1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/zil.h>
34 #include <sys/callb.h>
35
36 /*
37 * ZFS Transaction Groups
38 * ----------------------
39 *
40 * ZFS transaction groups are, as the name implies, groups of transactions
41 * that act on persistent state. ZFS asserts consistency at the granularity of
42 * these transaction groups. Each successive transaction group (txg) is
43 * assigned a 64-bit consecutive identifier. There are three active
44 * transaction group states: open, quiescing, or syncing. At any given time,
45 * there may be an active txg associated with each state; each active txg may
46 * either be processing, or blocked waiting to enter the next state. There may
47 * be up to three active txgs, and there is always a txg in the open state
48 * (though it may be blocked waiting to enter the quiescing state). In broad
49 * strokes, transactions -- operations that change in-memory structures -- are
50 * accepted into the txg in the open state, and are completed while the txg is
51 * in the open or quiescing states. The accumulated changes are written to
52 * disk in the syncing state.
53 *
54 * Open
55 *
56 * When a new txg becomes active, it first enters the open state. New
57 * transactions -- updates to in-memory structures -- are assigned to the
58 * currently open txg. There is always a txg in the open state so that ZFS can
59 * accept new changes (though the txg may refuse new changes if it has hit
60 * some limit). ZFS advances the open txg to the next state for a variety of
61 * reasons such as it hitting a time or size threshold, or the execution of an
62 * administrative action that must be completed in the syncing state.
63 *
64 * Quiescing
65 *
66 * After a txg exits the open state, it enters the quiescing state. The
67 * quiescing state is intended to provide a buffer between accepting new
68 * transactions in the open state and writing them out to stable storage in
69 * the syncing state. While quiescing, transactions can continue their
70 * operation without delaying either of the other states. Typically, a txg is
71 * in the quiescing state very briefly since the operations are bounded by
72 * software latencies rather than, say, slower I/O latencies. After all
73 * transactions complete, the txg is ready to enter the next state.
74 *
75 * Syncing
76 *
77 * In the syncing state, the in-memory state built up during the open and (to
78 * a lesser degree) the quiescing states is written to stable storage. The
79 * process of writing out modified data can, in turn modify more data. For
80 * example when we write new blocks, we need to allocate space for them; those
81 * allocations modify metadata (space maps)... which themselves must be
82 * written to stable storage. During the sync state, ZFS iterates, writing out
83 * data until it converges and all in-memory changes have been written out.
84 * The first such pass is the largest as it encompasses all the modified user
85 * data (as opposed to filesystem metadata). Subsequent passes typically have
86 * far less data to write as they consist exclusively of filesystem metadata.
87 *
88 * To ensure convergence, after a certain number of passes ZFS begins
89 * overwriting locations on stable storage that had been allocated earlier in
90 * the syncing state (and subsequently freed). ZFS usually allocates new
91 * blocks to optimize for large, continuous, writes. For the syncing state to
92 * converge however it must complete a pass where no new blocks are allocated
93 * since each allocation requires a modification of persistent metadata.
94 * Further, to hasten convergence, after a prescribed number of passes, ZFS
95 * also defers frees, and stops compressing.
96 *
97 * In addition to writing out user data, we must also execute synctasks during
98 * the syncing context. A synctask is the mechanism by which some
99 * administrative activities work such as creating and destroying snapshots or
100 * datasets. Note that when a synctask is initiated it enters the open txg,
101 * and ZFS then pushes that txg as quickly as possible to completion of the
102 * syncing state in order to reduce the latency of the administrative
103 * activity. To complete the syncing state, ZFS writes out a new uberblock,
104 * the root of the tree of blocks that comprise all state stored on the ZFS
105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
106 * now transition to the syncing state.
107 */
108
109 static void txg_sync_thread(void *arg);
110 static void txg_quiesce_thread(void *arg);
111
112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
113
114 /*
115 * Prepare the txg subsystem.
116 */
117 void
txg_init(dsl_pool_t * dp,uint64_t txg)118 txg_init(dsl_pool_t *dp, uint64_t txg)
119 {
120 tx_state_t *tx = &dp->dp_tx;
121 int c;
122 bzero(tx, sizeof (tx_state_t));
123
124 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
125
126 for (c = 0; c < max_ncpus; c++) {
127 int i;
128
129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
130 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
131 NULL);
132 for (i = 0; i < TXG_SIZE; i++) {
133 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
134 NULL);
135 list_create(&tx->tx_cpu[c].tc_callbacks[i],
136 sizeof (dmu_tx_callback_t),
137 offsetof(dmu_tx_callback_t, dcb_node));
138 }
139 }
140
141 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
142
143 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
144 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
148
149 tx->tx_open_txg = txg;
150 }
151
152 /*
153 * Close down the txg subsystem.
154 */
155 void
txg_fini(dsl_pool_t * dp)156 txg_fini(dsl_pool_t *dp)
157 {
158 tx_state_t *tx = &dp->dp_tx;
159 int c;
160
161 ASSERT0(tx->tx_threads);
162
163 mutex_destroy(&tx->tx_sync_lock);
164
165 cv_destroy(&tx->tx_sync_more_cv);
166 cv_destroy(&tx->tx_sync_done_cv);
167 cv_destroy(&tx->tx_quiesce_more_cv);
168 cv_destroy(&tx->tx_quiesce_done_cv);
169 cv_destroy(&tx->tx_exit_cv);
170
171 for (c = 0; c < max_ncpus; c++) {
172 int i;
173
174 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
175 mutex_destroy(&tx->tx_cpu[c].tc_lock);
176 for (i = 0; i < TXG_SIZE; i++) {
177 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
178 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
179 }
180 }
181
182 if (tx->tx_commit_cb_taskq != NULL)
183 taskq_destroy(tx->tx_commit_cb_taskq);
184
185 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
186
187 bzero(tx, sizeof (tx_state_t));
188 }
189
190 /*
191 * Start syncing transaction groups.
192 */
193 void
txg_sync_start(dsl_pool_t * dp)194 txg_sync_start(dsl_pool_t *dp)
195 {
196 tx_state_t *tx = &dp->dp_tx;
197
198 mutex_enter(&tx->tx_sync_lock);
199
200 dprintf_zfs("pool %p\n", dp);
201
202 ASSERT0(tx->tx_threads);
203
204 tx->tx_threads = 2;
205
206 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
207 dp, 0, &p0, TS_RUN, minclsyspri);
208
209 /*
210 * The sync thread can need a larger-than-default stack size on
211 * 32-bit x86. This is due in part to nested pools and
212 * scrub_visitbp() recursion.
213 */
214 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
215 dp, 0, &p0, TS_RUN, minclsyspri);
216
217 mutex_exit(&tx->tx_sync_lock);
218 }
219
220 static void
txg_thread_enter(tx_state_t * tx,callb_cpr_t * cpr)221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
222 {
223 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
224 mutex_enter(&tx->tx_sync_lock);
225 }
226
227 static void
txg_thread_exit(tx_state_t * tx,callb_cpr_t * cpr,kthread_t ** tpp)228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
229 {
230 ASSERT(*tpp != NULL);
231 *tpp = NULL;
232 tx->tx_threads--;
233 cv_broadcast(&tx->tx_exit_cv);
234 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
235 thread_exit();
236 }
237
238 static void
txg_thread_wait(tx_state_t * tx,callb_cpr_t * cpr,kcondvar_t * cv,clock_t time)239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
240 {
241 CALLB_CPR_SAFE_BEGIN(cpr);
242
243 if (time)
244 (void) cv_timedwait(cv, &tx->tx_sync_lock,
245 ddi_get_lbolt() + time);
246 else
247 cv_wait(cv, &tx->tx_sync_lock);
248
249 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
250 }
251
252 /*
253 * Stop syncing transaction groups.
254 */
255 void
txg_sync_stop(dsl_pool_t * dp)256 txg_sync_stop(dsl_pool_t *dp)
257 {
258 tx_state_t *tx = &dp->dp_tx;
259
260 dprintf_zfs("pool %p\n", dp);
261 /*
262 * Finish off any work in progress.
263 */
264 ASSERT3U(tx->tx_threads, ==, 2);
265
266 /*
267 * We need to ensure that we've vacated the deferred metaslab trees.
268 */
269 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
270
271 /*
272 * Wake all sync threads and wait for them to die.
273 */
274 mutex_enter(&tx->tx_sync_lock);
275
276 ASSERT3U(tx->tx_threads, ==, 2);
277
278 tx->tx_exiting = 1;
279
280 cv_broadcast(&tx->tx_quiesce_more_cv);
281 cv_broadcast(&tx->tx_quiesce_done_cv);
282 cv_broadcast(&tx->tx_sync_more_cv);
283
284 while (tx->tx_threads != 0)
285 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
286
287 tx->tx_exiting = 0;
288
289 mutex_exit(&tx->tx_sync_lock);
290 }
291
292 uint64_t
txg_hold_open(dsl_pool_t * dp,txg_handle_t * th)293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
294 {
295 tx_state_t *tx = &dp->dp_tx;
296 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
297 uint64_t txg;
298
299 mutex_enter(&tc->tc_open_lock);
300 txg = tx->tx_open_txg;
301
302 mutex_enter(&tc->tc_lock);
303 tc->tc_count[txg & TXG_MASK]++;
304 mutex_exit(&tc->tc_lock);
305
306 th->th_cpu = tc;
307 th->th_txg = txg;
308
309 return (txg);
310 }
311
312 void
txg_rele_to_quiesce(txg_handle_t * th)313 txg_rele_to_quiesce(txg_handle_t *th)
314 {
315 tx_cpu_t *tc = th->th_cpu;
316
317 ASSERT(!MUTEX_HELD(&tc->tc_lock));
318 mutex_exit(&tc->tc_open_lock);
319 }
320
321 void
txg_register_callbacks(txg_handle_t * th,list_t * tx_callbacks)322 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
323 {
324 tx_cpu_t *tc = th->th_cpu;
325 int g = th->th_txg & TXG_MASK;
326
327 mutex_enter(&tc->tc_lock);
328 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
329 mutex_exit(&tc->tc_lock);
330 }
331
332 void
txg_rele_to_sync(txg_handle_t * th)333 txg_rele_to_sync(txg_handle_t *th)
334 {
335 tx_cpu_t *tc = th->th_cpu;
336 int g = th->th_txg & TXG_MASK;
337
338 mutex_enter(&tc->tc_lock);
339 ASSERT(tc->tc_count[g] != 0);
340 if (--tc->tc_count[g] == 0)
341 cv_broadcast(&tc->tc_cv[g]);
342 mutex_exit(&tc->tc_lock);
343
344 th->th_cpu = NULL; /* defensive */
345 }
346
347 /*
348 * Blocks until all transactions in the group are committed.
349 *
350 * On return, the transaction group has reached a stable state in which it can
351 * then be passed off to the syncing context.
352 */
353 static void
txg_quiesce(dsl_pool_t * dp,uint64_t txg)354 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
355 {
356 tx_state_t *tx = &dp->dp_tx;
357 int g = txg & TXG_MASK;
358 int c;
359
360 /*
361 * Grab all tc_open_locks so nobody else can get into this txg.
362 */
363 for (c = 0; c < max_ncpus; c++)
364 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
365
366 ASSERT(txg == tx->tx_open_txg);
367 tx->tx_open_txg++;
368 tx->tx_open_time = gethrtime();
369
370 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
371 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
372
373 /*
374 * Now that we've incremented tx_open_txg, we can let threads
375 * enter the next transaction group.
376 */
377 for (c = 0; c < max_ncpus; c++)
378 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
379
380 /*
381 * Quiesce the transaction group by waiting for everyone to txg_exit().
382 */
383 for (c = 0; c < max_ncpus; c++) {
384 tx_cpu_t *tc = &tx->tx_cpu[c];
385 mutex_enter(&tc->tc_lock);
386 while (tc->tc_count[g] != 0)
387 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
388 mutex_exit(&tc->tc_lock);
389 }
390 }
391
392 static void
txg_do_callbacks(list_t * cb_list)393 txg_do_callbacks(list_t *cb_list)
394 {
395 dmu_tx_do_callbacks(cb_list, 0);
396
397 list_destroy(cb_list);
398
399 kmem_free(cb_list, sizeof (list_t));
400 }
401
402 /*
403 * Dispatch the commit callbacks registered on this txg to worker threads.
404 *
405 * If no callbacks are registered for a given TXG, nothing happens.
406 * This function creates a taskq for the associated pool, if needed.
407 */
408 static void
txg_dispatch_callbacks(dsl_pool_t * dp,uint64_t txg)409 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
410 {
411 int c;
412 tx_state_t *tx = &dp->dp_tx;
413 list_t *cb_list;
414
415 for (c = 0; c < max_ncpus; c++) {
416 tx_cpu_t *tc = &tx->tx_cpu[c];
417 /*
418 * No need to lock tx_cpu_t at this point, since this can
419 * only be called once a txg has been synced.
420 */
421
422 int g = txg & TXG_MASK;
423
424 if (list_is_empty(&tc->tc_callbacks[g]))
425 continue;
426
427 if (tx->tx_commit_cb_taskq == NULL) {
428 /*
429 * Commit callback taskq hasn't been created yet.
430 */
431 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
432 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
433 TASKQ_PREPOPULATE);
434 }
435
436 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
437 list_create(cb_list, sizeof (dmu_tx_callback_t),
438 offsetof(dmu_tx_callback_t, dcb_node));
439
440 list_move_tail(cb_list, &tc->tc_callbacks[g]);
441
442 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
443 txg_do_callbacks, cb_list, TQ_SLEEP);
444 }
445 }
446
447 static boolean_t
txg_is_syncing(dsl_pool_t * dp)448 txg_is_syncing(dsl_pool_t *dp)
449 {
450 tx_state_t *tx = &dp->dp_tx;
451 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
452 return (tx->tx_syncing_txg != 0);
453 }
454
455 static boolean_t
txg_is_quiescing(dsl_pool_t * dp)456 txg_is_quiescing(dsl_pool_t *dp)
457 {
458 tx_state_t *tx = &dp->dp_tx;
459 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
460 return (tx->tx_quiescing_txg != 0);
461 }
462
463 static boolean_t
txg_has_quiesced_to_sync(dsl_pool_t * dp)464 txg_has_quiesced_to_sync(dsl_pool_t *dp)
465 {
466 tx_state_t *tx = &dp->dp_tx;
467 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
468 return (tx->tx_quiesced_txg != 0);
469 }
470
471 static void
txg_sync_thread(void * arg)472 txg_sync_thread(void *arg)
473 {
474 dsl_pool_t *dp = arg;
475 spa_t *spa = dp->dp_spa;
476 tx_state_t *tx = &dp->dp_tx;
477 callb_cpr_t cpr;
478 uint64_t start, delta;
479
480 txg_thread_enter(tx, &cpr);
481
482 start = delta = 0;
483 for (;;) {
484 uint64_t timeout = zfs_txg_timeout * hz;
485 uint64_t timer;
486 uint64_t txg;
487 uint64_t dirty_min_bytes =
488 zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100;
489
490 /*
491 * We sync when we're scanning, there's someone waiting
492 * on us, or the quiesce thread has handed off a txg to
493 * us, or we have reached our timeout.
494 */
495 timer = (delta >= timeout ? 0 : timeout - delta);
496 while (!dsl_scan_active(dp->dp_scan) &&
497 !tx->tx_exiting && timer > 0 &&
498 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
499 !txg_has_quiesced_to_sync(dp) &&
500 dp->dp_dirty_total < dirty_min_bytes) {
501 dprintf_zfs(
502 "waiting; tx_synced=%llu waiting=%llu dp=%p\n",
503 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
504 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
505 delta = ddi_get_lbolt() - start;
506 timer = (delta > timeout ? 0 : timeout - delta);
507 }
508
509 /*
510 * Wait until the quiesce thread hands off a txg to us,
511 * prompting it to do so if necessary.
512 */
513 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
514 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
515 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
516 cv_broadcast(&tx->tx_quiesce_more_cv);
517 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
518 }
519
520 if (tx->tx_exiting)
521 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
522
523 /*
524 * Consume the quiesced txg which has been handed off to
525 * us. This may cause the quiescing thread to now be
526 * able to quiesce another txg, so we must signal it.
527 */
528 ASSERT(tx->tx_quiesced_txg != 0);
529 txg = tx->tx_quiesced_txg;
530 tx->tx_quiesced_txg = 0;
531 tx->tx_syncing_txg = txg;
532 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
533 cv_broadcast(&tx->tx_quiesce_more_cv);
534
535 dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
536 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
537 mutex_exit(&tx->tx_sync_lock);
538
539 start = ddi_get_lbolt();
540 spa_sync(spa, txg);
541 delta = ddi_get_lbolt() - start;
542
543 mutex_enter(&tx->tx_sync_lock);
544 tx->tx_synced_txg = txg;
545 tx->tx_syncing_txg = 0;
546 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
547 cv_broadcast(&tx->tx_sync_done_cv);
548
549 /*
550 * Dispatch commit callbacks to worker threads.
551 */
552 txg_dispatch_callbacks(dp, txg);
553 }
554 }
555
556 static void
txg_quiesce_thread(void * arg)557 txg_quiesce_thread(void *arg)
558 {
559 dsl_pool_t *dp = arg;
560 tx_state_t *tx = &dp->dp_tx;
561 callb_cpr_t cpr;
562
563 txg_thread_enter(tx, &cpr);
564
565 for (;;) {
566 uint64_t txg;
567
568 /*
569 * We quiesce when there's someone waiting on us.
570 * However, we can only have one txg in "quiescing" or
571 * "quiesced, waiting to sync" state. So we wait until
572 * the "quiesced, waiting to sync" txg has been consumed
573 * by the sync thread.
574 */
575 while (!tx->tx_exiting &&
576 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
577 txg_has_quiesced_to_sync(dp)))
578 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
579
580 if (tx->tx_exiting)
581 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
582
583 txg = tx->tx_open_txg;
584 dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
585 txg, tx->tx_quiesce_txg_waiting,
586 tx->tx_sync_txg_waiting);
587 tx->tx_quiescing_txg = txg;
588
589 mutex_exit(&tx->tx_sync_lock);
590 txg_quiesce(dp, txg);
591 mutex_enter(&tx->tx_sync_lock);
592
593 /*
594 * Hand this txg off to the sync thread.
595 */
596 dprintf_zfs("quiesce done, handing off txg %llu\n", txg);
597 tx->tx_quiescing_txg = 0;
598 tx->tx_quiesced_txg = txg;
599 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
600 cv_broadcast(&tx->tx_sync_more_cv);
601 cv_broadcast(&tx->tx_quiesce_done_cv);
602 }
603 }
604
605 /*
606 * Delay this thread by delay nanoseconds if we are still in the open
607 * transaction group and there is already a waiting txg quiescing or quiesced.
608 * Abort the delay if this txg stalls or enters the quiescing state.
609 */
610 void
txg_delay(dsl_pool_t * dp,uint64_t txg,hrtime_t delay,hrtime_t resolution)611 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
612 {
613 tx_state_t *tx = &dp->dp_tx;
614 hrtime_t start = gethrtime();
615
616 /* don't delay if this txg could transition to quiescing immediately */
617 if (tx->tx_open_txg > txg ||
618 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
619 return;
620
621 mutex_enter(&tx->tx_sync_lock);
622 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
623 mutex_exit(&tx->tx_sync_lock);
624 return;
625 }
626
627 while (gethrtime() - start < delay &&
628 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
629 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
630 &tx->tx_sync_lock, delay, resolution, 0);
631 }
632
633 mutex_exit(&tx->tx_sync_lock);
634 }
635
636 static boolean_t
txg_wait_synced_impl(dsl_pool_t * dp,uint64_t txg,boolean_t wait_sig)637 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
638 {
639 tx_state_t *tx = &dp->dp_tx;
640
641 ASSERT(!dsl_pool_config_held(dp));
642
643 mutex_enter(&tx->tx_sync_lock);
644 ASSERT3U(tx->tx_threads, ==, 2);
645 if (txg == 0)
646 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
647 if (tx->tx_sync_txg_waiting < txg)
648 tx->tx_sync_txg_waiting = txg;
649 dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
650 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
651 while (tx->tx_synced_txg < txg) {
652 dprintf_zfs("broadcasting sync more "
653 "tx_synced=%llu waiting=%llu dp=%p\n",
654 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
655 cv_broadcast(&tx->tx_sync_more_cv);
656 if (wait_sig) {
657 /*
658 * Condition wait here but stop if the thread receives a
659 * signal. The caller may call txg_wait_synced*() again
660 * to resume waiting for this txg.
661 */
662 if (cv_wait_sig(&tx->tx_sync_done_cv,
663 &tx->tx_sync_lock) == 0) {
664 mutex_exit(&tx->tx_sync_lock);
665 return (B_TRUE);
666 }
667 } else {
668 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
669 }
670 }
671 mutex_exit(&tx->tx_sync_lock);
672 return (B_FALSE);
673 }
674
675 void
txg_wait_synced(dsl_pool_t * dp,uint64_t txg)676 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
677 {
678 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
679 }
680
681 /*
682 * Similar to a txg_wait_synced but it can be interrupted from a signal.
683 * Returns B_TRUE if the thread was signaled while waiting.
684 */
685 boolean_t
txg_wait_synced_sig(dsl_pool_t * dp,uint64_t txg)686 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
687 {
688 return (txg_wait_synced_impl(dp, txg, B_TRUE));
689 }
690
691 /*
692 * Wait for the specified open transaction group. Set should_quiesce
693 * when the current open txg should be quiesced immediately.
694 */
695 void
txg_wait_open(dsl_pool_t * dp,uint64_t txg,boolean_t should_quiesce)696 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
697 {
698 tx_state_t *tx = &dp->dp_tx;
699
700 ASSERT(!dsl_pool_config_held(dp));
701
702 mutex_enter(&tx->tx_sync_lock);
703 ASSERT3U(tx->tx_threads, ==, 2);
704 if (txg == 0)
705 txg = tx->tx_open_txg + 1;
706 if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
707 tx->tx_quiesce_txg_waiting = txg;
708 dprintf_zfs("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
709 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
710 while (tx->tx_open_txg < txg) {
711 cv_broadcast(&tx->tx_quiesce_more_cv);
712 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
713 }
714 mutex_exit(&tx->tx_sync_lock);
715 }
716
717 /*
718 * If there isn't a txg syncing or in the pipeline, push another txg through
719 * the pipeline by queiscing the open txg.
720 */
721 void
txg_kick(dsl_pool_t * dp)722 txg_kick(dsl_pool_t *dp)
723 {
724 tx_state_t *tx = &dp->dp_tx;
725
726 ASSERT(!dsl_pool_config_held(dp));
727
728 mutex_enter(&tx->tx_sync_lock);
729 if (!txg_is_syncing(dp) &&
730 !txg_is_quiescing(dp) &&
731 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
732 tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
733 tx->tx_quiesced_txg <= tx->tx_synced_txg) {
734 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
735 cv_broadcast(&tx->tx_quiesce_more_cv);
736 }
737 mutex_exit(&tx->tx_sync_lock);
738 }
739
740 boolean_t
txg_stalled(dsl_pool_t * dp)741 txg_stalled(dsl_pool_t *dp)
742 {
743 tx_state_t *tx = &dp->dp_tx;
744 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
745 }
746
747 boolean_t
txg_sync_waiting(dsl_pool_t * dp)748 txg_sync_waiting(dsl_pool_t *dp)
749 {
750 tx_state_t *tx = &dp->dp_tx;
751
752 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
753 tx->tx_quiesced_txg != 0);
754 }
755
756 /*
757 * Verify that this txg is active (open, quiescing, syncing). Non-active
758 * txg's should not be manipulated.
759 */
760 void
txg_verify(spa_t * spa,uint64_t txg)761 txg_verify(spa_t *spa, uint64_t txg)
762 {
763 dsl_pool_t *dp = spa_get_dsl(spa);
764 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
765 return;
766 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
767 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
768 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
769 }
770
771 /*
772 * Per-txg object lists.
773 */
774 void
txg_list_create(txg_list_t * tl,spa_t * spa,size_t offset)775 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
776 {
777 int t;
778
779 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
780
781 tl->tl_offset = offset;
782 tl->tl_spa = spa;
783
784 for (t = 0; t < TXG_SIZE; t++)
785 tl->tl_head[t] = NULL;
786 }
787
788 void
txg_list_destroy(txg_list_t * tl)789 txg_list_destroy(txg_list_t *tl)
790 {
791 int t;
792
793 for (t = 0; t < TXG_SIZE; t++)
794 ASSERT(txg_list_empty(tl, t));
795
796 mutex_destroy(&tl->tl_lock);
797 }
798
799 boolean_t
txg_list_empty(txg_list_t * tl,uint64_t txg)800 txg_list_empty(txg_list_t *tl, uint64_t txg)
801 {
802 txg_verify(tl->tl_spa, txg);
803 return (tl->tl_head[txg & TXG_MASK] == NULL);
804 }
805
806 /*
807 * Returns true if all txg lists are empty.
808 *
809 * Warning: this is inherently racy (an item could be added immediately
810 * after this function returns). We don't bother with the lock because
811 * it wouldn't change the semantics.
812 */
813 boolean_t
txg_all_lists_empty(txg_list_t * tl)814 txg_all_lists_empty(txg_list_t *tl)
815 {
816 for (int i = 0; i < TXG_SIZE; i++) {
817 if (!txg_list_empty(tl, i)) {
818 return (B_FALSE);
819 }
820 }
821 return (B_TRUE);
822 }
823
824 /*
825 * Add an entry to the list (unless it's already on the list).
826 * Returns B_TRUE if it was actually added.
827 */
828 boolean_t
txg_list_add(txg_list_t * tl,void * p,uint64_t txg)829 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
830 {
831 int t = txg & TXG_MASK;
832 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
833 boolean_t add;
834
835 txg_verify(tl->tl_spa, txg);
836 mutex_enter(&tl->tl_lock);
837 add = (tn->tn_member[t] == 0);
838 if (add) {
839 tn->tn_member[t] = 1;
840 tn->tn_next[t] = tl->tl_head[t];
841 tl->tl_head[t] = tn;
842 }
843 mutex_exit(&tl->tl_lock);
844
845 return (add);
846 }
847
848 /*
849 * Add an entry to the end of the list, unless it's already on the list.
850 * (walks list to find end)
851 * Returns B_TRUE if it was actually added.
852 */
853 boolean_t
txg_list_add_tail(txg_list_t * tl,void * p,uint64_t txg)854 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
855 {
856 int t = txg & TXG_MASK;
857 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
858 boolean_t add;
859
860 txg_verify(tl->tl_spa, txg);
861 mutex_enter(&tl->tl_lock);
862 add = (tn->tn_member[t] == 0);
863 if (add) {
864 txg_node_t **tp;
865
866 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
867 continue;
868
869 tn->tn_member[t] = 1;
870 tn->tn_next[t] = NULL;
871 *tp = tn;
872 }
873 mutex_exit(&tl->tl_lock);
874
875 return (add);
876 }
877
878 /*
879 * Remove the head of the list and return it.
880 */
881 void *
txg_list_remove(txg_list_t * tl,uint64_t txg)882 txg_list_remove(txg_list_t *tl, uint64_t txg)
883 {
884 int t = txg & TXG_MASK;
885 txg_node_t *tn;
886 void *p = NULL;
887
888 txg_verify(tl->tl_spa, txg);
889 mutex_enter(&tl->tl_lock);
890 if ((tn = tl->tl_head[t]) != NULL) {
891 ASSERT(tn->tn_member[t]);
892 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
893 p = (char *)tn - tl->tl_offset;
894 tl->tl_head[t] = tn->tn_next[t];
895 tn->tn_next[t] = NULL;
896 tn->tn_member[t] = 0;
897 }
898 mutex_exit(&tl->tl_lock);
899
900 return (p);
901 }
902
903 /*
904 * Remove a specific item from the list and return it.
905 */
906 void *
txg_list_remove_this(txg_list_t * tl,void * p,uint64_t txg)907 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
908 {
909 int t = txg & TXG_MASK;
910 txg_node_t *tn, **tp;
911
912 txg_verify(tl->tl_spa, txg);
913 mutex_enter(&tl->tl_lock);
914
915 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
916 if ((char *)tn - tl->tl_offset == p) {
917 *tp = tn->tn_next[t];
918 tn->tn_next[t] = NULL;
919 tn->tn_member[t] = 0;
920 mutex_exit(&tl->tl_lock);
921 return (p);
922 }
923 }
924
925 mutex_exit(&tl->tl_lock);
926
927 return (NULL);
928 }
929
930 boolean_t
txg_list_member(txg_list_t * tl,void * p,uint64_t txg)931 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
932 {
933 int t = txg & TXG_MASK;
934 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
935
936 txg_verify(tl->tl_spa, txg);
937 return (tn->tn_member[t] != 0);
938 }
939
940 /*
941 * Walk a txg list -- only safe if you know it's not changing.
942 */
943 void *
txg_list_head(txg_list_t * tl,uint64_t txg)944 txg_list_head(txg_list_t *tl, uint64_t txg)
945 {
946 int t = txg & TXG_MASK;
947 txg_node_t *tn = tl->tl_head[t];
948
949 txg_verify(tl->tl_spa, txg);
950 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
951 }
952
953 void *
txg_list_next(txg_list_t * tl,void * p,uint64_t txg)954 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
955 {
956 int t = txg & TXG_MASK;
957 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
958
959 txg_verify(tl->tl_spa, txg);
960 tn = tn->tn_next[t];
961
962 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
963 }
964