1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #include <sys/cdefs.h>
32 #include <dev/drm2/drmP.h>
33 #include <dev/drm2/ttm/ttm_module.h>
34 #include <dev/drm2/ttm/ttm_bo_driver.h>
35 #include <dev/drm2/ttm/ttm_placement.h>
36 #include <vm/vm_pageout.h>
37
38 #define TTM_ASSERT_LOCKED(param)
39 #define TTM_DEBUG(fmt, arg...)
40 #define TTM_BO_HASH_ORDER 13
41
42 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
43 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
44 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
45
46 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
47
ttm_mem_type_from_flags(uint32_t flags,uint32_t * mem_type)48 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
49 {
50 int i;
51
52 for (i = 0; i <= TTM_PL_PRIV5; i++)
53 if (flags & (1 << i)) {
54 *mem_type = i;
55 return 0;
56 }
57 return -EINVAL;
58 }
59
ttm_mem_type_debug(struct ttm_bo_device * bdev,int mem_type)60 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
61 {
62 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
63
64 printf(" has_type: %d\n", man->has_type);
65 printf(" use_type: %d\n", man->use_type);
66 printf(" flags: 0x%08X\n", man->flags);
67 printf(" gpu_offset: 0x%08lX\n", man->gpu_offset);
68 printf(" size: %ju\n", (uintmax_t)man->size);
69 printf(" available_caching: 0x%08X\n", man->available_caching);
70 printf(" default_caching: 0x%08X\n", man->default_caching);
71 if (mem_type != TTM_PL_SYSTEM)
72 (*man->func->debug)(man, TTM_PFX);
73 }
74
ttm_bo_mem_space_debug(struct ttm_buffer_object * bo,struct ttm_placement * placement)75 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
76 struct ttm_placement *placement)
77 {
78 int i, ret, mem_type;
79
80 printf("No space for %p (%lu pages, %luK, %luM)\n",
81 bo, bo->mem.num_pages, bo->mem.size >> 10,
82 bo->mem.size >> 20);
83 for (i = 0; i < placement->num_placement; i++) {
84 ret = ttm_mem_type_from_flags(placement->placement[i],
85 &mem_type);
86 if (ret)
87 return;
88 printf(" placement[%d]=0x%08X (%d)\n",
89 i, placement->placement[i], mem_type);
90 ttm_mem_type_debug(bo->bdev, mem_type);
91 }
92 }
93
94 #if 0
95 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
96 char *buffer)
97 {
98
99 return snprintf(buffer, PAGE_SIZE, "%lu\n",
100 (unsigned long) atomic_read(&glob->bo_count));
101 }
102 #endif
103
ttm_bo_type_flags(unsigned type)104 static inline uint32_t ttm_bo_type_flags(unsigned type)
105 {
106 return 1 << (type);
107 }
108
ttm_bo_release_list(struct ttm_buffer_object * bo)109 static void ttm_bo_release_list(struct ttm_buffer_object *bo)
110 {
111 struct ttm_bo_device *bdev = bo->bdev;
112 size_t acc_size = bo->acc_size;
113
114 MPASS(atomic_read(&bo->list_kref) == 0);
115 MPASS(atomic_read(&bo->kref) == 0);
116 MPASS(atomic_read(&bo->cpu_writers) == 0);
117 MPASS(bo->sync_obj == NULL);
118 MPASS(bo->mem.mm_node == NULL);
119 MPASS(list_empty(&bo->lru));
120 MPASS(list_empty(&bo->ddestroy));
121
122 if (bo->ttm)
123 ttm_tt_destroy(bo->ttm);
124 atomic_dec(&bo->glob->bo_count);
125 if (bo->destroy)
126 bo->destroy(bo);
127 else {
128 free(bo, M_TTM_BO);
129 }
130 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
131 }
132
133 static int
ttm_bo_wait_unreserved_locked(struct ttm_buffer_object * bo,bool interruptible)134 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
135 {
136 const char *wmsg;
137 int flags, ret;
138
139 ret = 0;
140 if (interruptible) {
141 flags = PCATCH;
142 wmsg = "ttbowi";
143 } else {
144 flags = 0;
145 wmsg = "ttbowu";
146 }
147 while (ttm_bo_is_reserved(bo)) {
148 ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0);
149 if (ret == -EINTR || ret == -ERESTART)
150 ret = -ERESTARTSYS;
151 if (ret != 0)
152 break;
153 }
154 return (ret);
155 }
156
ttm_bo_add_to_lru(struct ttm_buffer_object * bo)157 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
158 {
159 struct ttm_bo_device *bdev = bo->bdev;
160 struct ttm_mem_type_manager *man;
161
162 MPASS(ttm_bo_is_reserved(bo));
163
164 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
165
166 MPASS(list_empty(&bo->lru));
167
168 man = &bdev->man[bo->mem.mem_type];
169 list_add_tail(&bo->lru, &man->lru);
170 refcount_acquire(&bo->list_kref);
171
172 if (bo->ttm != NULL) {
173 list_add_tail(&bo->swap, &bo->glob->swap_lru);
174 refcount_acquire(&bo->list_kref);
175 }
176 }
177 }
178
ttm_bo_del_from_lru(struct ttm_buffer_object * bo)179 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
180 {
181 int put_count = 0;
182
183 if (!list_empty(&bo->swap)) {
184 list_del_init(&bo->swap);
185 ++put_count;
186 }
187 if (!list_empty(&bo->lru)) {
188 list_del_init(&bo->lru);
189 ++put_count;
190 }
191
192 /*
193 * TODO: Add a driver hook to delete from
194 * driver-specific LRU's here.
195 */
196
197 return put_count;
198 }
199
ttm_bo_reserve_nolru(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)200 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
201 bool interruptible,
202 bool no_wait, bool use_sequence, uint32_t sequence)
203 {
204 int ret;
205
206 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
207 /**
208 * Deadlock avoidance for multi-bo reserving.
209 */
210 if (use_sequence && bo->seq_valid) {
211 /**
212 * We've already reserved this one.
213 */
214 if (unlikely(sequence == bo->val_seq))
215 return -EDEADLK;
216 /**
217 * Already reserved by a thread that will not back
218 * off for us. We need to back off.
219 */
220 if (unlikely(sequence - bo->val_seq < (1U << 31)))
221 return -EAGAIN;
222 }
223
224 if (no_wait)
225 return -EBUSY;
226
227 ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
228
229 if (unlikely(ret))
230 return ret;
231 }
232
233 if (use_sequence) {
234 bool wake_up = false;
235 /**
236 * Wake up waiters that may need to recheck for deadlock,
237 * if we decreased the sequence number.
238 */
239 if (unlikely((bo->val_seq - sequence < (1U << 31))
240 || !bo->seq_valid))
241 wake_up = true;
242
243 /*
244 * In the worst case with memory ordering these values can be
245 * seen in the wrong order. However since we call wake_up_all
246 * in that case, this will hopefully not pose a problem,
247 * and the worst case would only cause someone to accidentally
248 * hit -EAGAIN in ttm_bo_reserve when they see old value of
249 * val_seq. However this would only happen if seq_valid was
250 * written before val_seq was, and just means some slightly
251 * increased cpu usage
252 */
253 bo->val_seq = sequence;
254 bo->seq_valid = true;
255 if (wake_up)
256 wakeup(bo);
257 } else {
258 bo->seq_valid = false;
259 }
260
261 return 0;
262 }
263
ttm_bo_list_ref_sub(struct ttm_buffer_object * bo,int count,bool never_free)264 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
265 bool never_free)
266 {
267 u_int old;
268
269 old = atomic_fetchadd_int(&bo->list_kref, -count);
270 if (old <= count) {
271 if (never_free)
272 panic("ttm_bo_ref_buf");
273 ttm_bo_release_list(bo);
274 }
275 }
276
ttm_bo_reserve(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)277 int ttm_bo_reserve(struct ttm_buffer_object *bo,
278 bool interruptible,
279 bool no_wait, bool use_sequence, uint32_t sequence)
280 {
281 struct ttm_bo_global *glob = bo->glob;
282 int put_count = 0;
283 int ret;
284
285 mtx_lock(&bo->glob->lru_lock);
286 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
287 sequence);
288 if (likely(ret == 0)) {
289 put_count = ttm_bo_del_from_lru(bo);
290 mtx_unlock(&glob->lru_lock);
291 ttm_bo_list_ref_sub(bo, put_count, true);
292 } else
293 mtx_unlock(&bo->glob->lru_lock);
294
295 return ret;
296 }
297
ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object * bo,bool interruptible,uint32_t sequence)298 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
299 bool interruptible, uint32_t sequence)
300 {
301 bool wake_up = false;
302 int ret;
303
304 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
305 if (bo->seq_valid && sequence == bo->val_seq) {
306 DRM_ERROR(
307 "%s: bo->seq_valid && sequence == bo->val_seq",
308 __func__);
309 }
310
311 ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
312
313 if (unlikely(ret))
314 return ret;
315 }
316
317 if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid)
318 wake_up = true;
319
320 /**
321 * Wake up waiters that may need to recheck for deadlock,
322 * if we decreased the sequence number.
323 */
324 bo->val_seq = sequence;
325 bo->seq_valid = true;
326 if (wake_up)
327 wakeup(bo);
328
329 return 0;
330 }
331
ttm_bo_reserve_slowpath(struct ttm_buffer_object * bo,bool interruptible,uint32_t sequence)332 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
333 bool interruptible, uint32_t sequence)
334 {
335 struct ttm_bo_global *glob = bo->glob;
336 int put_count, ret;
337
338 mtx_lock(&glob->lru_lock);
339 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
340 if (likely(!ret)) {
341 put_count = ttm_bo_del_from_lru(bo);
342 mtx_unlock(&glob->lru_lock);
343 ttm_bo_list_ref_sub(bo, put_count, true);
344 } else
345 mtx_unlock(&glob->lru_lock);
346 return ret;
347 }
348
ttm_bo_unreserve_locked(struct ttm_buffer_object * bo)349 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
350 {
351 ttm_bo_add_to_lru(bo);
352 atomic_set(&bo->reserved, 0);
353 wakeup(bo);
354 }
355
ttm_bo_unreserve(struct ttm_buffer_object * bo)356 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
357 {
358 struct ttm_bo_global *glob = bo->glob;
359
360 mtx_lock(&glob->lru_lock);
361 ttm_bo_unreserve_locked(bo);
362 mtx_unlock(&glob->lru_lock);
363 }
364
365 /*
366 * Call bo->mutex locked.
367 */
ttm_bo_add_ttm(struct ttm_buffer_object * bo,bool zero_alloc)368 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
369 {
370 struct ttm_bo_device *bdev = bo->bdev;
371 struct ttm_bo_global *glob = bo->glob;
372 int ret = 0;
373 uint32_t page_flags = 0;
374
375 TTM_ASSERT_LOCKED(&bo->mutex);
376 bo->ttm = NULL;
377
378 if (bdev->need_dma32)
379 page_flags |= TTM_PAGE_FLAG_DMA32;
380
381 switch (bo->type) {
382 case ttm_bo_type_device:
383 if (zero_alloc)
384 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
385 case ttm_bo_type_kernel:
386 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
387 page_flags, glob->dummy_read_page);
388 if (unlikely(bo->ttm == NULL))
389 ret = -ENOMEM;
390 break;
391 case ttm_bo_type_sg:
392 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
393 page_flags | TTM_PAGE_FLAG_SG,
394 glob->dummy_read_page);
395 if (unlikely(bo->ttm == NULL)) {
396 ret = -ENOMEM;
397 break;
398 }
399 bo->ttm->sg = bo->sg;
400 break;
401 default:
402 printf("[TTM] Illegal buffer object type\n");
403 ret = -EINVAL;
404 break;
405 }
406
407 return ret;
408 }
409
ttm_bo_handle_move_mem(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,bool evict,bool interruptible,bool no_wait_gpu)410 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
411 struct ttm_mem_reg *mem,
412 bool evict, bool interruptible,
413 bool no_wait_gpu)
414 {
415 struct ttm_bo_device *bdev = bo->bdev;
416 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
417 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
418 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
419 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
420 int ret = 0;
421
422 if (old_is_pci || new_is_pci ||
423 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
424 ret = ttm_mem_io_lock(old_man, true);
425 if (unlikely(ret != 0))
426 goto out_err;
427 ttm_bo_unmap_virtual_locked(bo);
428 ttm_mem_io_unlock(old_man);
429 }
430
431 /*
432 * Create and bind a ttm if required.
433 */
434
435 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
436 if (bo->ttm == NULL) {
437 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
438 ret = ttm_bo_add_ttm(bo, zero);
439 if (ret)
440 goto out_err;
441 }
442
443 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
444 if (ret)
445 goto out_err;
446
447 if (mem->mem_type != TTM_PL_SYSTEM) {
448 ret = ttm_tt_bind(bo->ttm, mem);
449 if (ret)
450 goto out_err;
451 }
452
453 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
454 if (bdev->driver->move_notify)
455 bdev->driver->move_notify(bo, mem);
456 bo->mem = *mem;
457 mem->mm_node = NULL;
458 goto moved;
459 }
460 }
461
462 if (bdev->driver->move_notify)
463 bdev->driver->move_notify(bo, mem);
464
465 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
466 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
467 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
468 else if (bdev->driver->move)
469 ret = bdev->driver->move(bo, evict, interruptible,
470 no_wait_gpu, mem);
471 else
472 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
473
474 if (ret) {
475 if (bdev->driver->move_notify) {
476 struct ttm_mem_reg tmp_mem = *mem;
477 *mem = bo->mem;
478 bo->mem = tmp_mem;
479 bdev->driver->move_notify(bo, mem);
480 bo->mem = *mem;
481 *mem = tmp_mem;
482 }
483
484 goto out_err;
485 }
486
487 moved:
488 if (bo->evicted) {
489 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
490 if (ret)
491 printf("[TTM] Can not flush read caches\n");
492 bo->evicted = false;
493 }
494
495 if (bo->mem.mm_node) {
496 bo->offset = (bo->mem.start << PAGE_SHIFT) +
497 bdev->man[bo->mem.mem_type].gpu_offset;
498 bo->cur_placement = bo->mem.placement;
499 } else
500 bo->offset = 0;
501
502 return 0;
503
504 out_err:
505 new_man = &bdev->man[bo->mem.mem_type];
506 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
507 ttm_tt_unbind(bo->ttm);
508 ttm_tt_destroy(bo->ttm);
509 bo->ttm = NULL;
510 }
511
512 return ret;
513 }
514
515 /**
516 * Call bo::reserved.
517 * Will release GPU memory type usage on destruction.
518 * This is the place to put in driver specific hooks to release
519 * driver private resources.
520 * Will release the bo::reserved lock.
521 */
522
ttm_bo_cleanup_memtype_use(struct ttm_buffer_object * bo)523 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
524 {
525 if (bo->bdev->driver->move_notify)
526 bo->bdev->driver->move_notify(bo, NULL);
527
528 if (bo->ttm) {
529 ttm_tt_unbind(bo->ttm);
530 ttm_tt_destroy(bo->ttm);
531 bo->ttm = NULL;
532 }
533 ttm_bo_mem_put(bo, &bo->mem);
534
535 atomic_set(&bo->reserved, 0);
536 wakeup(&bo);
537
538 /*
539 * Since the final reference to this bo may not be dropped by
540 * the current task we have to put a memory barrier here to make
541 * sure the changes done in this function are always visible.
542 *
543 * This function only needs protection against the final kref_put.
544 */
545 mb();
546 }
547
ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object * bo)548 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
549 {
550 struct ttm_bo_device *bdev = bo->bdev;
551 struct ttm_bo_global *glob = bo->glob;
552 struct ttm_bo_driver *driver = bdev->driver;
553 void *sync_obj = NULL;
554 int put_count;
555 int ret;
556
557 mtx_lock(&glob->lru_lock);
558 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
559
560 mtx_lock(&bdev->fence_lock);
561 (void) ttm_bo_wait(bo, false, false, true);
562 if (!ret && !bo->sync_obj) {
563 mtx_unlock(&bdev->fence_lock);
564 put_count = ttm_bo_del_from_lru(bo);
565
566 mtx_unlock(&glob->lru_lock);
567 ttm_bo_cleanup_memtype_use(bo);
568
569 ttm_bo_list_ref_sub(bo, put_count, true);
570
571 return;
572 }
573 if (bo->sync_obj)
574 sync_obj = driver->sync_obj_ref(bo->sync_obj);
575 mtx_unlock(&bdev->fence_lock);
576
577 if (!ret) {
578 atomic_set(&bo->reserved, 0);
579 wakeup(bo);
580 }
581
582 refcount_acquire(&bo->list_kref);
583 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
584 mtx_unlock(&glob->lru_lock);
585
586 if (sync_obj) {
587 driver->sync_obj_flush(sync_obj);
588 driver->sync_obj_unref(&sync_obj);
589 }
590 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
591 ((hz / 100) < 1) ? 1 : hz / 100);
592 }
593
594 /**
595 * function ttm_bo_cleanup_refs_and_unlock
596 * If bo idle, remove from delayed- and lru lists, and unref.
597 * If not idle, do nothing.
598 *
599 * Must be called with lru_lock and reservation held, this function
600 * will drop both before returning.
601 *
602 * @interruptible Any sleeps should occur interruptibly.
603 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
604 */
605
ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_gpu)606 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
607 bool interruptible,
608 bool no_wait_gpu)
609 {
610 struct ttm_bo_device *bdev = bo->bdev;
611 struct ttm_bo_driver *driver = bdev->driver;
612 struct ttm_bo_global *glob = bo->glob;
613 int put_count;
614 int ret;
615
616 mtx_lock(&bdev->fence_lock);
617 ret = ttm_bo_wait(bo, false, false, true);
618
619 if (ret && !no_wait_gpu) {
620 void *sync_obj;
621
622 /*
623 * Take a reference to the fence and unreserve,
624 * at this point the buffer should be dead, so
625 * no new sync objects can be attached.
626 */
627 sync_obj = driver->sync_obj_ref(bo->sync_obj);
628 mtx_unlock(&bdev->fence_lock);
629
630 atomic_set(&bo->reserved, 0);
631 wakeup(bo);
632 mtx_unlock(&glob->lru_lock);
633
634 ret = driver->sync_obj_wait(sync_obj, false, interruptible);
635 driver->sync_obj_unref(&sync_obj);
636 if (ret)
637 return ret;
638
639 /*
640 * remove sync_obj with ttm_bo_wait, the wait should be
641 * finished, and no new wait object should have been added.
642 */
643 mtx_lock(&bdev->fence_lock);
644 ret = ttm_bo_wait(bo, false, false, true);
645 mtx_unlock(&bdev->fence_lock);
646 if (ret)
647 return ret;
648
649 mtx_lock(&glob->lru_lock);
650 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
651
652 /*
653 * We raced, and lost, someone else holds the reservation now,
654 * and is probably busy in ttm_bo_cleanup_memtype_use.
655 *
656 * Even if it's not the case, because we finished waiting any
657 * delayed destruction would succeed, so just return success
658 * here.
659 */
660 if (ret) {
661 mtx_unlock(&glob->lru_lock);
662 return 0;
663 }
664 } else
665 mtx_unlock(&bdev->fence_lock);
666
667 if (ret || unlikely(list_empty(&bo->ddestroy))) {
668 atomic_set(&bo->reserved, 0);
669 wakeup(bo);
670 mtx_unlock(&glob->lru_lock);
671 return ret;
672 }
673
674 put_count = ttm_bo_del_from_lru(bo);
675 list_del_init(&bo->ddestroy);
676 ++put_count;
677
678 mtx_unlock(&glob->lru_lock);
679 ttm_bo_cleanup_memtype_use(bo);
680
681 ttm_bo_list_ref_sub(bo, put_count, true);
682
683 return 0;
684 }
685
686 /**
687 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
688 * encountered buffers.
689 */
690
ttm_bo_delayed_delete(struct ttm_bo_device * bdev,bool remove_all)691 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
692 {
693 struct ttm_bo_global *glob = bdev->glob;
694 struct ttm_buffer_object *entry = NULL;
695 int ret = 0;
696
697 mtx_lock(&glob->lru_lock);
698 if (list_empty(&bdev->ddestroy))
699 goto out_unlock;
700
701 entry = list_first_entry(&bdev->ddestroy,
702 struct ttm_buffer_object, ddestroy);
703 refcount_acquire(&entry->list_kref);
704
705 for (;;) {
706 struct ttm_buffer_object *nentry = NULL;
707
708 if (entry->ddestroy.next != &bdev->ddestroy) {
709 nentry = list_first_entry(&entry->ddestroy,
710 struct ttm_buffer_object, ddestroy);
711 refcount_acquire(&nentry->list_kref);
712 }
713
714 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
715 if (remove_all && ret) {
716 ret = ttm_bo_reserve_nolru(entry, false, false,
717 false, 0);
718 }
719
720 if (!ret)
721 ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
722 !remove_all);
723 else
724 mtx_unlock(&glob->lru_lock);
725
726 if (refcount_release(&entry->list_kref))
727 ttm_bo_release_list(entry);
728 entry = nentry;
729
730 if (ret || !entry)
731 goto out;
732
733 mtx_lock(&glob->lru_lock);
734 if (list_empty(&entry->ddestroy))
735 break;
736 }
737
738 out_unlock:
739 mtx_unlock(&glob->lru_lock);
740 out:
741 if (entry && refcount_release(&entry->list_kref))
742 ttm_bo_release_list(entry);
743 return ret;
744 }
745
ttm_bo_delayed_workqueue(void * arg,int pending __unused)746 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
747 {
748 struct ttm_bo_device *bdev = arg;
749
750 if (ttm_bo_delayed_delete(bdev, false)) {
751 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
752 ((hz / 100) < 1) ? 1 : hz / 100);
753 }
754 }
755
ttm_bo_release(struct ttm_buffer_object * bo)756 static void ttm_bo_release(struct ttm_buffer_object *bo)
757 {
758 struct ttm_bo_device *bdev = bo->bdev;
759 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
760
761 rw_wlock(&bdev->vm_lock);
762 if (likely(bo->vm_node != NULL)) {
763 RB_REMOVE(ttm_bo_device_buffer_objects,
764 &bdev->addr_space_rb, bo);
765 drm_mm_put_block(bo->vm_node);
766 bo->vm_node = NULL;
767 }
768 rw_wunlock(&bdev->vm_lock);
769 ttm_mem_io_lock(man, false);
770 ttm_mem_io_free_vm(bo);
771 ttm_mem_io_unlock(man);
772 ttm_bo_cleanup_refs_or_queue(bo);
773 if (refcount_release(&bo->list_kref))
774 ttm_bo_release_list(bo);
775 }
776
ttm_bo_unref(struct ttm_buffer_object ** p_bo)777 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
778 {
779 struct ttm_buffer_object *bo = *p_bo;
780
781 *p_bo = NULL;
782 if (refcount_release(&bo->kref))
783 ttm_bo_release(bo);
784 }
785
ttm_bo_lock_delayed_workqueue(struct ttm_bo_device * bdev)786 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
787 {
788 int pending;
789
790 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending))
791 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
792 return (pending);
793 }
794
ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device * bdev,int resched)795 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
796 {
797 if (resched) {
798 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
799 ((hz / 100) < 1) ? 1 : hz / 100);
800 }
801 }
802
ttm_bo_evict(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_gpu)803 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
804 bool no_wait_gpu)
805 {
806 struct ttm_bo_device *bdev = bo->bdev;
807 struct ttm_mem_reg evict_mem;
808 struct ttm_placement placement;
809 int ret = 0;
810
811 mtx_lock(&bdev->fence_lock);
812 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
813 mtx_unlock(&bdev->fence_lock);
814
815 if (unlikely(ret != 0)) {
816 if (ret != -ERESTARTSYS) {
817 printf("[TTM] Failed to expire sync object before buffer eviction\n");
818 }
819 goto out;
820 }
821
822 MPASS(ttm_bo_is_reserved(bo));
823
824 evict_mem = bo->mem;
825 evict_mem.mm_node = NULL;
826 evict_mem.bus.io_reserved_vm = false;
827 evict_mem.bus.io_reserved_count = 0;
828
829 placement.fpfn = 0;
830 placement.lpfn = 0;
831 placement.num_placement = 0;
832 placement.num_busy_placement = 0;
833 bdev->driver->evict_flags(bo, &placement);
834 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
835 no_wait_gpu);
836 if (ret) {
837 if (ret != -ERESTARTSYS) {
838 printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
839 bo);
840 ttm_bo_mem_space_debug(bo, &placement);
841 }
842 goto out;
843 }
844
845 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
846 no_wait_gpu);
847 if (ret) {
848 if (ret != -ERESTARTSYS)
849 printf("[TTM] Buffer eviction failed\n");
850 ttm_bo_mem_put(bo, &evict_mem);
851 goto out;
852 }
853 bo->evicted = true;
854 out:
855 return ret;
856 }
857
ttm_mem_evict_first(struct ttm_bo_device * bdev,uint32_t mem_type,bool interruptible,bool no_wait_gpu)858 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
859 uint32_t mem_type,
860 bool interruptible,
861 bool no_wait_gpu)
862 {
863 struct ttm_bo_global *glob = bdev->glob;
864 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
865 struct ttm_buffer_object *bo;
866 int ret = -EBUSY, put_count;
867
868 mtx_lock(&glob->lru_lock);
869 list_for_each_entry(bo, &man->lru, lru) {
870 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
871 if (!ret)
872 break;
873 }
874
875 if (ret) {
876 mtx_unlock(&glob->lru_lock);
877 return ret;
878 }
879
880 refcount_acquire(&bo->list_kref);
881
882 if (!list_empty(&bo->ddestroy)) {
883 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
884 no_wait_gpu);
885 if (refcount_release(&bo->list_kref))
886 ttm_bo_release_list(bo);
887 return ret;
888 }
889
890 put_count = ttm_bo_del_from_lru(bo);
891 mtx_unlock(&glob->lru_lock);
892
893 MPASS(ret == 0);
894
895 ttm_bo_list_ref_sub(bo, put_count, true);
896
897 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
898 ttm_bo_unreserve(bo);
899
900 if (refcount_release(&bo->list_kref))
901 ttm_bo_release_list(bo);
902 return ret;
903 }
904
ttm_bo_mem_put(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)905 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
906 {
907 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
908
909 if (mem->mm_node)
910 (*man->func->put_node)(man, mem);
911 }
912
913 /**
914 * Repeatedly evict memory from the LRU for @mem_type until we create enough
915 * space, or we've evicted everything and there isn't enough space.
916 */
ttm_bo_mem_force_space(struct ttm_buffer_object * bo,uint32_t mem_type,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_gpu)917 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
918 uint32_t mem_type,
919 struct ttm_placement *placement,
920 struct ttm_mem_reg *mem,
921 bool interruptible,
922 bool no_wait_gpu)
923 {
924 struct ttm_bo_device *bdev = bo->bdev;
925 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
926 int ret;
927
928 do {
929 ret = (*man->func->get_node)(man, bo, placement, mem);
930 if (unlikely(ret != 0))
931 return ret;
932 if (mem->mm_node)
933 break;
934 ret = ttm_mem_evict_first(bdev, mem_type,
935 interruptible, no_wait_gpu);
936 if (unlikely(ret != 0))
937 return ret;
938 } while (1);
939 if (mem->mm_node == NULL)
940 return -ENOMEM;
941 mem->mem_type = mem_type;
942 return 0;
943 }
944
ttm_bo_select_caching(struct ttm_mem_type_manager * man,uint32_t cur_placement,uint32_t proposed_placement)945 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
946 uint32_t cur_placement,
947 uint32_t proposed_placement)
948 {
949 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
950 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
951
952 /**
953 * Keep current caching if possible.
954 */
955
956 if ((cur_placement & caching) != 0)
957 result |= (cur_placement & caching);
958 else if ((man->default_caching & caching) != 0)
959 result |= man->default_caching;
960 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
961 result |= TTM_PL_FLAG_CACHED;
962 else if ((TTM_PL_FLAG_WC & caching) != 0)
963 result |= TTM_PL_FLAG_WC;
964 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
965 result |= TTM_PL_FLAG_UNCACHED;
966
967 return result;
968 }
969
ttm_bo_mt_compatible(struct ttm_mem_type_manager * man,uint32_t mem_type,uint32_t proposed_placement,uint32_t * masked_placement)970 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
971 uint32_t mem_type,
972 uint32_t proposed_placement,
973 uint32_t *masked_placement)
974 {
975 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
976
977 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
978 return false;
979
980 if ((proposed_placement & man->available_caching) == 0)
981 return false;
982
983 cur_flags |= (proposed_placement & man->available_caching);
984
985 *masked_placement = cur_flags;
986 return true;
987 }
988
989 /**
990 * Creates space for memory region @mem according to its type.
991 *
992 * This function first searches for free space in compatible memory types in
993 * the priority order defined by the driver. If free space isn't found, then
994 * ttm_bo_mem_force_space is attempted in priority order to evict and find
995 * space.
996 */
ttm_bo_mem_space(struct ttm_buffer_object * bo,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_gpu)997 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
998 struct ttm_placement *placement,
999 struct ttm_mem_reg *mem,
1000 bool interruptible,
1001 bool no_wait_gpu)
1002 {
1003 struct ttm_bo_device *bdev = bo->bdev;
1004 struct ttm_mem_type_manager *man;
1005 uint32_t mem_type = TTM_PL_SYSTEM;
1006 uint32_t cur_flags = 0;
1007 bool type_found = false;
1008 bool type_ok = false;
1009 bool has_erestartsys = false;
1010 int i, ret;
1011
1012 mem->mm_node = NULL;
1013 for (i = 0; i < placement->num_placement; ++i) {
1014 ret = ttm_mem_type_from_flags(placement->placement[i],
1015 &mem_type);
1016 if (ret)
1017 return ret;
1018 man = &bdev->man[mem_type];
1019
1020 type_ok = ttm_bo_mt_compatible(man,
1021 mem_type,
1022 placement->placement[i],
1023 &cur_flags);
1024
1025 if (!type_ok)
1026 continue;
1027
1028 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1029 cur_flags);
1030 /*
1031 * Use the access and other non-mapping-related flag bits from
1032 * the memory placement flags to the current flags
1033 */
1034 ttm_flag_masked(&cur_flags, placement->placement[i],
1035 ~TTM_PL_MASK_MEMTYPE);
1036
1037 if (mem_type == TTM_PL_SYSTEM)
1038 break;
1039
1040 if (man->has_type && man->use_type) {
1041 type_found = true;
1042 ret = (*man->func->get_node)(man, bo, placement, mem);
1043 if (unlikely(ret))
1044 return ret;
1045 }
1046 if (mem->mm_node)
1047 break;
1048 }
1049
1050 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1051 mem->mem_type = mem_type;
1052 mem->placement = cur_flags;
1053 return 0;
1054 }
1055
1056 if (!type_found)
1057 return -EINVAL;
1058
1059 for (i = 0; i < placement->num_busy_placement; ++i) {
1060 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1061 &mem_type);
1062 if (ret)
1063 return ret;
1064 man = &bdev->man[mem_type];
1065 if (!man->has_type)
1066 continue;
1067 if (!ttm_bo_mt_compatible(man,
1068 mem_type,
1069 placement->busy_placement[i],
1070 &cur_flags))
1071 continue;
1072
1073 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1074 cur_flags);
1075 /*
1076 * Use the access and other non-mapping-related flag bits from
1077 * the memory placement flags to the current flags
1078 */
1079 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1080 ~TTM_PL_MASK_MEMTYPE);
1081
1082
1083 if (mem_type == TTM_PL_SYSTEM) {
1084 mem->mem_type = mem_type;
1085 mem->placement = cur_flags;
1086 mem->mm_node = NULL;
1087 return 0;
1088 }
1089
1090 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1091 interruptible, no_wait_gpu);
1092 if (ret == 0 && mem->mm_node) {
1093 mem->placement = cur_flags;
1094 return 0;
1095 }
1096 if (ret == -ERESTARTSYS)
1097 has_erestartsys = true;
1098 }
1099 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1100 return ret;
1101 }
1102
1103 static
ttm_bo_move_buffer(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_gpu)1104 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1105 struct ttm_placement *placement,
1106 bool interruptible,
1107 bool no_wait_gpu)
1108 {
1109 int ret = 0;
1110 struct ttm_mem_reg mem;
1111 struct ttm_bo_device *bdev = bo->bdev;
1112
1113 MPASS(ttm_bo_is_reserved(bo));
1114
1115 /*
1116 * FIXME: It's possible to pipeline buffer moves.
1117 * Have the driver move function wait for idle when necessary,
1118 * instead of doing it here.
1119 */
1120 mtx_lock(&bdev->fence_lock);
1121 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1122 mtx_unlock(&bdev->fence_lock);
1123 if (ret)
1124 return ret;
1125 mem.num_pages = bo->num_pages;
1126 mem.size = mem.num_pages << PAGE_SHIFT;
1127 mem.page_alignment = bo->mem.page_alignment;
1128 mem.bus.io_reserved_vm = false;
1129 mem.bus.io_reserved_count = 0;
1130 /*
1131 * Determine where to move the buffer.
1132 */
1133 ret = ttm_bo_mem_space(bo, placement, &mem,
1134 interruptible, no_wait_gpu);
1135 if (ret)
1136 goto out_unlock;
1137 ret = ttm_bo_handle_move_mem(bo, &mem, false,
1138 interruptible, no_wait_gpu);
1139 out_unlock:
1140 if (ret && mem.mm_node)
1141 ttm_bo_mem_put(bo, &mem);
1142 return ret;
1143 }
1144
ttm_bo_mem_compat(struct ttm_placement * placement,struct ttm_mem_reg * mem)1145 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1146 struct ttm_mem_reg *mem)
1147 {
1148 int i;
1149
1150 if (mem->mm_node && placement->lpfn != 0 &&
1151 (mem->start < placement->fpfn ||
1152 mem->start + mem->num_pages > placement->lpfn))
1153 return -1;
1154
1155 for (i = 0; i < placement->num_placement; i++) {
1156 if ((placement->placement[i] & mem->placement &
1157 TTM_PL_MASK_CACHING) &&
1158 (placement->placement[i] & mem->placement &
1159 TTM_PL_MASK_MEM))
1160 return i;
1161 }
1162 return -1;
1163 }
1164
ttm_bo_validate(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_gpu)1165 int ttm_bo_validate(struct ttm_buffer_object *bo,
1166 struct ttm_placement *placement,
1167 bool interruptible,
1168 bool no_wait_gpu)
1169 {
1170 int ret;
1171
1172 MPASS(ttm_bo_is_reserved(bo));
1173 /* Check that range is valid */
1174 if (placement->lpfn || placement->fpfn)
1175 if (placement->fpfn > placement->lpfn ||
1176 (placement->lpfn - placement->fpfn) < bo->num_pages)
1177 return -EINVAL;
1178 /*
1179 * Check whether we need to move buffer.
1180 */
1181 ret = ttm_bo_mem_compat(placement, &bo->mem);
1182 if (ret < 0) {
1183 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1184 no_wait_gpu);
1185 if (ret)
1186 return ret;
1187 } else {
1188 /*
1189 * Use the access and other non-mapping-related flag bits from
1190 * the compatible memory placement flags to the active flags
1191 */
1192 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1193 ~TTM_PL_MASK_MEMTYPE);
1194 }
1195 /*
1196 * We might need to add a TTM.
1197 */
1198 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1199 ret = ttm_bo_add_ttm(bo, true);
1200 if (ret)
1201 return ret;
1202 }
1203 return 0;
1204 }
1205
ttm_bo_check_placement(struct ttm_buffer_object * bo,struct ttm_placement * placement)1206 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1207 struct ttm_placement *placement)
1208 {
1209 MPASS(!((placement->fpfn || placement->lpfn) &&
1210 (bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
1211
1212 return 0;
1213 }
1214
ttm_bo_init(struct ttm_bo_device * bdev,struct ttm_buffer_object * bo,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,bool interruptible,struct vm_object * persistent_swap_storage,size_t acc_size,struct sg_table * sg,void (* destroy)(struct ttm_buffer_object *))1215 int ttm_bo_init(struct ttm_bo_device *bdev,
1216 struct ttm_buffer_object *bo,
1217 unsigned long size,
1218 enum ttm_bo_type type,
1219 struct ttm_placement *placement,
1220 uint32_t page_alignment,
1221 bool interruptible,
1222 struct vm_object *persistent_swap_storage,
1223 size_t acc_size,
1224 struct sg_table *sg,
1225 void (*destroy) (struct ttm_buffer_object *))
1226 {
1227 int ret = 0;
1228 unsigned long num_pages;
1229 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1230
1231 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1232 if (ret) {
1233 printf("[TTM] Out of kernel memory\n");
1234 if (destroy)
1235 (*destroy)(bo);
1236 else
1237 free(bo, M_TTM_BO);
1238 return -ENOMEM;
1239 }
1240
1241 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1242 if (num_pages == 0) {
1243 printf("[TTM] Illegal buffer object size\n");
1244 if (destroy)
1245 (*destroy)(bo);
1246 else
1247 free(bo, M_TTM_BO);
1248 ttm_mem_global_free(mem_glob, acc_size);
1249 return -EINVAL;
1250 }
1251 bo->destroy = destroy;
1252
1253 refcount_init(&bo->kref, 1);
1254 refcount_init(&bo->list_kref, 1);
1255 atomic_set(&bo->cpu_writers, 0);
1256 atomic_set(&bo->reserved, 1);
1257 INIT_LIST_HEAD(&bo->lru);
1258 INIT_LIST_HEAD(&bo->ddestroy);
1259 INIT_LIST_HEAD(&bo->swap);
1260 INIT_LIST_HEAD(&bo->io_reserve_lru);
1261 bo->bdev = bdev;
1262 bo->glob = bdev->glob;
1263 bo->type = type;
1264 bo->num_pages = num_pages;
1265 bo->mem.size = num_pages << PAGE_SHIFT;
1266 bo->mem.mem_type = TTM_PL_SYSTEM;
1267 bo->mem.num_pages = bo->num_pages;
1268 bo->mem.mm_node = NULL;
1269 bo->mem.page_alignment = page_alignment;
1270 bo->mem.bus.io_reserved_vm = false;
1271 bo->mem.bus.io_reserved_count = 0;
1272 bo->priv_flags = 0;
1273 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1274 bo->seq_valid = false;
1275 bo->persistent_swap_storage = persistent_swap_storage;
1276 bo->acc_size = acc_size;
1277 bo->sg = sg;
1278 atomic_inc(&bo->glob->bo_count);
1279
1280 ret = ttm_bo_check_placement(bo, placement);
1281 if (unlikely(ret != 0))
1282 goto out_err;
1283
1284 /*
1285 * For ttm_bo_type_device buffers, allocate
1286 * address space from the device.
1287 */
1288 if (bo->type == ttm_bo_type_device ||
1289 bo->type == ttm_bo_type_sg) {
1290 ret = ttm_bo_setup_vm(bo);
1291 if (ret)
1292 goto out_err;
1293 }
1294
1295 ret = ttm_bo_validate(bo, placement, interruptible, false);
1296 if (ret)
1297 goto out_err;
1298
1299 ttm_bo_unreserve(bo);
1300 return 0;
1301
1302 out_err:
1303 ttm_bo_unreserve(bo);
1304 ttm_bo_unref(&bo);
1305
1306 return ret;
1307 }
1308
ttm_bo_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1309 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1310 unsigned long bo_size,
1311 unsigned struct_size)
1312 {
1313 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1314 size_t size = 0;
1315
1316 size += ttm_round_pot(struct_size);
1317 size += PAGE_ALIGN(npages * sizeof(void *));
1318 size += ttm_round_pot(sizeof(struct ttm_tt));
1319 return size;
1320 }
1321
ttm_bo_dma_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1322 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1323 unsigned long bo_size,
1324 unsigned struct_size)
1325 {
1326 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1327 size_t size = 0;
1328
1329 size += ttm_round_pot(struct_size);
1330 size += PAGE_ALIGN(npages * sizeof(void *));
1331 size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1332 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1333 return size;
1334 }
1335
ttm_bo_create(struct ttm_bo_device * bdev,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,bool interruptible,struct vm_object * persistent_swap_storage,struct ttm_buffer_object ** p_bo)1336 int ttm_bo_create(struct ttm_bo_device *bdev,
1337 unsigned long size,
1338 enum ttm_bo_type type,
1339 struct ttm_placement *placement,
1340 uint32_t page_alignment,
1341 bool interruptible,
1342 struct vm_object *persistent_swap_storage,
1343 struct ttm_buffer_object **p_bo)
1344 {
1345 struct ttm_buffer_object *bo;
1346 size_t acc_size;
1347 int ret;
1348
1349 bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
1350 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1351 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1352 interruptible, persistent_swap_storage, acc_size,
1353 NULL, NULL);
1354 if (likely(ret == 0))
1355 *p_bo = bo;
1356
1357 return ret;
1358 }
1359
ttm_bo_force_list_clean(struct ttm_bo_device * bdev,unsigned mem_type,bool allow_errors)1360 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1361 unsigned mem_type, bool allow_errors)
1362 {
1363 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1364 struct ttm_bo_global *glob = bdev->glob;
1365 int ret;
1366
1367 /*
1368 * Can't use standard list traversal since we're unlocking.
1369 */
1370
1371 mtx_lock(&glob->lru_lock);
1372 while (!list_empty(&man->lru)) {
1373 mtx_unlock(&glob->lru_lock);
1374 ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1375 if (ret) {
1376 if (allow_errors) {
1377 return ret;
1378 } else {
1379 printf("[TTM] Cleanup eviction failed\n");
1380 }
1381 }
1382 mtx_lock(&glob->lru_lock);
1383 }
1384 mtx_unlock(&glob->lru_lock);
1385 return 0;
1386 }
1387
ttm_bo_clean_mm(struct ttm_bo_device * bdev,unsigned mem_type)1388 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1389 {
1390 struct ttm_mem_type_manager *man;
1391 int ret = -EINVAL;
1392
1393 if (mem_type >= TTM_NUM_MEM_TYPES) {
1394 printf("[TTM] Illegal memory type %d\n", mem_type);
1395 return ret;
1396 }
1397 man = &bdev->man[mem_type];
1398
1399 if (!man->has_type) {
1400 printf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1401 mem_type);
1402 return ret;
1403 }
1404
1405 man->use_type = false;
1406 man->has_type = false;
1407
1408 ret = 0;
1409 if (mem_type > 0) {
1410 ttm_bo_force_list_clean(bdev, mem_type, false);
1411
1412 ret = (*man->func->takedown)(man);
1413 }
1414
1415 return ret;
1416 }
1417
ttm_bo_evict_mm(struct ttm_bo_device * bdev,unsigned mem_type)1418 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1419 {
1420 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1421
1422 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1423 printf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1424 return -EINVAL;
1425 }
1426
1427 if (!man->has_type) {
1428 printf("[TTM] Memory type %u has not been initialized\n", mem_type);
1429 return 0;
1430 }
1431
1432 return ttm_bo_force_list_clean(bdev, mem_type, true);
1433 }
1434
ttm_bo_init_mm(struct ttm_bo_device * bdev,unsigned type,unsigned long p_size)1435 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1436 unsigned long p_size)
1437 {
1438 int ret = -EINVAL;
1439 struct ttm_mem_type_manager *man;
1440
1441 MPASS(type < TTM_NUM_MEM_TYPES);
1442 man = &bdev->man[type];
1443 MPASS(!man->has_type);
1444 man->io_reserve_fastpath = true;
1445 man->use_io_reserve_lru = false;
1446 sx_init(&man->io_reserve_mutex, "ttmman");
1447 INIT_LIST_HEAD(&man->io_reserve_lru);
1448
1449 ret = bdev->driver->init_mem_type(bdev, type, man);
1450 if (ret)
1451 return ret;
1452 man->bdev = bdev;
1453
1454 ret = 0;
1455 if (type != TTM_PL_SYSTEM) {
1456 ret = (*man->func->init)(man, p_size);
1457 if (ret)
1458 return ret;
1459 }
1460 man->has_type = true;
1461 man->use_type = true;
1462 man->size = p_size;
1463
1464 INIT_LIST_HEAD(&man->lru);
1465
1466 return 0;
1467 }
1468
ttm_bo_global_kobj_release(struct ttm_bo_global * glob)1469 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1470 {
1471
1472 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1473 vm_page_free(glob->dummy_read_page);
1474 }
1475
ttm_bo_global_release(struct drm_global_reference * ref)1476 void ttm_bo_global_release(struct drm_global_reference *ref)
1477 {
1478 struct ttm_bo_global *glob = ref->object;
1479
1480 if (refcount_release(&glob->kobj_ref))
1481 ttm_bo_global_kobj_release(glob);
1482 }
1483
ttm_bo_global_init(struct drm_global_reference * ref)1484 int ttm_bo_global_init(struct drm_global_reference *ref)
1485 {
1486 struct ttm_bo_global_ref *bo_ref =
1487 container_of(ref, struct ttm_bo_global_ref, ref);
1488 struct ttm_bo_global *glob = ref->object;
1489 int ret;
1490 int tries;
1491
1492 sx_init(&glob->device_list_mutex, "ttmdlm");
1493 mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF);
1494 glob->mem_glob = bo_ref->mem_glob;
1495 tries = 0;
1496 retry:
1497 glob->dummy_read_page = vm_page_alloc_noobj_contig(0, 1, 0,
1498 VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE);
1499
1500 if (unlikely(glob->dummy_read_page == NULL)) {
1501 if (tries < 1 && (vm_page_reclaim_contig(0, 1, 0,
1502 VM_MAX_ADDRESS, PAGE_SIZE, 0) == 0)) {
1503 tries++;
1504 goto retry;
1505 }
1506 ret = -ENOMEM;
1507 goto out_no_drp;
1508 }
1509
1510 INIT_LIST_HEAD(&glob->swap_lru);
1511 INIT_LIST_HEAD(&glob->device_list);
1512
1513 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1514 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1515 if (unlikely(ret != 0)) {
1516 printf("[TTM] Could not register buffer object swapout\n");
1517 goto out_no_shrink;
1518 }
1519
1520 atomic_set(&glob->bo_count, 0);
1521
1522 refcount_init(&glob->kobj_ref, 1);
1523 return (0);
1524
1525 out_no_shrink:
1526 vm_page_free(glob->dummy_read_page);
1527 out_no_drp:
1528 free(glob, M_DRM_GLOBAL);
1529 return ret;
1530 }
1531
ttm_bo_device_release(struct ttm_bo_device * bdev)1532 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1533 {
1534 int ret = 0;
1535 unsigned i = TTM_NUM_MEM_TYPES;
1536 struct ttm_mem_type_manager *man;
1537 struct ttm_bo_global *glob = bdev->glob;
1538
1539 while (i--) {
1540 man = &bdev->man[i];
1541 if (man->has_type) {
1542 man->use_type = false;
1543 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1544 ret = -EBUSY;
1545 printf("[TTM] DRM memory manager type %d is not clean\n",
1546 i);
1547 }
1548 man->has_type = false;
1549 }
1550 }
1551
1552 sx_xlock(&glob->device_list_mutex);
1553 list_del(&bdev->device_list);
1554 sx_xunlock(&glob->device_list_mutex);
1555
1556 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL))
1557 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
1558
1559 while (ttm_bo_delayed_delete(bdev, true))
1560 ;
1561
1562 mtx_lock(&glob->lru_lock);
1563 if (list_empty(&bdev->ddestroy))
1564 TTM_DEBUG("Delayed destroy list was clean\n");
1565
1566 if (list_empty(&bdev->man[0].lru))
1567 TTM_DEBUG("Swap list was clean\n");
1568 mtx_unlock(&glob->lru_lock);
1569
1570 MPASS(drm_mm_clean(&bdev->addr_space_mm));
1571 rw_wlock(&bdev->vm_lock);
1572 drm_mm_takedown(&bdev->addr_space_mm);
1573 rw_wunlock(&bdev->vm_lock);
1574
1575 return ret;
1576 }
1577
ttm_bo_device_init(struct ttm_bo_device * bdev,struct ttm_bo_global * glob,struct ttm_bo_driver * driver,uint64_t file_page_offset,bool need_dma32)1578 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1579 struct ttm_bo_global *glob,
1580 struct ttm_bo_driver *driver,
1581 uint64_t file_page_offset,
1582 bool need_dma32)
1583 {
1584 int ret = -EINVAL;
1585
1586 rw_init(&bdev->vm_lock, "ttmvml");
1587 bdev->driver = driver;
1588
1589 memset(bdev->man, 0, sizeof(bdev->man));
1590
1591 /*
1592 * Initialize the system memory buffer type.
1593 * Other types need to be driver / IOCTL initialized.
1594 */
1595 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1596 if (unlikely(ret != 0))
1597 goto out_no_sys;
1598
1599 RB_INIT(&bdev->addr_space_rb);
1600 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1601 if (unlikely(ret != 0))
1602 goto out_no_addr_mm;
1603
1604 TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0,
1605 ttm_bo_delayed_workqueue, bdev);
1606 INIT_LIST_HEAD(&bdev->ddestroy);
1607 bdev->dev_mapping = NULL;
1608 bdev->glob = glob;
1609 bdev->need_dma32 = need_dma32;
1610 bdev->val_seq = 0;
1611 mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF);
1612 sx_xlock(&glob->device_list_mutex);
1613 list_add_tail(&bdev->device_list, &glob->device_list);
1614 sx_xunlock(&glob->device_list_mutex);
1615
1616 return 0;
1617 out_no_addr_mm:
1618 ttm_bo_clean_mm(bdev, 0);
1619 out_no_sys:
1620 return ret;
1621 }
1622
1623 /*
1624 * buffer object vm functions.
1625 */
1626
ttm_mem_reg_is_pci(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)1627 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1628 {
1629 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1630
1631 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1632 if (mem->mem_type == TTM_PL_SYSTEM)
1633 return false;
1634
1635 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1636 return false;
1637
1638 if (mem->placement & TTM_PL_FLAG_CACHED)
1639 return false;
1640 }
1641 return true;
1642 }
1643
ttm_bo_unmap_virtual_locked(struct ttm_buffer_object * bo)1644 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1645 {
1646
1647 ttm_bo_release_mmap(bo);
1648 ttm_mem_io_free_vm(bo);
1649 }
1650
ttm_bo_unmap_virtual(struct ttm_buffer_object * bo)1651 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1652 {
1653 struct ttm_bo_device *bdev = bo->bdev;
1654 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1655
1656 ttm_mem_io_lock(man, false);
1657 ttm_bo_unmap_virtual_locked(bo);
1658 ttm_mem_io_unlock(man);
1659 }
1660
ttm_bo_vm_insert_rb(struct ttm_buffer_object * bo)1661 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1662 {
1663 struct ttm_bo_device *bdev = bo->bdev;
1664
1665 /* The caller acquired bdev->vm_lock. */
1666 RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
1667 }
1668
1669 /**
1670 * ttm_bo_setup_vm:
1671 *
1672 * @bo: the buffer to allocate address space for
1673 *
1674 * Allocate address space in the drm device so that applications
1675 * can mmap the buffer and access the contents. This only
1676 * applies to ttm_bo_type_device objects as others are not
1677 * placed in the drm device address space.
1678 */
1679
ttm_bo_setup_vm(struct ttm_buffer_object * bo)1680 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1681 {
1682 struct ttm_bo_device *bdev = bo->bdev;
1683 int ret;
1684
1685 retry_pre_get:
1686 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1687 if (unlikely(ret != 0))
1688 return ret;
1689
1690 rw_wlock(&bdev->vm_lock);
1691 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1692 bo->mem.num_pages, 0, 0);
1693
1694 if (unlikely(bo->vm_node == NULL)) {
1695 ret = -ENOMEM;
1696 goto out_unlock;
1697 }
1698
1699 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1700 bo->mem.num_pages, 0);
1701
1702 if (unlikely(bo->vm_node == NULL)) {
1703 rw_wunlock(&bdev->vm_lock);
1704 goto retry_pre_get;
1705 }
1706
1707 ttm_bo_vm_insert_rb(bo);
1708 rw_wunlock(&bdev->vm_lock);
1709 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1710
1711 return 0;
1712 out_unlock:
1713 rw_wunlock(&bdev->vm_lock);
1714 return ret;
1715 }
1716
ttm_bo_wait(struct ttm_buffer_object * bo,bool lazy,bool interruptible,bool no_wait)1717 int ttm_bo_wait(struct ttm_buffer_object *bo,
1718 bool lazy, bool interruptible, bool no_wait)
1719 {
1720 struct ttm_bo_driver *driver = bo->bdev->driver;
1721 struct ttm_bo_device *bdev = bo->bdev;
1722 void *sync_obj;
1723 int ret = 0;
1724
1725 if (likely(bo->sync_obj == NULL))
1726 return 0;
1727
1728 while (bo->sync_obj) {
1729
1730 if (driver->sync_obj_signaled(bo->sync_obj)) {
1731 void *tmp_obj = bo->sync_obj;
1732 bo->sync_obj = NULL;
1733 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1734 mtx_unlock(&bdev->fence_lock);
1735 driver->sync_obj_unref(&tmp_obj);
1736 mtx_lock(&bdev->fence_lock);
1737 continue;
1738 }
1739
1740 if (no_wait)
1741 return -EBUSY;
1742
1743 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1744 mtx_unlock(&bdev->fence_lock);
1745 ret = driver->sync_obj_wait(sync_obj,
1746 lazy, interruptible);
1747 if (unlikely(ret != 0)) {
1748 driver->sync_obj_unref(&sync_obj);
1749 mtx_lock(&bdev->fence_lock);
1750 return ret;
1751 }
1752 mtx_lock(&bdev->fence_lock);
1753 if (likely(bo->sync_obj == sync_obj)) {
1754 void *tmp_obj = bo->sync_obj;
1755 bo->sync_obj = NULL;
1756 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1757 &bo->priv_flags);
1758 mtx_unlock(&bdev->fence_lock);
1759 driver->sync_obj_unref(&sync_obj);
1760 driver->sync_obj_unref(&tmp_obj);
1761 mtx_lock(&bdev->fence_lock);
1762 } else {
1763 mtx_unlock(&bdev->fence_lock);
1764 driver->sync_obj_unref(&sync_obj);
1765 mtx_lock(&bdev->fence_lock);
1766 }
1767 }
1768 return 0;
1769 }
1770
ttm_bo_synccpu_write_grab(struct ttm_buffer_object * bo,bool no_wait)1771 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1772 {
1773 struct ttm_bo_device *bdev = bo->bdev;
1774 int ret = 0;
1775
1776 /*
1777 * Using ttm_bo_reserve makes sure the lru lists are updated.
1778 */
1779
1780 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1781 if (unlikely(ret != 0))
1782 return ret;
1783 mtx_lock(&bdev->fence_lock);
1784 ret = ttm_bo_wait(bo, false, true, no_wait);
1785 mtx_unlock(&bdev->fence_lock);
1786 if (likely(ret == 0))
1787 atomic_inc(&bo->cpu_writers);
1788 ttm_bo_unreserve(bo);
1789 return ret;
1790 }
1791
ttm_bo_synccpu_write_release(struct ttm_buffer_object * bo)1792 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1793 {
1794 atomic_dec(&bo->cpu_writers);
1795 }
1796
1797 /**
1798 * A buffer object shrink method that tries to swap out the first
1799 * buffer object on the bo_global::swap_lru list.
1800 */
1801
ttm_bo_swapout(struct ttm_mem_shrink * shrink)1802 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1803 {
1804 struct ttm_bo_global *glob =
1805 container_of(shrink, struct ttm_bo_global, shrink);
1806 struct ttm_buffer_object *bo;
1807 int ret = -EBUSY;
1808 int put_count;
1809 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1810
1811 mtx_lock(&glob->lru_lock);
1812 list_for_each_entry(bo, &glob->swap_lru, swap) {
1813 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1814 if (!ret)
1815 break;
1816 }
1817
1818 if (ret) {
1819 mtx_unlock(&glob->lru_lock);
1820 return ret;
1821 }
1822
1823 refcount_acquire(&bo->list_kref);
1824
1825 if (!list_empty(&bo->ddestroy)) {
1826 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1827 if (refcount_release(&bo->list_kref))
1828 ttm_bo_release_list(bo);
1829 return ret;
1830 }
1831
1832 put_count = ttm_bo_del_from_lru(bo);
1833 mtx_unlock(&glob->lru_lock);
1834
1835 ttm_bo_list_ref_sub(bo, put_count, true);
1836
1837 /**
1838 * Wait for GPU, then move to system cached.
1839 */
1840
1841 mtx_lock(&bo->bdev->fence_lock);
1842 ret = ttm_bo_wait(bo, false, false, false);
1843 mtx_unlock(&bo->bdev->fence_lock);
1844
1845 if (unlikely(ret != 0))
1846 goto out;
1847
1848 if ((bo->mem.placement & swap_placement) != swap_placement) {
1849 struct ttm_mem_reg evict_mem;
1850
1851 evict_mem = bo->mem;
1852 evict_mem.mm_node = NULL;
1853 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1854 evict_mem.mem_type = TTM_PL_SYSTEM;
1855
1856 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1857 false, false);
1858 if (unlikely(ret != 0))
1859 goto out;
1860 }
1861
1862 ttm_bo_unmap_virtual(bo);
1863
1864 /**
1865 * Swap out. Buffer will be swapped in again as soon as
1866 * anyone tries to access a ttm page.
1867 */
1868
1869 if (bo->bdev->driver->swap_notify)
1870 bo->bdev->driver->swap_notify(bo);
1871
1872 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1873 out:
1874
1875 /**
1876 *
1877 * Unreserve without putting on LRU to avoid swapping out an
1878 * already swapped buffer.
1879 */
1880
1881 atomic_set(&bo->reserved, 0);
1882 wakeup(bo);
1883 if (refcount_release(&bo->list_kref))
1884 ttm_bo_release_list(bo);
1885 return ret;
1886 }
1887
ttm_bo_swapout_all(struct ttm_bo_device * bdev)1888 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1889 {
1890 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1891 ;
1892 }
1893