1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Portions Copyright 2011 Martin Matuska
25 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/txg_impl.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/zil.h>
36 #include <sys/callb.h>
37 #include <sys/trace_zfs.h>
38
39 /*
40 * ZFS Transaction Groups
41 * ----------------------
42 *
43 * ZFS transaction groups are, as the name implies, groups of transactions
44 * that act on persistent state. ZFS asserts consistency at the granularity of
45 * these transaction groups. Each successive transaction group (txg) is
46 * assigned a 64-bit consecutive identifier. There are three active
47 * transaction group states: open, quiescing, or syncing. At any given time,
48 * there may be an active txg associated with each state; each active txg may
49 * either be processing, or blocked waiting to enter the next state. There may
50 * be up to three active txgs, and there is always a txg in the open state
51 * (though it may be blocked waiting to enter the quiescing state). In broad
52 * strokes, transactions -- operations that change in-memory structures -- are
53 * accepted into the txg in the open state, and are completed while the txg is
54 * in the open or quiescing states. The accumulated changes are written to
55 * disk in the syncing state.
56 *
57 * Open
58 *
59 * When a new txg becomes active, it first enters the open state. New
60 * transactions -- updates to in-memory structures -- are assigned to the
61 * currently open txg. There is always a txg in the open state so that ZFS can
62 * accept new changes (though the txg may refuse new changes if it has hit
63 * some limit). ZFS advances the open txg to the next state for a variety of
64 * reasons such as it hitting a time or size threshold, or the execution of an
65 * administrative action that must be completed in the syncing state.
66 *
67 * Quiescing
68 *
69 * After a txg exits the open state, it enters the quiescing state. The
70 * quiescing state is intended to provide a buffer between accepting new
71 * transactions in the open state and writing them out to stable storage in
72 * the syncing state. While quiescing, transactions can continue their
73 * operation without delaying either of the other states. Typically, a txg is
74 * in the quiescing state very briefly since the operations are bounded by
75 * software latencies rather than, say, slower I/O latencies. After all
76 * transactions complete, the txg is ready to enter the next state.
77 *
78 * Syncing
79 *
80 * In the syncing state, the in-memory state built up during the open and (to
81 * a lesser degree) the quiescing states is written to stable storage. The
82 * process of writing out modified data can, in turn modify more data. For
83 * example when we write new blocks, we need to allocate space for them; those
84 * allocations modify metadata (space maps)... which themselves must be
85 * written to stable storage. During the sync state, ZFS iterates, writing out
86 * data until it converges and all in-memory changes have been written out.
87 * The first such pass is the largest as it encompasses all the modified user
88 * data (as opposed to filesystem metadata). Subsequent passes typically have
89 * far less data to write as they consist exclusively of filesystem metadata.
90 *
91 * To ensure convergence, after a certain number of passes ZFS begins
92 * overwriting locations on stable storage that had been allocated earlier in
93 * the syncing state (and subsequently freed). ZFS usually allocates new
94 * blocks to optimize for large, continuous, writes. For the syncing state to
95 * converge however it must complete a pass where no new blocks are allocated
96 * since each allocation requires a modification of persistent metadata.
97 * Further, to hasten convergence, after a prescribed number of passes, ZFS
98 * also defers frees, and stops compressing.
99 *
100 * In addition to writing out user data, we must also execute synctasks during
101 * the syncing context. A synctask is the mechanism by which some
102 * administrative activities work such as creating and destroying snapshots or
103 * datasets. Note that when a synctask is initiated it enters the open txg,
104 * and ZFS then pushes that txg as quickly as possible to completion of the
105 * syncing state in order to reduce the latency of the administrative
106 * activity. To complete the syncing state, ZFS writes out a new uberblock,
107 * the root of the tree of blocks that comprise all state stored on the ZFS
108 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
109 * now transition to the syncing state.
110 */
111
112 static __attribute__((noreturn)) void txg_sync_thread(void *arg);
113 static __attribute__((noreturn)) void txg_quiesce_thread(void *arg);
114
115 uint_t zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
116
117 /*
118 * Prepare the txg subsystem.
119 */
120 void
txg_init(dsl_pool_t * dp,uint64_t txg)121 txg_init(dsl_pool_t *dp, uint64_t txg)
122 {
123 tx_state_t *tx = &dp->dp_tx;
124 int c;
125 memset(tx, 0, sizeof (tx_state_t));
126
127 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
128
129 for (c = 0; c < max_ncpus; c++) {
130 int i;
131
132 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
133 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
134 NULL);
135 for (i = 0; i < TXG_SIZE; i++) {
136 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
137 NULL);
138 list_create(&tx->tx_cpu[c].tc_callbacks[i],
139 sizeof (dmu_tx_callback_t),
140 offsetof(dmu_tx_callback_t, dcb_node));
141 }
142 }
143
144 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
145
146 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
148 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
149 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
150 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
151
152 tx->tx_open_txg = txg;
153 }
154
155 /*
156 * Close down the txg subsystem.
157 */
158 void
txg_fini(dsl_pool_t * dp)159 txg_fini(dsl_pool_t *dp)
160 {
161 tx_state_t *tx = &dp->dp_tx;
162 int c;
163
164 ASSERT0(tx->tx_threads);
165
166 mutex_destroy(&tx->tx_sync_lock);
167
168 cv_destroy(&tx->tx_sync_more_cv);
169 cv_destroy(&tx->tx_sync_done_cv);
170 cv_destroy(&tx->tx_quiesce_more_cv);
171 cv_destroy(&tx->tx_quiesce_done_cv);
172 cv_destroy(&tx->tx_exit_cv);
173
174 for (c = 0; c < max_ncpus; c++) {
175 int i;
176
177 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
178 mutex_destroy(&tx->tx_cpu[c].tc_lock);
179 for (i = 0; i < TXG_SIZE; i++) {
180 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
181 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
182 }
183 }
184
185 if (tx->tx_commit_cb_taskq != NULL)
186 taskq_destroy(tx->tx_commit_cb_taskq);
187
188 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
189
190 memset(tx, 0, sizeof (tx_state_t));
191 }
192
193 /*
194 * Start syncing transaction groups.
195 */
196 void
txg_sync_start(dsl_pool_t * dp)197 txg_sync_start(dsl_pool_t *dp)
198 {
199 tx_state_t *tx = &dp->dp_tx;
200
201 mutex_enter(&tx->tx_sync_lock);
202
203 dprintf("pool %p\n", dp);
204
205 ASSERT0(tx->tx_threads);
206
207 tx->tx_threads = 2;
208
209 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
210 dp, 0, &p0, TS_RUN, defclsyspri);
211
212 /*
213 * The sync thread can need a larger-than-default stack size on
214 * 32-bit x86. This is due in part to nested pools and
215 * scrub_visitbp() recursion.
216 */
217 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
218 dp, 0, &p0, TS_RUN, defclsyspri);
219
220 mutex_exit(&tx->tx_sync_lock);
221 }
222
223 static void
txg_thread_enter(tx_state_t * tx,callb_cpr_t * cpr)224 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
225 {
226 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
227 mutex_enter(&tx->tx_sync_lock);
228 }
229
230 static void
txg_thread_exit(tx_state_t * tx,callb_cpr_t * cpr,kthread_t ** tpp)231 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
232 {
233 ASSERT(*tpp != NULL);
234 *tpp = NULL;
235 tx->tx_threads--;
236 cv_broadcast(&tx->tx_exit_cv);
237 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
238 thread_exit();
239 }
240
241 static void
txg_thread_wait(tx_state_t * tx,callb_cpr_t * cpr,kcondvar_t * cv,clock_t time)242 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
243 {
244 CALLB_CPR_SAFE_BEGIN(cpr);
245
246 if (time) {
247 (void) cv_timedwait_idle(cv, &tx->tx_sync_lock,
248 ddi_get_lbolt() + time);
249 } else {
250 cv_wait_idle(cv, &tx->tx_sync_lock);
251 }
252
253 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
254 }
255
256 /*
257 * Stop syncing transaction groups.
258 */
259 void
txg_sync_stop(dsl_pool_t * dp)260 txg_sync_stop(dsl_pool_t *dp)
261 {
262 tx_state_t *tx = &dp->dp_tx;
263
264 dprintf("pool %p\n", dp);
265 /*
266 * Finish off any work in progress.
267 */
268 ASSERT3U(tx->tx_threads, ==, 2);
269
270 /*
271 * We need to ensure that we've vacated the deferred metaslab trees.
272 */
273 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
274
275 /*
276 * Wake all sync threads and wait for them to die.
277 */
278 mutex_enter(&tx->tx_sync_lock);
279
280 ASSERT3U(tx->tx_threads, ==, 2);
281
282 tx->tx_exiting = 1;
283
284 cv_broadcast(&tx->tx_quiesce_more_cv);
285 cv_broadcast(&tx->tx_quiesce_done_cv);
286 cv_broadcast(&tx->tx_sync_more_cv);
287
288 while (tx->tx_threads != 0)
289 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
290
291 tx->tx_exiting = 0;
292
293 mutex_exit(&tx->tx_sync_lock);
294 }
295
296 /*
297 * Get a handle on the currently open txg and keep it open.
298 *
299 * The txg is guaranteed to stay open until txg_rele_to_quiesce() is called for
300 * the handle. Once txg_rele_to_quiesce() has been called, the txg stays
301 * in quiescing state until txg_rele_to_sync() is called for the handle.
302 *
303 * It is guaranteed that subsequent calls return monotonically increasing
304 * txgs for the same dsl_pool_t. Of course this is not strong monotonicity,
305 * because the same txg can be returned multiple times in a row. This
306 * guarantee holds both for subsequent calls from one thread and for multiple
307 * threads. For example, it is impossible to observe the following sequence
308 * of events:
309 *
310 * Thread 1 Thread 2
311 *
312 * 1 <- txg_hold_open(P, ...)
313 * 2 <- txg_hold_open(P, ...)
314 * 1 <- txg_hold_open(P, ...)
315 *
316 */
317 uint64_t
txg_hold_open(dsl_pool_t * dp,txg_handle_t * th)318 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
319 {
320 tx_state_t *tx = &dp->dp_tx;
321 tx_cpu_t *tc;
322 uint64_t txg;
323
324 /*
325 * It appears the processor id is simply used as a "random"
326 * number to index into the array, and there isn't any other
327 * significance to the chosen tx_cpu. Because.. Why not use
328 * the current cpu to index into the array?
329 */
330 tc = &tx->tx_cpu[CPU_SEQID_UNSTABLE];
331
332 mutex_enter(&tc->tc_open_lock);
333 txg = tx->tx_open_txg;
334
335 mutex_enter(&tc->tc_lock);
336 tc->tc_count[txg & TXG_MASK]++;
337 mutex_exit(&tc->tc_lock);
338
339 th->th_cpu = tc;
340 th->th_txg = txg;
341
342 return (txg);
343 }
344
345 void
txg_rele_to_quiesce(txg_handle_t * th)346 txg_rele_to_quiesce(txg_handle_t *th)
347 {
348 tx_cpu_t *tc = th->th_cpu;
349
350 ASSERT(!MUTEX_HELD(&tc->tc_lock));
351 mutex_exit(&tc->tc_open_lock);
352 }
353
354 void
txg_register_callbacks(txg_handle_t * th,list_t * tx_callbacks)355 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
356 {
357 tx_cpu_t *tc = th->th_cpu;
358 int g = th->th_txg & TXG_MASK;
359
360 mutex_enter(&tc->tc_lock);
361 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
362 mutex_exit(&tc->tc_lock);
363 }
364
365 void
txg_rele_to_sync(txg_handle_t * th)366 txg_rele_to_sync(txg_handle_t *th)
367 {
368 tx_cpu_t *tc = th->th_cpu;
369 int g = th->th_txg & TXG_MASK;
370
371 mutex_enter(&tc->tc_lock);
372 ASSERT(tc->tc_count[g] != 0);
373 if (--tc->tc_count[g] == 0)
374 cv_broadcast(&tc->tc_cv[g]);
375 mutex_exit(&tc->tc_lock);
376
377 th->th_cpu = NULL; /* defensive */
378 }
379
380 /*
381 * Blocks until all transactions in the group are committed.
382 *
383 * On return, the transaction group has reached a stable state in which it can
384 * then be passed off to the syncing context.
385 */
386 static void
txg_quiesce(dsl_pool_t * dp,uint64_t txg)387 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
388 {
389 tx_state_t *tx = &dp->dp_tx;
390 uint64_t tx_open_time;
391 int g = txg & TXG_MASK;
392 int c;
393
394 /*
395 * Grab all tc_open_locks so nobody else can get into this txg.
396 */
397 for (c = 0; c < max_ncpus; c++)
398 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
399
400 ASSERT(txg == tx->tx_open_txg);
401 tx->tx_open_txg++;
402 tx->tx_open_time = tx_open_time = gethrtime();
403
404 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
405 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
406
407 /*
408 * Now that we've incremented tx_open_txg, we can let threads
409 * enter the next transaction group.
410 */
411 for (c = 0; c < max_ncpus; c++)
412 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
413
414 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
415 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
416
417 /*
418 * Quiesce the transaction group by waiting for everyone to
419 * call txg_rele_to_sync() for their open transaction handles.
420 */
421 for (c = 0; c < max_ncpus; c++) {
422 tx_cpu_t *tc = &tx->tx_cpu[c];
423 mutex_enter(&tc->tc_lock);
424 while (tc->tc_count[g] != 0)
425 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
426 mutex_exit(&tc->tc_lock);
427 }
428
429 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
430 }
431
432 static void
txg_do_callbacks(void * cb_list)433 txg_do_callbacks(void *cb_list)
434 {
435 dmu_tx_do_callbacks(cb_list, 0);
436
437 list_destroy(cb_list);
438
439 kmem_free(cb_list, sizeof (list_t));
440 }
441
442 /*
443 * Dispatch the commit callbacks registered on this txg to worker threads.
444 *
445 * If no callbacks are registered for a given TXG, nothing happens.
446 * This function creates a taskq for the associated pool, if needed.
447 */
448 static void
txg_dispatch_callbacks(dsl_pool_t * dp,uint64_t txg)449 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
450 {
451 int c;
452 tx_state_t *tx = &dp->dp_tx;
453 list_t *cb_list;
454
455 for (c = 0; c < max_ncpus; c++) {
456 tx_cpu_t *tc = &tx->tx_cpu[c];
457 /*
458 * No need to lock tx_cpu_t at this point, since this can
459 * only be called once a txg has been synced.
460 */
461
462 int g = txg & TXG_MASK;
463
464 if (list_is_empty(&tc->tc_callbacks[g]))
465 continue;
466
467 if (tx->tx_commit_cb_taskq == NULL) {
468 /*
469 * Commit callback taskq hasn't been created yet.
470 */
471 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
472 100, defclsyspri, boot_ncpus, boot_ncpus * 2,
473 TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
474 TASKQ_THREADS_CPU_PCT);
475 }
476
477 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
478 list_create(cb_list, sizeof (dmu_tx_callback_t),
479 offsetof(dmu_tx_callback_t, dcb_node));
480
481 list_move_tail(cb_list, &tc->tc_callbacks[g]);
482
483 (void) taskq_dispatch(tx->tx_commit_cb_taskq,
484 txg_do_callbacks, cb_list, TQ_SLEEP);
485 }
486 }
487
488 /*
489 * Wait for pending commit callbacks of already-synced transactions to finish
490 * processing.
491 * Calling this function from within a commit callback will deadlock.
492 */
493 void
txg_wait_callbacks(dsl_pool_t * dp)494 txg_wait_callbacks(dsl_pool_t *dp)
495 {
496 tx_state_t *tx = &dp->dp_tx;
497
498 if (tx->tx_commit_cb_taskq != NULL)
499 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
500 }
501
502 static boolean_t
txg_is_quiescing(dsl_pool_t * dp)503 txg_is_quiescing(dsl_pool_t *dp)
504 {
505 tx_state_t *tx = &dp->dp_tx;
506 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
507 return (tx->tx_quiescing_txg != 0);
508 }
509
510 static boolean_t
txg_has_quiesced_to_sync(dsl_pool_t * dp)511 txg_has_quiesced_to_sync(dsl_pool_t *dp)
512 {
513 tx_state_t *tx = &dp->dp_tx;
514 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
515 return (tx->tx_quiesced_txg != 0);
516 }
517
518 static __attribute__((noreturn)) void
txg_sync_thread(void * arg)519 txg_sync_thread(void *arg)
520 {
521 dsl_pool_t *dp = arg;
522 spa_t *spa = dp->dp_spa;
523 tx_state_t *tx = &dp->dp_tx;
524 callb_cpr_t cpr;
525 clock_t start, delta;
526
527 (void) spl_fstrans_mark();
528 txg_thread_enter(tx, &cpr);
529
530 start = delta = 0;
531 for (;;) {
532 clock_t timeout = zfs_txg_timeout * hz;
533 clock_t timer;
534 uint64_t txg;
535
536 /*
537 * We sync when we're scanning, there's someone waiting
538 * on us, or the quiesce thread has handed off a txg to
539 * us, or we have reached our timeout.
540 */
541 timer = (delta >= timeout ? 0 : timeout - delta);
542 while (!dsl_scan_active(dp->dp_scan) &&
543 !tx->tx_exiting && timer > 0 &&
544 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
545 !txg_has_quiesced_to_sync(dp)) {
546 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
547 (u_longlong_t)tx->tx_synced_txg,
548 (u_longlong_t)tx->tx_sync_txg_waiting, dp);
549 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
550 delta = ddi_get_lbolt() - start;
551 timer = (delta > timeout ? 0 : timeout - delta);
552 }
553
554 /*
555 * When we're suspended, nothing should be changing and for
556 * MMP we don't want to bump anything that would make it
557 * harder to detect if another host is changing it when
558 * resuming after a MMP suspend.
559 */
560 if (spa_suspended(spa))
561 continue;
562
563 /*
564 * Wait until the quiesce thread hands off a txg to us,
565 * prompting it to do so if necessary.
566 */
567 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
568 if (txg_is_quiescing(dp)) {
569 txg_thread_wait(tx, &cpr,
570 &tx->tx_quiesce_done_cv, 0);
571 continue;
572 }
573 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
574 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
575 cv_broadcast(&tx->tx_quiesce_more_cv);
576 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
577 }
578
579 if (tx->tx_exiting)
580 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
581
582 /*
583 * Consume the quiesced txg which has been handed off to
584 * us. This may cause the quiescing thread to now be
585 * able to quiesce another txg, so we must signal it.
586 */
587 ASSERT(tx->tx_quiesced_txg != 0);
588 txg = tx->tx_quiesced_txg;
589 tx->tx_quiesced_txg = 0;
590 tx->tx_syncing_txg = txg;
591 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
592 cv_broadcast(&tx->tx_quiesce_more_cv);
593
594 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
595 (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
596 (u_longlong_t)tx->tx_sync_txg_waiting);
597 mutex_exit(&tx->tx_sync_lock);
598
599 txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp);
600 start = ddi_get_lbolt();
601 spa_sync(spa, txg);
602 delta = ddi_get_lbolt() - start;
603 spa_txg_history_fini_io(spa, ts);
604
605 mutex_enter(&tx->tx_sync_lock);
606 tx->tx_synced_txg = txg;
607 tx->tx_syncing_txg = 0;
608 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
609 cv_broadcast(&tx->tx_sync_done_cv);
610
611 /*
612 * Dispatch commit callbacks to worker threads.
613 */
614 txg_dispatch_callbacks(dp, txg);
615 }
616 }
617
618 static __attribute__((noreturn)) void
txg_quiesce_thread(void * arg)619 txg_quiesce_thread(void *arg)
620 {
621 dsl_pool_t *dp = arg;
622 tx_state_t *tx = &dp->dp_tx;
623 callb_cpr_t cpr;
624
625 txg_thread_enter(tx, &cpr);
626
627 for (;;) {
628 uint64_t txg;
629
630 /*
631 * We quiesce when there's someone waiting on us.
632 * However, we can only have one txg in "quiescing" or
633 * "quiesced, waiting to sync" state. So we wait until
634 * the "quiesced, waiting to sync" txg has been consumed
635 * by the sync thread.
636 */
637 while (!tx->tx_exiting &&
638 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
639 txg_has_quiesced_to_sync(dp)))
640 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
641
642 if (tx->tx_exiting)
643 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
644
645 txg = tx->tx_open_txg;
646 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
647 (u_longlong_t)txg,
648 (u_longlong_t)tx->tx_quiesce_txg_waiting,
649 (u_longlong_t)tx->tx_sync_txg_waiting);
650 tx->tx_quiescing_txg = txg;
651
652 mutex_exit(&tx->tx_sync_lock);
653 txg_quiesce(dp, txg);
654 mutex_enter(&tx->tx_sync_lock);
655
656 /*
657 * Hand this txg off to the sync thread.
658 */
659 dprintf("quiesce done, handing off txg %llu\n",
660 (u_longlong_t)txg);
661 tx->tx_quiescing_txg = 0;
662 tx->tx_quiesced_txg = txg;
663 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
664 cv_broadcast(&tx->tx_sync_more_cv);
665 cv_broadcast(&tx->tx_quiesce_done_cv);
666 }
667 }
668
669 /*
670 * Delay this thread by delay nanoseconds if we are still in the open
671 * transaction group and there is already a waiting txg quiescing or quiesced.
672 * Abort the delay if this txg stalls or enters the quiescing state.
673 */
674 void
txg_delay(dsl_pool_t * dp,uint64_t txg,hrtime_t delay,hrtime_t resolution)675 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
676 {
677 tx_state_t *tx = &dp->dp_tx;
678 hrtime_t start = gethrtime();
679
680 /* don't delay if this txg could transition to quiescing immediately */
681 if (tx->tx_open_txg > txg ||
682 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
683 return;
684
685 mutex_enter(&tx->tx_sync_lock);
686 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
687 mutex_exit(&tx->tx_sync_lock);
688 return;
689 }
690
691 while (gethrtime() - start < delay &&
692 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
693 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
694 &tx->tx_sync_lock, delay, resolution, 0);
695 }
696
697 DMU_TX_STAT_BUMP(dmu_tx_delay);
698
699 mutex_exit(&tx->tx_sync_lock);
700 }
701
702 static boolean_t
txg_wait_synced_impl(dsl_pool_t * dp,uint64_t txg,boolean_t wait_sig)703 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
704 {
705 tx_state_t *tx = &dp->dp_tx;
706
707 ASSERT(!dsl_pool_config_held(dp));
708
709 mutex_enter(&tx->tx_sync_lock);
710 ASSERT3U(tx->tx_threads, ==, 2);
711 if (txg == 0)
712 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
713 if (tx->tx_sync_txg_waiting < txg)
714 tx->tx_sync_txg_waiting = txg;
715 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
716 (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
717 (u_longlong_t)tx->tx_sync_txg_waiting);
718 while (tx->tx_synced_txg < txg) {
719 dprintf("broadcasting sync more "
720 "tx_synced=%llu waiting=%llu dp=%px\n",
721 (u_longlong_t)tx->tx_synced_txg,
722 (u_longlong_t)tx->tx_sync_txg_waiting, dp);
723 cv_broadcast(&tx->tx_sync_more_cv);
724 if (wait_sig) {
725 /*
726 * Condition wait here but stop if the thread receives a
727 * signal. The caller may call txg_wait_synced*() again
728 * to resume waiting for this txg.
729 */
730 if (cv_wait_io_sig(&tx->tx_sync_done_cv,
731 &tx->tx_sync_lock) == 0) {
732 mutex_exit(&tx->tx_sync_lock);
733 return (B_TRUE);
734 }
735 } else {
736 cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
737 }
738 }
739 mutex_exit(&tx->tx_sync_lock);
740 return (B_FALSE);
741 }
742
743 void
txg_wait_synced(dsl_pool_t * dp,uint64_t txg)744 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
745 {
746 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
747 }
748
749 /*
750 * Similar to a txg_wait_synced but it can be interrupted from a signal.
751 * Returns B_TRUE if the thread was signaled while waiting.
752 */
753 boolean_t
txg_wait_synced_sig(dsl_pool_t * dp,uint64_t txg)754 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
755 {
756 return (txg_wait_synced_impl(dp, txg, B_TRUE));
757 }
758
759 /*
760 * Wait for the specified open transaction group. Set should_quiesce
761 * when the current open txg should be quiesced immediately.
762 */
763 void
txg_wait_open(dsl_pool_t * dp,uint64_t txg,boolean_t should_quiesce)764 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
765 {
766 tx_state_t *tx = &dp->dp_tx;
767
768 ASSERT(!dsl_pool_config_held(dp));
769
770 mutex_enter(&tx->tx_sync_lock);
771 ASSERT3U(tx->tx_threads, ==, 2);
772 if (txg == 0)
773 txg = tx->tx_open_txg + 1;
774 if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
775 tx->tx_quiesce_txg_waiting = txg;
776 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
777 (u_longlong_t)txg, (u_longlong_t)tx->tx_quiesce_txg_waiting,
778 (u_longlong_t)tx->tx_sync_txg_waiting);
779 while (tx->tx_open_txg < txg) {
780 cv_broadcast(&tx->tx_quiesce_more_cv);
781 /*
782 * Callers setting should_quiesce will use cv_wait_io() and
783 * be accounted for as iowait time. Otherwise, the caller is
784 * understood to be idle and cv_wait_sig() is used to prevent
785 * incorrectly inflating the system load average.
786 */
787 if (should_quiesce == B_TRUE) {
788 cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
789 } else {
790 cv_wait_idle(&tx->tx_quiesce_done_cv,
791 &tx->tx_sync_lock);
792 }
793 }
794 mutex_exit(&tx->tx_sync_lock);
795 }
796
797 /*
798 * Pass in the txg number that should be synced.
799 */
800 void
txg_kick(dsl_pool_t * dp,uint64_t txg)801 txg_kick(dsl_pool_t *dp, uint64_t txg)
802 {
803 tx_state_t *tx = &dp->dp_tx;
804
805 ASSERT(!dsl_pool_config_held(dp));
806
807 if (tx->tx_sync_txg_waiting >= txg)
808 return;
809
810 mutex_enter(&tx->tx_sync_lock);
811 if (tx->tx_sync_txg_waiting < txg) {
812 tx->tx_sync_txg_waiting = txg;
813 cv_broadcast(&tx->tx_sync_more_cv);
814 }
815 mutex_exit(&tx->tx_sync_lock);
816 }
817
818 boolean_t
txg_stalled(dsl_pool_t * dp)819 txg_stalled(dsl_pool_t *dp)
820 {
821 tx_state_t *tx = &dp->dp_tx;
822 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
823 }
824
825 boolean_t
txg_sync_waiting(dsl_pool_t * dp)826 txg_sync_waiting(dsl_pool_t *dp)
827 {
828 tx_state_t *tx = &dp->dp_tx;
829
830 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
831 tx->tx_quiesced_txg != 0);
832 }
833
834 /*
835 * Verify that this txg is active (open, quiescing, syncing). Non-active
836 * txg's should not be manipulated.
837 */
838 #ifdef ZFS_DEBUG
839 void
txg_verify(spa_t * spa,uint64_t txg)840 txg_verify(spa_t *spa, uint64_t txg)
841 {
842 dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa);
843 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
844 return;
845 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
846 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
847 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
848 }
849 #endif
850
851 /*
852 * Per-txg object lists.
853 */
854 void
txg_list_create(txg_list_t * tl,spa_t * spa,size_t offset)855 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
856 {
857 int t;
858
859 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
860
861 tl->tl_offset = offset;
862 tl->tl_spa = spa;
863
864 for (t = 0; t < TXG_SIZE; t++)
865 tl->tl_head[t] = NULL;
866 }
867
868 static boolean_t
txg_list_empty_impl(txg_list_t * tl,uint64_t txg)869 txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
870 {
871 ASSERT(MUTEX_HELD(&tl->tl_lock));
872 TXG_VERIFY(tl->tl_spa, txg);
873 return (tl->tl_head[txg & TXG_MASK] == NULL);
874 }
875
876 boolean_t
txg_list_empty(txg_list_t * tl,uint64_t txg)877 txg_list_empty(txg_list_t *tl, uint64_t txg)
878 {
879 mutex_enter(&tl->tl_lock);
880 boolean_t ret = txg_list_empty_impl(tl, txg);
881 mutex_exit(&tl->tl_lock);
882
883 return (ret);
884 }
885
886 void
txg_list_destroy(txg_list_t * tl)887 txg_list_destroy(txg_list_t *tl)
888 {
889 int t;
890
891 mutex_enter(&tl->tl_lock);
892 for (t = 0; t < TXG_SIZE; t++)
893 ASSERT(txg_list_empty_impl(tl, t));
894 mutex_exit(&tl->tl_lock);
895
896 mutex_destroy(&tl->tl_lock);
897 }
898
899 /*
900 * Returns true if all txg lists are empty.
901 *
902 * Warning: this is inherently racy (an item could be added immediately
903 * after this function returns).
904 */
905 boolean_t
txg_all_lists_empty(txg_list_t * tl)906 txg_all_lists_empty(txg_list_t *tl)
907 {
908 boolean_t res = B_TRUE;
909 for (int i = 0; i < TXG_SIZE; i++)
910 res &= (tl->tl_head[i] == NULL);
911 return (res);
912 }
913
914 /*
915 * Add an entry to the list (unless it's already on the list).
916 * Returns B_TRUE if it was actually added.
917 */
918 boolean_t
txg_list_add(txg_list_t * tl,void * p,uint64_t txg)919 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
920 {
921 int t = txg & TXG_MASK;
922 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
923 boolean_t add;
924
925 TXG_VERIFY(tl->tl_spa, txg);
926 mutex_enter(&tl->tl_lock);
927 add = (tn->tn_member[t] == 0);
928 if (add) {
929 tn->tn_member[t] = 1;
930 tn->tn_next[t] = tl->tl_head[t];
931 tl->tl_head[t] = tn;
932 }
933 mutex_exit(&tl->tl_lock);
934
935 return (add);
936 }
937
938 /*
939 * Add an entry to the end of the list, unless it's already on the list.
940 * (walks list to find end)
941 * Returns B_TRUE if it was actually added.
942 */
943 boolean_t
txg_list_add_tail(txg_list_t * tl,void * p,uint64_t txg)944 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
945 {
946 int t = txg & TXG_MASK;
947 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
948 boolean_t add;
949
950 TXG_VERIFY(tl->tl_spa, txg);
951 mutex_enter(&tl->tl_lock);
952 add = (tn->tn_member[t] == 0);
953 if (add) {
954 txg_node_t **tp;
955
956 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
957 continue;
958
959 tn->tn_member[t] = 1;
960 tn->tn_next[t] = NULL;
961 *tp = tn;
962 }
963 mutex_exit(&tl->tl_lock);
964
965 return (add);
966 }
967
968 /*
969 * Remove the head of the list and return it.
970 */
971 void *
txg_list_remove(txg_list_t * tl,uint64_t txg)972 txg_list_remove(txg_list_t *tl, uint64_t txg)
973 {
974 int t = txg & TXG_MASK;
975 txg_node_t *tn;
976 void *p = NULL;
977
978 TXG_VERIFY(tl->tl_spa, txg);
979 mutex_enter(&tl->tl_lock);
980 if ((tn = tl->tl_head[t]) != NULL) {
981 ASSERT(tn->tn_member[t]);
982 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
983 p = (char *)tn - tl->tl_offset;
984 tl->tl_head[t] = tn->tn_next[t];
985 tn->tn_next[t] = NULL;
986 tn->tn_member[t] = 0;
987 }
988 mutex_exit(&tl->tl_lock);
989
990 return (p);
991 }
992
993 /*
994 * Remove a specific item from the list and return it.
995 */
996 void *
txg_list_remove_this(txg_list_t * tl,void * p,uint64_t txg)997 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
998 {
999 int t = txg & TXG_MASK;
1000 txg_node_t *tn, **tp;
1001
1002 TXG_VERIFY(tl->tl_spa, txg);
1003 mutex_enter(&tl->tl_lock);
1004
1005 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
1006 if ((char *)tn - tl->tl_offset == p) {
1007 *tp = tn->tn_next[t];
1008 tn->tn_next[t] = NULL;
1009 tn->tn_member[t] = 0;
1010 mutex_exit(&tl->tl_lock);
1011 return (p);
1012 }
1013 }
1014
1015 mutex_exit(&tl->tl_lock);
1016
1017 return (NULL);
1018 }
1019
1020 boolean_t
txg_list_member(txg_list_t * tl,void * p,uint64_t txg)1021 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
1022 {
1023 int t = txg & TXG_MASK;
1024 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1025
1026 TXG_VERIFY(tl->tl_spa, txg);
1027 return (tn->tn_member[t] != 0);
1028 }
1029
1030 /*
1031 * Walk a txg list
1032 */
1033 void *
txg_list_head(txg_list_t * tl,uint64_t txg)1034 txg_list_head(txg_list_t *tl, uint64_t txg)
1035 {
1036 int t = txg & TXG_MASK;
1037 txg_node_t *tn;
1038
1039 mutex_enter(&tl->tl_lock);
1040 tn = tl->tl_head[t];
1041 mutex_exit(&tl->tl_lock);
1042
1043 TXG_VERIFY(tl->tl_spa, txg);
1044 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1045 }
1046
1047 void *
txg_list_next(txg_list_t * tl,void * p,uint64_t txg)1048 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
1049 {
1050 int t = txg & TXG_MASK;
1051 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1052
1053 TXG_VERIFY(tl->tl_spa, txg);
1054
1055 mutex_enter(&tl->tl_lock);
1056 tn = tn->tn_next[t];
1057 mutex_exit(&tl->tl_lock);
1058
1059 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1060 }
1061
1062 EXPORT_SYMBOL(txg_init);
1063 EXPORT_SYMBOL(txg_fini);
1064 EXPORT_SYMBOL(txg_sync_start);
1065 EXPORT_SYMBOL(txg_sync_stop);
1066 EXPORT_SYMBOL(txg_hold_open);
1067 EXPORT_SYMBOL(txg_rele_to_quiesce);
1068 EXPORT_SYMBOL(txg_rele_to_sync);
1069 EXPORT_SYMBOL(txg_register_callbacks);
1070 EXPORT_SYMBOL(txg_delay);
1071 EXPORT_SYMBOL(txg_wait_synced);
1072 EXPORT_SYMBOL(txg_wait_open);
1073 EXPORT_SYMBOL(txg_wait_callbacks);
1074 EXPORT_SYMBOL(txg_stalled);
1075 EXPORT_SYMBOL(txg_sync_waiting);
1076
1077 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, UINT, ZMOD_RW,
1078 "Max seconds worth of delta per txg");
1079