xref: /linux/drivers/gpu/drm/ttm/ttm_pool.c (revision ea34704d6ad7225421cc3543906deacae35a6ea2)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Christian König
24  */
25 
26 /* Pooling of allocated pages is necessary because changing the caching
27  * attributes on x86 of the linear mapping requires a costly cross CPU TLB
28  * invalidate for those addresses.
29  *
30  * Additional to that allocations from the DMA coherent API are pooled as well
31  * cause they are rather slow compared to alloc_pages+map.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/debugfs.h>
37 #include <linux/highmem.h>
38 #include <linux/sched/mm.h>
39 
40 #ifdef CONFIG_X86
41 #include <asm/set_memory.h>
42 #endif
43 
44 #include <drm/ttm/ttm_backup.h>
45 #include <drm/ttm/ttm_pool.h>
46 #include <drm/ttm/ttm_tt.h>
47 #include <drm/ttm/ttm_bo.h>
48 
49 #include "ttm_module.h"
50 
51 #ifdef CONFIG_FAULT_INJECTION
52 #include <linux/fault-inject.h>
53 static DECLARE_FAULT_ATTR(backup_fault_inject);
54 #else
55 #define should_fail(...) false
56 #endif
57 
58 /**
59  * struct ttm_pool_dma - Helper object for coherent DMA mappings
60  *
61  * @addr: original DMA address returned for the mapping
62  * @vaddr: original vaddr return for the mapping and order in the lower bits
63  */
64 struct ttm_pool_dma {
65 	dma_addr_t addr;
66 	unsigned long vaddr;
67 };
68 
69 /**
70  * struct ttm_pool_alloc_state - Current state of the tt page allocation process
71  * @pages: Pointer to the next tt page pointer to populate.
72  * @caching_divide: Pointer to the first page pointer whose page has a staged but
73  * not committed caching transition from write-back to @tt_caching.
74  * @dma_addr: Pointer to the next tt dma_address entry to populate if any.
75  * @remaining_pages: Remaining pages to populate.
76  * @tt_caching: The requested cpu-caching for the pages allocated.
77  */
78 struct ttm_pool_alloc_state {
79 	struct page **pages;
80 	struct page **caching_divide;
81 	dma_addr_t *dma_addr;
82 	pgoff_t remaining_pages;
83 	enum ttm_caching tt_caching;
84 };
85 
86 /**
87  * struct ttm_pool_tt_restore - State representing restore from backup
88  * @pool: The pool used for page allocation while restoring.
89  * @snapshot_alloc: A snapshot of the most recent struct ttm_pool_alloc_state.
90  * @alloced_page: Pointer to the page most recently allocated from a pool or system.
91  * @first_dma: The dma address corresponding to @alloced_page if dma_mapping
92  * is requested.
93  * @alloced_pages: The number of allocated pages present in the struct ttm_tt
94  * page vector from this restore session.
95  * @restored_pages: The number of 4K pages restored for @alloced_page (which
96  * is typically a multi-order page).
97  * @page_caching: The struct ttm_tt requested caching
98  * @order: The order of @alloced_page.
99  *
100  * Recovery from backup might fail when we've recovered less than the
101  * full ttm_tt. In order not to loose any data (yet), keep information
102  * around that allows us to restart a failed ttm backup recovery.
103  */
104 struct ttm_pool_tt_restore {
105 	struct ttm_pool *pool;
106 	struct ttm_pool_alloc_state snapshot_alloc;
107 	struct page *alloced_page;
108 	dma_addr_t first_dma;
109 	pgoff_t alloced_pages;
110 	pgoff_t restored_pages;
111 	enum ttm_caching page_caching;
112 	unsigned int order;
113 };
114 
115 static unsigned long page_pool_size;
116 
117 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool");
118 module_param(page_pool_size, ulong, 0644);
119 
120 static atomic_long_t allocated_pages;
121 
122 static struct ttm_pool_type global_write_combined[NR_PAGE_ORDERS];
123 static struct ttm_pool_type global_uncached[NR_PAGE_ORDERS];
124 
125 static struct ttm_pool_type global_dma32_write_combined[NR_PAGE_ORDERS];
126 static struct ttm_pool_type global_dma32_uncached[NR_PAGE_ORDERS];
127 
128 static spinlock_t shrinker_lock;
129 static struct list_head shrinker_list;
130 static struct shrinker *mm_shrinker;
131 static DECLARE_RWSEM(pool_shrink_rwsem);
132 
133 /* Allocate pages of size 1 << order with the given gfp_flags */
ttm_pool_alloc_page(struct ttm_pool * pool,gfp_t gfp_flags,unsigned int order)134 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags,
135 					unsigned int order)
136 {
137 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
138 	struct ttm_pool_dma *dma;
139 	struct page *p;
140 	void *vaddr;
141 
142 	/* Don't set the __GFP_COMP flag for higher order allocations.
143 	 * Mapping pages directly into an userspace process and calling
144 	 * put_page() on a TTM allocated page is illegal.
145 	 */
146 	if (order)
147 		gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN |
148 			__GFP_THISNODE;
149 
150 	if (!pool->use_dma_alloc) {
151 		p = alloc_pages_node(pool->nid, gfp_flags, order);
152 		if (p)
153 			p->private = order;
154 		return p;
155 	}
156 
157 	dma = kmalloc(sizeof(*dma), GFP_KERNEL);
158 	if (!dma)
159 		return NULL;
160 
161 	if (order)
162 		attr |= DMA_ATTR_NO_WARN;
163 
164 	vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE,
165 				&dma->addr, gfp_flags, attr);
166 	if (!vaddr)
167 		goto error_free;
168 
169 	/* TODO: This is an illegal abuse of the DMA API, but we need to rework
170 	 * TTM page fault handling and extend the DMA API to clean this up.
171 	 */
172 	if (is_vmalloc_addr(vaddr))
173 		p = vmalloc_to_page(vaddr);
174 	else
175 		p = virt_to_page(vaddr);
176 
177 	dma->vaddr = (unsigned long)vaddr | order;
178 	p->private = (unsigned long)dma;
179 	return p;
180 
181 error_free:
182 	kfree(dma);
183 	return NULL;
184 }
185 
186 /* Reset the caching and pages of size 1 << order */
ttm_pool_free_page(struct ttm_pool * pool,enum ttm_caching caching,unsigned int order,struct page * p)187 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching,
188 			       unsigned int order, struct page *p)
189 {
190 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
191 	struct ttm_pool_dma *dma;
192 	void *vaddr;
193 
194 #ifdef CONFIG_X86
195 	/* We don't care that set_pages_wb is inefficient here. This is only
196 	 * used when we have to shrink and CPU overhead is irrelevant then.
197 	 */
198 	if (caching != ttm_cached && !PageHighMem(p))
199 		set_pages_wb(p, 1 << order);
200 #endif
201 
202 	if (!pool || !pool->use_dma_alloc) {
203 		__free_pages(p, order);
204 		return;
205 	}
206 
207 	if (order)
208 		attr |= DMA_ATTR_NO_WARN;
209 
210 	dma = (void *)p->private;
211 	vaddr = (void *)(dma->vaddr & PAGE_MASK);
212 	dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr,
213 		       attr);
214 	kfree(dma);
215 }
216 
217 /* Apply any cpu-caching deferred during page allocation */
ttm_pool_apply_caching(struct ttm_pool_alloc_state * alloc)218 static int ttm_pool_apply_caching(struct ttm_pool_alloc_state *alloc)
219 {
220 #ifdef CONFIG_X86
221 	unsigned int num_pages = alloc->pages - alloc->caching_divide;
222 
223 	if (!num_pages)
224 		return 0;
225 
226 	switch (alloc->tt_caching) {
227 	case ttm_cached:
228 		break;
229 	case ttm_write_combined:
230 		return set_pages_array_wc(alloc->caching_divide, num_pages);
231 	case ttm_uncached:
232 		return set_pages_array_uc(alloc->caching_divide, num_pages);
233 	}
234 #endif
235 	alloc->caching_divide = alloc->pages;
236 	return 0;
237 }
238 
239 /* DMA Map pages of 1 << order size and return the resulting dma_address. */
ttm_pool_map(struct ttm_pool * pool,unsigned int order,struct page * p,dma_addr_t * dma_addr)240 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order,
241 			struct page *p, dma_addr_t *dma_addr)
242 {
243 	dma_addr_t addr;
244 
245 	if (pool->use_dma_alloc) {
246 		struct ttm_pool_dma *dma = (void *)p->private;
247 
248 		addr = dma->addr;
249 	} else {
250 		size_t size = (1ULL << order) * PAGE_SIZE;
251 
252 		addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL);
253 		if (dma_mapping_error(pool->dev, addr))
254 			return -EFAULT;
255 	}
256 
257 	*dma_addr = addr;
258 
259 	return 0;
260 }
261 
262 /* Unmap pages of 1 << order size */
ttm_pool_unmap(struct ttm_pool * pool,dma_addr_t dma_addr,unsigned int num_pages)263 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr,
264 			   unsigned int num_pages)
265 {
266 	/* Unmapped while freeing the page */
267 	if (pool->use_dma_alloc)
268 		return;
269 
270 	dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT,
271 		       DMA_BIDIRECTIONAL);
272 }
273 
274 /* Give pages into a specific pool_type */
ttm_pool_type_give(struct ttm_pool_type * pt,struct page * p)275 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p)
276 {
277 	unsigned int i, num_pages = 1 << pt->order;
278 
279 	for (i = 0; i < num_pages; ++i) {
280 		if (PageHighMem(p))
281 			clear_highpage(p + i);
282 		else
283 			clear_page(page_address(p + i));
284 	}
285 
286 	spin_lock(&pt->lock);
287 	list_add(&p->lru, &pt->pages);
288 	spin_unlock(&pt->lock);
289 	atomic_long_add(1 << pt->order, &allocated_pages);
290 }
291 
292 /* Take pages from a specific pool_type, return NULL when nothing available */
ttm_pool_type_take(struct ttm_pool_type * pt)293 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt)
294 {
295 	struct page *p;
296 
297 	spin_lock(&pt->lock);
298 	p = list_first_entry_or_null(&pt->pages, typeof(*p), lru);
299 	if (p) {
300 		atomic_long_sub(1 << pt->order, &allocated_pages);
301 		list_del(&p->lru);
302 	}
303 	spin_unlock(&pt->lock);
304 
305 	return p;
306 }
307 
308 /* Initialize and add a pool type to the global shrinker list */
ttm_pool_type_init(struct ttm_pool_type * pt,struct ttm_pool * pool,enum ttm_caching caching,unsigned int order)309 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool,
310 			       enum ttm_caching caching, unsigned int order)
311 {
312 	pt->pool = pool;
313 	pt->caching = caching;
314 	pt->order = order;
315 	spin_lock_init(&pt->lock);
316 	INIT_LIST_HEAD(&pt->pages);
317 
318 	spin_lock(&shrinker_lock);
319 	list_add_tail(&pt->shrinker_list, &shrinker_list);
320 	spin_unlock(&shrinker_lock);
321 }
322 
323 /* Remove a pool_type from the global shrinker list and free all pages */
ttm_pool_type_fini(struct ttm_pool_type * pt)324 static void ttm_pool_type_fini(struct ttm_pool_type *pt)
325 {
326 	struct page *p;
327 
328 	spin_lock(&shrinker_lock);
329 	list_del(&pt->shrinker_list);
330 	spin_unlock(&shrinker_lock);
331 
332 	while ((p = ttm_pool_type_take(pt)))
333 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
334 }
335 
336 /* Return the pool_type to use for the given caching and order */
ttm_pool_select_type(struct ttm_pool * pool,enum ttm_caching caching,unsigned int order)337 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool,
338 						  enum ttm_caching caching,
339 						  unsigned int order)
340 {
341 	if (pool->use_dma_alloc)
342 		return &pool->caching[caching].orders[order];
343 
344 #ifdef CONFIG_X86
345 	switch (caching) {
346 	case ttm_write_combined:
347 		if (pool->nid != NUMA_NO_NODE)
348 			return &pool->caching[caching].orders[order];
349 
350 		if (pool->use_dma32)
351 			return &global_dma32_write_combined[order];
352 
353 		return &global_write_combined[order];
354 	case ttm_uncached:
355 		if (pool->nid != NUMA_NO_NODE)
356 			return &pool->caching[caching].orders[order];
357 
358 		if (pool->use_dma32)
359 			return &global_dma32_uncached[order];
360 
361 		return &global_uncached[order];
362 	default:
363 		break;
364 	}
365 #endif
366 
367 	return NULL;
368 }
369 
370 /* Free pages using the global shrinker list */
ttm_pool_shrink(void)371 static unsigned int ttm_pool_shrink(void)
372 {
373 	struct ttm_pool_type *pt;
374 	unsigned int num_pages;
375 	struct page *p;
376 
377 	down_read(&pool_shrink_rwsem);
378 	spin_lock(&shrinker_lock);
379 	pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list);
380 	list_move_tail(&pt->shrinker_list, &shrinker_list);
381 	spin_unlock(&shrinker_lock);
382 
383 	p = ttm_pool_type_take(pt);
384 	if (p) {
385 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
386 		num_pages = 1 << pt->order;
387 	} else {
388 		num_pages = 0;
389 	}
390 	up_read(&pool_shrink_rwsem);
391 
392 	return num_pages;
393 }
394 
395 /* Return the allocation order based for a page */
ttm_pool_page_order(struct ttm_pool * pool,struct page * p)396 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p)
397 {
398 	if (pool->use_dma_alloc) {
399 		struct ttm_pool_dma *dma = (void *)p->private;
400 
401 		return dma->vaddr & ~PAGE_MASK;
402 	}
403 
404 	return p->private;
405 }
406 
407 /*
408  * Split larger pages so that we can free each PAGE_SIZE page as soon
409  * as it has been backed up, in order to avoid memory pressure during
410  * reclaim.
411  */
ttm_pool_split_for_swap(struct ttm_pool * pool,struct page * p)412 static void ttm_pool_split_for_swap(struct ttm_pool *pool, struct page *p)
413 {
414 	unsigned int order = ttm_pool_page_order(pool, p);
415 	pgoff_t nr;
416 
417 	if (!order)
418 		return;
419 
420 	split_page(p, order);
421 	nr = 1UL << order;
422 	while (nr--)
423 		(p++)->private = 0;
424 }
425 
426 /**
427  * DOC: Partial backup and restoration of a struct ttm_tt.
428  *
429  * Swapout using ttm_backup_backup_page() and swapin using
430  * ttm_backup_copy_page() may fail.
431  * The former most likely due to lack of swap-space or memory, the latter due
432  * to lack of memory or because of signal interruption during waits.
433  *
434  * Backup failure is easily handled by using a ttm_tt pages vector that holds
435  * both backup handles and page pointers. This has to be taken into account when
436  * restoring such a ttm_tt from backup, and when freeing it while backed up.
437  * When restoring, for simplicity, new pages are actually allocated from the
438  * pool and the contents of any old pages are copied in and then the old pages
439  * are released.
440  *
441  * For restoration failures, the struct ttm_pool_tt_restore holds sufficient state
442  * to be able to resume an interrupted restore, and that structure is freed once
443  * the restoration is complete. If the struct ttm_tt is destroyed while there
444  * is a valid struct ttm_pool_tt_restore attached, that is also properly taken
445  * care of.
446  */
447 
448 /* Is restore ongoing for the currently allocated page? */
ttm_pool_restore_valid(const struct ttm_pool_tt_restore * restore)449 static bool ttm_pool_restore_valid(const struct ttm_pool_tt_restore *restore)
450 {
451 	return restore && restore->restored_pages < (1 << restore->order);
452 }
453 
454 /* DMA unmap and free a multi-order page, either to the relevant pool or to system. */
ttm_pool_unmap_and_free(struct ttm_pool * pool,struct page * page,const dma_addr_t * dma_addr,enum ttm_caching caching)455 static pgoff_t ttm_pool_unmap_and_free(struct ttm_pool *pool, struct page *page,
456 				       const dma_addr_t *dma_addr, enum ttm_caching caching)
457 {
458 	struct ttm_pool_type *pt = NULL;
459 	unsigned int order;
460 	pgoff_t nr;
461 
462 	if (pool) {
463 		order = ttm_pool_page_order(pool, page);
464 		nr = (1UL << order);
465 		if (dma_addr)
466 			ttm_pool_unmap(pool, *dma_addr, nr);
467 
468 		pt = ttm_pool_select_type(pool, caching, order);
469 	} else {
470 		order = page->private;
471 		nr = (1UL << order);
472 	}
473 
474 	if (pt)
475 		ttm_pool_type_give(pt, page);
476 	else
477 		ttm_pool_free_page(pool, caching, order, page);
478 
479 	return nr;
480 }
481 
482 /* Populate the page-array using the most recent allocated multi-order page. */
ttm_pool_allocated_page_commit(struct page * allocated,dma_addr_t first_dma,struct ttm_pool_alloc_state * alloc,pgoff_t nr)483 static void ttm_pool_allocated_page_commit(struct page *allocated,
484 					   dma_addr_t first_dma,
485 					   struct ttm_pool_alloc_state *alloc,
486 					   pgoff_t nr)
487 {
488 	pgoff_t i;
489 
490 	for (i = 0; i < nr; ++i)
491 		*alloc->pages++ = allocated++;
492 
493 	alloc->remaining_pages -= nr;
494 
495 	if (!alloc->dma_addr)
496 		return;
497 
498 	for (i = 0; i < nr; ++i) {
499 		*alloc->dma_addr++ = first_dma;
500 		first_dma += PAGE_SIZE;
501 	}
502 }
503 
504 /*
505  * When restoring, restore backed-up content to the newly allocated page and
506  * if successful, populate the page-table and dma-address arrays.
507  */
ttm_pool_restore_commit(struct ttm_pool_tt_restore * restore,struct file * backup,const struct ttm_operation_ctx * ctx,struct ttm_pool_alloc_state * alloc)508 static int ttm_pool_restore_commit(struct ttm_pool_tt_restore *restore,
509 				   struct file *backup,
510 				   const struct ttm_operation_ctx *ctx,
511 				   struct ttm_pool_alloc_state *alloc)
512 
513 {
514 	pgoff_t i, nr = 1UL << restore->order;
515 	struct page **first_page = alloc->pages;
516 	struct page *p;
517 	int ret = 0;
518 
519 	for (i = restore->restored_pages; i < nr; ++i) {
520 		p = first_page[i];
521 		if (ttm_backup_page_ptr_is_handle(p)) {
522 			unsigned long handle = ttm_backup_page_ptr_to_handle(p);
523 
524 			if (IS_ENABLED(CONFIG_FAULT_INJECTION) && ctx->interruptible &&
525 			    should_fail(&backup_fault_inject, 1)) {
526 				ret = -EINTR;
527 				break;
528 			}
529 
530 			if (handle == 0) {
531 				restore->restored_pages++;
532 				continue;
533 			}
534 
535 			ret = ttm_backup_copy_page(backup, restore->alloced_page + i,
536 						   handle, ctx->interruptible);
537 			if (ret)
538 				break;
539 
540 			ttm_backup_drop(backup, handle);
541 		} else if (p) {
542 			/*
543 			 * We could probably avoid splitting the old page
544 			 * using clever logic, but ATM we don't care, as
545 			 * we prioritize releasing memory ASAP. Note that
546 			 * here, the old retained page is always write-back
547 			 * cached.
548 			 */
549 			ttm_pool_split_for_swap(restore->pool, p);
550 			copy_highpage(restore->alloced_page + i, p);
551 			__free_pages(p, 0);
552 		}
553 
554 		restore->restored_pages++;
555 		first_page[i] = ttm_backup_handle_to_page_ptr(0);
556 	}
557 
558 	if (ret) {
559 		if (!restore->restored_pages) {
560 			dma_addr_t *dma_addr = alloc->dma_addr ? &restore->first_dma : NULL;
561 
562 			ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
563 						dma_addr, restore->page_caching);
564 			restore->restored_pages = nr;
565 		}
566 		return ret;
567 	}
568 
569 	ttm_pool_allocated_page_commit(restore->alloced_page, restore->first_dma,
570 				       alloc, nr);
571 	if (restore->page_caching == alloc->tt_caching || PageHighMem(restore->alloced_page))
572 		alloc->caching_divide = alloc->pages;
573 	restore->snapshot_alloc = *alloc;
574 	restore->alloced_pages += nr;
575 
576 	return 0;
577 }
578 
579 /* If restoring, save information needed for ttm_pool_restore_commit(). */
580 static void
ttm_pool_page_allocated_restore(struct ttm_pool * pool,unsigned int order,struct page * p,enum ttm_caching page_caching,dma_addr_t first_dma,struct ttm_pool_tt_restore * restore,const struct ttm_pool_alloc_state * alloc)581 ttm_pool_page_allocated_restore(struct ttm_pool *pool, unsigned int order,
582 				struct page *p,
583 				enum ttm_caching page_caching,
584 				dma_addr_t first_dma,
585 				struct ttm_pool_tt_restore *restore,
586 				const struct ttm_pool_alloc_state *alloc)
587 {
588 	restore->pool = pool;
589 	restore->order = order;
590 	restore->restored_pages = 0;
591 	restore->page_caching = page_caching;
592 	restore->first_dma = first_dma;
593 	restore->alloced_page = p;
594 	restore->snapshot_alloc = *alloc;
595 }
596 
597 /*
598  * Called when we got a page, either from a pool or newly allocated.
599  * if needed, dma map the page and populate the dma address array.
600  * Populate the page address array.
601  * If the caching is consistent, update any deferred caching. Otherwise
602  * stage this page for an upcoming deferred caching update.
603  */
ttm_pool_page_allocated(struct ttm_pool * pool,unsigned int order,struct page * p,enum ttm_caching page_caching,struct ttm_pool_alloc_state * alloc,struct ttm_pool_tt_restore * restore)604 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order,
605 				   struct page *p, enum ttm_caching page_caching,
606 				   struct ttm_pool_alloc_state *alloc,
607 				   struct ttm_pool_tt_restore *restore)
608 {
609 	bool caching_consistent;
610 	dma_addr_t first_dma;
611 	int r = 0;
612 
613 	caching_consistent = (page_caching == alloc->tt_caching) || PageHighMem(p);
614 
615 	if (caching_consistent) {
616 		r = ttm_pool_apply_caching(alloc);
617 		if (r)
618 			return r;
619 	}
620 
621 	if (alloc->dma_addr) {
622 		r = ttm_pool_map(pool, order, p, &first_dma);
623 		if (r)
624 			return r;
625 	}
626 
627 	if (restore) {
628 		ttm_pool_page_allocated_restore(pool, order, p, page_caching,
629 						first_dma, restore, alloc);
630 	} else {
631 		ttm_pool_allocated_page_commit(p, first_dma, alloc, 1UL << order);
632 
633 		if (caching_consistent)
634 			alloc->caching_divide = alloc->pages;
635 	}
636 
637 	return 0;
638 }
639 
640 /**
641  * ttm_pool_free_range() - Free a range of TTM pages
642  * @pool: The pool used for allocating.
643  * @tt: The struct ttm_tt holding the page pointers.
644  * @caching: The page caching mode used by the range.
645  * @start_page: index for first page to free.
646  * @end_page: index for last page to free + 1.
647  *
648  * During allocation the ttm_tt page-vector may be populated with ranges of
649  * pages with different attributes if allocation hit an error without being
650  * able to completely fulfill the allocation. This function can be used
651  * to free these individual ranges.
652  */
ttm_pool_free_range(struct ttm_pool * pool,struct ttm_tt * tt,enum ttm_caching caching,pgoff_t start_page,pgoff_t end_page)653 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt,
654 				enum ttm_caching caching,
655 				pgoff_t start_page, pgoff_t end_page)
656 {
657 	struct page **pages = &tt->pages[start_page];
658 	struct file *backup = tt->backup;
659 	pgoff_t i, nr;
660 
661 	for (i = start_page; i < end_page; i += nr, pages += nr) {
662 		struct page *p = *pages;
663 
664 		nr = 1;
665 		if (ttm_backup_page_ptr_is_handle(p)) {
666 			unsigned long handle = ttm_backup_page_ptr_to_handle(p);
667 
668 			if (handle != 0)
669 				ttm_backup_drop(backup, handle);
670 		} else if (p) {
671 			dma_addr_t *dma_addr = tt->dma_address ?
672 				tt->dma_address + i : NULL;
673 
674 			nr = ttm_pool_unmap_and_free(pool, p, dma_addr, caching);
675 		}
676 	}
677 }
678 
ttm_pool_alloc_state_init(const struct ttm_tt * tt,struct ttm_pool_alloc_state * alloc)679 static void ttm_pool_alloc_state_init(const struct ttm_tt *tt,
680 				      struct ttm_pool_alloc_state *alloc)
681 {
682 	alloc->pages = tt->pages;
683 	alloc->caching_divide = tt->pages;
684 	alloc->dma_addr = tt->dma_address;
685 	alloc->remaining_pages = tt->num_pages;
686 	alloc->tt_caching = tt->caching;
687 }
688 
689 /*
690  * Find a suitable allocation order based on highest desired order
691  * and number of remaining pages
692  */
ttm_pool_alloc_find_order(unsigned int highest,const struct ttm_pool_alloc_state * alloc)693 static unsigned int ttm_pool_alloc_find_order(unsigned int highest,
694 					      const struct ttm_pool_alloc_state *alloc)
695 {
696 	return min_t(unsigned int, highest, __fls(alloc->remaining_pages));
697 }
698 
__ttm_pool_alloc(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_operation_ctx * ctx,struct ttm_pool_alloc_state * alloc,struct ttm_pool_tt_restore * restore)699 static int __ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
700 			    const struct ttm_operation_ctx *ctx,
701 			    struct ttm_pool_alloc_state *alloc,
702 			    struct ttm_pool_tt_restore *restore)
703 {
704 	enum ttm_caching page_caching;
705 	gfp_t gfp_flags = GFP_USER;
706 	pgoff_t caching_divide;
707 	unsigned int order;
708 	bool allow_pools;
709 	struct page *p;
710 	int r;
711 
712 	WARN_ON(!alloc->remaining_pages || ttm_tt_is_populated(tt));
713 	WARN_ON(alloc->dma_addr && !pool->dev);
714 
715 	if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC)
716 		gfp_flags |= __GFP_ZERO;
717 
718 	if (ctx->gfp_retry_mayfail)
719 		gfp_flags |= __GFP_RETRY_MAYFAIL;
720 
721 	if (pool->use_dma32)
722 		gfp_flags |= GFP_DMA32;
723 	else
724 		gfp_flags |= GFP_HIGHUSER;
725 
726 	page_caching = tt->caching;
727 	allow_pools = true;
728 	for (order = ttm_pool_alloc_find_order(MAX_PAGE_ORDER, alloc);
729 	     alloc->remaining_pages;
730 	     order = ttm_pool_alloc_find_order(order, alloc)) {
731 		struct ttm_pool_type *pt;
732 
733 		/* First, try to allocate a page from a pool if one exists. */
734 		p = NULL;
735 		pt = ttm_pool_select_type(pool, page_caching, order);
736 		if (pt && allow_pools)
737 			p = ttm_pool_type_take(pt);
738 		/*
739 		 * If that fails or previously failed, allocate from system.
740 		 * Note that this also disallows additional pool allocations using
741 		 * write-back cached pools of the same order. Consider removing
742 		 * that behaviour.
743 		 */
744 		if (!p) {
745 			page_caching = ttm_cached;
746 			allow_pools = false;
747 			p = ttm_pool_alloc_page(pool, gfp_flags, order);
748 		}
749 		/* If that fails, lower the order if possible and retry. */
750 		if (!p) {
751 			if (order) {
752 				--order;
753 				page_caching = tt->caching;
754 				allow_pools = true;
755 				continue;
756 			}
757 			r = -ENOMEM;
758 			goto error_free_all;
759 		}
760 		r = ttm_pool_page_allocated(pool, order, p, page_caching, alloc,
761 					    restore);
762 		if (r)
763 			goto error_free_page;
764 
765 		if (ttm_pool_restore_valid(restore)) {
766 			r = ttm_pool_restore_commit(restore, tt->backup, ctx, alloc);
767 			if (r)
768 				goto error_free_all;
769 		}
770 	}
771 
772 	r = ttm_pool_apply_caching(alloc);
773 	if (r)
774 		goto error_free_all;
775 
776 	kfree(tt->restore);
777 	tt->restore = NULL;
778 
779 	return 0;
780 
781 error_free_page:
782 	ttm_pool_free_page(pool, page_caching, order, p);
783 
784 error_free_all:
785 	if (tt->restore)
786 		return r;
787 
788 	caching_divide = alloc->caching_divide - tt->pages;
789 	ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide);
790 	ttm_pool_free_range(pool, tt, ttm_cached, caching_divide,
791 			    tt->num_pages - alloc->remaining_pages);
792 
793 	return r;
794 }
795 
796 /**
797  * ttm_pool_alloc - Fill a ttm_tt object
798  *
799  * @pool: ttm_pool to use
800  * @tt: ttm_tt object to fill
801  * @ctx: operation context
802  *
803  * Fill the ttm_tt object with pages and also make sure to DMA map them when
804  * necessary.
805  *
806  * Returns: 0 on successe, negative error code otherwise.
807  */
ttm_pool_alloc(struct ttm_pool * pool,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)808 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
809 		   struct ttm_operation_ctx *ctx)
810 {
811 	struct ttm_pool_alloc_state alloc;
812 
813 	if (WARN_ON(ttm_tt_is_backed_up(tt)))
814 		return -EINVAL;
815 
816 	ttm_pool_alloc_state_init(tt, &alloc);
817 
818 	return __ttm_pool_alloc(pool, tt, ctx, &alloc, NULL);
819 }
820 EXPORT_SYMBOL(ttm_pool_alloc);
821 
822 /**
823  * ttm_pool_restore_and_alloc - Fill a ttm_tt, restoring previously backed-up
824  * content.
825  *
826  * @pool: ttm_pool to use
827  * @tt: ttm_tt object to fill
828  * @ctx: operation context
829  *
830  * Fill the ttm_tt object with pages and also make sure to DMA map them when
831  * necessary. Read in backed-up content.
832  *
833  * Returns: 0 on successe, negative error code otherwise.
834  */
ttm_pool_restore_and_alloc(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_operation_ctx * ctx)835 int ttm_pool_restore_and_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
836 			       const struct ttm_operation_ctx *ctx)
837 {
838 	struct ttm_pool_alloc_state alloc;
839 
840 	if (WARN_ON(!ttm_tt_is_backed_up(tt)))
841 		return -EINVAL;
842 
843 	if (!tt->restore) {
844 		gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
845 
846 		ttm_pool_alloc_state_init(tt, &alloc);
847 		if (ctx->gfp_retry_mayfail)
848 			gfp |= __GFP_RETRY_MAYFAIL;
849 
850 		tt->restore = kzalloc(sizeof(*tt->restore), gfp);
851 		if (!tt->restore)
852 			return -ENOMEM;
853 
854 		tt->restore->snapshot_alloc = alloc;
855 		tt->restore->pool = pool;
856 		tt->restore->restored_pages = 1;
857 	} else {
858 		struct ttm_pool_tt_restore *restore = tt->restore;
859 		int ret;
860 
861 		alloc = restore->snapshot_alloc;
862 		if (ttm_pool_restore_valid(tt->restore)) {
863 			ret = ttm_pool_restore_commit(restore, tt->backup, ctx, &alloc);
864 			if (ret)
865 				return ret;
866 		}
867 		if (!alloc.remaining_pages)
868 			return 0;
869 	}
870 
871 	return __ttm_pool_alloc(pool, tt, ctx, &alloc, tt->restore);
872 }
873 
874 /**
875  * ttm_pool_free - Free the backing pages from a ttm_tt object
876  *
877  * @pool: Pool to give pages back to.
878  * @tt: ttm_tt object to unpopulate
879  *
880  * Give the packing pages back to a pool or free them
881  */
ttm_pool_free(struct ttm_pool * pool,struct ttm_tt * tt)882 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt)
883 {
884 	ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages);
885 
886 	while (atomic_long_read(&allocated_pages) > page_pool_size)
887 		ttm_pool_shrink();
888 }
889 EXPORT_SYMBOL(ttm_pool_free);
890 
891 /**
892  * ttm_pool_drop_backed_up() - Release content of a swapped-out struct ttm_tt
893  * @tt: The struct ttm_tt.
894  *
895  * Release handles with associated content or any remaining pages of
896  * a backed-up struct ttm_tt.
897  */
ttm_pool_drop_backed_up(struct ttm_tt * tt)898 void ttm_pool_drop_backed_up(struct ttm_tt *tt)
899 {
900 	struct ttm_pool_tt_restore *restore;
901 	pgoff_t start_page = 0;
902 
903 	WARN_ON(!ttm_tt_is_backed_up(tt));
904 
905 	restore = tt->restore;
906 
907 	/*
908 	 * Unmap and free any uncommitted restore page.
909 	 * any tt page-array backup entries already read back has
910 	 * been cleared already
911 	 */
912 	if (ttm_pool_restore_valid(restore)) {
913 		dma_addr_t *dma_addr = tt->dma_address ? &restore->first_dma : NULL;
914 
915 		ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
916 					dma_addr, restore->page_caching);
917 		restore->restored_pages = 1UL << restore->order;
918 	}
919 
920 	/*
921 	 * If a restore is ongoing, part of the tt pages may have a
922 	 * caching different than writeback.
923 	 */
924 	if (restore) {
925 		pgoff_t mid = restore->snapshot_alloc.caching_divide - tt->pages;
926 
927 		start_page = restore->alloced_pages;
928 		WARN_ON(mid > start_page);
929 		/* Pages that might be dma-mapped and non-cached */
930 		ttm_pool_free_range(restore->pool, tt, tt->caching,
931 				    0, mid);
932 		/* Pages that might be dma-mapped but cached */
933 		ttm_pool_free_range(restore->pool, tt, ttm_cached,
934 				    mid, restore->alloced_pages);
935 		kfree(restore);
936 		tt->restore = NULL;
937 	}
938 
939 	ttm_pool_free_range(NULL, tt, ttm_cached, start_page, tt->num_pages);
940 }
941 
942 /**
943  * ttm_pool_backup() - Back up or purge a struct ttm_tt
944  * @pool: The pool used when allocating the struct ttm_tt.
945  * @tt: The struct ttm_tt.
946  * @flags: Flags to govern the backup behaviour.
947  *
948  * Back up or purge a struct ttm_tt. If @purge is true, then
949  * all pages will be freed directly to the system rather than to the pool
950  * they were allocated from, making the function behave similarly to
951  * ttm_pool_free(). If @purge is false the pages will be backed up instead,
952  * exchanged for handles.
953  * A subsequent call to ttm_pool_restore_and_alloc() will then read back the content and
954  * a subsequent call to ttm_pool_drop_backed_up() will drop it.
955  * If backup of a page fails for whatever reason, @ttm will still be
956  * partially backed up, retaining those pages for which backup fails.
957  * In that case, this function can be retried, possibly after freeing up
958  * memory resources.
959  *
960  * Return: Number of pages actually backed up or freed, or negative
961  * error code on error.
962  */
ttm_pool_backup(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_backup_flags * flags)963 long ttm_pool_backup(struct ttm_pool *pool, struct ttm_tt *tt,
964 		     const struct ttm_backup_flags *flags)
965 {
966 	struct file *backup = tt->backup;
967 	struct page *page;
968 	unsigned long handle;
969 	gfp_t alloc_gfp;
970 	gfp_t gfp;
971 	int ret = 0;
972 	pgoff_t shrunken = 0;
973 	pgoff_t i, num_pages;
974 
975 	if (WARN_ON(ttm_tt_is_backed_up(tt)))
976 		return -EINVAL;
977 
978 	if ((!ttm_backup_bytes_avail() && !flags->purge) ||
979 	    pool->use_dma_alloc || ttm_tt_is_backed_up(tt))
980 		return -EBUSY;
981 
982 #ifdef CONFIG_X86
983 	/* Anything returned to the system needs to be cached. */
984 	if (tt->caching != ttm_cached)
985 		set_pages_array_wb(tt->pages, tt->num_pages);
986 #endif
987 
988 	if (tt->dma_address || flags->purge) {
989 		for (i = 0; i < tt->num_pages; i += num_pages) {
990 			unsigned int order;
991 
992 			page = tt->pages[i];
993 			if (unlikely(!page)) {
994 				num_pages = 1;
995 				continue;
996 			}
997 
998 			order = ttm_pool_page_order(pool, page);
999 			num_pages = 1UL << order;
1000 			if (tt->dma_address)
1001 				ttm_pool_unmap(pool, tt->dma_address[i],
1002 					       num_pages);
1003 			if (flags->purge) {
1004 				shrunken += num_pages;
1005 				page->private = 0;
1006 				__free_pages(page, order);
1007 				memset(tt->pages + i, 0,
1008 				       num_pages * sizeof(*tt->pages));
1009 			}
1010 		}
1011 	}
1012 
1013 	if (flags->purge)
1014 		return shrunken;
1015 
1016 	if (pool->use_dma32)
1017 		gfp = GFP_DMA32;
1018 	else
1019 		gfp = GFP_HIGHUSER;
1020 
1021 	alloc_gfp = GFP_KERNEL | __GFP_HIGH | __GFP_NOWARN | __GFP_RETRY_MAYFAIL;
1022 
1023 	num_pages = tt->num_pages;
1024 
1025 	/* Pretend doing fault injection by shrinking only half of the pages. */
1026 	if (IS_ENABLED(CONFIG_FAULT_INJECTION) && should_fail(&backup_fault_inject, 1))
1027 		num_pages = DIV_ROUND_UP(num_pages, 2);
1028 
1029 	for (i = 0; i < num_pages; ++i) {
1030 		s64 shandle;
1031 
1032 		page = tt->pages[i];
1033 		if (unlikely(!page))
1034 			continue;
1035 
1036 		ttm_pool_split_for_swap(pool, page);
1037 
1038 		shandle = ttm_backup_backup_page(backup, page, flags->writeback, i,
1039 						 gfp, alloc_gfp);
1040 		if (shandle < 0) {
1041 			/* We allow partially shrunken tts */
1042 			ret = shandle;
1043 			break;
1044 		}
1045 		handle = shandle;
1046 		tt->pages[i] = ttm_backup_handle_to_page_ptr(handle);
1047 		put_page(page);
1048 		shrunken++;
1049 	}
1050 
1051 	return shrunken ? shrunken : ret;
1052 }
1053 
1054 /**
1055  * ttm_pool_init - Initialize a pool
1056  *
1057  * @pool: the pool to initialize
1058  * @dev: device for DMA allocations and mappings
1059  * @nid: NUMA node to use for allocations
1060  * @use_dma_alloc: true if coherent DMA alloc should be used
1061  * @use_dma32: true if GFP_DMA32 should be used
1062  *
1063  * Initialize the pool and its pool types.
1064  */
ttm_pool_init(struct ttm_pool * pool,struct device * dev,int nid,bool use_dma_alloc,bool use_dma32)1065 void ttm_pool_init(struct ttm_pool *pool, struct device *dev,
1066 		   int nid, bool use_dma_alloc, bool use_dma32)
1067 {
1068 	unsigned int i, j;
1069 
1070 	WARN_ON(!dev && use_dma_alloc);
1071 
1072 	pool->dev = dev;
1073 	pool->nid = nid;
1074 	pool->use_dma_alloc = use_dma_alloc;
1075 	pool->use_dma32 = use_dma32;
1076 
1077 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1078 		for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1079 			struct ttm_pool_type *pt;
1080 
1081 			/* Initialize only pool types which are actually used */
1082 			pt = ttm_pool_select_type(pool, i, j);
1083 			if (pt != &pool->caching[i].orders[j])
1084 				continue;
1085 
1086 			ttm_pool_type_init(pt, pool, i, j);
1087 		}
1088 	}
1089 }
1090 EXPORT_SYMBOL(ttm_pool_init);
1091 
1092 /**
1093  * ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete.
1094  *
1095  * This is useful to guarantee that all shrinker invocations have seen an
1096  * update, before freeing memory, similar to rcu.
1097  */
ttm_pool_synchronize_shrinkers(void)1098 static void ttm_pool_synchronize_shrinkers(void)
1099 {
1100 	down_write(&pool_shrink_rwsem);
1101 	up_write(&pool_shrink_rwsem);
1102 }
1103 
1104 /**
1105  * ttm_pool_fini - Cleanup a pool
1106  *
1107  * @pool: the pool to clean up
1108  *
1109  * Free all pages in the pool and unregister the types from the global
1110  * shrinker.
1111  */
ttm_pool_fini(struct ttm_pool * pool)1112 void ttm_pool_fini(struct ttm_pool *pool)
1113 {
1114 	unsigned int i, j;
1115 
1116 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1117 		for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1118 			struct ttm_pool_type *pt;
1119 
1120 			pt = ttm_pool_select_type(pool, i, j);
1121 			if (pt != &pool->caching[i].orders[j])
1122 				continue;
1123 
1124 			ttm_pool_type_fini(pt);
1125 		}
1126 	}
1127 
1128 	/* We removed the pool types from the LRU, but we need to also make sure
1129 	 * that no shrinker is concurrently freeing pages from the pool.
1130 	 */
1131 	ttm_pool_synchronize_shrinkers();
1132 }
1133 EXPORT_SYMBOL(ttm_pool_fini);
1134 
1135 /* As long as pages are available make sure to release at least one */
ttm_pool_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)1136 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink,
1137 					    struct shrink_control *sc)
1138 {
1139 	unsigned long num_freed = 0;
1140 
1141 	do
1142 		num_freed += ttm_pool_shrink();
1143 	while (!num_freed && atomic_long_read(&allocated_pages));
1144 
1145 	return num_freed;
1146 }
1147 
1148 /* Return the number of pages available or SHRINK_EMPTY if we have none */
ttm_pool_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)1149 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink,
1150 					     struct shrink_control *sc)
1151 {
1152 	unsigned long num_pages = atomic_long_read(&allocated_pages);
1153 
1154 	return num_pages ? num_pages : SHRINK_EMPTY;
1155 }
1156 
1157 #ifdef CONFIG_DEBUG_FS
1158 /* Count the number of pages available in a pool_type */
ttm_pool_type_count(struct ttm_pool_type * pt)1159 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt)
1160 {
1161 	unsigned int count = 0;
1162 	struct page *p;
1163 
1164 	spin_lock(&pt->lock);
1165 	/* Only used for debugfs, the overhead doesn't matter */
1166 	list_for_each_entry(p, &pt->pages, lru)
1167 		++count;
1168 	spin_unlock(&pt->lock);
1169 
1170 	return count;
1171 }
1172 
1173 /* Print a nice header for the order */
ttm_pool_debugfs_header(struct seq_file * m)1174 static void ttm_pool_debugfs_header(struct seq_file *m)
1175 {
1176 	unsigned int i;
1177 
1178 	seq_puts(m, "\t ");
1179 	for (i = 0; i < NR_PAGE_ORDERS; ++i)
1180 		seq_printf(m, " ---%2u---", i);
1181 	seq_puts(m, "\n");
1182 }
1183 
1184 /* Dump information about the different pool types */
ttm_pool_debugfs_orders(struct ttm_pool_type * pt,struct seq_file * m)1185 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt,
1186 				    struct seq_file *m)
1187 {
1188 	unsigned int i;
1189 
1190 	for (i = 0; i < NR_PAGE_ORDERS; ++i)
1191 		seq_printf(m, " %8u", ttm_pool_type_count(&pt[i]));
1192 	seq_puts(m, "\n");
1193 }
1194 
1195 /* Dump the total amount of allocated pages */
ttm_pool_debugfs_footer(struct seq_file * m)1196 static void ttm_pool_debugfs_footer(struct seq_file *m)
1197 {
1198 	seq_printf(m, "\ntotal\t: %8lu of %8lu\n",
1199 		   atomic_long_read(&allocated_pages), page_pool_size);
1200 }
1201 
1202 /* Dump the information for the global pools */
ttm_pool_debugfs_globals_show(struct seq_file * m,void * data)1203 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data)
1204 {
1205 	ttm_pool_debugfs_header(m);
1206 
1207 	spin_lock(&shrinker_lock);
1208 	seq_puts(m, "wc\t:");
1209 	ttm_pool_debugfs_orders(global_write_combined, m);
1210 	seq_puts(m, "uc\t:");
1211 	ttm_pool_debugfs_orders(global_uncached, m);
1212 	seq_puts(m, "wc 32\t:");
1213 	ttm_pool_debugfs_orders(global_dma32_write_combined, m);
1214 	seq_puts(m, "uc 32\t:");
1215 	ttm_pool_debugfs_orders(global_dma32_uncached, m);
1216 	spin_unlock(&shrinker_lock);
1217 
1218 	ttm_pool_debugfs_footer(m);
1219 
1220 	return 0;
1221 }
1222 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals);
1223 
1224 /**
1225  * ttm_pool_debugfs - Debugfs dump function for a pool
1226  *
1227  * @pool: the pool to dump the information for
1228  * @m: seq_file to dump to
1229  *
1230  * Make a debugfs dump with the per pool and global information.
1231  */
ttm_pool_debugfs(struct ttm_pool * pool,struct seq_file * m)1232 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m)
1233 {
1234 	unsigned int i;
1235 
1236 	if (!pool->use_dma_alloc) {
1237 		seq_puts(m, "unused\n");
1238 		return 0;
1239 	}
1240 
1241 	ttm_pool_debugfs_header(m);
1242 
1243 	spin_lock(&shrinker_lock);
1244 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1245 		seq_puts(m, "DMA ");
1246 		switch (i) {
1247 		case ttm_cached:
1248 			seq_puts(m, "\t:");
1249 			break;
1250 		case ttm_write_combined:
1251 			seq_puts(m, "wc\t:");
1252 			break;
1253 		case ttm_uncached:
1254 			seq_puts(m, "uc\t:");
1255 			break;
1256 		}
1257 		ttm_pool_debugfs_orders(pool->caching[i].orders, m);
1258 	}
1259 	spin_unlock(&shrinker_lock);
1260 
1261 	ttm_pool_debugfs_footer(m);
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(ttm_pool_debugfs);
1265 
1266 /* Test the shrinker functions and dump the result */
ttm_pool_debugfs_shrink_show(struct seq_file * m,void * data)1267 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data)
1268 {
1269 	struct shrink_control sc = { .gfp_mask = GFP_NOFS };
1270 
1271 	fs_reclaim_acquire(GFP_KERNEL);
1272 	seq_printf(m, "%lu/%lu\n", ttm_pool_shrinker_count(mm_shrinker, &sc),
1273 		   ttm_pool_shrinker_scan(mm_shrinker, &sc));
1274 	fs_reclaim_release(GFP_KERNEL);
1275 
1276 	return 0;
1277 }
1278 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink);
1279 
1280 #endif
1281 
1282 /**
1283  * ttm_pool_mgr_init - Initialize globals
1284  *
1285  * @num_pages: default number of pages
1286  *
1287  * Initialize the global locks and lists for the MM shrinker.
1288  */
ttm_pool_mgr_init(unsigned long num_pages)1289 int ttm_pool_mgr_init(unsigned long num_pages)
1290 {
1291 	unsigned int i;
1292 
1293 	if (!page_pool_size)
1294 		page_pool_size = num_pages;
1295 
1296 	spin_lock_init(&shrinker_lock);
1297 	INIT_LIST_HEAD(&shrinker_list);
1298 
1299 	for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1300 		ttm_pool_type_init(&global_write_combined[i], NULL,
1301 				   ttm_write_combined, i);
1302 		ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i);
1303 
1304 		ttm_pool_type_init(&global_dma32_write_combined[i], NULL,
1305 				   ttm_write_combined, i);
1306 		ttm_pool_type_init(&global_dma32_uncached[i], NULL,
1307 				   ttm_uncached, i);
1308 	}
1309 
1310 #ifdef CONFIG_DEBUG_FS
1311 	debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL,
1312 			    &ttm_pool_debugfs_globals_fops);
1313 	debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL,
1314 			    &ttm_pool_debugfs_shrink_fops);
1315 #ifdef CONFIG_FAULT_INJECTION
1316 	fault_create_debugfs_attr("backup_fault_inject", ttm_debugfs_root,
1317 				  &backup_fault_inject);
1318 #endif
1319 #endif
1320 
1321 	mm_shrinker = shrinker_alloc(0, "drm-ttm_pool");
1322 	if (!mm_shrinker)
1323 		return -ENOMEM;
1324 
1325 	mm_shrinker->count_objects = ttm_pool_shrinker_count;
1326 	mm_shrinker->scan_objects = ttm_pool_shrinker_scan;
1327 	mm_shrinker->seeks = 1;
1328 
1329 	shrinker_register(mm_shrinker);
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  * ttm_pool_mgr_fini - Finalize globals
1336  *
1337  * Cleanup the global pools and unregister the MM shrinker.
1338  */
ttm_pool_mgr_fini(void)1339 void ttm_pool_mgr_fini(void)
1340 {
1341 	unsigned int i;
1342 
1343 	for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1344 		ttm_pool_type_fini(&global_write_combined[i]);
1345 		ttm_pool_type_fini(&global_uncached[i]);
1346 
1347 		ttm_pool_type_fini(&global_dma32_write_combined[i]);
1348 		ttm_pool_type_fini(&global_dma32_uncached[i]);
1349 	}
1350 
1351 	shrinker_free(mm_shrinker);
1352 	WARN_ON(!list_empty(&shrinker_list));
1353 }
1354