1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013 Steven Hartland. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2023, Klara, Inc.
31 */
32
33 /*
34 * The objective of this program is to provide a DMU/ZAP/SPA stress test
35 * that runs entirely in userland, is easy to use, and easy to extend.
36 *
37 * The overall design of the ztest program is as follows:
38 *
39 * (1) For each major functional area (e.g. adding vdevs to a pool,
40 * creating and destroying datasets, reading and writing objects, etc)
41 * we have a simple routine to test that functionality. These
42 * individual routines do not have to do anything "stressful".
43 *
44 * (2) We turn these simple functionality tests into a stress test by
45 * running them all in parallel, with as many threads as desired,
46 * and spread across as many datasets, objects, and vdevs as desired.
47 *
48 * (3) While all this is happening, we inject faults into the pool to
49 * verify that self-healing data really works.
50 *
51 * (4) Every time we open a dataset, we change its checksum and compression
52 * functions. Thus even individual objects vary from block to block
53 * in which checksum they use and whether they're compressed.
54 *
55 * (5) To verify that we never lose on-disk consistency after a crash,
56 * we run the entire test in a child of the main process.
57 * At random times, the child self-immolates with a SIGKILL.
58 * This is the software equivalent of pulling the power cord.
59 * The parent then runs the test again, using the existing
60 * storage pool, as many times as desired. If backwards compatibility
61 * testing is enabled ztest will sometimes run the "older" version
62 * of ztest after a SIGKILL.
63 *
64 * (6) To verify that we don't have future leaks or temporal incursions,
65 * many of the functional tests record the transaction group number
66 * as part of their data. When reading old data, they verify that
67 * the transaction group number is less than the current, open txg.
68 * If you add a new test, please do this if applicable.
69 *
70 * (7) Threads are created with a reduced stack size, for sanity checking.
71 * Therefore, it's important not to allocate huge buffers on the stack.
72 *
73 * When run with no arguments, ztest runs for about five minutes and
74 * produces no output if successful. To get a little bit of information,
75 * specify -V. To get more information, specify -VV, and so on.
76 *
77 * To turn this into an overnight stress test, use -T to specify run time.
78 *
79 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
80 * to increase the pool capacity, fanout, and overall stress level.
81 *
82 * Use the -k option to set the desired frequency of kills.
83 *
84 * When ztest invokes itself it passes all relevant information through a
85 * temporary file which is mmap-ed in the child process. This allows shared
86 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
87 * stored at offset 0 of this file and contains information on the size and
88 * number of shared structures in the file. The information stored in this file
89 * must remain backwards compatible with older versions of ztest so that
90 * ztest can invoke them during backwards compatibility testing (-B).
91 */
92
93 #include <sys/zfs_context.h>
94 #include <sys/spa.h>
95 #include <sys/dmu.h>
96 #include <sys/txg.h>
97 #include <sys/dbuf.h>
98 #include <sys/zap.h>
99 #include <sys/dmu_objset.h>
100 #include <sys/poll.h>
101 #include <sys/stat.h>
102 #include <sys/time.h>
103 #include <sys/wait.h>
104 #include <sys/mman.h>
105 #include <sys/resource.h>
106 #include <sys/zio.h>
107 #include <sys/zil.h>
108 #include <sys/zil_impl.h>
109 #include <sys/vdev_draid.h>
110 #include <sys/vdev_impl.h>
111 #include <sys/vdev_file.h>
112 #include <sys/vdev_initialize.h>
113 #include <sys/vdev_raidz.h>
114 #include <sys/vdev_trim.h>
115 #include <sys/spa_impl.h>
116 #include <sys/metaslab_impl.h>
117 #include <sys/dsl_prop.h>
118 #include <sys/dsl_dataset.h>
119 #include <sys/dsl_destroy.h>
120 #include <sys/dsl_scan.h>
121 #include <sys/zio_checksum.h>
122 #include <sys/zfs_refcount.h>
123 #include <sys/zfeature.h>
124 #include <sys/dsl_userhold.h>
125 #include <sys/abd.h>
126 #include <sys/blake3.h>
127 #include <stdio.h>
128 #include <stdlib.h>
129 #include <unistd.h>
130 #include <getopt.h>
131 #include <signal.h>
132 #include <umem.h>
133 #include <ctype.h>
134 #include <math.h>
135 #include <sys/fs/zfs.h>
136 #include <zfs_fletcher.h>
137 #include <libnvpair.h>
138 #include <libzutil.h>
139 #include <sys/crypto/icp.h>
140 #include <sys/zfs_impl.h>
141 #include <sys/backtrace.h>
142 #include <libzpool.h>
143 #include <libspl.h>
144
145 static int ztest_fd_data = -1;
146
147 typedef struct ztest_shared_hdr {
148 uint64_t zh_hdr_size;
149 uint64_t zh_opts_size;
150 uint64_t zh_size;
151 uint64_t zh_stats_size;
152 uint64_t zh_stats_count;
153 uint64_t zh_ds_size;
154 uint64_t zh_ds_count;
155 uint64_t zh_scratch_state_size;
156 } ztest_shared_hdr_t;
157
158 static ztest_shared_hdr_t *ztest_shared_hdr;
159
160 enum ztest_class_state {
161 ZTEST_VDEV_CLASS_OFF,
162 ZTEST_VDEV_CLASS_ON,
163 ZTEST_VDEV_CLASS_RND
164 };
165
166 /* Dedicated RAIDZ Expansion test states */
167 typedef enum {
168 RAIDZ_EXPAND_NONE, /* Default is none, must opt-in */
169 RAIDZ_EXPAND_REQUESTED, /* The '-X' option was used */
170 RAIDZ_EXPAND_STARTED, /* Testing has commenced */
171 RAIDZ_EXPAND_KILLED, /* Reached the proccess kill */
172 RAIDZ_EXPAND_CHECKED, /* Pool scrub verification done */
173 } raidz_expand_test_state_t;
174
175
176 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
177 #define ZO_GVARS_MAX_COUNT ((size_t)10)
178
179 typedef struct ztest_shared_opts {
180 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
181 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
182 char zo_alt_ztest[MAXNAMELEN];
183 char zo_alt_libpath[MAXNAMELEN];
184 uint64_t zo_vdevs;
185 uint64_t zo_vdevtime;
186 size_t zo_vdev_size;
187 int zo_ashift;
188 int zo_mirrors;
189 int zo_raid_do_expand;
190 int zo_raid_children;
191 int zo_raid_parity;
192 char zo_raid_type[8];
193 int zo_draid_data;
194 int zo_draid_spares;
195 int zo_datasets;
196 int zo_threads;
197 uint64_t zo_passtime;
198 uint64_t zo_killrate;
199 int zo_verbose;
200 int zo_init;
201 uint64_t zo_time;
202 uint64_t zo_maxloops;
203 uint64_t zo_metaslab_force_ganging;
204 raidz_expand_test_state_t zo_raidz_expand_test;
205 int zo_mmp_test;
206 int zo_special_vdevs;
207 int zo_dump_dbgmsg;
208 int zo_gvars_count;
209 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
210 } ztest_shared_opts_t;
211
212 /* Default values for command line options. */
213 #define DEFAULT_POOL "ztest"
214 #define DEFAULT_VDEV_DIR "/tmp"
215 #define DEFAULT_VDEV_COUNT 5
216 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
217 #define DEFAULT_VDEV_SIZE_STR "256M"
218 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
219 #define DEFAULT_MIRRORS 2
220 #define DEFAULT_RAID_CHILDREN 4
221 #define DEFAULT_RAID_PARITY 1
222 #define DEFAULT_DRAID_DATA 4
223 #define DEFAULT_DRAID_SPARES 1
224 #define DEFAULT_DATASETS_COUNT 7
225 #define DEFAULT_THREADS 23
226 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
227 #define DEFAULT_RUN_TIME_STR "300 sec"
228 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
229 #define DEFAULT_PASS_TIME_STR "60 sec"
230 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
231 #define DEFAULT_KILLRATE_STR "70%"
232 #define DEFAULT_INITS 1
233 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
234 #define DEFAULT_FORCE_GANGING (64 << 10)
235 #define DEFAULT_FORCE_GANGING_STR "64K"
236
237 /* Simplifying assumption: -1 is not a valid default. */
238 #define NO_DEFAULT -1
239
240 static const ztest_shared_opts_t ztest_opts_defaults = {
241 .zo_pool = DEFAULT_POOL,
242 .zo_dir = DEFAULT_VDEV_DIR,
243 .zo_alt_ztest = { '\0' },
244 .zo_alt_libpath = { '\0' },
245 .zo_vdevs = DEFAULT_VDEV_COUNT,
246 .zo_ashift = DEFAULT_ASHIFT,
247 .zo_mirrors = DEFAULT_MIRRORS,
248 .zo_raid_children = DEFAULT_RAID_CHILDREN,
249 .zo_raid_parity = DEFAULT_RAID_PARITY,
250 .zo_raid_type = VDEV_TYPE_RAIDZ,
251 .zo_vdev_size = DEFAULT_VDEV_SIZE,
252 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
253 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
254 .zo_datasets = DEFAULT_DATASETS_COUNT,
255 .zo_threads = DEFAULT_THREADS,
256 .zo_passtime = DEFAULT_PASS_TIME,
257 .zo_killrate = DEFAULT_KILL_RATE,
258 .zo_verbose = 0,
259 .zo_mmp_test = 0,
260 .zo_init = DEFAULT_INITS,
261 .zo_time = DEFAULT_RUN_TIME,
262 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
263 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
264 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
265 .zo_gvars_count = 0,
266 .zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
267 };
268
269 extern uint64_t metaslab_force_ganging;
270 extern uint64_t metaslab_df_alloc_threshold;
271 extern uint64_t zfs_deadman_synctime_ms;
272 extern uint_t metaslab_preload_limit;
273 extern int zfs_compressed_arc_enabled;
274 extern int zfs_abd_scatter_enabled;
275 extern uint_t dmu_object_alloc_chunk_shift;
276 extern boolean_t zfs_force_some_double_word_sm_entries;
277 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
278 extern uint64_t raidz_expand_max_reflow_bytes;
279 extern uint_t raidz_expand_pause_point;
280 extern boolean_t ddt_prune_artificial_age;
281 extern boolean_t ddt_dump_prune_histogram;
282
283
284 static ztest_shared_opts_t *ztest_shared_opts;
285 static ztest_shared_opts_t ztest_opts;
286 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
287
288 typedef struct ztest_shared_ds {
289 uint64_t zd_seq;
290 } ztest_shared_ds_t;
291
292 static ztest_shared_ds_t *ztest_shared_ds;
293 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294
295 typedef struct ztest_scratch_state {
296 uint64_t zs_raidz_scratch_verify_pause;
297 } ztest_shared_scratch_state_t;
298
299 static ztest_shared_scratch_state_t *ztest_scratch_state;
300
301 #define BT_MAGIC 0x123456789abcdefULL
302 #define MAXFAULTS(zs) \
303 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
304
305 enum ztest_io_type {
306 ZTEST_IO_WRITE_TAG,
307 ZTEST_IO_WRITE_PATTERN,
308 ZTEST_IO_WRITE_ZEROES,
309 ZTEST_IO_TRUNCATE,
310 ZTEST_IO_SETATTR,
311 ZTEST_IO_REWRITE,
312 ZTEST_IO_TYPES
313 };
314
315 typedef struct ztest_block_tag {
316 uint64_t bt_magic;
317 uint64_t bt_objset;
318 uint64_t bt_object;
319 uint64_t bt_dnodesize;
320 uint64_t bt_offset;
321 uint64_t bt_gen;
322 uint64_t bt_txg;
323 uint64_t bt_crtxg;
324 } ztest_block_tag_t;
325
326 typedef struct bufwad {
327 uint64_t bw_index;
328 uint64_t bw_txg;
329 uint64_t bw_data;
330 } bufwad_t;
331
332 /*
333 * It would be better to use a rangelock_t per object. Unfortunately
334 * the rangelock_t is not a drop-in replacement for rl_t, because we
335 * still need to map from object ID to rangelock_t.
336 */
337 typedef enum {
338 ZTRL_READER,
339 ZTRL_WRITER,
340 ZTRL_APPEND
341 } rl_type_t;
342
343 typedef struct rll {
344 void *rll_writer;
345 int rll_readers;
346 kmutex_t rll_lock;
347 kcondvar_t rll_cv;
348 } rll_t;
349
350 typedef struct rl {
351 uint64_t rl_object;
352 uint64_t rl_offset;
353 uint64_t rl_size;
354 rll_t *rl_lock;
355 } rl_t;
356
357 #define ZTEST_RANGE_LOCKS 64
358 #define ZTEST_OBJECT_LOCKS 64
359
360 /*
361 * Object descriptor. Used as a template for object lookup/create/remove.
362 */
363 typedef struct ztest_od {
364 uint64_t od_dir;
365 uint64_t od_object;
366 dmu_object_type_t od_type;
367 dmu_object_type_t od_crtype;
368 uint64_t od_blocksize;
369 uint64_t od_crblocksize;
370 uint64_t od_crdnodesize;
371 uint64_t od_gen;
372 uint64_t od_crgen;
373 char od_name[ZFS_MAX_DATASET_NAME_LEN];
374 } ztest_od_t;
375
376 /*
377 * Per-dataset state.
378 */
379 typedef struct ztest_ds {
380 ztest_shared_ds_t *zd_shared;
381 objset_t *zd_os;
382 pthread_rwlock_t zd_zilog_lock;
383 zilog_t *zd_zilog;
384 ztest_od_t *zd_od; /* debugging aid */
385 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
386 kmutex_t zd_dirobj_lock;
387 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
388 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
389 } ztest_ds_t;
390
391 /*
392 * Per-iteration state.
393 */
394 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
395
396 typedef struct ztest_info {
397 ztest_func_t *zi_func; /* test function */
398 uint64_t zi_iters; /* iterations per execution */
399 uint64_t *zi_interval; /* execute every <interval> seconds */
400 const char *zi_funcname; /* name of test function */
401 } ztest_info_t;
402
403 typedef struct ztest_shared_callstate {
404 uint64_t zc_count; /* per-pass count */
405 uint64_t zc_time; /* per-pass time */
406 uint64_t zc_next; /* next time to call this function */
407 } ztest_shared_callstate_t;
408
409 static ztest_shared_callstate_t *ztest_shared_callstate;
410 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411
412 ztest_func_t ztest_dmu_read_write;
413 ztest_func_t ztest_dmu_write_parallel;
414 ztest_func_t ztest_dmu_object_alloc_free;
415 ztest_func_t ztest_dmu_object_next_chunk;
416 ztest_func_t ztest_dmu_commit_callbacks;
417 ztest_func_t ztest_zap;
418 ztest_func_t ztest_zap_parallel;
419 ztest_func_t ztest_zil_commit;
420 ztest_func_t ztest_zil_remount;
421 ztest_func_t ztest_dmu_read_write_zcopy;
422 ztest_func_t ztest_dmu_objset_create_destroy;
423 ztest_func_t ztest_dmu_prealloc;
424 ztest_func_t ztest_fzap;
425 ztest_func_t ztest_dmu_snapshot_create_destroy;
426 ztest_func_t ztest_dsl_prop_get_set;
427 ztest_func_t ztest_spa_prop_get_set;
428 ztest_func_t ztest_spa_create_destroy;
429 ztest_func_t ztest_fault_inject;
430 ztest_func_t ztest_dmu_snapshot_hold;
431 ztest_func_t ztest_mmp_enable_disable;
432 ztest_func_t ztest_scrub;
433 ztest_func_t ztest_dsl_dataset_promote_busy;
434 ztest_func_t ztest_vdev_attach_detach;
435 ztest_func_t ztest_vdev_raidz_attach;
436 ztest_func_t ztest_vdev_LUN_growth;
437 ztest_func_t ztest_vdev_add_remove;
438 ztest_func_t ztest_vdev_class_add;
439 ztest_func_t ztest_vdev_aux_add_remove;
440 ztest_func_t ztest_split_pool;
441 ztest_func_t ztest_reguid;
442 ztest_func_t ztest_spa_upgrade;
443 ztest_func_t ztest_device_removal;
444 ztest_func_t ztest_spa_checkpoint_create_discard;
445 ztest_func_t ztest_initialize;
446 ztest_func_t ztest_trim;
447 ztest_func_t ztest_blake3;
448 ztest_func_t ztest_fletcher;
449 ztest_func_t ztest_fletcher_incr;
450 ztest_func_t ztest_verify_dnode_bt;
451 ztest_func_t ztest_pool_prefetch_ddt;
452 ztest_func_t ztest_ddt_prune;
453
454 static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
455 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
456 static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
457 static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
458 static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
459
460 #define ZTI_INIT(func, iters, interval) \
461 { .zi_func = (func), \
462 .zi_iters = (iters), \
463 .zi_interval = (interval), \
464 .zi_funcname = # func }
465
466 static ztest_info_t ztest_info[] = {
467 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
468 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
469 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
470 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
471 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
472 ZTI_INIT(ztest_zap, 30, &zopt_always),
473 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
474 ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
475 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
476 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
477 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
478 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
479 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
480 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
481 #if 0
482 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
483 #endif
484 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
485 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
486 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
487 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
488 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
489 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
490 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
491 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
492 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
493 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
494 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
495 ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
496 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
497 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
498 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
499 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
500 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
501 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
502 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
503 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
504 ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
505 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
506 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
507 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
508 ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
509 ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
510 };
511
512 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
513
514 /*
515 * The following struct is used to hold a list of uncalled commit callbacks.
516 * The callbacks are ordered by txg number.
517 */
518 typedef struct ztest_cb_list {
519 kmutex_t zcl_callbacks_lock;
520 list_t zcl_callbacks;
521 } ztest_cb_list_t;
522
523 /*
524 * Stuff we need to share writably between parent and child.
525 */
526 typedef struct ztest_shared {
527 boolean_t zs_do_init;
528 hrtime_t zs_proc_start;
529 hrtime_t zs_proc_stop;
530 hrtime_t zs_thread_start;
531 hrtime_t zs_thread_stop;
532 hrtime_t zs_thread_kill;
533 uint64_t zs_enospc_count;
534 uint64_t zs_vdev_next_leaf;
535 uint64_t zs_vdev_aux;
536 uint64_t zs_alloc;
537 uint64_t zs_space;
538 uint64_t zs_splits;
539 uint64_t zs_mirrors;
540 uint64_t zs_metaslab_sz;
541 uint64_t zs_metaslab_df_alloc_threshold;
542 uint64_t zs_guid;
543 } ztest_shared_t;
544
545 #define ID_PARALLEL -1ULL
546
547 static char ztest_dev_template[] = "%s/%s.%llua";
548 static char ztest_aux_template[] = "%s/%s.%s.%llu";
549 static ztest_shared_t *ztest_shared;
550
551 static spa_t *ztest_spa = NULL;
552 static ztest_ds_t *ztest_ds;
553
554 static kmutex_t ztest_vdev_lock;
555 static boolean_t ztest_device_removal_active = B_FALSE;
556 static boolean_t ztest_pool_scrubbed = B_FALSE;
557 static kmutex_t ztest_checkpoint_lock;
558
559 /*
560 * The ztest_name_lock protects the pool and dataset namespace used by
561 * the individual tests. To modify the namespace, consumers must grab
562 * this lock as writer. Grabbing the lock as reader will ensure that the
563 * namespace does not change while the lock is held.
564 */
565 static pthread_rwlock_t ztest_name_lock;
566
567 static boolean_t ztest_dump_core = B_TRUE;
568 static boolean_t ztest_exiting;
569
570 /* Global commit callback list */
571 static ztest_cb_list_t zcl;
572 /* Commit cb delay */
573 static uint64_t zc_min_txg_delay = UINT64_MAX;
574 static int zc_cb_counter = 0;
575
576 /*
577 * Minimum number of commit callbacks that need to be registered for us to check
578 * whether the minimum txg delay is acceptable.
579 */
580 #define ZTEST_COMMIT_CB_MIN_REG 100
581
582 /*
583 * If a number of txgs equal to this threshold have been created after a commit
584 * callback has been registered but not called, then we assume there is an
585 * implementation bug.
586 */
587 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
588
589 enum ztest_object {
590 ZTEST_META_DNODE = 0,
591 ZTEST_DIROBJ,
592 ZTEST_OBJECTS
593 };
594
595 static __attribute__((noreturn)) void usage(boolean_t requested);
596 static int ztest_scrub_impl(spa_t *spa);
597
598 /*
599 * These libumem hooks provide a reasonable set of defaults for the allocator's
600 * debugging facilities.
601 */
602 const char *
_umem_debug_init(void)603 _umem_debug_init(void)
604 {
605 return ("default,verbose"); /* $UMEM_DEBUG setting */
606 }
607
608 const char *
_umem_logging_init(void)609 _umem_logging_init(void)
610 {
611 return ("fail,contents"); /* $UMEM_LOGGING setting */
612 }
613
614 static void
dump_debug_buffer(void)615 dump_debug_buffer(void)
616 {
617 ssize_t ret __attribute__((unused));
618
619 if (!ztest_opts.zo_dump_dbgmsg)
620 return;
621
622 /*
623 * We use write() instead of printf() so that this function
624 * is safe to call from a signal handler.
625 */
626 ret = write(STDERR_FILENO, "\n", 1);
627 zfs_dbgmsg_print(STDERR_FILENO, "ztest");
628 }
629
sig_handler(int signo)630 static void sig_handler(int signo)
631 {
632 struct sigaction action;
633
634 libspl_backtrace(STDERR_FILENO);
635 dump_debug_buffer();
636
637 /*
638 * Restore default action and re-raise signal so SIGSEGV and
639 * SIGABRT can trigger a core dump.
640 */
641 action.sa_handler = SIG_DFL;
642 sigemptyset(&action.sa_mask);
643 action.sa_flags = 0;
644 (void) sigaction(signo, &action, NULL);
645 raise(signo);
646 }
647
648 #define FATAL_MSG_SZ 1024
649
650 static const char *fatal_msg;
651
652 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
fatal(int do_perror,const char * message,...)653 fatal(int do_perror, const char *message, ...)
654 {
655 va_list args;
656 int save_errno = errno;
657 char *buf;
658
659 (void) fflush(stdout);
660 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
661 if (buf == NULL)
662 goto out;
663
664 va_start(args, message);
665 (void) sprintf(buf, "ztest: ");
666 /* LINTED */
667 (void) vsprintf(buf + strlen(buf), message, args);
668 va_end(args);
669 if (do_perror) {
670 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
671 ": %s", strerror(save_errno));
672 }
673 (void) fprintf(stderr, "%s\n", buf);
674 fatal_msg = buf; /* to ease debugging */
675
676 out:
677 if (ztest_dump_core)
678 abort();
679 else
680 dump_debug_buffer();
681
682 exit(3);
683 }
684
685 static int
str2shift(const char * buf)686 str2shift(const char *buf)
687 {
688 const char *ends = "BKMGTPEZ";
689 int i, len;
690
691 if (buf[0] == '\0')
692 return (0);
693
694 len = strlen(ends);
695 for (i = 0; i < len; i++) {
696 if (toupper(buf[0]) == ends[i])
697 break;
698 }
699 if (i == len) {
700 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
701 buf);
702 usage(B_FALSE);
703 }
704 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
705 return (10*i);
706 }
707 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
708 usage(B_FALSE);
709 }
710
711 static uint64_t
nicenumtoull(const char * buf)712 nicenumtoull(const char *buf)
713 {
714 char *end;
715 uint64_t val;
716
717 val = strtoull(buf, &end, 0);
718 if (end == buf) {
719 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
720 usage(B_FALSE);
721 } else if (end[0] == '.') {
722 double fval = strtod(buf, &end);
723 fval *= pow(2, str2shift(end));
724 /*
725 * UINT64_MAX is not exactly representable as a double.
726 * The closest representation is UINT64_MAX + 1, so we
727 * use a >= comparison instead of > for the bounds check.
728 */
729 if (fval >= (double)UINT64_MAX) {
730 (void) fprintf(stderr, "ztest: value too large: %s\n",
731 buf);
732 usage(B_FALSE);
733 }
734 val = (uint64_t)fval;
735 } else {
736 int shift = str2shift(end);
737 if (shift >= 64 || (val << shift) >> shift != val) {
738 (void) fprintf(stderr, "ztest: value too large: %s\n",
739 buf);
740 usage(B_FALSE);
741 }
742 val <<= shift;
743 }
744 return (val);
745 }
746
747 typedef struct ztest_option {
748 const char short_opt;
749 const char *long_opt;
750 const char *long_opt_param;
751 const char *comment;
752 unsigned int default_int;
753 const char *default_str;
754 } ztest_option_t;
755
756 /*
757 * The following option_table is used for generating the usage info as well as
758 * the long and short option information for calling getopt_long().
759 */
760 static ztest_option_t option_table[] = {
761 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
762 NULL},
763 { 's', "vdev-size", "INTEGER", "Size of each vdev",
764 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
765 { 'a', "alignment-shift", "INTEGER",
766 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
767 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
768 DEFAULT_MIRRORS, NULL},
769 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
770 DEFAULT_RAID_CHILDREN, NULL},
771 { 'R', "raid-parity", "INTEGER", "Raid parity",
772 DEFAULT_RAID_PARITY, NULL},
773 { 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
774 NO_DEFAULT, "random"},
775 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
776 DEFAULT_DRAID_DATA, NULL},
777 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
778 DEFAULT_DRAID_SPARES, NULL},
779 { 'd', "datasets", "INTEGER", "Number of datasets",
780 DEFAULT_DATASETS_COUNT, NULL},
781 { 't', "threads", "INTEGER", "Number of ztest threads",
782 DEFAULT_THREADS, NULL},
783 { 'g', "gang-block-threshold", "INTEGER",
784 "Metaslab gang block threshold",
785 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
786 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
787 DEFAULT_INITS, NULL},
788 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
789 NO_DEFAULT, DEFAULT_KILLRATE_STR},
790 { 'p', "pool-name", "STRING", "Pool name",
791 NO_DEFAULT, DEFAULT_POOL},
792 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
793 NO_DEFAULT, DEFAULT_VDEV_DIR},
794 { 'M', "multi-host", NULL,
795 "Multi-host; simulate pool imported on remote host",
796 NO_DEFAULT, NULL},
797 { 'E', "use-existing-pool", NULL,
798 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
799 { 'T', "run-time", "INTEGER", "Total run time",
800 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
801 { 'P', "pass-time", "INTEGER", "Time per pass",
802 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
803 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
804 DEFAULT_MAX_LOOPS, NULL},
805 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
806 NO_DEFAULT, NULL},
807 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
808 NO_DEFAULT, "random"},
809 { 'X', "raidz-expansion", NULL,
810 "Perform a dedicated raidz expansion test",
811 NO_DEFAULT, NULL},
812 { 'o', "option", "\"NAME=VALUE\"",
813 "Set the named tunable to the given value",
814 NO_DEFAULT, NULL},
815 { 'G', "dump-debug-msg", NULL,
816 "Dump zfs_dbgmsg buffer before exiting due to an error",
817 NO_DEFAULT, NULL},
818 { 'V', "verbose", NULL,
819 "Verbose (use multiple times for ever more verbosity)",
820 NO_DEFAULT, NULL},
821 { 'h', "help", NULL, "Show this help",
822 NO_DEFAULT, NULL},
823 {0, 0, 0, 0, 0, 0}
824 };
825
826 static struct option *long_opts = NULL;
827 static char *short_opts = NULL;
828
829 static void
init_options(void)830 init_options(void)
831 {
832 ASSERT0P(long_opts);
833 ASSERT0P(short_opts);
834
835 int count = sizeof (option_table) / sizeof (option_table[0]);
836 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
837
838 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
839 int short_opt_index = 0;
840
841 for (int i = 0; i < count; i++) {
842 long_opts[i].val = option_table[i].short_opt;
843 long_opts[i].name = option_table[i].long_opt;
844 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
845 ? required_argument : no_argument;
846 long_opts[i].flag = NULL;
847 short_opts[short_opt_index++] = option_table[i].short_opt;
848 if (option_table[i].long_opt_param != NULL) {
849 short_opts[short_opt_index++] = ':';
850 }
851 }
852 }
853
854 static void
fini_options(void)855 fini_options(void)
856 {
857 int count = sizeof (option_table) / sizeof (option_table[0]);
858
859 umem_free(long_opts, sizeof (struct option) * count);
860 umem_free(short_opts, sizeof (char) * 2 * count);
861
862 long_opts = NULL;
863 short_opts = NULL;
864 }
865
866 static __attribute__((noreturn)) void
usage(boolean_t requested)867 usage(boolean_t requested)
868 {
869 char option[80];
870 FILE *fp = requested ? stdout : stderr;
871
872 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
873 for (int i = 0; option_table[i].short_opt != 0; i++) {
874 if (option_table[i].long_opt_param != NULL) {
875 (void) sprintf(option, " -%c --%s=%s",
876 option_table[i].short_opt,
877 option_table[i].long_opt,
878 option_table[i].long_opt_param);
879 } else {
880 (void) sprintf(option, " -%c --%s",
881 option_table[i].short_opt,
882 option_table[i].long_opt);
883 }
884 (void) fprintf(fp, " %-43s%s", option,
885 option_table[i].comment);
886
887 if (option_table[i].long_opt_param != NULL) {
888 if (option_table[i].default_str != NULL) {
889 (void) fprintf(fp, " (default: %s)",
890 option_table[i].default_str);
891 } else if (option_table[i].default_int != NO_DEFAULT) {
892 (void) fprintf(fp, " (default: %u)",
893 option_table[i].default_int);
894 }
895 }
896 (void) fprintf(fp, "\n");
897 }
898 exit(requested ? 0 : 1);
899 }
900
901 static uint64_t
ztest_random(uint64_t range)902 ztest_random(uint64_t range)
903 {
904 uint64_t r;
905
906 if (range == 0)
907 return (0);
908
909 random_get_pseudo_bytes((uint8_t *)&r, sizeof (r));
910
911 return (r % range);
912 }
913
914 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)915 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
916 {
917 char name[32];
918 char *value;
919 int state;
920
921 (void) strlcpy(name, input, sizeof (name));
922
923 value = strchr(name, '=');
924 if (value == NULL) {
925 (void) fprintf(stderr, "missing value in property=value "
926 "'-C' argument (%s)\n", input);
927 usage(B_FALSE);
928 }
929 *(value) = '\0';
930 value++;
931
932 if (strcmp(value, "on") == 0) {
933 state = ZTEST_VDEV_CLASS_ON;
934 } else if (strcmp(value, "off") == 0) {
935 state = ZTEST_VDEV_CLASS_OFF;
936 } else if (strcmp(value, "random") == 0) {
937 state = ZTEST_VDEV_CLASS_RND;
938 } else {
939 (void) fprintf(stderr, "invalid property value '%s'\n", value);
940 usage(B_FALSE);
941 }
942
943 if (strcmp(name, "special") == 0) {
944 zo->zo_special_vdevs = state;
945 } else {
946 (void) fprintf(stderr, "invalid property name '%s'\n", name);
947 usage(B_FALSE);
948 }
949 if (zo->zo_verbose >= 3)
950 (void) printf("%s vdev state is '%s'\n", name, value);
951 }
952
953 static void
process_options(int argc,char ** argv)954 process_options(int argc, char **argv)
955 {
956 char *path;
957 ztest_shared_opts_t *zo = &ztest_opts;
958
959 int opt;
960 uint64_t value;
961 const char *raid_kind = "random";
962
963 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
964
965 init_options();
966
967 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
968 NULL)) != EOF) {
969 value = 0;
970 switch (opt) {
971 case 'v':
972 case 's':
973 case 'a':
974 case 'm':
975 case 'r':
976 case 'R':
977 case 'D':
978 case 'S':
979 case 'd':
980 case 't':
981 case 'g':
982 case 'i':
983 case 'k':
984 case 'T':
985 case 'P':
986 case 'F':
987 value = nicenumtoull(optarg);
988 }
989 switch (opt) {
990 case 'v':
991 zo->zo_vdevs = value;
992 break;
993 case 's':
994 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
995 break;
996 case 'a':
997 zo->zo_ashift = value;
998 break;
999 case 'm':
1000 zo->zo_mirrors = value;
1001 break;
1002 case 'r':
1003 zo->zo_raid_children = MAX(1, value);
1004 break;
1005 case 'R':
1006 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1007 break;
1008 case 'K':
1009 raid_kind = optarg;
1010 break;
1011 case 'D':
1012 zo->zo_draid_data = MAX(1, value);
1013 break;
1014 case 'S':
1015 zo->zo_draid_spares = MAX(1, value);
1016 break;
1017 case 'd':
1018 zo->zo_datasets = MAX(1, value);
1019 break;
1020 case 't':
1021 zo->zo_threads = MAX(1, value);
1022 break;
1023 case 'g':
1024 zo->zo_metaslab_force_ganging =
1025 MAX(SPA_MINBLOCKSIZE << 1, value);
1026 break;
1027 case 'i':
1028 zo->zo_init = value;
1029 break;
1030 case 'k':
1031 zo->zo_killrate = value;
1032 break;
1033 case 'p':
1034 (void) strlcpy(zo->zo_pool, optarg,
1035 sizeof (zo->zo_pool));
1036 break;
1037 case 'f':
1038 path = realpath(optarg, NULL);
1039 if (path == NULL) {
1040 (void) fprintf(stderr, "error: %s: %s\n",
1041 optarg, strerror(errno));
1042 usage(B_FALSE);
1043 } else {
1044 (void) strlcpy(zo->zo_dir, path,
1045 sizeof (zo->zo_dir));
1046 free(path);
1047 }
1048 break;
1049 case 'M':
1050 zo->zo_mmp_test = 1;
1051 break;
1052 case 'V':
1053 zo->zo_verbose++;
1054 break;
1055 case 'X':
1056 zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1057 break;
1058 case 'E':
1059 zo->zo_init = 0;
1060 break;
1061 case 'T':
1062 zo->zo_time = value;
1063 break;
1064 case 'P':
1065 zo->zo_passtime = MAX(1, value);
1066 break;
1067 case 'F':
1068 zo->zo_maxloops = MAX(1, value);
1069 break;
1070 case 'B':
1071 (void) strlcpy(zo->zo_alt_ztest, optarg,
1072 sizeof (zo->zo_alt_ztest));
1073 break;
1074 case 'C':
1075 ztest_parse_name_value(optarg, zo);
1076 break;
1077 case 'o':
1078 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1079 (void) fprintf(stderr,
1080 "max global var count (%zu) exceeded\n",
1081 ZO_GVARS_MAX_COUNT);
1082 usage(B_FALSE);
1083 }
1084 char *v = zo->zo_gvars[zo->zo_gvars_count];
1085 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1086 ZO_GVARS_MAX_ARGLEN) {
1087 (void) fprintf(stderr,
1088 "global var option '%s' is too long\n",
1089 optarg);
1090 usage(B_FALSE);
1091 }
1092 zo->zo_gvars_count++;
1093 break;
1094 case 'G':
1095 zo->zo_dump_dbgmsg = 1;
1096 break;
1097 case 'h':
1098 usage(B_TRUE);
1099 break;
1100 case '?':
1101 default:
1102 usage(B_FALSE);
1103 break;
1104 }
1105 }
1106
1107 fini_options();
1108
1109 /* Force compatible options for raidz expansion run */
1110 if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1111 zo->zo_mmp_test = 0;
1112 zo->zo_mirrors = 0;
1113 zo->zo_vdevs = 1;
1114 zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1115 zo->zo_raid_do_expand = B_FALSE;
1116 raid_kind = "raidz";
1117 }
1118
1119 if (strcmp(raid_kind, "random") == 0) {
1120 switch (ztest_random(3)) {
1121 case 0:
1122 raid_kind = "raidz";
1123 break;
1124 case 1:
1125 raid_kind = "eraidz";
1126 break;
1127 case 2:
1128 raid_kind = "draid";
1129 break;
1130 }
1131
1132 if (ztest_opts.zo_verbose >= 3)
1133 (void) printf("choosing RAID type '%s'\n", raid_kind);
1134 }
1135
1136 if (strcmp(raid_kind, "draid") == 0) {
1137 uint64_t min_devsize;
1138
1139 /* With fewer disk use 256M, otherwise 128M is OK */
1140 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1141 (256ULL << 20) : (128ULL << 20);
1142
1143 /* No top-level mirrors with dRAID for now */
1144 zo->zo_mirrors = 0;
1145
1146 /* Use more appropriate defaults for dRAID */
1147 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1148 zo->zo_vdevs = 1;
1149 if (zo->zo_raid_children ==
1150 ztest_opts_defaults.zo_raid_children)
1151 zo->zo_raid_children = 16;
1152 if (zo->zo_ashift < 12)
1153 zo->zo_ashift = 12;
1154 if (zo->zo_vdev_size < min_devsize)
1155 zo->zo_vdev_size = min_devsize;
1156
1157 if (zo->zo_draid_data + zo->zo_raid_parity >
1158 zo->zo_raid_children - zo->zo_draid_spares) {
1159 (void) fprintf(stderr, "error: too few draid "
1160 "children (%d) for stripe width (%d)\n",
1161 zo->zo_raid_children,
1162 zo->zo_draid_data + zo->zo_raid_parity);
1163 usage(B_FALSE);
1164 }
1165
1166 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1167 sizeof (zo->zo_raid_type));
1168
1169 } else if (strcmp(raid_kind, "eraidz") == 0) {
1170 /* using eraidz (expandable raidz) */
1171 zo->zo_raid_do_expand = B_TRUE;
1172
1173 /* tests expect top-level to be raidz */
1174 zo->zo_mirrors = 0;
1175 zo->zo_vdevs = 1;
1176
1177 /* Make sure parity is less than data columns */
1178 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1179 zo->zo_raid_children - 1);
1180
1181 } else /* using raidz */ {
1182 ASSERT0(strcmp(raid_kind, "raidz"));
1183
1184 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1185 zo->zo_raid_children - 1);
1186 }
1187
1188 zo->zo_vdevtime =
1189 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1190 UINT64_MAX >> 2);
1191
1192 if (*zo->zo_alt_ztest) {
1193 const char *invalid_what = "ztest";
1194 char *val = zo->zo_alt_ztest;
1195 if (0 != access(val, X_OK) ||
1196 (strrchr(val, '/') == NULL && (errno == EINVAL)))
1197 goto invalid;
1198
1199 int dirlen = strrchr(val, '/') - val;
1200 strlcpy(zo->zo_alt_libpath, val,
1201 MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1202 invalid_what = "library path", val = zo->zo_alt_libpath;
1203 if (strrchr(val, '/') == NULL && (errno == EINVAL))
1204 goto invalid;
1205 *strrchr(val, '/') = '\0';
1206 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1207
1208 if (0 != access(zo->zo_alt_libpath, X_OK))
1209 goto invalid;
1210 return;
1211
1212 invalid:
1213 ztest_dump_core = B_FALSE;
1214 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1215 }
1216 }
1217
1218 static void
ztest_kill(ztest_shared_t * zs)1219 ztest_kill(ztest_shared_t *zs)
1220 {
1221 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1222 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1223
1224 /*
1225 * Before we kill ourselves, make sure that the config is updated.
1226 * See comment above spa_write_cachefile().
1227 */
1228 if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1229 if (spa_namespace_tryenter(FTAG)) {
1230 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1231 B_FALSE);
1232 spa_namespace_exit(FTAG);
1233
1234 ztest_scratch_state->zs_raidz_scratch_verify_pause =
1235 raidz_expand_pause_point;
1236 } else {
1237 /*
1238 * Do not verify scratch object in case if
1239 * spa_namespace_lock cannot be acquired,
1240 * it can cause deadlock in spa_config_update().
1241 */
1242 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1243
1244 return;
1245 }
1246 } else {
1247 spa_namespace_enter(FTAG);
1248 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1249 spa_namespace_exit(FTAG);
1250 }
1251
1252 (void) raise(SIGKILL);
1253 }
1254
1255 static void
ztest_record_enospc(const char * s)1256 ztest_record_enospc(const char *s)
1257 {
1258 (void) s;
1259 ztest_shared->zs_enospc_count++;
1260 }
1261
1262 static uint64_t
ztest_get_ashift(void)1263 ztest_get_ashift(void)
1264 {
1265 if (ztest_opts.zo_ashift == 0)
1266 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1267 return (ztest_opts.zo_ashift);
1268 }
1269
1270 static boolean_t
ztest_is_draid_spare(const char * name)1271 ztest_is_draid_spare(const char *name)
1272 {
1273 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1274
1275 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1276 &parity, &vdev_id, &spare_id) == 3) {
1277 return (B_TRUE);
1278 }
1279
1280 return (B_FALSE);
1281 }
1282
1283 static nvlist_t *
make_vdev_file(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift)1284 make_vdev_file(const char *path, const char *aux, const char *pool,
1285 size_t size, uint64_t ashift)
1286 {
1287 char *pathbuf = NULL;
1288 uint64_t vdev;
1289 nvlist_t *file;
1290 boolean_t draid_spare = B_FALSE;
1291
1292
1293 if (ashift == 0)
1294 ashift = ztest_get_ashift();
1295
1296 if (path == NULL) {
1297 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1298 path = pathbuf;
1299
1300 if (aux != NULL) {
1301 vdev = ztest_shared->zs_vdev_aux;
1302 (void) snprintf(pathbuf, MAXPATHLEN,
1303 ztest_aux_template, ztest_opts.zo_dir,
1304 pool == NULL ? ztest_opts.zo_pool : pool,
1305 aux, vdev);
1306 } else {
1307 vdev = ztest_shared->zs_vdev_next_leaf++;
1308 (void) snprintf(pathbuf, MAXPATHLEN,
1309 ztest_dev_template, ztest_opts.zo_dir,
1310 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1311 }
1312 } else {
1313 draid_spare = ztest_is_draid_spare(path);
1314 }
1315
1316 if (size != 0 && !draid_spare) {
1317 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1318 if (fd == -1)
1319 fatal(B_TRUE, "can't open %s", path);
1320 if (ftruncate(fd, size) != 0)
1321 fatal(B_TRUE, "can't ftruncate %s", path);
1322 (void) close(fd);
1323 }
1324
1325 file = fnvlist_alloc();
1326 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1327 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1328 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1329 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1330 umem_free(pathbuf, MAXPATHLEN);
1331
1332 return (file);
1333 }
1334
1335 static nvlist_t *
make_vdev_raid(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r)1336 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1337 uint64_t ashift, int r)
1338 {
1339 nvlist_t *raid, **child;
1340 int c;
1341
1342 if (r < 2)
1343 return (make_vdev_file(path, aux, pool, size, ashift));
1344 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1345
1346 for (c = 0; c < r; c++)
1347 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1348
1349 raid = fnvlist_alloc();
1350 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1351 ztest_opts.zo_raid_type);
1352 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1353 ztest_opts.zo_raid_parity);
1354 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1355 (const nvlist_t **)child, r);
1356
1357 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1358 uint64_t ndata = ztest_opts.zo_draid_data;
1359 uint64_t nparity = ztest_opts.zo_raid_parity;
1360 uint64_t nspares = ztest_opts.zo_draid_spares;
1361 uint64_t children = ztest_opts.zo_raid_children;
1362 uint64_t ngroups = 1;
1363
1364 /*
1365 * Calculate the minimum number of groups required to fill a
1366 * slice. This is the LCM of the stripe width (data + parity)
1367 * and the number of data drives (children - spares).
1368 */
1369 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1370 ngroups++;
1371
1372 /* Store the basic dRAID configuration. */
1373 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1374 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1375 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1376 }
1377
1378 for (c = 0; c < r; c++)
1379 fnvlist_free(child[c]);
1380
1381 umem_free(child, r * sizeof (nvlist_t *));
1382
1383 return (raid);
1384 }
1385
1386 static nvlist_t *
make_vdev_mirror(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r,int m)1387 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1388 size_t size, uint64_t ashift, int r, int m)
1389 {
1390 nvlist_t *mirror, **child;
1391 int c;
1392
1393 if (m < 1)
1394 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1395
1396 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1397
1398 for (c = 0; c < m; c++)
1399 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1400
1401 mirror = fnvlist_alloc();
1402 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1403 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1404 (const nvlist_t **)child, m);
1405
1406 for (c = 0; c < m; c++)
1407 fnvlist_free(child[c]);
1408
1409 umem_free(child, m * sizeof (nvlist_t *));
1410
1411 return (mirror);
1412 }
1413
1414 static nvlist_t *
make_vdev_root(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1415 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1416 uint64_t ashift, const char *class, int r, int m, int t)
1417 {
1418 nvlist_t *root, **child;
1419 int c;
1420 boolean_t log;
1421
1422 ASSERT3S(t, >, 0);
1423
1424 log = (class != NULL && strcmp(class, "log") == 0);
1425
1426 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1427
1428 for (c = 0; c < t; c++) {
1429 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1430 r, m);
1431 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1432
1433 if (class != NULL && class[0] != '\0') {
1434 ASSERT(m > 1 || log); /* expecting a mirror */
1435 fnvlist_add_string(child[c],
1436 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1437 }
1438 }
1439
1440 root = fnvlist_alloc();
1441 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1442 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1443 (const nvlist_t **)child, t);
1444
1445 for (c = 0; c < t; c++)
1446 fnvlist_free(child[c]);
1447
1448 umem_free(child, t * sizeof (nvlist_t *));
1449
1450 return (root);
1451 }
1452
1453 /*
1454 * Find a random spa version. Returns back a random spa version in the
1455 * range [initial_version, SPA_VERSION_FEATURES].
1456 */
1457 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1458 ztest_random_spa_version(uint64_t initial_version)
1459 {
1460 uint64_t version = initial_version;
1461
1462 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1463 version = version +
1464 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1465 }
1466
1467 if (version > SPA_VERSION_BEFORE_FEATURES)
1468 version = SPA_VERSION_FEATURES;
1469
1470 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1471 return (version);
1472 }
1473
1474 static int
ztest_random_blocksize(void)1475 ztest_random_blocksize(void)
1476 {
1477 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1478
1479 /*
1480 * Choose a block size >= the ashift.
1481 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1482 */
1483 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1484 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1485 maxbs = 20;
1486 uint64_t block_shift =
1487 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1488 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1489 }
1490
1491 static int
ztest_random_dnodesize(void)1492 ztest_random_dnodesize(void)
1493 {
1494 int slots;
1495 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1496
1497 if (max_slots == DNODE_MIN_SLOTS)
1498 return (DNODE_MIN_SIZE);
1499
1500 /*
1501 * Weight the random distribution more heavily toward smaller
1502 * dnode sizes since that is more likely to reflect real-world
1503 * usage.
1504 */
1505 ASSERT3U(max_slots, >, 4);
1506 switch (ztest_random(10)) {
1507 case 0:
1508 slots = 5 + ztest_random(max_slots - 4);
1509 break;
1510 case 1 ... 4:
1511 slots = 2 + ztest_random(3);
1512 break;
1513 default:
1514 slots = 1;
1515 break;
1516 }
1517
1518 return (slots << DNODE_SHIFT);
1519 }
1520
1521 static int
ztest_random_ibshift(void)1522 ztest_random_ibshift(void)
1523 {
1524 return (DN_MIN_INDBLKSHIFT +
1525 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1526 }
1527
1528 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1529 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1530 {
1531 uint64_t top;
1532 vdev_t *rvd = spa->spa_root_vdev;
1533 vdev_t *tvd;
1534
1535 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1536
1537 do {
1538 top = ztest_random(rvd->vdev_children);
1539 tvd = rvd->vdev_child[top];
1540 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1541 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1542
1543 return (top);
1544 }
1545
1546 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1547 ztest_random_dsl_prop(zfs_prop_t prop)
1548 {
1549 uint64_t value;
1550
1551 do {
1552 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1553 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1554
1555 return (value);
1556 }
1557
1558 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1559 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1560 boolean_t inherit)
1561 {
1562 const char *propname = zfs_prop_to_name(prop);
1563 const char *valname;
1564 char *setpoint;
1565 uint64_t curval;
1566 int error;
1567
1568 error = dsl_prop_set_int(osname, propname,
1569 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1570
1571 if (error == ENOSPC) {
1572 ztest_record_enospc(FTAG);
1573 return (error);
1574 }
1575 ASSERT0(error);
1576
1577 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1578 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1579
1580 if (ztest_opts.zo_verbose >= 6) {
1581 int err;
1582
1583 err = zfs_prop_index_to_string(prop, curval, &valname);
1584 if (err)
1585 (void) printf("%s %s = %llu at '%s'\n", osname,
1586 propname, (unsigned long long)curval, setpoint);
1587 else
1588 (void) printf("%s %s = %s at '%s'\n",
1589 osname, propname, valname, setpoint);
1590 }
1591 umem_free(setpoint, MAXPATHLEN);
1592
1593 return (error);
1594 }
1595
1596 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1597 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1598 {
1599 spa_t *spa = ztest_spa;
1600 nvlist_t *props = NULL;
1601 int error;
1602
1603 props = fnvlist_alloc();
1604 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1605
1606 error = spa_prop_set(spa, props);
1607
1608 fnvlist_free(props);
1609
1610 if (error == ENOSPC) {
1611 ztest_record_enospc(FTAG);
1612 return (error);
1613 }
1614 ASSERT0(error);
1615
1616 return (error);
1617 }
1618
1619 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,const void * tag,objset_t ** osp)1620 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1621 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1622 {
1623 int err;
1624 char *cp = NULL;
1625 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1626
1627 strlcpy(ddname, name, sizeof (ddname));
1628 cp = strchr(ddname, '@');
1629 if (cp != NULL)
1630 *cp = '\0';
1631
1632 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1633 while (decrypt && err == EACCES) {
1634 dsl_crypto_params_t *dcp;
1635 nvlist_t *crypto_args = fnvlist_alloc();
1636
1637 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1638 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1639 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1640 crypto_args, &dcp));
1641 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1642 /*
1643 * Note: if there was an error loading, the wkey was not
1644 * consumed, and needs to be freed.
1645 */
1646 dsl_crypto_params_free(dcp, (err != 0));
1647 fnvlist_free(crypto_args);
1648
1649 if (err == EINVAL) {
1650 /*
1651 * We couldn't load a key for this dataset so try
1652 * the parent. This loop will eventually hit the
1653 * encryption root since ztest only makes clones
1654 * as children of their origin datasets.
1655 */
1656 cp = strrchr(ddname, '/');
1657 if (cp == NULL)
1658 return (err);
1659
1660 *cp = '\0';
1661 err = EACCES;
1662 continue;
1663 } else if (err != 0) {
1664 break;
1665 }
1666
1667 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1668 break;
1669 }
1670
1671 return (err);
1672 }
1673
1674 static void
ztest_rll_init(rll_t * rll)1675 ztest_rll_init(rll_t *rll)
1676 {
1677 rll->rll_writer = NULL;
1678 rll->rll_readers = 0;
1679 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1680 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1681 }
1682
1683 static void
ztest_rll_destroy(rll_t * rll)1684 ztest_rll_destroy(rll_t *rll)
1685 {
1686 ASSERT0P(rll->rll_writer);
1687 ASSERT0(rll->rll_readers);
1688 mutex_destroy(&rll->rll_lock);
1689 cv_destroy(&rll->rll_cv);
1690 }
1691
1692 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1693 ztest_rll_lock(rll_t *rll, rl_type_t type)
1694 {
1695 mutex_enter(&rll->rll_lock);
1696
1697 if (type == ZTRL_READER) {
1698 while (rll->rll_writer != NULL)
1699 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1700 rll->rll_readers++;
1701 } else {
1702 while (rll->rll_writer != NULL || rll->rll_readers)
1703 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1704 rll->rll_writer = curthread;
1705 }
1706
1707 mutex_exit(&rll->rll_lock);
1708 }
1709
1710 static void
ztest_rll_unlock(rll_t * rll)1711 ztest_rll_unlock(rll_t *rll)
1712 {
1713 mutex_enter(&rll->rll_lock);
1714
1715 if (rll->rll_writer) {
1716 ASSERT0(rll->rll_readers);
1717 rll->rll_writer = NULL;
1718 } else {
1719 ASSERT3S(rll->rll_readers, >, 0);
1720 ASSERT0P(rll->rll_writer);
1721 rll->rll_readers--;
1722 }
1723
1724 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1725 cv_broadcast(&rll->rll_cv);
1726
1727 mutex_exit(&rll->rll_lock);
1728 }
1729
1730 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1731 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1732 {
1733 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1734
1735 ztest_rll_lock(rll, type);
1736 }
1737
1738 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1739 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1740 {
1741 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1742
1743 ztest_rll_unlock(rll);
1744 }
1745
1746 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1747 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1748 uint64_t size, rl_type_t type)
1749 {
1750 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1751 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1752 rl_t *rl;
1753
1754 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1755 rl->rl_object = object;
1756 rl->rl_offset = offset;
1757 rl->rl_size = size;
1758 rl->rl_lock = rll;
1759
1760 ztest_rll_lock(rll, type);
1761
1762 return (rl);
1763 }
1764
1765 static void
ztest_range_unlock(rl_t * rl)1766 ztest_range_unlock(rl_t *rl)
1767 {
1768 rll_t *rll = rl->rl_lock;
1769
1770 ztest_rll_unlock(rll);
1771
1772 umem_free(rl, sizeof (*rl));
1773 }
1774
1775 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1776 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1777 {
1778 zd->zd_os = os;
1779 zd->zd_zilog = dmu_objset_zil(os);
1780 zd->zd_shared = szd;
1781 dmu_objset_name(os, zd->zd_name);
1782 int l;
1783
1784 if (zd->zd_shared != NULL)
1785 zd->zd_shared->zd_seq = 0;
1786
1787 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1788 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1789
1790 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1791 ztest_rll_init(&zd->zd_object_lock[l]);
1792
1793 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1794 ztest_rll_init(&zd->zd_range_lock[l]);
1795 }
1796
1797 static void
ztest_zd_fini(ztest_ds_t * zd)1798 ztest_zd_fini(ztest_ds_t *zd)
1799 {
1800 int l;
1801
1802 mutex_destroy(&zd->zd_dirobj_lock);
1803 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1804
1805 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1806 ztest_rll_destroy(&zd->zd_object_lock[l]);
1807
1808 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1809 ztest_rll_destroy(&zd->zd_range_lock[l]);
1810 }
1811
1812 #define DMU_TX_MIGHTWAIT \
1813 (ztest_random(10) == 0 ? DMU_TX_NOWAIT : DMU_TX_WAIT)
1814
1815 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,dmu_tx_flag_t txg_how,const char * tag)1816 ztest_tx_assign(dmu_tx_t *tx, dmu_tx_flag_t txg_how, const char *tag)
1817 {
1818 uint64_t txg;
1819 int error;
1820
1821 /*
1822 * Attempt to assign tx to some transaction group.
1823 */
1824 error = dmu_tx_assign(tx, txg_how);
1825 if (error) {
1826 if (error == ERESTART) {
1827 ASSERT3U(txg_how, ==, DMU_TX_NOWAIT);
1828 dmu_tx_wait(tx);
1829 } else if (error == ENOSPC) {
1830 ztest_record_enospc(tag);
1831 } else {
1832 ASSERT(error == EDQUOT || error == EIO);
1833 }
1834 dmu_tx_abort(tx);
1835 return (0);
1836 }
1837 txg = dmu_tx_get_txg(tx);
1838 ASSERT3U(txg, !=, 0);
1839 return (txg);
1840 }
1841
1842 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1843 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1844 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1845 uint64_t crtxg)
1846 {
1847 bt->bt_magic = BT_MAGIC;
1848 bt->bt_objset = dmu_objset_id(os);
1849 bt->bt_object = object;
1850 bt->bt_dnodesize = dnodesize;
1851 bt->bt_offset = offset;
1852 bt->bt_gen = gen;
1853 bt->bt_txg = txg;
1854 bt->bt_crtxg = crtxg;
1855 }
1856
1857 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1858 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1859 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1860 uint64_t crtxg)
1861 {
1862 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1863 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1864 ASSERT3U(bt->bt_object, ==, object);
1865 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1866 ASSERT3U(bt->bt_offset, ==, offset);
1867 ASSERT3U(bt->bt_gen, <=, gen);
1868 ASSERT3U(bt->bt_txg, <=, txg);
1869 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1870 }
1871
1872 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1873 ztest_bt_bonus(dmu_buf_t *db)
1874 {
1875 dmu_object_info_t doi;
1876 ztest_block_tag_t *bt;
1877
1878 dmu_object_info_from_db(db, &doi);
1879 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1880 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1881 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1882
1883 return (bt);
1884 }
1885
1886 /*
1887 * Generate a token to fill up unused bonus buffer space. Try to make
1888 * it unique to the object, generation, and offset to verify that data
1889 * is not getting overwritten by data from other dnodes.
1890 */
1891 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1893
1894 /*
1895 * Fill up the unused bonus buffer region before the block tag with a
1896 * verifiable pattern. Filling the whole bonus area with non-zero data
1897 * helps ensure that all dnode traversal code properly skips the
1898 * interior regions of large dnodes.
1899 */
1900 static void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1901 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1902 objset_t *os, uint64_t gen)
1903 {
1904 uint64_t *bonusp;
1905
1906 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1907
1908 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1909 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1910 gen, bonusp - (uint64_t *)db->db_data);
1911 *bonusp = token;
1912 }
1913 }
1914
1915 /*
1916 * Verify that the unused area of a bonus buffer is filled with the
1917 * expected tokens.
1918 */
1919 static void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1920 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1921 objset_t *os, uint64_t gen)
1922 {
1923 uint64_t *bonusp;
1924
1925 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1926 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1927 gen, bonusp - (uint64_t *)db->db_data);
1928 VERIFY3U(*bonusp, ==, token);
1929 }
1930 }
1931
1932 /*
1933 * ZIL logging ops
1934 */
1935
1936 #define lrz_type lr_mode
1937 #define lrz_blocksize lr_uid
1938 #define lrz_ibshift lr_gid
1939 #define lrz_bonustype lr_rdev
1940 #define lrz_dnodesize lr_crtime[1]
1941
1942 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1943 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1944 {
1945 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1946 size_t namesize = strlen(name) + 1;
1947 itx_t *itx;
1948
1949 if (zil_replaying(zd->zd_zilog, tx))
1950 return;
1951
1952 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1953 memcpy(&itx->itx_lr + 1, &lr->lr_create.lr_common + 1,
1954 sizeof (*lr) + namesize - sizeof (lr_t));
1955
1956 zil_itx_assign(zd->zd_zilog, itx, tx);
1957 }
1958
1959 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1960 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1961 {
1962 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1963 size_t namesize = strlen(name) + 1;
1964 itx_t *itx;
1965
1966 if (zil_replaying(zd->zd_zilog, tx))
1967 return;
1968
1969 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1970 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1971 sizeof (*lr) + namesize - sizeof (lr_t));
1972
1973 itx->itx_oid = object;
1974 zil_itx_assign(zd->zd_zilog, itx, tx);
1975 }
1976
1977 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1978 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1979 {
1980 itx_t *itx;
1981 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1982
1983 if (zil_replaying(zd->zd_zilog, tx))
1984 return;
1985
1986 if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1987 write_state = WR_INDIRECT;
1988
1989 itx = zil_itx_create(TX_WRITE,
1990 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1991
1992 if (write_state == WR_COPIED &&
1993 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1994 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH |
1995 DMU_KEEP_CACHING) != 0) {
1996 zil_itx_destroy(itx, 0);
1997 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1998 write_state = WR_NEED_COPY;
1999 }
2000 itx->itx_private = zd;
2001 itx->itx_wr_state = write_state;
2002 itx->itx_sync = (ztest_random(8) == 0);
2003
2004 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2005 sizeof (*lr) - sizeof (lr_t));
2006
2007 zil_itx_assign(zd->zd_zilog, itx, tx);
2008 }
2009
2010 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)2011 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2012 {
2013 itx_t *itx;
2014
2015 if (zil_replaying(zd->zd_zilog, tx))
2016 return;
2017
2018 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2019 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2020 sizeof (*lr) - sizeof (lr_t));
2021
2022 itx->itx_sync = B_FALSE;
2023 zil_itx_assign(zd->zd_zilog, itx, tx);
2024 }
2025
2026 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)2027 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2028 {
2029 itx_t *itx;
2030
2031 if (zil_replaying(zd->zd_zilog, tx))
2032 return;
2033
2034 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2035 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2036 sizeof (*lr) - sizeof (lr_t));
2037
2038 itx->itx_sync = B_FALSE;
2039 zil_itx_assign(zd->zd_zilog, itx, tx);
2040 }
2041
2042 /*
2043 * ZIL replay ops
2044 */
2045 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)2046 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2047 {
2048 ztest_ds_t *zd = arg1;
2049 lr_create_t *lrc = arg2;
2050 _lr_create_t *lr = &lrc->lr_create;
2051 char *name = (char *)&lrc->lr_data[0]; /* name follows lr */
2052 objset_t *os = zd->zd_os;
2053 ztest_block_tag_t *bbt;
2054 dmu_buf_t *db;
2055 dmu_tx_t *tx;
2056 uint64_t txg;
2057 int error = 0;
2058 int bonuslen;
2059
2060 if (byteswap)
2061 byteswap_uint64_array(lr, sizeof (*lr));
2062
2063 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2064 ASSERT3S(name[0], !=, '\0');
2065
2066 tx = dmu_tx_create(os);
2067
2068 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2069
2070 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2071 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2072 } else {
2073 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2074 }
2075
2076 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2077 if (txg == 0)
2078 return (ENOSPC);
2079
2080 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2081 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2082
2083 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2084 if (lr->lr_foid == 0) {
2085 lr->lr_foid = zap_create_dnsize(os,
2086 lr->lrz_type, lr->lrz_bonustype,
2087 bonuslen, lr->lrz_dnodesize, tx);
2088 } else {
2089 error = zap_create_claim_dnsize(os, lr->lr_foid,
2090 lr->lrz_type, lr->lrz_bonustype,
2091 bonuslen, lr->lrz_dnodesize, tx);
2092 }
2093 } else {
2094 if (lr->lr_foid == 0) {
2095 lr->lr_foid = dmu_object_alloc_dnsize(os,
2096 lr->lrz_type, 0, lr->lrz_bonustype,
2097 bonuslen, lr->lrz_dnodesize, tx);
2098 } else {
2099 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2100 lr->lrz_type, 0, lr->lrz_bonustype,
2101 bonuslen, lr->lrz_dnodesize, tx);
2102 }
2103 }
2104
2105 if (error) {
2106 ASSERT3U(error, ==, EEXIST);
2107 ASSERT(zd->zd_zilog->zl_replay);
2108 dmu_tx_commit(tx);
2109 return (error);
2110 }
2111
2112 ASSERT3U(lr->lr_foid, !=, 0);
2113
2114 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2115 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2116 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2117
2118 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2119 bbt = ztest_bt_bonus(db);
2120 dmu_buf_will_dirty(db, tx);
2121 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2122 lr->lr_gen, txg, txg);
2123 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2124 dmu_buf_rele(db, FTAG);
2125
2126 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2127 &lr->lr_foid, tx));
2128
2129 (void) ztest_log_create(zd, tx, lrc);
2130
2131 dmu_tx_commit(tx);
2132
2133 return (0);
2134 }
2135
2136 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)2137 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2138 {
2139 ztest_ds_t *zd = arg1;
2140 lr_remove_t *lr = arg2;
2141 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
2142 objset_t *os = zd->zd_os;
2143 dmu_object_info_t doi;
2144 dmu_tx_t *tx;
2145 uint64_t object, txg;
2146
2147 if (byteswap)
2148 byteswap_uint64_array(lr, sizeof (*lr));
2149
2150 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2151 ASSERT3S(name[0], !=, '\0');
2152
2153 VERIFY0(
2154 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2155 ASSERT3U(object, !=, 0);
2156
2157 ztest_object_lock(zd, object, ZTRL_WRITER);
2158
2159 VERIFY0(dmu_object_info(os, object, &doi));
2160
2161 tx = dmu_tx_create(os);
2162
2163 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2164 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2165
2166 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2167 if (txg == 0) {
2168 ztest_object_unlock(zd, object);
2169 return (ENOSPC);
2170 }
2171
2172 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2173 VERIFY0(zap_destroy(os, object, tx));
2174 } else {
2175 VERIFY0(dmu_object_free(os, object, tx));
2176 }
2177
2178 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2179
2180 (void) ztest_log_remove(zd, tx, lr, object);
2181
2182 dmu_tx_commit(tx);
2183
2184 ztest_object_unlock(zd, object);
2185
2186 return (0);
2187 }
2188
2189 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)2190 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2191 {
2192 ztest_ds_t *zd = arg1;
2193 lr_write_t *lr = arg2;
2194 objset_t *os = zd->zd_os;
2195 uint8_t *data = &lr->lr_data[0]; /* data follows lr */
2196 uint64_t offset, length;
2197 ztest_block_tag_t *bt = (ztest_block_tag_t *)data;
2198 ztest_block_tag_t *bbt;
2199 uint64_t gen, txg, lrtxg, crtxg;
2200 dmu_object_info_t doi;
2201 dmu_tx_t *tx;
2202 dmu_buf_t *db;
2203 arc_buf_t *abuf = NULL;
2204 rl_t *rl;
2205
2206 if (byteswap)
2207 byteswap_uint64_array(lr, sizeof (*lr));
2208
2209 offset = lr->lr_offset;
2210 length = lr->lr_length;
2211
2212 /* If it's a dmu_sync() block, write the whole block */
2213 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2214 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2215 if (length < blocksize) {
2216 offset -= offset % blocksize;
2217 length = blocksize;
2218 }
2219 }
2220
2221 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2222 byteswap_uint64_array(bt, sizeof (*bt));
2223
2224 if (bt->bt_magic != BT_MAGIC)
2225 bt = NULL;
2226
2227 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2228 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2229
2230 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2231
2232 dmu_object_info_from_db(db, &doi);
2233
2234 bbt = ztest_bt_bonus(db);
2235 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2236 gen = bbt->bt_gen;
2237 crtxg = bbt->bt_crtxg;
2238 lrtxg = lr->lr_common.lrc_txg;
2239
2240 tx = dmu_tx_create(os);
2241
2242 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2243
2244 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2245 P2PHASE(offset, length) == 0)
2246 abuf = dmu_request_arcbuf(db, length);
2247
2248 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2249 if (txg == 0) {
2250 if (abuf != NULL)
2251 dmu_return_arcbuf(abuf);
2252 dmu_buf_rele(db, FTAG);
2253 ztest_range_unlock(rl);
2254 ztest_object_unlock(zd, lr->lr_foid);
2255 return (ENOSPC);
2256 }
2257
2258 if (bt != NULL) {
2259 /*
2260 * Usually, verify the old data before writing new data --
2261 * but not always, because we also want to verify correct
2262 * behavior when the data was not recently read into cache.
2263 */
2264 ASSERT(doi.doi_data_block_size);
2265 ASSERT0(offset % doi.doi_data_block_size);
2266 if (ztest_random(4) != 0) {
2267 dmu_flags_t flags = ztest_random(2) ?
2268 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2269
2270 /*
2271 * We will randomly set when to do O_DIRECT on a read.
2272 */
2273 if (ztest_random(4) == 0)
2274 flags |= DMU_DIRECTIO;
2275
2276 ztest_block_tag_t rbt;
2277
2278 VERIFY0(dmu_read(os, lr->lr_foid, offset,
2279 sizeof (rbt), &rbt, flags));
2280 if (rbt.bt_magic == BT_MAGIC) {
2281 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2282 offset, gen, txg, crtxg);
2283 }
2284 }
2285
2286 /*
2287 * Writes can appear to be newer than the bonus buffer because
2288 * the ztest_get_data() callback does a dmu_read() of the
2289 * open-context data, which may be different than the data
2290 * as it was when the write was generated.
2291 */
2292 if (zd->zd_zilog->zl_replay) {
2293 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2294 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2295 bt->bt_crtxg);
2296 }
2297
2298 /*
2299 * Set the bt's gen/txg to the bonus buffer's gen/txg
2300 * so that all of the usual ASSERTs will work.
2301 */
2302 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2303 crtxg);
2304 }
2305
2306 if (abuf == NULL) {
2307 dmu_write(os, lr->lr_foid, offset, length, data, tx,
2308 DMU_READ_PREFETCH);
2309 } else {
2310 memcpy(abuf->b_data, data, length);
2311 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx, 0));
2312 }
2313
2314 (void) ztest_log_write(zd, tx, lr);
2315
2316 dmu_buf_rele(db, FTAG);
2317
2318 dmu_tx_commit(tx);
2319
2320 ztest_range_unlock(rl);
2321 ztest_object_unlock(zd, lr->lr_foid);
2322
2323 return (0);
2324 }
2325
2326 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)2327 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2328 {
2329 ztest_ds_t *zd = arg1;
2330 lr_truncate_t *lr = arg2;
2331 objset_t *os = zd->zd_os;
2332 dmu_tx_t *tx;
2333 uint64_t txg;
2334 rl_t *rl;
2335
2336 if (byteswap)
2337 byteswap_uint64_array(lr, sizeof (*lr));
2338
2339 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2340 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2341 ZTRL_WRITER);
2342
2343 tx = dmu_tx_create(os);
2344
2345 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2346
2347 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2348 if (txg == 0) {
2349 ztest_range_unlock(rl);
2350 ztest_object_unlock(zd, lr->lr_foid);
2351 return (ENOSPC);
2352 }
2353
2354 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2355 lr->lr_length, tx));
2356
2357 (void) ztest_log_truncate(zd, tx, lr);
2358
2359 dmu_tx_commit(tx);
2360
2361 ztest_range_unlock(rl);
2362 ztest_object_unlock(zd, lr->lr_foid);
2363
2364 return (0);
2365 }
2366
2367 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)2368 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2369 {
2370 ztest_ds_t *zd = arg1;
2371 lr_setattr_t *lr = arg2;
2372 objset_t *os = zd->zd_os;
2373 dmu_tx_t *tx;
2374 dmu_buf_t *db;
2375 ztest_block_tag_t *bbt;
2376 uint64_t txg, lrtxg, crtxg, dnodesize;
2377
2378 if (byteswap)
2379 byteswap_uint64_array(lr, sizeof (*lr));
2380
2381 ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2382
2383 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2384
2385 tx = dmu_tx_create(os);
2386 dmu_tx_hold_bonus(tx, lr->lr_foid);
2387
2388 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2389 if (txg == 0) {
2390 dmu_buf_rele(db, FTAG);
2391 ztest_object_unlock(zd, lr->lr_foid);
2392 return (ENOSPC);
2393 }
2394
2395 bbt = ztest_bt_bonus(db);
2396 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2397 crtxg = bbt->bt_crtxg;
2398 lrtxg = lr->lr_common.lrc_txg;
2399 dnodesize = bbt->bt_dnodesize;
2400
2401 if (zd->zd_zilog->zl_replay) {
2402 ASSERT3U(lr->lr_size, !=, 0);
2403 ASSERT3U(lr->lr_mode, !=, 0);
2404 ASSERT3U(lrtxg, !=, 0);
2405 } else {
2406 /*
2407 * Randomly change the size and increment the generation.
2408 */
2409 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2410 sizeof (*bbt);
2411 lr->lr_mode = bbt->bt_gen + 1;
2412 ASSERT0(lrtxg);
2413 }
2414
2415 /*
2416 * Verify that the current bonus buffer is not newer than our txg.
2417 */
2418 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2419 MAX(txg, lrtxg), crtxg);
2420
2421 dmu_buf_will_dirty(db, tx);
2422
2423 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2424 ASSERT3U(lr->lr_size, <=, db->db_size);
2425 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2426 bbt = ztest_bt_bonus(db);
2427
2428 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2429 txg, crtxg);
2430 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2431 dmu_buf_rele(db, FTAG);
2432
2433 (void) ztest_log_setattr(zd, tx, lr);
2434
2435 dmu_tx_commit(tx);
2436
2437 ztest_object_unlock(zd, lr->lr_foid);
2438
2439 return (0);
2440 }
2441
2442 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2443 NULL, /* 0 no such transaction type */
2444 ztest_replay_create, /* TX_CREATE */
2445 NULL, /* TX_MKDIR */
2446 NULL, /* TX_MKXATTR */
2447 NULL, /* TX_SYMLINK */
2448 ztest_replay_remove, /* TX_REMOVE */
2449 NULL, /* TX_RMDIR */
2450 NULL, /* TX_LINK */
2451 NULL, /* TX_RENAME */
2452 ztest_replay_write, /* TX_WRITE */
2453 ztest_replay_truncate, /* TX_TRUNCATE */
2454 ztest_replay_setattr, /* TX_SETATTR */
2455 NULL, /* TX_ACL */
2456 NULL, /* TX_CREATE_ACL */
2457 NULL, /* TX_CREATE_ATTR */
2458 NULL, /* TX_CREATE_ACL_ATTR */
2459 NULL, /* TX_MKDIR_ACL */
2460 NULL, /* TX_MKDIR_ATTR */
2461 NULL, /* TX_MKDIR_ACL_ATTR */
2462 NULL, /* TX_WRITE2 */
2463 NULL, /* TX_SETSAXATTR */
2464 NULL, /* TX_RENAME_EXCHANGE */
2465 NULL, /* TX_RENAME_WHITEOUT */
2466 };
2467
2468 /*
2469 * ZIL get_data callbacks
2470 */
2471
2472 static void
ztest_get_done(zgd_t * zgd,int error)2473 ztest_get_done(zgd_t *zgd, int error)
2474 {
2475 (void) error;
2476 ztest_ds_t *zd = zgd->zgd_private;
2477 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2478
2479 if (zgd->zgd_db)
2480 dmu_buf_rele(zgd->zgd_db, zgd);
2481
2482 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2483 ztest_object_unlock(zd, object);
2484
2485 umem_free(zgd, sizeof (*zgd));
2486 }
2487
2488 static int
ztest_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2489 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2490 struct lwb *lwb, zio_t *zio)
2491 {
2492 (void) arg2;
2493 ztest_ds_t *zd = arg;
2494 objset_t *os = zd->zd_os;
2495 uint64_t object = lr->lr_foid;
2496 uint64_t offset = lr->lr_offset;
2497 uint64_t size = lr->lr_length;
2498 uint64_t txg = lr->lr_common.lrc_txg;
2499 uint64_t crtxg;
2500 dmu_object_info_t doi;
2501 dmu_buf_t *db;
2502 zgd_t *zgd;
2503 int error;
2504
2505 ASSERT3P(lwb, !=, NULL);
2506 ASSERT3U(size, !=, 0);
2507
2508 ztest_object_lock(zd, object, ZTRL_READER);
2509 error = dmu_bonus_hold(os, object, FTAG, &db);
2510 if (error) {
2511 ztest_object_unlock(zd, object);
2512 return (error);
2513 }
2514
2515 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2516
2517 if (crtxg == 0 || crtxg > txg) {
2518 dmu_buf_rele(db, FTAG);
2519 ztest_object_unlock(zd, object);
2520 return (ENOENT);
2521 }
2522
2523 dmu_object_info_from_db(db, &doi);
2524 dmu_buf_rele(db, FTAG);
2525 db = NULL;
2526
2527 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2528 zgd->zgd_lwb = lwb;
2529 zgd->zgd_private = zd;
2530
2531 if (buf != NULL) { /* immediate write */
2532 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2533 object, offset, size, ZTRL_READER);
2534
2535 error = dmu_read(os, object, offset, size, buf,
2536 DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
2537 ASSERT0(error);
2538 } else {
2539 ASSERT3P(zio, !=, NULL);
2540 size = doi.doi_data_block_size;
2541 if (ISP2(size)) {
2542 offset = P2ALIGN_TYPED(offset, size, uint64_t);
2543 } else {
2544 ASSERT3U(offset, <, size);
2545 offset = 0;
2546 }
2547
2548 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2549 object, offset, size, ZTRL_READER);
2550
2551 error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2552 if (error == 0) {
2553 blkptr_t *bp = &lr->lr_blkptr;
2554
2555 zgd->zgd_db = db;
2556 zgd->zgd_bp = bp;
2557
2558 ASSERT3U(db->db_offset, ==, offset);
2559 ASSERT3U(db->db_size, ==, size);
2560
2561 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2562 ztest_get_done, zgd);
2563
2564 if (error == 0)
2565 return (0);
2566 }
2567 }
2568
2569 ztest_get_done(zgd, error);
2570
2571 return (error);
2572 }
2573
2574 static void *
ztest_lr_alloc(size_t lrsize,char * name)2575 ztest_lr_alloc(size_t lrsize, char *name)
2576 {
2577 char *lr;
2578 size_t namesize = name ? strlen(name) + 1 : 0;
2579
2580 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2581
2582 if (name)
2583 memcpy(lr + lrsize, name, namesize);
2584
2585 return (lr);
2586 }
2587
2588 static void
ztest_lr_free(void * lr,size_t lrsize,char * name)2589 ztest_lr_free(void *lr, size_t lrsize, char *name)
2590 {
2591 size_t namesize = name ? strlen(name) + 1 : 0;
2592
2593 umem_free(lr, lrsize + namesize);
2594 }
2595
2596 /*
2597 * Lookup a bunch of objects. Returns the number of objects not found.
2598 */
2599 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2600 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2601 {
2602 int missing = 0;
2603 int error;
2604 int i;
2605
2606 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2607
2608 for (i = 0; i < count; i++, od++) {
2609 od->od_object = 0;
2610 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2611 sizeof (uint64_t), 1, &od->od_object);
2612 if (error) {
2613 ASSERT3S(error, ==, ENOENT);
2614 ASSERT0(od->od_object);
2615 missing++;
2616 } else {
2617 dmu_buf_t *db;
2618 ztest_block_tag_t *bbt;
2619 dmu_object_info_t doi;
2620
2621 ASSERT3U(od->od_object, !=, 0);
2622 ASSERT0(missing); /* there should be no gaps */
2623
2624 ztest_object_lock(zd, od->od_object, ZTRL_READER);
2625 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2626 FTAG, &db));
2627 dmu_object_info_from_db(db, &doi);
2628 bbt = ztest_bt_bonus(db);
2629 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2630 od->od_type = doi.doi_type;
2631 od->od_blocksize = doi.doi_data_block_size;
2632 od->od_gen = bbt->bt_gen;
2633 dmu_buf_rele(db, FTAG);
2634 ztest_object_unlock(zd, od->od_object);
2635 }
2636 }
2637
2638 return (missing);
2639 }
2640
2641 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2642 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2643 {
2644 int missing = 0;
2645 int i;
2646
2647 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2648
2649 for (i = 0; i < count; i++, od++) {
2650 if (missing) {
2651 od->od_object = 0;
2652 missing++;
2653 continue;
2654 }
2655
2656 lr_create_t *lrc = ztest_lr_alloc(sizeof (*lrc), od->od_name);
2657 _lr_create_t *lr = &lrc->lr_create;
2658
2659 lr->lr_doid = od->od_dir;
2660 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2661 lr->lrz_type = od->od_crtype;
2662 lr->lrz_blocksize = od->od_crblocksize;
2663 lr->lrz_ibshift = ztest_random_ibshift();
2664 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2665 lr->lrz_dnodesize = od->od_crdnodesize;
2666 lr->lr_gen = od->od_crgen;
2667 lr->lr_crtime[0] = time(NULL);
2668
2669 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2670 ASSERT0(missing);
2671 od->od_object = 0;
2672 missing++;
2673 } else {
2674 od->od_object = lr->lr_foid;
2675 od->od_type = od->od_crtype;
2676 od->od_blocksize = od->od_crblocksize;
2677 od->od_gen = od->od_crgen;
2678 ASSERT3U(od->od_object, !=, 0);
2679 }
2680
2681 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2682 }
2683
2684 return (missing);
2685 }
2686
2687 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2688 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2689 {
2690 int missing = 0;
2691 int error;
2692 int i;
2693
2694 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2695
2696 od += count - 1;
2697
2698 for (i = count - 1; i >= 0; i--, od--) {
2699 if (missing) {
2700 missing++;
2701 continue;
2702 }
2703
2704 /*
2705 * No object was found.
2706 */
2707 if (od->od_object == 0)
2708 continue;
2709
2710 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2711
2712 lr->lr_doid = od->od_dir;
2713
2714 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2715 ASSERT3U(error, ==, ENOSPC);
2716 missing++;
2717 } else {
2718 od->od_object = 0;
2719 }
2720 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2721 }
2722
2723 return (missing);
2724 }
2725
2726 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,const void * data)2727 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2728 const void *data)
2729 {
2730 lr_write_t *lr;
2731 int error;
2732
2733 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2734
2735 lr->lr_foid = object;
2736 lr->lr_offset = offset;
2737 lr->lr_length = size;
2738 lr->lr_blkoff = 0;
2739 BP_ZERO(&lr->lr_blkptr);
2740
2741 memcpy(&lr->lr_data[0], data, size);
2742
2743 error = ztest_replay_write(zd, lr, B_FALSE);
2744
2745 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2746
2747 return (error);
2748 }
2749
2750 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2751 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2752 {
2753 lr_truncate_t *lr;
2754 int error;
2755
2756 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2757
2758 lr->lr_foid = object;
2759 lr->lr_offset = offset;
2760 lr->lr_length = size;
2761
2762 error = ztest_replay_truncate(zd, lr, B_FALSE);
2763
2764 ztest_lr_free(lr, sizeof (*lr), NULL);
2765
2766 return (error);
2767 }
2768
2769 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2770 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2771 {
2772 lr_setattr_t *lr;
2773 int error;
2774
2775 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2776
2777 lr->lr_foid = object;
2778 lr->lr_size = 0;
2779 lr->lr_mode = 0;
2780
2781 error = ztest_replay_setattr(zd, lr, B_FALSE);
2782
2783 ztest_lr_free(lr, sizeof (*lr), NULL);
2784
2785 return (error);
2786 }
2787
2788 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2789 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2790 {
2791 objset_t *os = zd->zd_os;
2792 dmu_tx_t *tx;
2793 uint64_t txg;
2794 rl_t *rl;
2795
2796 txg_wait_synced(dmu_objset_pool(os), 0);
2797
2798 ztest_object_lock(zd, object, ZTRL_READER);
2799 rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2800
2801 tx = dmu_tx_create(os);
2802
2803 dmu_tx_hold_write(tx, object, offset, size);
2804
2805 txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2806
2807 if (txg != 0) {
2808 dmu_prealloc(os, object, offset, size, tx);
2809 dmu_tx_commit(tx);
2810 txg_wait_synced(dmu_objset_pool(os), txg);
2811 } else {
2812 (void) dmu_free_long_range(os, object, offset, size);
2813 }
2814
2815 ztest_range_unlock(rl);
2816 ztest_object_unlock(zd, object);
2817 }
2818
2819 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2820 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2821 {
2822 int err;
2823 ztest_block_tag_t wbt;
2824 dmu_object_info_t doi;
2825 enum ztest_io_type io_type;
2826 uint64_t blocksize;
2827 void *data;
2828 dmu_flags_t dmu_read_flags = DMU_READ_NO_PREFETCH;
2829
2830 /*
2831 * We will randomly set when to do O_DIRECT on a read.
2832 */
2833 if (ztest_random(4) == 0)
2834 dmu_read_flags |= DMU_DIRECTIO;
2835
2836 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2837 blocksize = doi.doi_data_block_size;
2838 data = umem_alloc(blocksize, UMEM_NOFAIL);
2839
2840 /*
2841 * Pick an i/o type at random, biased toward writing block tags.
2842 */
2843 io_type = ztest_random(ZTEST_IO_TYPES);
2844 if (ztest_random(2) == 0)
2845 io_type = ZTEST_IO_WRITE_TAG;
2846
2847 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2848
2849 switch (io_type) {
2850
2851 case ZTEST_IO_WRITE_TAG:
2852 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2853 offset, 0, 0, 0);
2854 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2855 break;
2856
2857 case ZTEST_IO_WRITE_PATTERN:
2858 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2859 if (ztest_random(2) == 0) {
2860 /*
2861 * Induce fletcher2 collisions to ensure that
2862 * zio_ddt_collision() detects and resolves them
2863 * when using fletcher2-verify for deduplication.
2864 */
2865 ((uint64_t *)data)[0] ^= 1ULL << 63;
2866 ((uint64_t *)data)[4] ^= 1ULL << 63;
2867 }
2868 (void) ztest_write(zd, object, offset, blocksize, data);
2869 break;
2870
2871 case ZTEST_IO_WRITE_ZEROES:
2872 memset(data, 0, blocksize);
2873 (void) ztest_write(zd, object, offset, blocksize, data);
2874 break;
2875
2876 case ZTEST_IO_TRUNCATE:
2877 (void) ztest_truncate(zd, object, offset, blocksize);
2878 break;
2879
2880 case ZTEST_IO_SETATTR:
2881 (void) ztest_setattr(zd, object);
2882 break;
2883 default:
2884 break;
2885
2886 case ZTEST_IO_REWRITE:
2887 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2888 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2889 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2890 B_FALSE);
2891 ASSERT(err == 0 || err == ENOSPC);
2892 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2893 ZFS_PROP_COMPRESSION,
2894 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2895 B_FALSE);
2896 ASSERT(err == 0 || err == ENOSPC);
2897 (void) pthread_rwlock_unlock(&ztest_name_lock);
2898
2899 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2900 dmu_read_flags));
2901
2902 (void) ztest_write(zd, object, offset, blocksize, data);
2903 break;
2904 }
2905
2906 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2907
2908 umem_free(data, blocksize);
2909 }
2910
2911 /*
2912 * Initialize an object description template.
2913 */
2914 static void
ztest_od_init(ztest_od_t * od,uint64_t id,const char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2915 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2916 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2917 uint64_t gen)
2918 {
2919 od->od_dir = ZTEST_DIROBJ;
2920 od->od_object = 0;
2921
2922 od->od_crtype = type;
2923 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2924 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2925 od->od_crgen = gen;
2926
2927 od->od_type = DMU_OT_NONE;
2928 od->od_blocksize = 0;
2929 od->od_gen = 0;
2930
2931 (void) snprintf(od->od_name, sizeof (od->od_name),
2932 "%s(%"PRId64")[%"PRIu64"]",
2933 tag, id, index);
2934 }
2935
2936 /*
2937 * Lookup or create the objects for a test using the od template.
2938 * If the objects do not all exist, or if 'remove' is specified,
2939 * remove any existing objects and create new ones. Otherwise,
2940 * use the existing objects.
2941 */
2942 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2943 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2944 {
2945 int count = size / sizeof (*od);
2946 int rv = 0;
2947
2948 mutex_enter(&zd->zd_dirobj_lock);
2949 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2950 (ztest_remove(zd, od, count) != 0 ||
2951 ztest_create(zd, od, count) != 0))
2952 rv = -1;
2953 zd->zd_od = od;
2954 mutex_exit(&zd->zd_dirobj_lock);
2955
2956 return (rv);
2957 }
2958
2959 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2960 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2961 {
2962 (void) id;
2963 zilog_t *zilog = zd->zd_zilog;
2964
2965 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2966
2967 VERIFY0(zil_commit(zilog, ztest_random(ZTEST_OBJECTS)));
2968
2969 /*
2970 * Remember the committed values in zd, which is in parent/child
2971 * shared memory. If we die, the next iteration of ztest_run()
2972 * will verify that the log really does contain this record.
2973 */
2974 mutex_enter(&zilog->zl_lock);
2975 ASSERT3P(zd->zd_shared, !=, NULL);
2976 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2977 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2978 mutex_exit(&zilog->zl_lock);
2979
2980 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2981 }
2982
2983 /*
2984 * This function is designed to simulate the operations that occur during a
2985 * mount/unmount operation. We hold the dataset across these operations in an
2986 * attempt to expose any implicit assumptions about ZIL management.
2987 */
2988 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2989 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2990 {
2991 (void) id;
2992 objset_t *os = zd->zd_os;
2993
2994 /*
2995 * We hold the ztest_vdev_lock so we don't cause problems with
2996 * other threads that wish to remove a log device, such as
2997 * ztest_device_removal().
2998 */
2999 mutex_enter(&ztest_vdev_lock);
3000
3001 /*
3002 * We grab the zd_dirobj_lock to ensure that no other thread is
3003 * updating the zil (i.e. adding in-memory log records) and the
3004 * zd_zilog_lock to block any I/O.
3005 */
3006 mutex_enter(&zd->zd_dirobj_lock);
3007 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
3008
3009 /* zfsvfs_teardown() */
3010 zil_close(zd->zd_zilog);
3011
3012 /* zfsvfs_setup() */
3013 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
3014 zil_replay(os, zd, ztest_replay_vector);
3015
3016 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3017 mutex_exit(&zd->zd_dirobj_lock);
3018 mutex_exit(&ztest_vdev_lock);
3019 }
3020
3021 /*
3022 * Verify that we can't destroy an active pool, create an existing pool,
3023 * or create a pool with a bad vdev spec.
3024 */
3025 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)3026 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3027 {
3028 (void) zd, (void) id;
3029 ztest_shared_opts_t *zo = &ztest_opts;
3030 spa_t *spa;
3031 nvlist_t *nvroot;
3032
3033 if (zo->zo_mmp_test)
3034 return;
3035
3036 /*
3037 * Attempt to create using a bad file.
3038 */
3039 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3040 VERIFY3U(ENOENT, ==,
3041 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3042 fnvlist_free(nvroot);
3043
3044 /*
3045 * Attempt to create using a bad mirror.
3046 */
3047 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3048 VERIFY3U(ENOENT, ==,
3049 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3050 fnvlist_free(nvroot);
3051
3052 /*
3053 * Attempt to create an existing pool. It shouldn't matter
3054 * what's in the nvroot; we should fail with EEXIST.
3055 */
3056 (void) pthread_rwlock_rdlock(&ztest_name_lock);
3057 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3058 VERIFY3U(EEXIST, ==,
3059 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3060 fnvlist_free(nvroot);
3061
3062 /*
3063 * We open a reference to the spa and then we try to export it
3064 * expecting one of the following errors:
3065 *
3066 * EBUSY
3067 * Because of the reference we just opened.
3068 *
3069 * ZFS_ERR_EXPORT_IN_PROGRESS
3070 * For the case that there is another ztest thread doing
3071 * an export concurrently.
3072 */
3073 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3074 int error = spa_destroy(zo->zo_pool);
3075 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3076 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3077 spa->spa_name, error);
3078 }
3079 spa_close(spa, FTAG);
3080
3081 (void) pthread_rwlock_unlock(&ztest_name_lock);
3082 }
3083
3084 /*
3085 * Start and then stop the MMP threads to ensure the startup and shutdown code
3086 * works properly. Actual protection and property-related code tested via ZTS.
3087 */
3088 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)3089 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3090 {
3091 (void) zd, (void) id;
3092 ztest_shared_opts_t *zo = &ztest_opts;
3093 spa_t *spa = ztest_spa;
3094
3095 if (zo->zo_mmp_test)
3096 return;
3097
3098 /*
3099 * Since enabling MMP involves setting a property, it could not be done
3100 * while the pool is suspended.
3101 */
3102 if (spa_suspended(spa))
3103 return;
3104
3105 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3106 mutex_enter(&spa->spa_props_lock);
3107
3108 zfs_multihost_fail_intervals = 0;
3109
3110 if (!spa_multihost(spa)) {
3111 spa->spa_multihost = B_TRUE;
3112 mmp_thread_start(spa);
3113 }
3114
3115 mutex_exit(&spa->spa_props_lock);
3116 spa_config_exit(spa, SCL_CONFIG, FTAG);
3117
3118 txg_wait_synced(spa_get_dsl(spa), 0);
3119 mmp_signal_all_threads();
3120 txg_wait_synced(spa_get_dsl(spa), 0);
3121
3122 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3123 mutex_enter(&spa->spa_props_lock);
3124
3125 if (spa_multihost(spa)) {
3126 mmp_thread_stop(spa);
3127 spa->spa_multihost = B_FALSE;
3128 }
3129
3130 mutex_exit(&spa->spa_props_lock);
3131 spa_config_exit(spa, SCL_CONFIG, FTAG);
3132 }
3133
3134 static int
ztest_get_raidz_children(spa_t * spa)3135 ztest_get_raidz_children(spa_t *spa)
3136 {
3137 (void) spa;
3138 vdev_t *raidvd;
3139
3140 ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3141
3142 if (ztest_opts.zo_raid_do_expand) {
3143 raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3144
3145 ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3146
3147 return (raidvd->vdev_children);
3148 }
3149
3150 return (ztest_opts.zo_raid_children);
3151 }
3152
3153 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)3154 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3155 {
3156 (void) zd, (void) id;
3157 spa_t *spa;
3158 uint64_t initial_version = SPA_VERSION_INITIAL;
3159 uint64_t raidz_children, version, newversion;
3160 nvlist_t *nvroot, *props;
3161 char *name;
3162
3163 if (ztest_opts.zo_mmp_test)
3164 return;
3165
3166 /* dRAID added after feature flags, skip upgrade test. */
3167 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3168 return;
3169
3170 mutex_enter(&ztest_vdev_lock);
3171 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3172
3173 /*
3174 * Clean up from previous runs.
3175 */
3176 (void) spa_destroy(name);
3177
3178 raidz_children = ztest_get_raidz_children(ztest_spa);
3179
3180 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3181 NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3182
3183 /*
3184 * If we're configuring a RAIDZ device then make sure that the
3185 * initial version is capable of supporting that feature.
3186 */
3187 switch (ztest_opts.zo_raid_parity) {
3188 case 0:
3189 case 1:
3190 initial_version = SPA_VERSION_INITIAL;
3191 break;
3192 case 2:
3193 initial_version = SPA_VERSION_RAIDZ2;
3194 break;
3195 case 3:
3196 initial_version = SPA_VERSION_RAIDZ3;
3197 break;
3198 }
3199
3200 /*
3201 * Create a pool with a spa version that can be upgraded. Pick
3202 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3203 */
3204 do {
3205 version = ztest_random_spa_version(initial_version);
3206 } while (version > SPA_VERSION_BEFORE_FEATURES);
3207
3208 props = fnvlist_alloc();
3209 fnvlist_add_uint64(props,
3210 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3211 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3212 fnvlist_free(nvroot);
3213 fnvlist_free(props);
3214
3215 VERIFY0(spa_open(name, &spa, FTAG));
3216 VERIFY3U(spa_version(spa), ==, version);
3217 newversion = ztest_random_spa_version(version + 1);
3218
3219 if (ztest_opts.zo_verbose >= 4) {
3220 (void) printf("upgrading spa version from "
3221 "%"PRIu64" to %"PRIu64"\n",
3222 version, newversion);
3223 }
3224
3225 spa_upgrade(spa, newversion);
3226 VERIFY3U(spa_version(spa), >, version);
3227 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3228 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3229 spa_close(spa, FTAG);
3230
3231 kmem_strfree(name);
3232 mutex_exit(&ztest_vdev_lock);
3233 }
3234
3235 static void
ztest_spa_checkpoint(spa_t * spa)3236 ztest_spa_checkpoint(spa_t *spa)
3237 {
3238 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3239
3240 int error = spa_checkpoint(spa->spa_name);
3241
3242 switch (error) {
3243 case 0:
3244 case ZFS_ERR_DEVRM_IN_PROGRESS:
3245 case ZFS_ERR_DISCARDING_CHECKPOINT:
3246 case ZFS_ERR_CHECKPOINT_EXISTS:
3247 case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3248 break;
3249 case ENOSPC:
3250 ztest_record_enospc(FTAG);
3251 break;
3252 default:
3253 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3254 }
3255 }
3256
3257 static void
ztest_spa_discard_checkpoint(spa_t * spa)3258 ztest_spa_discard_checkpoint(spa_t *spa)
3259 {
3260 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3261
3262 int error = spa_checkpoint_discard(spa->spa_name);
3263
3264 switch (error) {
3265 case 0:
3266 case ZFS_ERR_DISCARDING_CHECKPOINT:
3267 case ZFS_ERR_NO_CHECKPOINT:
3268 break;
3269 default:
3270 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3271 spa->spa_name, error);
3272 }
3273
3274 }
3275
3276 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)3277 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3278 {
3279 (void) zd, (void) id;
3280 spa_t *spa = ztest_spa;
3281
3282 mutex_enter(&ztest_checkpoint_lock);
3283 if (ztest_random(2) == 0) {
3284 ztest_spa_checkpoint(spa);
3285 } else {
3286 ztest_spa_discard_checkpoint(spa);
3287 }
3288 mutex_exit(&ztest_checkpoint_lock);
3289 }
3290
3291
3292 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)3293 vdev_lookup_by_path(vdev_t *vd, const char *path)
3294 {
3295 vdev_t *mvd;
3296 int c;
3297
3298 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3299 return (vd);
3300
3301 for (c = 0; c < vd->vdev_children; c++)
3302 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3303 NULL)
3304 return (mvd);
3305
3306 return (NULL);
3307 }
3308
3309 static int
spa_num_top_vdevs(spa_t * spa)3310 spa_num_top_vdevs(spa_t *spa)
3311 {
3312 vdev_t *rvd = spa->spa_root_vdev;
3313 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3314 return (rvd->vdev_children);
3315 }
3316
3317 /*
3318 * Verify that vdev_add() works as expected.
3319 */
3320 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)3321 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3322 {
3323 (void) zd, (void) id;
3324 ztest_shared_t *zs = ztest_shared;
3325 spa_t *spa = ztest_spa;
3326 uint64_t leaves;
3327 uint64_t guid;
3328 uint64_t raidz_children;
3329
3330 nvlist_t *nvroot;
3331 int error;
3332
3333 if (ztest_opts.zo_mmp_test)
3334 return;
3335
3336 mutex_enter(&ztest_vdev_lock);
3337 raidz_children = ztest_get_raidz_children(spa);
3338 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3339
3340 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3341
3342 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3343
3344 /*
3345 * If we have slogs then remove them 1/4 of the time.
3346 */
3347 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3348 metaslab_group_t *mg;
3349
3350 /*
3351 * find the first real slog in log allocation class
3352 */
3353 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3354 while (!mg->mg_vd->vdev_islog)
3355 mg = mg->mg_next;
3356
3357 guid = mg->mg_vd->vdev_guid;
3358
3359 spa_config_exit(spa, SCL_VDEV, FTAG);
3360
3361 /*
3362 * We have to grab the zs_name_lock as writer to
3363 * prevent a race between removing a slog (dmu_objset_find)
3364 * and destroying a dataset. Removing the slog will
3365 * grab a reference on the dataset which may cause
3366 * dsl_destroy_head() to fail with EBUSY thus
3367 * leaving the dataset in an inconsistent state.
3368 */
3369 pthread_rwlock_wrlock(&ztest_name_lock);
3370 error = spa_vdev_remove(spa, guid, B_FALSE);
3371 pthread_rwlock_unlock(&ztest_name_lock);
3372
3373 switch (error) {
3374 case 0:
3375 case EEXIST: /* Generic zil_reset() error */
3376 case EBUSY: /* Replay required */
3377 case EACCES: /* Crypto key not loaded */
3378 case ZFS_ERR_CHECKPOINT_EXISTS:
3379 case ZFS_ERR_DISCARDING_CHECKPOINT:
3380 break;
3381 default:
3382 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3383 }
3384 } else {
3385 spa_config_exit(spa, SCL_VDEV, FTAG);
3386
3387 /*
3388 * Make 1/4 of the devices be log devices
3389 */
3390 nvroot = make_vdev_root(NULL, NULL, NULL,
3391 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3392 "log" : NULL, raidz_children, zs->zs_mirrors,
3393 1);
3394
3395 error = spa_vdev_add(spa, nvroot, B_FALSE);
3396 fnvlist_free(nvroot);
3397
3398 switch (error) {
3399 case 0:
3400 break;
3401 case ENOSPC:
3402 ztest_record_enospc("spa_vdev_add");
3403 break;
3404 default:
3405 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3406 }
3407 }
3408
3409 mutex_exit(&ztest_vdev_lock);
3410 }
3411
3412 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)3413 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3414 {
3415 (void) zd, (void) id;
3416 ztest_shared_t *zs = ztest_shared;
3417 spa_t *spa = ztest_spa;
3418 uint64_t leaves;
3419 nvlist_t *nvroot;
3420 uint64_t raidz_children;
3421 const char *class = (ztest_random(2) == 0) ?
3422 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3423 int error;
3424
3425 /*
3426 * By default add a special vdev 50% of the time
3427 */
3428 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3429 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3430 ztest_random(2) == 0)) {
3431 return;
3432 }
3433
3434 mutex_enter(&ztest_vdev_lock);
3435
3436 /* Only test with mirrors */
3437 if (zs->zs_mirrors < 2) {
3438 mutex_exit(&ztest_vdev_lock);
3439 return;
3440 }
3441
3442 /* requires feature@allocation_classes */
3443 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3444 mutex_exit(&ztest_vdev_lock);
3445 return;
3446 }
3447
3448 raidz_children = ztest_get_raidz_children(spa);
3449 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3450
3451 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3452 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3453 spa_config_exit(spa, SCL_VDEV, FTAG);
3454
3455 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3456 class, raidz_children, zs->zs_mirrors, 1);
3457
3458 error = spa_vdev_add(spa, nvroot, B_FALSE);
3459 fnvlist_free(nvroot);
3460
3461 if (error == ENOSPC)
3462 ztest_record_enospc("spa_vdev_add");
3463 else if (error != 0)
3464 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3465
3466 /*
3467 * 50% of the time allow small blocks in the special class
3468 */
3469 if (error == 0 &&
3470 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3471 if (ztest_opts.zo_verbose >= 3)
3472 (void) printf("Enabling special VDEV small blocks\n");
3473 error = ztest_dsl_prop_set_uint64(zd->zd_name,
3474 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3475 ASSERT(error == 0 || error == ENOSPC);
3476 }
3477
3478 mutex_exit(&ztest_vdev_lock);
3479
3480 if (ztest_opts.zo_verbose >= 3) {
3481 metaslab_class_t *mc;
3482
3483 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3484 mc = spa_special_class(spa);
3485 else
3486 mc = spa_dedup_class(spa);
3487 (void) printf("Added a %s mirrored vdev (of %d)\n",
3488 class, (int)mc->mc_groups);
3489 }
3490 }
3491
3492 /*
3493 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3494 */
3495 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3496 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3497 {
3498 (void) zd, (void) id;
3499 ztest_shared_t *zs = ztest_shared;
3500 spa_t *spa = ztest_spa;
3501 vdev_t *rvd = spa->spa_root_vdev;
3502 spa_aux_vdev_t *sav;
3503 const char *aux;
3504 char *path;
3505 uint64_t guid = 0;
3506 int error, ignore_err = 0;
3507
3508 if (ztest_opts.zo_mmp_test)
3509 return;
3510
3511 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3512
3513 if (ztest_random(2) == 0) {
3514 sav = &spa->spa_spares;
3515 aux = ZPOOL_CONFIG_SPARES;
3516 } else {
3517 sav = &spa->spa_l2cache;
3518 aux = ZPOOL_CONFIG_L2CACHE;
3519 }
3520
3521 mutex_enter(&ztest_vdev_lock);
3522
3523 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3524
3525 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3526 /*
3527 * Pick a random device to remove.
3528 */
3529 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3530
3531 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3532 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3533 ignore_err = ENOTSUP;
3534
3535 guid = svd->vdev_guid;
3536 } else {
3537 /*
3538 * Find an unused device we can add.
3539 */
3540 zs->zs_vdev_aux = 0;
3541 for (;;) {
3542 int c;
3543 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3544 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3545 zs->zs_vdev_aux);
3546 for (c = 0; c < sav->sav_count; c++)
3547 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3548 path) == 0)
3549 break;
3550 if (c == sav->sav_count &&
3551 vdev_lookup_by_path(rvd, path) == NULL)
3552 break;
3553 zs->zs_vdev_aux++;
3554 }
3555 }
3556
3557 spa_config_exit(spa, SCL_VDEV, FTAG);
3558
3559 if (guid == 0) {
3560 /*
3561 * Add a new device.
3562 */
3563 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3564 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3565 error = spa_vdev_add(spa, nvroot, B_FALSE);
3566
3567 switch (error) {
3568 case 0:
3569 break;
3570 default:
3571 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3572 }
3573 fnvlist_free(nvroot);
3574 } else {
3575 /*
3576 * Remove an existing device. Sometimes, dirty its
3577 * vdev state first to make sure we handle removal
3578 * of devices that have pending state changes.
3579 */
3580 if (ztest_random(2) == 0)
3581 (void) vdev_online(spa, guid, 0, NULL);
3582
3583 error = spa_vdev_remove(spa, guid, B_FALSE);
3584
3585 switch (error) {
3586 case 0:
3587 case EBUSY:
3588 case ZFS_ERR_CHECKPOINT_EXISTS:
3589 case ZFS_ERR_DISCARDING_CHECKPOINT:
3590 break;
3591 default:
3592 if (error != ignore_err)
3593 fatal(B_FALSE,
3594 "spa_vdev_remove(%"PRIu64") = %d",
3595 guid, error);
3596 }
3597 }
3598
3599 mutex_exit(&ztest_vdev_lock);
3600
3601 umem_free(path, MAXPATHLEN);
3602 }
3603
3604 /*
3605 * split a pool if it has mirror tlvdevs
3606 */
3607 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3608 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3609 {
3610 (void) zd, (void) id;
3611 ztest_shared_t *zs = ztest_shared;
3612 spa_t *spa = ztest_spa;
3613 vdev_t *rvd = spa->spa_root_vdev;
3614 nvlist_t *tree, **child, *config, *split, **schild;
3615 uint_t c, children, schildren = 0, lastlogid = 0;
3616 int error = 0;
3617
3618 if (ztest_opts.zo_mmp_test)
3619 return;
3620
3621 mutex_enter(&ztest_vdev_lock);
3622
3623 /* ensure we have a usable config; mirrors of raidz aren't supported */
3624 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3625 mutex_exit(&ztest_vdev_lock);
3626 return;
3627 }
3628
3629 /* clean up the old pool, if any */
3630 (void) spa_destroy("splitp");
3631
3632 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3633
3634 /* generate a config from the existing config */
3635 mutex_enter(&spa->spa_props_lock);
3636 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3637 mutex_exit(&spa->spa_props_lock);
3638
3639 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3640 &child, &children));
3641
3642 schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3643 UMEM_NOFAIL);
3644 for (c = 0; c < children; c++) {
3645 vdev_t *tvd = rvd->vdev_child[c];
3646 nvlist_t **mchild;
3647 uint_t mchildren;
3648
3649 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3650 schild[schildren] = fnvlist_alloc();
3651 fnvlist_add_string(schild[schildren],
3652 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3653 fnvlist_add_uint64(schild[schildren],
3654 ZPOOL_CONFIG_IS_HOLE, 1);
3655 if (lastlogid == 0)
3656 lastlogid = schildren;
3657 ++schildren;
3658 continue;
3659 }
3660 lastlogid = 0;
3661 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3662 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3663 schild[schildren++] = fnvlist_dup(mchild[0]);
3664 }
3665
3666 /* OK, create a config that can be used to split */
3667 split = fnvlist_alloc();
3668 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3669 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3670 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3671
3672 config = fnvlist_alloc();
3673 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3674
3675 for (c = 0; c < schildren; c++)
3676 fnvlist_free(schild[c]);
3677 umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3678 fnvlist_free(split);
3679
3680 spa_config_exit(spa, SCL_VDEV, FTAG);
3681
3682 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3683 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3684 (void) pthread_rwlock_unlock(&ztest_name_lock);
3685
3686 fnvlist_free(config);
3687
3688 if (error == 0) {
3689 (void) printf("successful split - results:\n");
3690 spa_namespace_enter(FTAG);
3691 show_pool_stats(spa);
3692 show_pool_stats(spa_lookup("splitp"));
3693 spa_namespace_exit(FTAG);
3694 ++zs->zs_splits;
3695 --zs->zs_mirrors;
3696 }
3697 mutex_exit(&ztest_vdev_lock);
3698 }
3699
3700 /*
3701 * Verify that we can attach and detach devices.
3702 */
3703 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3704 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3705 {
3706 (void) zd, (void) id;
3707 ztest_shared_t *zs = ztest_shared;
3708 spa_t *spa = ztest_spa;
3709 spa_aux_vdev_t *sav = &spa->spa_spares;
3710 vdev_t *rvd = spa->spa_root_vdev;
3711 vdev_t *oldvd, *newvd, *pvd;
3712 nvlist_t *root;
3713 uint64_t leaves;
3714 uint64_t leaf, top;
3715 uint64_t ashift = ztest_get_ashift();
3716 uint64_t oldguid, pguid;
3717 uint64_t oldsize, newsize;
3718 uint64_t raidz_children;
3719 char *oldpath, *newpath;
3720 int replacing;
3721 int oldvd_has_siblings = B_FALSE;
3722 int newvd_is_spare = B_FALSE;
3723 int newvd_is_dspare = B_FALSE;
3724 int oldvd_is_log;
3725 int oldvd_is_special;
3726 int error, expected_error;
3727
3728 if (ztest_opts.zo_mmp_test)
3729 return;
3730
3731 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3732 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3733
3734 mutex_enter(&ztest_vdev_lock);
3735 raidz_children = ztest_get_raidz_children(spa);
3736 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3737
3738 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3739
3740 /*
3741 * If a vdev is in the process of being removed, its removal may
3742 * finish while we are in progress, leading to an unexpected error
3743 * value. Don't bother trying to attach while we are in the middle
3744 * of removal.
3745 */
3746 if (ztest_device_removal_active) {
3747 spa_config_exit(spa, SCL_ALL, FTAG);
3748 goto out;
3749 }
3750
3751 /*
3752 * RAIDZ leaf VDEV mirrors are not currently supported while a
3753 * RAIDZ expansion is in progress.
3754 */
3755 if (ztest_opts.zo_raid_do_expand) {
3756 spa_config_exit(spa, SCL_ALL, FTAG);
3757 goto out;
3758 }
3759
3760 /*
3761 * Decide whether to do an attach or a replace.
3762 */
3763 replacing = ztest_random(2);
3764
3765 /*
3766 * Pick a random top-level vdev.
3767 */
3768 top = ztest_random_vdev_top(spa, B_TRUE);
3769
3770 /*
3771 * Pick a random leaf within it.
3772 */
3773 leaf = ztest_random(leaves);
3774
3775 /*
3776 * Locate this vdev.
3777 */
3778 oldvd = rvd->vdev_child[top];
3779
3780 /* pick a child from the mirror */
3781 if (zs->zs_mirrors >= 1) {
3782 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3783 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3784 oldvd = oldvd->vdev_child[leaf / raidz_children];
3785 }
3786
3787 /* pick a child out of the raidz group */
3788 if (ztest_opts.zo_raid_children > 1) {
3789 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3790 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3791 else
3792 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3793 oldvd = oldvd->vdev_child[leaf % raidz_children];
3794 }
3795
3796 /*
3797 * If we're already doing an attach or replace, oldvd may be a
3798 * mirror vdev -- in which case, pick a random child.
3799 */
3800 while (oldvd->vdev_children != 0) {
3801 oldvd_has_siblings = B_TRUE;
3802 ASSERT3U(oldvd->vdev_children, >=, 2);
3803 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3804 }
3805
3806 oldguid = oldvd->vdev_guid;
3807 oldsize = vdev_get_min_asize(oldvd);
3808 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3809 oldvd_is_special =
3810 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3811 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3812 (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3813 pvd = oldvd->vdev_parent;
3814 pguid = pvd->vdev_guid;
3815
3816 /*
3817 * If oldvd has siblings, then half of the time, detach it. Prior
3818 * to the detach the pool is scrubbed in order to prevent creating
3819 * unrepairable blocks as a result of the data corruption injection.
3820 */
3821 if (oldvd_has_siblings && ztest_random(2) == 0) {
3822 spa_config_exit(spa, SCL_ALL, FTAG);
3823
3824 error = ztest_scrub_impl(spa);
3825 if (error)
3826 goto out;
3827
3828 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3829 if (error != 0 && error != ENODEV && error != EBUSY &&
3830 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3831 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3832 fatal(B_FALSE, "detach (%s) returned %d",
3833 oldpath, error);
3834 goto out;
3835 }
3836
3837 /*
3838 * For the new vdev, choose with equal probability between the two
3839 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3840 */
3841 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3842 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3843 newvd_is_spare = B_TRUE;
3844
3845 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3846 newvd_is_dspare = B_TRUE;
3847
3848 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3849 } else {
3850 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3851 ztest_opts.zo_dir, ztest_opts.zo_pool,
3852 top * leaves + leaf);
3853 if (ztest_random(2) == 0)
3854 newpath[strlen(newpath) - 1] = 'b';
3855 newvd = vdev_lookup_by_path(rvd, newpath);
3856 }
3857
3858 if (newvd) {
3859 /*
3860 * Reopen to ensure the vdev's asize field isn't stale.
3861 */
3862 vdev_reopen(newvd);
3863 newsize = vdev_get_min_asize(newvd);
3864 } else {
3865 /*
3866 * Make newsize a little bigger or smaller than oldsize.
3867 * If it's smaller, the attach should fail.
3868 * If it's larger, and we're doing a replace,
3869 * we should get dynamic LUN growth when we're done.
3870 */
3871 newsize = 10 * oldsize / (9 + ztest_random(3));
3872 }
3873
3874 /*
3875 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3876 * unless it's a replace; in that case any non-replacing parent is OK.
3877 *
3878 * If newvd is already part of the pool, it should fail with EBUSY.
3879 *
3880 * If newvd is too small, it should fail with EOVERFLOW.
3881 *
3882 * If newvd is a distributed spare and it's being attached to a
3883 * dRAID which is not its parent it should fail with ENOTSUP.
3884 */
3885 if (pvd->vdev_ops != &vdev_mirror_ops &&
3886 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3887 pvd->vdev_ops == &vdev_replacing_ops ||
3888 pvd->vdev_ops == &vdev_spare_ops))
3889 expected_error = ENOTSUP;
3890 else if (newvd_is_spare &&
3891 (!replacing || oldvd_is_log || oldvd_is_special))
3892 expected_error = ENOTSUP;
3893 else if (newvd == oldvd)
3894 expected_error = replacing ? 0 : EBUSY;
3895 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3896 expected_error = EBUSY;
3897 else if (!newvd_is_dspare && newsize < oldsize)
3898 expected_error = EOVERFLOW;
3899 else if (ashift > oldvd->vdev_top->vdev_ashift)
3900 expected_error = EDOM;
3901 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3902 expected_error = ENOTSUP;
3903 else
3904 expected_error = 0;
3905
3906 spa_config_exit(spa, SCL_ALL, FTAG);
3907
3908 /*
3909 * Build the nvlist describing newpath.
3910 */
3911 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3912 ashift, NULL, 0, 0, 1);
3913
3914 /*
3915 * When supported select either a healing or sequential resilver.
3916 */
3917 boolean_t rebuilding = B_FALSE;
3918 if (pvd->vdev_ops == &vdev_mirror_ops ||
3919 pvd->vdev_ops == &vdev_root_ops) {
3920 rebuilding = !!ztest_random(2);
3921 }
3922
3923 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3924
3925 fnvlist_free(root);
3926
3927 /*
3928 * If our parent was the replacing vdev, but the replace completed,
3929 * then instead of failing with ENOTSUP we may either succeed,
3930 * fail with ENODEV, or fail with EOVERFLOW.
3931 */
3932 if (expected_error == ENOTSUP &&
3933 (error == 0 || error == ENODEV || error == EOVERFLOW))
3934 expected_error = error;
3935
3936 /*
3937 * If someone grew the LUN, the replacement may be too small.
3938 */
3939 if (error == EOVERFLOW || error == EBUSY)
3940 expected_error = error;
3941
3942 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3943 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3944 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3945 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3946 expected_error = error;
3947
3948 if (error != expected_error && expected_error != EBUSY) {
3949 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3950 "returned %d, expected %d",
3951 oldpath, oldsize, newpath,
3952 newsize, replacing, error, expected_error);
3953 }
3954 out:
3955 mutex_exit(&ztest_vdev_lock);
3956
3957 umem_free(oldpath, MAXPATHLEN);
3958 umem_free(newpath, MAXPATHLEN);
3959 }
3960
3961 static void
raidz_scratch_verify(void)3962 raidz_scratch_verify(void)
3963 {
3964 spa_t *spa;
3965 uint64_t write_size, logical_size, offset;
3966 raidz_reflow_scratch_state_t state;
3967 vdev_raidz_expand_t *vre;
3968 vdev_t *raidvd;
3969
3970 ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3971
3972 if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3973 return;
3974
3975 kernel_init(SPA_MODE_READ);
3976
3977 spa_namespace_enter(FTAG);
3978 spa = spa_lookup(ztest_opts.zo_pool);
3979 ASSERT(spa);
3980 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3981 spa_namespace_exit(FTAG);
3982
3983 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3984
3985 ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3986
3987 mutex_enter(&ztest_vdev_lock);
3988
3989 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3990
3991 vre = spa->spa_raidz_expand;
3992 if (vre == NULL)
3993 goto out;
3994
3995 raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3996 offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3997 state = RRSS_GET_STATE(&spa->spa_uberblock);
3998 write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
3999 uint64_t);
4000 logical_size = write_size * raidvd->vdev_children;
4001
4002 switch (state) {
4003 /*
4004 * Initial state of reflow process. RAIDZ expansion was
4005 * requested by user, but scratch object was not created.
4006 */
4007 case RRSS_SCRATCH_NOT_IN_USE:
4008 ASSERT0(offset);
4009 break;
4010
4011 /*
4012 * Scratch object was synced and stored in boot area.
4013 */
4014 case RRSS_SCRATCH_VALID:
4015
4016 /*
4017 * Scratch object was synced back to raidz start offset,
4018 * raidz is ready for sector by sector reflow process.
4019 */
4020 case RRSS_SCRATCH_INVALID_SYNCED:
4021
4022 /*
4023 * Scratch object was synced back to raidz start offset
4024 * on zpool importing, raidz is ready for sector by sector
4025 * reflow process.
4026 */
4027 case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4028 ASSERT3U(offset, ==, logical_size);
4029 break;
4030
4031 /*
4032 * Sector by sector reflow process started.
4033 */
4034 case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4035 ASSERT3U(offset, >=, logical_size);
4036 break;
4037 }
4038
4039 out:
4040 spa_config_exit(spa, SCL_ALL, FTAG);
4041
4042 mutex_exit(&ztest_vdev_lock);
4043
4044 ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4045
4046 spa_close(spa, FTAG);
4047 kernel_fini();
4048 }
4049
4050 static void
ztest_scratch_thread(void * arg)4051 ztest_scratch_thread(void *arg)
4052 {
4053 (void) arg;
4054
4055 /* wait up to 10 seconds */
4056 for (int t = 100; t > 0; t -= 1) {
4057 if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4058 thread_exit();
4059
4060 (void) poll(NULL, 0, 100);
4061 }
4062
4063 /* killed when the scratch area progress reached a certain point */
4064 ztest_kill(ztest_shared);
4065 }
4066
4067 /*
4068 * Verify that we can attach raidz device.
4069 */
4070 void
ztest_vdev_raidz_attach(ztest_ds_t * zd,uint64_t id)4071 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4072 {
4073 (void) zd, (void) id;
4074 ztest_shared_t *zs = ztest_shared;
4075 spa_t *spa = ztest_spa;
4076 uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4077 kthread_t *scratch_thread = NULL;
4078 vdev_t *newvd, *pvd;
4079 nvlist_t *root;
4080 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4081 int error, expected_error = 0;
4082
4083 mutex_enter(&ztest_vdev_lock);
4084
4085 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4086
4087 /* Only allow attach when raid-kind = 'eraidz' */
4088 if (!ztest_opts.zo_raid_do_expand) {
4089 spa_config_exit(spa, SCL_ALL, FTAG);
4090 goto out;
4091 }
4092
4093 if (ztest_opts.zo_mmp_test) {
4094 spa_config_exit(spa, SCL_ALL, FTAG);
4095 goto out;
4096 }
4097
4098 if (ztest_device_removal_active) {
4099 spa_config_exit(spa, SCL_ALL, FTAG);
4100 goto out;
4101 }
4102
4103 pvd = vdev_lookup_top(spa, 0);
4104
4105 ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4106
4107 /*
4108 * Get size of a child of the raidz group,
4109 * make sure device is a bit bigger
4110 */
4111 newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4112 newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4113
4114 /*
4115 * Get next attached leaf id
4116 */
4117 raidz_children = ztest_get_raidz_children(spa);
4118 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4119 zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4120
4121 if (spa->spa_raidz_expand)
4122 expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4123
4124 spa_config_exit(spa, SCL_ALL, FTAG);
4125
4126 /*
4127 * Path to vdev to be attached
4128 */
4129 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4130 ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4131
4132 /*
4133 * Build the nvlist describing newpath.
4134 */
4135 root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4136 0, 0, 1);
4137
4138 /*
4139 * 50% of the time, set raidz_expand_pause_point to cause
4140 * raidz_reflow_scratch_sync() to pause at a certain point and
4141 * then kill the test after 10 seconds so raidz_scratch_verify()
4142 * can confirm consistency when the pool is imported.
4143 */
4144 if (ztest_random(2) == 0 && expected_error == 0) {
4145 raidz_expand_pause_point =
4146 ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4147 scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4148 ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4149 }
4150
4151 error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4152
4153 nvlist_free(root);
4154
4155 if (error == EOVERFLOW || error == ENXIO ||
4156 error == ZFS_ERR_CHECKPOINT_EXISTS ||
4157 error == ZFS_ERR_DISCARDING_CHECKPOINT)
4158 expected_error = error;
4159
4160 if (error != 0 && error != expected_error) {
4161 fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4162 newpath, newsize, error, expected_error);
4163 }
4164
4165 if (raidz_expand_pause_point) {
4166 if (error != 0) {
4167 /*
4168 * Do not verify scratch object in case of error
4169 * returned by vdev attaching.
4170 */
4171 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4172 }
4173
4174 VERIFY0(thread_join(scratch_thread));
4175 }
4176 out:
4177 mutex_exit(&ztest_vdev_lock);
4178
4179 umem_free(newpath, MAXPATHLEN);
4180 }
4181
4182 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)4183 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4184 {
4185 (void) zd, (void) id;
4186 spa_t *spa = ztest_spa;
4187 vdev_t *vd;
4188 uint64_t guid;
4189 int error;
4190
4191 mutex_enter(&ztest_vdev_lock);
4192
4193 if (ztest_device_removal_active) {
4194 mutex_exit(&ztest_vdev_lock);
4195 return;
4196 }
4197
4198 /*
4199 * Remove a random top-level vdev and wait for removal to finish.
4200 */
4201 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4202 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4203 guid = vd->vdev_guid;
4204 spa_config_exit(spa, SCL_VDEV, FTAG);
4205
4206 error = spa_vdev_remove(spa, guid, B_FALSE);
4207 if (error == 0) {
4208 ztest_device_removal_active = B_TRUE;
4209 mutex_exit(&ztest_vdev_lock);
4210
4211 /*
4212 * spa->spa_vdev_removal is created in a sync task that
4213 * is initiated via dsl_sync_task_nowait(). Since the
4214 * task may not run before spa_vdev_remove() returns, we
4215 * must wait at least 1 txg to ensure that the removal
4216 * struct has been created.
4217 */
4218 txg_wait_synced(spa_get_dsl(spa), 0);
4219
4220 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4221 txg_wait_synced(spa_get_dsl(spa), 0);
4222 } else {
4223 mutex_exit(&ztest_vdev_lock);
4224 return;
4225 }
4226
4227 /*
4228 * The pool needs to be scrubbed after completing device removal.
4229 * Failure to do so may result in checksum errors due to the
4230 * strategy employed by ztest_fault_inject() when selecting which
4231 * offset are redundant and can be damaged.
4232 */
4233 error = spa_scan(spa, POOL_SCAN_SCRUB);
4234 if (error == 0) {
4235 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4236 txg_wait_synced(spa_get_dsl(spa), 0);
4237 }
4238
4239 mutex_enter(&ztest_vdev_lock);
4240 ztest_device_removal_active = B_FALSE;
4241 mutex_exit(&ztest_vdev_lock);
4242 }
4243
4244 /*
4245 * Callback function which expands the physical size of the vdev.
4246 */
4247 static vdev_t *
grow_vdev(vdev_t * vd,void * arg)4248 grow_vdev(vdev_t *vd, void *arg)
4249 {
4250 spa_t *spa __maybe_unused = vd->vdev_spa;
4251 size_t *newsize = arg;
4252 size_t fsize;
4253 int fd;
4254
4255 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4256 ASSERT(vd->vdev_ops->vdev_op_leaf);
4257
4258 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4259 return (vd);
4260
4261 fsize = lseek(fd, 0, SEEK_END);
4262 VERIFY0(ftruncate(fd, *newsize));
4263
4264 if (ztest_opts.zo_verbose >= 6) {
4265 (void) printf("%s grew from %lu to %lu bytes\n",
4266 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4267 }
4268 (void) close(fd);
4269 return (NULL);
4270 }
4271
4272 /*
4273 * Callback function which expands a given vdev by calling vdev_online().
4274 */
4275 static vdev_t *
online_vdev(vdev_t * vd,void * arg)4276 online_vdev(vdev_t *vd, void *arg)
4277 {
4278 (void) arg;
4279 spa_t *spa = vd->vdev_spa;
4280 vdev_t *tvd = vd->vdev_top;
4281 uint64_t guid = vd->vdev_guid;
4282 uint64_t generation = spa->spa_config_generation + 1;
4283 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4284 int error;
4285
4286 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4287 ASSERT(vd->vdev_ops->vdev_op_leaf);
4288
4289 /* Calling vdev_online will initialize the new metaslabs */
4290 spa_config_exit(spa, SCL_STATE, spa);
4291 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4292 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4293
4294 /*
4295 * If vdev_online returned an error or the underlying vdev_open
4296 * failed then we abort the expand. The only way to know that
4297 * vdev_open fails is by checking the returned newstate.
4298 */
4299 if (error || newstate != VDEV_STATE_HEALTHY) {
4300 if (ztest_opts.zo_verbose >= 5) {
4301 (void) printf("Unable to expand vdev, state %u, "
4302 "error %d\n", newstate, error);
4303 }
4304 return (vd);
4305 }
4306 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4307
4308 /*
4309 * Since we dropped the lock we need to ensure that we're
4310 * still talking to the original vdev. It's possible this
4311 * vdev may have been detached/replaced while we were
4312 * trying to online it.
4313 */
4314 if (generation != spa->spa_config_generation) {
4315 if (ztest_opts.zo_verbose >= 5) {
4316 (void) printf("vdev configuration has changed, "
4317 "guid %"PRIu64", state %"PRIu64", "
4318 "expected gen %"PRIu64", got gen %"PRIu64"\n",
4319 guid,
4320 tvd->vdev_state,
4321 generation,
4322 spa->spa_config_generation);
4323 }
4324 return (vd);
4325 }
4326 return (NULL);
4327 }
4328
4329 /*
4330 * Traverse the vdev tree calling the supplied function.
4331 * We continue to walk the tree until we either have walked all
4332 * children or we receive a non-NULL return from the callback.
4333 * If a NULL callback is passed, then we just return back the first
4334 * leaf vdev we encounter.
4335 */
4336 static vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)4337 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4338 {
4339 uint_t c;
4340
4341 if (vd->vdev_ops->vdev_op_leaf) {
4342 if (func == NULL)
4343 return (vd);
4344 else
4345 return (func(vd, arg));
4346 }
4347
4348 for (c = 0; c < vd->vdev_children; c++) {
4349 vdev_t *cvd = vd->vdev_child[c];
4350 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4351 return (cvd);
4352 }
4353 return (NULL);
4354 }
4355
4356 /*
4357 * Verify that dynamic LUN growth works as expected.
4358 */
4359 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)4360 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4361 {
4362 (void) zd, (void) id;
4363 spa_t *spa = ztest_spa;
4364 vdev_t *vd, *tvd;
4365 metaslab_class_t *mc;
4366 metaslab_group_t *mg;
4367 size_t psize, newsize;
4368 uint64_t top;
4369 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4370
4371 mutex_enter(&ztest_checkpoint_lock);
4372 mutex_enter(&ztest_vdev_lock);
4373 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4374
4375 /*
4376 * If there is a vdev removal in progress, it could complete while
4377 * we are running, in which case we would not be able to verify
4378 * that the metaslab_class space increased (because it decreases
4379 * when the device removal completes).
4380 */
4381 if (ztest_device_removal_active) {
4382 spa_config_exit(spa, SCL_STATE, spa);
4383 mutex_exit(&ztest_vdev_lock);
4384 mutex_exit(&ztest_checkpoint_lock);
4385 return;
4386 }
4387
4388 /*
4389 * If we are under raidz expansion, the test can failed because the
4390 * metaslabs count will not increase immediately after the vdev is
4391 * expanded. It will happen only after raidz expansion completion.
4392 */
4393 if (spa->spa_raidz_expand) {
4394 spa_config_exit(spa, SCL_STATE, spa);
4395 mutex_exit(&ztest_vdev_lock);
4396 mutex_exit(&ztest_checkpoint_lock);
4397 return;
4398 }
4399
4400 top = ztest_random_vdev_top(spa, B_TRUE);
4401
4402 tvd = spa->spa_root_vdev->vdev_child[top];
4403 mg = tvd->vdev_mg;
4404 mc = mg->mg_class;
4405 old_ms_count = tvd->vdev_ms_count;
4406 old_class_space = metaslab_class_get_space(mc);
4407
4408 /*
4409 * Determine the size of the first leaf vdev associated with
4410 * our top-level device.
4411 */
4412 vd = vdev_walk_tree(tvd, NULL, NULL);
4413 ASSERT3P(vd, !=, NULL);
4414 ASSERT(vd->vdev_ops->vdev_op_leaf);
4415
4416 psize = vd->vdev_psize;
4417
4418 /*
4419 * We only try to expand the vdev if it's healthy, less than 4x its
4420 * original size, and it has a valid psize.
4421 */
4422 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4423 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4424 spa_config_exit(spa, SCL_STATE, spa);
4425 mutex_exit(&ztest_vdev_lock);
4426 mutex_exit(&ztest_checkpoint_lock);
4427 return;
4428 }
4429 ASSERT3U(psize, >, 0);
4430 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4431 ASSERT3U(newsize, >, psize);
4432
4433 if (ztest_opts.zo_verbose >= 6) {
4434 (void) printf("Expanding LUN %s from %lu to %lu\n",
4435 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4436 }
4437
4438 /*
4439 * Growing the vdev is a two step process:
4440 * 1). expand the physical size (i.e. relabel)
4441 * 2). online the vdev to create the new metaslabs
4442 */
4443 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4444 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4445 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4446 if (ztest_opts.zo_verbose >= 5) {
4447 (void) printf("Could not expand LUN because "
4448 "the vdev configuration changed.\n");
4449 }
4450 spa_config_exit(spa, SCL_STATE, spa);
4451 mutex_exit(&ztest_vdev_lock);
4452 mutex_exit(&ztest_checkpoint_lock);
4453 return;
4454 }
4455
4456 spa_config_exit(spa, SCL_STATE, spa);
4457
4458 /*
4459 * Expanding the LUN will update the config asynchronously,
4460 * thus we must wait for the async thread to complete any
4461 * pending tasks before proceeding.
4462 */
4463 for (;;) {
4464 boolean_t done;
4465 mutex_enter(&spa->spa_async_lock);
4466 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4467 mutex_exit(&spa->spa_async_lock);
4468 if (done)
4469 break;
4470 txg_wait_synced(spa_get_dsl(spa), 0);
4471 (void) poll(NULL, 0, 100);
4472 }
4473
4474 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4475
4476 tvd = spa->spa_root_vdev->vdev_child[top];
4477 new_ms_count = tvd->vdev_ms_count;
4478 new_class_space = metaslab_class_get_space(mc);
4479
4480 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4481 if (ztest_opts.zo_verbose >= 5) {
4482 (void) printf("Could not verify LUN expansion due to "
4483 "intervening vdev offline or remove.\n");
4484 }
4485 spa_config_exit(spa, SCL_STATE, spa);
4486 mutex_exit(&ztest_vdev_lock);
4487 mutex_exit(&ztest_checkpoint_lock);
4488 return;
4489 }
4490
4491 /*
4492 * Make sure we were able to grow the vdev.
4493 */
4494 if (new_ms_count <= old_ms_count) {
4495 fatal(B_FALSE,
4496 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4497 old_ms_count, new_ms_count);
4498 }
4499
4500 /*
4501 * Make sure we were able to grow the pool.
4502 */
4503 if (new_class_space <= old_class_space) {
4504 fatal(B_FALSE,
4505 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4506 old_class_space, new_class_space);
4507 }
4508
4509 if (ztest_opts.zo_verbose >= 5) {
4510 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4511
4512 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4513 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4514 (void) printf("%s grew from %s to %s\n",
4515 spa->spa_name, oldnumbuf, newnumbuf);
4516 }
4517
4518 spa_config_exit(spa, SCL_STATE, spa);
4519 mutex_exit(&ztest_vdev_lock);
4520 mutex_exit(&ztest_checkpoint_lock);
4521 }
4522
4523 /*
4524 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4525 */
4526 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)4527 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4528 {
4529 (void) arg, (void) cr;
4530
4531 /*
4532 * Create the objects common to all ztest datasets.
4533 */
4534 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4535 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4536 }
4537
4538 static int
ztest_dataset_create(char * dsname)4539 ztest_dataset_create(char *dsname)
4540 {
4541 int err;
4542 uint64_t rand;
4543 dsl_crypto_params_t *dcp = NULL;
4544
4545 /*
4546 * 50% of the time, we create encrypted datasets
4547 * using a random cipher suite and a hard-coded
4548 * wrapping key.
4549 */
4550 rand = ztest_random(2);
4551 if (rand != 0) {
4552 nvlist_t *crypto_args = fnvlist_alloc();
4553 nvlist_t *props = fnvlist_alloc();
4554
4555 /* slight bias towards the default cipher suite */
4556 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4557 if (rand < ZIO_CRYPT_AES_128_CCM)
4558 rand = ZIO_CRYPT_ON;
4559
4560 fnvlist_add_uint64(props,
4561 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4562 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4563 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4564
4565 /*
4566 * These parameters aren't really used by the kernel. They
4567 * are simply stored so that userspace knows how to load
4568 * the wrapping key.
4569 */
4570 fnvlist_add_uint64(props,
4571 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4572 fnvlist_add_string(props,
4573 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4574 fnvlist_add_uint64(props,
4575 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4576 fnvlist_add_uint64(props,
4577 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4578
4579 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4580 crypto_args, &dcp));
4581
4582 /*
4583 * Cycle through all available encryption implementations
4584 * to verify interoperability.
4585 */
4586 VERIFY0(gcm_impl_set("cycle"));
4587 VERIFY0(aes_impl_set("cycle"));
4588
4589 fnvlist_free(crypto_args);
4590 fnvlist_free(props);
4591 }
4592
4593 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4594 ztest_objset_create_cb, NULL);
4595 dsl_crypto_params_free(dcp, !!err);
4596
4597 rand = ztest_random(100);
4598 if (err || rand < 80)
4599 return (err);
4600
4601 if (ztest_opts.zo_verbose >= 5)
4602 (void) printf("Setting dataset %s to sync always\n", dsname);
4603 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4604 ZFS_SYNC_ALWAYS, B_FALSE));
4605 }
4606
4607 static int
ztest_objset_destroy_cb(const char * name,void * arg)4608 ztest_objset_destroy_cb(const char *name, void *arg)
4609 {
4610 (void) arg;
4611 objset_t *os;
4612 dmu_object_info_t doi;
4613 int error;
4614
4615 /*
4616 * Verify that the dataset contains a directory object.
4617 */
4618 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4619 B_TRUE, FTAG, &os));
4620 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4621 if (error != ENOENT) {
4622 /* We could have crashed in the middle of destroying it */
4623 ASSERT0(error);
4624 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4625 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4626 }
4627 dmu_objset_disown(os, B_TRUE, FTAG);
4628
4629 /*
4630 * Destroy the dataset.
4631 */
4632 if (strchr(name, '@') != NULL) {
4633 error = dsl_destroy_snapshot(name, B_TRUE);
4634 if (error != ECHRNG) {
4635 /*
4636 * The program was executed, but encountered a runtime
4637 * error, such as insufficient slop, or a hold on the
4638 * dataset.
4639 */
4640 ASSERT0(error);
4641 }
4642 } else {
4643 error = dsl_destroy_head(name);
4644 if (error == ENOSPC) {
4645 /* There could be checkpoint or insufficient slop */
4646 ztest_record_enospc(FTAG);
4647 } else if (error != EBUSY) {
4648 /* There could be a hold on this dataset */
4649 ASSERT0(error);
4650 }
4651 }
4652 return (0);
4653 }
4654
4655 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)4656 ztest_snapshot_create(char *osname, uint64_t id)
4657 {
4658 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4659 int error;
4660
4661 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4662
4663 error = dmu_objset_snapshot_one(osname, snapname);
4664 if (error == ENOSPC) {
4665 ztest_record_enospc(FTAG);
4666 return (B_FALSE);
4667 }
4668 if (error != 0 && error != EEXIST && error != ECHRNG) {
4669 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4670 snapname, error);
4671 }
4672 return (B_TRUE);
4673 }
4674
4675 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)4676 ztest_snapshot_destroy(char *osname, uint64_t id)
4677 {
4678 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4679 int error;
4680
4681 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4682 osname, id);
4683
4684 error = dsl_destroy_snapshot(snapname, B_FALSE);
4685 if (error != 0 && error != ENOENT && error != ECHRNG)
4686 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4687 snapname, error);
4688 return (B_TRUE);
4689 }
4690
4691 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)4692 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4693 {
4694 (void) zd;
4695 ztest_ds_t *zdtmp;
4696 int iters;
4697 int error;
4698 objset_t *os, *os2;
4699 char name[ZFS_MAX_DATASET_NAME_LEN];
4700 zilog_t *zilog;
4701 int i;
4702
4703 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4704
4705 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4706
4707 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4708 ztest_opts.zo_pool, id);
4709
4710 /*
4711 * If this dataset exists from a previous run, process its replay log
4712 * half of the time. If we don't replay it, then dsl_destroy_head()
4713 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4714 */
4715 if (ztest_random(2) == 0 &&
4716 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4717 B_TRUE, FTAG, &os) == 0) {
4718 ztest_zd_init(zdtmp, NULL, os);
4719 zil_replay(os, zdtmp, ztest_replay_vector);
4720 ztest_zd_fini(zdtmp);
4721 dmu_objset_disown(os, B_TRUE, FTAG);
4722 }
4723
4724 /*
4725 * There may be an old instance of the dataset we're about to
4726 * create lying around from a previous run. If so, destroy it
4727 * and all of its snapshots.
4728 */
4729 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4730 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4731
4732 /*
4733 * Verify that the destroyed dataset is no longer in the namespace.
4734 * It may still be present if the destroy above fails with ENOSPC.
4735 */
4736 error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4737 FTAG, &os);
4738 if (error == 0) {
4739 dmu_objset_disown(os, B_TRUE, FTAG);
4740 ztest_record_enospc(FTAG);
4741 goto out;
4742 }
4743 VERIFY3U(ENOENT, ==, error);
4744
4745 /*
4746 * Verify that we can create a new dataset.
4747 */
4748 error = ztest_dataset_create(name);
4749 if (error) {
4750 if (error == ENOSPC) {
4751 ztest_record_enospc(FTAG);
4752 goto out;
4753 }
4754 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4755 }
4756
4757 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4758 FTAG, &os));
4759
4760 ztest_zd_init(zdtmp, NULL, os);
4761
4762 /*
4763 * Open the intent log for it.
4764 */
4765 zilog = zil_open(os, ztest_get_data, NULL);
4766
4767 /*
4768 * Put some objects in there, do a little I/O to them,
4769 * and randomly take a couple of snapshots along the way.
4770 */
4771 iters = ztest_random(5);
4772 for (i = 0; i < iters; i++) {
4773 ztest_dmu_object_alloc_free(zdtmp, id);
4774 if (ztest_random(iters) == 0)
4775 (void) ztest_snapshot_create(name, i);
4776 }
4777
4778 /*
4779 * Verify that we cannot create an existing dataset.
4780 */
4781 VERIFY3U(EEXIST, ==,
4782 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4783
4784 /*
4785 * Verify that we can hold an objset that is also owned.
4786 */
4787 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4788 dmu_objset_rele(os2, FTAG);
4789
4790 /*
4791 * Verify that we cannot own an objset that is already owned.
4792 */
4793 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4794 B_FALSE, B_TRUE, FTAG, &os2));
4795
4796 zil_close(zilog);
4797 dmu_objset_disown(os, B_TRUE, FTAG);
4798 ztest_zd_fini(zdtmp);
4799 out:
4800 (void) pthread_rwlock_unlock(&ztest_name_lock);
4801
4802 umem_free(zdtmp, sizeof (ztest_ds_t));
4803 }
4804
4805 /*
4806 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4807 */
4808 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)4809 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4810 {
4811 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4812 (void) ztest_snapshot_destroy(zd->zd_name, id);
4813 (void) ztest_snapshot_create(zd->zd_name, id);
4814 (void) pthread_rwlock_unlock(&ztest_name_lock);
4815 }
4816
4817 /*
4818 * Cleanup non-standard snapshots and clones.
4819 */
4820 static void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4821 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4822 {
4823 char *snap1name;
4824 char *clone1name;
4825 char *snap2name;
4826 char *clone2name;
4827 char *snap3name;
4828 int error;
4829
4830 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4831 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4832 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4833 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4834 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4835
4836 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4837 osname, id);
4838 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4839 osname, id);
4840 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4841 clone1name, id);
4842 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4843 osname, id);
4844 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4845 clone1name, id);
4846
4847 error = dsl_destroy_head(clone2name);
4848 if (error && error != ENOENT)
4849 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4850 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4851 if (error && error != ENOENT)
4852 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4853 snap3name, error);
4854 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4855 if (error && error != ENOENT)
4856 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4857 snap2name, error);
4858 error = dsl_destroy_head(clone1name);
4859 if (error && error != ENOENT)
4860 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4861 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4862 if (error && error != ENOENT)
4863 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4864 snap1name, error);
4865
4866 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4867 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4868 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4869 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4870 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4871 }
4872
4873 /*
4874 * Verify dsl_dataset_promote handles EBUSY
4875 */
4876 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4877 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4878 {
4879 objset_t *os;
4880 char *snap1name;
4881 char *clone1name;
4882 char *snap2name;
4883 char *clone2name;
4884 char *snap3name;
4885 char *osname = zd->zd_name;
4886 int error;
4887
4888 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4889 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4890 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4891 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4892 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4893
4894 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4895
4896 ztest_dsl_dataset_cleanup(osname, id);
4897
4898 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4899 osname, id);
4900 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4901 osname, id);
4902 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4903 clone1name, id);
4904 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4905 osname, id);
4906 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4907 clone1name, id);
4908
4909 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4910 if (error && error != EEXIST) {
4911 if (error == ENOSPC) {
4912 ztest_record_enospc(FTAG);
4913 goto out;
4914 }
4915 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4916 }
4917
4918 error = dsl_dataset_clone(clone1name, snap1name);
4919 if (error) {
4920 if (error == ENOSPC) {
4921 ztest_record_enospc(FTAG);
4922 goto out;
4923 }
4924 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4925 }
4926
4927 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4928 if (error && error != EEXIST) {
4929 if (error == ENOSPC) {
4930 ztest_record_enospc(FTAG);
4931 goto out;
4932 }
4933 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4934 }
4935
4936 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4937 if (error && error != EEXIST) {
4938 if (error == ENOSPC) {
4939 ztest_record_enospc(FTAG);
4940 goto out;
4941 }
4942 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4943 }
4944
4945 error = dsl_dataset_clone(clone2name, snap3name);
4946 if (error) {
4947 if (error == ENOSPC) {
4948 ztest_record_enospc(FTAG);
4949 goto out;
4950 }
4951 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4952 }
4953
4954 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4955 FTAG, &os);
4956 if (error)
4957 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4958 error = dsl_dataset_promote(clone2name, NULL);
4959 if (error == ENOSPC) {
4960 dmu_objset_disown(os, B_TRUE, FTAG);
4961 ztest_record_enospc(FTAG);
4962 goto out;
4963 }
4964 if (error != EBUSY)
4965 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4966 clone2name, error);
4967 dmu_objset_disown(os, B_TRUE, FTAG);
4968
4969 out:
4970 ztest_dsl_dataset_cleanup(osname, id);
4971
4972 (void) pthread_rwlock_unlock(&ztest_name_lock);
4973
4974 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4975 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4976 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4977 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4978 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4979 }
4980
4981 #undef OD_ARRAY_SIZE
4982 #define OD_ARRAY_SIZE 4
4983
4984 /*
4985 * Verify that dmu_object_{alloc,free} work as expected.
4986 */
4987 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4988 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4989 {
4990 ztest_od_t *od;
4991 int batchsize;
4992 int size;
4993 int b;
4994
4995 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4996 od = umem_alloc(size, UMEM_NOFAIL);
4997 batchsize = OD_ARRAY_SIZE;
4998
4999 for (b = 0; b < batchsize; b++)
5000 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
5001 0, 0, 0);
5002
5003 /*
5004 * Destroy the previous batch of objects, create a new batch,
5005 * and do some I/O on the new objects.
5006 */
5007 if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
5008 zd->zd_od = NULL;
5009 umem_free(od, size);
5010 return;
5011 }
5012
5013 while (ztest_random(4 * batchsize) != 0)
5014 ztest_io(zd, od[ztest_random(batchsize)].od_object,
5015 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5016
5017 umem_free(od, size);
5018 }
5019
5020 /*
5021 * Rewind the global allocator to verify object allocation backfilling.
5022 */
5023 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)5024 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5025 {
5026 (void) id;
5027 objset_t *os = zd->zd_os;
5028 uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5029 uint64_t object;
5030
5031 /*
5032 * Rewind the global allocator randomly back to a lower object number
5033 * to force backfilling and reclamation of recently freed dnodes.
5034 */
5035 mutex_enter(&os->os_obj_lock);
5036 object = ztest_random(os->os_obj_next_chunk);
5037 os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5038 uint64_t);
5039 mutex_exit(&os->os_obj_lock);
5040 }
5041
5042 #undef OD_ARRAY_SIZE
5043 #define OD_ARRAY_SIZE 2
5044
5045 /*
5046 * Verify that dmu_{read,write} work as expected.
5047 */
5048 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)5049 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5050 {
5051 int size;
5052 ztest_od_t *od;
5053
5054 objset_t *os = zd->zd_os;
5055 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5056 od = umem_alloc(size, UMEM_NOFAIL);
5057 dmu_tx_t *tx;
5058 int freeit, error;
5059 uint64_t i, n, s, txg;
5060 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5061 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5062 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5063 uint64_t regions = 997;
5064 uint64_t stride = 123456789ULL;
5065 uint64_t width = 40;
5066 int free_percent = 5;
5067 dmu_flags_t dmu_read_flags = DMU_READ_PREFETCH;
5068
5069 /*
5070 * We will randomly set when to do O_DIRECT on a read.
5071 */
5072 if (ztest_random(4) == 0)
5073 dmu_read_flags |= DMU_DIRECTIO;
5074
5075 /*
5076 * This test uses two objects, packobj and bigobj, that are always
5077 * updated together (i.e. in the same tx) so that their contents are
5078 * in sync and can be compared. Their contents relate to each other
5079 * in a simple way: packobj is a dense array of 'bufwad' structures,
5080 * while bigobj is a sparse array of the same bufwads. Specifically,
5081 * for any index n, there are three bufwads that should be identical:
5082 *
5083 * packobj, at offset n * sizeof (bufwad_t)
5084 * bigobj, at the head of the nth chunk
5085 * bigobj, at the tail of the nth chunk
5086 *
5087 * The chunk size is arbitrary. It doesn't have to be a power of two,
5088 * and it doesn't have any relation to the object blocksize.
5089 * The only requirement is that it can hold at least two bufwads.
5090 *
5091 * Normally, we write the bufwad to each of these locations.
5092 * However, free_percent of the time we instead write zeroes to
5093 * packobj and perform a dmu_free_range() on bigobj. By comparing
5094 * bigobj to packobj, we can verify that the DMU is correctly
5095 * tracking which parts of an object are allocated and free,
5096 * and that the contents of the allocated blocks are correct.
5097 */
5098
5099 /*
5100 * Read the directory info. If it's the first time, set things up.
5101 */
5102 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5103 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5104 chunksize);
5105
5106 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5107 umem_free(od, size);
5108 return;
5109 }
5110
5111 bigobj = od[0].od_object;
5112 packobj = od[1].od_object;
5113 chunksize = od[0].od_gen;
5114 ASSERT3U(chunksize, ==, od[1].od_gen);
5115
5116 /*
5117 * Prefetch a random chunk of the big object.
5118 * Our aim here is to get some async reads in flight
5119 * for blocks that we may free below; the DMU should
5120 * handle this race correctly.
5121 */
5122 n = ztest_random(regions) * stride + ztest_random(width);
5123 s = 1 + ztest_random(2 * width - 1);
5124 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5125 ZIO_PRIORITY_SYNC_READ);
5126
5127 /*
5128 * Pick a random index and compute the offsets into packobj and bigobj.
5129 */
5130 n = ztest_random(regions) * stride + ztest_random(width);
5131 s = 1 + ztest_random(width - 1);
5132
5133 packoff = n * sizeof (bufwad_t);
5134 packsize = s * sizeof (bufwad_t);
5135
5136 bigoff = n * chunksize;
5137 bigsize = s * chunksize;
5138
5139 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5140 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5141
5142 /*
5143 * free_percent of the time, free a range of bigobj rather than
5144 * overwriting it.
5145 */
5146 freeit = (ztest_random(100) < free_percent);
5147
5148 /*
5149 * Read the current contents of our objects.
5150 */
5151 error = dmu_read(os, packobj, packoff, packsize, packbuf,
5152 dmu_read_flags);
5153 ASSERT0(error);
5154 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5155 dmu_read_flags);
5156 ASSERT0(error);
5157
5158 /*
5159 * Get a tx for the mods to both packobj and bigobj.
5160 */
5161 tx = dmu_tx_create(os);
5162
5163 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5164
5165 if (freeit)
5166 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5167 else
5168 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5169
5170 /* This accounts for setting the checksum/compression. */
5171 dmu_tx_hold_bonus(tx, bigobj);
5172
5173 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5174 if (txg == 0) {
5175 umem_free(packbuf, packsize);
5176 umem_free(bigbuf, bigsize);
5177 umem_free(od, size);
5178 return;
5179 }
5180
5181 enum zio_checksum cksum;
5182 do {
5183 cksum = (enum zio_checksum)
5184 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5185 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5186 dmu_object_set_checksum(os, bigobj, cksum, tx);
5187
5188 enum zio_compress comp;
5189 do {
5190 comp = (enum zio_compress)
5191 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5192 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5193 dmu_object_set_compress(os, bigobj, comp, tx);
5194
5195 /*
5196 * For each index from n to n + s, verify that the existing bufwad
5197 * in packobj matches the bufwads at the head and tail of the
5198 * corresponding chunk in bigobj. Then update all three bufwads
5199 * with the new values we want to write out.
5200 */
5201 for (i = 0; i < s; i++) {
5202 /* LINTED */
5203 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5204 /* LINTED */
5205 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5206 /* LINTED */
5207 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5208
5209 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5210 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5211
5212 if (pack->bw_txg > txg)
5213 fatal(B_FALSE,
5214 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5215 pack->bw_txg, txg);
5216
5217 if (pack->bw_data != 0 && pack->bw_index != n + i)
5218 fatal(B_FALSE, "wrong index: "
5219 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5220 pack->bw_index, n, i);
5221
5222 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5223 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5224 pack, bigH);
5225
5226 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5227 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5228 pack, bigT);
5229
5230 if (freeit) {
5231 memset(pack, 0, sizeof (bufwad_t));
5232 } else {
5233 pack->bw_index = n + i;
5234 pack->bw_txg = txg;
5235 pack->bw_data = 1 + ztest_random(-2ULL);
5236 }
5237 *bigH = *pack;
5238 *bigT = *pack;
5239 }
5240
5241 /*
5242 * We've verified all the old bufwads, and made new ones.
5243 * Now write them out.
5244 */
5245 dmu_write(os, packobj, packoff, packsize, packbuf, tx,
5246 DMU_READ_PREFETCH);
5247
5248 if (freeit) {
5249 if (ztest_opts.zo_verbose >= 7) {
5250 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
5251 " txg %"PRIx64"\n",
5252 bigoff, bigsize, txg);
5253 }
5254 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5255 } else {
5256 if (ztest_opts.zo_verbose >= 7) {
5257 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5258 " txg %"PRIx64"\n",
5259 bigoff, bigsize, txg);
5260 }
5261 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx,
5262 DMU_READ_PREFETCH);
5263 }
5264
5265 dmu_tx_commit(tx);
5266
5267 /*
5268 * Sanity check the stuff we just wrote.
5269 */
5270 {
5271 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5272 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5273
5274 VERIFY0(dmu_read(os, packobj, packoff,
5275 packsize, packcheck, dmu_read_flags));
5276 VERIFY0(dmu_read(os, bigobj, bigoff,
5277 bigsize, bigcheck, dmu_read_flags));
5278
5279 ASSERT0(memcmp(packbuf, packcheck, packsize));
5280 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5281
5282 umem_free(packcheck, packsize);
5283 umem_free(bigcheck, bigsize);
5284 }
5285
5286 umem_free(packbuf, packsize);
5287 umem_free(bigbuf, bigsize);
5288 umem_free(od, size);
5289 }
5290
5291 static void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)5292 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5293 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5294 {
5295 uint64_t i;
5296 bufwad_t *pack;
5297 bufwad_t *bigH;
5298 bufwad_t *bigT;
5299
5300 /*
5301 * For each index from n to n + s, verify that the existing bufwad
5302 * in packobj matches the bufwads at the head and tail of the
5303 * corresponding chunk in bigobj. Then update all three bufwads
5304 * with the new values we want to write out.
5305 */
5306 for (i = 0; i < s; i++) {
5307 /* LINTED */
5308 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5309 /* LINTED */
5310 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5311 /* LINTED */
5312 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5313
5314 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5315 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5316
5317 if (pack->bw_txg > txg)
5318 fatal(B_FALSE,
5319 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5320 pack->bw_txg, txg);
5321
5322 if (pack->bw_data != 0 && pack->bw_index != n + i)
5323 fatal(B_FALSE, "wrong index: "
5324 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5325 pack->bw_index, n, i);
5326
5327 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5328 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5329 pack, bigH);
5330
5331 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5332 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5333 pack, bigT);
5334
5335 pack->bw_index = n + i;
5336 pack->bw_txg = txg;
5337 pack->bw_data = 1 + ztest_random(-2ULL);
5338
5339 *bigH = *pack;
5340 *bigT = *pack;
5341 }
5342 }
5343
5344 #undef OD_ARRAY_SIZE
5345 #define OD_ARRAY_SIZE 2
5346
5347 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)5348 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5349 {
5350 objset_t *os = zd->zd_os;
5351 ztest_od_t *od;
5352 dmu_tx_t *tx;
5353 uint64_t i;
5354 int error;
5355 int size;
5356 uint64_t n, s, txg;
5357 bufwad_t *packbuf, *bigbuf;
5358 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5359 uint64_t blocksize = ztest_random_blocksize();
5360 uint64_t chunksize = blocksize;
5361 uint64_t regions = 997;
5362 uint64_t stride = 123456789ULL;
5363 uint64_t width = 9;
5364 dmu_buf_t *bonus_db;
5365 arc_buf_t **bigbuf_arcbufs;
5366 dmu_object_info_t doi;
5367 uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5368
5369 /*
5370 * We will randomly set when to do O_DIRECT on a read.
5371 */
5372 if (ztest_random(4) == 0)
5373 dmu_read_flags |= DMU_DIRECTIO;
5374
5375 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5376 od = umem_alloc(size, UMEM_NOFAIL);
5377
5378 /*
5379 * This test uses two objects, packobj and bigobj, that are always
5380 * updated together (i.e. in the same tx) so that their contents are
5381 * in sync and can be compared. Their contents relate to each other
5382 * in a simple way: packobj is a dense array of 'bufwad' structures,
5383 * while bigobj is a sparse array of the same bufwads. Specifically,
5384 * for any index n, there are three bufwads that should be identical:
5385 *
5386 * packobj, at offset n * sizeof (bufwad_t)
5387 * bigobj, at the head of the nth chunk
5388 * bigobj, at the tail of the nth chunk
5389 *
5390 * The chunk size is set equal to bigobj block size so that
5391 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5392 */
5393
5394 /*
5395 * Read the directory info. If it's the first time, set things up.
5396 */
5397 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5398 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5399 chunksize);
5400
5401
5402 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5403 umem_free(od, size);
5404 return;
5405 }
5406
5407 bigobj = od[0].od_object;
5408 packobj = od[1].od_object;
5409 blocksize = od[0].od_blocksize;
5410 chunksize = blocksize;
5411 ASSERT3U(chunksize, ==, od[1].od_gen);
5412
5413 VERIFY0(dmu_object_info(os, bigobj, &doi));
5414 VERIFY(ISP2(doi.doi_data_block_size));
5415 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5416 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5417
5418 /*
5419 * Pick a random index and compute the offsets into packobj and bigobj.
5420 */
5421 n = ztest_random(regions) * stride + ztest_random(width);
5422 s = 1 + ztest_random(width - 1);
5423
5424 packoff = n * sizeof (bufwad_t);
5425 packsize = s * sizeof (bufwad_t);
5426
5427 bigoff = n * chunksize;
5428 bigsize = s * chunksize;
5429
5430 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5431 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5432
5433 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5434
5435 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5436
5437 /*
5438 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5439 * Iteration 1 test zcopy to already referenced dbufs.
5440 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5441 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5442 * Iteration 4 test zcopy when dbuf is no longer dirty.
5443 * Iteration 5 test zcopy when it can't be done.
5444 * Iteration 6 one more zcopy write.
5445 */
5446 for (i = 0; i < 7; i++) {
5447 uint64_t j;
5448 uint64_t off;
5449
5450 /*
5451 * In iteration 5 (i == 5) use arcbufs
5452 * that don't match bigobj blksz to test
5453 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5454 * assign an arcbuf to a dbuf.
5455 */
5456 for (j = 0; j < s; j++) {
5457 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5458 bigbuf_arcbufs[j] =
5459 dmu_request_arcbuf(bonus_db, chunksize);
5460 } else {
5461 bigbuf_arcbufs[2 * j] =
5462 dmu_request_arcbuf(bonus_db, chunksize / 2);
5463 bigbuf_arcbufs[2 * j + 1] =
5464 dmu_request_arcbuf(bonus_db, chunksize / 2);
5465 }
5466 }
5467
5468 /*
5469 * Get a tx for the mods to both packobj and bigobj.
5470 */
5471 tx = dmu_tx_create(os);
5472
5473 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5474 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5475
5476 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5477 if (txg == 0) {
5478 umem_free(packbuf, packsize);
5479 umem_free(bigbuf, bigsize);
5480 for (j = 0; j < s; j++) {
5481 if (i != 5 ||
5482 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5483 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5484 } else {
5485 dmu_return_arcbuf(
5486 bigbuf_arcbufs[2 * j]);
5487 dmu_return_arcbuf(
5488 bigbuf_arcbufs[2 * j + 1]);
5489 }
5490 }
5491 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5492 umem_free(od, size);
5493 dmu_buf_rele(bonus_db, FTAG);
5494 return;
5495 }
5496
5497 /*
5498 * 50% of the time don't read objects in the 1st iteration to
5499 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5500 * no existing dbufs for the specified offsets.
5501 */
5502 if (i != 0 || ztest_random(2) != 0) {
5503 error = dmu_read(os, packobj, packoff,
5504 packsize, packbuf, dmu_read_flags);
5505 ASSERT0(error);
5506 error = dmu_read(os, bigobj, bigoff, bigsize,
5507 bigbuf, dmu_read_flags);
5508 ASSERT0(error);
5509 }
5510 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5511 n, chunksize, txg);
5512
5513 /*
5514 * We've verified all the old bufwads, and made new ones.
5515 * Now write them out.
5516 */
5517 dmu_write(os, packobj, packoff, packsize, packbuf, tx,
5518 DMU_READ_PREFETCH);
5519 if (ztest_opts.zo_verbose >= 7) {
5520 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5521 " txg %"PRIx64"\n",
5522 bigoff, bigsize, txg);
5523 }
5524 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5525 dmu_buf_t *dbt;
5526 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5527 memcpy(bigbuf_arcbufs[j]->b_data,
5528 (caddr_t)bigbuf + (off - bigoff),
5529 chunksize);
5530 } else {
5531 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5532 (caddr_t)bigbuf + (off - bigoff),
5533 chunksize / 2);
5534 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5535 (caddr_t)bigbuf + (off - bigoff) +
5536 chunksize / 2,
5537 chunksize / 2);
5538 }
5539
5540 if (i == 1) {
5541 VERIFY0(dmu_buf_hold(os, bigobj, off,
5542 FTAG, &dbt, DMU_READ_NO_PREFETCH));
5543 }
5544 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5545 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5546 off, bigbuf_arcbufs[j], tx, 0));
5547 } else {
5548 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5549 off, bigbuf_arcbufs[2 * j], tx, 0));
5550 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5551 off + chunksize / 2,
5552 bigbuf_arcbufs[2 * j + 1], tx, 0));
5553 }
5554 if (i == 1) {
5555 dmu_buf_rele(dbt, FTAG);
5556 }
5557 }
5558 dmu_tx_commit(tx);
5559
5560 /*
5561 * Sanity check the stuff we just wrote.
5562 */
5563 {
5564 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5565 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5566
5567 VERIFY0(dmu_read(os, packobj, packoff,
5568 packsize, packcheck, dmu_read_flags));
5569 VERIFY0(dmu_read(os, bigobj, bigoff,
5570 bigsize, bigcheck, dmu_read_flags));
5571
5572 ASSERT0(memcmp(packbuf, packcheck, packsize));
5573 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5574
5575 umem_free(packcheck, packsize);
5576 umem_free(bigcheck, bigsize);
5577 }
5578 if (i == 2) {
5579 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5580 } else if (i == 3) {
5581 txg_wait_synced(dmu_objset_pool(os), 0);
5582 }
5583 }
5584
5585 dmu_buf_rele(bonus_db, FTAG);
5586 umem_free(packbuf, packsize);
5587 umem_free(bigbuf, bigsize);
5588 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5589 umem_free(od, size);
5590 }
5591
5592 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)5593 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5594 {
5595 (void) id;
5596 ztest_od_t *od;
5597
5598 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5599 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5600 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5601
5602 /*
5603 * Have multiple threads write to large offsets in an object
5604 * to verify that parallel writes to an object -- even to the
5605 * same blocks within the object -- doesn't cause any trouble.
5606 */
5607 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5608
5609 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5610 return;
5611
5612 while (ztest_random(10) != 0)
5613 ztest_io(zd, od->od_object, offset);
5614
5615 umem_free(od, sizeof (ztest_od_t));
5616 }
5617
5618 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)5619 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5620 {
5621 ztest_od_t *od;
5622 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5623 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5624 uint64_t count = ztest_random(20) + 1;
5625 uint64_t blocksize = ztest_random_blocksize();
5626 void *data;
5627
5628 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5629
5630 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5631
5632 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5633 !ztest_random(2)) != 0) {
5634 umem_free(od, sizeof (ztest_od_t));
5635 return;
5636 }
5637
5638 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5639 umem_free(od, sizeof (ztest_od_t));
5640 return;
5641 }
5642
5643 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5644
5645 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5646
5647 while (ztest_random(count) != 0) {
5648 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5649 if (ztest_write(zd, od->od_object, randoff, blocksize,
5650 data) != 0)
5651 break;
5652 while (ztest_random(4) != 0)
5653 ztest_io(zd, od->od_object, randoff);
5654 }
5655
5656 umem_free(data, blocksize);
5657 umem_free(od, sizeof (ztest_od_t));
5658 }
5659
5660 /*
5661 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5662 */
5663 #define ZTEST_ZAP_MIN_INTS 1
5664 #define ZTEST_ZAP_MAX_INTS 4
5665 #define ZTEST_ZAP_MAX_PROPS 1000
5666
5667 void
ztest_zap(ztest_ds_t * zd,uint64_t id)5668 ztest_zap(ztest_ds_t *zd, uint64_t id)
5669 {
5670 objset_t *os = zd->zd_os;
5671 ztest_od_t *od;
5672 uint64_t object;
5673 uint64_t txg, last_txg;
5674 uint64_t value[ZTEST_ZAP_MAX_INTS];
5675 uint64_t zl_ints, zl_intsize, prop;
5676 int i, ints;
5677 dmu_tx_t *tx;
5678 char propname[100], txgname[100];
5679 int error;
5680 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5681
5682 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5683 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5684
5685 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5686 !ztest_random(2)) != 0)
5687 goto out;
5688
5689 object = od->od_object;
5690
5691 /*
5692 * Generate a known hash collision, and verify that
5693 * we can lookup and remove both entries.
5694 */
5695 tx = dmu_tx_create(os);
5696 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5697 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5698 if (txg == 0)
5699 goto out;
5700 for (i = 0; i < 2; i++) {
5701 value[i] = i;
5702 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5703 1, &value[i], tx));
5704 }
5705 for (i = 0; i < 2; i++) {
5706 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5707 sizeof (uint64_t), 1, &value[i], tx));
5708 VERIFY0(
5709 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5710 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5711 ASSERT3U(zl_ints, ==, 1);
5712 }
5713 for (i = 0; i < 2; i++) {
5714 VERIFY0(zap_remove(os, object, hc[i], tx));
5715 }
5716 dmu_tx_commit(tx);
5717
5718 /*
5719 * Generate a bunch of random entries.
5720 */
5721 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5722
5723 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5724 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5725 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5726 memset(value, 0, sizeof (value));
5727 last_txg = 0;
5728
5729 /*
5730 * If these zap entries already exist, validate their contents.
5731 */
5732 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5733 if (error == 0) {
5734 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5735 ASSERT3U(zl_ints, ==, 1);
5736
5737 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5738 zl_ints, &last_txg));
5739
5740 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5741 &zl_ints));
5742
5743 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5744 ASSERT3U(zl_ints, ==, ints);
5745
5746 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5747 zl_ints, value));
5748
5749 for (i = 0; i < ints; i++) {
5750 ASSERT3U(value[i], ==, last_txg + object + i);
5751 }
5752 } else {
5753 ASSERT3U(error, ==, ENOENT);
5754 }
5755
5756 /*
5757 * Atomically update two entries in our zap object.
5758 * The first is named txg_%llu, and contains the txg
5759 * in which the property was last updated. The second
5760 * is named prop_%llu, and the nth element of its value
5761 * should be txg + object + n.
5762 */
5763 tx = dmu_tx_create(os);
5764 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5765 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5766 if (txg == 0)
5767 goto out;
5768
5769 if (last_txg > txg)
5770 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5771 last_txg, txg);
5772
5773 for (i = 0; i < ints; i++)
5774 value[i] = txg + object + i;
5775
5776 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5777 1, &txg, tx));
5778 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5779 ints, value, tx));
5780
5781 dmu_tx_commit(tx);
5782
5783 /*
5784 * Remove a random pair of entries.
5785 */
5786 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5787 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5788 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5789
5790 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5791
5792 if (error == ENOENT)
5793 goto out;
5794
5795 ASSERT0(error);
5796
5797 tx = dmu_tx_create(os);
5798 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5799 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5800 if (txg == 0)
5801 goto out;
5802 VERIFY0(zap_remove(os, object, txgname, tx));
5803 VERIFY0(zap_remove(os, object, propname, tx));
5804 dmu_tx_commit(tx);
5805 out:
5806 umem_free(od, sizeof (ztest_od_t));
5807 }
5808
5809 /*
5810 * Test case to test the upgrading of a microzap to fatzap.
5811 */
5812 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)5813 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5814 {
5815 objset_t *os = zd->zd_os;
5816 ztest_od_t *od;
5817 uint64_t object, txg, value;
5818
5819 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5820 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5821
5822 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5823 !ztest_random(2)) != 0)
5824 goto out;
5825 object = od->od_object;
5826
5827 /*
5828 * Add entries to this ZAP and make sure it spills over
5829 * and gets upgraded to a fatzap. Also, since we are adding
5830 * 2050 entries we should see ptrtbl growth and leaf-block split.
5831 */
5832 for (value = 0; value < 2050; value++) {
5833 char name[ZFS_MAX_DATASET_NAME_LEN];
5834 dmu_tx_t *tx;
5835 int error;
5836
5837 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5838 id, value);
5839
5840 tx = dmu_tx_create(os);
5841 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5842 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5843 if (txg == 0)
5844 goto out;
5845 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5846 &value, tx);
5847 ASSERT(error == 0 || error == EEXIST);
5848 dmu_tx_commit(tx);
5849 }
5850 out:
5851 umem_free(od, sizeof (ztest_od_t));
5852 }
5853
5854 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)5855 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5856 {
5857 (void) id;
5858 objset_t *os = zd->zd_os;
5859 ztest_od_t *od;
5860 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5861 dmu_tx_t *tx;
5862 int i, namelen, error;
5863 int micro = ztest_random(2);
5864 char name[20], string_value[20];
5865 void *data;
5866
5867 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5868 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5869
5870 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5871 umem_free(od, sizeof (ztest_od_t));
5872 return;
5873 }
5874
5875 object = od->od_object;
5876
5877 /*
5878 * Generate a random name of the form 'xxx.....' where each
5879 * x is a random printable character and the dots are dots.
5880 * There are 94 such characters, and the name length goes from
5881 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5882 */
5883 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5884
5885 for (i = 0; i < 3; i++)
5886 name[i] = '!' + ztest_random('~' - '!' + 1);
5887 for (; i < namelen - 1; i++)
5888 name[i] = '.';
5889 name[i] = '\0';
5890
5891 if ((namelen & 1) || micro) {
5892 wsize = sizeof (txg);
5893 wc = 1;
5894 data = &txg;
5895 } else {
5896 wsize = 1;
5897 wc = namelen;
5898 data = string_value;
5899 }
5900
5901 count = -1ULL;
5902 VERIFY0(zap_count(os, object, &count));
5903 ASSERT3S(count, !=, -1ULL);
5904
5905 /*
5906 * Select an operation: length, lookup, add, update, remove.
5907 */
5908 i = ztest_random(5);
5909
5910 if (i >= 2) {
5911 tx = dmu_tx_create(os);
5912 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5913 txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5914 if (txg == 0) {
5915 umem_free(od, sizeof (ztest_od_t));
5916 return;
5917 }
5918 memcpy(string_value, name, namelen);
5919 } else {
5920 tx = NULL;
5921 txg = 0;
5922 memset(string_value, 0, namelen);
5923 }
5924
5925 switch (i) {
5926
5927 case 0:
5928 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5929 if (error == 0) {
5930 ASSERT3U(wsize, ==, zl_wsize);
5931 ASSERT3U(wc, ==, zl_wc);
5932 } else {
5933 ASSERT3U(error, ==, ENOENT);
5934 }
5935 break;
5936
5937 case 1:
5938 error = zap_lookup(os, object, name, wsize, wc, data);
5939 if (error == 0) {
5940 if (data == string_value &&
5941 memcmp(name, data, namelen) != 0)
5942 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5943 name, (char *)data, namelen);
5944 } else {
5945 ASSERT3U(error, ==, ENOENT);
5946 }
5947 break;
5948
5949 case 2:
5950 error = zap_add(os, object, name, wsize, wc, data, tx);
5951 ASSERT(error == 0 || error == EEXIST);
5952 break;
5953
5954 case 3:
5955 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5956 break;
5957
5958 case 4:
5959 error = zap_remove(os, object, name, tx);
5960 ASSERT(error == 0 || error == ENOENT);
5961 break;
5962 }
5963
5964 if (tx != NULL)
5965 dmu_tx_commit(tx);
5966
5967 umem_free(od, sizeof (ztest_od_t));
5968 }
5969
5970 /*
5971 * Commit callback data.
5972 */
5973 typedef struct ztest_cb_data {
5974 list_node_t zcd_node;
5975 uint64_t zcd_txg;
5976 int zcd_expected_err;
5977 boolean_t zcd_added;
5978 boolean_t zcd_called;
5979 spa_t *zcd_spa;
5980 } ztest_cb_data_t;
5981
5982 /* This is the actual commit callback function */
5983 static void
ztest_commit_callback(void * arg,int error)5984 ztest_commit_callback(void *arg, int error)
5985 {
5986 ztest_cb_data_t *data = arg;
5987 uint64_t synced_txg;
5988
5989 VERIFY3P(data, !=, NULL);
5990 VERIFY3S(data->zcd_expected_err, ==, error);
5991 VERIFY(!data->zcd_called);
5992
5993 synced_txg = spa_last_synced_txg(data->zcd_spa);
5994 if (data->zcd_txg > synced_txg)
5995 fatal(B_FALSE,
5996 "commit callback of txg %"PRIu64" called prematurely, "
5997 "last synced txg = %"PRIu64"\n",
5998 data->zcd_txg, synced_txg);
5999
6000 data->zcd_called = B_TRUE;
6001
6002 if (error == ECANCELED) {
6003 ASSERT0(data->zcd_txg);
6004 ASSERT(!data->zcd_added);
6005
6006 /*
6007 * The private callback data should be destroyed here, but
6008 * since we are going to check the zcd_called field after
6009 * dmu_tx_abort(), we will destroy it there.
6010 */
6011 return;
6012 }
6013
6014 ASSERT(data->zcd_added);
6015 ASSERT3U(data->zcd_txg, !=, 0);
6016
6017 (void) mutex_enter(&zcl.zcl_callbacks_lock);
6018
6019 /* See if this cb was called more quickly */
6020 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
6021 zc_min_txg_delay = synced_txg - data->zcd_txg;
6022
6023 /* Remove our callback from the list */
6024 list_remove(&zcl.zcl_callbacks, data);
6025
6026 (void) mutex_exit(&zcl.zcl_callbacks_lock);
6027
6028 umem_free(data, sizeof (ztest_cb_data_t));
6029 }
6030
6031 /* Allocate and initialize callback data structure */
6032 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)6033 ztest_create_cb_data(objset_t *os, uint64_t txg)
6034 {
6035 ztest_cb_data_t *cb_data;
6036
6037 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6038
6039 cb_data->zcd_txg = txg;
6040 cb_data->zcd_spa = dmu_objset_spa(os);
6041 list_link_init(&cb_data->zcd_node);
6042
6043 return (cb_data);
6044 }
6045
6046 /*
6047 * Commit callback test.
6048 */
6049 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)6050 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6051 {
6052 objset_t *os = zd->zd_os;
6053 ztest_od_t *od;
6054 dmu_tx_t *tx;
6055 ztest_cb_data_t *cb_data[3], *tmp_cb;
6056 uint64_t old_txg, txg;
6057 int i, error = 0;
6058
6059 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6060 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6061
6062 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6063 umem_free(od, sizeof (ztest_od_t));
6064 return;
6065 }
6066
6067 tx = dmu_tx_create(os);
6068
6069 cb_data[0] = ztest_create_cb_data(os, 0);
6070 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6071
6072 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6073
6074 /* Every once in a while, abort the transaction on purpose */
6075 if (ztest_random(100) == 0)
6076 error = -1;
6077
6078 if (!error)
6079 error = dmu_tx_assign(tx, DMU_TX_NOWAIT);
6080
6081 txg = error ? 0 : dmu_tx_get_txg(tx);
6082
6083 cb_data[0]->zcd_txg = txg;
6084 cb_data[1] = ztest_create_cb_data(os, txg);
6085 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6086
6087 if (error) {
6088 /*
6089 * It's not a strict requirement to call the registered
6090 * callbacks from inside dmu_tx_abort(), but that's what
6091 * it's supposed to happen in the current implementation
6092 * so we will check for that.
6093 */
6094 for (i = 0; i < 2; i++) {
6095 cb_data[i]->zcd_expected_err = ECANCELED;
6096 VERIFY(!cb_data[i]->zcd_called);
6097 }
6098
6099 dmu_tx_abort(tx);
6100
6101 for (i = 0; i < 2; i++) {
6102 VERIFY(cb_data[i]->zcd_called);
6103 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6104 }
6105
6106 umem_free(od, sizeof (ztest_od_t));
6107 return;
6108 }
6109
6110 cb_data[2] = ztest_create_cb_data(os, txg);
6111 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6112
6113 /*
6114 * Read existing data to make sure there isn't a future leak.
6115 */
6116 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6117 &old_txg, DMU_READ_PREFETCH));
6118
6119 if (old_txg > txg)
6120 fatal(B_FALSE,
6121 "future leak: got %"PRIu64", open txg is %"PRIu64"",
6122 old_txg, txg);
6123
6124 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx,
6125 DMU_READ_PREFETCH);
6126
6127 (void) mutex_enter(&zcl.zcl_callbacks_lock);
6128
6129 /*
6130 * Since commit callbacks don't have any ordering requirement and since
6131 * it is theoretically possible for a commit callback to be called
6132 * after an arbitrary amount of time has elapsed since its txg has been
6133 * synced, it is difficult to reliably determine whether a commit
6134 * callback hasn't been called due to high load or due to a flawed
6135 * implementation.
6136 *
6137 * In practice, we will assume that if after a certain number of txgs a
6138 * commit callback hasn't been called, then most likely there's an
6139 * implementation bug..
6140 */
6141 tmp_cb = list_head(&zcl.zcl_callbacks);
6142 if (tmp_cb != NULL &&
6143 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6144 fatal(B_FALSE,
6145 "Commit callback threshold exceeded, "
6146 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6147 tmp_cb->zcd_txg, txg);
6148 }
6149
6150 /*
6151 * Let's find the place to insert our callbacks.
6152 *
6153 * Even though the list is ordered by txg, it is possible for the
6154 * insertion point to not be the end because our txg may already be
6155 * quiescing at this point and other callbacks in the open txg
6156 * (from other objsets) may have sneaked in.
6157 */
6158 tmp_cb = list_tail(&zcl.zcl_callbacks);
6159 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6160 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6161
6162 /* Add the 3 callbacks to the list */
6163 for (i = 0; i < 3; i++) {
6164 if (tmp_cb == NULL)
6165 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6166 else
6167 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6168 cb_data[i]);
6169
6170 cb_data[i]->zcd_added = B_TRUE;
6171 VERIFY(!cb_data[i]->zcd_called);
6172
6173 tmp_cb = cb_data[i];
6174 }
6175
6176 zc_cb_counter += 3;
6177
6178 (void) mutex_exit(&zcl.zcl_callbacks_lock);
6179
6180 dmu_tx_commit(tx);
6181
6182 umem_free(od, sizeof (ztest_od_t));
6183 }
6184
6185 /*
6186 * Visit each object in the dataset. Verify that its properties
6187 * are consistent what was stored in the block tag when it was created,
6188 * and that its unused bonus buffer space has not been overwritten.
6189 */
6190 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)6191 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6192 {
6193 (void) id;
6194 objset_t *os = zd->zd_os;
6195 uint64_t obj;
6196 int err = 0;
6197
6198 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6199 ztest_block_tag_t *bt = NULL;
6200 dmu_object_info_t doi;
6201 dmu_buf_t *db;
6202
6203 ztest_object_lock(zd, obj, ZTRL_READER);
6204 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6205 ztest_object_unlock(zd, obj);
6206 continue;
6207 }
6208
6209 dmu_object_info_from_db(db, &doi);
6210 if (doi.doi_bonus_size >= sizeof (*bt))
6211 bt = ztest_bt_bonus(db);
6212
6213 if (bt && bt->bt_magic == BT_MAGIC) {
6214 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6215 bt->bt_offset, bt->bt_gen, bt->bt_txg,
6216 bt->bt_crtxg);
6217 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6218 }
6219
6220 dmu_buf_rele(db, FTAG);
6221 ztest_object_unlock(zd, obj);
6222 }
6223 }
6224
6225 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)6226 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6227 {
6228 (void) id;
6229 zfs_prop_t proplist[] = {
6230 ZFS_PROP_CHECKSUM,
6231 ZFS_PROP_COMPRESSION,
6232 ZFS_PROP_COPIES,
6233 ZFS_PROP_DEDUP
6234 };
6235
6236 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6237
6238 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6239 int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6240 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6241 ASSERT(error == 0 || error == ENOSPC);
6242 }
6243
6244 int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6245 ztest_random_blocksize(), (int)ztest_random(2));
6246 ASSERT(error == 0 || error == ENOSPC);
6247
6248 (void) pthread_rwlock_unlock(&ztest_name_lock);
6249 }
6250
6251 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)6252 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6253 {
6254 (void) zd, (void) id;
6255
6256 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6257
6258 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6259
6260 nvlist_t *props = fnvlist_alloc();
6261
6262 VERIFY0(spa_prop_get(ztest_spa, props));
6263
6264 if (ztest_opts.zo_verbose >= 6)
6265 dump_nvlist(props, 4);
6266
6267 fnvlist_free(props);
6268
6269 (void) pthread_rwlock_unlock(&ztest_name_lock);
6270 }
6271
6272 static int
user_release_one(const char * snapname,const char * holdname)6273 user_release_one(const char *snapname, const char *holdname)
6274 {
6275 nvlist_t *snaps, *holds;
6276 int error;
6277
6278 snaps = fnvlist_alloc();
6279 holds = fnvlist_alloc();
6280 fnvlist_add_boolean(holds, holdname);
6281 fnvlist_add_nvlist(snaps, snapname, holds);
6282 fnvlist_free(holds);
6283 error = dsl_dataset_user_release(snaps, NULL);
6284 fnvlist_free(snaps);
6285 return (error);
6286 }
6287
6288 /*
6289 * Test snapshot hold/release and deferred destroy.
6290 */
6291 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)6292 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6293 {
6294 int error;
6295 objset_t *os = zd->zd_os;
6296 objset_t *origin;
6297 char snapname[100];
6298 char fullname[100];
6299 char clonename[100];
6300 char tag[100];
6301 char osname[ZFS_MAX_DATASET_NAME_LEN];
6302 nvlist_t *holds;
6303
6304 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6305
6306 dmu_objset_name(os, osname);
6307
6308 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6309 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6310 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6311 osname, id);
6312 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6313
6314 /*
6315 * Clean up from any previous run.
6316 */
6317 error = dsl_destroy_head(clonename);
6318 if (error != ENOENT)
6319 ASSERT0(error);
6320 error = user_release_one(fullname, tag);
6321 if (error != ESRCH && error != ENOENT)
6322 ASSERT0(error);
6323 error = dsl_destroy_snapshot(fullname, B_FALSE);
6324 if (error != ENOENT)
6325 ASSERT0(error);
6326
6327 /*
6328 * Create snapshot, clone it, mark snap for deferred destroy,
6329 * destroy clone, verify snap was also destroyed.
6330 */
6331 error = dmu_objset_snapshot_one(osname, snapname);
6332 if (error) {
6333 if (error == ENOSPC) {
6334 ztest_record_enospc("dmu_objset_snapshot");
6335 goto out;
6336 }
6337 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6338 }
6339
6340 error = dsl_dataset_clone(clonename, fullname);
6341 if (error) {
6342 if (error == ENOSPC) {
6343 ztest_record_enospc("dsl_dataset_clone");
6344 goto out;
6345 }
6346 fatal(B_FALSE, "dsl_dataset_clone(%s) = %d", clonename, error);
6347 }
6348
6349 error = dsl_destroy_snapshot(fullname, B_TRUE);
6350 if (error) {
6351 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6352 fullname, error);
6353 }
6354
6355 error = dsl_destroy_head(clonename);
6356 if (error)
6357 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6358
6359 error = dmu_objset_hold(fullname, FTAG, &origin);
6360 if (error != ENOENT)
6361 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6362
6363 /*
6364 * Create snapshot, add temporary hold, verify that we can't
6365 * destroy a held snapshot, mark for deferred destroy,
6366 * release hold, verify snapshot was destroyed.
6367 */
6368 error = dmu_objset_snapshot_one(osname, snapname);
6369 if (error) {
6370 if (error == ENOSPC) {
6371 ztest_record_enospc("dmu_objset_snapshot");
6372 goto out;
6373 }
6374 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6375 }
6376
6377 holds = fnvlist_alloc();
6378 fnvlist_add_string(holds, fullname, tag);
6379 error = dsl_dataset_user_hold(holds, 0, NULL);
6380 fnvlist_free(holds);
6381
6382 if (error == ENOSPC) {
6383 ztest_record_enospc("dsl_dataset_user_hold");
6384 goto out;
6385 } else if (error) {
6386 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6387 fullname, tag, error);
6388 }
6389
6390 error = dsl_destroy_snapshot(fullname, B_FALSE);
6391 if (error != EBUSY) {
6392 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6393 fullname, error);
6394 }
6395
6396 error = dsl_destroy_snapshot(fullname, B_TRUE);
6397 if (error) {
6398 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6399 fullname, error);
6400 }
6401
6402 error = user_release_one(fullname, tag);
6403 if (error)
6404 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6405 fullname, tag, error);
6406
6407 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6408
6409 out:
6410 (void) pthread_rwlock_unlock(&ztest_name_lock);
6411 }
6412
6413 /*
6414 * Inject random faults into the on-disk data.
6415 */
6416 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)6417 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6418 {
6419 (void) zd, (void) id;
6420 ztest_shared_t *zs = ztest_shared;
6421 spa_t *spa = ztest_spa;
6422 int fd;
6423 uint64_t offset;
6424 uint64_t leaves;
6425 uint64_t bad = 0x1990c0ffeedecadeull;
6426 uint64_t top, leaf;
6427 uint64_t raidz_children;
6428 char *path0;
6429 char *pathrand;
6430 size_t fsize;
6431 int bshift = SPA_MAXBLOCKSHIFT + 2;
6432 int iters = 1000;
6433 int maxfaults;
6434 int mirror_save;
6435 vdev_t *vd0 = NULL;
6436 uint64_t guid0 = 0;
6437 boolean_t islog = B_FALSE;
6438 boolean_t injected = B_FALSE;
6439
6440 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6441 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6442
6443 mutex_enter(&ztest_vdev_lock);
6444
6445 /*
6446 * Device removal is in progress, fault injection must be disabled
6447 * until it completes and the pool is scrubbed. The fault injection
6448 * strategy for damaging blocks does not take in to account evacuated
6449 * blocks which may have already been damaged.
6450 */
6451 if (ztest_device_removal_active)
6452 goto out;
6453
6454 /*
6455 * The fault injection strategy for damaging blocks cannot be used
6456 * if raidz expansion is in progress. The leaves value
6457 * (attached raidz children) is variable and strategy for damaging
6458 * blocks will corrupt same data blocks on different child vdevs
6459 * because of the reflow process.
6460 */
6461 if (spa->spa_raidz_expand != NULL)
6462 goto out;
6463
6464 maxfaults = MAXFAULTS(zs);
6465 raidz_children = ztest_get_raidz_children(spa);
6466 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6467 mirror_save = zs->zs_mirrors;
6468
6469 ASSERT3U(leaves, >=, 1);
6470
6471 /*
6472 * While ztest is running the number of leaves will not change. This
6473 * is critical for the fault injection logic as it determines where
6474 * errors can be safely injected such that they are always repairable.
6475 *
6476 * When restarting ztest a different number of leaves may be requested
6477 * which will shift the regions to be damaged. This is fine as long
6478 * as the pool has been scrubbed prior to using the new mapping.
6479 * Failure to do can result in non-repairable damage being injected.
6480 */
6481 if (ztest_pool_scrubbed == B_FALSE)
6482 goto out;
6483
6484 /*
6485 * Grab the name lock as reader. There are some operations
6486 * which don't like to have their vdevs changed while
6487 * they are in progress (i.e. spa_change_guid). Those
6488 * operations will have grabbed the name lock as writer.
6489 */
6490 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6491
6492 /*
6493 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6494 */
6495 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6496
6497 if (ztest_random(2) == 0) {
6498 /*
6499 * Inject errors on a normal data device or slog device.
6500 */
6501 top = ztest_random_vdev_top(spa, B_TRUE);
6502 leaf = ztest_random(leaves) + zs->zs_splits;
6503
6504 /*
6505 * Generate paths to the first leaf in this top-level vdev,
6506 * and to the random leaf we selected. We'll induce transient
6507 * write failures and random online/offline activity on leaf 0,
6508 * and we'll write random garbage to the randomly chosen leaf.
6509 */
6510 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6511 ztest_opts.zo_dir, ztest_opts.zo_pool,
6512 top * leaves + zs->zs_splits);
6513 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6514 ztest_opts.zo_dir, ztest_opts.zo_pool,
6515 top * leaves + leaf);
6516
6517 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6518 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6519 islog = B_TRUE;
6520
6521 /*
6522 * If the top-level vdev needs to be resilvered
6523 * then we only allow faults on the device that is
6524 * resilvering.
6525 */
6526 if (vd0 != NULL && maxfaults != 1 &&
6527 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6528 vd0->vdev_resilver_txg != 0)) {
6529 /*
6530 * Make vd0 explicitly claim to be unreadable,
6531 * or unwritable, or reach behind its back
6532 * and close the underlying fd. We can do this if
6533 * maxfaults == 0 because we'll fail and reexecute,
6534 * and we can do it if maxfaults >= 2 because we'll
6535 * have enough redundancy. If maxfaults == 1, the
6536 * combination of this with injection of random data
6537 * corruption below exceeds the pool's fault tolerance.
6538 */
6539 vdev_file_t *vf = vd0->vdev_tsd;
6540
6541 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6542 (long long)vd0->vdev_id, (int)maxfaults);
6543
6544 if (vf != NULL && ztest_random(3) == 0) {
6545 (void) close(vf->vf_file->f_fd);
6546 vf->vf_file->f_fd = -1;
6547 } else if (ztest_random(2) == 0) {
6548 vd0->vdev_cant_read = B_TRUE;
6549 } else {
6550 vd0->vdev_cant_write = B_TRUE;
6551 }
6552 guid0 = vd0->vdev_guid;
6553 }
6554 } else {
6555 /*
6556 * Inject errors on an l2cache device.
6557 */
6558 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6559
6560 if (sav->sav_count == 0) {
6561 spa_config_exit(spa, SCL_STATE, FTAG);
6562 (void) pthread_rwlock_unlock(&ztest_name_lock);
6563 goto out;
6564 }
6565 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6566 guid0 = vd0->vdev_guid;
6567 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6568 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6569
6570 leaf = 0;
6571 leaves = 1;
6572 maxfaults = INT_MAX; /* no limit on cache devices */
6573 }
6574
6575 spa_config_exit(spa, SCL_STATE, FTAG);
6576 (void) pthread_rwlock_unlock(&ztest_name_lock);
6577
6578 /*
6579 * If we can tolerate two or more faults, or we're dealing
6580 * with a slog, randomly online/offline vd0.
6581 */
6582 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6583 if (ztest_random(10) < 6) {
6584 int flags = (ztest_random(2) == 0 ?
6585 ZFS_OFFLINE_TEMPORARY : 0);
6586
6587 /*
6588 * We have to grab the zs_name_lock as writer to
6589 * prevent a race between offlining a slog and
6590 * destroying a dataset. Offlining the slog will
6591 * grab a reference on the dataset which may cause
6592 * dsl_destroy_head() to fail with EBUSY thus
6593 * leaving the dataset in an inconsistent state.
6594 */
6595 if (islog)
6596 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6597
6598 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6599
6600 if (islog)
6601 (void) pthread_rwlock_unlock(&ztest_name_lock);
6602 } else {
6603 /*
6604 * Ideally we would like to be able to randomly
6605 * call vdev_[on|off]line without holding locks
6606 * to force unpredictable failures but the side
6607 * effects of vdev_[on|off]line prevent us from
6608 * doing so.
6609 */
6610 (void) vdev_online(spa, guid0, 0, NULL);
6611 }
6612 }
6613
6614 if (maxfaults == 0)
6615 goto out;
6616
6617 /*
6618 * We have at least single-fault tolerance, so inject data corruption.
6619 */
6620 fd = open(pathrand, O_RDWR);
6621
6622 if (fd == -1) /* we hit a gap in the device namespace */
6623 goto out;
6624
6625 fsize = lseek(fd, 0, SEEK_END);
6626
6627 while (--iters != 0) {
6628 /*
6629 * The offset must be chosen carefully to ensure that
6630 * we do not inject a given logical block with errors
6631 * on two different leaf devices, because ZFS can not
6632 * tolerate that (if maxfaults==1).
6633 *
6634 * To achieve this we divide each leaf device into
6635 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6636 * Each chunk is further divided into error-injection
6637 * ranges (can accept errors) and clear ranges (we do
6638 * not inject errors in those). Each error-injection
6639 * range can accept errors only for a single leaf vdev.
6640 * Error-injection ranges are separated by clear ranges.
6641 *
6642 * For example, with 3 leaves, each chunk looks like:
6643 * 0 to 32M: injection range for leaf 0
6644 * 32M to 64M: clear range - no injection allowed
6645 * 64M to 96M: injection range for leaf 1
6646 * 96M to 128M: clear range - no injection allowed
6647 * 128M to 160M: injection range for leaf 2
6648 * 160M to 192M: clear range - no injection allowed
6649 *
6650 * Each clear range must be large enough such that a
6651 * single block cannot straddle it. This way a block
6652 * can't be a target in two different injection ranges
6653 * (on different leaf vdevs).
6654 */
6655 offset = ztest_random(fsize / (leaves << bshift)) *
6656 (leaves << bshift) + (leaf << bshift) +
6657 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6658
6659 /*
6660 * Only allow damage to the labels at one end of the vdev.
6661 *
6662 * If all labels are damaged, the device will be totally
6663 * inaccessible, which will result in loss of data,
6664 * because we also damage (parts of) the other side of
6665 * the mirror/raidz.
6666 *
6667 * Additionally, we will always have both an even and an
6668 * odd label, so that we can handle crashes in the
6669 * middle of vdev_config_sync().
6670 */
6671 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6672 continue;
6673
6674 /*
6675 * The two end labels are stored at the "end" of the disk, but
6676 * the end of the disk (vdev_psize) is aligned to
6677 * sizeof (vdev_label_t).
6678 */
6679 uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6680 uint64_t);
6681 if ((leaf & 1) == 1 &&
6682 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6683 continue;
6684
6685 if (mirror_save != zs->zs_mirrors) {
6686 (void) close(fd);
6687 goto out;
6688 }
6689
6690 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6691 fatal(B_TRUE,
6692 "can't inject bad word at 0x%"PRIx64" in %s",
6693 offset, pathrand);
6694
6695 if (ztest_opts.zo_verbose >= 7)
6696 (void) printf("injected bad word into %s,"
6697 " offset 0x%"PRIx64"\n", pathrand, offset);
6698
6699 injected = B_TRUE;
6700 }
6701
6702 (void) close(fd);
6703 out:
6704 mutex_exit(&ztest_vdev_lock);
6705
6706 if (injected && ztest_opts.zo_raid_do_expand) {
6707 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6708 if (error == 0) {
6709 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6710 txg_wait_synced(spa_get_dsl(spa), 0);
6711 }
6712 }
6713
6714 umem_free(path0, MAXPATHLEN);
6715 umem_free(pathrand, MAXPATHLEN);
6716 }
6717
6718 /*
6719 * By design ztest will never inject uncorrectable damage in to the pool.
6720 * Issue a scrub, wait for it to complete, and verify there is never any
6721 * persistent damage.
6722 *
6723 * Only after a full scrub has been completed is it safe to start injecting
6724 * data corruption. See the comment in zfs_fault_inject().
6725 *
6726 * EBUSY may be returned for the following six cases. It's the callers
6727 * responsibility to handle them accordingly.
6728 *
6729 * Current state Requested
6730 * 1. Normal Scrub Running Normal Scrub or Error Scrub
6731 * 2. Normal Scrub Paused Error Scrub
6732 * 3. Normal Scrub Paused Pause Normal Scrub
6733 * 4. Error Scrub Running Normal Scrub or Error Scrub
6734 * 5. Error Scrub Paused Pause Error Scrub
6735 * 6. Resilvering Anything else
6736 */
6737 static int
ztest_scrub_impl(spa_t * spa)6738 ztest_scrub_impl(spa_t *spa)
6739 {
6740 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6741 if (error)
6742 return (error);
6743
6744 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6745 txg_wait_synced(spa_get_dsl(spa), 0);
6746
6747 if (spa_approx_errlog_size(spa) > 0)
6748 return (ECKSUM);
6749
6750 ztest_pool_scrubbed = B_TRUE;
6751
6752 return (0);
6753 }
6754
6755 /*
6756 * Scrub the pool.
6757 */
6758 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6759 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6760 {
6761 (void) zd, (void) id;
6762 spa_t *spa = ztest_spa;
6763 int error;
6764
6765 /*
6766 * Scrub in progress by device removal.
6767 */
6768 if (ztest_device_removal_active)
6769 return;
6770
6771 /*
6772 * Start a scrub, wait a moment, then force a restart.
6773 */
6774 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6775 (void) poll(NULL, 0, 100);
6776
6777 error = ztest_scrub_impl(spa);
6778 if (error == EBUSY)
6779 error = 0;
6780 ASSERT0(error);
6781 }
6782
6783 /*
6784 * Change the guid for the pool.
6785 */
6786 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6787 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6788 {
6789 (void) zd, (void) id;
6790 spa_t *spa = ztest_spa;
6791 uint64_t orig, load;
6792 int error;
6793 ztest_shared_t *zs = ztest_shared;
6794
6795 if (ztest_opts.zo_mmp_test)
6796 return;
6797
6798 orig = spa_guid(spa);
6799 load = spa_load_guid(spa);
6800
6801 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6802 error = spa_change_guid(spa, NULL);
6803 zs->zs_guid = spa_guid(spa);
6804 (void) pthread_rwlock_unlock(&ztest_name_lock);
6805
6806 if (error != 0)
6807 return;
6808
6809 if (ztest_opts.zo_verbose >= 4) {
6810 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6811 orig, spa_guid(spa));
6812 }
6813
6814 VERIFY3U(orig, !=, spa_guid(spa));
6815 VERIFY3U(load, ==, spa_load_guid(spa));
6816 }
6817
6818 void
ztest_blake3(ztest_ds_t * zd,uint64_t id)6819 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6820 {
6821 (void) zd, (void) id;
6822 hrtime_t end = gethrtime() + NANOSEC;
6823 zio_cksum_salt_t salt;
6824 void *salt_ptr = &salt.zcs_bytes;
6825 struct abd *abd_data, *abd_meta;
6826 void *buf, *templ;
6827 int i, *ptr;
6828 uint32_t size;
6829 BLAKE3_CTX ctx;
6830 const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6831
6832 size = ztest_random_blocksize();
6833 buf = umem_alloc(size, UMEM_NOFAIL);
6834 abd_data = abd_alloc(size, B_FALSE);
6835 abd_meta = abd_alloc(size, B_TRUE);
6836
6837 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6838 *ptr = ztest_random(UINT_MAX);
6839 memset(salt_ptr, 'A', 32);
6840
6841 abd_copy_from_buf_off(abd_data, buf, 0, size);
6842 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6843
6844 while (gethrtime() <= end) {
6845 int run_count = 100;
6846 zio_cksum_t zc_ref1, zc_ref2;
6847 zio_cksum_t zc_res1, zc_res2;
6848
6849 void *ref1 = &zc_ref1;
6850 void *ref2 = &zc_ref2;
6851 void *res1 = &zc_res1;
6852 void *res2 = &zc_res2;
6853
6854 /* BLAKE3_KEY_LEN = 32 */
6855 VERIFY0(blake3->setname("generic"));
6856 templ = abd_checksum_blake3_tmpl_init(&salt);
6857 Blake3_InitKeyed(&ctx, salt_ptr);
6858 Blake3_Update(&ctx, buf, size);
6859 Blake3_Final(&ctx, ref1);
6860 zc_ref2 = zc_ref1;
6861 ZIO_CHECKSUM_BSWAP(&zc_ref2);
6862 abd_checksum_blake3_tmpl_free(templ);
6863
6864 VERIFY0(blake3->setname("cycle"));
6865 while (run_count-- > 0) {
6866
6867 /* Test current implementation */
6868 Blake3_InitKeyed(&ctx, salt_ptr);
6869 Blake3_Update(&ctx, buf, size);
6870 Blake3_Final(&ctx, res1);
6871 zc_res2 = zc_res1;
6872 ZIO_CHECKSUM_BSWAP(&zc_res2);
6873
6874 VERIFY0(memcmp(ref1, res1, 32));
6875 VERIFY0(memcmp(ref2, res2, 32));
6876
6877 /* Test ABD - data */
6878 templ = abd_checksum_blake3_tmpl_init(&salt);
6879 abd_checksum_blake3_native(abd_data, size,
6880 templ, &zc_res1);
6881 abd_checksum_blake3_byteswap(abd_data, size,
6882 templ, &zc_res2);
6883
6884 VERIFY0(memcmp(ref1, res1, 32));
6885 VERIFY0(memcmp(ref2, res2, 32));
6886
6887 /* Test ABD - metadata */
6888 abd_checksum_blake3_native(abd_meta, size,
6889 templ, &zc_res1);
6890 abd_checksum_blake3_byteswap(abd_meta, size,
6891 templ, &zc_res2);
6892 abd_checksum_blake3_tmpl_free(templ);
6893
6894 VERIFY0(memcmp(ref1, res1, 32));
6895 VERIFY0(memcmp(ref2, res2, 32));
6896
6897 }
6898 }
6899
6900 abd_free(abd_data);
6901 abd_free(abd_meta);
6902 umem_free(buf, size);
6903 }
6904
6905 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)6906 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6907 {
6908 (void) zd, (void) id;
6909 hrtime_t end = gethrtime() + NANOSEC;
6910
6911 while (gethrtime() <= end) {
6912 int run_count = 100;
6913 void *buf;
6914 struct abd *abd_data, *abd_meta;
6915 uint32_t size;
6916 int *ptr;
6917 int i;
6918 zio_cksum_t zc_ref;
6919 zio_cksum_t zc_ref_byteswap;
6920
6921 size = ztest_random_blocksize();
6922
6923 buf = umem_alloc(size, UMEM_NOFAIL);
6924 abd_data = abd_alloc(size, B_FALSE);
6925 abd_meta = abd_alloc(size, B_TRUE);
6926
6927 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6928 *ptr = ztest_random(UINT_MAX);
6929
6930 abd_copy_from_buf_off(abd_data, buf, 0, size);
6931 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6932
6933 VERIFY0(fletcher_4_impl_set("scalar"));
6934 fletcher_4_native(buf, size, NULL, &zc_ref);
6935 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6936
6937 VERIFY0(fletcher_4_impl_set("cycle"));
6938 while (run_count-- > 0) {
6939 zio_cksum_t zc;
6940 zio_cksum_t zc_byteswap;
6941
6942 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6943 fletcher_4_native(buf, size, NULL, &zc);
6944
6945 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6946 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6947 sizeof (zc_byteswap)));
6948
6949 /* Test ABD - data */
6950 abd_fletcher_4_byteswap(abd_data, size, NULL,
6951 &zc_byteswap);
6952 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6953
6954 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6955 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6956 sizeof (zc_byteswap)));
6957
6958 /* Test ABD - metadata */
6959 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6960 &zc_byteswap);
6961 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6962
6963 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6964 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6965 sizeof (zc_byteswap)));
6966
6967 }
6968
6969 umem_free(buf, size);
6970 abd_free(abd_data);
6971 abd_free(abd_meta);
6972 }
6973 }
6974
6975 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)6976 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6977 {
6978 (void) zd, (void) id;
6979 void *buf;
6980 size_t size;
6981 int *ptr;
6982 int i;
6983 zio_cksum_t zc_ref;
6984 zio_cksum_t zc_ref_bswap;
6985
6986 hrtime_t end = gethrtime() + NANOSEC;
6987
6988 while (gethrtime() <= end) {
6989 int run_count = 100;
6990
6991 size = ztest_random_blocksize();
6992 buf = umem_alloc(size, UMEM_NOFAIL);
6993
6994 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6995 *ptr = ztest_random(UINT_MAX);
6996
6997 VERIFY0(fletcher_4_impl_set("scalar"));
6998 fletcher_4_native(buf, size, NULL, &zc_ref);
6999 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
7000
7001 VERIFY0(fletcher_4_impl_set("cycle"));
7002
7003 while (run_count-- > 0) {
7004 zio_cksum_t zc;
7005 zio_cksum_t zc_bswap;
7006 size_t pos = 0;
7007
7008 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7009 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7010
7011 while (pos < size) {
7012 size_t inc = 64 * ztest_random(size / 67);
7013 /* sometimes add few bytes to test non-simd */
7014 if (ztest_random(100) < 10)
7015 inc += P2ALIGN_TYPED(ztest_random(64),
7016 sizeof (uint32_t), uint64_t);
7017
7018 if (inc > (size - pos))
7019 inc = size - pos;
7020
7021 fletcher_4_incremental_native(buf + pos, inc,
7022 &zc);
7023 fletcher_4_incremental_byteswap(buf + pos, inc,
7024 &zc_bswap);
7025
7026 pos += inc;
7027 }
7028
7029 VERIFY3U(pos, ==, size);
7030
7031 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7032 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7033
7034 /*
7035 * verify if incremental on the whole buffer is
7036 * equivalent to non-incremental version
7037 */
7038 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7039 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7040
7041 fletcher_4_incremental_native(buf, size, &zc);
7042 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
7043
7044 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7045 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7046 }
7047
7048 umem_free(buf, size);
7049 }
7050 }
7051
7052 void
ztest_pool_prefetch_ddt(ztest_ds_t * zd,uint64_t id)7053 ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7054 {
7055 (void) zd, (void) id;
7056 spa_t *spa;
7057
7058 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7059 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7060
7061 ddt_prefetch_all(spa);
7062
7063 spa_close(spa, FTAG);
7064 (void) pthread_rwlock_unlock(&ztest_name_lock);
7065 }
7066
7067 static int
ztest_set_global_vars(void)7068 ztest_set_global_vars(void)
7069 {
7070 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7071 char *kv = ztest_opts.zo_gvars[i];
7072 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7073 VERIFY3U(strlen(kv), >, 0);
7074 int err = handle_tunable_option(kv, B_TRUE);
7075 if (ztest_opts.zo_verbose > 0) {
7076 (void) printf("setting global var %s ... %s\n", kv,
7077 err ? "failed" : "ok");
7078 }
7079 if (err != 0) {
7080 (void) fprintf(stderr,
7081 "failed to set global var '%s'\n", kv);
7082 return (err);
7083 }
7084 }
7085 return (0);
7086 }
7087
7088 static char **
ztest_global_vars_to_zdb_args(void)7089 ztest_global_vars_to_zdb_args(void)
7090 {
7091 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7092 char **cur = args;
7093 if (args == NULL)
7094 return (NULL);
7095 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7096 *cur++ = (char *)"-o";
7097 *cur++ = ztest_opts.zo_gvars[i];
7098 }
7099 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7100 *cur = NULL;
7101 return (args);
7102 }
7103
7104 /* The end of strings is indicated by a NULL element */
7105 static char *
join_strings(char ** strings,const char * sep)7106 join_strings(char **strings, const char *sep)
7107 {
7108 size_t totallen = 0;
7109 for (char **sp = strings; *sp != NULL; sp++) {
7110 totallen += strlen(*sp);
7111 totallen += strlen(sep);
7112 }
7113 if (totallen > 0) {
7114 ASSERT(totallen >= strlen(sep));
7115 totallen -= strlen(sep);
7116 }
7117
7118 size_t buflen = totallen + 1;
7119 char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7120 o[0] = '\0';
7121 for (char **sp = strings; *sp != NULL; sp++) {
7122 size_t would;
7123 would = strlcat(o, *sp, buflen);
7124 VERIFY3U(would, <, buflen);
7125 if (*(sp+1) == NULL) {
7126 break;
7127 }
7128 would = strlcat(o, sep, buflen);
7129 VERIFY3U(would, <, buflen);
7130 }
7131 ASSERT3S(strlen(o), ==, totallen);
7132 return (o);
7133 }
7134
7135 static int
ztest_check_path(char * path)7136 ztest_check_path(char *path)
7137 {
7138 struct stat s;
7139 /* return true on success */
7140 return (!stat(path, &s));
7141 }
7142
7143 static void
ztest_get_zdb_bin(char * bin,int len)7144 ztest_get_zdb_bin(char *bin, int len)
7145 {
7146 char *zdb_path;
7147 /*
7148 * Try to use $ZDB and in-tree zdb path. If not successful, just
7149 * let popen to search through PATH.
7150 */
7151 if ((zdb_path = getenv("ZDB"))) {
7152 strlcpy(bin, zdb_path, len); /* In env */
7153 if (!ztest_check_path(bin)) {
7154 ztest_dump_core = 0;
7155 fatal(B_TRUE, "invalid ZDB '%s'", bin);
7156 }
7157 return;
7158 }
7159
7160 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7161 if (strstr(bin, ".libs/ztest")) {
7162 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7163 strcat(bin, "zdb");
7164 if (ztest_check_path(bin))
7165 return;
7166 }
7167 strcpy(bin, "zdb");
7168 }
7169
7170 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)7171 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7172 {
7173 if (vd == NULL)
7174 return (NULL);
7175
7176 if (vd->vdev_children == 0)
7177 return (vd);
7178
7179 vdev_t *eligible[vd->vdev_children];
7180 int eligible_idx = 0, i;
7181 for (i = 0; i < vd->vdev_children; i++) {
7182 vdev_t *cvd = vd->vdev_child[i];
7183 if (cvd->vdev_top->vdev_removing)
7184 continue;
7185 if (cvd->vdev_children > 0 ||
7186 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7187 eligible[eligible_idx++] = cvd;
7188 }
7189 }
7190 VERIFY3S(eligible_idx, >, 0);
7191
7192 uint64_t child_no = ztest_random(eligible_idx);
7193 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7194 }
7195
7196 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)7197 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7198 {
7199 (void) zd, (void) id;
7200 spa_t *spa = ztest_spa;
7201 int error = 0;
7202
7203 mutex_enter(&ztest_vdev_lock);
7204
7205 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7206
7207 /* Random leaf vdev */
7208 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7209 if (rand_vd == NULL) {
7210 spa_config_exit(spa, SCL_VDEV, FTAG);
7211 mutex_exit(&ztest_vdev_lock);
7212 return;
7213 }
7214
7215 /*
7216 * The random vdev we've selected may change as soon as we
7217 * drop the spa_config_lock. We create local copies of things
7218 * we're interested in.
7219 */
7220 uint64_t guid = rand_vd->vdev_guid;
7221 char *path = strdup(rand_vd->vdev_path);
7222 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7223
7224 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7225 spa_config_exit(spa, SCL_VDEV, FTAG);
7226
7227 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7228
7229 nvlist_t *vdev_guids = fnvlist_alloc();
7230 nvlist_t *vdev_errlist = fnvlist_alloc();
7231 fnvlist_add_uint64(vdev_guids, path, guid);
7232 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7233 fnvlist_free(vdev_guids);
7234 fnvlist_free(vdev_errlist);
7235
7236 switch (cmd) {
7237 case POOL_INITIALIZE_CANCEL:
7238 if (ztest_opts.zo_verbose >= 4) {
7239 (void) printf("Cancel initialize %s", path);
7240 if (!active)
7241 (void) printf(" failed (no initialize active)");
7242 (void) printf("\n");
7243 }
7244 break;
7245 case POOL_INITIALIZE_START:
7246 if (ztest_opts.zo_verbose >= 4) {
7247 (void) printf("Start initialize %s", path);
7248 if (active && error == 0)
7249 (void) printf(" failed (already active)");
7250 else if (error != 0)
7251 (void) printf(" failed (error %d)", error);
7252 (void) printf("\n");
7253 }
7254 break;
7255 case POOL_INITIALIZE_SUSPEND:
7256 if (ztest_opts.zo_verbose >= 4) {
7257 (void) printf("Suspend initialize %s", path);
7258 if (!active)
7259 (void) printf(" failed (no initialize active)");
7260 (void) printf("\n");
7261 }
7262 break;
7263 }
7264 free(path);
7265 mutex_exit(&ztest_vdev_lock);
7266 }
7267
7268 void
ztest_trim(ztest_ds_t * zd,uint64_t id)7269 ztest_trim(ztest_ds_t *zd, uint64_t id)
7270 {
7271 (void) zd, (void) id;
7272 spa_t *spa = ztest_spa;
7273 int error = 0;
7274
7275 mutex_enter(&ztest_vdev_lock);
7276
7277 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7278
7279 /* Random leaf vdev */
7280 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7281 if (rand_vd == NULL) {
7282 spa_config_exit(spa, SCL_VDEV, FTAG);
7283 mutex_exit(&ztest_vdev_lock);
7284 return;
7285 }
7286
7287 /*
7288 * The random vdev we've selected may change as soon as we
7289 * drop the spa_config_lock. We create local copies of things
7290 * we're interested in.
7291 */
7292 uint64_t guid = rand_vd->vdev_guid;
7293 char *path = strdup(rand_vd->vdev_path);
7294 boolean_t active = rand_vd->vdev_trim_thread != NULL;
7295
7296 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7297 spa_config_exit(spa, SCL_VDEV, FTAG);
7298
7299 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7300 uint64_t rate = 1 << ztest_random(30);
7301 boolean_t partial = (ztest_random(5) > 0);
7302 boolean_t secure = (ztest_random(5) > 0);
7303
7304 nvlist_t *vdev_guids = fnvlist_alloc();
7305 nvlist_t *vdev_errlist = fnvlist_alloc();
7306 fnvlist_add_uint64(vdev_guids, path, guid);
7307 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7308 secure, vdev_errlist);
7309 fnvlist_free(vdev_guids);
7310 fnvlist_free(vdev_errlist);
7311
7312 switch (cmd) {
7313 case POOL_TRIM_CANCEL:
7314 if (ztest_opts.zo_verbose >= 4) {
7315 (void) printf("Cancel TRIM %s", path);
7316 if (!active)
7317 (void) printf(" failed (no TRIM active)");
7318 (void) printf("\n");
7319 }
7320 break;
7321 case POOL_TRIM_START:
7322 if (ztest_opts.zo_verbose >= 4) {
7323 (void) printf("Start TRIM %s", path);
7324 if (active && error == 0)
7325 (void) printf(" failed (already active)");
7326 else if (error != 0)
7327 (void) printf(" failed (error %d)", error);
7328 (void) printf("\n");
7329 }
7330 break;
7331 case POOL_TRIM_SUSPEND:
7332 if (ztest_opts.zo_verbose >= 4) {
7333 (void) printf("Suspend TRIM %s", path);
7334 if (!active)
7335 (void) printf(" failed (no TRIM active)");
7336 (void) printf("\n");
7337 }
7338 break;
7339 }
7340 free(path);
7341 mutex_exit(&ztest_vdev_lock);
7342 }
7343
7344 void
ztest_ddt_prune(ztest_ds_t * zd,uint64_t id)7345 ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
7346 {
7347 (void) zd, (void) id;
7348
7349 spa_t *spa = ztest_spa;
7350 uint64_t pct = ztest_random(15) + 1;
7351
7352 (void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
7353 }
7354
7355 /*
7356 * Verify pool integrity by running zdb.
7357 */
7358 static void
ztest_run_zdb(uint64_t guid)7359 ztest_run_zdb(uint64_t guid)
7360 {
7361 int status;
7362 char *bin;
7363 char *zdb;
7364 char *zbuf;
7365 const int len = MAXPATHLEN + MAXNAMELEN + 20;
7366 FILE *fp;
7367
7368 bin = umem_alloc(len, UMEM_NOFAIL);
7369 zdb = umem_alloc(len, UMEM_NOFAIL);
7370 zbuf = umem_alloc(1024, UMEM_NOFAIL);
7371
7372 ztest_get_zdb_bin(bin, len);
7373
7374 char **set_gvars_args = ztest_global_vars_to_zdb_args();
7375 if (set_gvars_args == NULL) {
7376 fatal(B_FALSE, "Failed to allocate memory in "
7377 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7378 }
7379 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7380 free(set_gvars_args);
7381
7382 size_t would = snprintf(zdb, len,
7383 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7384 bin,
7385 ztest_opts.zo_verbose >= 3 ? "s" : "",
7386 ztest_opts.zo_verbose >= 4 ? "v" : "",
7387 set_gvars_args_joined,
7388 ztest_opts.zo_dir,
7389 guid);
7390 ASSERT3U(would, <, len);
7391
7392 umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7393
7394 if (ztest_opts.zo_verbose >= 5)
7395 (void) printf("Executing %s\n", zdb);
7396
7397 fp = popen(zdb, "r");
7398
7399 while (fgets(zbuf, 1024, fp) != NULL)
7400 if (ztest_opts.zo_verbose >= 3)
7401 (void) printf("%s", zbuf);
7402
7403 status = pclose(fp);
7404
7405 if (status == 0)
7406 goto out;
7407
7408 ztest_dump_core = 0;
7409 if (WIFEXITED(status))
7410 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7411 else
7412 fatal(B_FALSE, "'%s' died with signal %d",
7413 zdb, WTERMSIG(status));
7414 out:
7415 umem_free(bin, len);
7416 umem_free(zdb, len);
7417 umem_free(zbuf, 1024);
7418 }
7419
7420 static void
ztest_walk_pool_directory(const char * header)7421 ztest_walk_pool_directory(const char *header)
7422 {
7423 spa_t *spa = NULL;
7424
7425 if (ztest_opts.zo_verbose >= 6)
7426 (void) puts(header);
7427
7428 spa_namespace_enter(FTAG);
7429 while ((spa = spa_next(spa)) != NULL)
7430 if (ztest_opts.zo_verbose >= 6)
7431 (void) printf("\t%s\n", spa_name(spa));
7432 spa_namespace_exit(FTAG);
7433 }
7434
7435 static void
ztest_spa_import_export(char * oldname,char * newname)7436 ztest_spa_import_export(char *oldname, char *newname)
7437 {
7438 nvlist_t *config, *newconfig;
7439 uint64_t pool_guid;
7440 spa_t *spa;
7441 int error;
7442
7443 if (ztest_opts.zo_verbose >= 4) {
7444 (void) printf("import/export: old = %s, new = %s\n",
7445 oldname, newname);
7446 }
7447
7448 /*
7449 * Clean up from previous runs.
7450 */
7451 (void) spa_destroy(newname);
7452
7453 /*
7454 * Get the pool's configuration and guid.
7455 */
7456 VERIFY0(spa_open(oldname, &spa, FTAG));
7457
7458 /*
7459 * Kick off a scrub to tickle scrub/export races.
7460 */
7461 if (ztest_random(2) == 0)
7462 (void) spa_scan(spa, POOL_SCAN_SCRUB);
7463
7464 pool_guid = spa_guid(spa);
7465 spa_close(spa, FTAG);
7466
7467 ztest_walk_pool_directory("pools before export");
7468
7469 /*
7470 * Export it.
7471 */
7472 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7473
7474 ztest_walk_pool_directory("pools after export");
7475
7476 /*
7477 * Try to import it.
7478 */
7479 newconfig = spa_tryimport(config);
7480 ASSERT3P(newconfig, !=, NULL);
7481 fnvlist_free(newconfig);
7482
7483 /*
7484 * Import it under the new name.
7485 */
7486 error = spa_import(newname, config, NULL, 0);
7487 if (error != 0) {
7488 dump_nvlist(config, 0);
7489 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7490 oldname, newname, error);
7491 }
7492
7493 ztest_walk_pool_directory("pools after import");
7494
7495 /*
7496 * Try to import it again -- should fail with EEXIST.
7497 */
7498 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7499
7500 /*
7501 * Try to import it under a different name -- should fail with EEXIST.
7502 */
7503 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7504
7505 /*
7506 * Verify that the pool is no longer visible under the old name.
7507 */
7508 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7509
7510 /*
7511 * Verify that we can open and close the pool using the new name.
7512 */
7513 VERIFY0(spa_open(newname, &spa, FTAG));
7514 ASSERT3U(pool_guid, ==, spa_guid(spa));
7515 spa_close(spa, FTAG);
7516
7517 fnvlist_free(config);
7518 }
7519
7520 static void
ztest_resume(spa_t * spa)7521 ztest_resume(spa_t *spa)
7522 {
7523 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7524 (void) printf("resuming from suspended state\n");
7525 spa_vdev_state_enter(spa, SCL_NONE);
7526 vdev_clear(spa, NULL);
7527 (void) spa_vdev_state_exit(spa, NULL, 0);
7528 (void) zio_resume(spa);
7529 }
7530
7531 static __attribute__((noreturn)) void
ztest_resume_thread(void * arg)7532 ztest_resume_thread(void *arg)
7533 {
7534 spa_t *spa = arg;
7535
7536 /*
7537 * Synthesize aged DDT entries for ddt prune testing
7538 */
7539 ddt_prune_artificial_age = B_TRUE;
7540 if (ztest_opts.zo_verbose >= 3)
7541 ddt_dump_prune_histogram = B_TRUE;
7542
7543 while (!ztest_exiting) {
7544 if (spa_suspended(spa))
7545 ztest_resume(spa);
7546 (void) poll(NULL, 0, 100);
7547
7548 /*
7549 * Periodically change the zfs_compressed_arc_enabled setting.
7550 */
7551 if (ztest_random(10) == 0)
7552 zfs_compressed_arc_enabled = ztest_random(2);
7553
7554 /*
7555 * Periodically change the zfs_abd_scatter_enabled setting.
7556 */
7557 if (ztest_random(10) == 0)
7558 zfs_abd_scatter_enabled = ztest_random(2);
7559 }
7560
7561 thread_exit();
7562 }
7563
7564 static __attribute__((noreturn)) void
ztest_deadman_thread(void * arg)7565 ztest_deadman_thread(void *arg)
7566 {
7567 ztest_shared_t *zs = arg;
7568 spa_t *spa = ztest_spa;
7569 hrtime_t delay, overdue, last_run = gethrtime();
7570
7571 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7572 MSEC2NSEC(zfs_deadman_synctime_ms);
7573
7574 while (!ztest_exiting) {
7575 /*
7576 * Wait for the delay timer while checking occasionally
7577 * if we should stop.
7578 */
7579 if (gethrtime() < last_run + delay) {
7580 (void) poll(NULL, 0, 1000);
7581 continue;
7582 }
7583
7584 /*
7585 * If the pool is suspended then fail immediately. Otherwise,
7586 * check to see if the pool is making any progress. If
7587 * vdev_deadman() discovers that there hasn't been any recent
7588 * I/Os then it will end up aborting the tests.
7589 */
7590 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7591 fatal(B_FALSE,
7592 "aborting test after %llu seconds because "
7593 "pool has transitioned to a suspended state.",
7594 (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7595 }
7596 vdev_deadman(spa->spa_root_vdev, FTAG);
7597
7598 /*
7599 * If the process doesn't complete within a grace period of
7600 * zfs_deadman_synctime_ms over the expected finish time,
7601 * then it may be hung and is terminated.
7602 */
7603 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7604 if (gethrtime() > overdue) {
7605 fatal(B_FALSE,
7606 "aborting test after %llu seconds because "
7607 "the process is overdue for termination.",
7608 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7609 }
7610
7611 (void) printf("ztest has been running for %lld seconds\n",
7612 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7613
7614 last_run = gethrtime();
7615 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7616 }
7617
7618 thread_exit();
7619 }
7620
7621 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)7622 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7623 {
7624 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7625 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7626 hrtime_t functime = gethrtime();
7627 int i;
7628
7629 for (i = 0; i < zi->zi_iters; i++)
7630 zi->zi_func(zd, id);
7631
7632 functime = gethrtime() - functime;
7633
7634 atomic_add_64(&zc->zc_count, 1);
7635 atomic_add_64(&zc->zc_time, functime);
7636
7637 if (ztest_opts.zo_verbose >= 4)
7638 (void) printf("%6.2f sec in %s\n",
7639 (double)functime / NANOSEC, zi->zi_funcname);
7640 }
7641
7642 typedef struct ztest_raidz_expand_io {
7643 uint64_t rzx_id;
7644 uint64_t rzx_amount;
7645 uint64_t rzx_bufsize;
7646 const void *rzx_buffer;
7647 uint64_t rzx_alloc_max;
7648 spa_t *rzx_spa;
7649 } ztest_expand_io_t;
7650
7651 #undef OD_ARRAY_SIZE
7652 #define OD_ARRAY_SIZE 10
7653
7654 /*
7655 * Write a request amount of data to some dataset objects.
7656 * There will be ztest_opts.zo_threads count of these running in parallel.
7657 */
7658 static __attribute__((noreturn)) void
ztest_rzx_thread(void * arg)7659 ztest_rzx_thread(void *arg)
7660 {
7661 ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7662 ztest_od_t *od;
7663 int batchsize;
7664 int od_size;
7665 ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7666 spa_t *spa = info->rzx_spa;
7667
7668 od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7669 od = umem_alloc(od_size, UMEM_NOFAIL);
7670 batchsize = OD_ARRAY_SIZE;
7671
7672 /* Create objects to write to */
7673 for (int b = 0; b < batchsize; b++) {
7674 ztest_od_init(od + b, info->rzx_id, FTAG, b,
7675 DMU_OT_UINT64_OTHER, 0, 0, 0);
7676 }
7677 if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7678 umem_free(od, od_size);
7679 thread_exit();
7680 }
7681
7682 for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7683 offset += info->rzx_bufsize) {
7684 /* write to 10 objects */
7685 for (int i = 0; i < batchsize && written < info->rzx_amount;
7686 i++) {
7687 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7688 ztest_write(zd, od[i].od_object, offset,
7689 info->rzx_bufsize, info->rzx_buffer);
7690 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7691 written += info->rzx_bufsize;
7692 }
7693 txg_wait_synced(spa_get_dsl(spa), 0);
7694 /* due to inflation, we'll typically bail here */
7695 if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7696 info->rzx_alloc_max) {
7697 break;
7698 }
7699 }
7700
7701 /* Remove a few objects to leave some holes in allocation space */
7702 mutex_enter(&zd->zd_dirobj_lock);
7703 (void) ztest_remove(zd, od, 2);
7704 mutex_exit(&zd->zd_dirobj_lock);
7705
7706 umem_free(od, od_size);
7707
7708 thread_exit();
7709 }
7710
7711 static __attribute__((noreturn)) void
ztest_thread(void * arg)7712 ztest_thread(void *arg)
7713 {
7714 int rand;
7715 uint64_t id = (uintptr_t)arg;
7716 ztest_shared_t *zs = ztest_shared;
7717 uint64_t call_next;
7718 hrtime_t now;
7719 ztest_info_t *zi;
7720 ztest_shared_callstate_t *zc;
7721
7722 while ((now = gethrtime()) < zs->zs_thread_stop) {
7723 /*
7724 * See if it's time to force a crash.
7725 */
7726 if (now > zs->zs_thread_kill &&
7727 raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7728 ztest_kill(zs);
7729 }
7730
7731 /*
7732 * If we're getting ENOSPC with some regularity, stop.
7733 */
7734 if (zs->zs_enospc_count > 10)
7735 break;
7736
7737 /*
7738 * Pick a random function to execute.
7739 */
7740 rand = ztest_random(ZTEST_FUNCS);
7741 zi = &ztest_info[rand];
7742 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7743 call_next = zc->zc_next;
7744
7745 if (now >= call_next &&
7746 atomic_cas_64(&zc->zc_next, call_next, call_next +
7747 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7748 ztest_execute(rand, zi, id);
7749 }
7750 }
7751
7752 thread_exit();
7753 }
7754
7755 static void
ztest_dataset_name(char * dsname,const char * pool,int d)7756 ztest_dataset_name(char *dsname, const char *pool, int d)
7757 {
7758 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7759 }
7760
7761 static void
ztest_dataset_destroy(int d)7762 ztest_dataset_destroy(int d)
7763 {
7764 char name[ZFS_MAX_DATASET_NAME_LEN];
7765 int t;
7766
7767 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7768
7769 if (ztest_opts.zo_verbose >= 3)
7770 (void) printf("Destroying %s to free up space\n", name);
7771
7772 /*
7773 * Cleanup any non-standard clones and snapshots. In general,
7774 * ztest thread t operates on dataset (t % zopt_datasets),
7775 * so there may be more than one thing to clean up.
7776 */
7777 for (t = d; t < ztest_opts.zo_threads;
7778 t += ztest_opts.zo_datasets)
7779 ztest_dsl_dataset_cleanup(name, t);
7780
7781 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7782 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7783 }
7784
7785 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)7786 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7787 {
7788 uint64_t usedobjs, dirobjs, scratch;
7789
7790 /*
7791 * ZTEST_DIROBJ is the object directory for the entire dataset.
7792 * Therefore, the number of objects in use should equal the
7793 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7794 * If not, we have an object leak.
7795 *
7796 * Note that we can only check this in ztest_dataset_open(),
7797 * when the open-context and syncing-context values agree.
7798 * That's because zap_count() returns the open-context value,
7799 * while dmu_objset_space() returns the rootbp fill count.
7800 */
7801 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7802 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7803 ASSERT3U(dirobjs + 1, ==, usedobjs);
7804 }
7805
7806 static int
ztest_dataset_open(int d)7807 ztest_dataset_open(int d)
7808 {
7809 ztest_ds_t *zd = &ztest_ds[d];
7810 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7811 objset_t *os;
7812 zilog_t *zilog;
7813 char name[ZFS_MAX_DATASET_NAME_LEN];
7814 int error;
7815
7816 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7817
7818 if (ztest_opts.zo_verbose >= 6)
7819 (void) printf("Opening %s\n", name);
7820
7821 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7822
7823 error = ztest_dataset_create(name);
7824 if (error == ENOSPC) {
7825 (void) pthread_rwlock_unlock(&ztest_name_lock);
7826 ztest_record_enospc(FTAG);
7827 return (error);
7828 }
7829 ASSERT(error == 0 || error == EEXIST);
7830
7831 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7832 B_TRUE, zd, &os));
7833 (void) pthread_rwlock_unlock(&ztest_name_lock);
7834
7835 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7836
7837 zilog = zd->zd_zilog;
7838
7839 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7840 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7841 fatal(B_FALSE, "missing log records: "
7842 "claimed %"PRIu64" < committed %"PRIu64"",
7843 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7844
7845 ztest_dataset_dirobj_verify(zd);
7846
7847 zil_replay(os, zd, ztest_replay_vector);
7848
7849 ztest_dataset_dirobj_verify(zd);
7850
7851 if (ztest_opts.zo_verbose >= 6)
7852 (void) printf("%s replay %"PRIu64" blocks, "
7853 "%"PRIu64" records, seq %"PRIu64"\n",
7854 zd->zd_name,
7855 zilog->zl_parse_blk_count,
7856 zilog->zl_parse_lr_count,
7857 zilog->zl_replaying_seq);
7858
7859 zilog = zil_open(os, ztest_get_data, NULL);
7860
7861 if (zilog->zl_replaying_seq != 0 &&
7862 zilog->zl_replaying_seq < committed_seq)
7863 fatal(B_FALSE, "missing log records: "
7864 "replayed %"PRIu64" < committed %"PRIu64"",
7865 zilog->zl_replaying_seq, committed_seq);
7866
7867 return (0);
7868 }
7869
7870 static void
ztest_dataset_close(int d)7871 ztest_dataset_close(int d)
7872 {
7873 ztest_ds_t *zd = &ztest_ds[d];
7874
7875 zil_close(zd->zd_zilog);
7876 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7877
7878 ztest_zd_fini(zd);
7879 }
7880
7881 static int
ztest_replay_zil_cb(const char * name,void * arg)7882 ztest_replay_zil_cb(const char *name, void *arg)
7883 {
7884 (void) arg;
7885 objset_t *os;
7886 ztest_ds_t *zdtmp;
7887
7888 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7889 B_TRUE, FTAG, &os));
7890
7891 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7892
7893 ztest_zd_init(zdtmp, NULL, os);
7894 zil_replay(os, zdtmp, ztest_replay_vector);
7895 ztest_zd_fini(zdtmp);
7896
7897 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7898 ztest_opts.zo_verbose >= 6) {
7899 zilog_t *zilog = dmu_objset_zil(os);
7900
7901 (void) printf("%s replay %"PRIu64" blocks, "
7902 "%"PRIu64" records, seq %"PRIu64"\n",
7903 name,
7904 zilog->zl_parse_blk_count,
7905 zilog->zl_parse_lr_count,
7906 zilog->zl_replaying_seq);
7907 }
7908
7909 umem_free(zdtmp, sizeof (ztest_ds_t));
7910
7911 dmu_objset_disown(os, B_TRUE, FTAG);
7912 return (0);
7913 }
7914
7915 static void
ztest_freeze(void)7916 ztest_freeze(void)
7917 {
7918 ztest_ds_t *zd = &ztest_ds[0];
7919 spa_t *spa;
7920 int numloops = 0;
7921
7922 /* freeze not supported during RAIDZ expansion */
7923 if (ztest_opts.zo_raid_do_expand)
7924 return;
7925
7926 if (ztest_opts.zo_verbose >= 3)
7927 (void) printf("testing spa_freeze()...\n");
7928
7929 raidz_scratch_verify();
7930 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7931 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7932 VERIFY0(ztest_dataset_open(0));
7933 ztest_spa = spa;
7934
7935 /*
7936 * Force the first log block to be transactionally allocated.
7937 * We have to do this before we freeze the pool -- otherwise
7938 * the log chain won't be anchored.
7939 */
7940 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7941 ztest_dmu_object_alloc_free(zd, 0);
7942 VERIFY0(zil_commit(zd->zd_zilog, 0));
7943 }
7944
7945 txg_wait_synced(spa_get_dsl(spa), 0);
7946
7947 /*
7948 * Freeze the pool. This stops spa_sync() from doing anything,
7949 * so that the only way to record changes from now on is the ZIL.
7950 */
7951 spa_freeze(spa);
7952
7953 /*
7954 * Because it is hard to predict how much space a write will actually
7955 * require beforehand, we leave ourselves some fudge space to write over
7956 * capacity.
7957 */
7958 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7959
7960 /*
7961 * Run tests that generate log records but don't alter the pool config
7962 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7963 * We do a txg_wait_synced() after each iteration to force the txg
7964 * to increase well beyond the last synced value in the uberblock.
7965 * The ZIL should be OK with that.
7966 *
7967 * Run a random number of times less than zo_maxloops and ensure we do
7968 * not run out of space on the pool.
7969 */
7970 while (ztest_random(10) != 0 &&
7971 numloops++ < ztest_opts.zo_maxloops &&
7972 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7973 ztest_od_t od;
7974 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7975 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7976 ztest_io(zd, od.od_object,
7977 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7978 txg_wait_synced(spa_get_dsl(spa), 0);
7979 }
7980
7981 /*
7982 * Commit all of the changes we just generated.
7983 */
7984 VERIFY0(zil_commit(zd->zd_zilog, 0));
7985 txg_wait_synced(spa_get_dsl(spa), 0);
7986
7987 /*
7988 * Close our dataset and close the pool.
7989 */
7990 ztest_dataset_close(0);
7991 spa_close(spa, FTAG);
7992 kernel_fini();
7993
7994 /*
7995 * Open and close the pool and dataset to induce log replay.
7996 */
7997 raidz_scratch_verify();
7998 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7999 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8000 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
8001 VERIFY0(ztest_dataset_open(0));
8002 ztest_spa = spa;
8003 txg_wait_synced(spa_get_dsl(spa), 0);
8004 ztest_dataset_close(0);
8005 ztest_reguid(NULL, 0);
8006
8007 spa_close(spa, FTAG);
8008 kernel_fini();
8009 }
8010
8011 static void
ztest_import_impl(void)8012 ztest_import_impl(void)
8013 {
8014 importargs_t args = { 0 };
8015 nvlist_t *cfg = NULL;
8016 int nsearch = 1;
8017 char *searchdirs[nsearch];
8018 int flags = ZFS_IMPORT_MISSING_LOG;
8019
8020 searchdirs[0] = ztest_opts.zo_dir;
8021 args.paths = nsearch;
8022 args.path = searchdirs;
8023 args.can_be_active = B_FALSE;
8024
8025 libpc_handle_t lpch = {
8026 .lpc_lib_handle = NULL,
8027 .lpc_ops = &libzpool_config_ops,
8028 .lpc_printerr = B_TRUE
8029 };
8030 VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
8031 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
8032 fnvlist_free(cfg);
8033 }
8034
8035 /*
8036 * Import a storage pool with the given name.
8037 */
8038 static void
ztest_import(ztest_shared_t * zs)8039 ztest_import(ztest_shared_t *zs)
8040 {
8041 spa_t *spa;
8042
8043 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8044 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8045 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8046
8047 raidz_scratch_verify();
8048 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8049
8050 ztest_import_impl();
8051
8052 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8053 zs->zs_metaslab_sz =
8054 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8055 zs->zs_guid = spa_guid(spa);
8056 spa_close(spa, FTAG);
8057
8058 kernel_fini();
8059
8060 if (!ztest_opts.zo_mmp_test) {
8061 ztest_run_zdb(zs->zs_guid);
8062 ztest_freeze();
8063 ztest_run_zdb(zs->zs_guid);
8064 }
8065
8066 (void) pthread_rwlock_destroy(&ztest_name_lock);
8067 mutex_destroy(&ztest_vdev_lock);
8068 mutex_destroy(&ztest_checkpoint_lock);
8069 }
8070
8071 /*
8072 * After the expansion was killed, check that the pool is healthy
8073 */
8074 static void
ztest_raidz_expand_check(spa_t * spa)8075 ztest_raidz_expand_check(spa_t *spa)
8076 {
8077 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8078 /*
8079 * Set pool check done flag, main program will run a zdb check
8080 * of the pool when we exit.
8081 */
8082 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8083
8084 /* Wait for reflow to finish */
8085 if (ztest_opts.zo_verbose >= 1) {
8086 (void) printf("\nwaiting for reflow to finish ...\n");
8087 }
8088 pool_raidz_expand_stat_t rzx_stats;
8089 pool_raidz_expand_stat_t *pres = &rzx_stats;
8090 do {
8091 txg_wait_synced(spa_get_dsl(spa), 0);
8092 (void) poll(NULL, 0, 500); /* wait 1/2 second */
8093
8094 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8095 (void) spa_raidz_expand_get_stats(spa, pres);
8096 spa_config_exit(spa, SCL_CONFIG, FTAG);
8097 } while (pres->pres_state != DSS_FINISHED &&
8098 pres->pres_reflowed < pres->pres_to_reflow);
8099
8100 if (ztest_opts.zo_verbose >= 1) {
8101 (void) printf("verifying an interrupted raidz "
8102 "expansion using a pool scrub ...\n");
8103 }
8104
8105 /* Will fail here if there is non-recoverable corruption detected */
8106 int error = ztest_scrub_impl(spa);
8107 if (error == EBUSY)
8108 error = 0;
8109
8110 VERIFY0(error);
8111
8112 if (ztest_opts.zo_verbose >= 1) {
8113 (void) printf("raidz expansion scrub check complete\n");
8114 }
8115 }
8116
8117 /*
8118 * Start a raidz expansion test. We run some I/O on the pool for a while
8119 * to get some data in the pool. Then we grow the raidz and
8120 * kill the test at the requested offset into the reflow, verifying that
8121 * doing such does not lead to pool corruption.
8122 */
8123 static void
ztest_raidz_expand_run(ztest_shared_t * zs,spa_t * spa)8124 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8125 {
8126 nvlist_t *root;
8127 pool_raidz_expand_stat_t rzx_stats;
8128 pool_raidz_expand_stat_t *pres = &rzx_stats;
8129 kthread_t **run_threads;
8130 vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8131 int total_disks = rzvd->vdev_children;
8132 int data_disks = total_disks - vdev_get_nparity(rzvd);
8133 uint64_t alloc_goal;
8134 uint64_t csize;
8135 int error, t;
8136 int threads = ztest_opts.zo_threads;
8137 ztest_expand_io_t *thread_args;
8138
8139 ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8140 ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8141 ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8142
8143 /* Setup a 1 MiB buffer of random data */
8144 uint64_t bufsize = 1024 * 1024;
8145 void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8146 random_get_pseudo_bytes((uint8_t *)&buffer, bufsize);
8147
8148 /*
8149 * Put some data in the pool and then attach a vdev to initiate
8150 * reflow.
8151 */
8152 run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8153 thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8154 UMEM_NOFAIL);
8155 /* Aim for roughly 25% of allocatable space up to 1GB */
8156 alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8157 alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8158 if (ztest_opts.zo_verbose >= 1) {
8159 (void) printf("adding data to pool '%s', goal %llu bytes\n",
8160 ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8161 }
8162
8163 /*
8164 * Kick off all the I/O generators that run in parallel.
8165 */
8166 for (t = 0; t < threads; t++) {
8167 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8168 umem_free(run_threads, threads * sizeof (kthread_t *));
8169 umem_free(buffer, bufsize);
8170 return;
8171 }
8172 thread_args[t].rzx_id = t;
8173 thread_args[t].rzx_amount = alloc_goal / threads;
8174 thread_args[t].rzx_bufsize = bufsize;
8175 thread_args[t].rzx_buffer = buffer;
8176 thread_args[t].rzx_alloc_max = alloc_goal;
8177 thread_args[t].rzx_spa = spa;
8178 run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8179 &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8180 defclsyspri);
8181 }
8182
8183 /*
8184 * Wait for all of the writers to complete.
8185 */
8186 for (t = 0; t < threads; t++)
8187 VERIFY0(thread_join(run_threads[t]));
8188
8189 /*
8190 * Close all datasets. This must be done after all the threads
8191 * are joined so we can be sure none of the datasets are in-use
8192 * by any of the threads.
8193 */
8194 for (t = 0; t < ztest_opts.zo_threads; t++) {
8195 if (t < ztest_opts.zo_datasets)
8196 ztest_dataset_close(t);
8197 }
8198
8199 txg_wait_synced(spa_get_dsl(spa), 0);
8200
8201 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8202 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8203
8204 umem_free(buffer, bufsize);
8205 umem_free(run_threads, threads * sizeof (kthread_t *));
8206 umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8207
8208 /* Set our reflow target to 25%, 50% or 75% of allocated size */
8209 uint_t multiple = ztest_random(3) + 1;
8210 uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8211 raidz_expand_max_reflow_bytes = reflow_max;
8212
8213 if (ztest_opts.zo_verbose >= 1) {
8214 (void) printf("running raidz expansion test, killing when "
8215 "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8216 (u_longlong_t)reflow_max, multiple);
8217 }
8218
8219 /* XXX - do we want some I/O load during the reflow? */
8220
8221 /*
8222 * Use a disk size that is larger than existing ones
8223 */
8224 cvd = rzvd->vdev_child[0];
8225 csize = vdev_get_min_asize(cvd);
8226 csize += csize / 10;
8227 /*
8228 * Path to vdev to be attached
8229 */
8230 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8231 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8232 ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8233 /*
8234 * Build the nvlist describing newpath.
8235 */
8236 root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8237 NULL, 0, 0, 1);
8238 /*
8239 * Expand the raidz vdev by attaching the new disk
8240 */
8241 if (ztest_opts.zo_verbose >= 1) {
8242 (void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8243 (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8244 newpath);
8245 }
8246 error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8247 nvlist_free(root);
8248 if (error != 0) {
8249 fatal(0, "raidz expand: attach (%s %llu) returned %d",
8250 newpath, (long long)csize, error);
8251 }
8252
8253 /*
8254 * Wait for reflow to begin
8255 */
8256 while (spa->spa_raidz_expand == NULL) {
8257 txg_wait_synced(spa_get_dsl(spa), 0);
8258 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8259 }
8260 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8261 (void) spa_raidz_expand_get_stats(spa, pres);
8262 spa_config_exit(spa, SCL_CONFIG, FTAG);
8263 while (pres->pres_state != DSS_SCANNING) {
8264 txg_wait_synced(spa_get_dsl(spa), 0);
8265 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8266 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267 (void) spa_raidz_expand_get_stats(spa, pres);
8268 spa_config_exit(spa, SCL_CONFIG, FTAG);
8269 }
8270
8271 ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8272 ASSERT3U(pres->pres_to_reflow, !=, 0);
8273 /*
8274 * Set so when we are killed we go to raidz checking rather than
8275 * restarting test.
8276 */
8277 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8278 if (ztest_opts.zo_verbose >= 1) {
8279 (void) printf("raidz expansion reflow started, waiting for "
8280 "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8281 }
8282
8283 /*
8284 * Wait for reflow maximum to be reached and then kill the test
8285 */
8286 while (pres->pres_reflowed < reflow_max) {
8287 txg_wait_synced(spa_get_dsl(spa), 0);
8288 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8289 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8290 (void) spa_raidz_expand_get_stats(spa, pres);
8291 spa_config_exit(spa, SCL_CONFIG, FTAG);
8292 }
8293
8294 /* Reset the reflow pause before killing */
8295 raidz_expand_max_reflow_bytes = 0;
8296
8297 if (ztest_opts.zo_verbose >= 1) {
8298 (void) printf("killing raidz expansion test after reflow "
8299 "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8300 }
8301
8302 /*
8303 * Kill ourself to simulate a panic during a reflow. Our parent will
8304 * restart the test and the changed flag value will drive the test
8305 * through the scrub/check code to verify the pool is not corrupted.
8306 */
8307 ztest_kill(zs);
8308 }
8309
8310 static void
ztest_generic_run(ztest_shared_t * zs,spa_t * spa)8311 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8312 {
8313 kthread_t **run_threads;
8314 int i, ndatasets;
8315
8316 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8317 UMEM_NOFAIL);
8318
8319 /*
8320 * Actual number of datasets to be used.
8321 */
8322 ndatasets = MIN(ztest_opts.zo_datasets, ztest_opts.zo_threads);
8323
8324 /*
8325 * Prepare the datasets first.
8326 */
8327 for (i = 0; i < ndatasets; i++)
8328 VERIFY0(ztest_dataset_open(i));
8329
8330 /*
8331 * Kick off all the tests that run in parallel.
8332 */
8333 for (i = 0; i < ztest_opts.zo_threads; i++) {
8334 run_threads[i] = thread_create(NULL, 0, ztest_thread,
8335 (void *)(uintptr_t)i, 0, NULL, TS_RUN | TS_JOINABLE,
8336 defclsyspri);
8337 }
8338
8339 /*
8340 * Wait for all of the tests to complete.
8341 */
8342 for (i = 0; i < ztest_opts.zo_threads; i++)
8343 VERIFY0(thread_join(run_threads[i]));
8344
8345 /*
8346 * Close all datasets. This must be done after all the threads
8347 * are joined so we can be sure none of the datasets are in-use
8348 * by any of the threads.
8349 */
8350 for (i = 0; i < ndatasets; i++)
8351 ztest_dataset_close(i);
8352
8353 txg_wait_synced(spa_get_dsl(spa), 0);
8354
8355 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8356 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8357
8358 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8359 }
8360
8361 /*
8362 * Setup our test context and kick off threads to run tests on all datasets
8363 * in parallel.
8364 */
8365 static void
ztest_run(ztest_shared_t * zs)8366 ztest_run(ztest_shared_t *zs)
8367 {
8368 spa_t *spa;
8369 objset_t *os;
8370 kthread_t *resume_thread, *deadman_thread;
8371 uint64_t object;
8372 int error;
8373 int t, d;
8374
8375 ztest_exiting = B_FALSE;
8376
8377 /*
8378 * Initialize parent/child shared state.
8379 */
8380 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8381 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8382 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8383
8384 zs->zs_thread_start = gethrtime();
8385 zs->zs_thread_stop =
8386 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8387 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8388 zs->zs_thread_kill = zs->zs_thread_stop;
8389 if (ztest_random(100) < ztest_opts.zo_killrate) {
8390 zs->zs_thread_kill -=
8391 ztest_random(ztest_opts.zo_passtime * NANOSEC);
8392 }
8393
8394 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8395
8396 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8397 offsetof(ztest_cb_data_t, zcd_node));
8398
8399 /*
8400 * Open our pool. It may need to be imported first depending on
8401 * what tests were running when the previous pass was terminated.
8402 */
8403 raidz_scratch_verify();
8404 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8405 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8406 if (error) {
8407 VERIFY3S(error, ==, ENOENT);
8408 ztest_import_impl();
8409 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8410 zs->zs_metaslab_sz =
8411 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8412 }
8413
8414 metaslab_preload_limit = ztest_random(20) + 1;
8415 ztest_spa = spa;
8416
8417 /*
8418 * XXX - BUGBUG raidz expansion do not run this for generic for now
8419 */
8420 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8421 VERIFY0(vdev_raidz_impl_set("cycle"));
8422
8423 dmu_objset_stats_t dds;
8424 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8425 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8426 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8427 dmu_objset_fast_stat(os, &dds);
8428 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8429 dmu_objset_disown(os, B_TRUE, FTAG);
8430
8431 /* Give the dedicated raidz expansion test more grace time */
8432 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8433 zfs_deadman_synctime_ms *= 2;
8434
8435 /*
8436 * Create a thread to periodically resume suspended I/O.
8437 */
8438 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8439 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8440
8441 /*
8442 * Create a deadman thread and set to panic if we hang.
8443 */
8444 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8445 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8446
8447 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8448
8449 /*
8450 * Verify that we can safely inquire about any object,
8451 * whether it's allocated or not. To make it interesting,
8452 * we probe a 5-wide window around each power of two.
8453 * This hits all edge cases, including zero and the max.
8454 */
8455 for (t = 0; t < 64; t++) {
8456 for (d = -5; d <= 5; d++) {
8457 error = dmu_object_info(spa->spa_meta_objset,
8458 (1ULL << t) + d, NULL);
8459 ASSERT(error == 0 || error == ENOENT ||
8460 error == EINVAL);
8461 }
8462 }
8463
8464 /*
8465 * If we got any ENOSPC errors on the previous run, destroy something.
8466 */
8467 if (zs->zs_enospc_count != 0) {
8468 /* Not expecting ENOSPC errors during raidz expansion tests */
8469 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8470 RAIDZ_EXPAND_NONE);
8471
8472 int d = ztest_random(ztest_opts.zo_datasets);
8473 ztest_dataset_destroy(d);
8474 txg_wait_synced(spa_get_dsl(spa), 0);
8475 }
8476 zs->zs_enospc_count = 0;
8477
8478 /*
8479 * If we were in the middle of ztest_device_removal() and were killed
8480 * we need to ensure the removal and scrub complete before running
8481 * any tests that check ztest_device_removal_active. The removal will
8482 * be restarted automatically when the spa is opened, but we need to
8483 * initiate the scrub manually if it is not already in progress. Note
8484 * that we always run the scrub whenever an indirect vdev exists
8485 * because we have no way of knowing for sure if ztest_device_removal()
8486 * fully completed its scrub before the pool was reimported.
8487 *
8488 * Does not apply for the RAIDZ expansion specific test runs
8489 */
8490 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8491 (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8492 spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8493 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8494 txg_wait_synced(spa_get_dsl(spa), 0);
8495
8496 error = ztest_scrub_impl(spa);
8497 if (error == EBUSY)
8498 error = 0;
8499 ASSERT0(error);
8500 }
8501
8502 if (ztest_opts.zo_verbose >= 4)
8503 (void) printf("starting main threads...\n");
8504
8505 /*
8506 * Replay all logs of all datasets in the pool. This is primarily for
8507 * temporary datasets which wouldn't otherwise get replayed, which
8508 * can trigger failures when attempting to offline a SLOG in
8509 * ztest_fault_inject().
8510 */
8511 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8512 NULL, DS_FIND_CHILDREN);
8513
8514 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8515 ztest_raidz_expand_run(zs, spa);
8516 else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8517 ztest_raidz_expand_check(spa);
8518 else
8519 ztest_generic_run(zs, spa);
8520
8521 /* Kill the resume and deadman threads */
8522 ztest_exiting = B_TRUE;
8523 VERIFY0(thread_join(resume_thread));
8524 VERIFY0(thread_join(deadman_thread));
8525 ztest_resume(spa);
8526
8527 /*
8528 * Right before closing the pool, kick off a bunch of async I/O;
8529 * spa_close() should wait for it to complete.
8530 */
8531 for (object = 1; object < 50; object++) {
8532 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8533 ZIO_PRIORITY_SYNC_READ);
8534 }
8535
8536 /* Verify that at least one commit cb was called in a timely fashion */
8537 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8538 VERIFY0(zc_min_txg_delay);
8539
8540 spa_close(spa, FTAG);
8541
8542 /*
8543 * Verify that we can loop over all pools.
8544 */
8545 spa_namespace_enter(FTAG);
8546 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8547 if (ztest_opts.zo_verbose > 3)
8548 (void) printf("spa_next: found %s\n", spa_name(spa));
8549 spa_namespace_exit(FTAG);
8550
8551 /*
8552 * Verify that we can export the pool and reimport it under a
8553 * different name.
8554 */
8555 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8556 char name[ZFS_MAX_DATASET_NAME_LEN];
8557 (void) snprintf(name, sizeof (name), "%s_import",
8558 ztest_opts.zo_pool);
8559 ztest_spa_import_export(ztest_opts.zo_pool, name);
8560 ztest_spa_import_export(name, ztest_opts.zo_pool);
8561 }
8562
8563 kernel_fini();
8564
8565 list_destroy(&zcl.zcl_callbacks);
8566 mutex_destroy(&zcl.zcl_callbacks_lock);
8567 (void) pthread_rwlock_destroy(&ztest_name_lock);
8568 mutex_destroy(&ztest_vdev_lock);
8569 mutex_destroy(&ztest_checkpoint_lock);
8570 }
8571
8572 static void
print_time(hrtime_t t,char * timebuf)8573 print_time(hrtime_t t, char *timebuf)
8574 {
8575 hrtime_t s = t / NANOSEC;
8576 hrtime_t m = s / 60;
8577 hrtime_t h = m / 60;
8578 hrtime_t d = h / 24;
8579
8580 s -= m * 60;
8581 m -= h * 60;
8582 h -= d * 24;
8583
8584 timebuf[0] = '\0';
8585
8586 if (d)
8587 (void) sprintf(timebuf,
8588 "%llud%02lluh%02llum%02llus", d, h, m, s);
8589 else if (h)
8590 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8591 else if (m)
8592 (void) sprintf(timebuf, "%llum%02llus", m, s);
8593 else
8594 (void) sprintf(timebuf, "%llus", s);
8595 }
8596
8597 static nvlist_t *
make_random_pool_props(void)8598 make_random_pool_props(void)
8599 {
8600 nvlist_t *props;
8601
8602 props = fnvlist_alloc();
8603
8604 /* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8605 if (ztest_random(5) == 0) {
8606 fnvlist_add_uint64(props,
8607 zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8608 2 * 1024 * 1024);
8609 }
8610
8611 /* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8612 if (ztest_random(2) == 0) {
8613 fnvlist_add_uint64(props,
8614 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8615 }
8616
8617 return (props);
8618 }
8619
8620 /*
8621 * Create a storage pool with the given name and initial vdev size.
8622 * Then test spa_freeze() functionality.
8623 */
8624 static void
ztest_init(ztest_shared_t * zs)8625 ztest_init(ztest_shared_t *zs)
8626 {
8627 spa_t *spa;
8628 nvlist_t *nvroot, *props;
8629 int i;
8630
8631 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8632 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8633 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8634
8635 raidz_scratch_verify();
8636 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8637
8638 /*
8639 * Create the storage pool.
8640 */
8641 (void) spa_destroy(ztest_opts.zo_pool);
8642 ztest_shared->zs_vdev_next_leaf = 0;
8643 zs->zs_splits = 0;
8644 zs->zs_mirrors = ztest_opts.zo_mirrors;
8645 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8646 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8647 props = make_random_pool_props();
8648
8649 /*
8650 * We don't expect the pool to suspend unless maxfaults == 0,
8651 * in which case ztest_fault_inject() temporarily takes away
8652 * the only valid replica.
8653 */
8654 fnvlist_add_uint64(props,
8655 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8656 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8657
8658 for (i = 0; i < SPA_FEATURES; i++) {
8659 char *buf;
8660
8661 if (!spa_feature_table[i].fi_zfs_mod_supported)
8662 continue;
8663
8664 /*
8665 * 75% chance of using the log space map feature. We want ztest
8666 * to exercise both the code paths that use the log space map
8667 * feature and the ones that don't.
8668 */
8669 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8670 continue;
8671
8672 /*
8673 * split 50/50 between legacy and fast dedup
8674 */
8675 if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
8676 continue;
8677
8678 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8679 spa_feature_table[i].fi_uname));
8680 fnvlist_add_uint64(props, buf, 0);
8681 free(buf);
8682 }
8683
8684 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8685 fnvlist_free(nvroot);
8686 fnvlist_free(props);
8687
8688 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8689 zs->zs_metaslab_sz =
8690 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8691 zs->zs_guid = spa_guid(spa);
8692 spa_close(spa, FTAG);
8693
8694 kernel_fini();
8695
8696 if (!ztest_opts.zo_mmp_test) {
8697 ztest_run_zdb(zs->zs_guid);
8698 ztest_freeze();
8699 ztest_run_zdb(zs->zs_guid);
8700 }
8701
8702 (void) pthread_rwlock_destroy(&ztest_name_lock);
8703 mutex_destroy(&ztest_vdev_lock);
8704 mutex_destroy(&ztest_checkpoint_lock);
8705 }
8706
8707 static void
setup_data_fd(void)8708 setup_data_fd(void)
8709 {
8710 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8711
8712 ztest_fd_data = mkstemp(ztest_name_data);
8713 ASSERT3S(ztest_fd_data, >=, 0);
8714 (void) unlink(ztest_name_data);
8715 }
8716
8717 static int
shared_data_size(ztest_shared_hdr_t * hdr)8718 shared_data_size(ztest_shared_hdr_t *hdr)
8719 {
8720 int size;
8721
8722 size = hdr->zh_hdr_size;
8723 size += hdr->zh_opts_size;
8724 size += hdr->zh_size;
8725 size += hdr->zh_stats_size * hdr->zh_stats_count;
8726 size += hdr->zh_ds_size * hdr->zh_ds_count;
8727 size += hdr->zh_scratch_state_size;
8728
8729 return (size);
8730 }
8731
8732 static void
setup_hdr(void)8733 setup_hdr(void)
8734 {
8735 int size;
8736 ztest_shared_hdr_t *hdr;
8737
8738 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8739 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8740 ASSERT3P(hdr, !=, MAP_FAILED);
8741
8742 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8743
8744 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8745 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8746 hdr->zh_size = sizeof (ztest_shared_t);
8747 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8748 hdr->zh_stats_count = ZTEST_FUNCS;
8749 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8750 hdr->zh_ds_count = ztest_opts.zo_datasets;
8751 hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8752
8753 size = shared_data_size(hdr);
8754 VERIFY0(ftruncate(ztest_fd_data, size));
8755
8756 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8757 }
8758
8759 static void
setup_data(void)8760 setup_data(void)
8761 {
8762 int size, offset;
8763 ztest_shared_hdr_t *hdr;
8764 uint8_t *buf;
8765
8766 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8767 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8768 ASSERT3P(hdr, !=, MAP_FAILED);
8769
8770 size = shared_data_size(hdr);
8771
8772 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8773 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8774 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8775 ASSERT3P(hdr, !=, MAP_FAILED);
8776 buf = (uint8_t *)hdr;
8777
8778 offset = hdr->zh_hdr_size;
8779 ztest_shared_opts = (void *)&buf[offset];
8780 offset += hdr->zh_opts_size;
8781 ztest_shared = (void *)&buf[offset];
8782 offset += hdr->zh_size;
8783 ztest_shared_callstate = (void *)&buf[offset];
8784 offset += hdr->zh_stats_size * hdr->zh_stats_count;
8785 ztest_shared_ds = (void *)&buf[offset];
8786 offset += hdr->zh_ds_size * hdr->zh_ds_count;
8787 ztest_scratch_state = (void *)&buf[offset];
8788 }
8789
8790 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)8791 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8792 {
8793 pid_t pid;
8794 int status;
8795 char *cmdbuf = NULL;
8796
8797 pid = fork();
8798
8799 if (cmd == NULL) {
8800 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8801 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8802 cmd = cmdbuf;
8803 }
8804
8805 if (pid == -1)
8806 fatal(B_TRUE, "fork failed");
8807
8808 if (pid == 0) { /* child */
8809 char fd_data_str[12];
8810
8811 VERIFY3S(11, >=,
8812 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8813 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8814
8815 if (libpath != NULL) {
8816 const char *curlp = getenv("LD_LIBRARY_PATH");
8817 if (curlp == NULL)
8818 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8819 else {
8820 char *newlp = NULL;
8821 VERIFY3S(-1, !=,
8822 asprintf(&newlp, "%s:%s", libpath, curlp));
8823 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8824 free(newlp);
8825 }
8826 }
8827 (void) execl(cmd, cmd, (char *)NULL);
8828 ztest_dump_core = B_FALSE;
8829 fatal(B_TRUE, "exec failed: %s", cmd);
8830 }
8831
8832 if (cmdbuf != NULL) {
8833 umem_free(cmdbuf, MAXPATHLEN);
8834 cmd = NULL;
8835 }
8836
8837 while (waitpid(pid, &status, 0) != pid)
8838 continue;
8839 if (statusp != NULL)
8840 *statusp = status;
8841
8842 if (WIFEXITED(status)) {
8843 if (WEXITSTATUS(status) != 0) {
8844 (void) fprintf(stderr, "child exited with code %d\n",
8845 WEXITSTATUS(status));
8846 exit(2);
8847 }
8848 return (B_FALSE);
8849 } else if (WIFSIGNALED(status)) {
8850 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8851 (void) fprintf(stderr, "child died with signal %d\n",
8852 WTERMSIG(status));
8853 exit(3);
8854 }
8855 return (B_TRUE);
8856 } else {
8857 (void) fprintf(stderr, "something strange happened to child\n");
8858 exit(4);
8859 }
8860 }
8861
8862 static void
ztest_run_init(void)8863 ztest_run_init(void)
8864 {
8865 int i;
8866
8867 ztest_shared_t *zs = ztest_shared;
8868
8869 /*
8870 * Blow away any existing copy of zpool.cache
8871 */
8872 (void) remove(spa_config_path);
8873
8874 if (ztest_opts.zo_init == 0) {
8875 if (ztest_opts.zo_verbose >= 1)
8876 (void) printf("Importing pool %s\n",
8877 ztest_opts.zo_pool);
8878 ztest_import(zs);
8879 return;
8880 }
8881
8882 /*
8883 * Create and initialize our storage pool.
8884 */
8885 for (i = 1; i <= ztest_opts.zo_init; i++) {
8886 memset(zs, 0, sizeof (*zs));
8887 if (ztest_opts.zo_verbose >= 3 &&
8888 ztest_opts.zo_init != 1) {
8889 (void) printf("ztest_init(), pass %d\n", i);
8890 }
8891 ztest_init(zs);
8892 }
8893 }
8894
8895 int
main(int argc,char ** argv)8896 main(int argc, char **argv)
8897 {
8898 int kills = 0;
8899 int iters = 0;
8900 int older = 0;
8901 int newer = 0;
8902 ztest_shared_t *zs;
8903 ztest_info_t *zi;
8904 ztest_shared_callstate_t *zc;
8905 char timebuf[100];
8906 char numbuf[NN_NUMBUF_SZ];
8907 char *cmd;
8908 boolean_t hasalt;
8909 int f, err;
8910 char *fd_data_str = getenv("ZTEST_FD_DATA");
8911 struct sigaction action;
8912
8913 (void) setvbuf(stdout, NULL, _IOLBF, 0);
8914
8915 dprintf_setup(&argc, argv);
8916 zfs_deadman_synctime_ms = 300000;
8917 zfs_deadman_checktime_ms = 30000;
8918 /*
8919 * As two-word space map entries may not come up often (especially
8920 * if pool and vdev sizes are small) we want to force at least some
8921 * of them so the feature get tested.
8922 */
8923 zfs_force_some_double_word_sm_entries = B_TRUE;
8924
8925 /*
8926 * Verify that even extensively damaged split blocks with many
8927 * segments can be reconstructed in a reasonable amount of time
8928 * when reconstruction is known to be possible.
8929 *
8930 * Note: the lower this value is, the more damage we inflict, and
8931 * the more time ztest spends in recovering that damage. We chose
8932 * to induce damage 1/100th of the time so recovery is tested but
8933 * not so frequently that ztest doesn't get to test other code paths.
8934 */
8935 zfs_reconstruct_indirect_damage_fraction = 100;
8936
8937 action.sa_handler = sig_handler;
8938 sigemptyset(&action.sa_mask);
8939 action.sa_flags = 0;
8940
8941 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8942 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8943 strerror(errno));
8944 exit(EXIT_FAILURE);
8945 }
8946
8947 if (sigaction(SIGABRT, &action, NULL) < 0) {
8948 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8949 strerror(errno));
8950 exit(EXIT_FAILURE);
8951 }
8952
8953 libspl_init();
8954
8955 /*
8956 * Force random_get_bytes() to use /dev/urandom in order to prevent
8957 * ztest from needlessly depleting the system entropy pool.
8958 */
8959 random_force_pseudo(B_TRUE);
8960
8961 if (!fd_data_str) {
8962 process_options(argc, argv);
8963
8964 setup_data_fd();
8965 setup_hdr();
8966 setup_data();
8967 memcpy(ztest_shared_opts, &ztest_opts,
8968 sizeof (*ztest_shared_opts));
8969 } else {
8970 ztest_fd_data = atoi(fd_data_str);
8971 setup_data();
8972 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8973 }
8974 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8975
8976 err = ztest_set_global_vars();
8977 if (err != 0 && !fd_data_str) {
8978 /* error message done by ztest_set_global_vars */
8979 exit(EXIT_FAILURE);
8980 } else {
8981 /* children should not be spawned if setting gvars fails */
8982 VERIFY0(err);
8983 }
8984
8985 /* Override location of zpool.cache */
8986 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8987 ztest_opts.zo_dir), !=, -1);
8988
8989 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8990 UMEM_NOFAIL);
8991 zs = ztest_shared;
8992
8993 if (fd_data_str) {
8994 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8995 metaslab_df_alloc_threshold =
8996 zs->zs_metaslab_df_alloc_threshold;
8997
8998 if (zs->zs_do_init)
8999 ztest_run_init();
9000 else
9001 ztest_run(zs);
9002 exit(0);
9003 }
9004
9005 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
9006
9007 if (ztest_opts.zo_verbose >= 1) {
9008 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
9009 "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
9010 ztest_opts.zo_vdevs,
9011 ztest_opts.zo_datasets,
9012 ztest_opts.zo_threads,
9013 ztest_opts.zo_raid_children,
9014 ztest_opts.zo_raid_type,
9015 ztest_opts.zo_raid_parity,
9016 ztest_opts.zo_time);
9017 }
9018
9019 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
9020 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
9021
9022 zs->zs_do_init = B_TRUE;
9023 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
9024 if (ztest_opts.zo_verbose >= 1) {
9025 (void) printf("Executing older ztest for "
9026 "initialization: %s\n", ztest_opts.zo_alt_ztest);
9027 }
9028 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
9029 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
9030 } else {
9031 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
9032 }
9033 zs->zs_do_init = B_FALSE;
9034
9035 zs->zs_proc_start = gethrtime();
9036 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
9037
9038 for (f = 0; f < ZTEST_FUNCS; f++) {
9039 zi = &ztest_info[f];
9040 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9041 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
9042 zc->zc_next = UINT64_MAX;
9043 else
9044 zc->zc_next = zs->zs_proc_start +
9045 ztest_random(2 * zi->zi_interval[0] + 1);
9046 }
9047
9048 /*
9049 * Run the tests in a loop. These tests include fault injection
9050 * to verify that self-healing data works, and forced crashes
9051 * to verify that we never lose on-disk consistency.
9052 */
9053 while (gethrtime() < zs->zs_proc_stop) {
9054 int status;
9055 boolean_t killed;
9056
9057 /*
9058 * Initialize the workload counters for each function.
9059 */
9060 for (f = 0; f < ZTEST_FUNCS; f++) {
9061 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9062 zc->zc_count = 0;
9063 zc->zc_time = 0;
9064 }
9065
9066 /* Set the allocation switch size */
9067 zs->zs_metaslab_df_alloc_threshold =
9068 ztest_random(zs->zs_metaslab_sz / 4) + 1;
9069
9070 if (!hasalt || ztest_random(2) == 0) {
9071 if (hasalt && ztest_opts.zo_verbose >= 1) {
9072 (void) printf("Executing newer ztest: %s\n",
9073 cmd);
9074 }
9075 newer++;
9076 killed = exec_child(cmd, NULL, B_TRUE, &status);
9077 } else {
9078 if (hasalt && ztest_opts.zo_verbose >= 1) {
9079 (void) printf("Executing older ztest: %s\n",
9080 ztest_opts.zo_alt_ztest);
9081 }
9082 older++;
9083 killed = exec_child(ztest_opts.zo_alt_ztest,
9084 ztest_opts.zo_alt_libpath, B_TRUE, &status);
9085 }
9086
9087 if (killed)
9088 kills++;
9089 iters++;
9090
9091 if (ztest_opts.zo_verbose >= 1) {
9092 hrtime_t now = gethrtime();
9093
9094 now = MIN(now, zs->zs_proc_stop);
9095 print_time(zs->zs_proc_stop - now, timebuf);
9096 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9097
9098 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9099 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9100 iters,
9101 WIFEXITED(status) ? "Complete" : "SIGKILL",
9102 zs->zs_enospc_count,
9103 100.0 * zs->zs_alloc / zs->zs_space,
9104 numbuf,
9105 100.0 * (now - zs->zs_proc_start) /
9106 (ztest_opts.zo_time * NANOSEC), timebuf);
9107 }
9108
9109 if (ztest_opts.zo_verbose >= 2) {
9110 (void) printf("\nWorkload summary:\n\n");
9111 (void) printf("%7s %9s %s\n",
9112 "Calls", "Time", "Function");
9113 (void) printf("%7s %9s %s\n",
9114 "-----", "----", "--------");
9115 for (f = 0; f < ZTEST_FUNCS; f++) {
9116 zi = &ztest_info[f];
9117 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9118 print_time(zc->zc_time, timebuf);
9119 (void) printf("%7"PRIu64" %9s %s\n",
9120 zc->zc_count, timebuf,
9121 zi->zi_funcname);
9122 }
9123 (void) printf("\n");
9124 }
9125
9126 if (!ztest_opts.zo_mmp_test)
9127 ztest_run_zdb(zs->zs_guid);
9128 if (ztest_shared_opts->zo_raidz_expand_test ==
9129 RAIDZ_EXPAND_CHECKED)
9130 break; /* raidz expand test complete */
9131 }
9132
9133 if (ztest_opts.zo_verbose >= 1) {
9134 if (hasalt) {
9135 (void) printf("%d runs of older ztest: %s\n", older,
9136 ztest_opts.zo_alt_ztest);
9137 (void) printf("%d runs of newer ztest: %s\n", newer,
9138 cmd);
9139 }
9140 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9141 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9142 }
9143
9144 umem_free(cmd, MAXNAMELEN);
9145
9146 return (0);
9147 }
9148