xref: /illumos-gate/usr/src/uts/common/fs/zfs/txg.c (revision bec796f224d8a8aa619e20cf2502acc474e4250b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Portions Copyright 2011 Martin Matuska
24  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/zil.h>
34 #include <sys/callb.h>
35 
36 /*
37  * ZFS Transaction Groups
38  * ----------------------
39  *
40  * ZFS transaction groups are, as the name implies, groups of transactions
41  * that act on persistent state. ZFS asserts consistency at the granularity of
42  * these transaction groups. Each successive transaction group (txg) is
43  * assigned a 64-bit consecutive identifier. There are three active
44  * transaction group states: open, quiescing, or syncing. At any given time,
45  * there may be an active txg associated with each state; each active txg may
46  * either be processing, or blocked waiting to enter the next state. There may
47  * be up to three active txgs, and there is always a txg in the open state
48  * (though it may be blocked waiting to enter the quiescing state). In broad
49  * strokes, transactions -- operations that change in-memory structures -- are
50  * accepted into the txg in the open state, and are completed while the txg is
51  * in the open or quiescing states. The accumulated changes are written to
52  * disk in the syncing state.
53  *
54  * Open
55  *
56  * When a new txg becomes active, it first enters the open state. New
57  * transactions -- updates to in-memory structures -- are assigned to the
58  * currently open txg. There is always a txg in the open state so that ZFS can
59  * accept new changes (though the txg may refuse new changes if it has hit
60  * some limit). ZFS advances the open txg to the next state for a variety of
61  * reasons such as it hitting a time or size threshold, or the execution of an
62  * administrative action that must be completed in the syncing state.
63  *
64  * Quiescing
65  *
66  * After a txg exits the open state, it enters the quiescing state. The
67  * quiescing state is intended to provide a buffer between accepting new
68  * transactions in the open state and writing them out to stable storage in
69  * the syncing state. While quiescing, transactions can continue their
70  * operation without delaying either of the other states. Typically, a txg is
71  * in the quiescing state very briefly since the operations are bounded by
72  * software latencies rather than, say, slower I/O latencies. After all
73  * transactions complete, the txg is ready to enter the next state.
74  *
75  * Syncing
76  *
77  * In the syncing state, the in-memory state built up during the open and (to
78  * a lesser degree) the quiescing states is written to stable storage. The
79  * process of writing out modified data can, in turn modify more data. For
80  * example when we write new blocks, we need to allocate space for them; those
81  * allocations modify metadata (space maps)... which themselves must be
82  * written to stable storage. During the sync state, ZFS iterates, writing out
83  * data until it converges and all in-memory changes have been written out.
84  * The first such pass is the largest as it encompasses all the modified user
85  * data (as opposed to filesystem metadata). Subsequent passes typically have
86  * far less data to write as they consist exclusively of filesystem metadata.
87  *
88  * To ensure convergence, after a certain number of passes ZFS begins
89  * overwriting locations on stable storage that had been allocated earlier in
90  * the syncing state (and subsequently freed). ZFS usually allocates new
91  * blocks to optimize for large, continuous, writes. For the syncing state to
92  * converge however it must complete a pass where no new blocks are allocated
93  * since each allocation requires a modification of persistent metadata.
94  * Further, to hasten convergence, after a prescribed number of passes, ZFS
95  * also defers frees, and stops compressing.
96  *
97  * In addition to writing out user data, we must also execute synctasks during
98  * the syncing context. A synctask is the mechanism by which some
99  * administrative activities work such as creating and destroying snapshots or
100  * datasets. Note that when a synctask is initiated it enters the open txg,
101  * and ZFS then pushes that txg as quickly as possible to completion of the
102  * syncing state in order to reduce the latency of the administrative
103  * activity. To complete the syncing state, ZFS writes out a new uberblock,
104  * the root of the tree of blocks that comprise all state stored on the ZFS
105  * pool. Finally, if there is a quiesced txg waiting, we signal that it can
106  * now transition to the syncing state.
107  */
108 
109 static void txg_sync_thread(void *arg);
110 static void txg_quiesce_thread(void *arg);
111 
112 int zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */
113 
114 /*
115  * Prepare the txg subsystem.
116  */
117 void
txg_init(dsl_pool_t * dp,uint64_t txg)118 txg_init(dsl_pool_t *dp, uint64_t txg)
119 {
120 	tx_state_t *tx = &dp->dp_tx;
121 	int c;
122 	bzero(tx, sizeof (tx_state_t));
123 
124 	tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
125 
126 	for (c = 0; c < max_ncpus; c++) {
127 		int i;
128 
129 		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
130 		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
131 		    NULL);
132 		for (i = 0; i < TXG_SIZE; i++) {
133 			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
134 			    NULL);
135 			list_create(&tx->tx_cpu[c].tc_callbacks[i],
136 			    sizeof (dmu_tx_callback_t),
137 			    offsetof(dmu_tx_callback_t, dcb_node));
138 		}
139 	}
140 
141 	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
142 
143 	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
144 	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
145 	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
146 	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
147 	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
148 
149 	tx->tx_open_txg = txg;
150 }
151 
152 /*
153  * Close down the txg subsystem.
154  */
155 void
txg_fini(dsl_pool_t * dp)156 txg_fini(dsl_pool_t *dp)
157 {
158 	tx_state_t *tx = &dp->dp_tx;
159 	int c;
160 
161 	ASSERT0(tx->tx_threads);
162 
163 	mutex_destroy(&tx->tx_sync_lock);
164 
165 	cv_destroy(&tx->tx_sync_more_cv);
166 	cv_destroy(&tx->tx_sync_done_cv);
167 	cv_destroy(&tx->tx_quiesce_more_cv);
168 	cv_destroy(&tx->tx_quiesce_done_cv);
169 	cv_destroy(&tx->tx_exit_cv);
170 
171 	for (c = 0; c < max_ncpus; c++) {
172 		int i;
173 
174 		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
175 		mutex_destroy(&tx->tx_cpu[c].tc_lock);
176 		for (i = 0; i < TXG_SIZE; i++) {
177 			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
178 			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
179 		}
180 	}
181 
182 	if (tx->tx_commit_cb_taskq != NULL)
183 		taskq_destroy(tx->tx_commit_cb_taskq);
184 
185 	kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
186 
187 	bzero(tx, sizeof (tx_state_t));
188 }
189 
190 /*
191  * Start syncing transaction groups.
192  */
193 void
txg_sync_start(dsl_pool_t * dp)194 txg_sync_start(dsl_pool_t *dp)
195 {
196 	tx_state_t *tx = &dp->dp_tx;
197 
198 	mutex_enter(&tx->tx_sync_lock);
199 
200 	dprintf_zfs("pool %p\n", dp);
201 
202 	ASSERT0(tx->tx_threads);
203 
204 	tx->tx_threads = 2;
205 
206 	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
207 	    dp, 0, &p0, TS_RUN, minclsyspri);
208 
209 	/*
210 	 * The sync thread can need a larger-than-default stack size on
211 	 * 32-bit x86.  This is due in part to nested pools and
212 	 * scrub_visitbp() recursion.
213 	 */
214 	tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
215 	    dp, 0, &p0, TS_RUN, minclsyspri);
216 
217 	mutex_exit(&tx->tx_sync_lock);
218 }
219 
220 static void
txg_thread_enter(tx_state_t * tx,callb_cpr_t * cpr)221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
222 {
223 	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
224 	mutex_enter(&tx->tx_sync_lock);
225 }
226 
227 static void
txg_thread_exit(tx_state_t * tx,callb_cpr_t * cpr,kthread_t ** tpp)228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
229 {
230 	ASSERT(*tpp != NULL);
231 	*tpp = NULL;
232 	tx->tx_threads--;
233 	cv_broadcast(&tx->tx_exit_cv);
234 	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
235 	thread_exit();
236 }
237 
238 static void
txg_thread_wait(tx_state_t * tx,callb_cpr_t * cpr,kcondvar_t * cv,clock_t time)239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
240 {
241 	CALLB_CPR_SAFE_BEGIN(cpr);
242 
243 	if (time)
244 		(void) cv_timedwait(cv, &tx->tx_sync_lock,
245 		    ddi_get_lbolt() + time);
246 	else
247 		cv_wait(cv, &tx->tx_sync_lock);
248 
249 	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
250 }
251 
252 /*
253  * Stop syncing transaction groups.
254  */
255 void
txg_sync_stop(dsl_pool_t * dp)256 txg_sync_stop(dsl_pool_t *dp)
257 {
258 	tx_state_t *tx = &dp->dp_tx;
259 
260 	dprintf_zfs("pool %p\n", dp);
261 	/*
262 	 * Finish off any work in progress.
263 	 */
264 	ASSERT3U(tx->tx_threads, ==, 2);
265 
266 	/*
267 	 * We need to ensure that we've vacated the deferred metaslab trees.
268 	 */
269 	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
270 
271 	/*
272 	 * Wake all sync threads and wait for them to die.
273 	 */
274 	mutex_enter(&tx->tx_sync_lock);
275 
276 	ASSERT3U(tx->tx_threads, ==, 2);
277 
278 	tx->tx_exiting = 1;
279 
280 	cv_broadcast(&tx->tx_quiesce_more_cv);
281 	cv_broadcast(&tx->tx_quiesce_done_cv);
282 	cv_broadcast(&tx->tx_sync_more_cv);
283 
284 	while (tx->tx_threads != 0)
285 		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
286 
287 	tx->tx_exiting = 0;
288 
289 	mutex_exit(&tx->tx_sync_lock);
290 }
291 
292 uint64_t
txg_hold_open(dsl_pool_t * dp,txg_handle_t * th)293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
294 {
295 	tx_state_t *tx = &dp->dp_tx;
296 	tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
297 	uint64_t txg;
298 
299 	mutex_enter(&tc->tc_open_lock);
300 	txg = tx->tx_open_txg;
301 
302 	mutex_enter(&tc->tc_lock);
303 	tc->tc_count[txg & TXG_MASK]++;
304 	mutex_exit(&tc->tc_lock);
305 
306 	th->th_cpu = tc;
307 	th->th_txg = txg;
308 
309 	return (txg);
310 }
311 
312 void
txg_rele_to_quiesce(txg_handle_t * th)313 txg_rele_to_quiesce(txg_handle_t *th)
314 {
315 	tx_cpu_t *tc = th->th_cpu;
316 
317 	ASSERT(!MUTEX_HELD(&tc->tc_lock));
318 	mutex_exit(&tc->tc_open_lock);
319 }
320 
321 void
txg_register_callbacks(txg_handle_t * th,list_t * tx_callbacks)322 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
323 {
324 	tx_cpu_t *tc = th->th_cpu;
325 	int g = th->th_txg & TXG_MASK;
326 
327 	mutex_enter(&tc->tc_lock);
328 	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
329 	mutex_exit(&tc->tc_lock);
330 }
331 
332 void
txg_rele_to_sync(txg_handle_t * th)333 txg_rele_to_sync(txg_handle_t *th)
334 {
335 	tx_cpu_t *tc = th->th_cpu;
336 	int g = th->th_txg & TXG_MASK;
337 
338 	mutex_enter(&tc->tc_lock);
339 	ASSERT(tc->tc_count[g] != 0);
340 	if (--tc->tc_count[g] == 0)
341 		cv_broadcast(&tc->tc_cv[g]);
342 	mutex_exit(&tc->tc_lock);
343 
344 	th->th_cpu = NULL;	/* defensive */
345 }
346 
347 /*
348  * Blocks until all transactions in the group are committed.
349  *
350  * On return, the transaction group has reached a stable state in which it can
351  * then be passed off to the syncing context.
352  */
353 static void
txg_quiesce(dsl_pool_t * dp,uint64_t txg)354 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
355 {
356 	tx_state_t *tx = &dp->dp_tx;
357 	int g = txg & TXG_MASK;
358 	int c;
359 
360 	/*
361 	 * Grab all tc_open_locks so nobody else can get into this txg.
362 	 */
363 	for (c = 0; c < max_ncpus; c++)
364 		mutex_enter(&tx->tx_cpu[c].tc_open_lock);
365 
366 	ASSERT(txg == tx->tx_open_txg);
367 	tx->tx_open_txg++;
368 	tx->tx_open_time = gethrtime();
369 
370 	DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
371 	DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
372 
373 	/*
374 	 * Now that we've incremented tx_open_txg, we can let threads
375 	 * enter the next transaction group.
376 	 */
377 	for (c = 0; c < max_ncpus; c++)
378 		mutex_exit(&tx->tx_cpu[c].tc_open_lock);
379 
380 	/*
381 	 * Quiesce the transaction group by waiting for everyone to txg_exit().
382 	 */
383 	for (c = 0; c < max_ncpus; c++) {
384 		tx_cpu_t *tc = &tx->tx_cpu[c];
385 		mutex_enter(&tc->tc_lock);
386 		while (tc->tc_count[g] != 0)
387 			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
388 		mutex_exit(&tc->tc_lock);
389 	}
390 }
391 
392 static void
txg_do_callbacks(list_t * cb_list)393 txg_do_callbacks(list_t *cb_list)
394 {
395 	dmu_tx_do_callbacks(cb_list, 0);
396 
397 	list_destroy(cb_list);
398 
399 	kmem_free(cb_list, sizeof (list_t));
400 }
401 
402 /*
403  * Dispatch the commit callbacks registered on this txg to worker threads.
404  *
405  * If no callbacks are registered for a given TXG, nothing happens.
406  * This function creates a taskq for the associated pool, if needed.
407  */
408 static void
txg_dispatch_callbacks(dsl_pool_t * dp,uint64_t txg)409 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
410 {
411 	int c;
412 	tx_state_t *tx = &dp->dp_tx;
413 	list_t *cb_list;
414 
415 	for (c = 0; c < max_ncpus; c++) {
416 		tx_cpu_t *tc = &tx->tx_cpu[c];
417 		/*
418 		 * No need to lock tx_cpu_t at this point, since this can
419 		 * only be called once a txg has been synced.
420 		 */
421 
422 		int g = txg & TXG_MASK;
423 
424 		if (list_is_empty(&tc->tc_callbacks[g]))
425 			continue;
426 
427 		if (tx->tx_commit_cb_taskq == NULL) {
428 			/*
429 			 * Commit callback taskq hasn't been created yet.
430 			 */
431 			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
432 			    max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
433 			    TASKQ_PREPOPULATE);
434 		}
435 
436 		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
437 		list_create(cb_list, sizeof (dmu_tx_callback_t),
438 		    offsetof(dmu_tx_callback_t, dcb_node));
439 
440 		list_move_tail(cb_list, &tc->tc_callbacks[g]);
441 
442 		(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
443 		    txg_do_callbacks, cb_list, TQ_SLEEP);
444 	}
445 }
446 
447 static boolean_t
txg_is_syncing(dsl_pool_t * dp)448 txg_is_syncing(dsl_pool_t *dp)
449 {
450 	tx_state_t *tx = &dp->dp_tx;
451 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
452 	return (tx->tx_syncing_txg != 0);
453 }
454 
455 static boolean_t
txg_is_quiescing(dsl_pool_t * dp)456 txg_is_quiescing(dsl_pool_t *dp)
457 {
458 	tx_state_t *tx = &dp->dp_tx;
459 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
460 	return (tx->tx_quiescing_txg != 0);
461 }
462 
463 static boolean_t
txg_has_quiesced_to_sync(dsl_pool_t * dp)464 txg_has_quiesced_to_sync(dsl_pool_t *dp)
465 {
466 	tx_state_t *tx = &dp->dp_tx;
467 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
468 	return (tx->tx_quiesced_txg != 0);
469 }
470 
471 static void
txg_sync_thread(void * arg)472 txg_sync_thread(void *arg)
473 {
474 	dsl_pool_t *dp = arg;
475 	spa_t *spa = dp->dp_spa;
476 	tx_state_t *tx = &dp->dp_tx;
477 	callb_cpr_t cpr;
478 	uint64_t start, delta;
479 
480 	txg_thread_enter(tx, &cpr);
481 
482 	start = delta = 0;
483 	for (;;) {
484 		uint64_t timeout = zfs_txg_timeout * hz;
485 		uint64_t timer;
486 		uint64_t txg;
487 		uint64_t dirty_min_bytes =
488 		    zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100;
489 
490 		/*
491 		 * We sync when we're scanning, there's someone waiting
492 		 * on us, or the quiesce thread has handed off a txg to
493 		 * us, or we have reached our timeout.
494 		 */
495 		timer = (delta >= timeout ? 0 : timeout - delta);
496 		while (!dsl_scan_active(dp->dp_scan) &&
497 		    !tx->tx_exiting && timer > 0 &&
498 		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
499 		    !txg_has_quiesced_to_sync(dp) &&
500 		    dp->dp_dirty_total < dirty_min_bytes) {
501 			dprintf_zfs(
502 			    "waiting; tx_synced=%llu waiting=%llu dp=%p\n",
503 			    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
504 			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
505 			delta = ddi_get_lbolt() - start;
506 			timer = (delta > timeout ? 0 : timeout - delta);
507 		}
508 
509 		/*
510 		 * Wait until the quiesce thread hands off a txg to us,
511 		 * prompting it to do so if necessary.
512 		 */
513 		while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
514 			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
515 				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
516 			cv_broadcast(&tx->tx_quiesce_more_cv);
517 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
518 		}
519 
520 		if (tx->tx_exiting)
521 			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
522 
523 		/*
524 		 * Consume the quiesced txg which has been handed off to
525 		 * us.  This may cause the quiescing thread to now be
526 		 * able to quiesce another txg, so we must signal it.
527 		 */
528 		ASSERT(tx->tx_quiesced_txg != 0);
529 		txg = tx->tx_quiesced_txg;
530 		tx->tx_quiesced_txg = 0;
531 		tx->tx_syncing_txg = txg;
532 		DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
533 		cv_broadcast(&tx->tx_quiesce_more_cv);
534 
535 		dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
536 		    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
537 		mutex_exit(&tx->tx_sync_lock);
538 
539 		start = ddi_get_lbolt();
540 		spa_sync(spa, txg);
541 		delta = ddi_get_lbolt() - start;
542 
543 		mutex_enter(&tx->tx_sync_lock);
544 		tx->tx_synced_txg = txg;
545 		tx->tx_syncing_txg = 0;
546 		DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
547 		cv_broadcast(&tx->tx_sync_done_cv);
548 
549 		/*
550 		 * Dispatch commit callbacks to worker threads.
551 		 */
552 		txg_dispatch_callbacks(dp, txg);
553 	}
554 }
555 
556 static void
txg_quiesce_thread(void * arg)557 txg_quiesce_thread(void *arg)
558 {
559 	dsl_pool_t *dp = arg;
560 	tx_state_t *tx = &dp->dp_tx;
561 	callb_cpr_t cpr;
562 
563 	txg_thread_enter(tx, &cpr);
564 
565 	for (;;) {
566 		uint64_t txg;
567 
568 		/*
569 		 * We quiesce when there's someone waiting on us.
570 		 * However, we can only have one txg in "quiescing" or
571 		 * "quiesced, waiting to sync" state.  So we wait until
572 		 * the "quiesced, waiting to sync" txg has been consumed
573 		 * by the sync thread.
574 		 */
575 		while (!tx->tx_exiting &&
576 		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
577 		    txg_has_quiesced_to_sync(dp)))
578 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
579 
580 		if (tx->tx_exiting)
581 			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
582 
583 		txg = tx->tx_open_txg;
584 		dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
585 		    txg, tx->tx_quiesce_txg_waiting,
586 		    tx->tx_sync_txg_waiting);
587 		tx->tx_quiescing_txg = txg;
588 
589 		mutex_exit(&tx->tx_sync_lock);
590 		txg_quiesce(dp, txg);
591 		mutex_enter(&tx->tx_sync_lock);
592 
593 		/*
594 		 * Hand this txg off to the sync thread.
595 		 */
596 		dprintf_zfs("quiesce done, handing off txg %llu\n", txg);
597 		tx->tx_quiescing_txg = 0;
598 		tx->tx_quiesced_txg = txg;
599 		DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
600 		cv_broadcast(&tx->tx_sync_more_cv);
601 		cv_broadcast(&tx->tx_quiesce_done_cv);
602 	}
603 }
604 
605 /*
606  * Delay this thread by delay nanoseconds if we are still in the open
607  * transaction group and there is already a waiting txg quiescing or quiesced.
608  * Abort the delay if this txg stalls or enters the quiescing state.
609  */
610 void
txg_delay(dsl_pool_t * dp,uint64_t txg,hrtime_t delay,hrtime_t resolution)611 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
612 {
613 	tx_state_t *tx = &dp->dp_tx;
614 	hrtime_t start = gethrtime();
615 
616 	/* don't delay if this txg could transition to quiescing immediately */
617 	if (tx->tx_open_txg > txg ||
618 	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
619 		return;
620 
621 	mutex_enter(&tx->tx_sync_lock);
622 	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
623 		mutex_exit(&tx->tx_sync_lock);
624 		return;
625 	}
626 
627 	while (gethrtime() - start < delay &&
628 	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
629 		(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
630 		    &tx->tx_sync_lock, delay, resolution, 0);
631 	}
632 
633 	mutex_exit(&tx->tx_sync_lock);
634 }
635 
636 static boolean_t
txg_wait_synced_impl(dsl_pool_t * dp,uint64_t txg,boolean_t wait_sig)637 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
638 {
639 	tx_state_t *tx = &dp->dp_tx;
640 
641 	ASSERT(!dsl_pool_config_held(dp));
642 
643 	mutex_enter(&tx->tx_sync_lock);
644 	ASSERT3U(tx->tx_threads, ==, 2);
645 	if (txg == 0)
646 		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
647 	if (tx->tx_sync_txg_waiting < txg)
648 		tx->tx_sync_txg_waiting = txg;
649 	dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
650 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
651 	while (tx->tx_synced_txg < txg) {
652 		dprintf_zfs("broadcasting sync more "
653 		    "tx_synced=%llu waiting=%llu dp=%p\n",
654 		    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
655 		cv_broadcast(&tx->tx_sync_more_cv);
656 		if (wait_sig) {
657 			/*
658 			 * Condition wait here but stop if the thread receives a
659 			 * signal. The caller may call txg_wait_synced*() again
660 			 * to resume waiting for this txg.
661 			 */
662 			if (cv_wait_sig(&tx->tx_sync_done_cv,
663 			    &tx->tx_sync_lock) == 0) {
664 				mutex_exit(&tx->tx_sync_lock);
665 				return (B_TRUE);
666 			}
667 		} else {
668 			cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
669 		}
670 	}
671 	mutex_exit(&tx->tx_sync_lock);
672 	return (B_FALSE);
673 }
674 
675 void
txg_wait_synced(dsl_pool_t * dp,uint64_t txg)676 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
677 {
678 	VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
679 }
680 
681 /*
682  * Similar to a txg_wait_synced but it can be interrupted from a signal.
683  * Returns B_TRUE if the thread was signaled while waiting.
684  */
685 boolean_t
txg_wait_synced_sig(dsl_pool_t * dp,uint64_t txg)686 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
687 {
688 	return (txg_wait_synced_impl(dp, txg, B_TRUE));
689 }
690 
691 /*
692  * Wait for the specified open transaction group.  Set should_quiesce
693  * when the current open txg should be quiesced immediately.
694  */
695 void
txg_wait_open(dsl_pool_t * dp,uint64_t txg,boolean_t should_quiesce)696 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
697 {
698 	tx_state_t *tx = &dp->dp_tx;
699 
700 	ASSERT(!dsl_pool_config_held(dp));
701 
702 	mutex_enter(&tx->tx_sync_lock);
703 	ASSERT3U(tx->tx_threads, ==, 2);
704 	if (txg == 0)
705 		txg = tx->tx_open_txg + 1;
706 	if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
707 		tx->tx_quiesce_txg_waiting = txg;
708 	dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
709 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
710 	while (tx->tx_open_txg < txg) {
711 		cv_broadcast(&tx->tx_quiesce_more_cv);
712 		cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
713 	}
714 	mutex_exit(&tx->tx_sync_lock);
715 }
716 
717 /*
718  * If there isn't a txg syncing or in the pipeline, push another txg through
719  * the pipeline by queiscing the open txg.
720  */
721 void
txg_kick(dsl_pool_t * dp)722 txg_kick(dsl_pool_t *dp)
723 {
724 	tx_state_t *tx = &dp->dp_tx;
725 
726 	ASSERT(!dsl_pool_config_held(dp));
727 
728 	mutex_enter(&tx->tx_sync_lock);
729 	if (!txg_is_syncing(dp) &&
730 	    !txg_is_quiescing(dp) &&
731 	    tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
732 	    tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
733 	    tx->tx_quiesced_txg <= tx->tx_synced_txg) {
734 		tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
735 		cv_broadcast(&tx->tx_quiesce_more_cv);
736 	}
737 	mutex_exit(&tx->tx_sync_lock);
738 }
739 
740 boolean_t
txg_stalled(dsl_pool_t * dp)741 txg_stalled(dsl_pool_t *dp)
742 {
743 	tx_state_t *tx = &dp->dp_tx;
744 	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
745 }
746 
747 boolean_t
txg_sync_waiting(dsl_pool_t * dp)748 txg_sync_waiting(dsl_pool_t *dp)
749 {
750 	tx_state_t *tx = &dp->dp_tx;
751 
752 	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
753 	    tx->tx_quiesced_txg != 0);
754 }
755 
756 /*
757  * Verify that this txg is active (open, quiescing, syncing).  Non-active
758  * txg's should not be manipulated.
759  */
760 void
txg_verify(spa_t * spa,uint64_t txg)761 txg_verify(spa_t *spa, uint64_t txg)
762 {
763 	dsl_pool_t *dp = spa_get_dsl(spa);
764 	if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
765 		return;
766 	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
767 	ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
768 	ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
769 }
770 
771 /*
772  * Per-txg object lists.
773  */
774 void
txg_list_create(txg_list_t * tl,spa_t * spa,size_t offset)775 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
776 {
777 	int t;
778 
779 	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
780 
781 	tl->tl_offset = offset;
782 	tl->tl_spa = spa;
783 
784 	for (t = 0; t < TXG_SIZE; t++)
785 		tl->tl_head[t] = NULL;
786 }
787 
788 void
txg_list_destroy(txg_list_t * tl)789 txg_list_destroy(txg_list_t *tl)
790 {
791 	int t;
792 
793 	for (t = 0; t < TXG_SIZE; t++)
794 		ASSERT(txg_list_empty(tl, t));
795 
796 	mutex_destroy(&tl->tl_lock);
797 }
798 
799 boolean_t
txg_list_empty(txg_list_t * tl,uint64_t txg)800 txg_list_empty(txg_list_t *tl, uint64_t txg)
801 {
802 	txg_verify(tl->tl_spa, txg);
803 	return (tl->tl_head[txg & TXG_MASK] == NULL);
804 }
805 
806 /*
807  * Returns true if all txg lists are empty.
808  *
809  * Warning: this is inherently racy (an item could be added immediately
810  * after this function returns). We don't bother with the lock because
811  * it wouldn't change the semantics.
812  */
813 boolean_t
txg_all_lists_empty(txg_list_t * tl)814 txg_all_lists_empty(txg_list_t *tl)
815 {
816 	for (int i = 0; i < TXG_SIZE; i++) {
817 		if (!txg_list_empty(tl, i)) {
818 			return (B_FALSE);
819 		}
820 	}
821 	return (B_TRUE);
822 }
823 
824 /*
825  * Add an entry to the list (unless it's already on the list).
826  * Returns B_TRUE if it was actually added.
827  */
828 boolean_t
txg_list_add(txg_list_t * tl,void * p,uint64_t txg)829 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
830 {
831 	int t = txg & TXG_MASK;
832 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
833 	boolean_t add;
834 
835 	txg_verify(tl->tl_spa, txg);
836 	mutex_enter(&tl->tl_lock);
837 	add = (tn->tn_member[t] == 0);
838 	if (add) {
839 		tn->tn_member[t] = 1;
840 		tn->tn_next[t] = tl->tl_head[t];
841 		tl->tl_head[t] = tn;
842 	}
843 	mutex_exit(&tl->tl_lock);
844 
845 	return (add);
846 }
847 
848 /*
849  * Add an entry to the end of the list, unless it's already on the list.
850  * (walks list to find end)
851  * Returns B_TRUE if it was actually added.
852  */
853 boolean_t
txg_list_add_tail(txg_list_t * tl,void * p,uint64_t txg)854 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
855 {
856 	int t = txg & TXG_MASK;
857 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
858 	boolean_t add;
859 
860 	txg_verify(tl->tl_spa, txg);
861 	mutex_enter(&tl->tl_lock);
862 	add = (tn->tn_member[t] == 0);
863 	if (add) {
864 		txg_node_t **tp;
865 
866 		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
867 			continue;
868 
869 		tn->tn_member[t] = 1;
870 		tn->tn_next[t] = NULL;
871 		*tp = tn;
872 	}
873 	mutex_exit(&tl->tl_lock);
874 
875 	return (add);
876 }
877 
878 /*
879  * Remove the head of the list and return it.
880  */
881 void *
txg_list_remove(txg_list_t * tl,uint64_t txg)882 txg_list_remove(txg_list_t *tl, uint64_t txg)
883 {
884 	int t = txg & TXG_MASK;
885 	txg_node_t *tn;
886 	void *p = NULL;
887 
888 	txg_verify(tl->tl_spa, txg);
889 	mutex_enter(&tl->tl_lock);
890 	if ((tn = tl->tl_head[t]) != NULL) {
891 		ASSERT(tn->tn_member[t]);
892 		ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
893 		p = (char *)tn - tl->tl_offset;
894 		tl->tl_head[t] = tn->tn_next[t];
895 		tn->tn_next[t] = NULL;
896 		tn->tn_member[t] = 0;
897 	}
898 	mutex_exit(&tl->tl_lock);
899 
900 	return (p);
901 }
902 
903 /*
904  * Remove a specific item from the list and return it.
905  */
906 void *
txg_list_remove_this(txg_list_t * tl,void * p,uint64_t txg)907 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
908 {
909 	int t = txg & TXG_MASK;
910 	txg_node_t *tn, **tp;
911 
912 	txg_verify(tl->tl_spa, txg);
913 	mutex_enter(&tl->tl_lock);
914 
915 	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
916 		if ((char *)tn - tl->tl_offset == p) {
917 			*tp = tn->tn_next[t];
918 			tn->tn_next[t] = NULL;
919 			tn->tn_member[t] = 0;
920 			mutex_exit(&tl->tl_lock);
921 			return (p);
922 		}
923 	}
924 
925 	mutex_exit(&tl->tl_lock);
926 
927 	return (NULL);
928 }
929 
930 boolean_t
txg_list_member(txg_list_t * tl,void * p,uint64_t txg)931 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
932 {
933 	int t = txg & TXG_MASK;
934 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
935 
936 	txg_verify(tl->tl_spa, txg);
937 	return (tn->tn_member[t] != 0);
938 }
939 
940 /*
941  * Walk a txg list -- only safe if you know it's not changing.
942  */
943 void *
txg_list_head(txg_list_t * tl,uint64_t txg)944 txg_list_head(txg_list_t *tl, uint64_t txg)
945 {
946 	int t = txg & TXG_MASK;
947 	txg_node_t *tn = tl->tl_head[t];
948 
949 	txg_verify(tl->tl_spa, txg);
950 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
951 }
952 
953 void *
txg_list_next(txg_list_t * tl,void * p,uint64_t txg)954 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
955 {
956 	int t = txg & TXG_MASK;
957 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
958 
959 	txg_verify(tl->tl_spa, txg);
960 	tn = tn->tn_next[t];
961 
962 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
963 }
964