xref: /freebsd/sys/contrib/openzfs/cmd/ztest.c (revision 8ac904ce090b1c2e355da8aa122ca2252183f4e1)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2013 Steven Hartland. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2023, Klara, Inc.
31  */
32 
33 /*
34  * The objective of this program is to provide a DMU/ZAP/SPA stress test
35  * that runs entirely in userland, is easy to use, and easy to extend.
36  *
37  * The overall design of the ztest program is as follows:
38  *
39  * (1) For each major functional area (e.g. adding vdevs to a pool,
40  *     creating and destroying datasets, reading and writing objects, etc)
41  *     we have a simple routine to test that functionality.  These
42  *     individual routines do not have to do anything "stressful".
43  *
44  * (2) We turn these simple functionality tests into a stress test by
45  *     running them all in parallel, with as many threads as desired,
46  *     and spread across as many datasets, objects, and vdevs as desired.
47  *
48  * (3) While all this is happening, we inject faults into the pool to
49  *     verify that self-healing data really works.
50  *
51  * (4) Every time we open a dataset, we change its checksum and compression
52  *     functions.  Thus even individual objects vary from block to block
53  *     in which checksum they use and whether they're compressed.
54  *
55  * (5) To verify that we never lose on-disk consistency after a crash,
56  *     we run the entire test in a child of the main process.
57  *     At random times, the child self-immolates with a SIGKILL.
58  *     This is the software equivalent of pulling the power cord.
59  *     The parent then runs the test again, using the existing
60  *     storage pool, as many times as desired. If backwards compatibility
61  *     testing is enabled ztest will sometimes run the "older" version
62  *     of ztest after a SIGKILL.
63  *
64  * (6) To verify that we don't have future leaks or temporal incursions,
65  *     many of the functional tests record the transaction group number
66  *     as part of their data.  When reading old data, they verify that
67  *     the transaction group number is less than the current, open txg.
68  *     If you add a new test, please do this if applicable.
69  *
70  * (7) Threads are created with a reduced stack size, for sanity checking.
71  *     Therefore, it's important not to allocate huge buffers on the stack.
72  *
73  * When run with no arguments, ztest runs for about five minutes and
74  * produces no output if successful.  To get a little bit of information,
75  * specify -V.  To get more information, specify -VV, and so on.
76  *
77  * To turn this into an overnight stress test, use -T to specify run time.
78  *
79  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
80  * to increase the pool capacity, fanout, and overall stress level.
81  *
82  * Use the -k option to set the desired frequency of kills.
83  *
84  * When ztest invokes itself it passes all relevant information through a
85  * temporary file which is mmap-ed in the child process. This allows shared
86  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
87  * stored at offset 0 of this file and contains information on the size and
88  * number of shared structures in the file. The information stored in this file
89  * must remain backwards compatible with older versions of ztest so that
90  * ztest can invoke them during backwards compatibility testing (-B).
91  */
92 
93 #include <sys/zfs_context.h>
94 #include <sys/spa.h>
95 #include <sys/dmu.h>
96 #include <sys/txg.h>
97 #include <sys/dbuf.h>
98 #include <sys/zap.h>
99 #include <sys/dmu_objset.h>
100 #include <sys/poll.h>
101 #include <sys/stat.h>
102 #include <sys/time.h>
103 #include <sys/wait.h>
104 #include <sys/mman.h>
105 #include <sys/resource.h>
106 #include <sys/zio.h>
107 #include <sys/zil.h>
108 #include <sys/zil_impl.h>
109 #include <sys/vdev_draid.h>
110 #include <sys/vdev_impl.h>
111 #include <sys/vdev_file.h>
112 #include <sys/vdev_initialize.h>
113 #include <sys/vdev_raidz.h>
114 #include <sys/vdev_trim.h>
115 #include <sys/spa_impl.h>
116 #include <sys/metaslab_impl.h>
117 #include <sys/dsl_prop.h>
118 #include <sys/dsl_dataset.h>
119 #include <sys/dsl_destroy.h>
120 #include <sys/dsl_scan.h>
121 #include <sys/zio_checksum.h>
122 #include <sys/zfs_refcount.h>
123 #include <sys/zfeature.h>
124 #include <sys/dsl_userhold.h>
125 #include <sys/abd.h>
126 #include <sys/blake3.h>
127 #include <stdio.h>
128 #include <stdlib.h>
129 #include <unistd.h>
130 #include <getopt.h>
131 #include <signal.h>
132 #include <umem.h>
133 #include <ctype.h>
134 #include <math.h>
135 #include <sys/fs/zfs.h>
136 #include <zfs_fletcher.h>
137 #include <libnvpair.h>
138 #include <libzutil.h>
139 #include <sys/crypto/icp.h>
140 #include <sys/zfs_impl.h>
141 #include <sys/backtrace.h>
142 #include <libzpool.h>
143 #include <libspl.h>
144 
145 static int ztest_fd_data = -1;
146 
147 typedef struct ztest_shared_hdr {
148 	uint64_t	zh_hdr_size;
149 	uint64_t	zh_opts_size;
150 	uint64_t	zh_size;
151 	uint64_t	zh_stats_size;
152 	uint64_t	zh_stats_count;
153 	uint64_t	zh_ds_size;
154 	uint64_t	zh_ds_count;
155 	uint64_t	zh_scratch_state_size;
156 } ztest_shared_hdr_t;
157 
158 static ztest_shared_hdr_t *ztest_shared_hdr;
159 
160 enum ztest_class_state {
161 	ZTEST_VDEV_CLASS_OFF,
162 	ZTEST_VDEV_CLASS_ON,
163 	ZTEST_VDEV_CLASS_RND
164 };
165 
166 /* Dedicated RAIDZ Expansion test states */
167 typedef enum {
168 	RAIDZ_EXPAND_NONE,		/* Default is none, must opt-in	*/
169 	RAIDZ_EXPAND_REQUESTED,		/* The '-X' option was used	*/
170 	RAIDZ_EXPAND_STARTED,		/* Testing has commenced	*/
171 	RAIDZ_EXPAND_KILLED,		/* Reached the proccess kill	*/
172 	RAIDZ_EXPAND_CHECKED,		/* Pool scrub verification done	*/
173 } raidz_expand_test_state_t;
174 
175 
176 #define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
177 #define	ZO_GVARS_MAX_COUNT	((size_t)10)
178 
179 typedef struct ztest_shared_opts {
180 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
181 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
182 	char zo_alt_ztest[MAXNAMELEN];
183 	char zo_alt_libpath[MAXNAMELEN];
184 	uint64_t zo_vdevs;
185 	uint64_t zo_vdevtime;
186 	size_t zo_vdev_size;
187 	int zo_ashift;
188 	int zo_mirrors;
189 	int zo_raid_do_expand;
190 	int zo_raid_children;
191 	int zo_raid_parity;
192 	char zo_raid_type[8];
193 	int zo_draid_data;
194 	int zo_draid_spares;
195 	int zo_datasets;
196 	int zo_threads;
197 	uint64_t zo_passtime;
198 	uint64_t zo_killrate;
199 	int zo_verbose;
200 	int zo_init;
201 	uint64_t zo_time;
202 	uint64_t zo_maxloops;
203 	uint64_t zo_metaslab_force_ganging;
204 	raidz_expand_test_state_t zo_raidz_expand_test;
205 	int zo_mmp_test;
206 	int zo_special_vdevs;
207 	int zo_dump_dbgmsg;
208 	int zo_gvars_count;
209 	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
210 } ztest_shared_opts_t;
211 
212 /* Default values for command line options. */
213 #define	DEFAULT_POOL "ztest"
214 #define	DEFAULT_VDEV_DIR "/tmp"
215 #define	DEFAULT_VDEV_COUNT 5
216 #define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
217 #define	DEFAULT_VDEV_SIZE_STR "256M"
218 #define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
219 #define	DEFAULT_MIRRORS 2
220 #define	DEFAULT_RAID_CHILDREN 4
221 #define	DEFAULT_RAID_PARITY 1
222 #define	DEFAULT_DRAID_DATA 4
223 #define	DEFAULT_DRAID_SPARES 1
224 #define	DEFAULT_DATASETS_COUNT 7
225 #define	DEFAULT_THREADS 23
226 #define	DEFAULT_RUN_TIME 300 /* 300 seconds */
227 #define	DEFAULT_RUN_TIME_STR "300 sec"
228 #define	DEFAULT_PASS_TIME 60 /* 60 seconds */
229 #define	DEFAULT_PASS_TIME_STR "60 sec"
230 #define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
231 #define	DEFAULT_KILLRATE_STR "70%"
232 #define	DEFAULT_INITS 1
233 #define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
234 #define	DEFAULT_FORCE_GANGING (64 << 10)
235 #define	DEFAULT_FORCE_GANGING_STR "64K"
236 
237 /* Simplifying assumption: -1 is not a valid default. */
238 #define	NO_DEFAULT -1
239 
240 static const ztest_shared_opts_t ztest_opts_defaults = {
241 	.zo_pool = DEFAULT_POOL,
242 	.zo_dir = DEFAULT_VDEV_DIR,
243 	.zo_alt_ztest = { '\0' },
244 	.zo_alt_libpath = { '\0' },
245 	.zo_vdevs = DEFAULT_VDEV_COUNT,
246 	.zo_ashift = DEFAULT_ASHIFT,
247 	.zo_mirrors = DEFAULT_MIRRORS,
248 	.zo_raid_children = DEFAULT_RAID_CHILDREN,
249 	.zo_raid_parity = DEFAULT_RAID_PARITY,
250 	.zo_raid_type = VDEV_TYPE_RAIDZ,
251 	.zo_vdev_size = DEFAULT_VDEV_SIZE,
252 	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
253 	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
254 	.zo_datasets = DEFAULT_DATASETS_COUNT,
255 	.zo_threads = DEFAULT_THREADS,
256 	.zo_passtime = DEFAULT_PASS_TIME,
257 	.zo_killrate = DEFAULT_KILL_RATE,
258 	.zo_verbose = 0,
259 	.zo_mmp_test = 0,
260 	.zo_init = DEFAULT_INITS,
261 	.zo_time = DEFAULT_RUN_TIME,
262 	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
263 	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
264 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
265 	.zo_gvars_count = 0,
266 	.zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
267 };
268 
269 extern uint64_t metaslab_force_ganging;
270 extern uint64_t metaslab_df_alloc_threshold;
271 extern uint64_t zfs_deadman_synctime_ms;
272 extern uint_t metaslab_preload_limit;
273 extern int zfs_compressed_arc_enabled;
274 extern int zfs_abd_scatter_enabled;
275 extern uint_t dmu_object_alloc_chunk_shift;
276 extern boolean_t zfs_force_some_double_word_sm_entries;
277 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
278 extern uint64_t raidz_expand_max_reflow_bytes;
279 extern uint_t raidz_expand_pause_point;
280 extern boolean_t ddt_prune_artificial_age;
281 extern boolean_t ddt_dump_prune_histogram;
282 
283 
284 static ztest_shared_opts_t *ztest_shared_opts;
285 static ztest_shared_opts_t ztest_opts;
286 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
287 
288 typedef struct ztest_shared_ds {
289 	uint64_t	zd_seq;
290 } ztest_shared_ds_t;
291 
292 static ztest_shared_ds_t *ztest_shared_ds;
293 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294 
295 typedef struct ztest_scratch_state {
296 	uint64_t	zs_raidz_scratch_verify_pause;
297 } ztest_shared_scratch_state_t;
298 
299 static ztest_shared_scratch_state_t *ztest_scratch_state;
300 
301 #define	BT_MAGIC	0x123456789abcdefULL
302 #define	MAXFAULTS(zs) \
303 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
304 
305 enum ztest_io_type {
306 	ZTEST_IO_WRITE_TAG,
307 	ZTEST_IO_WRITE_PATTERN,
308 	ZTEST_IO_WRITE_ZEROES,
309 	ZTEST_IO_TRUNCATE,
310 	ZTEST_IO_SETATTR,
311 	ZTEST_IO_REWRITE,
312 	ZTEST_IO_TYPES
313 };
314 
315 typedef struct ztest_block_tag {
316 	uint64_t	bt_magic;
317 	uint64_t	bt_objset;
318 	uint64_t	bt_object;
319 	uint64_t	bt_dnodesize;
320 	uint64_t	bt_offset;
321 	uint64_t	bt_gen;
322 	uint64_t	bt_txg;
323 	uint64_t	bt_crtxg;
324 } ztest_block_tag_t;
325 
326 typedef struct bufwad {
327 	uint64_t	bw_index;
328 	uint64_t	bw_txg;
329 	uint64_t	bw_data;
330 } bufwad_t;
331 
332 /*
333  * It would be better to use a rangelock_t per object.  Unfortunately
334  * the rangelock_t is not a drop-in replacement for rl_t, because we
335  * still need to map from object ID to rangelock_t.
336  */
337 typedef enum {
338 	ZTRL_READER,
339 	ZTRL_WRITER,
340 	ZTRL_APPEND
341 } rl_type_t;
342 
343 typedef struct rll {
344 	void		*rll_writer;
345 	int		rll_readers;
346 	kmutex_t	rll_lock;
347 	kcondvar_t	rll_cv;
348 } rll_t;
349 
350 typedef struct rl {
351 	uint64_t	rl_object;
352 	uint64_t	rl_offset;
353 	uint64_t	rl_size;
354 	rll_t		*rl_lock;
355 } rl_t;
356 
357 #define	ZTEST_RANGE_LOCKS	64
358 #define	ZTEST_OBJECT_LOCKS	64
359 
360 /*
361  * Object descriptor.  Used as a template for object lookup/create/remove.
362  */
363 typedef struct ztest_od {
364 	uint64_t	od_dir;
365 	uint64_t	od_object;
366 	dmu_object_type_t od_type;
367 	dmu_object_type_t od_crtype;
368 	uint64_t	od_blocksize;
369 	uint64_t	od_crblocksize;
370 	uint64_t	od_crdnodesize;
371 	uint64_t	od_gen;
372 	uint64_t	od_crgen;
373 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
374 } ztest_od_t;
375 
376 /*
377  * Per-dataset state.
378  */
379 typedef struct ztest_ds {
380 	ztest_shared_ds_t *zd_shared;
381 	objset_t	*zd_os;
382 	pthread_rwlock_t zd_zilog_lock;
383 	zilog_t		*zd_zilog;
384 	ztest_od_t	*zd_od;		/* debugging aid */
385 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
386 	kmutex_t	zd_dirobj_lock;
387 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
388 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
389 } ztest_ds_t;
390 
391 /*
392  * Per-iteration state.
393  */
394 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
395 
396 typedef struct ztest_info {
397 	ztest_func_t	*zi_func;	/* test function */
398 	uint64_t	zi_iters;	/* iterations per execution */
399 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
400 	const char	*zi_funcname;	/* name of test function */
401 } ztest_info_t;
402 
403 typedef struct ztest_shared_callstate {
404 	uint64_t	zc_count;	/* per-pass count */
405 	uint64_t	zc_time;	/* per-pass time */
406 	uint64_t	zc_next;	/* next time to call this function */
407 } ztest_shared_callstate_t;
408 
409 static ztest_shared_callstate_t *ztest_shared_callstate;
410 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411 
412 ztest_func_t ztest_dmu_read_write;
413 ztest_func_t ztest_dmu_write_parallel;
414 ztest_func_t ztest_dmu_object_alloc_free;
415 ztest_func_t ztest_dmu_object_next_chunk;
416 ztest_func_t ztest_dmu_commit_callbacks;
417 ztest_func_t ztest_zap;
418 ztest_func_t ztest_zap_parallel;
419 ztest_func_t ztest_zil_commit;
420 ztest_func_t ztest_zil_remount;
421 ztest_func_t ztest_dmu_read_write_zcopy;
422 ztest_func_t ztest_dmu_objset_create_destroy;
423 ztest_func_t ztest_dmu_prealloc;
424 ztest_func_t ztest_fzap;
425 ztest_func_t ztest_dmu_snapshot_create_destroy;
426 ztest_func_t ztest_dsl_prop_get_set;
427 ztest_func_t ztest_spa_prop_get_set;
428 ztest_func_t ztest_spa_create_destroy;
429 ztest_func_t ztest_fault_inject;
430 ztest_func_t ztest_dmu_snapshot_hold;
431 ztest_func_t ztest_mmp_enable_disable;
432 ztest_func_t ztest_scrub;
433 ztest_func_t ztest_dsl_dataset_promote_busy;
434 ztest_func_t ztest_vdev_attach_detach;
435 ztest_func_t ztest_vdev_raidz_attach;
436 ztest_func_t ztest_vdev_LUN_growth;
437 ztest_func_t ztest_vdev_add_remove;
438 ztest_func_t ztest_vdev_class_add;
439 ztest_func_t ztest_vdev_aux_add_remove;
440 ztest_func_t ztest_split_pool;
441 ztest_func_t ztest_reguid;
442 ztest_func_t ztest_spa_upgrade;
443 ztest_func_t ztest_device_removal;
444 ztest_func_t ztest_spa_checkpoint_create_discard;
445 ztest_func_t ztest_initialize;
446 ztest_func_t ztest_trim;
447 ztest_func_t ztest_blake3;
448 ztest_func_t ztest_fletcher;
449 ztest_func_t ztest_fletcher_incr;
450 ztest_func_t ztest_verify_dnode_bt;
451 ztest_func_t ztest_pool_prefetch_ddt;
452 ztest_func_t ztest_ddt_prune;
453 
454 static uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
455 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
456 static uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
457 static uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
458 static uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
459 
460 #define	ZTI_INIT(func, iters, interval) \
461 	{   .zi_func = (func), \
462 	    .zi_iters = (iters), \
463 	    .zi_interval = (interval), \
464 	    .zi_funcname = # func }
465 
466 static ztest_info_t ztest_info[] = {
467 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
468 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
469 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
470 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
471 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
472 	ZTI_INIT(ztest_zap, 30, &zopt_always),
473 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
474 	ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
475 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
476 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
477 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
478 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
479 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
480 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
481 #if 0
482 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
483 #endif
484 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
485 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
486 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
487 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
488 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
489 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
490 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
491 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
492 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
493 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
494 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
495 	ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
496 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
497 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
498 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
499 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
500 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
501 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
502 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
503 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
504 	ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
505 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
506 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
507 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
508 	ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
509 	ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
510 };
511 
512 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
513 
514 /*
515  * The following struct is used to hold a list of uncalled commit callbacks.
516  * The callbacks are ordered by txg number.
517  */
518 typedef struct ztest_cb_list {
519 	kmutex_t	zcl_callbacks_lock;
520 	list_t		zcl_callbacks;
521 } ztest_cb_list_t;
522 
523 /*
524  * Stuff we need to share writably between parent and child.
525  */
526 typedef struct ztest_shared {
527 	boolean_t	zs_do_init;
528 	hrtime_t	zs_proc_start;
529 	hrtime_t	zs_proc_stop;
530 	hrtime_t	zs_thread_start;
531 	hrtime_t	zs_thread_stop;
532 	hrtime_t	zs_thread_kill;
533 	uint64_t	zs_enospc_count;
534 	uint64_t	zs_vdev_next_leaf;
535 	uint64_t	zs_vdev_aux;
536 	uint64_t	zs_alloc;
537 	uint64_t	zs_space;
538 	uint64_t	zs_splits;
539 	uint64_t	zs_mirrors;
540 	uint64_t	zs_metaslab_sz;
541 	uint64_t	zs_metaslab_df_alloc_threshold;
542 	uint64_t	zs_guid;
543 } ztest_shared_t;
544 
545 #define	ID_PARALLEL	-1ULL
546 
547 static char ztest_dev_template[] = "%s/%s.%llua";
548 static char ztest_aux_template[] = "%s/%s.%s.%llu";
549 static ztest_shared_t *ztest_shared;
550 
551 static spa_t *ztest_spa = NULL;
552 static ztest_ds_t *ztest_ds;
553 
554 static kmutex_t ztest_vdev_lock;
555 static boolean_t ztest_device_removal_active = B_FALSE;
556 static boolean_t ztest_pool_scrubbed = B_FALSE;
557 static kmutex_t ztest_checkpoint_lock;
558 
559 /*
560  * The ztest_name_lock protects the pool and dataset namespace used by
561  * the individual tests. To modify the namespace, consumers must grab
562  * this lock as writer. Grabbing the lock as reader will ensure that the
563  * namespace does not change while the lock is held.
564  */
565 static pthread_rwlock_t ztest_name_lock;
566 
567 static boolean_t ztest_dump_core = B_TRUE;
568 static boolean_t ztest_exiting;
569 
570 /* Global commit callback list */
571 static ztest_cb_list_t zcl;
572 /* Commit cb delay */
573 static uint64_t zc_min_txg_delay = UINT64_MAX;
574 static int zc_cb_counter = 0;
575 
576 /*
577  * Minimum number of commit callbacks that need to be registered for us to check
578  * whether the minimum txg delay is acceptable.
579  */
580 #define	ZTEST_COMMIT_CB_MIN_REG	100
581 
582 /*
583  * If a number of txgs equal to this threshold have been created after a commit
584  * callback has been registered but not called, then we assume there is an
585  * implementation bug.
586  */
587 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
588 
589 enum ztest_object {
590 	ZTEST_META_DNODE = 0,
591 	ZTEST_DIROBJ,
592 	ZTEST_OBJECTS
593 };
594 
595 static __attribute__((noreturn)) void usage(boolean_t requested);
596 static int ztest_scrub_impl(spa_t *spa);
597 
598 /*
599  * These libumem hooks provide a reasonable set of defaults for the allocator's
600  * debugging facilities.
601  */
602 const char *
_umem_debug_init(void)603 _umem_debug_init(void)
604 {
605 	return ("default,verbose"); /* $UMEM_DEBUG setting */
606 }
607 
608 const char *
_umem_logging_init(void)609 _umem_logging_init(void)
610 {
611 	return ("fail,contents"); /* $UMEM_LOGGING setting */
612 }
613 
614 static void
dump_debug_buffer(void)615 dump_debug_buffer(void)
616 {
617 	ssize_t ret __attribute__((unused));
618 
619 	if (!ztest_opts.zo_dump_dbgmsg)
620 		return;
621 
622 	/*
623 	 * We use write() instead of printf() so that this function
624 	 * is safe to call from a signal handler.
625 	 */
626 	ret = write(STDERR_FILENO, "\n", 1);
627 	zfs_dbgmsg_print(STDERR_FILENO, "ztest");
628 }
629 
sig_handler(int signo)630 static void sig_handler(int signo)
631 {
632 	struct sigaction action;
633 
634 	libspl_backtrace(STDERR_FILENO);
635 	dump_debug_buffer();
636 
637 	/*
638 	 * Restore default action and re-raise signal so SIGSEGV and
639 	 * SIGABRT can trigger a core dump.
640 	 */
641 	action.sa_handler = SIG_DFL;
642 	sigemptyset(&action.sa_mask);
643 	action.sa_flags = 0;
644 	(void) sigaction(signo, &action, NULL);
645 	raise(signo);
646 }
647 
648 #define	FATAL_MSG_SZ	1024
649 
650 static const char *fatal_msg;
651 
652 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
fatal(int do_perror,const char * message,...)653 fatal(int do_perror, const char *message, ...)
654 {
655 	va_list args;
656 	int save_errno = errno;
657 	char *buf;
658 
659 	(void) fflush(stdout);
660 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
661 	if (buf == NULL)
662 		goto out;
663 
664 	va_start(args, message);
665 	(void) sprintf(buf, "ztest: ");
666 	/* LINTED */
667 	(void) vsprintf(buf + strlen(buf), message, args);
668 	va_end(args);
669 	if (do_perror) {
670 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
671 		    ": %s", strerror(save_errno));
672 	}
673 	(void) fprintf(stderr, "%s\n", buf);
674 	fatal_msg = buf;			/* to ease debugging */
675 
676 out:
677 	if (ztest_dump_core)
678 		abort();
679 	else
680 		dump_debug_buffer();
681 
682 	exit(3);
683 }
684 
685 static int
str2shift(const char * buf)686 str2shift(const char *buf)
687 {
688 	const char *ends = "BKMGTPEZ";
689 	int i, len;
690 
691 	if (buf[0] == '\0')
692 		return (0);
693 
694 	len = strlen(ends);
695 	for (i = 0; i < len; i++) {
696 		if (toupper(buf[0]) == ends[i])
697 			break;
698 	}
699 	if (i == len) {
700 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
701 		    buf);
702 		usage(B_FALSE);
703 	}
704 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
705 		return (10*i);
706 	}
707 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
708 	usage(B_FALSE);
709 }
710 
711 static uint64_t
nicenumtoull(const char * buf)712 nicenumtoull(const char *buf)
713 {
714 	char *end;
715 	uint64_t val;
716 
717 	val = strtoull(buf, &end, 0);
718 	if (end == buf) {
719 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
720 		usage(B_FALSE);
721 	} else if (end[0] == '.') {
722 		double fval = strtod(buf, &end);
723 		fval *= pow(2, str2shift(end));
724 		/*
725 		 * UINT64_MAX is not exactly representable as a double.
726 		 * The closest representation is UINT64_MAX + 1, so we
727 		 * use a >= comparison instead of > for the bounds check.
728 		 */
729 		if (fval >= (double)UINT64_MAX) {
730 			(void) fprintf(stderr, "ztest: value too large: %s\n",
731 			    buf);
732 			usage(B_FALSE);
733 		}
734 		val = (uint64_t)fval;
735 	} else {
736 		int shift = str2shift(end);
737 		if (shift >= 64 || (val << shift) >> shift != val) {
738 			(void) fprintf(stderr, "ztest: value too large: %s\n",
739 			    buf);
740 			usage(B_FALSE);
741 		}
742 		val <<= shift;
743 	}
744 	return (val);
745 }
746 
747 typedef struct ztest_option {
748 	const char	short_opt;
749 	const char	*long_opt;
750 	const char	*long_opt_param;
751 	const char	*comment;
752 	unsigned int	default_int;
753 	const char	*default_str;
754 } ztest_option_t;
755 
756 /*
757  * The following option_table is used for generating the usage info as well as
758  * the long and short option information for calling getopt_long().
759  */
760 static ztest_option_t option_table[] = {
761 	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
762 	    NULL},
763 	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
764 	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
765 	{ 'a',	"alignment-shift", "INTEGER",
766 	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
767 	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
768 	    DEFAULT_MIRRORS, NULL},
769 	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
770 	    DEFAULT_RAID_CHILDREN, NULL},
771 	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
772 	    DEFAULT_RAID_PARITY, NULL},
773 	{ 'K',  "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
774 	    NO_DEFAULT, "random"},
775 	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
776 	    DEFAULT_DRAID_DATA, NULL},
777 	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
778 	    DEFAULT_DRAID_SPARES, NULL},
779 	{ 'd',	"datasets", "INTEGER", "Number of datasets",
780 	    DEFAULT_DATASETS_COUNT, NULL},
781 	{ 't',	"threads", "INTEGER", "Number of ztest threads",
782 	    DEFAULT_THREADS, NULL},
783 	{ 'g',	"gang-block-threshold", "INTEGER",
784 	    "Metaslab gang block threshold",
785 	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
786 	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
787 	    DEFAULT_INITS, NULL},
788 	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
789 	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
790 	{ 'p',	"pool-name", "STRING", "Pool name",
791 	    NO_DEFAULT, DEFAULT_POOL},
792 	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
793 	    NO_DEFAULT, DEFAULT_VDEV_DIR},
794 	{ 'M',	"multi-host", NULL,
795 	    "Multi-host; simulate pool imported on remote host",
796 	    NO_DEFAULT, NULL},
797 	{ 'E',	"use-existing-pool", NULL,
798 	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
799 	{ 'T',	"run-time", "INTEGER", "Total run time",
800 	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
801 	{ 'P',	"pass-time", "INTEGER", "Time per pass",
802 	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
803 	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
804 	    DEFAULT_MAX_LOOPS, NULL},
805 	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
806 	    NO_DEFAULT, NULL},
807 	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
808 	    NO_DEFAULT, "random"},
809 	{ 'X', "raidz-expansion", NULL,
810 	    "Perform a dedicated raidz expansion test",
811 	    NO_DEFAULT, NULL},
812 	{ 'o',	"option", "\"NAME=VALUE\"",
813 	    "Set the named tunable to the given value",
814 	    NO_DEFAULT, NULL},
815 	{ 'G',	"dump-debug-msg", NULL,
816 	    "Dump zfs_dbgmsg buffer before exiting due to an error",
817 	    NO_DEFAULT, NULL},
818 	{ 'V',	"verbose", NULL,
819 	    "Verbose (use multiple times for ever more verbosity)",
820 	    NO_DEFAULT, NULL},
821 	{ 'h',	"help",	NULL, "Show this help",
822 	    NO_DEFAULT, NULL},
823 	{0, 0, 0, 0, 0, 0}
824 };
825 
826 static struct option *long_opts = NULL;
827 static char *short_opts = NULL;
828 
829 static void
init_options(void)830 init_options(void)
831 {
832 	ASSERT0P(long_opts);
833 	ASSERT0P(short_opts);
834 
835 	int count = sizeof (option_table) / sizeof (option_table[0]);
836 	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
837 
838 	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
839 	int short_opt_index = 0;
840 
841 	for (int i = 0; i < count; i++) {
842 		long_opts[i].val = option_table[i].short_opt;
843 		long_opts[i].name = option_table[i].long_opt;
844 		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
845 		    ? required_argument : no_argument;
846 		long_opts[i].flag = NULL;
847 		short_opts[short_opt_index++] = option_table[i].short_opt;
848 		if (option_table[i].long_opt_param != NULL) {
849 			short_opts[short_opt_index++] = ':';
850 		}
851 	}
852 }
853 
854 static void
fini_options(void)855 fini_options(void)
856 {
857 	int count = sizeof (option_table) / sizeof (option_table[0]);
858 
859 	umem_free(long_opts, sizeof (struct option) * count);
860 	umem_free(short_opts, sizeof (char) * 2 * count);
861 
862 	long_opts = NULL;
863 	short_opts = NULL;
864 }
865 
866 static __attribute__((noreturn)) void
usage(boolean_t requested)867 usage(boolean_t requested)
868 {
869 	char option[80];
870 	FILE *fp = requested ? stdout : stderr;
871 
872 	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
873 	for (int i = 0; option_table[i].short_opt != 0; i++) {
874 		if (option_table[i].long_opt_param != NULL) {
875 			(void) sprintf(option, "  -%c --%s=%s",
876 			    option_table[i].short_opt,
877 			    option_table[i].long_opt,
878 			    option_table[i].long_opt_param);
879 		} else {
880 			(void) sprintf(option, "  -%c --%s",
881 			    option_table[i].short_opt,
882 			    option_table[i].long_opt);
883 		}
884 		(void) fprintf(fp, "  %-43s%s", option,
885 		    option_table[i].comment);
886 
887 		if (option_table[i].long_opt_param != NULL) {
888 			if (option_table[i].default_str != NULL) {
889 				(void) fprintf(fp, " (default: %s)",
890 				    option_table[i].default_str);
891 			} else if (option_table[i].default_int != NO_DEFAULT) {
892 				(void) fprintf(fp, " (default: %u)",
893 				    option_table[i].default_int);
894 			}
895 		}
896 		(void) fprintf(fp, "\n");
897 	}
898 	exit(requested ? 0 : 1);
899 }
900 
901 static uint64_t
ztest_random(uint64_t range)902 ztest_random(uint64_t range)
903 {
904 	uint64_t r;
905 
906 	if (range == 0)
907 		return (0);
908 
909 	random_get_pseudo_bytes((uint8_t *)&r, sizeof (r));
910 
911 	return (r % range);
912 }
913 
914 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)915 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
916 {
917 	char name[32];
918 	char *value;
919 	int state;
920 
921 	(void) strlcpy(name, input, sizeof (name));
922 
923 	value = strchr(name, '=');
924 	if (value == NULL) {
925 		(void) fprintf(stderr, "missing value in property=value "
926 		    "'-C' argument (%s)\n", input);
927 		usage(B_FALSE);
928 	}
929 	*(value) = '\0';
930 	value++;
931 
932 	if (strcmp(value, "on") == 0) {
933 		state = ZTEST_VDEV_CLASS_ON;
934 	} else if (strcmp(value, "off") == 0) {
935 		state = ZTEST_VDEV_CLASS_OFF;
936 	} else if (strcmp(value, "random") == 0) {
937 		state = ZTEST_VDEV_CLASS_RND;
938 	} else {
939 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
940 		usage(B_FALSE);
941 	}
942 
943 	if (strcmp(name, "special") == 0) {
944 		zo->zo_special_vdevs = state;
945 	} else {
946 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
947 		usage(B_FALSE);
948 	}
949 	if (zo->zo_verbose >= 3)
950 		(void) printf("%s vdev state is '%s'\n", name, value);
951 }
952 
953 static void
process_options(int argc,char ** argv)954 process_options(int argc, char **argv)
955 {
956 	char *path;
957 	ztest_shared_opts_t *zo = &ztest_opts;
958 
959 	int opt;
960 	uint64_t value;
961 	const char *raid_kind = "random";
962 
963 	memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
964 
965 	init_options();
966 
967 	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
968 	    NULL)) != EOF) {
969 		value = 0;
970 		switch (opt) {
971 		case 'v':
972 		case 's':
973 		case 'a':
974 		case 'm':
975 		case 'r':
976 		case 'R':
977 		case 'D':
978 		case 'S':
979 		case 'd':
980 		case 't':
981 		case 'g':
982 		case 'i':
983 		case 'k':
984 		case 'T':
985 		case 'P':
986 		case 'F':
987 			value = nicenumtoull(optarg);
988 		}
989 		switch (opt) {
990 		case 'v':
991 			zo->zo_vdevs = value;
992 			break;
993 		case 's':
994 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
995 			break;
996 		case 'a':
997 			zo->zo_ashift = value;
998 			break;
999 		case 'm':
1000 			zo->zo_mirrors = value;
1001 			break;
1002 		case 'r':
1003 			zo->zo_raid_children = MAX(1, value);
1004 			break;
1005 		case 'R':
1006 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1007 			break;
1008 		case 'K':
1009 			raid_kind = optarg;
1010 			break;
1011 		case 'D':
1012 			zo->zo_draid_data = MAX(1, value);
1013 			break;
1014 		case 'S':
1015 			zo->zo_draid_spares = MAX(1, value);
1016 			break;
1017 		case 'd':
1018 			zo->zo_datasets = MAX(1, value);
1019 			break;
1020 		case 't':
1021 			zo->zo_threads = MAX(1, value);
1022 			break;
1023 		case 'g':
1024 			zo->zo_metaslab_force_ganging =
1025 			    MAX(SPA_MINBLOCKSIZE << 1, value);
1026 			break;
1027 		case 'i':
1028 			zo->zo_init = value;
1029 			break;
1030 		case 'k':
1031 			zo->zo_killrate = value;
1032 			break;
1033 		case 'p':
1034 			(void) strlcpy(zo->zo_pool, optarg,
1035 			    sizeof (zo->zo_pool));
1036 			break;
1037 		case 'f':
1038 			path = realpath(optarg, NULL);
1039 			if (path == NULL) {
1040 				(void) fprintf(stderr, "error: %s: %s\n",
1041 				    optarg, strerror(errno));
1042 				usage(B_FALSE);
1043 			} else {
1044 				(void) strlcpy(zo->zo_dir, path,
1045 				    sizeof (zo->zo_dir));
1046 				free(path);
1047 			}
1048 			break;
1049 		case 'M':
1050 			zo->zo_mmp_test = 1;
1051 			break;
1052 		case 'V':
1053 			zo->zo_verbose++;
1054 			break;
1055 		case 'X':
1056 			zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1057 			break;
1058 		case 'E':
1059 			zo->zo_init = 0;
1060 			break;
1061 		case 'T':
1062 			zo->zo_time = value;
1063 			break;
1064 		case 'P':
1065 			zo->zo_passtime = MAX(1, value);
1066 			break;
1067 		case 'F':
1068 			zo->zo_maxloops = MAX(1, value);
1069 			break;
1070 		case 'B':
1071 			(void) strlcpy(zo->zo_alt_ztest, optarg,
1072 			    sizeof (zo->zo_alt_ztest));
1073 			break;
1074 		case 'C':
1075 			ztest_parse_name_value(optarg, zo);
1076 			break;
1077 		case 'o':
1078 			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1079 				(void) fprintf(stderr,
1080 				    "max global var count (%zu) exceeded\n",
1081 				    ZO_GVARS_MAX_COUNT);
1082 				usage(B_FALSE);
1083 			}
1084 			char *v = zo->zo_gvars[zo->zo_gvars_count];
1085 			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1086 			    ZO_GVARS_MAX_ARGLEN) {
1087 				(void) fprintf(stderr,
1088 				    "global var option '%s' is too long\n",
1089 				    optarg);
1090 				usage(B_FALSE);
1091 			}
1092 			zo->zo_gvars_count++;
1093 			break;
1094 		case 'G':
1095 			zo->zo_dump_dbgmsg = 1;
1096 			break;
1097 		case 'h':
1098 			usage(B_TRUE);
1099 			break;
1100 		case '?':
1101 		default:
1102 			usage(B_FALSE);
1103 			break;
1104 		}
1105 	}
1106 
1107 	fini_options();
1108 
1109 	/* Force compatible options for raidz expansion run */
1110 	if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1111 		zo->zo_mmp_test = 0;
1112 		zo->zo_mirrors = 0;
1113 		zo->zo_vdevs = 1;
1114 		zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1115 		zo->zo_raid_do_expand = B_FALSE;
1116 		raid_kind = "raidz";
1117 	}
1118 
1119 	if (strcmp(raid_kind, "random") == 0) {
1120 		switch (ztest_random(3)) {
1121 		case 0:
1122 			raid_kind = "raidz";
1123 			break;
1124 		case 1:
1125 			raid_kind = "eraidz";
1126 			break;
1127 		case 2:
1128 			raid_kind = "draid";
1129 			break;
1130 		}
1131 
1132 		if (ztest_opts.zo_verbose >= 3)
1133 			(void) printf("choosing RAID type '%s'\n", raid_kind);
1134 	}
1135 
1136 	if (strcmp(raid_kind, "draid") == 0) {
1137 		uint64_t min_devsize;
1138 
1139 		/* With fewer disk use 256M, otherwise 128M is OK */
1140 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1141 		    (256ULL << 20) : (128ULL << 20);
1142 
1143 		/* No top-level mirrors with dRAID for now */
1144 		zo->zo_mirrors = 0;
1145 
1146 		/* Use more appropriate defaults for dRAID */
1147 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1148 			zo->zo_vdevs = 1;
1149 		if (zo->zo_raid_children ==
1150 		    ztest_opts_defaults.zo_raid_children)
1151 			zo->zo_raid_children = 16;
1152 		if (zo->zo_ashift < 12)
1153 			zo->zo_ashift = 12;
1154 		if (zo->zo_vdev_size < min_devsize)
1155 			zo->zo_vdev_size = min_devsize;
1156 
1157 		if (zo->zo_draid_data + zo->zo_raid_parity >
1158 		    zo->zo_raid_children - zo->zo_draid_spares) {
1159 			(void) fprintf(stderr, "error: too few draid "
1160 			    "children (%d) for stripe width (%d)\n",
1161 			    zo->zo_raid_children,
1162 			    zo->zo_draid_data + zo->zo_raid_parity);
1163 			usage(B_FALSE);
1164 		}
1165 
1166 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1167 		    sizeof (zo->zo_raid_type));
1168 
1169 	} else if (strcmp(raid_kind, "eraidz") == 0) {
1170 		/* using eraidz (expandable raidz) */
1171 		zo->zo_raid_do_expand = B_TRUE;
1172 
1173 		/* tests expect top-level to be raidz */
1174 		zo->zo_mirrors = 0;
1175 		zo->zo_vdevs = 1;
1176 
1177 		/* Make sure parity is less than data columns */
1178 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1179 		    zo->zo_raid_children - 1);
1180 
1181 	} else /* using raidz */ {
1182 		ASSERT0(strcmp(raid_kind, "raidz"));
1183 
1184 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1185 		    zo->zo_raid_children - 1);
1186 	}
1187 
1188 	zo->zo_vdevtime =
1189 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1190 	    UINT64_MAX >> 2);
1191 
1192 	if (*zo->zo_alt_ztest) {
1193 		const char *invalid_what = "ztest";
1194 		char *val = zo->zo_alt_ztest;
1195 		if (0 != access(val, X_OK) ||
1196 		    (strrchr(val, '/') == NULL && (errno == EINVAL)))
1197 			goto invalid;
1198 
1199 		int dirlen = strrchr(val, '/') - val;
1200 		strlcpy(zo->zo_alt_libpath, val,
1201 		    MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1202 		invalid_what = "library path", val = zo->zo_alt_libpath;
1203 		if (strrchr(val, '/') == NULL && (errno == EINVAL))
1204 			goto invalid;
1205 		*strrchr(val, '/') = '\0';
1206 		strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1207 
1208 		if (0 != access(zo->zo_alt_libpath, X_OK))
1209 			goto invalid;
1210 		return;
1211 
1212 invalid:
1213 		ztest_dump_core = B_FALSE;
1214 		fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1215 	}
1216 }
1217 
1218 static void
ztest_kill(ztest_shared_t * zs)1219 ztest_kill(ztest_shared_t *zs)
1220 {
1221 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1222 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1223 
1224 	/*
1225 	 * Before we kill ourselves, make sure that the config is updated.
1226 	 * See comment above spa_write_cachefile().
1227 	 */
1228 	if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1229 		if (spa_namespace_tryenter(FTAG)) {
1230 			spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1231 			    B_FALSE);
1232 			spa_namespace_exit(FTAG);
1233 
1234 			ztest_scratch_state->zs_raidz_scratch_verify_pause =
1235 			    raidz_expand_pause_point;
1236 		} else {
1237 			/*
1238 			 * Do not verify scratch object in case if
1239 			 * spa_namespace_lock cannot be acquired,
1240 			 * it can cause deadlock in spa_config_update().
1241 			 */
1242 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1243 
1244 			return;
1245 		}
1246 	} else {
1247 		spa_namespace_enter(FTAG);
1248 		spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1249 		spa_namespace_exit(FTAG);
1250 	}
1251 
1252 	(void) raise(SIGKILL);
1253 }
1254 
1255 static void
ztest_record_enospc(const char * s)1256 ztest_record_enospc(const char *s)
1257 {
1258 	(void) s;
1259 	ztest_shared->zs_enospc_count++;
1260 }
1261 
1262 static uint64_t
ztest_get_ashift(void)1263 ztest_get_ashift(void)
1264 {
1265 	if (ztest_opts.zo_ashift == 0)
1266 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1267 	return (ztest_opts.zo_ashift);
1268 }
1269 
1270 static boolean_t
ztest_is_draid_spare(const char * name)1271 ztest_is_draid_spare(const char *name)
1272 {
1273 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1274 
1275 	if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1276 	    &parity, &vdev_id, &spare_id) == 3) {
1277 		return (B_TRUE);
1278 	}
1279 
1280 	return (B_FALSE);
1281 }
1282 
1283 static nvlist_t *
make_vdev_file(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift)1284 make_vdev_file(const char *path, const char *aux, const char *pool,
1285     size_t size, uint64_t ashift)
1286 {
1287 	char *pathbuf = NULL;
1288 	uint64_t vdev;
1289 	nvlist_t *file;
1290 	boolean_t draid_spare = B_FALSE;
1291 
1292 
1293 	if (ashift == 0)
1294 		ashift = ztest_get_ashift();
1295 
1296 	if (path == NULL) {
1297 		pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1298 		path = pathbuf;
1299 
1300 		if (aux != NULL) {
1301 			vdev = ztest_shared->zs_vdev_aux;
1302 			(void) snprintf(pathbuf, MAXPATHLEN,
1303 			    ztest_aux_template, ztest_opts.zo_dir,
1304 			    pool == NULL ? ztest_opts.zo_pool : pool,
1305 			    aux, vdev);
1306 		} else {
1307 			vdev = ztest_shared->zs_vdev_next_leaf++;
1308 			(void) snprintf(pathbuf, MAXPATHLEN,
1309 			    ztest_dev_template, ztest_opts.zo_dir,
1310 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1311 		}
1312 	} else {
1313 		draid_spare = ztest_is_draid_spare(path);
1314 	}
1315 
1316 	if (size != 0 && !draid_spare) {
1317 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1318 		if (fd == -1)
1319 			fatal(B_TRUE, "can't open %s", path);
1320 		if (ftruncate(fd, size) != 0)
1321 			fatal(B_TRUE, "can't ftruncate %s", path);
1322 		(void) close(fd);
1323 	}
1324 
1325 	file = fnvlist_alloc();
1326 	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1327 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1328 	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1329 	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1330 	umem_free(pathbuf, MAXPATHLEN);
1331 
1332 	return (file);
1333 }
1334 
1335 static nvlist_t *
make_vdev_raid(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r)1336 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1337     uint64_t ashift, int r)
1338 {
1339 	nvlist_t *raid, **child;
1340 	int c;
1341 
1342 	if (r < 2)
1343 		return (make_vdev_file(path, aux, pool, size, ashift));
1344 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1345 
1346 	for (c = 0; c < r; c++)
1347 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1348 
1349 	raid = fnvlist_alloc();
1350 	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1351 	    ztest_opts.zo_raid_type);
1352 	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1353 	    ztest_opts.zo_raid_parity);
1354 	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1355 	    (const nvlist_t **)child, r);
1356 
1357 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1358 		uint64_t ndata = ztest_opts.zo_draid_data;
1359 		uint64_t nparity = ztest_opts.zo_raid_parity;
1360 		uint64_t nspares = ztest_opts.zo_draid_spares;
1361 		uint64_t children = ztest_opts.zo_raid_children;
1362 		uint64_t ngroups = 1;
1363 
1364 		/*
1365 		 * Calculate the minimum number of groups required to fill a
1366 		 * slice. This is the LCM of the stripe width (data + parity)
1367 		 * and the number of data drives (children - spares).
1368 		 */
1369 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1370 			ngroups++;
1371 
1372 		/* Store the basic dRAID configuration. */
1373 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1374 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1375 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1376 	}
1377 
1378 	for (c = 0; c < r; c++)
1379 		fnvlist_free(child[c]);
1380 
1381 	umem_free(child, r * sizeof (nvlist_t *));
1382 
1383 	return (raid);
1384 }
1385 
1386 static nvlist_t *
make_vdev_mirror(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r,int m)1387 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1388     size_t size, uint64_t ashift, int r, int m)
1389 {
1390 	nvlist_t *mirror, **child;
1391 	int c;
1392 
1393 	if (m < 1)
1394 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1395 
1396 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1397 
1398 	for (c = 0; c < m; c++)
1399 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1400 
1401 	mirror = fnvlist_alloc();
1402 	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1403 	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1404 	    (const nvlist_t **)child, m);
1405 
1406 	for (c = 0; c < m; c++)
1407 		fnvlist_free(child[c]);
1408 
1409 	umem_free(child, m * sizeof (nvlist_t *));
1410 
1411 	return (mirror);
1412 }
1413 
1414 static nvlist_t *
make_vdev_root(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1415 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1416     uint64_t ashift, const char *class, int r, int m, int t)
1417 {
1418 	nvlist_t *root, **child;
1419 	int c;
1420 	boolean_t log;
1421 
1422 	ASSERT3S(t, >, 0);
1423 
1424 	log = (class != NULL && strcmp(class, "log") == 0);
1425 
1426 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1427 
1428 	for (c = 0; c < t; c++) {
1429 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1430 		    r, m);
1431 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1432 
1433 		if (class != NULL && class[0] != '\0') {
1434 			ASSERT(m > 1 || log);   /* expecting a mirror */
1435 			fnvlist_add_string(child[c],
1436 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1437 		}
1438 	}
1439 
1440 	root = fnvlist_alloc();
1441 	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1442 	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1443 	    (const nvlist_t **)child, t);
1444 
1445 	for (c = 0; c < t; c++)
1446 		fnvlist_free(child[c]);
1447 
1448 	umem_free(child, t * sizeof (nvlist_t *));
1449 
1450 	return (root);
1451 }
1452 
1453 /*
1454  * Find a random spa version. Returns back a random spa version in the
1455  * range [initial_version, SPA_VERSION_FEATURES].
1456  */
1457 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1458 ztest_random_spa_version(uint64_t initial_version)
1459 {
1460 	uint64_t version = initial_version;
1461 
1462 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1463 		version = version +
1464 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1465 	}
1466 
1467 	if (version > SPA_VERSION_BEFORE_FEATURES)
1468 		version = SPA_VERSION_FEATURES;
1469 
1470 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1471 	return (version);
1472 }
1473 
1474 static int
ztest_random_blocksize(void)1475 ztest_random_blocksize(void)
1476 {
1477 	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1478 
1479 	/*
1480 	 * Choose a block size >= the ashift.
1481 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1482 	 */
1483 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1484 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1485 		maxbs = 20;
1486 	uint64_t block_shift =
1487 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1488 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1489 }
1490 
1491 static int
ztest_random_dnodesize(void)1492 ztest_random_dnodesize(void)
1493 {
1494 	int slots;
1495 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1496 
1497 	if (max_slots == DNODE_MIN_SLOTS)
1498 		return (DNODE_MIN_SIZE);
1499 
1500 	/*
1501 	 * Weight the random distribution more heavily toward smaller
1502 	 * dnode sizes since that is more likely to reflect real-world
1503 	 * usage.
1504 	 */
1505 	ASSERT3U(max_slots, >, 4);
1506 	switch (ztest_random(10)) {
1507 	case 0:
1508 		slots = 5 + ztest_random(max_slots - 4);
1509 		break;
1510 	case 1 ... 4:
1511 		slots = 2 + ztest_random(3);
1512 		break;
1513 	default:
1514 		slots = 1;
1515 		break;
1516 	}
1517 
1518 	return (slots << DNODE_SHIFT);
1519 }
1520 
1521 static int
ztest_random_ibshift(void)1522 ztest_random_ibshift(void)
1523 {
1524 	return (DN_MIN_INDBLKSHIFT +
1525 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1526 }
1527 
1528 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1529 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1530 {
1531 	uint64_t top;
1532 	vdev_t *rvd = spa->spa_root_vdev;
1533 	vdev_t *tvd;
1534 
1535 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1536 
1537 	do {
1538 		top = ztest_random(rvd->vdev_children);
1539 		tvd = rvd->vdev_child[top];
1540 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1541 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1542 
1543 	return (top);
1544 }
1545 
1546 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1547 ztest_random_dsl_prop(zfs_prop_t prop)
1548 {
1549 	uint64_t value;
1550 
1551 	do {
1552 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1553 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1554 
1555 	return (value);
1556 }
1557 
1558 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1559 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1560     boolean_t inherit)
1561 {
1562 	const char *propname = zfs_prop_to_name(prop);
1563 	const char *valname;
1564 	char *setpoint;
1565 	uint64_t curval;
1566 	int error;
1567 
1568 	error = dsl_prop_set_int(osname, propname,
1569 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1570 
1571 	if (error == ENOSPC) {
1572 		ztest_record_enospc(FTAG);
1573 		return (error);
1574 	}
1575 	ASSERT0(error);
1576 
1577 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1578 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1579 
1580 	if (ztest_opts.zo_verbose >= 6) {
1581 		int err;
1582 
1583 		err = zfs_prop_index_to_string(prop, curval, &valname);
1584 		if (err)
1585 			(void) printf("%s %s = %llu at '%s'\n", osname,
1586 			    propname, (unsigned long long)curval, setpoint);
1587 		else
1588 			(void) printf("%s %s = %s at '%s'\n",
1589 			    osname, propname, valname, setpoint);
1590 	}
1591 	umem_free(setpoint, MAXPATHLEN);
1592 
1593 	return (error);
1594 }
1595 
1596 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1597 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1598 {
1599 	spa_t *spa = ztest_spa;
1600 	nvlist_t *props = NULL;
1601 	int error;
1602 
1603 	props = fnvlist_alloc();
1604 	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1605 
1606 	error = spa_prop_set(spa, props);
1607 
1608 	fnvlist_free(props);
1609 
1610 	if (error == ENOSPC) {
1611 		ztest_record_enospc(FTAG);
1612 		return (error);
1613 	}
1614 	ASSERT0(error);
1615 
1616 	return (error);
1617 }
1618 
1619 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,const void * tag,objset_t ** osp)1620 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1621     boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1622 {
1623 	int err;
1624 	char *cp = NULL;
1625 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1626 
1627 	strlcpy(ddname, name, sizeof (ddname));
1628 	cp = strchr(ddname, '@');
1629 	if (cp != NULL)
1630 		*cp = '\0';
1631 
1632 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1633 	while (decrypt && err == EACCES) {
1634 		dsl_crypto_params_t *dcp;
1635 		nvlist_t *crypto_args = fnvlist_alloc();
1636 
1637 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1638 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1639 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1640 		    crypto_args, &dcp));
1641 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1642 		/*
1643 		 * Note: if there was an error loading, the wkey was not
1644 		 * consumed, and needs to be freed.
1645 		 */
1646 		dsl_crypto_params_free(dcp, (err != 0));
1647 		fnvlist_free(crypto_args);
1648 
1649 		if (err == EINVAL) {
1650 			/*
1651 			 * We couldn't load a key for this dataset so try
1652 			 * the parent. This loop will eventually hit the
1653 			 * encryption root since ztest only makes clones
1654 			 * as children of their origin datasets.
1655 			 */
1656 			cp = strrchr(ddname, '/');
1657 			if (cp == NULL)
1658 				return (err);
1659 
1660 			*cp = '\0';
1661 			err = EACCES;
1662 			continue;
1663 		} else if (err != 0) {
1664 			break;
1665 		}
1666 
1667 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1668 		break;
1669 	}
1670 
1671 	return (err);
1672 }
1673 
1674 static void
ztest_rll_init(rll_t * rll)1675 ztest_rll_init(rll_t *rll)
1676 {
1677 	rll->rll_writer = NULL;
1678 	rll->rll_readers = 0;
1679 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1680 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1681 }
1682 
1683 static void
ztest_rll_destroy(rll_t * rll)1684 ztest_rll_destroy(rll_t *rll)
1685 {
1686 	ASSERT0P(rll->rll_writer);
1687 	ASSERT0(rll->rll_readers);
1688 	mutex_destroy(&rll->rll_lock);
1689 	cv_destroy(&rll->rll_cv);
1690 }
1691 
1692 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1693 ztest_rll_lock(rll_t *rll, rl_type_t type)
1694 {
1695 	mutex_enter(&rll->rll_lock);
1696 
1697 	if (type == ZTRL_READER) {
1698 		while (rll->rll_writer != NULL)
1699 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1700 		rll->rll_readers++;
1701 	} else {
1702 		while (rll->rll_writer != NULL || rll->rll_readers)
1703 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1704 		rll->rll_writer = curthread;
1705 	}
1706 
1707 	mutex_exit(&rll->rll_lock);
1708 }
1709 
1710 static void
ztest_rll_unlock(rll_t * rll)1711 ztest_rll_unlock(rll_t *rll)
1712 {
1713 	mutex_enter(&rll->rll_lock);
1714 
1715 	if (rll->rll_writer) {
1716 		ASSERT0(rll->rll_readers);
1717 		rll->rll_writer = NULL;
1718 	} else {
1719 		ASSERT3S(rll->rll_readers, >, 0);
1720 		ASSERT0P(rll->rll_writer);
1721 		rll->rll_readers--;
1722 	}
1723 
1724 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1725 		cv_broadcast(&rll->rll_cv);
1726 
1727 	mutex_exit(&rll->rll_lock);
1728 }
1729 
1730 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1731 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1732 {
1733 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1734 
1735 	ztest_rll_lock(rll, type);
1736 }
1737 
1738 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1739 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1740 {
1741 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1742 
1743 	ztest_rll_unlock(rll);
1744 }
1745 
1746 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1747 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1748     uint64_t size, rl_type_t type)
1749 {
1750 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1751 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1752 	rl_t *rl;
1753 
1754 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1755 	rl->rl_object = object;
1756 	rl->rl_offset = offset;
1757 	rl->rl_size = size;
1758 	rl->rl_lock = rll;
1759 
1760 	ztest_rll_lock(rll, type);
1761 
1762 	return (rl);
1763 }
1764 
1765 static void
ztest_range_unlock(rl_t * rl)1766 ztest_range_unlock(rl_t *rl)
1767 {
1768 	rll_t *rll = rl->rl_lock;
1769 
1770 	ztest_rll_unlock(rll);
1771 
1772 	umem_free(rl, sizeof (*rl));
1773 }
1774 
1775 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1776 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1777 {
1778 	zd->zd_os = os;
1779 	zd->zd_zilog = dmu_objset_zil(os);
1780 	zd->zd_shared = szd;
1781 	dmu_objset_name(os, zd->zd_name);
1782 	int l;
1783 
1784 	if (zd->zd_shared != NULL)
1785 		zd->zd_shared->zd_seq = 0;
1786 
1787 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1788 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1789 
1790 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1791 		ztest_rll_init(&zd->zd_object_lock[l]);
1792 
1793 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1794 		ztest_rll_init(&zd->zd_range_lock[l]);
1795 }
1796 
1797 static void
ztest_zd_fini(ztest_ds_t * zd)1798 ztest_zd_fini(ztest_ds_t *zd)
1799 {
1800 	int l;
1801 
1802 	mutex_destroy(&zd->zd_dirobj_lock);
1803 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1804 
1805 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1806 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1807 
1808 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1809 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1810 }
1811 
1812 #define	DMU_TX_MIGHTWAIT	\
1813 	(ztest_random(10) == 0 ? DMU_TX_NOWAIT : DMU_TX_WAIT)
1814 
1815 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,dmu_tx_flag_t txg_how,const char * tag)1816 ztest_tx_assign(dmu_tx_t *tx, dmu_tx_flag_t txg_how, const char *tag)
1817 {
1818 	uint64_t txg;
1819 	int error;
1820 
1821 	/*
1822 	 * Attempt to assign tx to some transaction group.
1823 	 */
1824 	error = dmu_tx_assign(tx, txg_how);
1825 	if (error) {
1826 		if (error == ERESTART) {
1827 			ASSERT3U(txg_how, ==, DMU_TX_NOWAIT);
1828 			dmu_tx_wait(tx);
1829 		} else if (error == ENOSPC) {
1830 			ztest_record_enospc(tag);
1831 		} else {
1832 			ASSERT(error == EDQUOT || error == EIO);
1833 		}
1834 		dmu_tx_abort(tx);
1835 		return (0);
1836 	}
1837 	txg = dmu_tx_get_txg(tx);
1838 	ASSERT3U(txg, !=, 0);
1839 	return (txg);
1840 }
1841 
1842 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1843 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1844     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1845     uint64_t crtxg)
1846 {
1847 	bt->bt_magic = BT_MAGIC;
1848 	bt->bt_objset = dmu_objset_id(os);
1849 	bt->bt_object = object;
1850 	bt->bt_dnodesize = dnodesize;
1851 	bt->bt_offset = offset;
1852 	bt->bt_gen = gen;
1853 	bt->bt_txg = txg;
1854 	bt->bt_crtxg = crtxg;
1855 }
1856 
1857 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1858 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1859     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1860     uint64_t crtxg)
1861 {
1862 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1863 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1864 	ASSERT3U(bt->bt_object, ==, object);
1865 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1866 	ASSERT3U(bt->bt_offset, ==, offset);
1867 	ASSERT3U(bt->bt_gen, <=, gen);
1868 	ASSERT3U(bt->bt_txg, <=, txg);
1869 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1870 }
1871 
1872 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1873 ztest_bt_bonus(dmu_buf_t *db)
1874 {
1875 	dmu_object_info_t doi;
1876 	ztest_block_tag_t *bt;
1877 
1878 	dmu_object_info_from_db(db, &doi);
1879 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1880 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1881 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1882 
1883 	return (bt);
1884 }
1885 
1886 /*
1887  * Generate a token to fill up unused bonus buffer space.  Try to make
1888  * it unique to the object, generation, and offset to verify that data
1889  * is not getting overwritten by data from other dnodes.
1890  */
1891 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1893 
1894 /*
1895  * Fill up the unused bonus buffer region before the block tag with a
1896  * verifiable pattern. Filling the whole bonus area with non-zero data
1897  * helps ensure that all dnode traversal code properly skips the
1898  * interior regions of large dnodes.
1899  */
1900 static void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1901 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1902     objset_t *os, uint64_t gen)
1903 {
1904 	uint64_t *bonusp;
1905 
1906 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1907 
1908 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1909 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1910 		    gen, bonusp - (uint64_t *)db->db_data);
1911 		*bonusp = token;
1912 	}
1913 }
1914 
1915 /*
1916  * Verify that the unused area of a bonus buffer is filled with the
1917  * expected tokens.
1918  */
1919 static void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1920 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1921     objset_t *os, uint64_t gen)
1922 {
1923 	uint64_t *bonusp;
1924 
1925 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1926 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1927 		    gen, bonusp - (uint64_t *)db->db_data);
1928 		VERIFY3U(*bonusp, ==, token);
1929 	}
1930 }
1931 
1932 /*
1933  * ZIL logging ops
1934  */
1935 
1936 #define	lrz_type	lr_mode
1937 #define	lrz_blocksize	lr_uid
1938 #define	lrz_ibshift	lr_gid
1939 #define	lrz_bonustype	lr_rdev
1940 #define	lrz_dnodesize	lr_crtime[1]
1941 
1942 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1943 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1944 {
1945 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
1946 	size_t namesize = strlen(name) + 1;
1947 	itx_t *itx;
1948 
1949 	if (zil_replaying(zd->zd_zilog, tx))
1950 		return;
1951 
1952 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1953 	memcpy(&itx->itx_lr + 1, &lr->lr_create.lr_common + 1,
1954 	    sizeof (*lr) + namesize - sizeof (lr_t));
1955 
1956 	zil_itx_assign(zd->zd_zilog, itx, tx);
1957 }
1958 
1959 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1960 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1961 {
1962 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
1963 	size_t namesize = strlen(name) + 1;
1964 	itx_t *itx;
1965 
1966 	if (zil_replaying(zd->zd_zilog, tx))
1967 		return;
1968 
1969 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1970 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1971 	    sizeof (*lr) + namesize - sizeof (lr_t));
1972 
1973 	itx->itx_oid = object;
1974 	zil_itx_assign(zd->zd_zilog, itx, tx);
1975 }
1976 
1977 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1978 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1979 {
1980 	itx_t *itx;
1981 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1982 
1983 	if (zil_replaying(zd->zd_zilog, tx))
1984 		return;
1985 
1986 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1987 		write_state = WR_INDIRECT;
1988 
1989 	itx = zil_itx_create(TX_WRITE,
1990 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1991 
1992 	if (write_state == WR_COPIED &&
1993 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1994 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH |
1995 	    DMU_KEEP_CACHING) != 0) {
1996 		zil_itx_destroy(itx, 0);
1997 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1998 		write_state = WR_NEED_COPY;
1999 	}
2000 	itx->itx_private = zd;
2001 	itx->itx_wr_state = write_state;
2002 	itx->itx_sync = (ztest_random(8) == 0);
2003 
2004 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2005 	    sizeof (*lr) - sizeof (lr_t));
2006 
2007 	zil_itx_assign(zd->zd_zilog, itx, tx);
2008 }
2009 
2010 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)2011 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2012 {
2013 	itx_t *itx;
2014 
2015 	if (zil_replaying(zd->zd_zilog, tx))
2016 		return;
2017 
2018 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2019 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2020 	    sizeof (*lr) - sizeof (lr_t));
2021 
2022 	itx->itx_sync = B_FALSE;
2023 	zil_itx_assign(zd->zd_zilog, itx, tx);
2024 }
2025 
2026 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)2027 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2028 {
2029 	itx_t *itx;
2030 
2031 	if (zil_replaying(zd->zd_zilog, tx))
2032 		return;
2033 
2034 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2035 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2036 	    sizeof (*lr) - sizeof (lr_t));
2037 
2038 	itx->itx_sync = B_FALSE;
2039 	zil_itx_assign(zd->zd_zilog, itx, tx);
2040 }
2041 
2042 /*
2043  * ZIL replay ops
2044  */
2045 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)2046 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2047 {
2048 	ztest_ds_t *zd = arg1;
2049 	lr_create_t *lrc = arg2;
2050 	_lr_create_t *lr = &lrc->lr_create;
2051 	char *name = (char *)&lrc->lr_data[0];		/* name follows lr */
2052 	objset_t *os = zd->zd_os;
2053 	ztest_block_tag_t *bbt;
2054 	dmu_buf_t *db;
2055 	dmu_tx_t *tx;
2056 	uint64_t txg;
2057 	int error = 0;
2058 	int bonuslen;
2059 
2060 	if (byteswap)
2061 		byteswap_uint64_array(lr, sizeof (*lr));
2062 
2063 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2064 	ASSERT3S(name[0], !=, '\0');
2065 
2066 	tx = dmu_tx_create(os);
2067 
2068 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2069 
2070 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2071 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2072 	} else {
2073 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2074 	}
2075 
2076 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2077 	if (txg == 0)
2078 		return (ENOSPC);
2079 
2080 	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2081 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2082 
2083 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2084 		if (lr->lr_foid == 0) {
2085 			lr->lr_foid = zap_create_dnsize(os,
2086 			    lr->lrz_type, lr->lrz_bonustype,
2087 			    bonuslen, lr->lrz_dnodesize, tx);
2088 		} else {
2089 			error = zap_create_claim_dnsize(os, lr->lr_foid,
2090 			    lr->lrz_type, lr->lrz_bonustype,
2091 			    bonuslen, lr->lrz_dnodesize, tx);
2092 		}
2093 	} else {
2094 		if (lr->lr_foid == 0) {
2095 			lr->lr_foid = dmu_object_alloc_dnsize(os,
2096 			    lr->lrz_type, 0, lr->lrz_bonustype,
2097 			    bonuslen, lr->lrz_dnodesize, tx);
2098 		} else {
2099 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2100 			    lr->lrz_type, 0, lr->lrz_bonustype,
2101 			    bonuslen, lr->lrz_dnodesize, tx);
2102 		}
2103 	}
2104 
2105 	if (error) {
2106 		ASSERT3U(error, ==, EEXIST);
2107 		ASSERT(zd->zd_zilog->zl_replay);
2108 		dmu_tx_commit(tx);
2109 		return (error);
2110 	}
2111 
2112 	ASSERT3U(lr->lr_foid, !=, 0);
2113 
2114 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2115 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2116 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2117 
2118 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2119 	bbt = ztest_bt_bonus(db);
2120 	dmu_buf_will_dirty(db, tx);
2121 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2122 	    lr->lr_gen, txg, txg);
2123 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2124 	dmu_buf_rele(db, FTAG);
2125 
2126 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2127 	    &lr->lr_foid, tx));
2128 
2129 	(void) ztest_log_create(zd, tx, lrc);
2130 
2131 	dmu_tx_commit(tx);
2132 
2133 	return (0);
2134 }
2135 
2136 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)2137 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2138 {
2139 	ztest_ds_t *zd = arg1;
2140 	lr_remove_t *lr = arg2;
2141 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
2142 	objset_t *os = zd->zd_os;
2143 	dmu_object_info_t doi;
2144 	dmu_tx_t *tx;
2145 	uint64_t object, txg;
2146 
2147 	if (byteswap)
2148 		byteswap_uint64_array(lr, sizeof (*lr));
2149 
2150 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2151 	ASSERT3S(name[0], !=, '\0');
2152 
2153 	VERIFY0(
2154 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2155 	ASSERT3U(object, !=, 0);
2156 
2157 	ztest_object_lock(zd, object, ZTRL_WRITER);
2158 
2159 	VERIFY0(dmu_object_info(os, object, &doi));
2160 
2161 	tx = dmu_tx_create(os);
2162 
2163 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2164 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2165 
2166 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2167 	if (txg == 0) {
2168 		ztest_object_unlock(zd, object);
2169 		return (ENOSPC);
2170 	}
2171 
2172 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2173 		VERIFY0(zap_destroy(os, object, tx));
2174 	} else {
2175 		VERIFY0(dmu_object_free(os, object, tx));
2176 	}
2177 
2178 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2179 
2180 	(void) ztest_log_remove(zd, tx, lr, object);
2181 
2182 	dmu_tx_commit(tx);
2183 
2184 	ztest_object_unlock(zd, object);
2185 
2186 	return (0);
2187 }
2188 
2189 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)2190 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2191 {
2192 	ztest_ds_t *zd = arg1;
2193 	lr_write_t *lr = arg2;
2194 	objset_t *os = zd->zd_os;
2195 	uint8_t *data = &lr->lr_data[0];		/* data follows lr */
2196 	uint64_t offset, length;
2197 	ztest_block_tag_t *bt = (ztest_block_tag_t *)data;
2198 	ztest_block_tag_t *bbt;
2199 	uint64_t gen, txg, lrtxg, crtxg;
2200 	dmu_object_info_t doi;
2201 	dmu_tx_t *tx;
2202 	dmu_buf_t *db;
2203 	arc_buf_t *abuf = NULL;
2204 	rl_t *rl;
2205 
2206 	if (byteswap)
2207 		byteswap_uint64_array(lr, sizeof (*lr));
2208 
2209 	offset = lr->lr_offset;
2210 	length = lr->lr_length;
2211 
2212 	/* If it's a dmu_sync() block, write the whole block */
2213 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2214 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2215 		if (length < blocksize) {
2216 			offset -= offset % blocksize;
2217 			length = blocksize;
2218 		}
2219 	}
2220 
2221 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2222 		byteswap_uint64_array(bt, sizeof (*bt));
2223 
2224 	if (bt->bt_magic != BT_MAGIC)
2225 		bt = NULL;
2226 
2227 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2228 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2229 
2230 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2231 
2232 	dmu_object_info_from_db(db, &doi);
2233 
2234 	bbt = ztest_bt_bonus(db);
2235 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2236 	gen = bbt->bt_gen;
2237 	crtxg = bbt->bt_crtxg;
2238 	lrtxg = lr->lr_common.lrc_txg;
2239 
2240 	tx = dmu_tx_create(os);
2241 
2242 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2243 
2244 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2245 	    P2PHASE(offset, length) == 0)
2246 		abuf = dmu_request_arcbuf(db, length);
2247 
2248 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2249 	if (txg == 0) {
2250 		if (abuf != NULL)
2251 			dmu_return_arcbuf(abuf);
2252 		dmu_buf_rele(db, FTAG);
2253 		ztest_range_unlock(rl);
2254 		ztest_object_unlock(zd, lr->lr_foid);
2255 		return (ENOSPC);
2256 	}
2257 
2258 	if (bt != NULL) {
2259 		/*
2260 		 * Usually, verify the old data before writing new data --
2261 		 * but not always, because we also want to verify correct
2262 		 * behavior when the data was not recently read into cache.
2263 		 */
2264 		ASSERT(doi.doi_data_block_size);
2265 		ASSERT0(offset % doi.doi_data_block_size);
2266 		if (ztest_random(4) != 0) {
2267 			dmu_flags_t flags = ztest_random(2) ?
2268 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2269 
2270 			/*
2271 			 * We will randomly set when to do O_DIRECT on a read.
2272 			 */
2273 			if (ztest_random(4) == 0)
2274 				flags |= DMU_DIRECTIO;
2275 
2276 			ztest_block_tag_t rbt;
2277 
2278 			VERIFY0(dmu_read(os, lr->lr_foid, offset,
2279 			    sizeof (rbt), &rbt, flags));
2280 			if (rbt.bt_magic == BT_MAGIC) {
2281 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2282 				    offset, gen, txg, crtxg);
2283 			}
2284 		}
2285 
2286 		/*
2287 		 * Writes can appear to be newer than the bonus buffer because
2288 		 * the ztest_get_data() callback does a dmu_read() of the
2289 		 * open-context data, which may be different than the data
2290 		 * as it was when the write was generated.
2291 		 */
2292 		if (zd->zd_zilog->zl_replay) {
2293 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2294 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2295 			    bt->bt_crtxg);
2296 		}
2297 
2298 		/*
2299 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2300 		 * so that all of the usual ASSERTs will work.
2301 		 */
2302 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2303 		    crtxg);
2304 	}
2305 
2306 	if (abuf == NULL) {
2307 		dmu_write(os, lr->lr_foid, offset, length, data, tx,
2308 		    DMU_READ_PREFETCH);
2309 	} else {
2310 		memcpy(abuf->b_data, data, length);
2311 		VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx, 0));
2312 	}
2313 
2314 	(void) ztest_log_write(zd, tx, lr);
2315 
2316 	dmu_buf_rele(db, FTAG);
2317 
2318 	dmu_tx_commit(tx);
2319 
2320 	ztest_range_unlock(rl);
2321 	ztest_object_unlock(zd, lr->lr_foid);
2322 
2323 	return (0);
2324 }
2325 
2326 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)2327 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2328 {
2329 	ztest_ds_t *zd = arg1;
2330 	lr_truncate_t *lr = arg2;
2331 	objset_t *os = zd->zd_os;
2332 	dmu_tx_t *tx;
2333 	uint64_t txg;
2334 	rl_t *rl;
2335 
2336 	if (byteswap)
2337 		byteswap_uint64_array(lr, sizeof (*lr));
2338 
2339 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2340 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2341 	    ZTRL_WRITER);
2342 
2343 	tx = dmu_tx_create(os);
2344 
2345 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2346 
2347 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2348 	if (txg == 0) {
2349 		ztest_range_unlock(rl);
2350 		ztest_object_unlock(zd, lr->lr_foid);
2351 		return (ENOSPC);
2352 	}
2353 
2354 	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2355 	    lr->lr_length, tx));
2356 
2357 	(void) ztest_log_truncate(zd, tx, lr);
2358 
2359 	dmu_tx_commit(tx);
2360 
2361 	ztest_range_unlock(rl);
2362 	ztest_object_unlock(zd, lr->lr_foid);
2363 
2364 	return (0);
2365 }
2366 
2367 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)2368 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2369 {
2370 	ztest_ds_t *zd = arg1;
2371 	lr_setattr_t *lr = arg2;
2372 	objset_t *os = zd->zd_os;
2373 	dmu_tx_t *tx;
2374 	dmu_buf_t *db;
2375 	ztest_block_tag_t *bbt;
2376 	uint64_t txg, lrtxg, crtxg, dnodesize;
2377 
2378 	if (byteswap)
2379 		byteswap_uint64_array(lr, sizeof (*lr));
2380 
2381 	ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2382 
2383 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2384 
2385 	tx = dmu_tx_create(os);
2386 	dmu_tx_hold_bonus(tx, lr->lr_foid);
2387 
2388 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2389 	if (txg == 0) {
2390 		dmu_buf_rele(db, FTAG);
2391 		ztest_object_unlock(zd, lr->lr_foid);
2392 		return (ENOSPC);
2393 	}
2394 
2395 	bbt = ztest_bt_bonus(db);
2396 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2397 	crtxg = bbt->bt_crtxg;
2398 	lrtxg = lr->lr_common.lrc_txg;
2399 	dnodesize = bbt->bt_dnodesize;
2400 
2401 	if (zd->zd_zilog->zl_replay) {
2402 		ASSERT3U(lr->lr_size, !=, 0);
2403 		ASSERT3U(lr->lr_mode, !=, 0);
2404 		ASSERT3U(lrtxg, !=, 0);
2405 	} else {
2406 		/*
2407 		 * Randomly change the size and increment the generation.
2408 		 */
2409 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2410 		    sizeof (*bbt);
2411 		lr->lr_mode = bbt->bt_gen + 1;
2412 		ASSERT0(lrtxg);
2413 	}
2414 
2415 	/*
2416 	 * Verify that the current bonus buffer is not newer than our txg.
2417 	 */
2418 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2419 	    MAX(txg, lrtxg), crtxg);
2420 
2421 	dmu_buf_will_dirty(db, tx);
2422 
2423 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2424 	ASSERT3U(lr->lr_size, <=, db->db_size);
2425 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2426 	bbt = ztest_bt_bonus(db);
2427 
2428 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2429 	    txg, crtxg);
2430 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2431 	dmu_buf_rele(db, FTAG);
2432 
2433 	(void) ztest_log_setattr(zd, tx, lr);
2434 
2435 	dmu_tx_commit(tx);
2436 
2437 	ztest_object_unlock(zd, lr->lr_foid);
2438 
2439 	return (0);
2440 }
2441 
2442 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2443 	NULL,			/* 0 no such transaction type */
2444 	ztest_replay_create,	/* TX_CREATE */
2445 	NULL,			/* TX_MKDIR */
2446 	NULL,			/* TX_MKXATTR */
2447 	NULL,			/* TX_SYMLINK */
2448 	ztest_replay_remove,	/* TX_REMOVE */
2449 	NULL,			/* TX_RMDIR */
2450 	NULL,			/* TX_LINK */
2451 	NULL,			/* TX_RENAME */
2452 	ztest_replay_write,	/* TX_WRITE */
2453 	ztest_replay_truncate,	/* TX_TRUNCATE */
2454 	ztest_replay_setattr,	/* TX_SETATTR */
2455 	NULL,			/* TX_ACL */
2456 	NULL,			/* TX_CREATE_ACL */
2457 	NULL,			/* TX_CREATE_ATTR */
2458 	NULL,			/* TX_CREATE_ACL_ATTR */
2459 	NULL,			/* TX_MKDIR_ACL */
2460 	NULL,			/* TX_MKDIR_ATTR */
2461 	NULL,			/* TX_MKDIR_ACL_ATTR */
2462 	NULL,			/* TX_WRITE2 */
2463 	NULL,			/* TX_SETSAXATTR */
2464 	NULL,			/* TX_RENAME_EXCHANGE */
2465 	NULL,			/* TX_RENAME_WHITEOUT */
2466 };
2467 
2468 /*
2469  * ZIL get_data callbacks
2470  */
2471 
2472 static void
ztest_get_done(zgd_t * zgd,int error)2473 ztest_get_done(zgd_t *zgd, int error)
2474 {
2475 	(void) error;
2476 	ztest_ds_t *zd = zgd->zgd_private;
2477 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2478 
2479 	if (zgd->zgd_db)
2480 		dmu_buf_rele(zgd->zgd_db, zgd);
2481 
2482 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2483 	ztest_object_unlock(zd, object);
2484 
2485 	umem_free(zgd, sizeof (*zgd));
2486 }
2487 
2488 static int
ztest_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2489 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2490     struct lwb *lwb, zio_t *zio)
2491 {
2492 	(void) arg2;
2493 	ztest_ds_t *zd = arg;
2494 	objset_t *os = zd->zd_os;
2495 	uint64_t object = lr->lr_foid;
2496 	uint64_t offset = lr->lr_offset;
2497 	uint64_t size = lr->lr_length;
2498 	uint64_t txg = lr->lr_common.lrc_txg;
2499 	uint64_t crtxg;
2500 	dmu_object_info_t doi;
2501 	dmu_buf_t *db;
2502 	zgd_t *zgd;
2503 	int error;
2504 
2505 	ASSERT3P(lwb, !=, NULL);
2506 	ASSERT3U(size, !=, 0);
2507 
2508 	ztest_object_lock(zd, object, ZTRL_READER);
2509 	error = dmu_bonus_hold(os, object, FTAG, &db);
2510 	if (error) {
2511 		ztest_object_unlock(zd, object);
2512 		return (error);
2513 	}
2514 
2515 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2516 
2517 	if (crtxg == 0 || crtxg > txg) {
2518 		dmu_buf_rele(db, FTAG);
2519 		ztest_object_unlock(zd, object);
2520 		return (ENOENT);
2521 	}
2522 
2523 	dmu_object_info_from_db(db, &doi);
2524 	dmu_buf_rele(db, FTAG);
2525 	db = NULL;
2526 
2527 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2528 	zgd->zgd_lwb = lwb;
2529 	zgd->zgd_private = zd;
2530 
2531 	if (buf != NULL) {	/* immediate write */
2532 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2533 		    object, offset, size, ZTRL_READER);
2534 
2535 		error = dmu_read(os, object, offset, size, buf,
2536 		    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
2537 		ASSERT0(error);
2538 	} else {
2539 		ASSERT3P(zio, !=, NULL);
2540 		size = doi.doi_data_block_size;
2541 		if (ISP2(size)) {
2542 			offset = P2ALIGN_TYPED(offset, size, uint64_t);
2543 		} else {
2544 			ASSERT3U(offset, <, size);
2545 			offset = 0;
2546 		}
2547 
2548 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2549 		    object, offset, size, ZTRL_READER);
2550 
2551 		error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2552 		if (error == 0) {
2553 			blkptr_t *bp = &lr->lr_blkptr;
2554 
2555 			zgd->zgd_db = db;
2556 			zgd->zgd_bp = bp;
2557 
2558 			ASSERT3U(db->db_offset, ==, offset);
2559 			ASSERT3U(db->db_size, ==, size);
2560 
2561 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2562 			    ztest_get_done, zgd);
2563 
2564 			if (error == 0)
2565 				return (0);
2566 		}
2567 	}
2568 
2569 	ztest_get_done(zgd, error);
2570 
2571 	return (error);
2572 }
2573 
2574 static void *
ztest_lr_alloc(size_t lrsize,char * name)2575 ztest_lr_alloc(size_t lrsize, char *name)
2576 {
2577 	char *lr;
2578 	size_t namesize = name ? strlen(name) + 1 : 0;
2579 
2580 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2581 
2582 	if (name)
2583 		memcpy(lr + lrsize, name, namesize);
2584 
2585 	return (lr);
2586 }
2587 
2588 static void
ztest_lr_free(void * lr,size_t lrsize,char * name)2589 ztest_lr_free(void *lr, size_t lrsize, char *name)
2590 {
2591 	size_t namesize = name ? strlen(name) + 1 : 0;
2592 
2593 	umem_free(lr, lrsize + namesize);
2594 }
2595 
2596 /*
2597  * Lookup a bunch of objects.  Returns the number of objects not found.
2598  */
2599 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2600 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2601 {
2602 	int missing = 0;
2603 	int error;
2604 	int i;
2605 
2606 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2607 
2608 	for (i = 0; i < count; i++, od++) {
2609 		od->od_object = 0;
2610 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2611 		    sizeof (uint64_t), 1, &od->od_object);
2612 		if (error) {
2613 			ASSERT3S(error, ==, ENOENT);
2614 			ASSERT0(od->od_object);
2615 			missing++;
2616 		} else {
2617 			dmu_buf_t *db;
2618 			ztest_block_tag_t *bbt;
2619 			dmu_object_info_t doi;
2620 
2621 			ASSERT3U(od->od_object, !=, 0);
2622 			ASSERT0(missing);	/* there should be no gaps */
2623 
2624 			ztest_object_lock(zd, od->od_object, ZTRL_READER);
2625 			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2626 			    FTAG, &db));
2627 			dmu_object_info_from_db(db, &doi);
2628 			bbt = ztest_bt_bonus(db);
2629 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2630 			od->od_type = doi.doi_type;
2631 			od->od_blocksize = doi.doi_data_block_size;
2632 			od->od_gen = bbt->bt_gen;
2633 			dmu_buf_rele(db, FTAG);
2634 			ztest_object_unlock(zd, od->od_object);
2635 		}
2636 	}
2637 
2638 	return (missing);
2639 }
2640 
2641 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2642 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2643 {
2644 	int missing = 0;
2645 	int i;
2646 
2647 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2648 
2649 	for (i = 0; i < count; i++, od++) {
2650 		if (missing) {
2651 			od->od_object = 0;
2652 			missing++;
2653 			continue;
2654 		}
2655 
2656 		lr_create_t *lrc = ztest_lr_alloc(sizeof (*lrc), od->od_name);
2657 		_lr_create_t *lr = &lrc->lr_create;
2658 
2659 		lr->lr_doid = od->od_dir;
2660 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2661 		lr->lrz_type = od->od_crtype;
2662 		lr->lrz_blocksize = od->od_crblocksize;
2663 		lr->lrz_ibshift = ztest_random_ibshift();
2664 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2665 		lr->lrz_dnodesize = od->od_crdnodesize;
2666 		lr->lr_gen = od->od_crgen;
2667 		lr->lr_crtime[0] = time(NULL);
2668 
2669 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2670 			ASSERT0(missing);
2671 			od->od_object = 0;
2672 			missing++;
2673 		} else {
2674 			od->od_object = lr->lr_foid;
2675 			od->od_type = od->od_crtype;
2676 			od->od_blocksize = od->od_crblocksize;
2677 			od->od_gen = od->od_crgen;
2678 			ASSERT3U(od->od_object, !=, 0);
2679 		}
2680 
2681 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2682 	}
2683 
2684 	return (missing);
2685 }
2686 
2687 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2688 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2689 {
2690 	int missing = 0;
2691 	int error;
2692 	int i;
2693 
2694 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2695 
2696 	od += count - 1;
2697 
2698 	for (i = count - 1; i >= 0; i--, od--) {
2699 		if (missing) {
2700 			missing++;
2701 			continue;
2702 		}
2703 
2704 		/*
2705 		 * No object was found.
2706 		 */
2707 		if (od->od_object == 0)
2708 			continue;
2709 
2710 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2711 
2712 		lr->lr_doid = od->od_dir;
2713 
2714 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2715 			ASSERT3U(error, ==, ENOSPC);
2716 			missing++;
2717 		} else {
2718 			od->od_object = 0;
2719 		}
2720 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2721 	}
2722 
2723 	return (missing);
2724 }
2725 
2726 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,const void * data)2727 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2728     const void *data)
2729 {
2730 	lr_write_t *lr;
2731 	int error;
2732 
2733 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2734 
2735 	lr->lr_foid = object;
2736 	lr->lr_offset = offset;
2737 	lr->lr_length = size;
2738 	lr->lr_blkoff = 0;
2739 	BP_ZERO(&lr->lr_blkptr);
2740 
2741 	memcpy(&lr->lr_data[0], data, size);
2742 
2743 	error = ztest_replay_write(zd, lr, B_FALSE);
2744 
2745 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2746 
2747 	return (error);
2748 }
2749 
2750 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2751 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2752 {
2753 	lr_truncate_t *lr;
2754 	int error;
2755 
2756 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2757 
2758 	lr->lr_foid = object;
2759 	lr->lr_offset = offset;
2760 	lr->lr_length = size;
2761 
2762 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2763 
2764 	ztest_lr_free(lr, sizeof (*lr), NULL);
2765 
2766 	return (error);
2767 }
2768 
2769 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2770 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2771 {
2772 	lr_setattr_t *lr;
2773 	int error;
2774 
2775 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2776 
2777 	lr->lr_foid = object;
2778 	lr->lr_size = 0;
2779 	lr->lr_mode = 0;
2780 
2781 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2782 
2783 	ztest_lr_free(lr, sizeof (*lr), NULL);
2784 
2785 	return (error);
2786 }
2787 
2788 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2789 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2790 {
2791 	objset_t *os = zd->zd_os;
2792 	dmu_tx_t *tx;
2793 	uint64_t txg;
2794 	rl_t *rl;
2795 
2796 	txg_wait_synced(dmu_objset_pool(os), 0);
2797 
2798 	ztest_object_lock(zd, object, ZTRL_READER);
2799 	rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2800 
2801 	tx = dmu_tx_create(os);
2802 
2803 	dmu_tx_hold_write(tx, object, offset, size);
2804 
2805 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2806 
2807 	if (txg != 0) {
2808 		dmu_prealloc(os, object, offset, size, tx);
2809 		dmu_tx_commit(tx);
2810 		txg_wait_synced(dmu_objset_pool(os), txg);
2811 	} else {
2812 		(void) dmu_free_long_range(os, object, offset, size);
2813 	}
2814 
2815 	ztest_range_unlock(rl);
2816 	ztest_object_unlock(zd, object);
2817 }
2818 
2819 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2820 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2821 {
2822 	int err;
2823 	ztest_block_tag_t wbt;
2824 	dmu_object_info_t doi;
2825 	enum ztest_io_type io_type;
2826 	uint64_t blocksize;
2827 	void *data;
2828 	dmu_flags_t dmu_read_flags = DMU_READ_NO_PREFETCH;
2829 
2830 	/*
2831 	 * We will randomly set when to do O_DIRECT on a read.
2832 	 */
2833 	if (ztest_random(4) == 0)
2834 		dmu_read_flags |= DMU_DIRECTIO;
2835 
2836 	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2837 	blocksize = doi.doi_data_block_size;
2838 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2839 
2840 	/*
2841 	 * Pick an i/o type at random, biased toward writing block tags.
2842 	 */
2843 	io_type = ztest_random(ZTEST_IO_TYPES);
2844 	if (ztest_random(2) == 0)
2845 		io_type = ZTEST_IO_WRITE_TAG;
2846 
2847 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2848 
2849 	switch (io_type) {
2850 
2851 	case ZTEST_IO_WRITE_TAG:
2852 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2853 		    offset, 0, 0, 0);
2854 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2855 		break;
2856 
2857 	case ZTEST_IO_WRITE_PATTERN:
2858 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2859 		if (ztest_random(2) == 0) {
2860 			/*
2861 			 * Induce fletcher2 collisions to ensure that
2862 			 * zio_ddt_collision() detects and resolves them
2863 			 * when using fletcher2-verify for deduplication.
2864 			 */
2865 			((uint64_t *)data)[0] ^= 1ULL << 63;
2866 			((uint64_t *)data)[4] ^= 1ULL << 63;
2867 		}
2868 		(void) ztest_write(zd, object, offset, blocksize, data);
2869 		break;
2870 
2871 	case ZTEST_IO_WRITE_ZEROES:
2872 		memset(data, 0, blocksize);
2873 		(void) ztest_write(zd, object, offset, blocksize, data);
2874 		break;
2875 
2876 	case ZTEST_IO_TRUNCATE:
2877 		(void) ztest_truncate(zd, object, offset, blocksize);
2878 		break;
2879 
2880 	case ZTEST_IO_SETATTR:
2881 		(void) ztest_setattr(zd, object);
2882 		break;
2883 	default:
2884 		break;
2885 
2886 	case ZTEST_IO_REWRITE:
2887 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2888 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2889 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2890 		    B_FALSE);
2891 		ASSERT(err == 0 || err == ENOSPC);
2892 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2893 		    ZFS_PROP_COMPRESSION,
2894 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2895 		    B_FALSE);
2896 		ASSERT(err == 0 || err == ENOSPC);
2897 		(void) pthread_rwlock_unlock(&ztest_name_lock);
2898 
2899 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2900 		    dmu_read_flags));
2901 
2902 		(void) ztest_write(zd, object, offset, blocksize, data);
2903 		break;
2904 	}
2905 
2906 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2907 
2908 	umem_free(data, blocksize);
2909 }
2910 
2911 /*
2912  * Initialize an object description template.
2913  */
2914 static void
ztest_od_init(ztest_od_t * od,uint64_t id,const char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2915 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2916     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2917     uint64_t gen)
2918 {
2919 	od->od_dir = ZTEST_DIROBJ;
2920 	od->od_object = 0;
2921 
2922 	od->od_crtype = type;
2923 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2924 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2925 	od->od_crgen = gen;
2926 
2927 	od->od_type = DMU_OT_NONE;
2928 	od->od_blocksize = 0;
2929 	od->od_gen = 0;
2930 
2931 	(void) snprintf(od->od_name, sizeof (od->od_name),
2932 	    "%s(%"PRId64")[%"PRIu64"]",
2933 	    tag, id, index);
2934 }
2935 
2936 /*
2937  * Lookup or create the objects for a test using the od template.
2938  * If the objects do not all exist, or if 'remove' is specified,
2939  * remove any existing objects and create new ones.  Otherwise,
2940  * use the existing objects.
2941  */
2942 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2943 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2944 {
2945 	int count = size / sizeof (*od);
2946 	int rv = 0;
2947 
2948 	mutex_enter(&zd->zd_dirobj_lock);
2949 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2950 	    (ztest_remove(zd, od, count) != 0 ||
2951 	    ztest_create(zd, od, count) != 0))
2952 		rv = -1;
2953 	zd->zd_od = od;
2954 	mutex_exit(&zd->zd_dirobj_lock);
2955 
2956 	return (rv);
2957 }
2958 
2959 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2960 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2961 {
2962 	(void) id;
2963 	zilog_t *zilog = zd->zd_zilog;
2964 
2965 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2966 
2967 	VERIFY0(zil_commit(zilog, ztest_random(ZTEST_OBJECTS)));
2968 
2969 	/*
2970 	 * Remember the committed values in zd, which is in parent/child
2971 	 * shared memory.  If we die, the next iteration of ztest_run()
2972 	 * will verify that the log really does contain this record.
2973 	 */
2974 	mutex_enter(&zilog->zl_lock);
2975 	ASSERT3P(zd->zd_shared, !=, NULL);
2976 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2977 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2978 	mutex_exit(&zilog->zl_lock);
2979 
2980 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2981 }
2982 
2983 /*
2984  * This function is designed to simulate the operations that occur during a
2985  * mount/unmount operation.  We hold the dataset across these operations in an
2986  * attempt to expose any implicit assumptions about ZIL management.
2987  */
2988 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2989 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2990 {
2991 	(void) id;
2992 	objset_t *os = zd->zd_os;
2993 
2994 	/*
2995 	 * We hold the ztest_vdev_lock so we don't cause problems with
2996 	 * other threads that wish to remove a log device, such as
2997 	 * ztest_device_removal().
2998 	 */
2999 	mutex_enter(&ztest_vdev_lock);
3000 
3001 	/*
3002 	 * We grab the zd_dirobj_lock to ensure that no other thread is
3003 	 * updating the zil (i.e. adding in-memory log records) and the
3004 	 * zd_zilog_lock to block any I/O.
3005 	 */
3006 	mutex_enter(&zd->zd_dirobj_lock);
3007 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
3008 
3009 	/* zfsvfs_teardown() */
3010 	zil_close(zd->zd_zilog);
3011 
3012 	/* zfsvfs_setup() */
3013 	VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
3014 	zil_replay(os, zd, ztest_replay_vector);
3015 
3016 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3017 	mutex_exit(&zd->zd_dirobj_lock);
3018 	mutex_exit(&ztest_vdev_lock);
3019 }
3020 
3021 /*
3022  * Verify that we can't destroy an active pool, create an existing pool,
3023  * or create a pool with a bad vdev spec.
3024  */
3025 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)3026 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3027 {
3028 	(void) zd, (void) id;
3029 	ztest_shared_opts_t *zo = &ztest_opts;
3030 	spa_t *spa;
3031 	nvlist_t *nvroot;
3032 
3033 	if (zo->zo_mmp_test)
3034 		return;
3035 
3036 	/*
3037 	 * Attempt to create using a bad file.
3038 	 */
3039 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3040 	VERIFY3U(ENOENT, ==,
3041 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3042 	fnvlist_free(nvroot);
3043 
3044 	/*
3045 	 * Attempt to create using a bad mirror.
3046 	 */
3047 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3048 	VERIFY3U(ENOENT, ==,
3049 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3050 	fnvlist_free(nvroot);
3051 
3052 	/*
3053 	 * Attempt to create an existing pool.  It shouldn't matter
3054 	 * what's in the nvroot; we should fail with EEXIST.
3055 	 */
3056 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
3057 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3058 	VERIFY3U(EEXIST, ==,
3059 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3060 	fnvlist_free(nvroot);
3061 
3062 	/*
3063 	 * We open a reference to the spa and then we try to export it
3064 	 * expecting one of the following errors:
3065 	 *
3066 	 * EBUSY
3067 	 *	Because of the reference we just opened.
3068 	 *
3069 	 * ZFS_ERR_EXPORT_IN_PROGRESS
3070 	 *	For the case that there is another ztest thread doing
3071 	 *	an export concurrently.
3072 	 */
3073 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3074 	int error = spa_destroy(zo->zo_pool);
3075 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3076 		fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3077 		    spa->spa_name, error);
3078 	}
3079 	spa_close(spa, FTAG);
3080 
3081 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3082 }
3083 
3084 /*
3085  * Start and then stop the MMP threads to ensure the startup and shutdown code
3086  * works properly.  Actual protection and property-related code tested via ZTS.
3087  */
3088 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)3089 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3090 {
3091 	(void) zd, (void) id;
3092 	ztest_shared_opts_t *zo = &ztest_opts;
3093 	spa_t *spa = ztest_spa;
3094 
3095 	if (zo->zo_mmp_test)
3096 		return;
3097 
3098 	/*
3099 	 * Since enabling MMP involves setting a property, it could not be done
3100 	 * while the pool is suspended.
3101 	 */
3102 	if (spa_suspended(spa))
3103 		return;
3104 
3105 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3106 	mutex_enter(&spa->spa_props_lock);
3107 
3108 	zfs_multihost_fail_intervals = 0;
3109 
3110 	if (!spa_multihost(spa)) {
3111 		spa->spa_multihost = B_TRUE;
3112 		mmp_thread_start(spa);
3113 	}
3114 
3115 	mutex_exit(&spa->spa_props_lock);
3116 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3117 
3118 	txg_wait_synced(spa_get_dsl(spa), 0);
3119 	mmp_signal_all_threads();
3120 	txg_wait_synced(spa_get_dsl(spa), 0);
3121 
3122 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3123 	mutex_enter(&spa->spa_props_lock);
3124 
3125 	if (spa_multihost(spa)) {
3126 		mmp_thread_stop(spa);
3127 		spa->spa_multihost = B_FALSE;
3128 	}
3129 
3130 	mutex_exit(&spa->spa_props_lock);
3131 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3132 }
3133 
3134 static int
ztest_get_raidz_children(spa_t * spa)3135 ztest_get_raidz_children(spa_t *spa)
3136 {
3137 	(void) spa;
3138 	vdev_t *raidvd;
3139 
3140 	ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3141 
3142 	if (ztest_opts.zo_raid_do_expand) {
3143 		raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3144 
3145 		ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3146 
3147 		return (raidvd->vdev_children);
3148 	}
3149 
3150 	return (ztest_opts.zo_raid_children);
3151 }
3152 
3153 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)3154 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3155 {
3156 	(void) zd, (void) id;
3157 	spa_t *spa;
3158 	uint64_t initial_version = SPA_VERSION_INITIAL;
3159 	uint64_t raidz_children, version, newversion;
3160 	nvlist_t *nvroot, *props;
3161 	char *name;
3162 
3163 	if (ztest_opts.zo_mmp_test)
3164 		return;
3165 
3166 	/* dRAID added after feature flags, skip upgrade test. */
3167 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3168 		return;
3169 
3170 	mutex_enter(&ztest_vdev_lock);
3171 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3172 
3173 	/*
3174 	 * Clean up from previous runs.
3175 	 */
3176 	(void) spa_destroy(name);
3177 
3178 	raidz_children = ztest_get_raidz_children(ztest_spa);
3179 
3180 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3181 	    NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3182 
3183 	/*
3184 	 * If we're configuring a RAIDZ device then make sure that the
3185 	 * initial version is capable of supporting that feature.
3186 	 */
3187 	switch (ztest_opts.zo_raid_parity) {
3188 	case 0:
3189 	case 1:
3190 		initial_version = SPA_VERSION_INITIAL;
3191 		break;
3192 	case 2:
3193 		initial_version = SPA_VERSION_RAIDZ2;
3194 		break;
3195 	case 3:
3196 		initial_version = SPA_VERSION_RAIDZ3;
3197 		break;
3198 	}
3199 
3200 	/*
3201 	 * Create a pool with a spa version that can be upgraded. Pick
3202 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3203 	 */
3204 	do {
3205 		version = ztest_random_spa_version(initial_version);
3206 	} while (version > SPA_VERSION_BEFORE_FEATURES);
3207 
3208 	props = fnvlist_alloc();
3209 	fnvlist_add_uint64(props,
3210 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3211 	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3212 	fnvlist_free(nvroot);
3213 	fnvlist_free(props);
3214 
3215 	VERIFY0(spa_open(name, &spa, FTAG));
3216 	VERIFY3U(spa_version(spa), ==, version);
3217 	newversion = ztest_random_spa_version(version + 1);
3218 
3219 	if (ztest_opts.zo_verbose >= 4) {
3220 		(void) printf("upgrading spa version from "
3221 		    "%"PRIu64" to %"PRIu64"\n",
3222 		    version, newversion);
3223 	}
3224 
3225 	spa_upgrade(spa, newversion);
3226 	VERIFY3U(spa_version(spa), >, version);
3227 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3228 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3229 	spa_close(spa, FTAG);
3230 
3231 	kmem_strfree(name);
3232 	mutex_exit(&ztest_vdev_lock);
3233 }
3234 
3235 static void
ztest_spa_checkpoint(spa_t * spa)3236 ztest_spa_checkpoint(spa_t *spa)
3237 {
3238 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3239 
3240 	int error = spa_checkpoint(spa->spa_name);
3241 
3242 	switch (error) {
3243 	case 0:
3244 	case ZFS_ERR_DEVRM_IN_PROGRESS:
3245 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3246 	case ZFS_ERR_CHECKPOINT_EXISTS:
3247 	case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3248 		break;
3249 	case ENOSPC:
3250 		ztest_record_enospc(FTAG);
3251 		break;
3252 	default:
3253 		fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3254 	}
3255 }
3256 
3257 static void
ztest_spa_discard_checkpoint(spa_t * spa)3258 ztest_spa_discard_checkpoint(spa_t *spa)
3259 {
3260 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3261 
3262 	int error = spa_checkpoint_discard(spa->spa_name);
3263 
3264 	switch (error) {
3265 	case 0:
3266 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3267 	case ZFS_ERR_NO_CHECKPOINT:
3268 		break;
3269 	default:
3270 		fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3271 		    spa->spa_name, error);
3272 	}
3273 
3274 }
3275 
3276 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)3277 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3278 {
3279 	(void) zd, (void) id;
3280 	spa_t *spa = ztest_spa;
3281 
3282 	mutex_enter(&ztest_checkpoint_lock);
3283 	if (ztest_random(2) == 0) {
3284 		ztest_spa_checkpoint(spa);
3285 	} else {
3286 		ztest_spa_discard_checkpoint(spa);
3287 	}
3288 	mutex_exit(&ztest_checkpoint_lock);
3289 }
3290 
3291 
3292 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)3293 vdev_lookup_by_path(vdev_t *vd, const char *path)
3294 {
3295 	vdev_t *mvd;
3296 	int c;
3297 
3298 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3299 		return (vd);
3300 
3301 	for (c = 0; c < vd->vdev_children; c++)
3302 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3303 		    NULL)
3304 			return (mvd);
3305 
3306 	return (NULL);
3307 }
3308 
3309 static int
spa_num_top_vdevs(spa_t * spa)3310 spa_num_top_vdevs(spa_t *spa)
3311 {
3312 	vdev_t *rvd = spa->spa_root_vdev;
3313 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3314 	return (rvd->vdev_children);
3315 }
3316 
3317 /*
3318  * Verify that vdev_add() works as expected.
3319  */
3320 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)3321 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3322 {
3323 	(void) zd, (void) id;
3324 	ztest_shared_t *zs = ztest_shared;
3325 	spa_t *spa = ztest_spa;
3326 	uint64_t leaves;
3327 	uint64_t guid;
3328 	uint64_t raidz_children;
3329 
3330 	nvlist_t *nvroot;
3331 	int error;
3332 
3333 	if (ztest_opts.zo_mmp_test)
3334 		return;
3335 
3336 	mutex_enter(&ztest_vdev_lock);
3337 	raidz_children = ztest_get_raidz_children(spa);
3338 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3339 
3340 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3341 
3342 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3343 
3344 	/*
3345 	 * If we have slogs then remove them 1/4 of the time.
3346 	 */
3347 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3348 		metaslab_group_t *mg;
3349 
3350 		/*
3351 		 * find the first real slog in log allocation class
3352 		 */
3353 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3354 		while (!mg->mg_vd->vdev_islog)
3355 			mg = mg->mg_next;
3356 
3357 		guid = mg->mg_vd->vdev_guid;
3358 
3359 		spa_config_exit(spa, SCL_VDEV, FTAG);
3360 
3361 		/*
3362 		 * We have to grab the zs_name_lock as writer to
3363 		 * prevent a race between removing a slog (dmu_objset_find)
3364 		 * and destroying a dataset. Removing the slog will
3365 		 * grab a reference on the dataset which may cause
3366 		 * dsl_destroy_head() to fail with EBUSY thus
3367 		 * leaving the dataset in an inconsistent state.
3368 		 */
3369 		pthread_rwlock_wrlock(&ztest_name_lock);
3370 		error = spa_vdev_remove(spa, guid, B_FALSE);
3371 		pthread_rwlock_unlock(&ztest_name_lock);
3372 
3373 		switch (error) {
3374 		case 0:
3375 		case EEXIST:	/* Generic zil_reset() error */
3376 		case EBUSY:	/* Replay required */
3377 		case EACCES:	/* Crypto key not loaded */
3378 		case ZFS_ERR_CHECKPOINT_EXISTS:
3379 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3380 			break;
3381 		default:
3382 			fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3383 		}
3384 	} else {
3385 		spa_config_exit(spa, SCL_VDEV, FTAG);
3386 
3387 		/*
3388 		 * Make 1/4 of the devices be log devices
3389 		 */
3390 		nvroot = make_vdev_root(NULL, NULL, NULL,
3391 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3392 		    "log" : NULL, raidz_children, zs->zs_mirrors,
3393 		    1);
3394 
3395 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3396 		fnvlist_free(nvroot);
3397 
3398 		switch (error) {
3399 		case 0:
3400 			break;
3401 		case ENOSPC:
3402 			ztest_record_enospc("spa_vdev_add");
3403 			break;
3404 		default:
3405 			fatal(B_FALSE, "spa_vdev_add() = %d", error);
3406 		}
3407 	}
3408 
3409 	mutex_exit(&ztest_vdev_lock);
3410 }
3411 
3412 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)3413 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3414 {
3415 	(void) zd, (void) id;
3416 	ztest_shared_t *zs = ztest_shared;
3417 	spa_t *spa = ztest_spa;
3418 	uint64_t leaves;
3419 	nvlist_t *nvroot;
3420 	uint64_t raidz_children;
3421 	const char *class = (ztest_random(2) == 0) ?
3422 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3423 	int error;
3424 
3425 	/*
3426 	 * By default add a special vdev 50% of the time
3427 	 */
3428 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3429 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3430 	    ztest_random(2) == 0)) {
3431 		return;
3432 	}
3433 
3434 	mutex_enter(&ztest_vdev_lock);
3435 
3436 	/* Only test with mirrors */
3437 	if (zs->zs_mirrors < 2) {
3438 		mutex_exit(&ztest_vdev_lock);
3439 		return;
3440 	}
3441 
3442 	/* requires feature@allocation_classes */
3443 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3444 		mutex_exit(&ztest_vdev_lock);
3445 		return;
3446 	}
3447 
3448 	raidz_children = ztest_get_raidz_children(spa);
3449 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3450 
3451 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3452 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3453 	spa_config_exit(spa, SCL_VDEV, FTAG);
3454 
3455 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3456 	    class, raidz_children, zs->zs_mirrors, 1);
3457 
3458 	error = spa_vdev_add(spa, nvroot, B_FALSE);
3459 	fnvlist_free(nvroot);
3460 
3461 	if (error == ENOSPC)
3462 		ztest_record_enospc("spa_vdev_add");
3463 	else if (error != 0)
3464 		fatal(B_FALSE, "spa_vdev_add() = %d", error);
3465 
3466 	/*
3467 	 * 50% of the time allow small blocks in the special class
3468 	 */
3469 	if (error == 0 &&
3470 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3471 		if (ztest_opts.zo_verbose >= 3)
3472 			(void) printf("Enabling special VDEV small blocks\n");
3473 		error = ztest_dsl_prop_set_uint64(zd->zd_name,
3474 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3475 		ASSERT(error == 0 || error == ENOSPC);
3476 	}
3477 
3478 	mutex_exit(&ztest_vdev_lock);
3479 
3480 	if (ztest_opts.zo_verbose >= 3) {
3481 		metaslab_class_t *mc;
3482 
3483 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3484 			mc = spa_special_class(spa);
3485 		else
3486 			mc = spa_dedup_class(spa);
3487 		(void) printf("Added a %s mirrored vdev (of %d)\n",
3488 		    class, (int)mc->mc_groups);
3489 	}
3490 }
3491 
3492 /*
3493  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3494  */
3495 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3496 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3497 {
3498 	(void) zd, (void) id;
3499 	ztest_shared_t *zs = ztest_shared;
3500 	spa_t *spa = ztest_spa;
3501 	vdev_t *rvd = spa->spa_root_vdev;
3502 	spa_aux_vdev_t *sav;
3503 	const char *aux;
3504 	char *path;
3505 	uint64_t guid = 0;
3506 	int error, ignore_err = 0;
3507 
3508 	if (ztest_opts.zo_mmp_test)
3509 		return;
3510 
3511 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3512 
3513 	if (ztest_random(2) == 0) {
3514 		sav = &spa->spa_spares;
3515 		aux = ZPOOL_CONFIG_SPARES;
3516 	} else {
3517 		sav = &spa->spa_l2cache;
3518 		aux = ZPOOL_CONFIG_L2CACHE;
3519 	}
3520 
3521 	mutex_enter(&ztest_vdev_lock);
3522 
3523 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3524 
3525 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3526 		/*
3527 		 * Pick a random device to remove.
3528 		 */
3529 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3530 
3531 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3532 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3533 			ignore_err = ENOTSUP;
3534 
3535 		guid = svd->vdev_guid;
3536 	} else {
3537 		/*
3538 		 * Find an unused device we can add.
3539 		 */
3540 		zs->zs_vdev_aux = 0;
3541 		for (;;) {
3542 			int c;
3543 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3544 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3545 			    zs->zs_vdev_aux);
3546 			for (c = 0; c < sav->sav_count; c++)
3547 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3548 				    path) == 0)
3549 					break;
3550 			if (c == sav->sav_count &&
3551 			    vdev_lookup_by_path(rvd, path) == NULL)
3552 				break;
3553 			zs->zs_vdev_aux++;
3554 		}
3555 	}
3556 
3557 	spa_config_exit(spa, SCL_VDEV, FTAG);
3558 
3559 	if (guid == 0) {
3560 		/*
3561 		 * Add a new device.
3562 		 */
3563 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3564 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3565 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3566 
3567 		switch (error) {
3568 		case 0:
3569 			break;
3570 		default:
3571 			fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3572 		}
3573 		fnvlist_free(nvroot);
3574 	} else {
3575 		/*
3576 		 * Remove an existing device.  Sometimes, dirty its
3577 		 * vdev state first to make sure we handle removal
3578 		 * of devices that have pending state changes.
3579 		 */
3580 		if (ztest_random(2) == 0)
3581 			(void) vdev_online(spa, guid, 0, NULL);
3582 
3583 		error = spa_vdev_remove(spa, guid, B_FALSE);
3584 
3585 		switch (error) {
3586 		case 0:
3587 		case EBUSY:
3588 		case ZFS_ERR_CHECKPOINT_EXISTS:
3589 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3590 			break;
3591 		default:
3592 			if (error != ignore_err)
3593 				fatal(B_FALSE,
3594 				    "spa_vdev_remove(%"PRIu64") = %d",
3595 				    guid, error);
3596 		}
3597 	}
3598 
3599 	mutex_exit(&ztest_vdev_lock);
3600 
3601 	umem_free(path, MAXPATHLEN);
3602 }
3603 
3604 /*
3605  * split a pool if it has mirror tlvdevs
3606  */
3607 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3608 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3609 {
3610 	(void) zd, (void) id;
3611 	ztest_shared_t *zs = ztest_shared;
3612 	spa_t *spa = ztest_spa;
3613 	vdev_t *rvd = spa->spa_root_vdev;
3614 	nvlist_t *tree, **child, *config, *split, **schild;
3615 	uint_t c, children, schildren = 0, lastlogid = 0;
3616 	int error = 0;
3617 
3618 	if (ztest_opts.zo_mmp_test)
3619 		return;
3620 
3621 	mutex_enter(&ztest_vdev_lock);
3622 
3623 	/* ensure we have a usable config; mirrors of raidz aren't supported */
3624 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3625 		mutex_exit(&ztest_vdev_lock);
3626 		return;
3627 	}
3628 
3629 	/* clean up the old pool, if any */
3630 	(void) spa_destroy("splitp");
3631 
3632 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3633 
3634 	/* generate a config from the existing config */
3635 	mutex_enter(&spa->spa_props_lock);
3636 	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3637 	mutex_exit(&spa->spa_props_lock);
3638 
3639 	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3640 	    &child, &children));
3641 
3642 	schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3643 	    UMEM_NOFAIL);
3644 	for (c = 0; c < children; c++) {
3645 		vdev_t *tvd = rvd->vdev_child[c];
3646 		nvlist_t **mchild;
3647 		uint_t mchildren;
3648 
3649 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3650 			schild[schildren] = fnvlist_alloc();
3651 			fnvlist_add_string(schild[schildren],
3652 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3653 			fnvlist_add_uint64(schild[schildren],
3654 			    ZPOOL_CONFIG_IS_HOLE, 1);
3655 			if (lastlogid == 0)
3656 				lastlogid = schildren;
3657 			++schildren;
3658 			continue;
3659 		}
3660 		lastlogid = 0;
3661 		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3662 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3663 		schild[schildren++] = fnvlist_dup(mchild[0]);
3664 	}
3665 
3666 	/* OK, create a config that can be used to split */
3667 	split = fnvlist_alloc();
3668 	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3669 	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3670 	    (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3671 
3672 	config = fnvlist_alloc();
3673 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3674 
3675 	for (c = 0; c < schildren; c++)
3676 		fnvlist_free(schild[c]);
3677 	umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3678 	fnvlist_free(split);
3679 
3680 	spa_config_exit(spa, SCL_VDEV, FTAG);
3681 
3682 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3683 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3684 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3685 
3686 	fnvlist_free(config);
3687 
3688 	if (error == 0) {
3689 		(void) printf("successful split - results:\n");
3690 		spa_namespace_enter(FTAG);
3691 		show_pool_stats(spa);
3692 		show_pool_stats(spa_lookup("splitp"));
3693 		spa_namespace_exit(FTAG);
3694 		++zs->zs_splits;
3695 		--zs->zs_mirrors;
3696 	}
3697 	mutex_exit(&ztest_vdev_lock);
3698 }
3699 
3700 /*
3701  * Verify that we can attach and detach devices.
3702  */
3703 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3704 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3705 {
3706 	(void) zd, (void) id;
3707 	ztest_shared_t *zs = ztest_shared;
3708 	spa_t *spa = ztest_spa;
3709 	spa_aux_vdev_t *sav = &spa->spa_spares;
3710 	vdev_t *rvd = spa->spa_root_vdev;
3711 	vdev_t *oldvd, *newvd, *pvd;
3712 	nvlist_t *root;
3713 	uint64_t leaves;
3714 	uint64_t leaf, top;
3715 	uint64_t ashift = ztest_get_ashift();
3716 	uint64_t oldguid, pguid;
3717 	uint64_t oldsize, newsize;
3718 	uint64_t raidz_children;
3719 	char *oldpath, *newpath;
3720 	int replacing;
3721 	int oldvd_has_siblings = B_FALSE;
3722 	int newvd_is_spare = B_FALSE;
3723 	int newvd_is_dspare = B_FALSE;
3724 	int oldvd_is_log;
3725 	int oldvd_is_special;
3726 	int error, expected_error;
3727 
3728 	if (ztest_opts.zo_mmp_test)
3729 		return;
3730 
3731 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3732 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3733 
3734 	mutex_enter(&ztest_vdev_lock);
3735 	raidz_children = ztest_get_raidz_children(spa);
3736 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3737 
3738 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3739 
3740 	/*
3741 	 * If a vdev is in the process of being removed, its removal may
3742 	 * finish while we are in progress, leading to an unexpected error
3743 	 * value.  Don't bother trying to attach while we are in the middle
3744 	 * of removal.
3745 	 */
3746 	if (ztest_device_removal_active) {
3747 		spa_config_exit(spa, SCL_ALL, FTAG);
3748 		goto out;
3749 	}
3750 
3751 	/*
3752 	 * RAIDZ leaf VDEV mirrors are not currently supported while a
3753 	 * RAIDZ expansion is in progress.
3754 	 */
3755 	if (ztest_opts.zo_raid_do_expand) {
3756 		spa_config_exit(spa, SCL_ALL, FTAG);
3757 		goto out;
3758 	}
3759 
3760 	/*
3761 	 * Decide whether to do an attach or a replace.
3762 	 */
3763 	replacing = ztest_random(2);
3764 
3765 	/*
3766 	 * Pick a random top-level vdev.
3767 	 */
3768 	top = ztest_random_vdev_top(spa, B_TRUE);
3769 
3770 	/*
3771 	 * Pick a random leaf within it.
3772 	 */
3773 	leaf = ztest_random(leaves);
3774 
3775 	/*
3776 	 * Locate this vdev.
3777 	 */
3778 	oldvd = rvd->vdev_child[top];
3779 
3780 	/* pick a child from the mirror */
3781 	if (zs->zs_mirrors >= 1) {
3782 		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3783 		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3784 		oldvd = oldvd->vdev_child[leaf / raidz_children];
3785 	}
3786 
3787 	/* pick a child out of the raidz group */
3788 	if (ztest_opts.zo_raid_children > 1) {
3789 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3790 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3791 		else
3792 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3793 		oldvd = oldvd->vdev_child[leaf % raidz_children];
3794 	}
3795 
3796 	/*
3797 	 * If we're already doing an attach or replace, oldvd may be a
3798 	 * mirror vdev -- in which case, pick a random child.
3799 	 */
3800 	while (oldvd->vdev_children != 0) {
3801 		oldvd_has_siblings = B_TRUE;
3802 		ASSERT3U(oldvd->vdev_children, >=, 2);
3803 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3804 	}
3805 
3806 	oldguid = oldvd->vdev_guid;
3807 	oldsize = vdev_get_min_asize(oldvd);
3808 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3809 	oldvd_is_special =
3810 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3811 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3812 	(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3813 	pvd = oldvd->vdev_parent;
3814 	pguid = pvd->vdev_guid;
3815 
3816 	/*
3817 	 * If oldvd has siblings, then half of the time, detach it.  Prior
3818 	 * to the detach the pool is scrubbed in order to prevent creating
3819 	 * unrepairable blocks as a result of the data corruption injection.
3820 	 */
3821 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3822 		spa_config_exit(spa, SCL_ALL, FTAG);
3823 
3824 		error = ztest_scrub_impl(spa);
3825 		if (error)
3826 			goto out;
3827 
3828 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3829 		if (error != 0 && error != ENODEV && error != EBUSY &&
3830 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3831 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3832 			fatal(B_FALSE, "detach (%s) returned %d",
3833 			    oldpath, error);
3834 		goto out;
3835 	}
3836 
3837 	/*
3838 	 * For the new vdev, choose with equal probability between the two
3839 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3840 	 */
3841 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3842 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3843 		newvd_is_spare = B_TRUE;
3844 
3845 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3846 			newvd_is_dspare = B_TRUE;
3847 
3848 		(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3849 	} else {
3850 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3851 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3852 		    top * leaves + leaf);
3853 		if (ztest_random(2) == 0)
3854 			newpath[strlen(newpath) - 1] = 'b';
3855 		newvd = vdev_lookup_by_path(rvd, newpath);
3856 	}
3857 
3858 	if (newvd) {
3859 		/*
3860 		 * Reopen to ensure the vdev's asize field isn't stale.
3861 		 */
3862 		vdev_reopen(newvd);
3863 		newsize = vdev_get_min_asize(newvd);
3864 	} else {
3865 		/*
3866 		 * Make newsize a little bigger or smaller than oldsize.
3867 		 * If it's smaller, the attach should fail.
3868 		 * If it's larger, and we're doing a replace,
3869 		 * we should get dynamic LUN growth when we're done.
3870 		 */
3871 		newsize = 10 * oldsize / (9 + ztest_random(3));
3872 	}
3873 
3874 	/*
3875 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3876 	 * unless it's a replace; in that case any non-replacing parent is OK.
3877 	 *
3878 	 * If newvd is already part of the pool, it should fail with EBUSY.
3879 	 *
3880 	 * If newvd is too small, it should fail with EOVERFLOW.
3881 	 *
3882 	 * If newvd is a distributed spare and it's being attached to a
3883 	 * dRAID which is not its parent it should fail with ENOTSUP.
3884 	 */
3885 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3886 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3887 	    pvd->vdev_ops == &vdev_replacing_ops ||
3888 	    pvd->vdev_ops == &vdev_spare_ops))
3889 		expected_error = ENOTSUP;
3890 	else if (newvd_is_spare &&
3891 	    (!replacing || oldvd_is_log || oldvd_is_special))
3892 		expected_error = ENOTSUP;
3893 	else if (newvd == oldvd)
3894 		expected_error = replacing ? 0 : EBUSY;
3895 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3896 		expected_error = EBUSY;
3897 	else if (!newvd_is_dspare && newsize < oldsize)
3898 		expected_error = EOVERFLOW;
3899 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3900 		expected_error = EDOM;
3901 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3902 		expected_error = ENOTSUP;
3903 	else
3904 		expected_error = 0;
3905 
3906 	spa_config_exit(spa, SCL_ALL, FTAG);
3907 
3908 	/*
3909 	 * Build the nvlist describing newpath.
3910 	 */
3911 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3912 	    ashift, NULL, 0, 0, 1);
3913 
3914 	/*
3915 	 * When supported select either a healing or sequential resilver.
3916 	 */
3917 	boolean_t rebuilding = B_FALSE;
3918 	if (pvd->vdev_ops == &vdev_mirror_ops ||
3919 	    pvd->vdev_ops ==  &vdev_root_ops) {
3920 		rebuilding = !!ztest_random(2);
3921 	}
3922 
3923 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3924 
3925 	fnvlist_free(root);
3926 
3927 	/*
3928 	 * If our parent was the replacing vdev, but the replace completed,
3929 	 * then instead of failing with ENOTSUP we may either succeed,
3930 	 * fail with ENODEV, or fail with EOVERFLOW.
3931 	 */
3932 	if (expected_error == ENOTSUP &&
3933 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3934 		expected_error = error;
3935 
3936 	/*
3937 	 * If someone grew the LUN, the replacement may be too small.
3938 	 */
3939 	if (error == EOVERFLOW || error == EBUSY)
3940 		expected_error = error;
3941 
3942 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3943 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3944 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3945 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3946 		expected_error = error;
3947 
3948 	if (error != expected_error && expected_error != EBUSY) {
3949 		fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3950 		    "returned %d, expected %d",
3951 		    oldpath, oldsize, newpath,
3952 		    newsize, replacing, error, expected_error);
3953 	}
3954 out:
3955 	mutex_exit(&ztest_vdev_lock);
3956 
3957 	umem_free(oldpath, MAXPATHLEN);
3958 	umem_free(newpath, MAXPATHLEN);
3959 }
3960 
3961 static void
raidz_scratch_verify(void)3962 raidz_scratch_verify(void)
3963 {
3964 	spa_t *spa;
3965 	uint64_t write_size, logical_size, offset;
3966 	raidz_reflow_scratch_state_t state;
3967 	vdev_raidz_expand_t *vre;
3968 	vdev_t *raidvd;
3969 
3970 	ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3971 
3972 	if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3973 		return;
3974 
3975 	kernel_init(SPA_MODE_READ);
3976 
3977 	spa_namespace_enter(FTAG);
3978 	spa = spa_lookup(ztest_opts.zo_pool);
3979 	ASSERT(spa);
3980 	spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3981 	spa_namespace_exit(FTAG);
3982 
3983 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3984 
3985 	ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3986 
3987 	mutex_enter(&ztest_vdev_lock);
3988 
3989 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3990 
3991 	vre = spa->spa_raidz_expand;
3992 	if (vre == NULL)
3993 		goto out;
3994 
3995 	raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3996 	offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3997 	state = RRSS_GET_STATE(&spa->spa_uberblock);
3998 	write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
3999 	    uint64_t);
4000 	logical_size = write_size * raidvd->vdev_children;
4001 
4002 	switch (state) {
4003 		/*
4004 		 * Initial state of reflow process.  RAIDZ expansion was
4005 		 * requested by user, but scratch object was not created.
4006 		 */
4007 		case RRSS_SCRATCH_NOT_IN_USE:
4008 			ASSERT0(offset);
4009 			break;
4010 
4011 		/*
4012 		 * Scratch object was synced and stored in boot area.
4013 		 */
4014 		case RRSS_SCRATCH_VALID:
4015 
4016 		/*
4017 		 * Scratch object was synced back to raidz start offset,
4018 		 * raidz is ready for sector by sector reflow process.
4019 		 */
4020 		case RRSS_SCRATCH_INVALID_SYNCED:
4021 
4022 		/*
4023 		 * Scratch object was synced back to raidz start offset
4024 		 * on zpool importing, raidz is ready for sector by sector
4025 		 * reflow process.
4026 		 */
4027 		case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4028 			ASSERT3U(offset, ==, logical_size);
4029 			break;
4030 
4031 		/*
4032 		 * Sector by sector reflow process started.
4033 		 */
4034 		case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4035 			ASSERT3U(offset, >=, logical_size);
4036 			break;
4037 	}
4038 
4039 out:
4040 	spa_config_exit(spa, SCL_ALL, FTAG);
4041 
4042 	mutex_exit(&ztest_vdev_lock);
4043 
4044 	ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4045 
4046 	spa_close(spa, FTAG);
4047 	kernel_fini();
4048 }
4049 
4050 static void
ztest_scratch_thread(void * arg)4051 ztest_scratch_thread(void *arg)
4052 {
4053 	(void) arg;
4054 
4055 	/* wait up to 10 seconds */
4056 	for (int t = 100; t > 0; t -= 1) {
4057 		if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4058 			thread_exit();
4059 
4060 		(void) poll(NULL, 0, 100);
4061 	}
4062 
4063 	/* killed when the scratch area progress reached a certain point */
4064 	ztest_kill(ztest_shared);
4065 }
4066 
4067 /*
4068  * Verify that we can attach raidz device.
4069  */
4070 void
ztest_vdev_raidz_attach(ztest_ds_t * zd,uint64_t id)4071 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4072 {
4073 	(void) zd, (void) id;
4074 	ztest_shared_t *zs = ztest_shared;
4075 	spa_t *spa = ztest_spa;
4076 	uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4077 	kthread_t *scratch_thread = NULL;
4078 	vdev_t *newvd, *pvd;
4079 	nvlist_t *root;
4080 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4081 	int error, expected_error = 0;
4082 
4083 	mutex_enter(&ztest_vdev_lock);
4084 
4085 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4086 
4087 	/* Only allow attach when raid-kind = 'eraidz' */
4088 	if (!ztest_opts.zo_raid_do_expand) {
4089 		spa_config_exit(spa, SCL_ALL, FTAG);
4090 		goto out;
4091 	}
4092 
4093 	if (ztest_opts.zo_mmp_test) {
4094 		spa_config_exit(spa, SCL_ALL, FTAG);
4095 		goto out;
4096 	}
4097 
4098 	if (ztest_device_removal_active) {
4099 		spa_config_exit(spa, SCL_ALL, FTAG);
4100 		goto out;
4101 	}
4102 
4103 	pvd = vdev_lookup_top(spa, 0);
4104 
4105 	ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4106 
4107 	/*
4108 	 * Get size of a child of the raidz group,
4109 	 * make sure device is a bit bigger
4110 	 */
4111 	newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4112 	newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4113 
4114 	/*
4115 	 * Get next attached leaf id
4116 	 */
4117 	raidz_children = ztest_get_raidz_children(spa);
4118 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4119 	zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4120 
4121 	if (spa->spa_raidz_expand)
4122 		expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4123 
4124 	spa_config_exit(spa, SCL_ALL, FTAG);
4125 
4126 	/*
4127 	 * Path to vdev to be attached
4128 	 */
4129 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4130 	    ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4131 
4132 	/*
4133 	 * Build the nvlist describing newpath.
4134 	 */
4135 	root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4136 	    0, 0, 1);
4137 
4138 	/*
4139 	 * 50% of the time, set raidz_expand_pause_point to cause
4140 	 * raidz_reflow_scratch_sync() to pause at a certain point and
4141 	 * then kill the test after 10 seconds so raidz_scratch_verify()
4142 	 * can confirm consistency when the pool is imported.
4143 	 */
4144 	if (ztest_random(2) == 0 && expected_error == 0) {
4145 		raidz_expand_pause_point =
4146 		    ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4147 		scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4148 		    ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4149 	}
4150 
4151 	error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4152 
4153 	nvlist_free(root);
4154 
4155 	if (error == EOVERFLOW || error == ENXIO ||
4156 	    error == ZFS_ERR_CHECKPOINT_EXISTS ||
4157 	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
4158 		expected_error = error;
4159 
4160 	if (error != 0 && error != expected_error) {
4161 		fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4162 		    newpath, newsize, error, expected_error);
4163 	}
4164 
4165 	if (raidz_expand_pause_point) {
4166 		if (error != 0) {
4167 			/*
4168 			 * Do not verify scratch object in case of error
4169 			 * returned by vdev attaching.
4170 			 */
4171 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4172 		}
4173 
4174 		VERIFY0(thread_join(scratch_thread));
4175 	}
4176 out:
4177 	mutex_exit(&ztest_vdev_lock);
4178 
4179 	umem_free(newpath, MAXPATHLEN);
4180 }
4181 
4182 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)4183 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4184 {
4185 	(void) zd, (void) id;
4186 	spa_t *spa = ztest_spa;
4187 	vdev_t *vd;
4188 	uint64_t guid;
4189 	int error;
4190 
4191 	mutex_enter(&ztest_vdev_lock);
4192 
4193 	if (ztest_device_removal_active) {
4194 		mutex_exit(&ztest_vdev_lock);
4195 		return;
4196 	}
4197 
4198 	/*
4199 	 * Remove a random top-level vdev and wait for removal to finish.
4200 	 */
4201 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4202 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4203 	guid = vd->vdev_guid;
4204 	spa_config_exit(spa, SCL_VDEV, FTAG);
4205 
4206 	error = spa_vdev_remove(spa, guid, B_FALSE);
4207 	if (error == 0) {
4208 		ztest_device_removal_active = B_TRUE;
4209 		mutex_exit(&ztest_vdev_lock);
4210 
4211 		/*
4212 		 * spa->spa_vdev_removal is created in a sync task that
4213 		 * is initiated via dsl_sync_task_nowait(). Since the
4214 		 * task may not run before spa_vdev_remove() returns, we
4215 		 * must wait at least 1 txg to ensure that the removal
4216 		 * struct has been created.
4217 		 */
4218 		txg_wait_synced(spa_get_dsl(spa), 0);
4219 
4220 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4221 			txg_wait_synced(spa_get_dsl(spa), 0);
4222 	} else {
4223 		mutex_exit(&ztest_vdev_lock);
4224 		return;
4225 	}
4226 
4227 	/*
4228 	 * The pool needs to be scrubbed after completing device removal.
4229 	 * Failure to do so may result in checksum errors due to the
4230 	 * strategy employed by ztest_fault_inject() when selecting which
4231 	 * offset are redundant and can be damaged.
4232 	 */
4233 	error = spa_scan(spa, POOL_SCAN_SCRUB);
4234 	if (error == 0) {
4235 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4236 			txg_wait_synced(spa_get_dsl(spa), 0);
4237 	}
4238 
4239 	mutex_enter(&ztest_vdev_lock);
4240 	ztest_device_removal_active = B_FALSE;
4241 	mutex_exit(&ztest_vdev_lock);
4242 }
4243 
4244 /*
4245  * Callback function which expands the physical size of the vdev.
4246  */
4247 static vdev_t *
grow_vdev(vdev_t * vd,void * arg)4248 grow_vdev(vdev_t *vd, void *arg)
4249 {
4250 	spa_t *spa __maybe_unused = vd->vdev_spa;
4251 	size_t *newsize = arg;
4252 	size_t fsize;
4253 	int fd;
4254 
4255 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4256 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4257 
4258 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4259 		return (vd);
4260 
4261 	fsize = lseek(fd, 0, SEEK_END);
4262 	VERIFY0(ftruncate(fd, *newsize));
4263 
4264 	if (ztest_opts.zo_verbose >= 6) {
4265 		(void) printf("%s grew from %lu to %lu bytes\n",
4266 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4267 	}
4268 	(void) close(fd);
4269 	return (NULL);
4270 }
4271 
4272 /*
4273  * Callback function which expands a given vdev by calling vdev_online().
4274  */
4275 static vdev_t *
online_vdev(vdev_t * vd,void * arg)4276 online_vdev(vdev_t *vd, void *arg)
4277 {
4278 	(void) arg;
4279 	spa_t *spa = vd->vdev_spa;
4280 	vdev_t *tvd = vd->vdev_top;
4281 	uint64_t guid = vd->vdev_guid;
4282 	uint64_t generation = spa->spa_config_generation + 1;
4283 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4284 	int error;
4285 
4286 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4287 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4288 
4289 	/* Calling vdev_online will initialize the new metaslabs */
4290 	spa_config_exit(spa, SCL_STATE, spa);
4291 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4292 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4293 
4294 	/*
4295 	 * If vdev_online returned an error or the underlying vdev_open
4296 	 * failed then we abort the expand. The only way to know that
4297 	 * vdev_open fails is by checking the returned newstate.
4298 	 */
4299 	if (error || newstate != VDEV_STATE_HEALTHY) {
4300 		if (ztest_opts.zo_verbose >= 5) {
4301 			(void) printf("Unable to expand vdev, state %u, "
4302 			    "error %d\n", newstate, error);
4303 		}
4304 		return (vd);
4305 	}
4306 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4307 
4308 	/*
4309 	 * Since we dropped the lock we need to ensure that we're
4310 	 * still talking to the original vdev. It's possible this
4311 	 * vdev may have been detached/replaced while we were
4312 	 * trying to online it.
4313 	 */
4314 	if (generation != spa->spa_config_generation) {
4315 		if (ztest_opts.zo_verbose >= 5) {
4316 			(void) printf("vdev configuration has changed, "
4317 			    "guid %"PRIu64", state %"PRIu64", "
4318 			    "expected gen %"PRIu64", got gen %"PRIu64"\n",
4319 			    guid,
4320 			    tvd->vdev_state,
4321 			    generation,
4322 			    spa->spa_config_generation);
4323 		}
4324 		return (vd);
4325 	}
4326 	return (NULL);
4327 }
4328 
4329 /*
4330  * Traverse the vdev tree calling the supplied function.
4331  * We continue to walk the tree until we either have walked all
4332  * children or we receive a non-NULL return from the callback.
4333  * If a NULL callback is passed, then we just return back the first
4334  * leaf vdev we encounter.
4335  */
4336 static vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)4337 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4338 {
4339 	uint_t c;
4340 
4341 	if (vd->vdev_ops->vdev_op_leaf) {
4342 		if (func == NULL)
4343 			return (vd);
4344 		else
4345 			return (func(vd, arg));
4346 	}
4347 
4348 	for (c = 0; c < vd->vdev_children; c++) {
4349 		vdev_t *cvd = vd->vdev_child[c];
4350 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4351 			return (cvd);
4352 	}
4353 	return (NULL);
4354 }
4355 
4356 /*
4357  * Verify that dynamic LUN growth works as expected.
4358  */
4359 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)4360 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4361 {
4362 	(void) zd, (void) id;
4363 	spa_t *spa = ztest_spa;
4364 	vdev_t *vd, *tvd;
4365 	metaslab_class_t *mc;
4366 	metaslab_group_t *mg;
4367 	size_t psize, newsize;
4368 	uint64_t top;
4369 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4370 
4371 	mutex_enter(&ztest_checkpoint_lock);
4372 	mutex_enter(&ztest_vdev_lock);
4373 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4374 
4375 	/*
4376 	 * If there is a vdev removal in progress, it could complete while
4377 	 * we are running, in which case we would not be able to verify
4378 	 * that the metaslab_class space increased (because it decreases
4379 	 * when the device removal completes).
4380 	 */
4381 	if (ztest_device_removal_active) {
4382 		spa_config_exit(spa, SCL_STATE, spa);
4383 		mutex_exit(&ztest_vdev_lock);
4384 		mutex_exit(&ztest_checkpoint_lock);
4385 		return;
4386 	}
4387 
4388 	/*
4389 	 * If we are under raidz expansion, the test can failed because the
4390 	 * metaslabs count will not increase immediately after the vdev is
4391 	 * expanded. It will happen only after raidz expansion completion.
4392 	 */
4393 	if (spa->spa_raidz_expand) {
4394 		spa_config_exit(spa, SCL_STATE, spa);
4395 		mutex_exit(&ztest_vdev_lock);
4396 		mutex_exit(&ztest_checkpoint_lock);
4397 		return;
4398 	}
4399 
4400 	top = ztest_random_vdev_top(spa, B_TRUE);
4401 
4402 	tvd = spa->spa_root_vdev->vdev_child[top];
4403 	mg = tvd->vdev_mg;
4404 	mc = mg->mg_class;
4405 	old_ms_count = tvd->vdev_ms_count;
4406 	old_class_space = metaslab_class_get_space(mc);
4407 
4408 	/*
4409 	 * Determine the size of the first leaf vdev associated with
4410 	 * our top-level device.
4411 	 */
4412 	vd = vdev_walk_tree(tvd, NULL, NULL);
4413 	ASSERT3P(vd, !=, NULL);
4414 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4415 
4416 	psize = vd->vdev_psize;
4417 
4418 	/*
4419 	 * We only try to expand the vdev if it's healthy, less than 4x its
4420 	 * original size, and it has a valid psize.
4421 	 */
4422 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4423 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4424 		spa_config_exit(spa, SCL_STATE, spa);
4425 		mutex_exit(&ztest_vdev_lock);
4426 		mutex_exit(&ztest_checkpoint_lock);
4427 		return;
4428 	}
4429 	ASSERT3U(psize, >, 0);
4430 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4431 	ASSERT3U(newsize, >, psize);
4432 
4433 	if (ztest_opts.zo_verbose >= 6) {
4434 		(void) printf("Expanding LUN %s from %lu to %lu\n",
4435 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4436 	}
4437 
4438 	/*
4439 	 * Growing the vdev is a two step process:
4440 	 *	1). expand the physical size (i.e. relabel)
4441 	 *	2). online the vdev to create the new metaslabs
4442 	 */
4443 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4444 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4445 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4446 		if (ztest_opts.zo_verbose >= 5) {
4447 			(void) printf("Could not expand LUN because "
4448 			    "the vdev configuration changed.\n");
4449 		}
4450 		spa_config_exit(spa, SCL_STATE, spa);
4451 		mutex_exit(&ztest_vdev_lock);
4452 		mutex_exit(&ztest_checkpoint_lock);
4453 		return;
4454 	}
4455 
4456 	spa_config_exit(spa, SCL_STATE, spa);
4457 
4458 	/*
4459 	 * Expanding the LUN will update the config asynchronously,
4460 	 * thus we must wait for the async thread to complete any
4461 	 * pending tasks before proceeding.
4462 	 */
4463 	for (;;) {
4464 		boolean_t done;
4465 		mutex_enter(&spa->spa_async_lock);
4466 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4467 		mutex_exit(&spa->spa_async_lock);
4468 		if (done)
4469 			break;
4470 		txg_wait_synced(spa_get_dsl(spa), 0);
4471 		(void) poll(NULL, 0, 100);
4472 	}
4473 
4474 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4475 
4476 	tvd = spa->spa_root_vdev->vdev_child[top];
4477 	new_ms_count = tvd->vdev_ms_count;
4478 	new_class_space = metaslab_class_get_space(mc);
4479 
4480 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4481 		if (ztest_opts.zo_verbose >= 5) {
4482 			(void) printf("Could not verify LUN expansion due to "
4483 			    "intervening vdev offline or remove.\n");
4484 		}
4485 		spa_config_exit(spa, SCL_STATE, spa);
4486 		mutex_exit(&ztest_vdev_lock);
4487 		mutex_exit(&ztest_checkpoint_lock);
4488 		return;
4489 	}
4490 
4491 	/*
4492 	 * Make sure we were able to grow the vdev.
4493 	 */
4494 	if (new_ms_count <= old_ms_count) {
4495 		fatal(B_FALSE,
4496 		    "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4497 		    old_ms_count, new_ms_count);
4498 	}
4499 
4500 	/*
4501 	 * Make sure we were able to grow the pool.
4502 	 */
4503 	if (new_class_space <= old_class_space) {
4504 		fatal(B_FALSE,
4505 		    "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4506 		    old_class_space, new_class_space);
4507 	}
4508 
4509 	if (ztest_opts.zo_verbose >= 5) {
4510 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4511 
4512 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4513 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4514 		(void) printf("%s grew from %s to %s\n",
4515 		    spa->spa_name, oldnumbuf, newnumbuf);
4516 	}
4517 
4518 	spa_config_exit(spa, SCL_STATE, spa);
4519 	mutex_exit(&ztest_vdev_lock);
4520 	mutex_exit(&ztest_checkpoint_lock);
4521 }
4522 
4523 /*
4524  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4525  */
4526 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)4527 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4528 {
4529 	(void) arg, (void) cr;
4530 
4531 	/*
4532 	 * Create the objects common to all ztest datasets.
4533 	 */
4534 	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4535 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4536 }
4537 
4538 static int
ztest_dataset_create(char * dsname)4539 ztest_dataset_create(char *dsname)
4540 {
4541 	int err;
4542 	uint64_t rand;
4543 	dsl_crypto_params_t *dcp = NULL;
4544 
4545 	/*
4546 	 * 50% of the time, we create encrypted datasets
4547 	 * using a random cipher suite and a hard-coded
4548 	 * wrapping key.
4549 	 */
4550 	rand = ztest_random(2);
4551 	if (rand != 0) {
4552 		nvlist_t *crypto_args = fnvlist_alloc();
4553 		nvlist_t *props = fnvlist_alloc();
4554 
4555 		/* slight bias towards the default cipher suite */
4556 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4557 		if (rand < ZIO_CRYPT_AES_128_CCM)
4558 			rand = ZIO_CRYPT_ON;
4559 
4560 		fnvlist_add_uint64(props,
4561 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4562 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4563 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4564 
4565 		/*
4566 		 * These parameters aren't really used by the kernel. They
4567 		 * are simply stored so that userspace knows how to load
4568 		 * the wrapping key.
4569 		 */
4570 		fnvlist_add_uint64(props,
4571 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4572 		fnvlist_add_string(props,
4573 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4574 		fnvlist_add_uint64(props,
4575 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4576 		fnvlist_add_uint64(props,
4577 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4578 
4579 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4580 		    crypto_args, &dcp));
4581 
4582 		/*
4583 		 * Cycle through all available encryption implementations
4584 		 * to verify interoperability.
4585 		 */
4586 		VERIFY0(gcm_impl_set("cycle"));
4587 		VERIFY0(aes_impl_set("cycle"));
4588 
4589 		fnvlist_free(crypto_args);
4590 		fnvlist_free(props);
4591 	}
4592 
4593 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4594 	    ztest_objset_create_cb, NULL);
4595 	dsl_crypto_params_free(dcp, !!err);
4596 
4597 	rand = ztest_random(100);
4598 	if (err || rand < 80)
4599 		return (err);
4600 
4601 	if (ztest_opts.zo_verbose >= 5)
4602 		(void) printf("Setting dataset %s to sync always\n", dsname);
4603 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4604 	    ZFS_SYNC_ALWAYS, B_FALSE));
4605 }
4606 
4607 static int
ztest_objset_destroy_cb(const char * name,void * arg)4608 ztest_objset_destroy_cb(const char *name, void *arg)
4609 {
4610 	(void) arg;
4611 	objset_t *os;
4612 	dmu_object_info_t doi;
4613 	int error;
4614 
4615 	/*
4616 	 * Verify that the dataset contains a directory object.
4617 	 */
4618 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4619 	    B_TRUE, FTAG, &os));
4620 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4621 	if (error != ENOENT) {
4622 		/* We could have crashed in the middle of destroying it */
4623 		ASSERT0(error);
4624 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4625 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4626 	}
4627 	dmu_objset_disown(os, B_TRUE, FTAG);
4628 
4629 	/*
4630 	 * Destroy the dataset.
4631 	 */
4632 	if (strchr(name, '@') != NULL) {
4633 		error = dsl_destroy_snapshot(name, B_TRUE);
4634 		if (error != ECHRNG) {
4635 			/*
4636 			 * The program was executed, but encountered a runtime
4637 			 * error, such as insufficient slop, or a hold on the
4638 			 * dataset.
4639 			 */
4640 			ASSERT0(error);
4641 		}
4642 	} else {
4643 		error = dsl_destroy_head(name);
4644 		if (error == ENOSPC) {
4645 			/* There could be checkpoint or insufficient slop */
4646 			ztest_record_enospc(FTAG);
4647 		} else if (error != EBUSY) {
4648 			/* There could be a hold on this dataset */
4649 			ASSERT0(error);
4650 		}
4651 	}
4652 	return (0);
4653 }
4654 
4655 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)4656 ztest_snapshot_create(char *osname, uint64_t id)
4657 {
4658 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4659 	int error;
4660 
4661 	(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4662 
4663 	error = dmu_objset_snapshot_one(osname, snapname);
4664 	if (error == ENOSPC) {
4665 		ztest_record_enospc(FTAG);
4666 		return (B_FALSE);
4667 	}
4668 	if (error != 0 && error != EEXIST && error != ECHRNG) {
4669 		fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4670 		    snapname, error);
4671 	}
4672 	return (B_TRUE);
4673 }
4674 
4675 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)4676 ztest_snapshot_destroy(char *osname, uint64_t id)
4677 {
4678 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4679 	int error;
4680 
4681 	(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4682 	    osname, id);
4683 
4684 	error = dsl_destroy_snapshot(snapname, B_FALSE);
4685 	if (error != 0 && error != ENOENT && error != ECHRNG)
4686 		fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4687 		    snapname, error);
4688 	return (B_TRUE);
4689 }
4690 
4691 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)4692 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4693 {
4694 	(void) zd;
4695 	ztest_ds_t *zdtmp;
4696 	int iters;
4697 	int error;
4698 	objset_t *os, *os2;
4699 	char name[ZFS_MAX_DATASET_NAME_LEN];
4700 	zilog_t *zilog;
4701 	int i;
4702 
4703 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4704 
4705 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4706 
4707 	(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4708 	    ztest_opts.zo_pool, id);
4709 
4710 	/*
4711 	 * If this dataset exists from a previous run, process its replay log
4712 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4713 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4714 	 */
4715 	if (ztest_random(2) == 0 &&
4716 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4717 	    B_TRUE, FTAG, &os) == 0) {
4718 		ztest_zd_init(zdtmp, NULL, os);
4719 		zil_replay(os, zdtmp, ztest_replay_vector);
4720 		ztest_zd_fini(zdtmp);
4721 		dmu_objset_disown(os, B_TRUE, FTAG);
4722 	}
4723 
4724 	/*
4725 	 * There may be an old instance of the dataset we're about to
4726 	 * create lying around from a previous run.  If so, destroy it
4727 	 * and all of its snapshots.
4728 	 */
4729 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4730 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4731 
4732 	/*
4733 	 * Verify that the destroyed dataset is no longer in the namespace.
4734 	 * It may still be present if the destroy above fails with ENOSPC.
4735 	 */
4736 	error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4737 	    FTAG, &os);
4738 	if (error == 0) {
4739 		dmu_objset_disown(os, B_TRUE, FTAG);
4740 		ztest_record_enospc(FTAG);
4741 		goto out;
4742 	}
4743 	VERIFY3U(ENOENT, ==, error);
4744 
4745 	/*
4746 	 * Verify that we can create a new dataset.
4747 	 */
4748 	error = ztest_dataset_create(name);
4749 	if (error) {
4750 		if (error == ENOSPC) {
4751 			ztest_record_enospc(FTAG);
4752 			goto out;
4753 		}
4754 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4755 	}
4756 
4757 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4758 	    FTAG, &os));
4759 
4760 	ztest_zd_init(zdtmp, NULL, os);
4761 
4762 	/*
4763 	 * Open the intent log for it.
4764 	 */
4765 	zilog = zil_open(os, ztest_get_data, NULL);
4766 
4767 	/*
4768 	 * Put some objects in there, do a little I/O to them,
4769 	 * and randomly take a couple of snapshots along the way.
4770 	 */
4771 	iters = ztest_random(5);
4772 	for (i = 0; i < iters; i++) {
4773 		ztest_dmu_object_alloc_free(zdtmp, id);
4774 		if (ztest_random(iters) == 0)
4775 			(void) ztest_snapshot_create(name, i);
4776 	}
4777 
4778 	/*
4779 	 * Verify that we cannot create an existing dataset.
4780 	 */
4781 	VERIFY3U(EEXIST, ==,
4782 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4783 
4784 	/*
4785 	 * Verify that we can hold an objset that is also owned.
4786 	 */
4787 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4788 	dmu_objset_rele(os2, FTAG);
4789 
4790 	/*
4791 	 * Verify that we cannot own an objset that is already owned.
4792 	 */
4793 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4794 	    B_FALSE, B_TRUE, FTAG, &os2));
4795 
4796 	zil_close(zilog);
4797 	dmu_objset_disown(os, B_TRUE, FTAG);
4798 	ztest_zd_fini(zdtmp);
4799 out:
4800 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4801 
4802 	umem_free(zdtmp, sizeof (ztest_ds_t));
4803 }
4804 
4805 /*
4806  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4807  */
4808 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)4809 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4810 {
4811 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4812 	(void) ztest_snapshot_destroy(zd->zd_name, id);
4813 	(void) ztest_snapshot_create(zd->zd_name, id);
4814 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4815 }
4816 
4817 /*
4818  * Cleanup non-standard snapshots and clones.
4819  */
4820 static void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4821 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4822 {
4823 	char *snap1name;
4824 	char *clone1name;
4825 	char *snap2name;
4826 	char *clone2name;
4827 	char *snap3name;
4828 	int error;
4829 
4830 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4831 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4832 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4833 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4834 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4835 
4836 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4837 	    osname, id);
4838 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4839 	    osname, id);
4840 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4841 	    clone1name, id);
4842 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4843 	    osname, id);
4844 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4845 	    clone1name, id);
4846 
4847 	error = dsl_destroy_head(clone2name);
4848 	if (error && error != ENOENT)
4849 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4850 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4851 	if (error && error != ENOENT)
4852 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4853 		    snap3name, error);
4854 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4855 	if (error && error != ENOENT)
4856 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4857 		    snap2name, error);
4858 	error = dsl_destroy_head(clone1name);
4859 	if (error && error != ENOENT)
4860 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4861 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4862 	if (error && error != ENOENT)
4863 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4864 		    snap1name, error);
4865 
4866 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4867 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4868 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4869 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4870 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4871 }
4872 
4873 /*
4874  * Verify dsl_dataset_promote handles EBUSY
4875  */
4876 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4877 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4878 {
4879 	objset_t *os;
4880 	char *snap1name;
4881 	char *clone1name;
4882 	char *snap2name;
4883 	char *clone2name;
4884 	char *snap3name;
4885 	char *osname = zd->zd_name;
4886 	int error;
4887 
4888 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4889 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4890 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4891 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4892 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4893 
4894 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4895 
4896 	ztest_dsl_dataset_cleanup(osname, id);
4897 
4898 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4899 	    osname, id);
4900 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4901 	    osname, id);
4902 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4903 	    clone1name, id);
4904 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4905 	    osname, id);
4906 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4907 	    clone1name, id);
4908 
4909 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4910 	if (error && error != EEXIST) {
4911 		if (error == ENOSPC) {
4912 			ztest_record_enospc(FTAG);
4913 			goto out;
4914 		}
4915 		fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4916 	}
4917 
4918 	error = dsl_dataset_clone(clone1name, snap1name);
4919 	if (error) {
4920 		if (error == ENOSPC) {
4921 			ztest_record_enospc(FTAG);
4922 			goto out;
4923 		}
4924 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4925 	}
4926 
4927 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4928 	if (error && error != EEXIST) {
4929 		if (error == ENOSPC) {
4930 			ztest_record_enospc(FTAG);
4931 			goto out;
4932 		}
4933 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4934 	}
4935 
4936 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4937 	if (error && error != EEXIST) {
4938 		if (error == ENOSPC) {
4939 			ztest_record_enospc(FTAG);
4940 			goto out;
4941 		}
4942 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4943 	}
4944 
4945 	error = dsl_dataset_clone(clone2name, snap3name);
4946 	if (error) {
4947 		if (error == ENOSPC) {
4948 			ztest_record_enospc(FTAG);
4949 			goto out;
4950 		}
4951 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4952 	}
4953 
4954 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4955 	    FTAG, &os);
4956 	if (error)
4957 		fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4958 	error = dsl_dataset_promote(clone2name, NULL);
4959 	if (error == ENOSPC) {
4960 		dmu_objset_disown(os, B_TRUE, FTAG);
4961 		ztest_record_enospc(FTAG);
4962 		goto out;
4963 	}
4964 	if (error != EBUSY)
4965 		fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4966 		    clone2name, error);
4967 	dmu_objset_disown(os, B_TRUE, FTAG);
4968 
4969 out:
4970 	ztest_dsl_dataset_cleanup(osname, id);
4971 
4972 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4973 
4974 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4975 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4976 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4977 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4978 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4979 }
4980 
4981 #undef OD_ARRAY_SIZE
4982 #define	OD_ARRAY_SIZE	4
4983 
4984 /*
4985  * Verify that dmu_object_{alloc,free} work as expected.
4986  */
4987 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4988 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4989 {
4990 	ztest_od_t *od;
4991 	int batchsize;
4992 	int size;
4993 	int b;
4994 
4995 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4996 	od = umem_alloc(size, UMEM_NOFAIL);
4997 	batchsize = OD_ARRAY_SIZE;
4998 
4999 	for (b = 0; b < batchsize; b++)
5000 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
5001 		    0, 0, 0);
5002 
5003 	/*
5004 	 * Destroy the previous batch of objects, create a new batch,
5005 	 * and do some I/O on the new objects.
5006 	 */
5007 	if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
5008 		zd->zd_od = NULL;
5009 		umem_free(od, size);
5010 		return;
5011 	}
5012 
5013 	while (ztest_random(4 * batchsize) != 0)
5014 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
5015 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5016 
5017 	umem_free(od, size);
5018 }
5019 
5020 /*
5021  * Rewind the global allocator to verify object allocation backfilling.
5022  */
5023 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)5024 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5025 {
5026 	(void) id;
5027 	objset_t *os = zd->zd_os;
5028 	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5029 	uint64_t object;
5030 
5031 	/*
5032 	 * Rewind the global allocator randomly back to a lower object number
5033 	 * to force backfilling and reclamation of recently freed dnodes.
5034 	 */
5035 	mutex_enter(&os->os_obj_lock);
5036 	object = ztest_random(os->os_obj_next_chunk);
5037 	os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5038 	    uint64_t);
5039 	mutex_exit(&os->os_obj_lock);
5040 }
5041 
5042 #undef OD_ARRAY_SIZE
5043 #define	OD_ARRAY_SIZE	2
5044 
5045 /*
5046  * Verify that dmu_{read,write} work as expected.
5047  */
5048 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)5049 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5050 {
5051 	int size;
5052 	ztest_od_t *od;
5053 
5054 	objset_t *os = zd->zd_os;
5055 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5056 	od = umem_alloc(size, UMEM_NOFAIL);
5057 	dmu_tx_t *tx;
5058 	int freeit, error;
5059 	uint64_t i, n, s, txg;
5060 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5061 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5062 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5063 	uint64_t regions = 997;
5064 	uint64_t stride = 123456789ULL;
5065 	uint64_t width = 40;
5066 	int free_percent = 5;
5067 	dmu_flags_t dmu_read_flags = DMU_READ_PREFETCH;
5068 
5069 	/*
5070 	 * We will randomly set when to do O_DIRECT on a read.
5071 	 */
5072 	if (ztest_random(4) == 0)
5073 		dmu_read_flags |= DMU_DIRECTIO;
5074 
5075 	/*
5076 	 * This test uses two objects, packobj and bigobj, that are always
5077 	 * updated together (i.e. in the same tx) so that their contents are
5078 	 * in sync and can be compared.  Their contents relate to each other
5079 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5080 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5081 	 * for any index n, there are three bufwads that should be identical:
5082 	 *
5083 	 *	packobj, at offset n * sizeof (bufwad_t)
5084 	 *	bigobj, at the head of the nth chunk
5085 	 *	bigobj, at the tail of the nth chunk
5086 	 *
5087 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
5088 	 * and it doesn't have any relation to the object blocksize.
5089 	 * The only requirement is that it can hold at least two bufwads.
5090 	 *
5091 	 * Normally, we write the bufwad to each of these locations.
5092 	 * However, free_percent of the time we instead write zeroes to
5093 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
5094 	 * bigobj to packobj, we can verify that the DMU is correctly
5095 	 * tracking which parts of an object are allocated and free,
5096 	 * and that the contents of the allocated blocks are correct.
5097 	 */
5098 
5099 	/*
5100 	 * Read the directory info.  If it's the first time, set things up.
5101 	 */
5102 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5103 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5104 	    chunksize);
5105 
5106 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5107 		umem_free(od, size);
5108 		return;
5109 	}
5110 
5111 	bigobj = od[0].od_object;
5112 	packobj = od[1].od_object;
5113 	chunksize = od[0].od_gen;
5114 	ASSERT3U(chunksize, ==, od[1].od_gen);
5115 
5116 	/*
5117 	 * Prefetch a random chunk of the big object.
5118 	 * Our aim here is to get some async reads in flight
5119 	 * for blocks that we may free below; the DMU should
5120 	 * handle this race correctly.
5121 	 */
5122 	n = ztest_random(regions) * stride + ztest_random(width);
5123 	s = 1 + ztest_random(2 * width - 1);
5124 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5125 	    ZIO_PRIORITY_SYNC_READ);
5126 
5127 	/*
5128 	 * Pick a random index and compute the offsets into packobj and bigobj.
5129 	 */
5130 	n = ztest_random(regions) * stride + ztest_random(width);
5131 	s = 1 + ztest_random(width - 1);
5132 
5133 	packoff = n * sizeof (bufwad_t);
5134 	packsize = s * sizeof (bufwad_t);
5135 
5136 	bigoff = n * chunksize;
5137 	bigsize = s * chunksize;
5138 
5139 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5140 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5141 
5142 	/*
5143 	 * free_percent of the time, free a range of bigobj rather than
5144 	 * overwriting it.
5145 	 */
5146 	freeit = (ztest_random(100) < free_percent);
5147 
5148 	/*
5149 	 * Read the current contents of our objects.
5150 	 */
5151 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
5152 	    dmu_read_flags);
5153 	ASSERT0(error);
5154 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5155 	    dmu_read_flags);
5156 	ASSERT0(error);
5157 
5158 	/*
5159 	 * Get a tx for the mods to both packobj and bigobj.
5160 	 */
5161 	tx = dmu_tx_create(os);
5162 
5163 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
5164 
5165 	if (freeit)
5166 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5167 	else
5168 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5169 
5170 	/* This accounts for setting the checksum/compression. */
5171 	dmu_tx_hold_bonus(tx, bigobj);
5172 
5173 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5174 	if (txg == 0) {
5175 		umem_free(packbuf, packsize);
5176 		umem_free(bigbuf, bigsize);
5177 		umem_free(od, size);
5178 		return;
5179 	}
5180 
5181 	enum zio_checksum cksum;
5182 	do {
5183 		cksum = (enum zio_checksum)
5184 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5185 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5186 	dmu_object_set_checksum(os, bigobj, cksum, tx);
5187 
5188 	enum zio_compress comp;
5189 	do {
5190 		comp = (enum zio_compress)
5191 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5192 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5193 	dmu_object_set_compress(os, bigobj, comp, tx);
5194 
5195 	/*
5196 	 * For each index from n to n + s, verify that the existing bufwad
5197 	 * in packobj matches the bufwads at the head and tail of the
5198 	 * corresponding chunk in bigobj.  Then update all three bufwads
5199 	 * with the new values we want to write out.
5200 	 */
5201 	for (i = 0; i < s; i++) {
5202 		/* LINTED */
5203 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5204 		/* LINTED */
5205 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5206 		/* LINTED */
5207 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5208 
5209 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5210 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5211 
5212 		if (pack->bw_txg > txg)
5213 			fatal(B_FALSE,
5214 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5215 			    pack->bw_txg, txg);
5216 
5217 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5218 			fatal(B_FALSE, "wrong index: "
5219 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5220 			    pack->bw_index, n, i);
5221 
5222 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5223 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5224 			    pack, bigH);
5225 
5226 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5227 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5228 			    pack, bigT);
5229 
5230 		if (freeit) {
5231 			memset(pack, 0, sizeof (bufwad_t));
5232 		} else {
5233 			pack->bw_index = n + i;
5234 			pack->bw_txg = txg;
5235 			pack->bw_data = 1 + ztest_random(-2ULL);
5236 		}
5237 		*bigH = *pack;
5238 		*bigT = *pack;
5239 	}
5240 
5241 	/*
5242 	 * We've verified all the old bufwads, and made new ones.
5243 	 * Now write them out.
5244 	 */
5245 	dmu_write(os, packobj, packoff, packsize, packbuf, tx,
5246 	    DMU_READ_PREFETCH);
5247 
5248 	if (freeit) {
5249 		if (ztest_opts.zo_verbose >= 7) {
5250 			(void) printf("freeing offset %"PRIx64" size %"PRIx64""
5251 			    " txg %"PRIx64"\n",
5252 			    bigoff, bigsize, txg);
5253 		}
5254 		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5255 	} else {
5256 		if (ztest_opts.zo_verbose >= 7) {
5257 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5258 			    " txg %"PRIx64"\n",
5259 			    bigoff, bigsize, txg);
5260 		}
5261 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx,
5262 		    DMU_READ_PREFETCH);
5263 	}
5264 
5265 	dmu_tx_commit(tx);
5266 
5267 	/*
5268 	 * Sanity check the stuff we just wrote.
5269 	 */
5270 	{
5271 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5272 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5273 
5274 		VERIFY0(dmu_read(os, packobj, packoff,
5275 		    packsize, packcheck, dmu_read_flags));
5276 		VERIFY0(dmu_read(os, bigobj, bigoff,
5277 		    bigsize, bigcheck, dmu_read_flags));
5278 
5279 		ASSERT0(memcmp(packbuf, packcheck, packsize));
5280 		ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5281 
5282 		umem_free(packcheck, packsize);
5283 		umem_free(bigcheck, bigsize);
5284 	}
5285 
5286 	umem_free(packbuf, packsize);
5287 	umem_free(bigbuf, bigsize);
5288 	umem_free(od, size);
5289 }
5290 
5291 static void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)5292 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5293     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5294 {
5295 	uint64_t i;
5296 	bufwad_t *pack;
5297 	bufwad_t *bigH;
5298 	bufwad_t *bigT;
5299 
5300 	/*
5301 	 * For each index from n to n + s, verify that the existing bufwad
5302 	 * in packobj matches the bufwads at the head and tail of the
5303 	 * corresponding chunk in bigobj.  Then update all three bufwads
5304 	 * with the new values we want to write out.
5305 	 */
5306 	for (i = 0; i < s; i++) {
5307 		/* LINTED */
5308 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5309 		/* LINTED */
5310 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5311 		/* LINTED */
5312 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5313 
5314 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5315 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5316 
5317 		if (pack->bw_txg > txg)
5318 			fatal(B_FALSE,
5319 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5320 			    pack->bw_txg, txg);
5321 
5322 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5323 			fatal(B_FALSE, "wrong index: "
5324 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5325 			    pack->bw_index, n, i);
5326 
5327 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5328 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5329 			    pack, bigH);
5330 
5331 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5332 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5333 			    pack, bigT);
5334 
5335 		pack->bw_index = n + i;
5336 		pack->bw_txg = txg;
5337 		pack->bw_data = 1 + ztest_random(-2ULL);
5338 
5339 		*bigH = *pack;
5340 		*bigT = *pack;
5341 	}
5342 }
5343 
5344 #undef OD_ARRAY_SIZE
5345 #define	OD_ARRAY_SIZE	2
5346 
5347 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)5348 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5349 {
5350 	objset_t *os = zd->zd_os;
5351 	ztest_od_t *od;
5352 	dmu_tx_t *tx;
5353 	uint64_t i;
5354 	int error;
5355 	int size;
5356 	uint64_t n, s, txg;
5357 	bufwad_t *packbuf, *bigbuf;
5358 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5359 	uint64_t blocksize = ztest_random_blocksize();
5360 	uint64_t chunksize = blocksize;
5361 	uint64_t regions = 997;
5362 	uint64_t stride = 123456789ULL;
5363 	uint64_t width = 9;
5364 	dmu_buf_t *bonus_db;
5365 	arc_buf_t **bigbuf_arcbufs;
5366 	dmu_object_info_t doi;
5367 	uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5368 
5369 	/*
5370 	 * We will randomly set when to do O_DIRECT on a read.
5371 	 */
5372 	if (ztest_random(4) == 0)
5373 		dmu_read_flags |= DMU_DIRECTIO;
5374 
5375 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5376 	od = umem_alloc(size, UMEM_NOFAIL);
5377 
5378 	/*
5379 	 * This test uses two objects, packobj and bigobj, that are always
5380 	 * updated together (i.e. in the same tx) so that their contents are
5381 	 * in sync and can be compared.  Their contents relate to each other
5382 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5383 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5384 	 * for any index n, there are three bufwads that should be identical:
5385 	 *
5386 	 *	packobj, at offset n * sizeof (bufwad_t)
5387 	 *	bigobj, at the head of the nth chunk
5388 	 *	bigobj, at the tail of the nth chunk
5389 	 *
5390 	 * The chunk size is set equal to bigobj block size so that
5391 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5392 	 */
5393 
5394 	/*
5395 	 * Read the directory info.  If it's the first time, set things up.
5396 	 */
5397 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5398 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5399 	    chunksize);
5400 
5401 
5402 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5403 		umem_free(od, size);
5404 		return;
5405 	}
5406 
5407 	bigobj = od[0].od_object;
5408 	packobj = od[1].od_object;
5409 	blocksize = od[0].od_blocksize;
5410 	chunksize = blocksize;
5411 	ASSERT3U(chunksize, ==, od[1].od_gen);
5412 
5413 	VERIFY0(dmu_object_info(os, bigobj, &doi));
5414 	VERIFY(ISP2(doi.doi_data_block_size));
5415 	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5416 	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5417 
5418 	/*
5419 	 * Pick a random index and compute the offsets into packobj and bigobj.
5420 	 */
5421 	n = ztest_random(regions) * stride + ztest_random(width);
5422 	s = 1 + ztest_random(width - 1);
5423 
5424 	packoff = n * sizeof (bufwad_t);
5425 	packsize = s * sizeof (bufwad_t);
5426 
5427 	bigoff = n * chunksize;
5428 	bigsize = s * chunksize;
5429 
5430 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5431 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5432 
5433 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5434 
5435 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5436 
5437 	/*
5438 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5439 	 * Iteration 1 test zcopy to already referenced dbufs.
5440 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5441 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5442 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5443 	 * Iteration 5 test zcopy when it can't be done.
5444 	 * Iteration 6 one more zcopy write.
5445 	 */
5446 	for (i = 0; i < 7; i++) {
5447 		uint64_t j;
5448 		uint64_t off;
5449 
5450 		/*
5451 		 * In iteration 5 (i == 5) use arcbufs
5452 		 * that don't match bigobj blksz to test
5453 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5454 		 * assign an arcbuf to a dbuf.
5455 		 */
5456 		for (j = 0; j < s; j++) {
5457 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5458 				bigbuf_arcbufs[j] =
5459 				    dmu_request_arcbuf(bonus_db, chunksize);
5460 			} else {
5461 				bigbuf_arcbufs[2 * j] =
5462 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5463 				bigbuf_arcbufs[2 * j + 1] =
5464 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5465 			}
5466 		}
5467 
5468 		/*
5469 		 * Get a tx for the mods to both packobj and bigobj.
5470 		 */
5471 		tx = dmu_tx_create(os);
5472 
5473 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5474 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5475 
5476 		txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5477 		if (txg == 0) {
5478 			umem_free(packbuf, packsize);
5479 			umem_free(bigbuf, bigsize);
5480 			for (j = 0; j < s; j++) {
5481 				if (i != 5 ||
5482 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5483 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5484 				} else {
5485 					dmu_return_arcbuf(
5486 					    bigbuf_arcbufs[2 * j]);
5487 					dmu_return_arcbuf(
5488 					    bigbuf_arcbufs[2 * j + 1]);
5489 				}
5490 			}
5491 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5492 			umem_free(od, size);
5493 			dmu_buf_rele(bonus_db, FTAG);
5494 			return;
5495 		}
5496 
5497 		/*
5498 		 * 50% of the time don't read objects in the 1st iteration to
5499 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5500 		 * no existing dbufs for the specified offsets.
5501 		 */
5502 		if (i != 0 || ztest_random(2) != 0) {
5503 			error = dmu_read(os, packobj, packoff,
5504 			    packsize, packbuf, dmu_read_flags);
5505 			ASSERT0(error);
5506 			error = dmu_read(os, bigobj, bigoff, bigsize,
5507 			    bigbuf, dmu_read_flags);
5508 			ASSERT0(error);
5509 		}
5510 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5511 		    n, chunksize, txg);
5512 
5513 		/*
5514 		 * We've verified all the old bufwads, and made new ones.
5515 		 * Now write them out.
5516 		 */
5517 		dmu_write(os, packobj, packoff, packsize, packbuf, tx,
5518 		    DMU_READ_PREFETCH);
5519 		if (ztest_opts.zo_verbose >= 7) {
5520 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5521 			    " txg %"PRIx64"\n",
5522 			    bigoff, bigsize, txg);
5523 		}
5524 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5525 			dmu_buf_t *dbt;
5526 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5527 				memcpy(bigbuf_arcbufs[j]->b_data,
5528 				    (caddr_t)bigbuf + (off - bigoff),
5529 				    chunksize);
5530 			} else {
5531 				memcpy(bigbuf_arcbufs[2 * j]->b_data,
5532 				    (caddr_t)bigbuf + (off - bigoff),
5533 				    chunksize / 2);
5534 				memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5535 				    (caddr_t)bigbuf + (off - bigoff) +
5536 				    chunksize / 2,
5537 				    chunksize / 2);
5538 			}
5539 
5540 			if (i == 1) {
5541 				VERIFY0(dmu_buf_hold(os, bigobj, off,
5542 				    FTAG, &dbt, DMU_READ_NO_PREFETCH));
5543 			}
5544 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5545 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5546 				    off, bigbuf_arcbufs[j], tx, 0));
5547 			} else {
5548 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5549 				    off, bigbuf_arcbufs[2 * j], tx, 0));
5550 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5551 				    off + chunksize / 2,
5552 				    bigbuf_arcbufs[2 * j + 1], tx, 0));
5553 			}
5554 			if (i == 1) {
5555 				dmu_buf_rele(dbt, FTAG);
5556 			}
5557 		}
5558 		dmu_tx_commit(tx);
5559 
5560 		/*
5561 		 * Sanity check the stuff we just wrote.
5562 		 */
5563 		{
5564 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5565 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5566 
5567 			VERIFY0(dmu_read(os, packobj, packoff,
5568 			    packsize, packcheck, dmu_read_flags));
5569 			VERIFY0(dmu_read(os, bigobj, bigoff,
5570 			    bigsize, bigcheck, dmu_read_flags));
5571 
5572 			ASSERT0(memcmp(packbuf, packcheck, packsize));
5573 			ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5574 
5575 			umem_free(packcheck, packsize);
5576 			umem_free(bigcheck, bigsize);
5577 		}
5578 		if (i == 2) {
5579 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5580 		} else if (i == 3) {
5581 			txg_wait_synced(dmu_objset_pool(os), 0);
5582 		}
5583 	}
5584 
5585 	dmu_buf_rele(bonus_db, FTAG);
5586 	umem_free(packbuf, packsize);
5587 	umem_free(bigbuf, bigsize);
5588 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5589 	umem_free(od, size);
5590 }
5591 
5592 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)5593 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5594 {
5595 	(void) id;
5596 	ztest_od_t *od;
5597 
5598 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5599 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5600 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5601 
5602 	/*
5603 	 * Have multiple threads write to large offsets in an object
5604 	 * to verify that parallel writes to an object -- even to the
5605 	 * same blocks within the object -- doesn't cause any trouble.
5606 	 */
5607 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5608 
5609 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5610 		return;
5611 
5612 	while (ztest_random(10) != 0)
5613 		ztest_io(zd, od->od_object, offset);
5614 
5615 	umem_free(od, sizeof (ztest_od_t));
5616 }
5617 
5618 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)5619 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5620 {
5621 	ztest_od_t *od;
5622 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5623 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5624 	uint64_t count = ztest_random(20) + 1;
5625 	uint64_t blocksize = ztest_random_blocksize();
5626 	void *data;
5627 
5628 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5629 
5630 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5631 
5632 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5633 	    !ztest_random(2)) != 0) {
5634 		umem_free(od, sizeof (ztest_od_t));
5635 		return;
5636 	}
5637 
5638 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5639 		umem_free(od, sizeof (ztest_od_t));
5640 		return;
5641 	}
5642 
5643 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5644 
5645 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5646 
5647 	while (ztest_random(count) != 0) {
5648 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5649 		if (ztest_write(zd, od->od_object, randoff, blocksize,
5650 		    data) != 0)
5651 			break;
5652 		while (ztest_random(4) != 0)
5653 			ztest_io(zd, od->od_object, randoff);
5654 	}
5655 
5656 	umem_free(data, blocksize);
5657 	umem_free(od, sizeof (ztest_od_t));
5658 }
5659 
5660 /*
5661  * Verify that zap_{create,destroy,add,remove,update} work as expected.
5662  */
5663 #define	ZTEST_ZAP_MIN_INTS	1
5664 #define	ZTEST_ZAP_MAX_INTS	4
5665 #define	ZTEST_ZAP_MAX_PROPS	1000
5666 
5667 void
ztest_zap(ztest_ds_t * zd,uint64_t id)5668 ztest_zap(ztest_ds_t *zd, uint64_t id)
5669 {
5670 	objset_t *os = zd->zd_os;
5671 	ztest_od_t *od;
5672 	uint64_t object;
5673 	uint64_t txg, last_txg;
5674 	uint64_t value[ZTEST_ZAP_MAX_INTS];
5675 	uint64_t zl_ints, zl_intsize, prop;
5676 	int i, ints;
5677 	dmu_tx_t *tx;
5678 	char propname[100], txgname[100];
5679 	int error;
5680 	const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5681 
5682 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5683 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5684 
5685 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5686 	    !ztest_random(2)) != 0)
5687 		goto out;
5688 
5689 	object = od->od_object;
5690 
5691 	/*
5692 	 * Generate a known hash collision, and verify that
5693 	 * we can lookup and remove both entries.
5694 	 */
5695 	tx = dmu_tx_create(os);
5696 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5697 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5698 	if (txg == 0)
5699 		goto out;
5700 	for (i = 0; i < 2; i++) {
5701 		value[i] = i;
5702 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5703 		    1, &value[i], tx));
5704 	}
5705 	for (i = 0; i < 2; i++) {
5706 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5707 		    sizeof (uint64_t), 1, &value[i], tx));
5708 		VERIFY0(
5709 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5710 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5711 		ASSERT3U(zl_ints, ==, 1);
5712 	}
5713 	for (i = 0; i < 2; i++) {
5714 		VERIFY0(zap_remove(os, object, hc[i], tx));
5715 	}
5716 	dmu_tx_commit(tx);
5717 
5718 	/*
5719 	 * Generate a bunch of random entries.
5720 	 */
5721 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5722 
5723 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5724 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5725 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5726 	memset(value, 0, sizeof (value));
5727 	last_txg = 0;
5728 
5729 	/*
5730 	 * If these zap entries already exist, validate their contents.
5731 	 */
5732 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5733 	if (error == 0) {
5734 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5735 		ASSERT3U(zl_ints, ==, 1);
5736 
5737 		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5738 		    zl_ints, &last_txg));
5739 
5740 		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5741 		    &zl_ints));
5742 
5743 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5744 		ASSERT3U(zl_ints, ==, ints);
5745 
5746 		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5747 		    zl_ints, value));
5748 
5749 		for (i = 0; i < ints; i++) {
5750 			ASSERT3U(value[i], ==, last_txg + object + i);
5751 		}
5752 	} else {
5753 		ASSERT3U(error, ==, ENOENT);
5754 	}
5755 
5756 	/*
5757 	 * Atomically update two entries in our zap object.
5758 	 * The first is named txg_%llu, and contains the txg
5759 	 * in which the property was last updated.  The second
5760 	 * is named prop_%llu, and the nth element of its value
5761 	 * should be txg + object + n.
5762 	 */
5763 	tx = dmu_tx_create(os);
5764 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5765 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5766 	if (txg == 0)
5767 		goto out;
5768 
5769 	if (last_txg > txg)
5770 		fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5771 		    last_txg, txg);
5772 
5773 	for (i = 0; i < ints; i++)
5774 		value[i] = txg + object + i;
5775 
5776 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5777 	    1, &txg, tx));
5778 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5779 	    ints, value, tx));
5780 
5781 	dmu_tx_commit(tx);
5782 
5783 	/*
5784 	 * Remove a random pair of entries.
5785 	 */
5786 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5787 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5788 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5789 
5790 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5791 
5792 	if (error == ENOENT)
5793 		goto out;
5794 
5795 	ASSERT0(error);
5796 
5797 	tx = dmu_tx_create(os);
5798 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5799 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5800 	if (txg == 0)
5801 		goto out;
5802 	VERIFY0(zap_remove(os, object, txgname, tx));
5803 	VERIFY0(zap_remove(os, object, propname, tx));
5804 	dmu_tx_commit(tx);
5805 out:
5806 	umem_free(od, sizeof (ztest_od_t));
5807 }
5808 
5809 /*
5810  * Test case to test the upgrading of a microzap to fatzap.
5811  */
5812 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)5813 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5814 {
5815 	objset_t *os = zd->zd_os;
5816 	ztest_od_t *od;
5817 	uint64_t object, txg, value;
5818 
5819 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5820 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5821 
5822 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5823 	    !ztest_random(2)) != 0)
5824 		goto out;
5825 	object = od->od_object;
5826 
5827 	/*
5828 	 * Add entries to this ZAP and make sure it spills over
5829 	 * and gets upgraded to a fatzap. Also, since we are adding
5830 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5831 	 */
5832 	for (value = 0; value < 2050; value++) {
5833 		char name[ZFS_MAX_DATASET_NAME_LEN];
5834 		dmu_tx_t *tx;
5835 		int error;
5836 
5837 		(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5838 		    id, value);
5839 
5840 		tx = dmu_tx_create(os);
5841 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5842 		txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5843 		if (txg == 0)
5844 			goto out;
5845 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5846 		    &value, tx);
5847 		ASSERT(error == 0 || error == EEXIST);
5848 		dmu_tx_commit(tx);
5849 	}
5850 out:
5851 	umem_free(od, sizeof (ztest_od_t));
5852 }
5853 
5854 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)5855 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5856 {
5857 	(void) id;
5858 	objset_t *os = zd->zd_os;
5859 	ztest_od_t *od;
5860 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5861 	dmu_tx_t *tx;
5862 	int i, namelen, error;
5863 	int micro = ztest_random(2);
5864 	char name[20], string_value[20];
5865 	void *data;
5866 
5867 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5868 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5869 
5870 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5871 		umem_free(od, sizeof (ztest_od_t));
5872 		return;
5873 	}
5874 
5875 	object = od->od_object;
5876 
5877 	/*
5878 	 * Generate a random name of the form 'xxx.....' where each
5879 	 * x is a random printable character and the dots are dots.
5880 	 * There are 94 such characters, and the name length goes from
5881 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5882 	 */
5883 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5884 
5885 	for (i = 0; i < 3; i++)
5886 		name[i] = '!' + ztest_random('~' - '!' + 1);
5887 	for (; i < namelen - 1; i++)
5888 		name[i] = '.';
5889 	name[i] = '\0';
5890 
5891 	if ((namelen & 1) || micro) {
5892 		wsize = sizeof (txg);
5893 		wc = 1;
5894 		data = &txg;
5895 	} else {
5896 		wsize = 1;
5897 		wc = namelen;
5898 		data = string_value;
5899 	}
5900 
5901 	count = -1ULL;
5902 	VERIFY0(zap_count(os, object, &count));
5903 	ASSERT3S(count, !=, -1ULL);
5904 
5905 	/*
5906 	 * Select an operation: length, lookup, add, update, remove.
5907 	 */
5908 	i = ztest_random(5);
5909 
5910 	if (i >= 2) {
5911 		tx = dmu_tx_create(os);
5912 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5913 		txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5914 		if (txg == 0) {
5915 			umem_free(od, sizeof (ztest_od_t));
5916 			return;
5917 		}
5918 		memcpy(string_value, name, namelen);
5919 	} else {
5920 		tx = NULL;
5921 		txg = 0;
5922 		memset(string_value, 0, namelen);
5923 	}
5924 
5925 	switch (i) {
5926 
5927 	case 0:
5928 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5929 		if (error == 0) {
5930 			ASSERT3U(wsize, ==, zl_wsize);
5931 			ASSERT3U(wc, ==, zl_wc);
5932 		} else {
5933 			ASSERT3U(error, ==, ENOENT);
5934 		}
5935 		break;
5936 
5937 	case 1:
5938 		error = zap_lookup(os, object, name, wsize, wc, data);
5939 		if (error == 0) {
5940 			if (data == string_value &&
5941 			    memcmp(name, data, namelen) != 0)
5942 				fatal(B_FALSE, "name '%s' != val '%s' len %d",
5943 				    name, (char *)data, namelen);
5944 		} else {
5945 			ASSERT3U(error, ==, ENOENT);
5946 		}
5947 		break;
5948 
5949 	case 2:
5950 		error = zap_add(os, object, name, wsize, wc, data, tx);
5951 		ASSERT(error == 0 || error == EEXIST);
5952 		break;
5953 
5954 	case 3:
5955 		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5956 		break;
5957 
5958 	case 4:
5959 		error = zap_remove(os, object, name, tx);
5960 		ASSERT(error == 0 || error == ENOENT);
5961 		break;
5962 	}
5963 
5964 	if (tx != NULL)
5965 		dmu_tx_commit(tx);
5966 
5967 	umem_free(od, sizeof (ztest_od_t));
5968 }
5969 
5970 /*
5971  * Commit callback data.
5972  */
5973 typedef struct ztest_cb_data {
5974 	list_node_t		zcd_node;
5975 	uint64_t		zcd_txg;
5976 	int			zcd_expected_err;
5977 	boolean_t		zcd_added;
5978 	boolean_t		zcd_called;
5979 	spa_t			*zcd_spa;
5980 } ztest_cb_data_t;
5981 
5982 /* This is the actual commit callback function */
5983 static void
ztest_commit_callback(void * arg,int error)5984 ztest_commit_callback(void *arg, int error)
5985 {
5986 	ztest_cb_data_t *data = arg;
5987 	uint64_t synced_txg;
5988 
5989 	VERIFY3P(data, !=, NULL);
5990 	VERIFY3S(data->zcd_expected_err, ==, error);
5991 	VERIFY(!data->zcd_called);
5992 
5993 	synced_txg = spa_last_synced_txg(data->zcd_spa);
5994 	if (data->zcd_txg > synced_txg)
5995 		fatal(B_FALSE,
5996 		    "commit callback of txg %"PRIu64" called prematurely, "
5997 		    "last synced txg = %"PRIu64"\n",
5998 		    data->zcd_txg, synced_txg);
5999 
6000 	data->zcd_called = B_TRUE;
6001 
6002 	if (error == ECANCELED) {
6003 		ASSERT0(data->zcd_txg);
6004 		ASSERT(!data->zcd_added);
6005 
6006 		/*
6007 		 * The private callback data should be destroyed here, but
6008 		 * since we are going to check the zcd_called field after
6009 		 * dmu_tx_abort(), we will destroy it there.
6010 		 */
6011 		return;
6012 	}
6013 
6014 	ASSERT(data->zcd_added);
6015 	ASSERT3U(data->zcd_txg, !=, 0);
6016 
6017 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6018 
6019 	/* See if this cb was called more quickly */
6020 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
6021 		zc_min_txg_delay = synced_txg - data->zcd_txg;
6022 
6023 	/* Remove our callback from the list */
6024 	list_remove(&zcl.zcl_callbacks, data);
6025 
6026 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6027 
6028 	umem_free(data, sizeof (ztest_cb_data_t));
6029 }
6030 
6031 /* Allocate and initialize callback data structure */
6032 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)6033 ztest_create_cb_data(objset_t *os, uint64_t txg)
6034 {
6035 	ztest_cb_data_t *cb_data;
6036 
6037 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6038 
6039 	cb_data->zcd_txg = txg;
6040 	cb_data->zcd_spa = dmu_objset_spa(os);
6041 	list_link_init(&cb_data->zcd_node);
6042 
6043 	return (cb_data);
6044 }
6045 
6046 /*
6047  * Commit callback test.
6048  */
6049 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)6050 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6051 {
6052 	objset_t *os = zd->zd_os;
6053 	ztest_od_t *od;
6054 	dmu_tx_t *tx;
6055 	ztest_cb_data_t *cb_data[3], *tmp_cb;
6056 	uint64_t old_txg, txg;
6057 	int i, error = 0;
6058 
6059 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6060 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6061 
6062 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6063 		umem_free(od, sizeof (ztest_od_t));
6064 		return;
6065 	}
6066 
6067 	tx = dmu_tx_create(os);
6068 
6069 	cb_data[0] = ztest_create_cb_data(os, 0);
6070 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6071 
6072 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6073 
6074 	/* Every once in a while, abort the transaction on purpose */
6075 	if (ztest_random(100) == 0)
6076 		error = -1;
6077 
6078 	if (!error)
6079 		error = dmu_tx_assign(tx, DMU_TX_NOWAIT);
6080 
6081 	txg = error ? 0 : dmu_tx_get_txg(tx);
6082 
6083 	cb_data[0]->zcd_txg = txg;
6084 	cb_data[1] = ztest_create_cb_data(os, txg);
6085 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6086 
6087 	if (error) {
6088 		/*
6089 		 * It's not a strict requirement to call the registered
6090 		 * callbacks from inside dmu_tx_abort(), but that's what
6091 		 * it's supposed to happen in the current implementation
6092 		 * so we will check for that.
6093 		 */
6094 		for (i = 0; i < 2; i++) {
6095 			cb_data[i]->zcd_expected_err = ECANCELED;
6096 			VERIFY(!cb_data[i]->zcd_called);
6097 		}
6098 
6099 		dmu_tx_abort(tx);
6100 
6101 		for (i = 0; i < 2; i++) {
6102 			VERIFY(cb_data[i]->zcd_called);
6103 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6104 		}
6105 
6106 		umem_free(od, sizeof (ztest_od_t));
6107 		return;
6108 	}
6109 
6110 	cb_data[2] = ztest_create_cb_data(os, txg);
6111 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6112 
6113 	/*
6114 	 * Read existing data to make sure there isn't a future leak.
6115 	 */
6116 	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6117 	    &old_txg, DMU_READ_PREFETCH));
6118 
6119 	if (old_txg > txg)
6120 		fatal(B_FALSE,
6121 		    "future leak: got %"PRIu64", open txg is %"PRIu64"",
6122 		    old_txg, txg);
6123 
6124 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx,
6125 	    DMU_READ_PREFETCH);
6126 
6127 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6128 
6129 	/*
6130 	 * Since commit callbacks don't have any ordering requirement and since
6131 	 * it is theoretically possible for a commit callback to be called
6132 	 * after an arbitrary amount of time has elapsed since its txg has been
6133 	 * synced, it is difficult to reliably determine whether a commit
6134 	 * callback hasn't been called due to high load or due to a flawed
6135 	 * implementation.
6136 	 *
6137 	 * In practice, we will assume that if after a certain number of txgs a
6138 	 * commit callback hasn't been called, then most likely there's an
6139 	 * implementation bug..
6140 	 */
6141 	tmp_cb = list_head(&zcl.zcl_callbacks);
6142 	if (tmp_cb != NULL &&
6143 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6144 		fatal(B_FALSE,
6145 		    "Commit callback threshold exceeded, "
6146 		    "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6147 		    tmp_cb->zcd_txg, txg);
6148 	}
6149 
6150 	/*
6151 	 * Let's find the place to insert our callbacks.
6152 	 *
6153 	 * Even though the list is ordered by txg, it is possible for the
6154 	 * insertion point to not be the end because our txg may already be
6155 	 * quiescing at this point and other callbacks in the open txg
6156 	 * (from other objsets) may have sneaked in.
6157 	 */
6158 	tmp_cb = list_tail(&zcl.zcl_callbacks);
6159 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6160 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6161 
6162 	/* Add the 3 callbacks to the list */
6163 	for (i = 0; i < 3; i++) {
6164 		if (tmp_cb == NULL)
6165 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6166 		else
6167 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6168 			    cb_data[i]);
6169 
6170 		cb_data[i]->zcd_added = B_TRUE;
6171 		VERIFY(!cb_data[i]->zcd_called);
6172 
6173 		tmp_cb = cb_data[i];
6174 	}
6175 
6176 	zc_cb_counter += 3;
6177 
6178 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6179 
6180 	dmu_tx_commit(tx);
6181 
6182 	umem_free(od, sizeof (ztest_od_t));
6183 }
6184 
6185 /*
6186  * Visit each object in the dataset. Verify that its properties
6187  * are consistent what was stored in the block tag when it was created,
6188  * and that its unused bonus buffer space has not been overwritten.
6189  */
6190 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)6191 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6192 {
6193 	(void) id;
6194 	objset_t *os = zd->zd_os;
6195 	uint64_t obj;
6196 	int err = 0;
6197 
6198 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6199 		ztest_block_tag_t *bt = NULL;
6200 		dmu_object_info_t doi;
6201 		dmu_buf_t *db;
6202 
6203 		ztest_object_lock(zd, obj, ZTRL_READER);
6204 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6205 			ztest_object_unlock(zd, obj);
6206 			continue;
6207 		}
6208 
6209 		dmu_object_info_from_db(db, &doi);
6210 		if (doi.doi_bonus_size >= sizeof (*bt))
6211 			bt = ztest_bt_bonus(db);
6212 
6213 		if (bt && bt->bt_magic == BT_MAGIC) {
6214 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6215 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
6216 			    bt->bt_crtxg);
6217 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6218 		}
6219 
6220 		dmu_buf_rele(db, FTAG);
6221 		ztest_object_unlock(zd, obj);
6222 	}
6223 }
6224 
6225 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)6226 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6227 {
6228 	(void) id;
6229 	zfs_prop_t proplist[] = {
6230 		ZFS_PROP_CHECKSUM,
6231 		ZFS_PROP_COMPRESSION,
6232 		ZFS_PROP_COPIES,
6233 		ZFS_PROP_DEDUP
6234 	};
6235 
6236 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6237 
6238 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6239 		int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6240 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6241 		ASSERT(error == 0 || error == ENOSPC);
6242 	}
6243 
6244 	int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6245 	    ztest_random_blocksize(), (int)ztest_random(2));
6246 	ASSERT(error == 0 || error == ENOSPC);
6247 
6248 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6249 }
6250 
6251 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)6252 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6253 {
6254 	(void) zd, (void) id;
6255 
6256 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6257 
6258 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6259 
6260 	nvlist_t *props = fnvlist_alloc();
6261 
6262 	VERIFY0(spa_prop_get(ztest_spa, props));
6263 
6264 	if (ztest_opts.zo_verbose >= 6)
6265 		dump_nvlist(props, 4);
6266 
6267 	fnvlist_free(props);
6268 
6269 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6270 }
6271 
6272 static int
user_release_one(const char * snapname,const char * holdname)6273 user_release_one(const char *snapname, const char *holdname)
6274 {
6275 	nvlist_t *snaps, *holds;
6276 	int error;
6277 
6278 	snaps = fnvlist_alloc();
6279 	holds = fnvlist_alloc();
6280 	fnvlist_add_boolean(holds, holdname);
6281 	fnvlist_add_nvlist(snaps, snapname, holds);
6282 	fnvlist_free(holds);
6283 	error = dsl_dataset_user_release(snaps, NULL);
6284 	fnvlist_free(snaps);
6285 	return (error);
6286 }
6287 
6288 /*
6289  * Test snapshot hold/release and deferred destroy.
6290  */
6291 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)6292 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6293 {
6294 	int error;
6295 	objset_t *os = zd->zd_os;
6296 	objset_t *origin;
6297 	char snapname[100];
6298 	char fullname[100];
6299 	char clonename[100];
6300 	char tag[100];
6301 	char osname[ZFS_MAX_DATASET_NAME_LEN];
6302 	nvlist_t *holds;
6303 
6304 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6305 
6306 	dmu_objset_name(os, osname);
6307 
6308 	(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6309 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6310 	(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6311 	    osname, id);
6312 	(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6313 
6314 	/*
6315 	 * Clean up from any previous run.
6316 	 */
6317 	error = dsl_destroy_head(clonename);
6318 	if (error != ENOENT)
6319 		ASSERT0(error);
6320 	error = user_release_one(fullname, tag);
6321 	if (error != ESRCH && error != ENOENT)
6322 		ASSERT0(error);
6323 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6324 	if (error != ENOENT)
6325 		ASSERT0(error);
6326 
6327 	/*
6328 	 * Create snapshot, clone it, mark snap for deferred destroy,
6329 	 * destroy clone, verify snap was also destroyed.
6330 	 */
6331 	error = dmu_objset_snapshot_one(osname, snapname);
6332 	if (error) {
6333 		if (error == ENOSPC) {
6334 			ztest_record_enospc("dmu_objset_snapshot");
6335 			goto out;
6336 		}
6337 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6338 	}
6339 
6340 	error = dsl_dataset_clone(clonename, fullname);
6341 	if (error) {
6342 		if (error == ENOSPC) {
6343 			ztest_record_enospc("dsl_dataset_clone");
6344 			goto out;
6345 		}
6346 		fatal(B_FALSE, "dsl_dataset_clone(%s) = %d", clonename, error);
6347 	}
6348 
6349 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6350 	if (error) {
6351 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6352 		    fullname, error);
6353 	}
6354 
6355 	error = dsl_destroy_head(clonename);
6356 	if (error)
6357 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6358 
6359 	error = dmu_objset_hold(fullname, FTAG, &origin);
6360 	if (error != ENOENT)
6361 		fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6362 
6363 	/*
6364 	 * Create snapshot, add temporary hold, verify that we can't
6365 	 * destroy a held snapshot, mark for deferred destroy,
6366 	 * release hold, verify snapshot was destroyed.
6367 	 */
6368 	error = dmu_objset_snapshot_one(osname, snapname);
6369 	if (error) {
6370 		if (error == ENOSPC) {
6371 			ztest_record_enospc("dmu_objset_snapshot");
6372 			goto out;
6373 		}
6374 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6375 	}
6376 
6377 	holds = fnvlist_alloc();
6378 	fnvlist_add_string(holds, fullname, tag);
6379 	error = dsl_dataset_user_hold(holds, 0, NULL);
6380 	fnvlist_free(holds);
6381 
6382 	if (error == ENOSPC) {
6383 		ztest_record_enospc("dsl_dataset_user_hold");
6384 		goto out;
6385 	} else if (error) {
6386 		fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6387 		    fullname, tag, error);
6388 	}
6389 
6390 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6391 	if (error != EBUSY) {
6392 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6393 		    fullname, error);
6394 	}
6395 
6396 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6397 	if (error) {
6398 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6399 		    fullname, error);
6400 	}
6401 
6402 	error = user_release_one(fullname, tag);
6403 	if (error)
6404 		fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6405 		    fullname, tag, error);
6406 
6407 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6408 
6409 out:
6410 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6411 }
6412 
6413 /*
6414  * Inject random faults into the on-disk data.
6415  */
6416 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)6417 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6418 {
6419 	(void) zd, (void) id;
6420 	ztest_shared_t *zs = ztest_shared;
6421 	spa_t *spa = ztest_spa;
6422 	int fd;
6423 	uint64_t offset;
6424 	uint64_t leaves;
6425 	uint64_t bad = 0x1990c0ffeedecadeull;
6426 	uint64_t top, leaf;
6427 	uint64_t raidz_children;
6428 	char *path0;
6429 	char *pathrand;
6430 	size_t fsize;
6431 	int bshift = SPA_MAXBLOCKSHIFT + 2;
6432 	int iters = 1000;
6433 	int maxfaults;
6434 	int mirror_save;
6435 	vdev_t *vd0 = NULL;
6436 	uint64_t guid0 = 0;
6437 	boolean_t islog = B_FALSE;
6438 	boolean_t injected = B_FALSE;
6439 
6440 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6441 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6442 
6443 	mutex_enter(&ztest_vdev_lock);
6444 
6445 	/*
6446 	 * Device removal is in progress, fault injection must be disabled
6447 	 * until it completes and the pool is scrubbed.  The fault injection
6448 	 * strategy for damaging blocks does not take in to account evacuated
6449 	 * blocks which may have already been damaged.
6450 	 */
6451 	if (ztest_device_removal_active)
6452 		goto out;
6453 
6454 	/*
6455 	 * The fault injection strategy for damaging blocks cannot be used
6456 	 * if raidz expansion is in progress. The leaves value
6457 	 * (attached raidz children) is variable and strategy for damaging
6458 	 * blocks will corrupt same data blocks on different child vdevs
6459 	 * because of the reflow process.
6460 	 */
6461 	if (spa->spa_raidz_expand != NULL)
6462 		goto out;
6463 
6464 	maxfaults = MAXFAULTS(zs);
6465 	raidz_children = ztest_get_raidz_children(spa);
6466 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6467 	mirror_save = zs->zs_mirrors;
6468 
6469 	ASSERT3U(leaves, >=, 1);
6470 
6471 	/*
6472 	 * While ztest is running the number of leaves will not change.  This
6473 	 * is critical for the fault injection logic as it determines where
6474 	 * errors can be safely injected such that they are always repairable.
6475 	 *
6476 	 * When restarting ztest a different number of leaves may be requested
6477 	 * which will shift the regions to be damaged.  This is fine as long
6478 	 * as the pool has been scrubbed prior to using the new mapping.
6479 	 * Failure to do can result in non-repairable damage being injected.
6480 	 */
6481 	if (ztest_pool_scrubbed == B_FALSE)
6482 		goto out;
6483 
6484 	/*
6485 	 * Grab the name lock as reader. There are some operations
6486 	 * which don't like to have their vdevs changed while
6487 	 * they are in progress (i.e. spa_change_guid). Those
6488 	 * operations will have grabbed the name lock as writer.
6489 	 */
6490 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6491 
6492 	/*
6493 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6494 	 */
6495 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6496 
6497 	if (ztest_random(2) == 0) {
6498 		/*
6499 		 * Inject errors on a normal data device or slog device.
6500 		 */
6501 		top = ztest_random_vdev_top(spa, B_TRUE);
6502 		leaf = ztest_random(leaves) + zs->zs_splits;
6503 
6504 		/*
6505 		 * Generate paths to the first leaf in this top-level vdev,
6506 		 * and to the random leaf we selected.  We'll induce transient
6507 		 * write failures and random online/offline activity on leaf 0,
6508 		 * and we'll write random garbage to the randomly chosen leaf.
6509 		 */
6510 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6511 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6512 		    top * leaves + zs->zs_splits);
6513 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6514 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6515 		    top * leaves + leaf);
6516 
6517 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6518 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6519 			islog = B_TRUE;
6520 
6521 		/*
6522 		 * If the top-level vdev needs to be resilvered
6523 		 * then we only allow faults on the device that is
6524 		 * resilvering.
6525 		 */
6526 		if (vd0 != NULL && maxfaults != 1 &&
6527 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6528 		    vd0->vdev_resilver_txg != 0)) {
6529 			/*
6530 			 * Make vd0 explicitly claim to be unreadable,
6531 			 * or unwritable, or reach behind its back
6532 			 * and close the underlying fd.  We can do this if
6533 			 * maxfaults == 0 because we'll fail and reexecute,
6534 			 * and we can do it if maxfaults >= 2 because we'll
6535 			 * have enough redundancy.  If maxfaults == 1, the
6536 			 * combination of this with injection of random data
6537 			 * corruption below exceeds the pool's fault tolerance.
6538 			 */
6539 			vdev_file_t *vf = vd0->vdev_tsd;
6540 
6541 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6542 			    (long long)vd0->vdev_id, (int)maxfaults);
6543 
6544 			if (vf != NULL && ztest_random(3) == 0) {
6545 				(void) close(vf->vf_file->f_fd);
6546 				vf->vf_file->f_fd = -1;
6547 			} else if (ztest_random(2) == 0) {
6548 				vd0->vdev_cant_read = B_TRUE;
6549 			} else {
6550 				vd0->vdev_cant_write = B_TRUE;
6551 			}
6552 			guid0 = vd0->vdev_guid;
6553 		}
6554 	} else {
6555 		/*
6556 		 * Inject errors on an l2cache device.
6557 		 */
6558 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6559 
6560 		if (sav->sav_count == 0) {
6561 			spa_config_exit(spa, SCL_STATE, FTAG);
6562 			(void) pthread_rwlock_unlock(&ztest_name_lock);
6563 			goto out;
6564 		}
6565 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6566 		guid0 = vd0->vdev_guid;
6567 		(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6568 		(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6569 
6570 		leaf = 0;
6571 		leaves = 1;
6572 		maxfaults = INT_MAX;	/* no limit on cache devices */
6573 	}
6574 
6575 	spa_config_exit(spa, SCL_STATE, FTAG);
6576 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6577 
6578 	/*
6579 	 * If we can tolerate two or more faults, or we're dealing
6580 	 * with a slog, randomly online/offline vd0.
6581 	 */
6582 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6583 		if (ztest_random(10) < 6) {
6584 			int flags = (ztest_random(2) == 0 ?
6585 			    ZFS_OFFLINE_TEMPORARY : 0);
6586 
6587 			/*
6588 			 * We have to grab the zs_name_lock as writer to
6589 			 * prevent a race between offlining a slog and
6590 			 * destroying a dataset. Offlining the slog will
6591 			 * grab a reference on the dataset which may cause
6592 			 * dsl_destroy_head() to fail with EBUSY thus
6593 			 * leaving the dataset in an inconsistent state.
6594 			 */
6595 			if (islog)
6596 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6597 
6598 			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6599 
6600 			if (islog)
6601 				(void) pthread_rwlock_unlock(&ztest_name_lock);
6602 		} else {
6603 			/*
6604 			 * Ideally we would like to be able to randomly
6605 			 * call vdev_[on|off]line without holding locks
6606 			 * to force unpredictable failures but the side
6607 			 * effects of vdev_[on|off]line prevent us from
6608 			 * doing so.
6609 			 */
6610 			(void) vdev_online(spa, guid0, 0, NULL);
6611 		}
6612 	}
6613 
6614 	if (maxfaults == 0)
6615 		goto out;
6616 
6617 	/*
6618 	 * We have at least single-fault tolerance, so inject data corruption.
6619 	 */
6620 	fd = open(pathrand, O_RDWR);
6621 
6622 	if (fd == -1) /* we hit a gap in the device namespace */
6623 		goto out;
6624 
6625 	fsize = lseek(fd, 0, SEEK_END);
6626 
6627 	while (--iters != 0) {
6628 		/*
6629 		 * The offset must be chosen carefully to ensure that
6630 		 * we do not inject a given logical block with errors
6631 		 * on two different leaf devices, because ZFS can not
6632 		 * tolerate that (if maxfaults==1).
6633 		 *
6634 		 * To achieve this we divide each leaf device into
6635 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6636 		 * Each chunk is further divided into error-injection
6637 		 * ranges (can accept errors) and clear ranges (we do
6638 		 * not inject errors in those). Each error-injection
6639 		 * range can accept errors only for a single leaf vdev.
6640 		 * Error-injection ranges are separated by clear ranges.
6641 		 *
6642 		 * For example, with 3 leaves, each chunk looks like:
6643 		 *    0 to  32M: injection range for leaf 0
6644 		 *  32M to  64M: clear range - no injection allowed
6645 		 *  64M to  96M: injection range for leaf 1
6646 		 *  96M to 128M: clear range - no injection allowed
6647 		 * 128M to 160M: injection range for leaf 2
6648 		 * 160M to 192M: clear range - no injection allowed
6649 		 *
6650 		 * Each clear range must be large enough such that a
6651 		 * single block cannot straddle it. This way a block
6652 		 * can't be a target in two different injection ranges
6653 		 * (on different leaf vdevs).
6654 		 */
6655 		offset = ztest_random(fsize / (leaves << bshift)) *
6656 		    (leaves << bshift) + (leaf << bshift) +
6657 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6658 
6659 		/*
6660 		 * Only allow damage to the labels at one end of the vdev.
6661 		 *
6662 		 * If all labels are damaged, the device will be totally
6663 		 * inaccessible, which will result in loss of data,
6664 		 * because we also damage (parts of) the other side of
6665 		 * the mirror/raidz.
6666 		 *
6667 		 * Additionally, we will always have both an even and an
6668 		 * odd label, so that we can handle crashes in the
6669 		 * middle of vdev_config_sync().
6670 		 */
6671 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6672 			continue;
6673 
6674 		/*
6675 		 * The two end labels are stored at the "end" of the disk, but
6676 		 * the end of the disk (vdev_psize) is aligned to
6677 		 * sizeof (vdev_label_t).
6678 		 */
6679 		uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6680 		    uint64_t);
6681 		if ((leaf & 1) == 1 &&
6682 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6683 			continue;
6684 
6685 		if (mirror_save != zs->zs_mirrors) {
6686 			(void) close(fd);
6687 			goto out;
6688 		}
6689 
6690 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6691 			fatal(B_TRUE,
6692 			    "can't inject bad word at 0x%"PRIx64" in %s",
6693 			    offset, pathrand);
6694 
6695 		if (ztest_opts.zo_verbose >= 7)
6696 			(void) printf("injected bad word into %s,"
6697 			    " offset 0x%"PRIx64"\n", pathrand, offset);
6698 
6699 		injected = B_TRUE;
6700 	}
6701 
6702 	(void) close(fd);
6703 out:
6704 	mutex_exit(&ztest_vdev_lock);
6705 
6706 	if (injected && ztest_opts.zo_raid_do_expand) {
6707 		int error = spa_scan(spa, POOL_SCAN_SCRUB);
6708 		if (error == 0) {
6709 			while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6710 				txg_wait_synced(spa_get_dsl(spa), 0);
6711 		}
6712 	}
6713 
6714 	umem_free(path0, MAXPATHLEN);
6715 	umem_free(pathrand, MAXPATHLEN);
6716 }
6717 
6718 /*
6719  * By design ztest will never inject uncorrectable damage in to the pool.
6720  * Issue a scrub, wait for it to complete, and verify there is never any
6721  * persistent damage.
6722  *
6723  * Only after a full scrub has been completed is it safe to start injecting
6724  * data corruption.  See the comment in zfs_fault_inject().
6725  *
6726  * EBUSY may be returned for the following six cases.  It's the callers
6727  * responsibility to handle them accordingly.
6728  *
6729  * Current state                Requested
6730  * 1. Normal Scrub Running      Normal Scrub or Error Scrub
6731  * 2. Normal Scrub Paused       Error Scrub
6732  * 3. Normal Scrub Paused       Pause Normal Scrub
6733  * 4. Error Scrub Running       Normal Scrub or Error Scrub
6734  * 5. Error Scrub Paused        Pause Error Scrub
6735  * 6. Resilvering               Anything else
6736  */
6737 static int
ztest_scrub_impl(spa_t * spa)6738 ztest_scrub_impl(spa_t *spa)
6739 {
6740 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6741 	if (error)
6742 		return (error);
6743 
6744 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6745 		txg_wait_synced(spa_get_dsl(spa), 0);
6746 
6747 	if (spa_approx_errlog_size(spa) > 0)
6748 		return (ECKSUM);
6749 
6750 	ztest_pool_scrubbed = B_TRUE;
6751 
6752 	return (0);
6753 }
6754 
6755 /*
6756  * Scrub the pool.
6757  */
6758 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6759 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6760 {
6761 	(void) zd, (void) id;
6762 	spa_t *spa = ztest_spa;
6763 	int error;
6764 
6765 	/*
6766 	 * Scrub in progress by device removal.
6767 	 */
6768 	if (ztest_device_removal_active)
6769 		return;
6770 
6771 	/*
6772 	 * Start a scrub, wait a moment, then force a restart.
6773 	 */
6774 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6775 	(void) poll(NULL, 0, 100);
6776 
6777 	error = ztest_scrub_impl(spa);
6778 	if (error == EBUSY)
6779 		error = 0;
6780 	ASSERT0(error);
6781 }
6782 
6783 /*
6784  * Change the guid for the pool.
6785  */
6786 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6787 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6788 {
6789 	(void) zd, (void) id;
6790 	spa_t *spa = ztest_spa;
6791 	uint64_t orig, load;
6792 	int error;
6793 	ztest_shared_t *zs = ztest_shared;
6794 
6795 	if (ztest_opts.zo_mmp_test)
6796 		return;
6797 
6798 	orig = spa_guid(spa);
6799 	load = spa_load_guid(spa);
6800 
6801 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6802 	error = spa_change_guid(spa, NULL);
6803 	zs->zs_guid = spa_guid(spa);
6804 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6805 
6806 	if (error != 0)
6807 		return;
6808 
6809 	if (ztest_opts.zo_verbose >= 4) {
6810 		(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6811 		    orig, spa_guid(spa));
6812 	}
6813 
6814 	VERIFY3U(orig, !=, spa_guid(spa));
6815 	VERIFY3U(load, ==, spa_load_guid(spa));
6816 }
6817 
6818 void
ztest_blake3(ztest_ds_t * zd,uint64_t id)6819 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6820 {
6821 	(void) zd, (void) id;
6822 	hrtime_t end = gethrtime() + NANOSEC;
6823 	zio_cksum_salt_t salt;
6824 	void *salt_ptr = &salt.zcs_bytes;
6825 	struct abd *abd_data, *abd_meta;
6826 	void *buf, *templ;
6827 	int i, *ptr;
6828 	uint32_t size;
6829 	BLAKE3_CTX ctx;
6830 	const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6831 
6832 	size = ztest_random_blocksize();
6833 	buf = umem_alloc(size, UMEM_NOFAIL);
6834 	abd_data = abd_alloc(size, B_FALSE);
6835 	abd_meta = abd_alloc(size, B_TRUE);
6836 
6837 	for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6838 		*ptr = ztest_random(UINT_MAX);
6839 	memset(salt_ptr, 'A', 32);
6840 
6841 	abd_copy_from_buf_off(abd_data, buf, 0, size);
6842 	abd_copy_from_buf_off(abd_meta, buf, 0, size);
6843 
6844 	while (gethrtime() <= end) {
6845 		int run_count = 100;
6846 		zio_cksum_t zc_ref1, zc_ref2;
6847 		zio_cksum_t zc_res1, zc_res2;
6848 
6849 		void *ref1 = &zc_ref1;
6850 		void *ref2 = &zc_ref2;
6851 		void *res1 = &zc_res1;
6852 		void *res2 = &zc_res2;
6853 
6854 		/* BLAKE3_KEY_LEN = 32 */
6855 		VERIFY0(blake3->setname("generic"));
6856 		templ = abd_checksum_blake3_tmpl_init(&salt);
6857 		Blake3_InitKeyed(&ctx, salt_ptr);
6858 		Blake3_Update(&ctx, buf, size);
6859 		Blake3_Final(&ctx, ref1);
6860 		zc_ref2 = zc_ref1;
6861 		ZIO_CHECKSUM_BSWAP(&zc_ref2);
6862 		abd_checksum_blake3_tmpl_free(templ);
6863 
6864 		VERIFY0(blake3->setname("cycle"));
6865 		while (run_count-- > 0) {
6866 
6867 			/* Test current implementation */
6868 			Blake3_InitKeyed(&ctx, salt_ptr);
6869 			Blake3_Update(&ctx, buf, size);
6870 			Blake3_Final(&ctx, res1);
6871 			zc_res2 = zc_res1;
6872 			ZIO_CHECKSUM_BSWAP(&zc_res2);
6873 
6874 			VERIFY0(memcmp(ref1, res1, 32));
6875 			VERIFY0(memcmp(ref2, res2, 32));
6876 
6877 			/* Test ABD - data */
6878 			templ = abd_checksum_blake3_tmpl_init(&salt);
6879 			abd_checksum_blake3_native(abd_data, size,
6880 			    templ, &zc_res1);
6881 			abd_checksum_blake3_byteswap(abd_data, size,
6882 			    templ, &zc_res2);
6883 
6884 			VERIFY0(memcmp(ref1, res1, 32));
6885 			VERIFY0(memcmp(ref2, res2, 32));
6886 
6887 			/* Test ABD - metadata */
6888 			abd_checksum_blake3_native(abd_meta, size,
6889 			    templ, &zc_res1);
6890 			abd_checksum_blake3_byteswap(abd_meta, size,
6891 			    templ, &zc_res2);
6892 			abd_checksum_blake3_tmpl_free(templ);
6893 
6894 			VERIFY0(memcmp(ref1, res1, 32));
6895 			VERIFY0(memcmp(ref2, res2, 32));
6896 
6897 		}
6898 	}
6899 
6900 	abd_free(abd_data);
6901 	abd_free(abd_meta);
6902 	umem_free(buf, size);
6903 }
6904 
6905 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)6906 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6907 {
6908 	(void) zd, (void) id;
6909 	hrtime_t end = gethrtime() + NANOSEC;
6910 
6911 	while (gethrtime() <= end) {
6912 		int run_count = 100;
6913 		void *buf;
6914 		struct abd *abd_data, *abd_meta;
6915 		uint32_t size;
6916 		int *ptr;
6917 		int i;
6918 		zio_cksum_t zc_ref;
6919 		zio_cksum_t zc_ref_byteswap;
6920 
6921 		size = ztest_random_blocksize();
6922 
6923 		buf = umem_alloc(size, UMEM_NOFAIL);
6924 		abd_data = abd_alloc(size, B_FALSE);
6925 		abd_meta = abd_alloc(size, B_TRUE);
6926 
6927 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6928 			*ptr = ztest_random(UINT_MAX);
6929 
6930 		abd_copy_from_buf_off(abd_data, buf, 0, size);
6931 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6932 
6933 		VERIFY0(fletcher_4_impl_set("scalar"));
6934 		fletcher_4_native(buf, size, NULL, &zc_ref);
6935 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6936 
6937 		VERIFY0(fletcher_4_impl_set("cycle"));
6938 		while (run_count-- > 0) {
6939 			zio_cksum_t zc;
6940 			zio_cksum_t zc_byteswap;
6941 
6942 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6943 			fletcher_4_native(buf, size, NULL, &zc);
6944 
6945 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6946 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6947 			    sizeof (zc_byteswap)));
6948 
6949 			/* Test ABD - data */
6950 			abd_fletcher_4_byteswap(abd_data, size, NULL,
6951 			    &zc_byteswap);
6952 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6953 
6954 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6955 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6956 			    sizeof (zc_byteswap)));
6957 
6958 			/* Test ABD - metadata */
6959 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6960 			    &zc_byteswap);
6961 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6962 
6963 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6964 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6965 			    sizeof (zc_byteswap)));
6966 
6967 		}
6968 
6969 		umem_free(buf, size);
6970 		abd_free(abd_data);
6971 		abd_free(abd_meta);
6972 	}
6973 }
6974 
6975 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)6976 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6977 {
6978 	(void) zd, (void) id;
6979 	void *buf;
6980 	size_t size;
6981 	int *ptr;
6982 	int i;
6983 	zio_cksum_t zc_ref;
6984 	zio_cksum_t zc_ref_bswap;
6985 
6986 	hrtime_t end = gethrtime() + NANOSEC;
6987 
6988 	while (gethrtime() <= end) {
6989 		int run_count = 100;
6990 
6991 		size = ztest_random_blocksize();
6992 		buf = umem_alloc(size, UMEM_NOFAIL);
6993 
6994 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6995 			*ptr = ztest_random(UINT_MAX);
6996 
6997 		VERIFY0(fletcher_4_impl_set("scalar"));
6998 		fletcher_4_native(buf, size, NULL, &zc_ref);
6999 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
7000 
7001 		VERIFY0(fletcher_4_impl_set("cycle"));
7002 
7003 		while (run_count-- > 0) {
7004 			zio_cksum_t zc;
7005 			zio_cksum_t zc_bswap;
7006 			size_t pos = 0;
7007 
7008 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7009 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7010 
7011 			while (pos < size) {
7012 				size_t inc = 64 * ztest_random(size / 67);
7013 				/* sometimes add few bytes to test non-simd */
7014 				if (ztest_random(100) < 10)
7015 					inc += P2ALIGN_TYPED(ztest_random(64),
7016 					    sizeof (uint32_t), uint64_t);
7017 
7018 				if (inc > (size - pos))
7019 					inc = size - pos;
7020 
7021 				fletcher_4_incremental_native(buf + pos, inc,
7022 				    &zc);
7023 				fletcher_4_incremental_byteswap(buf + pos, inc,
7024 				    &zc_bswap);
7025 
7026 				pos += inc;
7027 			}
7028 
7029 			VERIFY3U(pos, ==, size);
7030 
7031 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7032 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7033 
7034 			/*
7035 			 * verify if incremental on the whole buffer is
7036 			 * equivalent to non-incremental version
7037 			 */
7038 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7039 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7040 
7041 			fletcher_4_incremental_native(buf, size, &zc);
7042 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
7043 
7044 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7045 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7046 		}
7047 
7048 		umem_free(buf, size);
7049 	}
7050 }
7051 
7052 void
ztest_pool_prefetch_ddt(ztest_ds_t * zd,uint64_t id)7053 ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7054 {
7055 	(void) zd, (void) id;
7056 	spa_t *spa;
7057 
7058 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7059 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7060 
7061 	ddt_prefetch_all(spa);
7062 
7063 	spa_close(spa, FTAG);
7064 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7065 }
7066 
7067 static int
ztest_set_global_vars(void)7068 ztest_set_global_vars(void)
7069 {
7070 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7071 		char *kv = ztest_opts.zo_gvars[i];
7072 		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7073 		VERIFY3U(strlen(kv), >, 0);
7074 		int err = handle_tunable_option(kv, B_TRUE);
7075 		if (ztest_opts.zo_verbose > 0) {
7076 			(void) printf("setting global var %s ... %s\n", kv,
7077 			    err ? "failed" : "ok");
7078 		}
7079 		if (err != 0) {
7080 			(void) fprintf(stderr,
7081 			    "failed to set global var '%s'\n", kv);
7082 			return (err);
7083 		}
7084 	}
7085 	return (0);
7086 }
7087 
7088 static char **
ztest_global_vars_to_zdb_args(void)7089 ztest_global_vars_to_zdb_args(void)
7090 {
7091 	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7092 	char **cur = args;
7093 	if (args == NULL)
7094 		return (NULL);
7095 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7096 		*cur++ = (char *)"-o";
7097 		*cur++ = ztest_opts.zo_gvars[i];
7098 	}
7099 	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7100 	*cur = NULL;
7101 	return (args);
7102 }
7103 
7104 /* The end of strings is indicated by a NULL element */
7105 static char *
join_strings(char ** strings,const char * sep)7106 join_strings(char **strings, const char *sep)
7107 {
7108 	size_t totallen = 0;
7109 	for (char **sp = strings; *sp != NULL; sp++) {
7110 		totallen += strlen(*sp);
7111 		totallen += strlen(sep);
7112 	}
7113 	if (totallen > 0) {
7114 		ASSERT(totallen >= strlen(sep));
7115 		totallen -= strlen(sep);
7116 	}
7117 
7118 	size_t buflen = totallen + 1;
7119 	char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7120 	o[0] = '\0';
7121 	for (char **sp = strings; *sp != NULL; sp++) {
7122 		size_t would;
7123 		would = strlcat(o, *sp, buflen);
7124 		VERIFY3U(would, <, buflen);
7125 		if (*(sp+1) == NULL) {
7126 			break;
7127 		}
7128 		would = strlcat(o, sep, buflen);
7129 		VERIFY3U(would, <, buflen);
7130 	}
7131 	ASSERT3S(strlen(o), ==, totallen);
7132 	return (o);
7133 }
7134 
7135 static int
ztest_check_path(char * path)7136 ztest_check_path(char *path)
7137 {
7138 	struct stat s;
7139 	/* return true on success */
7140 	return (!stat(path, &s));
7141 }
7142 
7143 static void
ztest_get_zdb_bin(char * bin,int len)7144 ztest_get_zdb_bin(char *bin, int len)
7145 {
7146 	char *zdb_path;
7147 	/*
7148 	 * Try to use $ZDB and in-tree zdb path. If not successful, just
7149 	 * let popen to search through PATH.
7150 	 */
7151 	if ((zdb_path = getenv("ZDB"))) {
7152 		strlcpy(bin, zdb_path, len); /* In env */
7153 		if (!ztest_check_path(bin)) {
7154 			ztest_dump_core = 0;
7155 			fatal(B_TRUE, "invalid ZDB '%s'", bin);
7156 		}
7157 		return;
7158 	}
7159 
7160 	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7161 	if (strstr(bin, ".libs/ztest")) {
7162 		strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7163 		strcat(bin, "zdb");
7164 		if (ztest_check_path(bin))
7165 			return;
7166 	}
7167 	strcpy(bin, "zdb");
7168 }
7169 
7170 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)7171 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7172 {
7173 	if (vd == NULL)
7174 		return (NULL);
7175 
7176 	if (vd->vdev_children == 0)
7177 		return (vd);
7178 
7179 	vdev_t *eligible[vd->vdev_children];
7180 	int eligible_idx = 0, i;
7181 	for (i = 0; i < vd->vdev_children; i++) {
7182 		vdev_t *cvd = vd->vdev_child[i];
7183 		if (cvd->vdev_top->vdev_removing)
7184 			continue;
7185 		if (cvd->vdev_children > 0 ||
7186 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7187 			eligible[eligible_idx++] = cvd;
7188 		}
7189 	}
7190 	VERIFY3S(eligible_idx, >, 0);
7191 
7192 	uint64_t child_no = ztest_random(eligible_idx);
7193 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7194 }
7195 
7196 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)7197 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7198 {
7199 	(void) zd, (void) id;
7200 	spa_t *spa = ztest_spa;
7201 	int error = 0;
7202 
7203 	mutex_enter(&ztest_vdev_lock);
7204 
7205 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7206 
7207 	/* Random leaf vdev */
7208 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7209 	if (rand_vd == NULL) {
7210 		spa_config_exit(spa, SCL_VDEV, FTAG);
7211 		mutex_exit(&ztest_vdev_lock);
7212 		return;
7213 	}
7214 
7215 	/*
7216 	 * The random vdev we've selected may change as soon as we
7217 	 * drop the spa_config_lock. We create local copies of things
7218 	 * we're interested in.
7219 	 */
7220 	uint64_t guid = rand_vd->vdev_guid;
7221 	char *path = strdup(rand_vd->vdev_path);
7222 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7223 
7224 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7225 	spa_config_exit(spa, SCL_VDEV, FTAG);
7226 
7227 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7228 
7229 	nvlist_t *vdev_guids = fnvlist_alloc();
7230 	nvlist_t *vdev_errlist = fnvlist_alloc();
7231 	fnvlist_add_uint64(vdev_guids, path, guid);
7232 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7233 	fnvlist_free(vdev_guids);
7234 	fnvlist_free(vdev_errlist);
7235 
7236 	switch (cmd) {
7237 	case POOL_INITIALIZE_CANCEL:
7238 		if (ztest_opts.zo_verbose >= 4) {
7239 			(void) printf("Cancel initialize %s", path);
7240 			if (!active)
7241 				(void) printf(" failed (no initialize active)");
7242 			(void) printf("\n");
7243 		}
7244 		break;
7245 	case POOL_INITIALIZE_START:
7246 		if (ztest_opts.zo_verbose >= 4) {
7247 			(void) printf("Start initialize %s", path);
7248 			if (active && error == 0)
7249 				(void) printf(" failed (already active)");
7250 			else if (error != 0)
7251 				(void) printf(" failed (error %d)", error);
7252 			(void) printf("\n");
7253 		}
7254 		break;
7255 	case POOL_INITIALIZE_SUSPEND:
7256 		if (ztest_opts.zo_verbose >= 4) {
7257 			(void) printf("Suspend initialize %s", path);
7258 			if (!active)
7259 				(void) printf(" failed (no initialize active)");
7260 			(void) printf("\n");
7261 		}
7262 		break;
7263 	}
7264 	free(path);
7265 	mutex_exit(&ztest_vdev_lock);
7266 }
7267 
7268 void
ztest_trim(ztest_ds_t * zd,uint64_t id)7269 ztest_trim(ztest_ds_t *zd, uint64_t id)
7270 {
7271 	(void) zd, (void) id;
7272 	spa_t *spa = ztest_spa;
7273 	int error = 0;
7274 
7275 	mutex_enter(&ztest_vdev_lock);
7276 
7277 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7278 
7279 	/* Random leaf vdev */
7280 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7281 	if (rand_vd == NULL) {
7282 		spa_config_exit(spa, SCL_VDEV, FTAG);
7283 		mutex_exit(&ztest_vdev_lock);
7284 		return;
7285 	}
7286 
7287 	/*
7288 	 * The random vdev we've selected may change as soon as we
7289 	 * drop the spa_config_lock. We create local copies of things
7290 	 * we're interested in.
7291 	 */
7292 	uint64_t guid = rand_vd->vdev_guid;
7293 	char *path = strdup(rand_vd->vdev_path);
7294 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
7295 
7296 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7297 	spa_config_exit(spa, SCL_VDEV, FTAG);
7298 
7299 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7300 	uint64_t rate = 1 << ztest_random(30);
7301 	boolean_t partial = (ztest_random(5) > 0);
7302 	boolean_t secure = (ztest_random(5) > 0);
7303 
7304 	nvlist_t *vdev_guids = fnvlist_alloc();
7305 	nvlist_t *vdev_errlist = fnvlist_alloc();
7306 	fnvlist_add_uint64(vdev_guids, path, guid);
7307 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7308 	    secure, vdev_errlist);
7309 	fnvlist_free(vdev_guids);
7310 	fnvlist_free(vdev_errlist);
7311 
7312 	switch (cmd) {
7313 	case POOL_TRIM_CANCEL:
7314 		if (ztest_opts.zo_verbose >= 4) {
7315 			(void) printf("Cancel TRIM %s", path);
7316 			if (!active)
7317 				(void) printf(" failed (no TRIM active)");
7318 			(void) printf("\n");
7319 		}
7320 		break;
7321 	case POOL_TRIM_START:
7322 		if (ztest_opts.zo_verbose >= 4) {
7323 			(void) printf("Start TRIM %s", path);
7324 			if (active && error == 0)
7325 				(void) printf(" failed (already active)");
7326 			else if (error != 0)
7327 				(void) printf(" failed (error %d)", error);
7328 			(void) printf("\n");
7329 		}
7330 		break;
7331 	case POOL_TRIM_SUSPEND:
7332 		if (ztest_opts.zo_verbose >= 4) {
7333 			(void) printf("Suspend TRIM %s", path);
7334 			if (!active)
7335 				(void) printf(" failed (no TRIM active)");
7336 			(void) printf("\n");
7337 		}
7338 		break;
7339 	}
7340 	free(path);
7341 	mutex_exit(&ztest_vdev_lock);
7342 }
7343 
7344 void
ztest_ddt_prune(ztest_ds_t * zd,uint64_t id)7345 ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
7346 {
7347 	(void) zd, (void) id;
7348 
7349 	spa_t *spa = ztest_spa;
7350 	uint64_t pct = ztest_random(15) + 1;
7351 
7352 	(void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
7353 }
7354 
7355 /*
7356  * Verify pool integrity by running zdb.
7357  */
7358 static void
ztest_run_zdb(uint64_t guid)7359 ztest_run_zdb(uint64_t guid)
7360 {
7361 	int status;
7362 	char *bin;
7363 	char *zdb;
7364 	char *zbuf;
7365 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
7366 	FILE *fp;
7367 
7368 	bin = umem_alloc(len, UMEM_NOFAIL);
7369 	zdb = umem_alloc(len, UMEM_NOFAIL);
7370 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
7371 
7372 	ztest_get_zdb_bin(bin, len);
7373 
7374 	char **set_gvars_args = ztest_global_vars_to_zdb_args();
7375 	if (set_gvars_args == NULL) {
7376 		fatal(B_FALSE, "Failed to allocate memory in "
7377 		    "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7378 	}
7379 	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7380 	free(set_gvars_args);
7381 
7382 	size_t would = snprintf(zdb, len,
7383 	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7384 	    bin,
7385 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
7386 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
7387 	    set_gvars_args_joined,
7388 	    ztest_opts.zo_dir,
7389 	    guid);
7390 	ASSERT3U(would, <, len);
7391 
7392 	umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7393 
7394 	if (ztest_opts.zo_verbose >= 5)
7395 		(void) printf("Executing %s\n", zdb);
7396 
7397 	fp = popen(zdb, "r");
7398 
7399 	while (fgets(zbuf, 1024, fp) != NULL)
7400 		if (ztest_opts.zo_verbose >= 3)
7401 			(void) printf("%s", zbuf);
7402 
7403 	status = pclose(fp);
7404 
7405 	if (status == 0)
7406 		goto out;
7407 
7408 	ztest_dump_core = 0;
7409 	if (WIFEXITED(status))
7410 		fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7411 	else
7412 		fatal(B_FALSE, "'%s' died with signal %d",
7413 		    zdb, WTERMSIG(status));
7414 out:
7415 	umem_free(bin, len);
7416 	umem_free(zdb, len);
7417 	umem_free(zbuf, 1024);
7418 }
7419 
7420 static void
ztest_walk_pool_directory(const char * header)7421 ztest_walk_pool_directory(const char *header)
7422 {
7423 	spa_t *spa = NULL;
7424 
7425 	if (ztest_opts.zo_verbose >= 6)
7426 		(void) puts(header);
7427 
7428 	spa_namespace_enter(FTAG);
7429 	while ((spa = spa_next(spa)) != NULL)
7430 		if (ztest_opts.zo_verbose >= 6)
7431 			(void) printf("\t%s\n", spa_name(spa));
7432 	spa_namespace_exit(FTAG);
7433 }
7434 
7435 static void
ztest_spa_import_export(char * oldname,char * newname)7436 ztest_spa_import_export(char *oldname, char *newname)
7437 {
7438 	nvlist_t *config, *newconfig;
7439 	uint64_t pool_guid;
7440 	spa_t *spa;
7441 	int error;
7442 
7443 	if (ztest_opts.zo_verbose >= 4) {
7444 		(void) printf("import/export: old = %s, new = %s\n",
7445 		    oldname, newname);
7446 	}
7447 
7448 	/*
7449 	 * Clean up from previous runs.
7450 	 */
7451 	(void) spa_destroy(newname);
7452 
7453 	/*
7454 	 * Get the pool's configuration and guid.
7455 	 */
7456 	VERIFY0(spa_open(oldname, &spa, FTAG));
7457 
7458 	/*
7459 	 * Kick off a scrub to tickle scrub/export races.
7460 	 */
7461 	if (ztest_random(2) == 0)
7462 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
7463 
7464 	pool_guid = spa_guid(spa);
7465 	spa_close(spa, FTAG);
7466 
7467 	ztest_walk_pool_directory("pools before export");
7468 
7469 	/*
7470 	 * Export it.
7471 	 */
7472 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7473 
7474 	ztest_walk_pool_directory("pools after export");
7475 
7476 	/*
7477 	 * Try to import it.
7478 	 */
7479 	newconfig = spa_tryimport(config);
7480 	ASSERT3P(newconfig, !=, NULL);
7481 	fnvlist_free(newconfig);
7482 
7483 	/*
7484 	 * Import it under the new name.
7485 	 */
7486 	error = spa_import(newname, config, NULL, 0);
7487 	if (error != 0) {
7488 		dump_nvlist(config, 0);
7489 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7490 		    oldname, newname, error);
7491 	}
7492 
7493 	ztest_walk_pool_directory("pools after import");
7494 
7495 	/*
7496 	 * Try to import it again -- should fail with EEXIST.
7497 	 */
7498 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7499 
7500 	/*
7501 	 * Try to import it under a different name -- should fail with EEXIST.
7502 	 */
7503 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7504 
7505 	/*
7506 	 * Verify that the pool is no longer visible under the old name.
7507 	 */
7508 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7509 
7510 	/*
7511 	 * Verify that we can open and close the pool using the new name.
7512 	 */
7513 	VERIFY0(spa_open(newname, &spa, FTAG));
7514 	ASSERT3U(pool_guid, ==, spa_guid(spa));
7515 	spa_close(spa, FTAG);
7516 
7517 	fnvlist_free(config);
7518 }
7519 
7520 static void
ztest_resume(spa_t * spa)7521 ztest_resume(spa_t *spa)
7522 {
7523 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7524 		(void) printf("resuming from suspended state\n");
7525 	spa_vdev_state_enter(spa, SCL_NONE);
7526 	vdev_clear(spa, NULL);
7527 	(void) spa_vdev_state_exit(spa, NULL, 0);
7528 	(void) zio_resume(spa);
7529 }
7530 
7531 static __attribute__((noreturn)) void
ztest_resume_thread(void * arg)7532 ztest_resume_thread(void *arg)
7533 {
7534 	spa_t *spa = arg;
7535 
7536 	/*
7537 	 * Synthesize aged DDT entries for ddt prune testing
7538 	 */
7539 	ddt_prune_artificial_age = B_TRUE;
7540 	if (ztest_opts.zo_verbose >= 3)
7541 		ddt_dump_prune_histogram = B_TRUE;
7542 
7543 	while (!ztest_exiting) {
7544 		if (spa_suspended(spa))
7545 			ztest_resume(spa);
7546 		(void) poll(NULL, 0, 100);
7547 
7548 		/*
7549 		 * Periodically change the zfs_compressed_arc_enabled setting.
7550 		 */
7551 		if (ztest_random(10) == 0)
7552 			zfs_compressed_arc_enabled = ztest_random(2);
7553 
7554 		/*
7555 		 * Periodically change the zfs_abd_scatter_enabled setting.
7556 		 */
7557 		if (ztest_random(10) == 0)
7558 			zfs_abd_scatter_enabled = ztest_random(2);
7559 	}
7560 
7561 	thread_exit();
7562 }
7563 
7564 static __attribute__((noreturn)) void
ztest_deadman_thread(void * arg)7565 ztest_deadman_thread(void *arg)
7566 {
7567 	ztest_shared_t *zs = arg;
7568 	spa_t *spa = ztest_spa;
7569 	hrtime_t delay, overdue, last_run = gethrtime();
7570 
7571 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7572 	    MSEC2NSEC(zfs_deadman_synctime_ms);
7573 
7574 	while (!ztest_exiting) {
7575 		/*
7576 		 * Wait for the delay timer while checking occasionally
7577 		 * if we should stop.
7578 		 */
7579 		if (gethrtime() < last_run + delay) {
7580 			(void) poll(NULL, 0, 1000);
7581 			continue;
7582 		}
7583 
7584 		/*
7585 		 * If the pool is suspended then fail immediately. Otherwise,
7586 		 * check to see if the pool is making any progress. If
7587 		 * vdev_deadman() discovers that there hasn't been any recent
7588 		 * I/Os then it will end up aborting the tests.
7589 		 */
7590 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7591 			fatal(B_FALSE,
7592 			    "aborting test after %llu seconds because "
7593 			    "pool has transitioned to a suspended state.",
7594 			    (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7595 		}
7596 		vdev_deadman(spa->spa_root_vdev, FTAG);
7597 
7598 		/*
7599 		 * If the process doesn't complete within a grace period of
7600 		 * zfs_deadman_synctime_ms over the expected finish time,
7601 		 * then it may be hung and is terminated.
7602 		 */
7603 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7604 		if (gethrtime() > overdue) {
7605 			fatal(B_FALSE,
7606 			    "aborting test after %llu seconds because "
7607 			    "the process is overdue for termination.",
7608 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7609 		}
7610 
7611 		(void) printf("ztest has been running for %lld seconds\n",
7612 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7613 
7614 		last_run = gethrtime();
7615 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7616 	}
7617 
7618 	thread_exit();
7619 }
7620 
7621 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)7622 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7623 {
7624 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7625 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7626 	hrtime_t functime = gethrtime();
7627 	int i;
7628 
7629 	for (i = 0; i < zi->zi_iters; i++)
7630 		zi->zi_func(zd, id);
7631 
7632 	functime = gethrtime() - functime;
7633 
7634 	atomic_add_64(&zc->zc_count, 1);
7635 	atomic_add_64(&zc->zc_time, functime);
7636 
7637 	if (ztest_opts.zo_verbose >= 4)
7638 		(void) printf("%6.2f sec in %s\n",
7639 		    (double)functime / NANOSEC, zi->zi_funcname);
7640 }
7641 
7642 typedef struct ztest_raidz_expand_io {
7643 	uint64_t	rzx_id;
7644 	uint64_t	rzx_amount;
7645 	uint64_t	rzx_bufsize;
7646 	const void	*rzx_buffer;
7647 	uint64_t	rzx_alloc_max;
7648 	spa_t		*rzx_spa;
7649 } ztest_expand_io_t;
7650 
7651 #undef OD_ARRAY_SIZE
7652 #define	OD_ARRAY_SIZE	10
7653 
7654 /*
7655  * Write a request amount of data to some dataset objects.
7656  * There will be ztest_opts.zo_threads count of these running in parallel.
7657  */
7658 static __attribute__((noreturn)) void
ztest_rzx_thread(void * arg)7659 ztest_rzx_thread(void *arg)
7660 {
7661 	ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7662 	ztest_od_t *od;
7663 	int batchsize;
7664 	int od_size;
7665 	ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7666 	spa_t *spa = info->rzx_spa;
7667 
7668 	od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7669 	od = umem_alloc(od_size, UMEM_NOFAIL);
7670 	batchsize = OD_ARRAY_SIZE;
7671 
7672 	/* Create objects to write to */
7673 	for (int b = 0; b < batchsize; b++) {
7674 		ztest_od_init(od + b, info->rzx_id, FTAG, b,
7675 		    DMU_OT_UINT64_OTHER, 0, 0, 0);
7676 	}
7677 	if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7678 		umem_free(od, od_size);
7679 		thread_exit();
7680 	}
7681 
7682 	for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7683 	    offset += info->rzx_bufsize) {
7684 		/* write to 10 objects */
7685 		for (int i = 0; i < batchsize && written < info->rzx_amount;
7686 		    i++) {
7687 			(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7688 			ztest_write(zd, od[i].od_object, offset,
7689 			    info->rzx_bufsize, info->rzx_buffer);
7690 			(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7691 			written += info->rzx_bufsize;
7692 		}
7693 		txg_wait_synced(spa_get_dsl(spa), 0);
7694 		/* due to inflation, we'll typically bail here */
7695 		if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7696 		    info->rzx_alloc_max) {
7697 			break;
7698 		}
7699 	}
7700 
7701 	/* Remove a few objects to leave some holes in allocation space */
7702 	mutex_enter(&zd->zd_dirobj_lock);
7703 	(void) ztest_remove(zd, od, 2);
7704 	mutex_exit(&zd->zd_dirobj_lock);
7705 
7706 	umem_free(od, od_size);
7707 
7708 	thread_exit();
7709 }
7710 
7711 static __attribute__((noreturn)) void
ztest_thread(void * arg)7712 ztest_thread(void *arg)
7713 {
7714 	int rand;
7715 	uint64_t id = (uintptr_t)arg;
7716 	ztest_shared_t *zs = ztest_shared;
7717 	uint64_t call_next;
7718 	hrtime_t now;
7719 	ztest_info_t *zi;
7720 	ztest_shared_callstate_t *zc;
7721 
7722 	while ((now = gethrtime()) < zs->zs_thread_stop) {
7723 		/*
7724 		 * See if it's time to force a crash.
7725 		 */
7726 		if (now > zs->zs_thread_kill &&
7727 		    raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7728 			ztest_kill(zs);
7729 		}
7730 
7731 		/*
7732 		 * If we're getting ENOSPC with some regularity, stop.
7733 		 */
7734 		if (zs->zs_enospc_count > 10)
7735 			break;
7736 
7737 		/*
7738 		 * Pick a random function to execute.
7739 		 */
7740 		rand = ztest_random(ZTEST_FUNCS);
7741 		zi = &ztest_info[rand];
7742 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7743 		call_next = zc->zc_next;
7744 
7745 		if (now >= call_next &&
7746 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7747 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7748 			ztest_execute(rand, zi, id);
7749 		}
7750 	}
7751 
7752 	thread_exit();
7753 }
7754 
7755 static void
ztest_dataset_name(char * dsname,const char * pool,int d)7756 ztest_dataset_name(char *dsname, const char *pool, int d)
7757 {
7758 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7759 }
7760 
7761 static void
ztest_dataset_destroy(int d)7762 ztest_dataset_destroy(int d)
7763 {
7764 	char name[ZFS_MAX_DATASET_NAME_LEN];
7765 	int t;
7766 
7767 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7768 
7769 	if (ztest_opts.zo_verbose >= 3)
7770 		(void) printf("Destroying %s to free up space\n", name);
7771 
7772 	/*
7773 	 * Cleanup any non-standard clones and snapshots.  In general,
7774 	 * ztest thread t operates on dataset (t % zopt_datasets),
7775 	 * so there may be more than one thing to clean up.
7776 	 */
7777 	for (t = d; t < ztest_opts.zo_threads;
7778 	    t += ztest_opts.zo_datasets)
7779 		ztest_dsl_dataset_cleanup(name, t);
7780 
7781 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7782 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7783 }
7784 
7785 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)7786 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7787 {
7788 	uint64_t usedobjs, dirobjs, scratch;
7789 
7790 	/*
7791 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7792 	 * Therefore, the number of objects in use should equal the
7793 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7794 	 * If not, we have an object leak.
7795 	 *
7796 	 * Note that we can only check this in ztest_dataset_open(),
7797 	 * when the open-context and syncing-context values agree.
7798 	 * That's because zap_count() returns the open-context value,
7799 	 * while dmu_objset_space() returns the rootbp fill count.
7800 	 */
7801 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7802 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7803 	ASSERT3U(dirobjs + 1, ==, usedobjs);
7804 }
7805 
7806 static int
ztest_dataset_open(int d)7807 ztest_dataset_open(int d)
7808 {
7809 	ztest_ds_t *zd = &ztest_ds[d];
7810 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7811 	objset_t *os;
7812 	zilog_t *zilog;
7813 	char name[ZFS_MAX_DATASET_NAME_LEN];
7814 	int error;
7815 
7816 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7817 
7818 	if (ztest_opts.zo_verbose >= 6)
7819 		(void) printf("Opening %s\n", name);
7820 
7821 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7822 
7823 	error = ztest_dataset_create(name);
7824 	if (error == ENOSPC) {
7825 		(void) pthread_rwlock_unlock(&ztest_name_lock);
7826 		ztest_record_enospc(FTAG);
7827 		return (error);
7828 	}
7829 	ASSERT(error == 0 || error == EEXIST);
7830 
7831 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7832 	    B_TRUE, zd, &os));
7833 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7834 
7835 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7836 
7837 	zilog = zd->zd_zilog;
7838 
7839 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7840 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7841 		fatal(B_FALSE, "missing log records: "
7842 		    "claimed %"PRIu64" < committed %"PRIu64"",
7843 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7844 
7845 	ztest_dataset_dirobj_verify(zd);
7846 
7847 	zil_replay(os, zd, ztest_replay_vector);
7848 
7849 	ztest_dataset_dirobj_verify(zd);
7850 
7851 	if (ztest_opts.zo_verbose >= 6)
7852 		(void) printf("%s replay %"PRIu64" blocks, "
7853 		    "%"PRIu64" records, seq %"PRIu64"\n",
7854 		    zd->zd_name,
7855 		    zilog->zl_parse_blk_count,
7856 		    zilog->zl_parse_lr_count,
7857 		    zilog->zl_replaying_seq);
7858 
7859 	zilog = zil_open(os, ztest_get_data, NULL);
7860 
7861 	if (zilog->zl_replaying_seq != 0 &&
7862 	    zilog->zl_replaying_seq < committed_seq)
7863 		fatal(B_FALSE, "missing log records: "
7864 		    "replayed %"PRIu64" < committed %"PRIu64"",
7865 		    zilog->zl_replaying_seq, committed_seq);
7866 
7867 	return (0);
7868 }
7869 
7870 static void
ztest_dataset_close(int d)7871 ztest_dataset_close(int d)
7872 {
7873 	ztest_ds_t *zd = &ztest_ds[d];
7874 
7875 	zil_close(zd->zd_zilog);
7876 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7877 
7878 	ztest_zd_fini(zd);
7879 }
7880 
7881 static int
ztest_replay_zil_cb(const char * name,void * arg)7882 ztest_replay_zil_cb(const char *name, void *arg)
7883 {
7884 	(void) arg;
7885 	objset_t *os;
7886 	ztest_ds_t *zdtmp;
7887 
7888 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7889 	    B_TRUE, FTAG, &os));
7890 
7891 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7892 
7893 	ztest_zd_init(zdtmp, NULL, os);
7894 	zil_replay(os, zdtmp, ztest_replay_vector);
7895 	ztest_zd_fini(zdtmp);
7896 
7897 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7898 	    ztest_opts.zo_verbose >= 6) {
7899 		zilog_t *zilog = dmu_objset_zil(os);
7900 
7901 		(void) printf("%s replay %"PRIu64" blocks, "
7902 		    "%"PRIu64" records, seq %"PRIu64"\n",
7903 		    name,
7904 		    zilog->zl_parse_blk_count,
7905 		    zilog->zl_parse_lr_count,
7906 		    zilog->zl_replaying_seq);
7907 	}
7908 
7909 	umem_free(zdtmp, sizeof (ztest_ds_t));
7910 
7911 	dmu_objset_disown(os, B_TRUE, FTAG);
7912 	return (0);
7913 }
7914 
7915 static void
ztest_freeze(void)7916 ztest_freeze(void)
7917 {
7918 	ztest_ds_t *zd = &ztest_ds[0];
7919 	spa_t *spa;
7920 	int numloops = 0;
7921 
7922 	/* freeze not supported during RAIDZ expansion */
7923 	if (ztest_opts.zo_raid_do_expand)
7924 		return;
7925 
7926 	if (ztest_opts.zo_verbose >= 3)
7927 		(void) printf("testing spa_freeze()...\n");
7928 
7929 	raidz_scratch_verify();
7930 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7931 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7932 	VERIFY0(ztest_dataset_open(0));
7933 	ztest_spa = spa;
7934 
7935 	/*
7936 	 * Force the first log block to be transactionally allocated.
7937 	 * We have to do this before we freeze the pool -- otherwise
7938 	 * the log chain won't be anchored.
7939 	 */
7940 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7941 		ztest_dmu_object_alloc_free(zd, 0);
7942 		VERIFY0(zil_commit(zd->zd_zilog, 0));
7943 	}
7944 
7945 	txg_wait_synced(spa_get_dsl(spa), 0);
7946 
7947 	/*
7948 	 * Freeze the pool.  This stops spa_sync() from doing anything,
7949 	 * so that the only way to record changes from now on is the ZIL.
7950 	 */
7951 	spa_freeze(spa);
7952 
7953 	/*
7954 	 * Because it is hard to predict how much space a write will actually
7955 	 * require beforehand, we leave ourselves some fudge space to write over
7956 	 * capacity.
7957 	 */
7958 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7959 
7960 	/*
7961 	 * Run tests that generate log records but don't alter the pool config
7962 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7963 	 * We do a txg_wait_synced() after each iteration to force the txg
7964 	 * to increase well beyond the last synced value in the uberblock.
7965 	 * The ZIL should be OK with that.
7966 	 *
7967 	 * Run a random number of times less than zo_maxloops and ensure we do
7968 	 * not run out of space on the pool.
7969 	 */
7970 	while (ztest_random(10) != 0 &&
7971 	    numloops++ < ztest_opts.zo_maxloops &&
7972 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7973 		ztest_od_t od;
7974 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7975 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7976 		ztest_io(zd, od.od_object,
7977 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7978 		txg_wait_synced(spa_get_dsl(spa), 0);
7979 	}
7980 
7981 	/*
7982 	 * Commit all of the changes we just generated.
7983 	 */
7984 	VERIFY0(zil_commit(zd->zd_zilog, 0));
7985 	txg_wait_synced(spa_get_dsl(spa), 0);
7986 
7987 	/*
7988 	 * Close our dataset and close the pool.
7989 	 */
7990 	ztest_dataset_close(0);
7991 	spa_close(spa, FTAG);
7992 	kernel_fini();
7993 
7994 	/*
7995 	 * Open and close the pool and dataset to induce log replay.
7996 	 */
7997 	raidz_scratch_verify();
7998 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7999 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8000 	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
8001 	VERIFY0(ztest_dataset_open(0));
8002 	ztest_spa = spa;
8003 	txg_wait_synced(spa_get_dsl(spa), 0);
8004 	ztest_dataset_close(0);
8005 	ztest_reguid(NULL, 0);
8006 
8007 	spa_close(spa, FTAG);
8008 	kernel_fini();
8009 }
8010 
8011 static void
ztest_import_impl(void)8012 ztest_import_impl(void)
8013 {
8014 	importargs_t args = { 0 };
8015 	nvlist_t *cfg = NULL;
8016 	int nsearch = 1;
8017 	char *searchdirs[nsearch];
8018 	int flags = ZFS_IMPORT_MISSING_LOG;
8019 
8020 	searchdirs[0] = ztest_opts.zo_dir;
8021 	args.paths = nsearch;
8022 	args.path = searchdirs;
8023 	args.can_be_active = B_FALSE;
8024 
8025 	libpc_handle_t lpch = {
8026 		.lpc_lib_handle = NULL,
8027 		.lpc_ops = &libzpool_config_ops,
8028 		.lpc_printerr = B_TRUE
8029 	};
8030 	VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
8031 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
8032 	fnvlist_free(cfg);
8033 }
8034 
8035 /*
8036  * Import a storage pool with the given name.
8037  */
8038 static void
ztest_import(ztest_shared_t * zs)8039 ztest_import(ztest_shared_t *zs)
8040 {
8041 	spa_t *spa;
8042 
8043 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8044 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8045 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8046 
8047 	raidz_scratch_verify();
8048 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8049 
8050 	ztest_import_impl();
8051 
8052 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8053 	zs->zs_metaslab_sz =
8054 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8055 	zs->zs_guid = spa_guid(spa);
8056 	spa_close(spa, FTAG);
8057 
8058 	kernel_fini();
8059 
8060 	if (!ztest_opts.zo_mmp_test) {
8061 		ztest_run_zdb(zs->zs_guid);
8062 		ztest_freeze();
8063 		ztest_run_zdb(zs->zs_guid);
8064 	}
8065 
8066 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8067 	mutex_destroy(&ztest_vdev_lock);
8068 	mutex_destroy(&ztest_checkpoint_lock);
8069 }
8070 
8071 /*
8072  * After the expansion was killed, check that the pool is healthy
8073  */
8074 static void
ztest_raidz_expand_check(spa_t * spa)8075 ztest_raidz_expand_check(spa_t *spa)
8076 {
8077 	ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8078 	/*
8079 	 * Set pool check done flag, main program will run a zdb check
8080 	 * of the pool when we exit.
8081 	 */
8082 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8083 
8084 	/* Wait for reflow to finish */
8085 	if (ztest_opts.zo_verbose >= 1) {
8086 		(void) printf("\nwaiting for reflow to finish ...\n");
8087 	}
8088 	pool_raidz_expand_stat_t rzx_stats;
8089 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8090 	do {
8091 		txg_wait_synced(spa_get_dsl(spa), 0);
8092 		(void) poll(NULL, 0, 500); /* wait 1/2 second */
8093 
8094 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8095 		(void) spa_raidz_expand_get_stats(spa, pres);
8096 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8097 	} while (pres->pres_state != DSS_FINISHED &&
8098 	    pres->pres_reflowed < pres->pres_to_reflow);
8099 
8100 	if (ztest_opts.zo_verbose >= 1) {
8101 		(void) printf("verifying an interrupted raidz "
8102 		    "expansion using a pool scrub ...\n");
8103 	}
8104 
8105 	/* Will fail here if there is non-recoverable corruption detected */
8106 	int error = ztest_scrub_impl(spa);
8107 	if (error == EBUSY)
8108 		error = 0;
8109 
8110 	VERIFY0(error);
8111 
8112 	if (ztest_opts.zo_verbose >= 1) {
8113 		(void) printf("raidz expansion scrub check complete\n");
8114 	}
8115 }
8116 
8117 /*
8118  * Start a raidz expansion test.  We run some I/O on the pool for a while
8119  * to get some data in the pool.  Then we grow the raidz and
8120  * kill the test at the requested offset into the reflow, verifying that
8121  * doing such does not lead to pool corruption.
8122  */
8123 static void
ztest_raidz_expand_run(ztest_shared_t * zs,spa_t * spa)8124 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8125 {
8126 	nvlist_t *root;
8127 	pool_raidz_expand_stat_t rzx_stats;
8128 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8129 	kthread_t **run_threads;
8130 	vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8131 	int total_disks = rzvd->vdev_children;
8132 	int data_disks = total_disks - vdev_get_nparity(rzvd);
8133 	uint64_t alloc_goal;
8134 	uint64_t csize;
8135 	int error, t;
8136 	int threads = ztest_opts.zo_threads;
8137 	ztest_expand_io_t *thread_args;
8138 
8139 	ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8140 	ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8141 	ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8142 
8143 	/* Setup a 1 MiB buffer of random data */
8144 	uint64_t bufsize = 1024 * 1024;
8145 	void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8146 	random_get_pseudo_bytes((uint8_t *)&buffer, bufsize);
8147 
8148 	/*
8149 	 * Put some data in the pool and then attach a vdev to initiate
8150 	 * reflow.
8151 	 */
8152 	run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8153 	thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8154 	    UMEM_NOFAIL);
8155 	/* Aim for roughly 25% of allocatable space up to 1GB */
8156 	alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8157 	alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8158 	if (ztest_opts.zo_verbose >= 1) {
8159 		(void) printf("adding data to pool '%s', goal %llu bytes\n",
8160 		    ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8161 	}
8162 
8163 	/*
8164 	 * Kick off all the I/O generators that run in parallel.
8165 	 */
8166 	for (t = 0; t < threads; t++) {
8167 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8168 			umem_free(run_threads, threads * sizeof (kthread_t *));
8169 			umem_free(buffer, bufsize);
8170 			return;
8171 		}
8172 		thread_args[t].rzx_id = t;
8173 		thread_args[t].rzx_amount = alloc_goal / threads;
8174 		thread_args[t].rzx_bufsize = bufsize;
8175 		thread_args[t].rzx_buffer = buffer;
8176 		thread_args[t].rzx_alloc_max = alloc_goal;
8177 		thread_args[t].rzx_spa = spa;
8178 		run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8179 		    &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8180 		    defclsyspri);
8181 	}
8182 
8183 	/*
8184 	 * Wait for all of the writers to complete.
8185 	 */
8186 	for (t = 0; t < threads; t++)
8187 		VERIFY0(thread_join(run_threads[t]));
8188 
8189 	/*
8190 	 * Close all datasets. This must be done after all the threads
8191 	 * are joined so we can be sure none of the datasets are in-use
8192 	 * by any of the threads.
8193 	 */
8194 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8195 		if (t < ztest_opts.zo_datasets)
8196 			ztest_dataset_close(t);
8197 	}
8198 
8199 	txg_wait_synced(spa_get_dsl(spa), 0);
8200 
8201 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8202 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8203 
8204 	umem_free(buffer, bufsize);
8205 	umem_free(run_threads, threads * sizeof (kthread_t *));
8206 	umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8207 
8208 	/* Set our reflow target to 25%, 50% or 75% of allocated size */
8209 	uint_t multiple = ztest_random(3) + 1;
8210 	uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8211 	raidz_expand_max_reflow_bytes = reflow_max;
8212 
8213 	if (ztest_opts.zo_verbose >= 1) {
8214 		(void) printf("running raidz expansion test, killing when "
8215 		    "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8216 		    (u_longlong_t)reflow_max, multiple);
8217 	}
8218 
8219 	/* XXX - do we want some I/O load during the reflow? */
8220 
8221 	/*
8222 	 * Use a disk size that is larger than existing ones
8223 	 */
8224 	cvd = rzvd->vdev_child[0];
8225 	csize = vdev_get_min_asize(cvd);
8226 	csize += csize / 10;
8227 	/*
8228 	 * Path to vdev to be attached
8229 	 */
8230 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8231 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8232 	    ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8233 	/*
8234 	 * Build the nvlist describing newpath.
8235 	 */
8236 	root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8237 	    NULL, 0, 0, 1);
8238 	/*
8239 	 * Expand the raidz vdev by attaching the new disk
8240 	 */
8241 	if (ztest_opts.zo_verbose >= 1) {
8242 		(void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8243 		    (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8244 		    newpath);
8245 	}
8246 	error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8247 	nvlist_free(root);
8248 	if (error != 0) {
8249 		fatal(0, "raidz expand: attach (%s %llu) returned %d",
8250 		    newpath, (long long)csize, error);
8251 	}
8252 
8253 	/*
8254 	 * Wait for reflow to begin
8255 	 */
8256 	while (spa->spa_raidz_expand == NULL) {
8257 		txg_wait_synced(spa_get_dsl(spa), 0);
8258 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8259 	}
8260 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8261 	(void) spa_raidz_expand_get_stats(spa, pres);
8262 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8263 	while (pres->pres_state != DSS_SCANNING) {
8264 		txg_wait_synced(spa_get_dsl(spa), 0);
8265 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8266 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267 		(void) spa_raidz_expand_get_stats(spa, pres);
8268 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8269 	}
8270 
8271 	ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8272 	ASSERT3U(pres->pres_to_reflow, !=, 0);
8273 	/*
8274 	 * Set so when we are killed we go to raidz checking rather than
8275 	 * restarting test.
8276 	 */
8277 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8278 	if (ztest_opts.zo_verbose >= 1) {
8279 		(void) printf("raidz expansion reflow started, waiting for "
8280 		    "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8281 	}
8282 
8283 	/*
8284 	 * Wait for reflow maximum to be reached and then kill the test
8285 	 */
8286 	while (pres->pres_reflowed < reflow_max) {
8287 		txg_wait_synced(spa_get_dsl(spa), 0);
8288 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8289 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8290 		(void) spa_raidz_expand_get_stats(spa, pres);
8291 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8292 	}
8293 
8294 	/* Reset the reflow pause before killing */
8295 	raidz_expand_max_reflow_bytes = 0;
8296 
8297 	if (ztest_opts.zo_verbose >= 1) {
8298 		(void) printf("killing raidz expansion test after reflow "
8299 		    "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8300 	}
8301 
8302 	/*
8303 	 * Kill ourself to simulate a panic during a reflow.  Our parent will
8304 	 * restart the test and the changed flag value will drive the test
8305 	 * through the scrub/check code to verify the pool is not corrupted.
8306 	 */
8307 	ztest_kill(zs);
8308 }
8309 
8310 static void
ztest_generic_run(ztest_shared_t * zs,spa_t * spa)8311 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8312 {
8313 	kthread_t **run_threads;
8314 	int i, ndatasets;
8315 
8316 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8317 	    UMEM_NOFAIL);
8318 
8319 	/*
8320 	 * Actual number of datasets to be used.
8321 	 */
8322 	ndatasets = MIN(ztest_opts.zo_datasets, ztest_opts.zo_threads);
8323 
8324 	/*
8325 	 * Prepare the datasets first.
8326 	 */
8327 	for (i = 0; i < ndatasets; i++)
8328 		VERIFY0(ztest_dataset_open(i));
8329 
8330 	/*
8331 	 * Kick off all the tests that run in parallel.
8332 	 */
8333 	for (i = 0; i < ztest_opts.zo_threads; i++) {
8334 		run_threads[i] = thread_create(NULL, 0, ztest_thread,
8335 		    (void *)(uintptr_t)i, 0, NULL, TS_RUN | TS_JOINABLE,
8336 		    defclsyspri);
8337 	}
8338 
8339 	/*
8340 	 * Wait for all of the tests to complete.
8341 	 */
8342 	for (i = 0; i < ztest_opts.zo_threads; i++)
8343 		VERIFY0(thread_join(run_threads[i]));
8344 
8345 	/*
8346 	 * Close all datasets. This must be done after all the threads
8347 	 * are joined so we can be sure none of the datasets are in-use
8348 	 * by any of the threads.
8349 	 */
8350 	for (i = 0; i < ndatasets; i++)
8351 		ztest_dataset_close(i);
8352 
8353 	txg_wait_synced(spa_get_dsl(spa), 0);
8354 
8355 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8356 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8357 
8358 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8359 }
8360 
8361 /*
8362  * Setup our test context and kick off threads to run tests on all datasets
8363  * in parallel.
8364  */
8365 static void
ztest_run(ztest_shared_t * zs)8366 ztest_run(ztest_shared_t *zs)
8367 {
8368 	spa_t *spa;
8369 	objset_t *os;
8370 	kthread_t *resume_thread, *deadman_thread;
8371 	uint64_t object;
8372 	int error;
8373 	int t, d;
8374 
8375 	ztest_exiting = B_FALSE;
8376 
8377 	/*
8378 	 * Initialize parent/child shared state.
8379 	 */
8380 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8381 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8382 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8383 
8384 	zs->zs_thread_start = gethrtime();
8385 	zs->zs_thread_stop =
8386 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8387 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8388 	zs->zs_thread_kill = zs->zs_thread_stop;
8389 	if (ztest_random(100) < ztest_opts.zo_killrate) {
8390 		zs->zs_thread_kill -=
8391 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
8392 	}
8393 
8394 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8395 
8396 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8397 	    offsetof(ztest_cb_data_t, zcd_node));
8398 
8399 	/*
8400 	 * Open our pool.  It may need to be imported first depending on
8401 	 * what tests were running when the previous pass was terminated.
8402 	 */
8403 	raidz_scratch_verify();
8404 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8405 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8406 	if (error) {
8407 		VERIFY3S(error, ==, ENOENT);
8408 		ztest_import_impl();
8409 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8410 		zs->zs_metaslab_sz =
8411 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8412 	}
8413 
8414 	metaslab_preload_limit = ztest_random(20) + 1;
8415 	ztest_spa = spa;
8416 
8417 	/*
8418 	 * XXX - BUGBUG raidz expansion do not run this for generic for now
8419 	 */
8420 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8421 		VERIFY0(vdev_raidz_impl_set("cycle"));
8422 
8423 	dmu_objset_stats_t dds;
8424 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8425 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8426 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8427 	dmu_objset_fast_stat(os, &dds);
8428 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8429 	dmu_objset_disown(os, B_TRUE, FTAG);
8430 
8431 	/* Give the dedicated raidz expansion test more grace time */
8432 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8433 		zfs_deadman_synctime_ms *= 2;
8434 
8435 	/*
8436 	 * Create a thread to periodically resume suspended I/O.
8437 	 */
8438 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8439 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8440 
8441 	/*
8442 	 * Create a deadman thread and set to panic if we hang.
8443 	 */
8444 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8445 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8446 
8447 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8448 
8449 	/*
8450 	 * Verify that we can safely inquire about any object,
8451 	 * whether it's allocated or not.  To make it interesting,
8452 	 * we probe a 5-wide window around each power of two.
8453 	 * This hits all edge cases, including zero and the max.
8454 	 */
8455 	for (t = 0; t < 64; t++) {
8456 		for (d = -5; d <= 5; d++) {
8457 			error = dmu_object_info(spa->spa_meta_objset,
8458 			    (1ULL << t) + d, NULL);
8459 			ASSERT(error == 0 || error == ENOENT ||
8460 			    error == EINVAL);
8461 		}
8462 	}
8463 
8464 	/*
8465 	 * If we got any ENOSPC errors on the previous run, destroy something.
8466 	 */
8467 	if (zs->zs_enospc_count != 0) {
8468 		/* Not expecting ENOSPC errors during raidz expansion tests */
8469 		ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8470 		    RAIDZ_EXPAND_NONE);
8471 
8472 		int d = ztest_random(ztest_opts.zo_datasets);
8473 		ztest_dataset_destroy(d);
8474 		txg_wait_synced(spa_get_dsl(spa), 0);
8475 	}
8476 	zs->zs_enospc_count = 0;
8477 
8478 	/*
8479 	 * If we were in the middle of ztest_device_removal() and were killed
8480 	 * we need to ensure the removal and scrub complete before running
8481 	 * any tests that check ztest_device_removal_active. The removal will
8482 	 * be restarted automatically when the spa is opened, but we need to
8483 	 * initiate the scrub manually if it is not already in progress. Note
8484 	 * that we always run the scrub whenever an indirect vdev exists
8485 	 * because we have no way of knowing for sure if ztest_device_removal()
8486 	 * fully completed its scrub before the pool was reimported.
8487 	 *
8488 	 * Does not apply for the RAIDZ expansion specific test runs
8489 	 */
8490 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8491 	    (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8492 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8493 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8494 			txg_wait_synced(spa_get_dsl(spa), 0);
8495 
8496 		error = ztest_scrub_impl(spa);
8497 		if (error == EBUSY)
8498 			error = 0;
8499 		ASSERT0(error);
8500 	}
8501 
8502 	if (ztest_opts.zo_verbose >= 4)
8503 		(void) printf("starting main threads...\n");
8504 
8505 	/*
8506 	 * Replay all logs of all datasets in the pool. This is primarily for
8507 	 * temporary datasets which wouldn't otherwise get replayed, which
8508 	 * can trigger failures when attempting to offline a SLOG in
8509 	 * ztest_fault_inject().
8510 	 */
8511 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8512 	    NULL, DS_FIND_CHILDREN);
8513 
8514 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8515 		ztest_raidz_expand_run(zs, spa);
8516 	else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8517 		ztest_raidz_expand_check(spa);
8518 	else
8519 		ztest_generic_run(zs, spa);
8520 
8521 	/* Kill the resume and deadman threads */
8522 	ztest_exiting = B_TRUE;
8523 	VERIFY0(thread_join(resume_thread));
8524 	VERIFY0(thread_join(deadman_thread));
8525 	ztest_resume(spa);
8526 
8527 	/*
8528 	 * Right before closing the pool, kick off a bunch of async I/O;
8529 	 * spa_close() should wait for it to complete.
8530 	 */
8531 	for (object = 1; object < 50; object++) {
8532 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8533 		    ZIO_PRIORITY_SYNC_READ);
8534 	}
8535 
8536 	/* Verify that at least one commit cb was called in a timely fashion */
8537 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8538 		VERIFY0(zc_min_txg_delay);
8539 
8540 	spa_close(spa, FTAG);
8541 
8542 	/*
8543 	 * Verify that we can loop over all pools.
8544 	 */
8545 	spa_namespace_enter(FTAG);
8546 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8547 		if (ztest_opts.zo_verbose > 3)
8548 			(void) printf("spa_next: found %s\n", spa_name(spa));
8549 	spa_namespace_exit(FTAG);
8550 
8551 	/*
8552 	 * Verify that we can export the pool and reimport it under a
8553 	 * different name.
8554 	 */
8555 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8556 		char name[ZFS_MAX_DATASET_NAME_LEN];
8557 		(void) snprintf(name, sizeof (name), "%s_import",
8558 		    ztest_opts.zo_pool);
8559 		ztest_spa_import_export(ztest_opts.zo_pool, name);
8560 		ztest_spa_import_export(name, ztest_opts.zo_pool);
8561 	}
8562 
8563 	kernel_fini();
8564 
8565 	list_destroy(&zcl.zcl_callbacks);
8566 	mutex_destroy(&zcl.zcl_callbacks_lock);
8567 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8568 	mutex_destroy(&ztest_vdev_lock);
8569 	mutex_destroy(&ztest_checkpoint_lock);
8570 }
8571 
8572 static void
print_time(hrtime_t t,char * timebuf)8573 print_time(hrtime_t t, char *timebuf)
8574 {
8575 	hrtime_t s = t / NANOSEC;
8576 	hrtime_t m = s / 60;
8577 	hrtime_t h = m / 60;
8578 	hrtime_t d = h / 24;
8579 
8580 	s -= m * 60;
8581 	m -= h * 60;
8582 	h -= d * 24;
8583 
8584 	timebuf[0] = '\0';
8585 
8586 	if (d)
8587 		(void) sprintf(timebuf,
8588 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
8589 	else if (h)
8590 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8591 	else if (m)
8592 		(void) sprintf(timebuf, "%llum%02llus", m, s);
8593 	else
8594 		(void) sprintf(timebuf, "%llus", s);
8595 }
8596 
8597 static nvlist_t *
make_random_pool_props(void)8598 make_random_pool_props(void)
8599 {
8600 	nvlist_t *props;
8601 
8602 	props = fnvlist_alloc();
8603 
8604 	/* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8605 	if (ztest_random(5) == 0) {
8606 		fnvlist_add_uint64(props,
8607 		    zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8608 		    2 * 1024 * 1024);
8609 	}
8610 
8611 	/* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8612 	if (ztest_random(2) == 0) {
8613 		fnvlist_add_uint64(props,
8614 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8615 	}
8616 
8617 	return (props);
8618 }
8619 
8620 /*
8621  * Create a storage pool with the given name and initial vdev size.
8622  * Then test spa_freeze() functionality.
8623  */
8624 static void
ztest_init(ztest_shared_t * zs)8625 ztest_init(ztest_shared_t *zs)
8626 {
8627 	spa_t *spa;
8628 	nvlist_t *nvroot, *props;
8629 	int i;
8630 
8631 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8632 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8633 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8634 
8635 	raidz_scratch_verify();
8636 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8637 
8638 	/*
8639 	 * Create the storage pool.
8640 	 */
8641 	(void) spa_destroy(ztest_opts.zo_pool);
8642 	ztest_shared->zs_vdev_next_leaf = 0;
8643 	zs->zs_splits = 0;
8644 	zs->zs_mirrors = ztest_opts.zo_mirrors;
8645 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8646 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8647 	props = make_random_pool_props();
8648 
8649 	/*
8650 	 * We don't expect the pool to suspend unless maxfaults == 0,
8651 	 * in which case ztest_fault_inject() temporarily takes away
8652 	 * the only valid replica.
8653 	 */
8654 	fnvlist_add_uint64(props,
8655 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8656 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8657 
8658 	for (i = 0; i < SPA_FEATURES; i++) {
8659 		char *buf;
8660 
8661 		if (!spa_feature_table[i].fi_zfs_mod_supported)
8662 			continue;
8663 
8664 		/*
8665 		 * 75% chance of using the log space map feature. We want ztest
8666 		 * to exercise both the code paths that use the log space map
8667 		 * feature and the ones that don't.
8668 		 */
8669 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8670 			continue;
8671 
8672 		/*
8673 		 * split 50/50 between legacy and fast dedup
8674 		 */
8675 		if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
8676 			continue;
8677 
8678 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8679 		    spa_feature_table[i].fi_uname));
8680 		fnvlist_add_uint64(props, buf, 0);
8681 		free(buf);
8682 	}
8683 
8684 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8685 	fnvlist_free(nvroot);
8686 	fnvlist_free(props);
8687 
8688 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8689 	zs->zs_metaslab_sz =
8690 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8691 	zs->zs_guid = spa_guid(spa);
8692 	spa_close(spa, FTAG);
8693 
8694 	kernel_fini();
8695 
8696 	if (!ztest_opts.zo_mmp_test) {
8697 		ztest_run_zdb(zs->zs_guid);
8698 		ztest_freeze();
8699 		ztest_run_zdb(zs->zs_guid);
8700 	}
8701 
8702 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8703 	mutex_destroy(&ztest_vdev_lock);
8704 	mutex_destroy(&ztest_checkpoint_lock);
8705 }
8706 
8707 static void
setup_data_fd(void)8708 setup_data_fd(void)
8709 {
8710 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8711 
8712 	ztest_fd_data = mkstemp(ztest_name_data);
8713 	ASSERT3S(ztest_fd_data, >=, 0);
8714 	(void) unlink(ztest_name_data);
8715 }
8716 
8717 static int
shared_data_size(ztest_shared_hdr_t * hdr)8718 shared_data_size(ztest_shared_hdr_t *hdr)
8719 {
8720 	int size;
8721 
8722 	size = hdr->zh_hdr_size;
8723 	size += hdr->zh_opts_size;
8724 	size += hdr->zh_size;
8725 	size += hdr->zh_stats_size * hdr->zh_stats_count;
8726 	size += hdr->zh_ds_size * hdr->zh_ds_count;
8727 	size += hdr->zh_scratch_state_size;
8728 
8729 	return (size);
8730 }
8731 
8732 static void
setup_hdr(void)8733 setup_hdr(void)
8734 {
8735 	int size;
8736 	ztest_shared_hdr_t *hdr;
8737 
8738 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8739 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8740 	ASSERT3P(hdr, !=, MAP_FAILED);
8741 
8742 	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8743 
8744 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8745 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8746 	hdr->zh_size = sizeof (ztest_shared_t);
8747 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8748 	hdr->zh_stats_count = ZTEST_FUNCS;
8749 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8750 	hdr->zh_ds_count = ztest_opts.zo_datasets;
8751 	hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8752 
8753 	size = shared_data_size(hdr);
8754 	VERIFY0(ftruncate(ztest_fd_data, size));
8755 
8756 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8757 }
8758 
8759 static void
setup_data(void)8760 setup_data(void)
8761 {
8762 	int size, offset;
8763 	ztest_shared_hdr_t *hdr;
8764 	uint8_t *buf;
8765 
8766 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8767 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8768 	ASSERT3P(hdr, !=, MAP_FAILED);
8769 
8770 	size = shared_data_size(hdr);
8771 
8772 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8773 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8774 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8775 	ASSERT3P(hdr, !=, MAP_FAILED);
8776 	buf = (uint8_t *)hdr;
8777 
8778 	offset = hdr->zh_hdr_size;
8779 	ztest_shared_opts = (void *)&buf[offset];
8780 	offset += hdr->zh_opts_size;
8781 	ztest_shared = (void *)&buf[offset];
8782 	offset += hdr->zh_size;
8783 	ztest_shared_callstate = (void *)&buf[offset];
8784 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
8785 	ztest_shared_ds = (void *)&buf[offset];
8786 	offset += hdr->zh_ds_size * hdr->zh_ds_count;
8787 	ztest_scratch_state = (void *)&buf[offset];
8788 }
8789 
8790 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)8791 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8792 {
8793 	pid_t pid;
8794 	int status;
8795 	char *cmdbuf = NULL;
8796 
8797 	pid = fork();
8798 
8799 	if (cmd == NULL) {
8800 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8801 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8802 		cmd = cmdbuf;
8803 	}
8804 
8805 	if (pid == -1)
8806 		fatal(B_TRUE, "fork failed");
8807 
8808 	if (pid == 0) {	/* child */
8809 		char fd_data_str[12];
8810 
8811 		VERIFY3S(11, >=,
8812 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8813 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8814 
8815 		if (libpath != NULL) {
8816 			const char *curlp = getenv("LD_LIBRARY_PATH");
8817 			if (curlp == NULL)
8818 				VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8819 			else {
8820 				char *newlp = NULL;
8821 				VERIFY3S(-1, !=,
8822 				    asprintf(&newlp, "%s:%s", libpath, curlp));
8823 				VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8824 				free(newlp);
8825 			}
8826 		}
8827 		(void) execl(cmd, cmd, (char *)NULL);
8828 		ztest_dump_core = B_FALSE;
8829 		fatal(B_TRUE, "exec failed: %s", cmd);
8830 	}
8831 
8832 	if (cmdbuf != NULL) {
8833 		umem_free(cmdbuf, MAXPATHLEN);
8834 		cmd = NULL;
8835 	}
8836 
8837 	while (waitpid(pid, &status, 0) != pid)
8838 		continue;
8839 	if (statusp != NULL)
8840 		*statusp = status;
8841 
8842 	if (WIFEXITED(status)) {
8843 		if (WEXITSTATUS(status) != 0) {
8844 			(void) fprintf(stderr, "child exited with code %d\n",
8845 			    WEXITSTATUS(status));
8846 			exit(2);
8847 		}
8848 		return (B_FALSE);
8849 	} else if (WIFSIGNALED(status)) {
8850 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8851 			(void) fprintf(stderr, "child died with signal %d\n",
8852 			    WTERMSIG(status));
8853 			exit(3);
8854 		}
8855 		return (B_TRUE);
8856 	} else {
8857 		(void) fprintf(stderr, "something strange happened to child\n");
8858 		exit(4);
8859 	}
8860 }
8861 
8862 static void
ztest_run_init(void)8863 ztest_run_init(void)
8864 {
8865 	int i;
8866 
8867 	ztest_shared_t *zs = ztest_shared;
8868 
8869 	/*
8870 	 * Blow away any existing copy of zpool.cache
8871 	 */
8872 	(void) remove(spa_config_path);
8873 
8874 	if (ztest_opts.zo_init == 0) {
8875 		if (ztest_opts.zo_verbose >= 1)
8876 			(void) printf("Importing pool %s\n",
8877 			    ztest_opts.zo_pool);
8878 		ztest_import(zs);
8879 		return;
8880 	}
8881 
8882 	/*
8883 	 * Create and initialize our storage pool.
8884 	 */
8885 	for (i = 1; i <= ztest_opts.zo_init; i++) {
8886 		memset(zs, 0, sizeof (*zs));
8887 		if (ztest_opts.zo_verbose >= 3 &&
8888 		    ztest_opts.zo_init != 1) {
8889 			(void) printf("ztest_init(), pass %d\n", i);
8890 		}
8891 		ztest_init(zs);
8892 	}
8893 }
8894 
8895 int
main(int argc,char ** argv)8896 main(int argc, char **argv)
8897 {
8898 	int kills = 0;
8899 	int iters = 0;
8900 	int older = 0;
8901 	int newer = 0;
8902 	ztest_shared_t *zs;
8903 	ztest_info_t *zi;
8904 	ztest_shared_callstate_t *zc;
8905 	char timebuf[100];
8906 	char numbuf[NN_NUMBUF_SZ];
8907 	char *cmd;
8908 	boolean_t hasalt;
8909 	int f, err;
8910 	char *fd_data_str = getenv("ZTEST_FD_DATA");
8911 	struct sigaction action;
8912 
8913 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
8914 
8915 	dprintf_setup(&argc, argv);
8916 	zfs_deadman_synctime_ms = 300000;
8917 	zfs_deadman_checktime_ms = 30000;
8918 	/*
8919 	 * As two-word space map entries may not come up often (especially
8920 	 * if pool and vdev sizes are small) we want to force at least some
8921 	 * of them so the feature get tested.
8922 	 */
8923 	zfs_force_some_double_word_sm_entries = B_TRUE;
8924 
8925 	/*
8926 	 * Verify that even extensively damaged split blocks with many
8927 	 * segments can be reconstructed in a reasonable amount of time
8928 	 * when reconstruction is known to be possible.
8929 	 *
8930 	 * Note: the lower this value is, the more damage we inflict, and
8931 	 * the more time ztest spends in recovering that damage. We chose
8932 	 * to induce damage 1/100th of the time so recovery is tested but
8933 	 * not so frequently that ztest doesn't get to test other code paths.
8934 	 */
8935 	zfs_reconstruct_indirect_damage_fraction = 100;
8936 
8937 	action.sa_handler = sig_handler;
8938 	sigemptyset(&action.sa_mask);
8939 	action.sa_flags = 0;
8940 
8941 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
8942 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8943 		    strerror(errno));
8944 		exit(EXIT_FAILURE);
8945 	}
8946 
8947 	if (sigaction(SIGABRT, &action, NULL) < 0) {
8948 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8949 		    strerror(errno));
8950 		exit(EXIT_FAILURE);
8951 	}
8952 
8953 	libspl_init();
8954 
8955 	/*
8956 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
8957 	 * ztest from needlessly depleting the system entropy pool.
8958 	 */
8959 	random_force_pseudo(B_TRUE);
8960 
8961 	if (!fd_data_str) {
8962 		process_options(argc, argv);
8963 
8964 		setup_data_fd();
8965 		setup_hdr();
8966 		setup_data();
8967 		memcpy(ztest_shared_opts, &ztest_opts,
8968 		    sizeof (*ztest_shared_opts));
8969 	} else {
8970 		ztest_fd_data = atoi(fd_data_str);
8971 		setup_data();
8972 		memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8973 	}
8974 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8975 
8976 	err = ztest_set_global_vars();
8977 	if (err != 0 && !fd_data_str) {
8978 		/* error message done by ztest_set_global_vars */
8979 		exit(EXIT_FAILURE);
8980 	} else {
8981 		/* children should not be spawned if setting gvars fails */
8982 		VERIFY0(err);
8983 	}
8984 
8985 	/* Override location of zpool.cache */
8986 	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8987 	    ztest_opts.zo_dir), !=, -1);
8988 
8989 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8990 	    UMEM_NOFAIL);
8991 	zs = ztest_shared;
8992 
8993 	if (fd_data_str) {
8994 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8995 		metaslab_df_alloc_threshold =
8996 		    zs->zs_metaslab_df_alloc_threshold;
8997 
8998 		if (zs->zs_do_init)
8999 			ztest_run_init();
9000 		else
9001 			ztest_run(zs);
9002 		exit(0);
9003 	}
9004 
9005 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
9006 
9007 	if (ztest_opts.zo_verbose >= 1) {
9008 		(void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
9009 		    "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
9010 		    ztest_opts.zo_vdevs,
9011 		    ztest_opts.zo_datasets,
9012 		    ztest_opts.zo_threads,
9013 		    ztest_opts.zo_raid_children,
9014 		    ztest_opts.zo_raid_type,
9015 		    ztest_opts.zo_raid_parity,
9016 		    ztest_opts.zo_time);
9017 	}
9018 
9019 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
9020 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
9021 
9022 	zs->zs_do_init = B_TRUE;
9023 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
9024 		if (ztest_opts.zo_verbose >= 1) {
9025 			(void) printf("Executing older ztest for "
9026 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
9027 		}
9028 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
9029 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
9030 	} else {
9031 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
9032 	}
9033 	zs->zs_do_init = B_FALSE;
9034 
9035 	zs->zs_proc_start = gethrtime();
9036 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
9037 
9038 	for (f = 0; f < ZTEST_FUNCS; f++) {
9039 		zi = &ztest_info[f];
9040 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
9041 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
9042 			zc->zc_next = UINT64_MAX;
9043 		else
9044 			zc->zc_next = zs->zs_proc_start +
9045 			    ztest_random(2 * zi->zi_interval[0] + 1);
9046 	}
9047 
9048 	/*
9049 	 * Run the tests in a loop.  These tests include fault injection
9050 	 * to verify that self-healing data works, and forced crashes
9051 	 * to verify that we never lose on-disk consistency.
9052 	 */
9053 	while (gethrtime() < zs->zs_proc_stop) {
9054 		int status;
9055 		boolean_t killed;
9056 
9057 		/*
9058 		 * Initialize the workload counters for each function.
9059 		 */
9060 		for (f = 0; f < ZTEST_FUNCS; f++) {
9061 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
9062 			zc->zc_count = 0;
9063 			zc->zc_time = 0;
9064 		}
9065 
9066 		/* Set the allocation switch size */
9067 		zs->zs_metaslab_df_alloc_threshold =
9068 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
9069 
9070 		if (!hasalt || ztest_random(2) == 0) {
9071 			if (hasalt && ztest_opts.zo_verbose >= 1) {
9072 				(void) printf("Executing newer ztest: %s\n",
9073 				    cmd);
9074 			}
9075 			newer++;
9076 			killed = exec_child(cmd, NULL, B_TRUE, &status);
9077 		} else {
9078 			if (hasalt && ztest_opts.zo_verbose >= 1) {
9079 				(void) printf("Executing older ztest: %s\n",
9080 				    ztest_opts.zo_alt_ztest);
9081 			}
9082 			older++;
9083 			killed = exec_child(ztest_opts.zo_alt_ztest,
9084 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
9085 		}
9086 
9087 		if (killed)
9088 			kills++;
9089 		iters++;
9090 
9091 		if (ztest_opts.zo_verbose >= 1) {
9092 			hrtime_t now = gethrtime();
9093 
9094 			now = MIN(now, zs->zs_proc_stop);
9095 			print_time(zs->zs_proc_stop - now, timebuf);
9096 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9097 
9098 			(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9099 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9100 			    iters,
9101 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
9102 			    zs->zs_enospc_count,
9103 			    100.0 * zs->zs_alloc / zs->zs_space,
9104 			    numbuf,
9105 			    100.0 * (now - zs->zs_proc_start) /
9106 			    (ztest_opts.zo_time * NANOSEC), timebuf);
9107 		}
9108 
9109 		if (ztest_opts.zo_verbose >= 2) {
9110 			(void) printf("\nWorkload summary:\n\n");
9111 			(void) printf("%7s %9s   %s\n",
9112 			    "Calls", "Time", "Function");
9113 			(void) printf("%7s %9s   %s\n",
9114 			    "-----", "----", "--------");
9115 			for (f = 0; f < ZTEST_FUNCS; f++) {
9116 				zi = &ztest_info[f];
9117 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
9118 				print_time(zc->zc_time, timebuf);
9119 				(void) printf("%7"PRIu64" %9s   %s\n",
9120 				    zc->zc_count, timebuf,
9121 				    zi->zi_funcname);
9122 			}
9123 			(void) printf("\n");
9124 		}
9125 
9126 		if (!ztest_opts.zo_mmp_test)
9127 			ztest_run_zdb(zs->zs_guid);
9128 		if (ztest_shared_opts->zo_raidz_expand_test ==
9129 		    RAIDZ_EXPAND_CHECKED)
9130 			break; /* raidz expand test complete */
9131 	}
9132 
9133 	if (ztest_opts.zo_verbose >= 1) {
9134 		if (hasalt) {
9135 			(void) printf("%d runs of older ztest: %s\n", older,
9136 			    ztest_opts.zo_alt_ztest);
9137 			(void) printf("%d runs of newer ztest: %s\n", newer,
9138 			    cmd);
9139 		}
9140 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9141 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9142 	}
9143 
9144 	umem_free(cmd, MAXNAMELEN);
9145 
9146 	return (0);
9147 }
9148