1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2023 Linaro Limited
4 *
5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6 *
7 * Thermal subsystem debug support
8 */
9 #include <linux/debugfs.h>
10 #include <linux/ktime.h>
11 #include <linux/list.h>
12 #include <linux/minmax.h>
13 #include <linux/mutex.h>
14 #include <linux/thermal.h>
15
16 #include "thermal_core.h"
17
18 static struct dentry *d_root;
19 static struct dentry *d_cdev;
20 static struct dentry *d_tz;
21
22 /*
23 * Length of the string containing the thermal zone id or the cooling
24 * device id, including the ending nul character. We can reasonably
25 * assume there won't be more than 256 thermal zones as the maximum
26 * observed today is around 32.
27 */
28 #define IDSLENGTH 4
29
30 /*
31 * The cooling device transition list is stored in a hash table where
32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices
33 * have dozen of states but some can have much more, so a hash table
34 * is more adequate in this case, because the cost of browsing the entire
35 * list when storing the transitions may not be negligible.
36 */
37 #define CDEVSTATS_HASH_SIZE 16
38
39 /**
40 * struct cdev_debugfs - per cooling device statistics structure
41 * A cooling device can have a high number of states. Showing the
42 * transitions on a matrix based representation can be overkill given
43 * most of the transitions won't happen and we end up with a matrix
44 * filled with zero. Instead, we show the transitions which actually
45 * happened.
46 *
47 * Every transition updates the current_state and the timestamp. The
48 * transitions and the durations are stored in lists.
49 *
50 * @total: the number of transitions for this cooling device
51 * @current_state: the current cooling device state
52 * @timestamp: the state change timestamp
53 * @transitions: an array of lists containing the state transitions
54 * @durations: an array of lists containing the residencies of each state
55 */
56 struct cdev_debugfs {
57 u32 total;
58 int current_state;
59 ktime_t timestamp;
60 struct list_head transitions[CDEVSTATS_HASH_SIZE];
61 struct list_head durations[CDEVSTATS_HASH_SIZE];
62 };
63
64 /**
65 * struct cdev_record - Common structure for cooling device entry
66 *
67 * The following common structure allows to store the information
68 * related to the transitions and to the state residencies. They are
69 * identified with a id which is associated to a value. It is used as
70 * nodes for the "transitions" and "durations" above.
71 *
72 * @node: node to insert the structure in a list
73 * @id: identifier of the value which can be a state or a transition
74 * @residency: a ktime_t representing a state residency duration
75 * @count: a number of occurrences
76 */
77 struct cdev_record {
78 struct list_head node;
79 int id;
80 union {
81 ktime_t residency;
82 u64 count;
83 };
84 };
85
86 /**
87 * struct trip_stats - Thermal trip statistics
88 *
89 * The trip_stats structure has the relevant information to show the
90 * statistics related to temperature going above a trip point.
91 *
92 * @timestamp: the trip crossing timestamp
93 * @duration: total time when the zone temperature was above the trip point
94 * @trip_temp: trip temperature at mitigation start
95 * @trip_hyst: trip hysteresis at mitigation start
96 * @count: the number of times the zone temperature was above the trip point
97 * @min: minimum recorded temperature above the trip point
98 * @avg: average temperature above the trip point
99 */
100 struct trip_stats {
101 ktime_t timestamp;
102 ktime_t duration;
103 int trip_temp;
104 int trip_hyst;
105 int count;
106 int min;
107 int avg;
108 };
109
110 /**
111 * struct tz_episode - A mitigation episode information
112 *
113 * The tz_episode structure describes a mitigation episode. A
114 * mitigation episode begins the trip point with the lower temperature
115 * is crossed the way up and ends when it is crossed the way
116 * down. During this episode we can have multiple trip points crossed
117 * the way up and down if there are multiple trip described in the
118 * firmware after the lowest temperature trip point.
119 *
120 * @timestamp: first trip point crossed the way up
121 * @duration: total duration of the mitigation episode
122 * @node: a list element to be added to the list of tz events
123 * @max_temp: maximum zone temperature during this episode
124 * @trip_stats: per trip point statistics, flexible array
125 */
126 struct tz_episode {
127 ktime_t timestamp;
128 ktime_t duration;
129 struct list_head node;
130 int max_temp;
131 struct trip_stats trip_stats[];
132 };
133
134 /**
135 * struct tz_debugfs - Store all mitigation episodes for a thermal zone
136 *
137 * The tz_debugfs structure contains the list of the mitigation
138 * episodes and has to track which trip point has been crossed in
139 * order to handle correctly nested trip point mitigation episodes.
140 *
141 * We keep the history of the trip point crossed in an array and as we
142 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0,
143 * we keep track of the current position in the history array.
144 *
145 * @tz_episodes: a list of thermal mitigation episodes
146 * @tz: thermal zone this object belongs to
147 * @trips_crossed: an array of trip points crossed by id
148 * @nr_trips: the number of trip points currently being crossed
149 */
150 struct tz_debugfs {
151 struct list_head tz_episodes;
152 struct thermal_zone_device *tz;
153 int *trips_crossed;
154 int nr_trips;
155 };
156
157 /**
158 * struct thermal_debugfs - High level structure for a thermal object in debugfs
159 *
160 * The thermal_debugfs structure is the common structure used by the
161 * cooling device or the thermal zone to store the statistics.
162 *
163 * @d_top: top directory of the thermal object directory
164 * @lock: per object lock to protect the internals
165 *
166 * @cdev_dbg: a cooling device debug structure
167 * @tz_dbg: a thermal zone debug structure
168 */
169 struct thermal_debugfs {
170 struct dentry *d_top;
171 struct mutex lock;
172 union {
173 struct cdev_debugfs cdev_dbg;
174 struct tz_debugfs tz_dbg;
175 };
176 };
177
thermal_debug_init(void)178 void thermal_debug_init(void)
179 {
180 d_root = debugfs_create_dir("thermal", NULL);
181 if (IS_ERR(d_root))
182 return;
183
184 d_cdev = debugfs_create_dir("cooling_devices", d_root);
185 if (IS_ERR(d_cdev))
186 return;
187
188 d_tz = debugfs_create_dir("thermal_zones", d_root);
189 }
190
thermal_debugfs_add_id(struct dentry * d,int id)191 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id)
192 {
193 struct thermal_debugfs *thermal_dbg;
194 char ids[IDSLENGTH];
195
196 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL);
197 if (!thermal_dbg)
198 return NULL;
199
200 mutex_init(&thermal_dbg->lock);
201
202 snprintf(ids, IDSLENGTH, "%d", id);
203
204 thermal_dbg->d_top = debugfs_create_dir(ids, d);
205 if (IS_ERR(thermal_dbg->d_top)) {
206 kfree(thermal_dbg);
207 return NULL;
208 }
209
210 return thermal_dbg;
211 }
212
thermal_debugfs_remove_id(struct thermal_debugfs * thermal_dbg)213 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg)
214 {
215 if (!thermal_dbg)
216 return;
217
218 debugfs_remove(thermal_dbg->d_top);
219
220 kfree(thermal_dbg);
221 }
222
223 static struct cdev_record *
thermal_debugfs_cdev_record_alloc(struct thermal_debugfs * thermal_dbg,struct list_head * lists,int id)224 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg,
225 struct list_head *lists, int id)
226 {
227 struct cdev_record *cdev_record;
228
229 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL);
230 if (!cdev_record)
231 return NULL;
232
233 cdev_record->id = id;
234 INIT_LIST_HEAD(&cdev_record->node);
235 list_add_tail(&cdev_record->node,
236 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]);
237
238 return cdev_record;
239 }
240
241 static struct cdev_record *
thermal_debugfs_cdev_record_find(struct thermal_debugfs * thermal_dbg,struct list_head * lists,int id)242 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg,
243 struct list_head *lists, int id)
244 {
245 struct cdev_record *entry;
246
247 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node)
248 if (entry->id == id)
249 return entry;
250
251 return NULL;
252 }
253
254 static struct cdev_record *
thermal_debugfs_cdev_record_get(struct thermal_debugfs * thermal_dbg,struct list_head * lists,int id)255 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg,
256 struct list_head *lists, int id)
257 {
258 struct cdev_record *cdev_record;
259
260 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id);
261 if (cdev_record)
262 return cdev_record;
263
264 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id);
265 }
266
thermal_debugfs_cdev_clear(struct cdev_debugfs * cdev_dbg)267 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg)
268 {
269 int i;
270 struct cdev_record *entry, *tmp;
271
272 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
273
274 list_for_each_entry_safe(entry, tmp,
275 &cdev_dbg->transitions[i], node) {
276 list_del(&entry->node);
277 kfree(entry);
278 }
279
280 list_for_each_entry_safe(entry, tmp,
281 &cdev_dbg->durations[i], node) {
282 list_del(&entry->node);
283 kfree(entry);
284 }
285 }
286
287 cdev_dbg->total = 0;
288 }
289
cdev_seq_start(struct seq_file * s,loff_t * pos)290 static void *cdev_seq_start(struct seq_file *s, loff_t *pos)
291 {
292 struct thermal_debugfs *thermal_dbg = s->private;
293
294 mutex_lock(&thermal_dbg->lock);
295
296 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
297 }
298
cdev_seq_next(struct seq_file * s,void * v,loff_t * pos)299 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos)
300 {
301 (*pos)++;
302
303 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
304 }
305
cdev_seq_stop(struct seq_file * s,void * v)306 static void cdev_seq_stop(struct seq_file *s, void *v)
307 {
308 struct thermal_debugfs *thermal_dbg = s->private;
309
310 mutex_unlock(&thermal_dbg->lock);
311 }
312
cdev_tt_seq_show(struct seq_file * s,void * v)313 static int cdev_tt_seq_show(struct seq_file *s, void *v)
314 {
315 struct thermal_debugfs *thermal_dbg = s->private;
316 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
317 struct list_head *transitions = cdev_dbg->transitions;
318 struct cdev_record *entry;
319 int i = *(loff_t *)v;
320
321 if (!i)
322 seq_puts(s, "Transition\tOccurences\n");
323
324 list_for_each_entry(entry, &transitions[i], node) {
325 /*
326 * Assuming maximum cdev states is 1024, the longer
327 * string for a transition would be "1024->1024\0"
328 */
329 char buffer[11];
330
331 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d",
332 entry->id >> 16, entry->id & 0xFFFF);
333
334 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count);
335 }
336
337 return 0;
338 }
339
340 static const struct seq_operations tt_sops = {
341 .start = cdev_seq_start,
342 .next = cdev_seq_next,
343 .stop = cdev_seq_stop,
344 .show = cdev_tt_seq_show,
345 };
346
347 DEFINE_SEQ_ATTRIBUTE(tt);
348
cdev_dt_seq_show(struct seq_file * s,void * v)349 static int cdev_dt_seq_show(struct seq_file *s, void *v)
350 {
351 struct thermal_debugfs *thermal_dbg = s->private;
352 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
353 struct list_head *durations = cdev_dbg->durations;
354 struct cdev_record *entry;
355 int i = *(loff_t *)v;
356
357 if (!i)
358 seq_puts(s, "State\tResidency\n");
359
360 list_for_each_entry(entry, &durations[i], node) {
361 s64 duration = ktime_to_ms(entry->residency);
362
363 if (entry->id == cdev_dbg->current_state)
364 duration += ktime_ms_delta(ktime_get(),
365 cdev_dbg->timestamp);
366
367 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration);
368 }
369
370 return 0;
371 }
372
373 static const struct seq_operations dt_sops = {
374 .start = cdev_seq_start,
375 .next = cdev_seq_next,
376 .stop = cdev_seq_stop,
377 .show = cdev_dt_seq_show,
378 };
379
380 DEFINE_SEQ_ATTRIBUTE(dt);
381
cdev_clear_set(void * data,u64 val)382 static int cdev_clear_set(void *data, u64 val)
383 {
384 struct thermal_debugfs *thermal_dbg = data;
385
386 if (!val)
387 return -EINVAL;
388
389 mutex_lock(&thermal_dbg->lock);
390
391 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
392
393 mutex_unlock(&thermal_dbg->lock);
394
395 return 0;
396 }
397
398 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n");
399
400 /**
401 * thermal_debug_cdev_state_update - Update a cooling device state change
402 *
403 * Computes a transition and the duration of the previous state residency.
404 *
405 * @cdev : a pointer to a cooling device
406 * @new_state: an integer corresponding to the new cooling device state
407 */
thermal_debug_cdev_state_update(const struct thermal_cooling_device * cdev,int new_state)408 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev,
409 int new_state)
410 {
411 struct thermal_debugfs *thermal_dbg = cdev->debugfs;
412 struct cdev_debugfs *cdev_dbg;
413 struct cdev_record *cdev_record;
414 int transition, old_state;
415
416 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state))
417 return;
418
419 mutex_lock(&thermal_dbg->lock);
420
421 cdev_dbg = &thermal_dbg->cdev_dbg;
422
423 old_state = cdev_dbg->current_state;
424
425 /*
426 * Get the old state information in the durations list. If
427 * this one does not exist, a new allocated one will be
428 * returned. Recompute the total duration in the old state and
429 * get a new timestamp for the new state.
430 */
431 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
432 cdev_dbg->durations,
433 old_state);
434 if (cdev_record) {
435 ktime_t now = ktime_get();
436 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp);
437 cdev_record->residency = ktime_add(cdev_record->residency, delta);
438 cdev_dbg->timestamp = now;
439 }
440
441 cdev_dbg->current_state = new_state;
442
443 /*
444 * Create a record for the new state if it is not there, so its
445 * duration will be printed by cdev_dt_seq_show() as expected if it
446 * runs before the next state transition.
447 */
448 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state);
449
450 transition = (old_state << 16) | new_state;
451
452 /*
453 * Get the transition in the transitions list. If this one
454 * does not exist, a new allocated one will be returned.
455 * Increment the occurrence of this transition which is stored
456 * in the value field.
457 */
458 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
459 cdev_dbg->transitions,
460 transition);
461 if (cdev_record)
462 cdev_record->count++;
463
464 cdev_dbg->total++;
465
466 mutex_unlock(&thermal_dbg->lock);
467 }
468
469 /**
470 * thermal_debug_cdev_add - Add a cooling device debugfs entry
471 *
472 * Allocates a cooling device object for debug, initializes the
473 * statistics and create the entries in sysfs.
474 * @cdev: a pointer to a cooling device
475 * @state: current state of the cooling device
476 */
thermal_debug_cdev_add(struct thermal_cooling_device * cdev,int state)477 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state)
478 {
479 struct thermal_debugfs *thermal_dbg;
480 struct cdev_debugfs *cdev_dbg;
481 int i;
482
483 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id);
484 if (!thermal_dbg)
485 return;
486
487 cdev_dbg = &thermal_dbg->cdev_dbg;
488
489 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
490 INIT_LIST_HEAD(&cdev_dbg->transitions[i]);
491 INIT_LIST_HEAD(&cdev_dbg->durations[i]);
492 }
493
494 cdev_dbg->current_state = state;
495 cdev_dbg->timestamp = ktime_get();
496
497 /*
498 * Create a record for the initial cooling device state, so its
499 * duration will be printed by cdev_dt_seq_show() as expected if it
500 * runs before the first state transition.
501 */
502 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state);
503
504 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top,
505 thermal_dbg, &tt_fops);
506
507 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top,
508 thermal_dbg, &dt_fops);
509
510 debugfs_create_file("clear", 0200, thermal_dbg->d_top,
511 thermal_dbg, &cdev_clear_fops);
512
513 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top,
514 &cdev_dbg->total);
515
516 cdev->debugfs = thermal_dbg;
517 }
518
519 /**
520 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry
521 *
522 * Frees the statistics memory data and remove the debugfs entry
523 *
524 * @cdev: a pointer to a cooling device
525 */
thermal_debug_cdev_remove(struct thermal_cooling_device * cdev)526 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev)
527 {
528 struct thermal_debugfs *thermal_dbg;
529
530 mutex_lock(&cdev->lock);
531
532 thermal_dbg = cdev->debugfs;
533 if (!thermal_dbg) {
534 mutex_unlock(&cdev->lock);
535 return;
536 }
537
538 cdev->debugfs = NULL;
539
540 mutex_unlock(&cdev->lock);
541
542 mutex_lock(&thermal_dbg->lock);
543
544 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
545
546 mutex_unlock(&thermal_dbg->lock);
547
548 thermal_debugfs_remove_id(thermal_dbg);
549 }
550
thermal_debugfs_tz_event_alloc(struct thermal_zone_device * tz,ktime_t now)551 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz,
552 ktime_t now)
553 {
554 struct tz_episode *tze;
555 int i;
556
557 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL);
558 if (!tze)
559 return NULL;
560
561 INIT_LIST_HEAD(&tze->node);
562 tze->timestamp = now;
563 tze->duration = KTIME_MIN;
564 tze->max_temp = INT_MIN;
565
566 for (i = 0; i < tz->num_trips; i++) {
567 tze->trip_stats[i].trip_temp = THERMAL_TEMP_INVALID;
568 tze->trip_stats[i].min = INT_MAX;
569 }
570
571 return tze;
572 }
573
thermal_debug_tz_trip_up(struct thermal_zone_device * tz,const struct thermal_trip * trip)574 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz,
575 const struct thermal_trip *trip)
576 {
577 struct thermal_debugfs *thermal_dbg = tz->debugfs;
578 int trip_id = thermal_zone_trip_id(tz, trip);
579 ktime_t now = ktime_get();
580 struct trip_stats *trip_stats;
581 struct tz_debugfs *tz_dbg;
582 struct tz_episode *tze;
583
584 if (!thermal_dbg)
585 return;
586
587 tz_dbg = &thermal_dbg->tz_dbg;
588
589 mutex_lock(&thermal_dbg->lock);
590
591 /*
592 * The mitigation is starting. A mitigation can contain
593 * several episodes where each of them is related to a
594 * temperature crossing a trip point. The episodes are
595 * nested. That means when the temperature is crossing the
596 * first trip point, the duration begins to be measured. If
597 * the temperature continues to increase and reaches the
598 * second trip point, the duration of the first trip must be
599 * also accumulated.
600 *
601 * eg.
602 *
603 * temp
604 * ^
605 * | --------
606 * trip 2 / \ ------
607 * | /| |\ /| |\
608 * trip 1 / | | `---- | | \
609 * | /| | | | | |\
610 * trip 0 / | | | | | | \
611 * | /| | | | | | | |\
612 * | / | | | | | | | | `--
613 * | / | | | | | | | |
614 * |----- | | | | | | | |
615 * | | | | | | | | |
616 * --------|-|-|--------|--------|------|-|-|------------------> time
617 * | | |<--t2-->| |<-t2'>| | |
618 * | | | |
619 * | |<------------t1------------>| |
620 * | |
621 * |<-------------t0--------------->|
622 *
623 */
624 if (!tz_dbg->nr_trips) {
625 tze = thermal_debugfs_tz_event_alloc(tz, now);
626 if (!tze)
627 goto unlock;
628
629 list_add(&tze->node, &tz_dbg->tz_episodes);
630 }
631
632 /*
633 * Each time a trip point is crossed the way up, the trip_id
634 * is stored in the trip_crossed array and the nr_trips is
635 * incremented. A nr_trips equal to zero means we are entering
636 * a mitigation episode.
637 *
638 * The trip ids may not be in the ascending order but the
639 * result in the array trips_crossed will be in the ascending
640 * temperature order. The function detecting when a trip point
641 * is crossed the way down will handle the very rare case when
642 * the trip points may have been reordered during this
643 * mitigation episode.
644 */
645 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id;
646
647 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
648 trip_stats = &tze->trip_stats[trip_id];
649 trip_stats->trip_temp = trip->temperature;
650 trip_stats->trip_hyst = trip->hysteresis;
651 trip_stats->timestamp = now;
652
653 unlock:
654 mutex_unlock(&thermal_dbg->lock);
655 }
656
tz_episode_close_trip(struct tz_episode * tze,int trip_id,ktime_t now)657 static void tz_episode_close_trip(struct tz_episode *tze, int trip_id, ktime_t now)
658 {
659 struct trip_stats *trip_stats = &tze->trip_stats[trip_id];
660 ktime_t delta = ktime_sub(now, trip_stats->timestamp);
661
662 trip_stats->duration = ktime_add(delta, trip_stats->duration);
663 /* Mark the end of mitigation for this trip point. */
664 trip_stats->timestamp = KTIME_MAX;
665 }
666
thermal_debug_tz_trip_down(struct thermal_zone_device * tz,const struct thermal_trip * trip)667 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz,
668 const struct thermal_trip *trip)
669 {
670 struct thermal_debugfs *thermal_dbg = tz->debugfs;
671 int trip_id = thermal_zone_trip_id(tz, trip);
672 ktime_t now = ktime_get();
673 struct tz_episode *tze;
674 struct tz_debugfs *tz_dbg;
675 int i;
676
677 if (!thermal_dbg)
678 return;
679
680 tz_dbg = &thermal_dbg->tz_dbg;
681
682 mutex_lock(&thermal_dbg->lock);
683
684 /*
685 * The temperature crosses the way down but there was not
686 * mitigation detected before. That may happen when the
687 * temperature is greater than a trip point when registering a
688 * thermal zone, which is a common use case as the kernel has
689 * no mitigation mechanism yet at boot time.
690 */
691 if (!tz_dbg->nr_trips)
692 goto out;
693
694 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) {
695 if (tz_dbg->trips_crossed[i] == trip_id)
696 break;
697 }
698
699 if (i < 0)
700 goto out;
701
702 tz_dbg->nr_trips--;
703
704 if (i < tz_dbg->nr_trips)
705 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips];
706
707 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
708
709 tz_episode_close_trip(tze, trip_id, now);
710
711 /*
712 * This event closes the mitigation as we are crossing the
713 * last trip point the way down.
714 */
715 if (!tz_dbg->nr_trips)
716 tze->duration = ktime_sub(now, tze->timestamp);
717
718 out:
719 mutex_unlock(&thermal_dbg->lock);
720 }
721
thermal_debug_update_trip_stats(struct thermal_zone_device * tz)722 void thermal_debug_update_trip_stats(struct thermal_zone_device *tz)
723 {
724 struct thermal_debugfs *thermal_dbg = tz->debugfs;
725 struct tz_debugfs *tz_dbg;
726 struct tz_episode *tze;
727 int i;
728
729 if (!thermal_dbg)
730 return;
731
732 tz_dbg = &thermal_dbg->tz_dbg;
733
734 mutex_lock(&thermal_dbg->lock);
735
736 if (!tz_dbg->nr_trips)
737 goto out;
738
739 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
740
741 if (tz->temperature > tze->max_temp)
742 tze->max_temp = tz->temperature;
743
744 for (i = 0; i < tz_dbg->nr_trips; i++) {
745 int trip_id = tz_dbg->trips_crossed[i];
746 struct trip_stats *trip_stats = &tze->trip_stats[trip_id];
747
748 trip_stats->min = min(trip_stats->min, tz->temperature);
749 trip_stats->avg += (tz->temperature - trip_stats->avg) /
750 ++trip_stats->count;
751 }
752 out:
753 mutex_unlock(&thermal_dbg->lock);
754 }
755
tze_seq_start(struct seq_file * s,loff_t * pos)756 static void *tze_seq_start(struct seq_file *s, loff_t *pos)
757 {
758 struct thermal_debugfs *thermal_dbg = s->private;
759 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
760
761 mutex_lock(&thermal_dbg->lock);
762
763 return seq_list_start(&tz_dbg->tz_episodes, *pos);
764 }
765
tze_seq_next(struct seq_file * s,void * v,loff_t * pos)766 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos)
767 {
768 struct thermal_debugfs *thermal_dbg = s->private;
769 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
770
771 return seq_list_next(v, &tz_dbg->tz_episodes, pos);
772 }
773
tze_seq_stop(struct seq_file * s,void * v)774 static void tze_seq_stop(struct seq_file *s, void *v)
775 {
776 struct thermal_debugfs *thermal_dbg = s->private;
777
778 mutex_unlock(&thermal_dbg->lock);
779 }
780
tze_seq_show(struct seq_file * s,void * v)781 static int tze_seq_show(struct seq_file *s, void *v)
782 {
783 struct thermal_debugfs *thermal_dbg = s->private;
784 struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz;
785 struct thermal_trip_desc *td;
786 struct tz_episode *tze;
787 u64 duration_ms;
788 int trip_id;
789 char c;
790
791 tze = list_entry((struct list_head *)v, struct tz_episode, node);
792
793 if (tze->duration == KTIME_MIN) {
794 /* Mitigation in progress. */
795 duration_ms = ktime_to_ms(ktime_sub(ktime_get(), tze->timestamp));
796 c = '>';
797 } else {
798 duration_ms = ktime_to_ms(tze->duration);
799 c = '=';
800 }
801
802 seq_printf(s, ",-Mitigation at %llums, duration%c%llums, max. temp=%dm°C\n",
803 ktime_to_ms(tze->timestamp), c, duration_ms, tze->max_temp);
804
805 seq_printf(s, "| trip | type | temp(m°C) | hyst(m°C) | duration(ms) | avg(m°C) | min(m°C) |\n");
806
807 for_each_trip_desc(tz, td) {
808 const struct thermal_trip *trip = &td->trip;
809 struct trip_stats *trip_stats;
810
811 /*
812 * There is no possible mitigation happening at the
813 * critical trip point, so the stats will be always
814 * zero, skip this trip point
815 */
816 if (trip->type == THERMAL_TRIP_CRITICAL)
817 continue;
818
819 trip_id = thermal_zone_trip_id(tz, trip);
820 trip_stats = &tze->trip_stats[trip_id];
821
822 /* Skip trips without any stats. */
823 if (trip_stats->trip_temp == THERMAL_TEMP_INVALID)
824 continue;
825
826 if (trip_stats->timestamp != KTIME_MAX) {
827 /* Mitigation in progress. */
828 ktime_t delta = ktime_sub(ktime_get(),
829 trip_stats->timestamp);
830
831 delta = ktime_add(delta, trip_stats->duration);
832 duration_ms = ktime_to_ms(delta);
833 c = '>';
834 } else {
835 duration_ms = ktime_to_ms(trip_stats->duration);
836 c = ' ';
837 }
838
839 seq_printf(s, "| %*d | %*s | %*d | %*d | %c%*lld | %*d | %*d |\n",
840 4 , trip_id,
841 8, thermal_trip_type_name(trip->type),
842 9, trip_stats->trip_temp,
843 9, trip_stats->trip_hyst,
844 c, 11, duration_ms,
845 9, trip_stats->avg,
846 9, trip_stats->min);
847 }
848
849 return 0;
850 }
851
852 static const struct seq_operations tze_sops = {
853 .start = tze_seq_start,
854 .next = tze_seq_next,
855 .stop = tze_seq_stop,
856 .show = tze_seq_show,
857 };
858
859 DEFINE_SEQ_ATTRIBUTE(tze);
860
thermal_debug_tz_add(struct thermal_zone_device * tz)861 void thermal_debug_tz_add(struct thermal_zone_device *tz)
862 {
863 struct thermal_debugfs *thermal_dbg;
864 struct tz_debugfs *tz_dbg;
865
866 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id);
867 if (!thermal_dbg)
868 return;
869
870 tz_dbg = &thermal_dbg->tz_dbg;
871
872 tz_dbg->tz = tz;
873
874 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL);
875 if (!tz_dbg->trips_crossed) {
876 thermal_debugfs_remove_id(thermal_dbg);
877 return;
878 }
879
880 INIT_LIST_HEAD(&tz_dbg->tz_episodes);
881
882 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top,
883 thermal_dbg, &tze_fops);
884
885 tz->debugfs = thermal_dbg;
886 }
887
thermal_debug_tz_remove(struct thermal_zone_device * tz)888 void thermal_debug_tz_remove(struct thermal_zone_device *tz)
889 {
890 struct thermal_debugfs *thermal_dbg;
891 struct tz_episode *tze, *tmp;
892 struct tz_debugfs *tz_dbg;
893 int *trips_crossed;
894
895 mutex_lock(&tz->lock);
896
897 thermal_dbg = tz->debugfs;
898 if (!thermal_dbg) {
899 mutex_unlock(&tz->lock);
900 return;
901 }
902
903 tz->debugfs = NULL;
904
905 mutex_unlock(&tz->lock);
906
907 tz_dbg = &thermal_dbg->tz_dbg;
908
909 mutex_lock(&thermal_dbg->lock);
910
911 trips_crossed = tz_dbg->trips_crossed;
912
913 list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) {
914 list_del(&tze->node);
915 kfree(tze);
916 }
917
918 mutex_unlock(&thermal_dbg->lock);
919
920 thermal_debugfs_remove_id(thermal_dbg);
921 kfree(trips_crossed);
922 }
923
thermal_debug_tz_resume(struct thermal_zone_device * tz)924 void thermal_debug_tz_resume(struct thermal_zone_device *tz)
925 {
926 struct thermal_debugfs *thermal_dbg = tz->debugfs;
927 ktime_t now = ktime_get();
928 struct tz_debugfs *tz_dbg;
929 struct tz_episode *tze;
930 int i;
931
932 if (!thermal_dbg)
933 return;
934
935 mutex_lock(&thermal_dbg->lock);
936
937 tz_dbg = &thermal_dbg->tz_dbg;
938
939 if (!tz_dbg->nr_trips)
940 goto out;
941
942 /*
943 * A mitigation episode was in progress before the preceding system
944 * suspend transition, so close it because the zone handling is starting
945 * over from scratch.
946 */
947 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
948
949 for (i = 0; i < tz_dbg->nr_trips; i++)
950 tz_episode_close_trip(tze, tz_dbg->trips_crossed[i], now);
951
952 tze->duration = ktime_sub(now, tze->timestamp);
953
954 tz_dbg->nr_trips = 0;
955
956 out:
957 mutex_unlock(&thermal_dbg->lock);
958 }
959