
43  * ZFS transaction groups are, as the name implies, groups of transactions
44  * that act on persistent state. ZFS asserts consistency at the granularity of
45  * these transaction groups. Each successive transaction group (txg) is
46  * assigned a 64-bit consecutive identifier. There are three active
47  * transaction group states: open, quiescing, or syncing. At any given time,
48  * there may be an active txg associated with each state; each active txg may
49  * either be processing, or blocked waiting to enter the next state. There may
50  * be up to three active txgs, and there is always a txg in the open state
51  * (though it may be blocked waiting to enter the quiescing state). In broad
52  * strokes, transactions -- operations that change in-memory structures -- are
53  * accepted into the txg in the open state, and are completed while the txg is
54  * in the open or quiescing states. The accumulated changes are written to
55  * disk in the syncing state.
56  *
57  * Open
58  *
59  * When a new txg becomes active, it first enters the open state. New
60  * transactions -- updates to in-memory structures -- are assigned to the
61  * currently open txg. There is always a txg in the open state so that ZFS can
62  * accept new changes (though the txg may refuse new changes if it has hit
63  * some limit). ZFS advances the open txg to the next state for a variety of
64  * reasons such as it hitting a time or size threshold, or the execution of an
65  * administrative action that must be completed in the syncing state.
66  *
67  * Quiescing
68  *
69  * After a txg exits the open state, it enters the quiescing state. The
70  * quiescing state is intended to provide a buffer between accepting new
71  * transactions in the open state and writing them out to stable storage in
72  * the syncing state. While quiescing, transactions can continue their
73  * operation without delaying either of the other states. Typically, a txg is
74  * in the quiescing state very briefly since the operations are bounded by
75  * software latencies rather than, say, slower I/O latencies. After all
76  * transactions complete, the txg is ready to enter the next state.
77  *
78  * Syncing
79  *
80  * In the syncing state, the in-memory state built up during the open and (to
81  * a lesser degree) the quiescing states is written to stable storage. The
82  * process of writing out modified data can, in turn modify more data. For
83  * example when we write new blocks, we need to allocate space for them; those
84  * allocations modify metadata (space maps)... which themselves must be
85  * written to stable storage. During the sync state, ZFS iterates, writing out
86  * data until it converges and all in-memory changes have been written out.
87  * The first such pass is the largest as it encompasses all the modified user
88  * data (as opposed to filesystem metadata). Subsequent passes typically have
89  * far less data to write as they consist exclusively of filesystem metadata.
90  *
91  * To ensure convergence, after a certain number of passes ZFS begins
92  * overwriting locations on stable storage that had been allocated earlier in
93  * the syncing state (and subsequently freed). ZFS usually allocates new
94  * blocks to optimize for large, continuous, writes. For the syncing state to
95  * converge however it must complete a pass where no new blocks are allocated
96  * since each allocation requires a modification of persistent metadata.
97  * Further, to hasten convergence, after a prescribed number of passes, ZFS
98  * also defers frees, and stops compressing.
99  *
100  * In addition to writing out user data, we must also execute synctasks during
101  * the syncing context. A synctask is the mechanism by which some
102  * administrative activities work such as creating and destroying snapshots or
103  * datasets. Note that when a synctask is initiated it enters the open txg,
104  * and ZFS then pushes that txg as quickly as possible to completion of the
105  * syncing state in order to reduce the latency of the administrative
106  * activity. To complete the syncing state, ZFS writes out a new uberblock,
107  * the root of the tree of blocks that comprise all state stored on the ZFS
108  * pool. Finally, if there is a quiesced txg waiting, we signal that it can
109  * now transition to the syncing state.
110  */
111 
112 static __attribute__((noreturn)) void txg_sync_thread(void *arg);
113 static __attribute__((noreturn)) void txg_quiesce_thread(void *arg);
114 
115 uint_t zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */
116 
117 /*
118  * Prepare the txg subsystem.
119  */
120 void
txg_init(dsl_pool_t * dp,uint64_t txg)121 txg_init(dsl_pool_t *dp, uint64_t txg)
122 {
123 	tx_state_t *tx = &dp->dp_tx;
124 	int c;
125 	memset(tx, 0, sizeof (tx_state_t));
126 
127 	tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
128 
129 	for (c = 0; c < max_ncpus; c++) {
130 		int i;
131 
132 		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
133 		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
134 		    NULL);
135 		for (i = 0; i < TXG_SIZE; i++) {
136 			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
137 			    NULL);
138 			list_create(&tx->tx_cpu[c].tc_callbacks[i],
139 			    sizeof (dmu_tx_callback_t),
140 			    offsetof(dmu_tx_callback_t, dcb_node));
141 		}
142 	}
143 
144 	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
145 
146 	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
147 	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
148 	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
149 	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
150 	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
151 
152 	tx->tx_open_txg = txg;
153 }
154 
155 /*
156  * Close down the txg subsystem.
157  */
158 void
txg_fini(dsl_pool_t * dp)159 txg_fini(dsl_pool_t *dp)
160 {
161 	tx_state_t *tx = &dp->dp_tx;
162 	int c;
163 
164 	ASSERT0(tx->tx_threads);
165 
166 	mutex_destroy(&tx->tx_sync_lock);
167 
168 	cv_destroy(&tx->tx_sync_more_cv);
169 	cv_destroy(&tx->tx_sync_done_cv);
170 	cv_destroy(&tx->tx_quiesce_more_cv);
171 	cv_destroy(&tx->tx_quiesce_done_cv);
172 	cv_destroy(&tx->tx_exit_cv);
173 
174 	for (c = 0; c < max_ncpus; c++) {
175 		int i;
176 
177 		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
178 		mutex_destroy(&tx->tx_cpu[c].tc_lock);
179 		for (i = 0; i < TXG_SIZE; i++) {
180 			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
181 			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
182 		}
183 	}
184 
185 	if (tx->tx_commit_cb_taskq != NULL)
186 		taskq_destroy(tx->tx_commit_cb_taskq);
187 
188 	vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
189 
190 	memset(tx, 0, sizeof (tx_state_t));
191 }
192 
193 /*
194  * Start syncing transaction groups.
195  */
196 void
txg_sync_start(dsl_pool_t * dp)197 txg_sync_start(dsl_pool_t *dp)
198 {
199 	tx_state_t *tx = &dp->dp_tx;
200 
201 	mutex_enter(&tx->tx_sync_lock);
202 
203 	dprintf("pool %p\n", dp);
204 
205 	ASSERT0(tx->tx_threads);
206 
207 	tx->tx_threads = 2;
208 
209 	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
210 	    dp, 0, &p0, TS_RUN, defclsyspri);
211 
212 	/*
213 	 * The sync thread can need a larger-than-default stack size on
214 	 * 32-bit x86.  This is due in part to nested pools and
215 	 * scrub_visitbp() recursion.
216 	 */
217 	tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
218 	    dp, 0, &p0, TS_RUN, defclsyspri);
219 
220 	mutex_exit(&tx->tx_sync_lock);
221 }
222 
223 static void
txg_thread_enter(tx_state_t * tx,callb_cpr_t * cpr)224 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
225 {
226 	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
227 	mutex_enter(&tx->tx_sync_lock);
228 }
229 
230 static void
txg_thread_exit(tx_state_t * tx,callb_cpr_t * cpr,kthread_t ** tpp)231 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
232 {
233 	ASSERT(*tpp != NULL);
234 	*tpp = NULL;
235 	tx->tx_threads--;
236 	cv_broadcast(&tx->tx_exit_cv);
237 	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
238 	thread_exit();
239 }
240 
241 static void
txg_thread_wait(tx_state_t * tx,callb_cpr_t * cpr,kcondvar_t * cv,clock_t time)242 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
243 {
244 	CALLB_CPR_SAFE_BEGIN(cpr);
245 
246 	if (time) {
247 		(void) cv_timedwait_idle(cv, &tx->tx_sync_lock,
248 		    ddi_get_lbolt() + time);
249 	} else {
250 		cv_wait_idle(cv, &tx->tx_sync_lock);
251 	}
252 
253 	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
254 }
255 
256 /*
257  * Stop syncing transaction groups.
258  */
259 void
txg_sync_stop(dsl_pool_t * dp)260 txg_sync_stop(dsl_pool_t *dp)
261 {
262 	tx_state_t *tx = &dp->dp_tx;
263 
264 	dprintf("pool %p\n", dp);
265 	/*
266 	 * Finish off any work in progress.
267 	 */
268 	ASSERT3U(tx->tx_threads, ==, 2);
269 
270 	/*
271 	 * We need to ensure that we've vacated the deferred metaslab trees.
272 	 */
273 	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
274 
275 	/*
276 	 * Wake all sync threads and wait for them to die.
277 	 */
278 	mutex_enter(&tx->tx_sync_lock);
279 
280 	ASSERT3U(tx->tx_threads, ==, 2);
281 
282 	tx->tx_exiting = 1;
283 
284 	cv_broadcast(&tx->tx_quiesce_more_cv);
285 	cv_broadcast(&tx->tx_quiesce_done_cv);
286 	cv_broadcast(&tx->tx_sync_more_cv);
287 
288 	while (tx->tx_threads != 0)
289 		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
290 
291 	tx->tx_exiting = 0;
292 
293 	mutex_exit(&tx->tx_sync_lock);
294 }
295 
296 /*
297  * Get a handle on the currently open txg and keep it open.
298  *
299  * The txg is guaranteed to stay open until txg_rele_to_quiesce() is called for
300  * the handle. Once txg_rele_to_quiesce() has been called, the txg stays
301  * in quiescing state until txg_rele_to_sync() is called for the handle.
302  *
303  * It is guaranteed that subsequent calls return monotonically increasing
304  * txgs for the same dsl_pool_t. Of course this is not strong monotonicity,
305  * because the same txg can be returned multiple times in a row. This
306  * guarantee holds both for subsequent calls from one thread and for multiple
307  * threads. For example, it is impossible to observe the following sequence
308  * of events:
309  *
310  *           Thread 1                            Thread 2
311  *
312  *   1 <- txg_hold_open(P, ...)
313  *                                       2 <- txg_hold_open(P, ...)
314  *   1 <- txg_hold_open(P, ...)
315  *
316  */
317 uint64_t
txg_hold_open(dsl_pool_t * dp,txg_handle_t * th)318 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
319 {
320 	tx_state_t *tx = &dp->dp_tx;
321 	tx_cpu_t *tc;
322 	uint64_t txg;
323 
324 	/*
325 	 * It appears the processor id is simply used as a "random"
326 	 * number to index into the array, and there isn't any other
327 	 * significance to the chosen tx_cpu. Because.. Why not use
328 	 * the current cpu to index into the array?
329 	 */
330 	tc = &tx->tx_cpu[CPU_SEQID_UNSTABLE];
331 
332 	mutex_enter(&tc->tc_open_lock);
333 	txg = tx->tx_open_txg;
334 
335 	mutex_enter(&tc->tc_lock);
336 	tc->tc_count[txg & TXG_MASK]++;
337 	mutex_exit(&tc->tc_lock);
338 
339 	th->th_cpu = tc;
340 	th->th_txg = txg;
341 
342 	return (txg);
343 }
344 
345 void
txg_rele_to_quiesce(txg_handle_t * th)346 txg_rele_to_quiesce(txg_handle_t *th)
347 {
348 	tx_cpu_t *tc = th->th_cpu;
349 
350 	ASSERT(!MUTEX_HELD(&tc->tc_lock));
351 	mutex_exit(&tc->tc_open_lock);
352 }
353 
354 void
txg_register_callbacks(txg_handle_t * th,list_t * tx_callbacks)355 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
356 {
357 	tx_cpu_t *tc = th->th_cpu;
358 	int g = th->th_txg & TXG_MASK;
359 
360 	mutex_enter(&tc->tc_lock);
361 	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
362 	mutex_exit(&tc->tc_lock);
363 }
364 
365 void
txg_rele_to_sync(txg_handle_t * th)366 txg_rele_to_sync(txg_handle_t *th)
367 {
368 	tx_cpu_t *tc = th->th_cpu;
369 	int g = th->th_txg & TXG_MASK;
370 
371 	mutex_enter(&tc->tc_lock);
372 	ASSERT(tc->tc_count[g] != 0);
373 	if (--tc->tc_count[g] == 0)
374 		cv_broadcast(&tc->tc_cv[g]);
375 	mutex_exit(&tc->tc_lock);
376 
377 	th->th_cpu = NULL;	/* defensive */
378 }
379 
380 /*
381  * Blocks until all transactions in the group are committed.
382  *
383  * On return, the transaction group has reached a stable state in which it can
384  * then be passed off to the syncing context.
385  */
386 static void
txg_quiesce(dsl_pool_t * dp,uint64_t txg)387 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
388 {
389 	tx_state_t *tx = &dp->dp_tx;
390 	uint64_t tx_open_time;
391 	int g = txg & TXG_MASK;
392 	int c;
393 
394 	/*
395 	 * Grab all tc_open_locks so nobody else can get into this txg.
396 	 */
397 	for (c = 0; c < max_ncpus; c++)
398 		mutex_enter(&tx->tx_cpu[c].tc_open_lock);
399 
400 	ASSERT(txg == tx->tx_open_txg);
401 	tx->tx_open_txg++;
402 	tx->tx_open_time = tx_open_time = gethrtime();
403 
404 	DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
405 	DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
406 
407 	/*
408 	 * Now that we've incremented tx_open_txg, we can let threads
409 	 * enter the next transaction group.
410 	 */
411 	for (c = 0; c < max_ncpus; c++)
412 		mutex_exit(&tx->tx_cpu[c].tc_open_lock);
413 
414 	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
415 	spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
416 
417 	/*
418 	 * Quiesce the transaction group by waiting for everyone to
419 	 * call txg_rele_to_sync() for their open transaction handles.
420 	 */
421 	for (c = 0; c < max_ncpus; c++) {
422 		tx_cpu_t *tc = &tx->tx_cpu[c];
423 		mutex_enter(&tc->tc_lock);
424 		while (tc->tc_count[g] != 0)
425 			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
426 		mutex_exit(&tc->tc_lock);
427 	}
428 
429 	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
430 }
431 
432 static void
txg_do_callbacks(void * cb_list)433 txg_do_callbacks(void *cb_list)
434 {
435 	dmu_tx_do_callbacks(cb_list, 0);
436 
437 	list_destroy(cb_list);
438 
439 	kmem_free(cb_list, sizeof (list_t));
440 }
441 
442 /*
443  * Dispatch the commit callbacks registered on this txg to worker threads.
444  *
445  * If no callbacks are registered for a given TXG, nothing happens.
446  * This function creates a taskq for the associated pool, if needed.
447  */
448 static void
txg_dispatch_callbacks(dsl_pool_t * dp,uint64_t txg)449 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
450 {
451 	int c;
452 	tx_state_t *tx = &dp->dp_tx;
453 	list_t *cb_list;
454 
455 	for (c = 0; c < max_ncpus; c++) {
456 		tx_cpu_t *tc = &tx->tx_cpu[c];
457 		/*
458 		 * No need to lock tx_cpu_t at this point, since this can
459 		 * only be called once a txg has been synced.
460 		 */
461 
462 		int g = txg & TXG_MASK;
463 
464 		if (list_is_empty(&tc->tc_callbacks[g]))
465 			continue;
466 
467 		if (tx->tx_commit_cb_taskq == NULL) {
468 			/*
469 			 * Commit callback taskq hasn't been created yet.
470 			 */
471 			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
472 			    100, defclsyspri, boot_ncpus, boot_ncpus * 2,
473 			    TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
474 			    TASKQ_THREADS_CPU_PCT);
475 		}
476 
477 		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
478 		list_create(cb_list, sizeof (dmu_tx_callback_t),
479 		    offsetof(dmu_tx_callback_t, dcb_node));
480 
481 		list_move_tail(cb_list, &tc->tc_callbacks[g]);
482 
483 		(void) taskq_dispatch(tx->tx_commit_cb_taskq,
484 		    txg_do_callbacks, cb_list, TQ_SLEEP);
485 	}
486 }
487 
488 /*
489  * Wait for pending commit callbacks of already-synced transactions to finish
490  * processing.
491  * Calling this function from within a commit callback will deadlock.
492  */
493 void
txg_wait_callbacks(dsl_pool_t * dp)494 txg_wait_callbacks(dsl_pool_t *dp)
495 {
496 	tx_state_t *tx = &dp->dp_tx;
497 
498 	if (tx->tx_commit_cb_taskq != NULL)
499 		taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
500 }
501 
502 static boolean_t
txg_is_quiescing(dsl_pool_t * dp)503 txg_is_quiescing(dsl_pool_t *dp)
504 {
505 	tx_state_t *tx = &dp->dp_tx;
506 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
507 	return (tx->tx_quiescing_txg != 0);
508 }
509 
510 static boolean_t
txg_has_quiesced_to_sync(dsl_pool_t * dp)511 txg_has_quiesced_to_sync(dsl_pool_t *dp)
512 {
513 	tx_state_t *tx = &dp->dp_tx;
514 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
515 	return (tx->tx_quiesced_txg != 0);
516 }
517 
518 static __attribute__((noreturn)) void
txg_sync_thread(void * arg)519 txg_sync_thread(void *arg)
520 {
521 	dsl_pool_t *dp = arg;
522 	spa_t *spa = dp->dp_spa;
523 	tx_state_t *tx = &dp->dp_tx;
524 	callb_cpr_t cpr;
525 	clock_t start, delta;
526 
527 	(void) spl_fstrans_mark();
528 	txg_thread_enter(tx, &cpr);
529 
530 	start = delta = 0;
531 	for (;;) {
532 		clock_t timeout = zfs_txg_timeout * hz;
533 		clock_t timer;
534 		uint64_t txg;
535 
536 		/*
537 		 * We sync when we're scanning, there's someone waiting
538 		 * on us, or the quiesce thread has handed off a txg to
539 		 * us, or we have reached our timeout.
540 		 */
541 		timer = (delta >= timeout ? 0 : timeout - delta);
542 		while (!dsl_scan_active(dp->dp_scan) &&
543 		    !tx->tx_exiting && timer > 0 &&
544 		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
545 		    !txg_has_quiesced_to_sync(dp)) {
546 			dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
547 			    (u_longlong_t)tx->tx_synced_txg,
548 			    (u_longlong_t)tx->tx_sync_txg_waiting, dp);
549 			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
550 			delta = ddi_get_lbolt() - start;
551 			timer = (delta > timeout ? 0 : timeout - delta);
552 		}
553 
554 		/*
555 		 * When we're suspended, nothing should be changing and for
556 		 * MMP we don't want to bump anything that would make it
557 		 * harder to detect if another host is changing it when
558 		 * resuming after a MMP suspend.
559 		 */
560 		if (spa_suspended(spa))
561 			continue;
562 
563 		/*
564 		 * Wait until the quiesce thread hands off a txg to us,
565 		 * prompting it to do so if necessary.
566 		 */
567 		while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
568 			if (txg_is_quiescing(dp)) {
569 				txg_thread_wait(tx, &cpr,
570 				    &tx->tx_quiesce_done_cv, 0);
571 				continue;
572 			}
573 			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
574 				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
575 			cv_broadcast(&tx->tx_quiesce_more_cv);
576 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
577 		}
578 
579 		if (tx->tx_exiting)
580 			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
581 
582 		/*
583 		 * Consume the quiesced txg which has been handed off to
584 		 * us.  This may cause the quiescing thread to now be
585 		 * able to quiesce another txg, so we must signal it.
586 		 */
587 		ASSERT(tx->tx_quiesced_txg != 0);
588 		txg = tx->tx_quiesced_txg;
589 		tx->tx_quiesced_txg = 0;
590 		tx->tx_syncing_txg = txg;
591 		DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
592 		cv_broadcast(&tx->tx_quiesce_more_cv);
593 
594 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
595 		    (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
596 		    (u_longlong_t)tx->tx_sync_txg_waiting);
597 		mutex_exit(&tx->tx_sync_lock);
598 
599 		txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp);
600 		start = ddi_get_lbolt();
601 		spa_sync(spa, txg);
602 		delta = ddi_get_lbolt() - start;
603 		spa_txg_history_fini_io(spa, ts);
604 
605 		mutex_enter(&tx->tx_sync_lock);
606 		tx->tx_synced_txg = txg;
607 		tx->tx_syncing_txg = 0;
608 		DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
609 		cv_broadcast(&tx->tx_sync_done_cv);
610 
611 		/*
612 		 * Dispatch commit callbacks to worker threads.
613 		 */
614 		txg_dispatch_callbacks(dp, txg);
615 	}
616 }
617 
618 static __attribute__((noreturn)) void
txg_quiesce_thread(void * arg)619 txg_quiesce_thread(void *arg)
620 {
621 	dsl_pool_t *dp = arg;
622 	tx_state_t *tx = &dp->dp_tx;
623 	callb_cpr_t cpr;
624 
625 	txg_thread_enter(tx, &cpr);
626 
627 	for (;;) {
628 		uint64_t txg;
629 
630 		/*
631 		 * We quiesce when there's someone waiting on us.
632 		 * However, we can only have one txg in "quiescing" or
633 		 * "quiesced, waiting to sync" state.  So we wait until
634 		 * the "quiesced, waiting to sync" txg has been consumed
635 		 * by the sync thread.
636 		 */
637 		while (!tx->tx_exiting &&
638 		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
639 		    txg_has_quiesced_to_sync(dp)))
640 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
641 
642 		if (tx->tx_exiting)
643 			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
644 
645 		txg = tx->tx_open_txg;
646 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
647 		    (u_longlong_t)txg,
648 		    (u_longlong_t)tx->tx_quiesce_txg_waiting,
649 		    (u_longlong_t)tx->tx_sync_txg_waiting);
650 		tx->tx_quiescing_txg = txg;
651 
652 		mutex_exit(&tx->tx_sync_lock);
653 		txg_quiesce(dp, txg);
654 		mutex_enter(&tx->tx_sync_lock);
655 
656 		/*
657 		 * Hand this txg off to the sync thread.
658 		 */
659 		dprintf("quiesce done, handing off txg %llu\n",
660 		    (u_longlong_t)txg);
661 		tx->tx_quiescing_txg = 0;
662 		tx->tx_quiesced_txg = txg;
663 		DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
664 		cv_broadcast(&tx->tx_sync_more_cv);
665 		cv_broadcast(&tx->tx_quiesce_done_cv);
666 	}
667 }
668 
669 /*
670  * Delay this thread by delay nanoseconds if we are still in the open
671  * transaction group and there is already a waiting txg quiescing or quiesced.
672  * Abort the delay if this txg stalls or enters the quiescing state.
673  */
674 void
txg_delay(dsl_pool_t * dp,uint64_t txg,hrtime_t delay,hrtime_t resolution)675 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
676 {
677 	tx_state_t *tx = &dp->dp_tx;
678 	hrtime_t start = gethrtime();
679 
680 	/* don't delay if this txg could transition to quiescing immediately */
681 	if (tx->tx_open_txg > txg ||
682 	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
683 		return;
684 
685 	mutex_enter(&tx->tx_sync_lock);
686 	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
687 		mutex_exit(&tx->tx_sync_lock);
688 		return;
689 	}
690 
691 	while (gethrtime() - start < delay &&
692 	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
693 		(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
694 		    &tx->tx_sync_lock, delay, resolution, 0);
695 	}
696 
697 	DMU_TX_STAT_BUMP(dmu_tx_delay);
698 
699 	mutex_exit(&tx->tx_sync_lock);
700 }
701 
702 static boolean_t
txg_wait_synced_impl(dsl_pool_t * dp,uint64_t txg,boolean_t wait_sig)703 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
704 {
705 	tx_state_t *tx = &dp->dp_tx;
706 
707 	ASSERT(!dsl_pool_config_held(dp));
708 
709 	mutex_enter(&tx->tx_sync_lock);
710 	ASSERT3U(tx->tx_threads, ==, 2);
711 	if (txg == 0)
712 		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
713 	if (tx->tx_sync_txg_waiting < txg)
714 		tx->tx_sync_txg_waiting = txg;
715 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
716 	    (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
717 	    (u_longlong_t)tx->tx_sync_txg_waiting);
718 	while (tx->tx_synced_txg < txg) {
719 		dprintf("broadcasting sync more "
720 		    "tx_synced=%llu waiting=%llu dp=%px\n",
721 		    (u_longlong_t)tx->tx_synced_txg,
722 		    (u_longlong_t)tx->tx_sync_txg_waiting, dp);
723 		cv_broadcast(&tx->tx_sync_more_cv);
724 		if (wait_sig) {
725 			/*
726 			 * Condition wait here but stop if the thread receives a
727 			 * signal. The caller may call txg_wait_synced*() again
728 			 * to resume waiting for this txg.
729 			 */
730 			if (cv_wait_io_sig(&tx->tx_sync_done_cv,
731 			    &tx->tx_sync_lock) == 0) {
732 				mutex_exit(&tx->tx_sync_lock);
733 				return (B_TRUE);
734 			}
735 		} else {
736 			cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
737 		}
738 	}
739 	mutex_exit(&tx->tx_sync_lock);
740 	return (B_FALSE);
741 }
742 
743 void
txg_wait_synced(dsl_pool_t * dp,uint64_t txg)744 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
745 {
746 	VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
747 }
748 
749 /*
750  * Similar to a txg_wait_synced but it can be interrupted from a signal.
751  * Returns B_TRUE if the thread was signaled while waiting.
752  */
753 boolean_t
txg_wait_synced_sig(dsl_pool_t * dp,uint64_t txg)754 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
755 {
756 	return (txg_wait_synced_impl(dp, txg, B_TRUE));
757 }
758 
759 /*
760  * Wait for the specified open transaction group.  Set should_quiesce
761  * when the current open txg should be quiesced immediately.
762  */
763 void
txg_wait_open(dsl_pool_t * dp,uint64_t txg,boolean_t should_quiesce)764 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
765 {
766 	tx_state_t *tx = &dp->dp_tx;
767 
768 	ASSERT(!dsl_pool_config_held(dp));
769 
770 	mutex_enter(&tx->tx_sync_lock);
771 	ASSERT3U(tx->tx_threads, ==, 2);
772 	if (txg == 0)
773 		txg = tx->tx_open_txg + 1;
774 	if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
775 		tx->tx_quiesce_txg_waiting = txg;
776 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
777 	    (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
778 	    (u_longlong_t)tx->tx_sync_txg_waiting);
779 	while (tx->tx_open_txg < txg) {
780 		cv_broadcast(&tx->tx_quiesce_more_cv);
781 		/*
782 		 * Callers setting should_quiesce will use cv_wait_io() and
783 		 * be accounted for as iowait time.  Otherwise, the caller is
784 		 * understood to be idle and cv_wait_sig() is used to prevent
785 		 * incorrectly inflating the system load average.
786 		 */
787 		if (should_quiesce == B_TRUE) {
788 			cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
789 		} else {
790 			cv_wait_idle(&tx->tx_quiesce_done_cv,
791 			    &tx->tx_sync_lock);
792 		}
793 	}
794 	mutex_exit(&tx->tx_sync_lock);
795 }
796 
797 /*
798  * Pass in the txg number that should be synced.
799  */
800 void
txg_kick(dsl_pool_t * dp,uint64_t txg)801 txg_kick(dsl_pool_t *dp, uint64_t txg)
802 {
803 	tx_state_t *tx = &dp->dp_tx;
804 
805 	ASSERT(!dsl_pool_config_held(dp));
806 
807 	if (tx->tx_sync_txg_waiting >= txg)
808 		return;
809 
810 	mutex_enter(&tx->tx_sync_lock);
811 	if (tx->tx_sync_txg_waiting < txg) {
812 		tx->tx_sync_txg_waiting = txg;
813 		cv_broadcast(&tx->tx_sync_more_cv);
814 	}
815 	mutex_exit(&tx->tx_sync_lock);
816 }
817 
818 boolean_t
txg_stalled(dsl_pool_t * dp)819 txg_stalled(dsl_pool_t *dp)
820 {
821 	tx_state_t *tx = &dp->dp_tx;
822 	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
823 }
824 
825 boolean_t
txg_sync_waiting(dsl_pool_t * dp)826 txg_sync_waiting(dsl_pool_t *dp)
827 {
828 	tx_state_t *tx = &dp->dp_tx;
829 
830 	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
831 	    tx->tx_quiesced_txg != 0);
832 }
833 
834 /*
835  * Verify that this txg is active (open, quiescing, syncing).  Non-active
836  * txg's should not be manipulated.
837  */
838 #ifdef ZFS_DEBUG
839 void
txg_verify(spa_t * spa,uint64_t txg)840 txg_verify(spa_t *spa, uint64_t txg)
841 {
842 	dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa);
843 	if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
844 		return;
845 	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
846 	ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
847 	ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
848 }
849 #endif
850 
851 /*
852  * Per-txg object lists.
853  */
854 void
txg_list_create(txg_list_t * tl,spa_t * spa,size_t offset)855 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
856 {
857 	int t;
858 
859 	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
860 
861 	tl->tl_offset = offset;
862 	tl->tl_spa = spa;
863 
864 	for (t = 0; t < TXG_SIZE; t++)
865 		tl->tl_head[t] = NULL;
866 }
867 
868 static boolean_t
txg_list_empty_impl(txg_list_t * tl,uint64_t txg)869 txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
870 {
871 	ASSERT(MUTEX_HELD(&tl->tl_lock));
872 	TXG_VERIFY(tl->tl_spa, txg);
873 	return (tl->tl_head[txg & TXG_MASK] == NULL);
874 }
875 
876 boolean_t
txg_list_empty(txg_list_t * tl,uint64_t txg)877 txg_list_empty(txg_list_t *tl, uint64_t txg)
878 {
879 	mutex_enter(&tl->tl_lock);
880 	boolean_t ret = txg_list_empty_impl(tl, txg);
881 	mutex_exit(&tl->tl_lock);
882 
883 	return (ret);
884 }
885 
886 void
txg_list_destroy(txg_list_t * tl)887 txg_list_destroy(txg_list_t *tl)
888 {
889 	int t;
890 
891 	mutex_enter(&tl->tl_lock);
892 	for (t = 0; t < TXG_SIZE; t++)
893 		ASSERT(txg_list_empty_impl(tl, t));
894 	mutex_exit(&tl->tl_lock);
895 
896 	mutex_destroy(&tl->tl_lock);
897 }
898 
899 /*
900  * Returns true if all txg lists are empty.
901  *
902  * Warning: this is inherently racy (an item could be added immediately
903  * after this function returns).
904  */
905 boolean_t
txg_all_lists_empty(txg_list_t * tl)906 txg_all_lists_empty(txg_list_t *tl)
907 {
908 	boolean_t res = B_TRUE;
909 	for (int i = 0; i < TXG_SIZE; i++)
910 		res &= (tl->tl_head[i] == NULL);
911 	return (res);
912 }
913 
914 /*
915  * Add an entry to the list (unless it's already on the list).
916  * Returns B_TRUE if it was actually added.
917  */
918 boolean_t
txg_list_add(txg_list_t * tl,void * p,uint64_t txg)919 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
920 {
921 	int t = txg & TXG_MASK;
922 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
923 	boolean_t add;
924 
925 	TXG_VERIFY(tl->tl_spa, txg);
926 	mutex_enter(&tl->tl_lock);
927 	add = (tn->tn_member[t] == 0);
928 	if (add) {
929 		tn->tn_member[t] = 1;
930 		tn->tn_next[t] = tl->tl_head[t];
931 		tl->tl_head[t] = tn;
932 	}
933 	mutex_exit(&tl->tl_lock);
934 
935 	return (add);
936 }
937 
938 /*
939  * Add an entry to the end of the list, unless it's already on the list.
940  * (walks list to find end)
941  * Returns B_TRUE if it was actually added.
942  */
943 boolean_t
txg_list_add_tail(txg_list_t * tl,void * p,uint64_t txg)944 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
945 {
946 	int t = txg & TXG_MASK;
947 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
948 	boolean_t add;
949 
950 	TXG_VERIFY(tl->tl_spa, txg);
951 	mutex_enter(&tl->tl_lock);
952 	add = (tn->tn_member[t] == 0);
953 	if (add) {
954 		txg_node_t **tp;
955 
956 		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
957 			continue;
958 
959 		tn->tn_member[t] = 1;
960 		tn->tn_next[t] = NULL;
961 		*tp = tn;
962 	}
963 	mutex_exit(&tl->tl_lock);
964 
965 	return (add);
966 }
967 
968 /*
969  * Remove the head of the list and return it.
970  */
971 void *
txg_list_remove(txg_list_t * tl,uint64_t txg)972 txg_list_remove(txg_list_t *tl, uint64_t txg)
973 {
974 	int t = txg & TXG_MASK;
975 	txg_node_t *tn;
976 	void *p = NULL;
977 
978 	TXG_VERIFY(tl->tl_spa, txg);
979 	mutex_enter(&tl->tl_lock);
980 	if ((tn = tl->tl_head[t]) != NULL) {
981 		ASSERT(tn->tn_member[t]);
982 		ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
983 		p = (char *)tn - tl->tl_offset;
984 		tl->tl_head[t] = tn->tn_next[t];
985 		tn->tn_next[t] = NULL;
986 		tn->tn_member[t] = 0;
987 	}
988 	mutex_exit(&tl->tl_lock);
989 
990 	return (p);
991 }
992 
993 /*
994  * Remove a specific item from the list and return it.
995  */
996 void *
txg_list_remove_this(txg_list_t * tl,void * p,uint64_t txg)997 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
998 {
999 	int t = txg & TXG_MASK;
1000 	txg_node_t *tn, **tp;
1001 
1002 	TXG_VERIFY(tl->tl_spa, txg);
1003 	mutex_enter(&tl->tl_lock);
1004 
1005 	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
1006 		if ((char *)tn - tl->tl_offset == p) {
1007 			*tp = tn->tn_next[t];
1008 			tn->tn_next[t] = NULL;
1009 			tn->tn_member[t] = 0;
1010 			mutex_exit(&tl->tl_lock);
1011 			return (p);
1012 		}
1013 	}
1014 
1015 	mutex_exit(&tl->tl_lock);
1016 
1017 	return (NULL);
1018 }
1019 
1020 boolean_t
txg_list_member(txg_list_t * tl,void * p,uint64_t txg)1021 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
1022 {
1023 	int t = txg & TXG_MASK;
1024 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1025 
1026 	TXG_VERIFY(tl->tl_spa, txg);
1027 	return (tn->tn_member[t] != 0);
1028 }
1029 
1030 /*
1031  * Walk a txg list
1032  */
1033 void *
txg_list_head(txg_list_t * tl,uint64_t txg)1034 txg_list_head(txg_list_t *tl, uint64_t txg)
1035 {
1036 	int t = txg & TXG_MASK;
1037 	txg_node_t *tn;
1038 
1039 	mutex_enter(&tl->tl_lock);
1040 	tn = tl->tl_head[t];
1041 	mutex_exit(&tl->tl_lock);
1042 
1043 	TXG_VERIFY(tl->tl_spa, txg);
1044 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1045 }
1046 
1047 void *
txg_list_next(txg_list_t * tl,void * p,uint64_t txg)1048 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
1049 {
1050 	int t = txg & TXG_MASK;
1051 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1052 
1053 	TXG_VERIFY(tl->tl_spa, txg);
1054 
1055 	mutex_enter(&tl->tl_lock);
1056 	tn = tn->tn_next[t];
1057 	mutex_exit(&tl->tl_lock);
1058 
1059 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1060 }
1061 
1062 EXPORT_SYMBOL(txg_init);
1063 EXPORT_SYMBOL(txg_fini);
1064 EXPORT_SYMBOL(txg_sync_start);
1065 EXPORT_SYMBOL(txg_sync_stop);
1066 EXPORT_SYMBOL(txg_hold_open);
1067 EXPORT_SYMBOL(txg_rele_to_quiesce);
1068 EXPORT_SYMBOL(txg_rele_to_sync);
1069 EXPORT_SYMBOL(txg_register_callbacks);
1070 EXPORT_SYMBOL(txg_delay);
1071 EXPORT_SYMBOL(txg_wait_synced);
1072 EXPORT_SYMBOL(txg_wait_open);
1073 EXPORT_SYMBOL(txg_wait_callbacks);
1074 EXPORT_SYMBOL(txg_stalled);
1075 EXPORT_SYMBOL(txg_sync_waiting);
1076 
1077 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, UINT, ZMOD_RW,
1078 	"Max seconds worth of delta per txg");
1079