xref: /titanic_50/usr/src/uts/i86pc/os/timestamp.c (revision 263f549e5da8b32c4922f586afb365b8ae388a6c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
28  * Copyright 2016 Joyent, Inc.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/disp.h>
35 #include <sys/var.h>
36 #include <sys/cmn_err.h>
37 #include <sys/debug.h>
38 #include <sys/x86_archext.h>
39 #include <sys/archsystm.h>
40 #include <sys/cpuvar.h>
41 #include <sys/psm_defs.h>
42 #include <sys/clock.h>
43 #include <sys/atomic.h>
44 #include <sys/lockstat.h>
45 #include <sys/smp_impldefs.h>
46 #include <sys/dtrace.h>
47 #include <sys/time.h>
48 #include <sys/panic.h>
49 #include <sys/cpu.h>
50 #include <sys/sdt.h>
51 #include <sys/comm_page.h>
52 
53 /*
54  * Using the Pentium's TSC register for gethrtime()
55  * ------------------------------------------------
56  *
57  * The Pentium family, like many chip architectures, has a high-resolution
58  * timestamp counter ("TSC") which increments once per CPU cycle.  The contents
59  * of the timestamp counter are read with the RDTSC instruction.
60  *
61  * As with its UltraSPARC equivalent (the %tick register), TSC's cycle count
62  * must be translated into nanoseconds in order to implement gethrtime().
63  * We avoid inducing floating point operations in this conversion by
64  * implementing the same nsec_scale algorithm as that found in the sun4u
65  * platform code.  The sun4u NATIVE_TIME_TO_NSEC_SCALE block comment contains
66  * a detailed description of the algorithm; the comment is not reproduced
67  * here.  This implementation differs only in its value for NSEC_SHIFT:
68  * we implement an NSEC_SHIFT of 5 (instead of sun4u's 4) to allow for
69  * 60 MHz Pentiums.
70  *
71  * While TSC and %tick are both cycle counting registers, TSC's functionality
72  * falls short in several critical ways:
73  *
74  *  (a)	TSCs on different CPUs are not guaranteed to be in sync.  While in
75  *	practice they often _are_ in sync, this isn't guaranteed by the
76  *	architecture.
77  *
78  *  (b)	The TSC cannot be reliably set to an arbitrary value.  The architecture
79  *	only supports writing the low 32-bits of TSC, making it impractical
80  *	to rewrite.
81  *
82  *  (c)	The architecture doesn't have the capacity to interrupt based on
83  *	arbitrary values of TSC; there is no TICK_CMPR equivalent.
84  *
85  * Together, (a) and (b) imply that software must track the skew between
86  * TSCs and account for it (it is assumed that while there may exist skew,
87  * there does not exist drift).  To determine the skew between CPUs, we
88  * have newly onlined CPUs call tsc_sync_slave(), while the CPU performing
89  * the online operation calls tsc_sync_master().
90  *
91  * In the absence of time-of-day clock adjustments, gethrtime() must stay in
92  * sync with gettimeofday().  This is problematic; given (c), the software
93  * cannot drive its time-of-day source from TSC, and yet they must somehow be
94  * kept in sync.  We implement this by having a routine, tsc_tick(), which
95  * is called once per second from the interrupt which drives time-of-day.
96  *
97  * Note that the hrtime base for gethrtime, tsc_hrtime_base, is modified
98  * atomically with nsec_scale under CLOCK_LOCK.  This assures that time
99  * monotonically increases.
100  */
101 
102 #define	NSEC_SHIFT 5
103 
104 static uint_t nsec_unscale;
105 
106 /*
107  * These two variables used to be grouped together inside of a structure that
108  * lived on a single cache line. A regression (bug ID 4623398) caused the
109  * compiler to emit code that "optimized" away the while-loops below. The
110  * result was that no synchronization between the onlining and onlined CPUs
111  * took place.
112  */
113 static volatile int tsc_ready;
114 static volatile int tsc_sync_go;
115 
116 /*
117  * Used as indices into the tsc_sync_snaps[] array.
118  */
119 #define	TSC_MASTER		0
120 #define	TSC_SLAVE		1
121 
122 /*
123  * Used in the tsc_master_sync()/tsc_slave_sync() rendezvous.
124  */
125 #define	TSC_SYNC_STOP		1
126 #define	TSC_SYNC_GO		2
127 #define	TSC_SYNC_DONE		3
128 #define	SYNC_ITERATIONS		10
129 
130 #define	TSC_CONVERT_AND_ADD(tsc, hrt, scale) {	 	\
131 	unsigned int *_l = (unsigned int *)&(tsc); 	\
132 	(hrt) += mul32(_l[1], scale) << NSEC_SHIFT; 	\
133 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
134 }
135 
136 #define	TSC_CONVERT(tsc, hrt, scale) { 			\
137 	unsigned int *_l = (unsigned int *)&(tsc); 	\
138 	(hrt) = mul32(_l[1], scale) << NSEC_SHIFT; 	\
139 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
140 }
141 
142 int tsc_master_slave_sync_needed = 1;
143 
144 typedef struct tsc_sync {
145 	volatile hrtime_t master_tsc, slave_tsc;
146 } tsc_sync_t;
147 static tsc_sync_t *tscp;
148 static hrtime_t largest_tsc_delta = 0;
149 static ulong_t shortest_write_time = ~0UL;
150 
151 static hrtime_t	tsc_last_jumped = 0;
152 static int	tsc_jumped = 0;
153 static uint32_t	tsc_wayback = 0;
154 /*
155  * The cap of 1 second was chosen since it is the frequency at which the
156  * tsc_tick() function runs which means that when gethrtime() is called it
157  * should never be more than 1 second since tsc_last was updated.
158  */
159 static hrtime_t tsc_resume_cap_ns = NANOSEC;	 /* 1s */
160 
161 static hrtime_t	shadow_tsc_hrtime_base;
162 static hrtime_t	shadow_tsc_last;
163 static uint_t	shadow_nsec_scale;
164 static uint32_t	shadow_hres_lock;
165 int get_tsc_ready();
166 
167 static inline
tsc_protect(hrtime_t a)168 hrtime_t tsc_protect(hrtime_t a) {
169 	if (a > tsc_resume_cap) {
170 		atomic_inc_32(&tsc_wayback);
171 		DTRACE_PROBE3(tsc__wayback, htrime_t, a, hrtime_t, tsc_last,
172 		    uint32_t, tsc_wayback);
173 		return (tsc_resume_cap);
174 	}
175 	return (a);
176 }
177 
178 hrtime_t
tsc_gethrtime(void)179 tsc_gethrtime(void)
180 {
181 	uint32_t old_hres_lock;
182 	hrtime_t tsc, hrt;
183 
184 	do {
185 		old_hres_lock = hres_lock;
186 
187 		if ((tsc = tsc_read()) >= tsc_last) {
188 			/*
189 			 * It would seem to be obvious that this is true
190 			 * (that is, the past is less than the present),
191 			 * but it isn't true in the presence of suspend/resume
192 			 * cycles.  If we manage to call gethrtime()
193 			 * after a resume, but before the first call to
194 			 * tsc_tick(), we will see the jump.  In this case,
195 			 * we will simply use the value in TSC as the delta.
196 			 */
197 			tsc -= tsc_last;
198 		} else if (tsc >= tsc_last - 2*tsc_max_delta) {
199 			/*
200 			 * There is a chance that tsc_tick() has just run on
201 			 * another CPU, and we have drifted just enough so that
202 			 * we appear behind tsc_last.  In this case, force the
203 			 * delta to be zero.
204 			 */
205 			tsc = 0;
206 		} else {
207 			/*
208 			 * If we reach this else clause we assume that we have
209 			 * gone through a suspend/resume cycle and use the
210 			 * current tsc value as the delta.
211 			 *
212 			 * In rare cases we can reach this else clause due to
213 			 * a lack of monotonicity in the TSC value.  In such
214 			 * cases using the current TSC value as the delta would
215 			 * cause us to return a value ~2x of what it should
216 			 * be.  To protect against these cases we cap the
217 			 * suspend/resume delta at tsc_resume_cap.
218 			 */
219 			tsc = tsc_protect(tsc);
220 		}
221 
222 		hrt = tsc_hrtime_base;
223 
224 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
225 	} while ((old_hres_lock & ~1) != hres_lock);
226 
227 	return (hrt);
228 }
229 
230 hrtime_t
tsc_gethrtime_delta(void)231 tsc_gethrtime_delta(void)
232 {
233 	uint32_t old_hres_lock;
234 	hrtime_t tsc, hrt;
235 	ulong_t flags;
236 
237 	do {
238 		old_hres_lock = hres_lock;
239 
240 		/*
241 		 * We need to disable interrupts here to assure that we
242 		 * don't migrate between the call to tsc_read() and
243 		 * adding the CPU's TSC tick delta. Note that disabling
244 		 * and reenabling preemption is forbidden here because
245 		 * we may be in the middle of a fast trap. In the amd64
246 		 * kernel we cannot tolerate preemption during a fast
247 		 * trap. See _update_sregs().
248 		 */
249 
250 		flags = clear_int_flag();
251 		tsc = tsc_read() + tsc_sync_tick_delta[CPU->cpu_id];
252 		restore_int_flag(flags);
253 
254 		/* See comments in tsc_gethrtime() above */
255 
256 		if (tsc >= tsc_last) {
257 			tsc -= tsc_last;
258 		} else if (tsc >= tsc_last - 2 * tsc_max_delta) {
259 			tsc = 0;
260 		} else {
261 			tsc = tsc_protect(tsc);
262 		}
263 
264 		hrt = tsc_hrtime_base;
265 
266 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
267 	} while ((old_hres_lock & ~1) != hres_lock);
268 
269 	return (hrt);
270 }
271 
272 hrtime_t
tsc_gethrtime_tick_delta(void)273 tsc_gethrtime_tick_delta(void)
274 {
275 	hrtime_t hrt;
276 	ulong_t flags;
277 
278 	flags = clear_int_flag();
279 	hrt = tsc_sync_tick_delta[CPU->cpu_id];
280 	restore_int_flag(flags);
281 
282 	return (hrt);
283 }
284 
285 /*
286  * This is similar to the above, but it cannot actually spin on hres_lock.
287  * As a result, it caches all of the variables it needs; if the variables
288  * don't change, it's done.
289  */
290 hrtime_t
dtrace_gethrtime(void)291 dtrace_gethrtime(void)
292 {
293 	uint32_t old_hres_lock;
294 	hrtime_t tsc, hrt;
295 	ulong_t flags;
296 
297 	do {
298 		old_hres_lock = hres_lock;
299 
300 		/*
301 		 * Interrupts are disabled to ensure that the thread isn't
302 		 * migrated between the tsc_read() and adding the CPU's
303 		 * TSC tick delta.
304 		 */
305 		flags = clear_int_flag();
306 
307 		tsc = tsc_read();
308 
309 		if (gethrtimef == tsc_gethrtime_delta)
310 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
311 
312 		restore_int_flag(flags);
313 
314 		/*
315 		 * See the comments in tsc_gethrtime(), above.
316 		 */
317 		if (tsc >= tsc_last)
318 			tsc -= tsc_last;
319 		else if (tsc >= tsc_last - 2*tsc_max_delta)
320 			tsc = 0;
321 		else
322 			tsc = tsc_protect(tsc);
323 
324 		hrt = tsc_hrtime_base;
325 
326 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
327 
328 		if ((old_hres_lock & ~1) == hres_lock)
329 			break;
330 
331 		/*
332 		 * If we're here, the clock lock is locked -- or it has been
333 		 * unlocked and locked since we looked.  This may be due to
334 		 * tsc_tick() running on another CPU -- or it may be because
335 		 * some code path has ended up in dtrace_probe() with
336 		 * CLOCK_LOCK held.  We'll try to determine that we're in
337 		 * the former case by taking another lap if the lock has
338 		 * changed since when we first looked at it.
339 		 */
340 		if (old_hres_lock != hres_lock)
341 			continue;
342 
343 		/*
344 		 * So the lock was and is locked.  We'll use the old data
345 		 * instead.
346 		 */
347 		old_hres_lock = shadow_hres_lock;
348 
349 		/*
350 		 * Again, disable interrupts to ensure that the thread
351 		 * isn't migrated between the tsc_read() and adding
352 		 * the CPU's TSC tick delta.
353 		 */
354 		flags = clear_int_flag();
355 
356 		tsc = tsc_read();
357 
358 		if (gethrtimef == tsc_gethrtime_delta)
359 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
360 
361 		restore_int_flag(flags);
362 
363 		/*
364 		 * See the comments in tsc_gethrtime(), above.
365 		 */
366 		if (tsc >= shadow_tsc_last)
367 			tsc -= shadow_tsc_last;
368 		else if (tsc >= shadow_tsc_last - 2 * tsc_max_delta)
369 			tsc = 0;
370 		else
371 			tsc = tsc_protect(tsc);
372 
373 		hrt = shadow_tsc_hrtime_base;
374 
375 		TSC_CONVERT_AND_ADD(tsc, hrt, shadow_nsec_scale);
376 	} while ((old_hres_lock & ~1) != shadow_hres_lock);
377 
378 	return (hrt);
379 }
380 
381 hrtime_t
tsc_gethrtimeunscaled(void)382 tsc_gethrtimeunscaled(void)
383 {
384 	uint32_t old_hres_lock;
385 	hrtime_t tsc;
386 
387 	do {
388 		old_hres_lock = hres_lock;
389 
390 		/* See tsc_tick(). */
391 		tsc = tsc_read() + tsc_last_jumped;
392 	} while ((old_hres_lock & ~1) != hres_lock);
393 
394 	return (tsc);
395 }
396 
397 /*
398  * Convert a nanosecond based timestamp to tsc
399  */
400 uint64_t
tsc_unscalehrtime(hrtime_t nsec)401 tsc_unscalehrtime(hrtime_t nsec)
402 {
403 	hrtime_t tsc;
404 
405 	if (tsc_gethrtime_enable) {
406 		TSC_CONVERT(nsec, tsc, nsec_unscale);
407 		return (tsc);
408 	}
409 	return ((uint64_t)nsec);
410 }
411 
412 /* Convert a tsc timestamp to nanoseconds */
413 void
tsc_scalehrtime(hrtime_t * tsc)414 tsc_scalehrtime(hrtime_t *tsc)
415 {
416 	hrtime_t hrt;
417 	hrtime_t mytsc;
418 
419 	if (tsc == NULL)
420 		return;
421 	mytsc = *tsc;
422 
423 	TSC_CONVERT(mytsc, hrt, nsec_scale);
424 	*tsc  = hrt;
425 }
426 
427 hrtime_t
tsc_gethrtimeunscaled_delta(void)428 tsc_gethrtimeunscaled_delta(void)
429 {
430 	hrtime_t hrt;
431 	ulong_t flags;
432 
433 	/*
434 	 * Similarly to tsc_gethrtime_delta, we need to disable preemption
435 	 * to prevent migration between the call to tsc_gethrtimeunscaled
436 	 * and adding the CPU's hrtime delta. Note that disabling and
437 	 * reenabling preemption is forbidden here because we may be in the
438 	 * middle of a fast trap. In the amd64 kernel we cannot tolerate
439 	 * preemption during a fast trap. See _update_sregs().
440 	 */
441 
442 	flags = clear_int_flag();
443 	hrt = tsc_gethrtimeunscaled() + tsc_sync_tick_delta[CPU->cpu_id];
444 	restore_int_flag(flags);
445 
446 	return (hrt);
447 }
448 
449 /*
450  * Called by the master in the TSC sync operation (usually the boot CPU).
451  * If the slave is discovered to have a skew, gethrtimef will be changed to
452  * point to tsc_gethrtime_delta(). Calculating skews is precise only when
453  * the master and slave TSCs are read simultaneously; however, there is no
454  * algorithm that can read both CPUs in perfect simultaneity. The proposed
455  * algorithm is an approximate method based on the behaviour of cache
456  * management. The slave CPU continuously reads TSC and then reads a global
457  * variable which the master CPU updates. The moment the master's update reaches
458  * the slave's visibility (being forced by an mfence operation) we use the TSC
459  * reading taken on the slave. A corresponding TSC read will be taken on the
460  * master as soon as possible after finishing the mfence operation. But the
461  * delay between causing the slave to notice the invalid cache line and the
462  * competion of mfence is not repeatable. This error is heuristically assumed
463  * to be 1/4th of the total write time as being measured by the two TSC reads
464  * on the master sandwiching the mfence. Furthermore, due to the nature of
465  * bus arbitration, contention on memory bus, etc., the time taken for the write
466  * to reflect globally can vary a lot. So instead of taking a single reading,
467  * a set of readings are taken and the one with least write time is chosen
468  * to calculate the final skew.
469  *
470  * TSC sync is disabled in the context of virtualization because the CPUs
471  * assigned to the guest are virtual CPUs which means the real CPUs on which
472  * guest runs keep changing during life time of guest OS. So we would end up
473  * calculating TSC skews for a set of CPUs during boot whereas the guest
474  * might migrate to a different set of physical CPUs at a later point of
475  * time.
476  */
477 void
tsc_sync_master(processorid_t slave)478 tsc_sync_master(processorid_t slave)
479 {
480 	ulong_t flags, source, min_write_time = ~0UL;
481 	hrtime_t write_time, x, mtsc_after, tdelta;
482 	tsc_sync_t *tsc = tscp;
483 	int cnt;
484 	int hwtype;
485 
486 	hwtype = get_hwenv();
487 	if (!tsc_master_slave_sync_needed || (hwtype & HW_VIRTUAL) != 0)
488 		return;
489 
490 	flags = clear_int_flag();
491 	source = CPU->cpu_id;
492 
493 	for (cnt = 0; cnt < SYNC_ITERATIONS; cnt++) {
494 		while (tsc_sync_go != TSC_SYNC_GO)
495 			SMT_PAUSE();
496 
497 		tsc->master_tsc = tsc_read();
498 		membar_enter();
499 		mtsc_after = tsc_read();
500 		while (tsc_sync_go != TSC_SYNC_DONE)
501 			SMT_PAUSE();
502 		write_time =  mtsc_after - tsc->master_tsc;
503 		if (write_time <= min_write_time) {
504 			min_write_time = write_time;
505 			/*
506 			 * Apply heuristic adjustment only if the calculated
507 			 * delta is > 1/4th of the write time.
508 			 */
509 			x = tsc->slave_tsc - mtsc_after;
510 			if (x < 0)
511 				x = -x;
512 			if (x > (min_write_time/4))
513 				/*
514 				 * Subtract 1/4th of the measured write time
515 				 * from the master's TSC value, as an estimate
516 				 * of how late the mfence completion came
517 				 * after the slave noticed the cache line
518 				 * change.
519 				 */
520 				tdelta = tsc->slave_tsc -
521 				    (mtsc_after - (min_write_time/4));
522 			else
523 				tdelta = tsc->slave_tsc - mtsc_after;
524 			tsc_sync_tick_delta[slave] =
525 			    tsc_sync_tick_delta[source] - tdelta;
526 		}
527 
528 		tsc->master_tsc = tsc->slave_tsc = write_time = 0;
529 		membar_enter();
530 		tsc_sync_go = TSC_SYNC_STOP;
531 	}
532 	if (tdelta < 0)
533 		tdelta = -tdelta;
534 	if (tdelta > largest_tsc_delta)
535 		largest_tsc_delta = tdelta;
536 	if (min_write_time < shortest_write_time)
537 		shortest_write_time = min_write_time;
538 	/*
539 	 * Enable delta variants of tsc functions if the largest of all chosen
540 	 * deltas is > smallest of the write time.
541 	 */
542 	if (largest_tsc_delta > shortest_write_time) {
543 		gethrtimef = tsc_gethrtime_delta;
544 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
545 		tsc_ncpu = NCPU;
546 	}
547 	restore_int_flag(flags);
548 }
549 
550 /*
551  * Called by a CPU which has just been onlined.  It is expected that the CPU
552  * performing the online operation will call tsc_sync_master().
553  *
554  * TSC sync is disabled in the context of virtualization. See comments
555  * above tsc_sync_master.
556  */
557 void
tsc_sync_slave(void)558 tsc_sync_slave(void)
559 {
560 	ulong_t flags;
561 	hrtime_t s1;
562 	tsc_sync_t *tsc = tscp;
563 	int cnt;
564 	int hwtype;
565 
566 	hwtype = get_hwenv();
567 	if (!tsc_master_slave_sync_needed || (hwtype & HW_VIRTUAL) != 0)
568 		return;
569 
570 	flags = clear_int_flag();
571 
572 	for (cnt = 0; cnt < SYNC_ITERATIONS; cnt++) {
573 		/* Re-fill the cache line */
574 		s1 = tsc->master_tsc;
575 		membar_enter();
576 		tsc_sync_go = TSC_SYNC_GO;
577 		do {
578 			/*
579 			 * Do not put an SMT_PAUSE here. For instance,
580 			 * if the master and slave are really the same
581 			 * hyper-threaded CPU, then you want the master
582 			 * to yield to the slave as quickly as possible here,
583 			 * but not the other way.
584 			 */
585 			s1 = tsc_read();
586 		} while (tsc->master_tsc == 0);
587 		tsc->slave_tsc = s1;
588 		membar_enter();
589 		tsc_sync_go = TSC_SYNC_DONE;
590 
591 		while (tsc_sync_go != TSC_SYNC_STOP)
592 			SMT_PAUSE();
593 	}
594 
595 	restore_int_flag(flags);
596 }
597 
598 /*
599  * Called once per second on a CPU from the cyclic subsystem's
600  * CY_HIGH_LEVEL interrupt.  (No longer just cpu0-only)
601  */
602 void
tsc_tick(void)603 tsc_tick(void)
604 {
605 	hrtime_t now, delta;
606 	ushort_t spl;
607 
608 	/*
609 	 * Before we set the new variables, we set the shadow values.  This
610 	 * allows for lock free operation in dtrace_gethrtime().
611 	 */
612 	lock_set_spl((lock_t *)&shadow_hres_lock + HRES_LOCK_OFFSET,
613 	    ipltospl(CBE_HIGH_PIL), &spl);
614 
615 	shadow_tsc_hrtime_base = tsc_hrtime_base;
616 	shadow_tsc_last = tsc_last;
617 	shadow_nsec_scale = nsec_scale;
618 
619 	shadow_hres_lock++;
620 	splx(spl);
621 
622 	CLOCK_LOCK(&spl);
623 
624 	now = tsc_read();
625 
626 	if (gethrtimef == tsc_gethrtime_delta)
627 		now += tsc_sync_tick_delta[CPU->cpu_id];
628 
629 	if (now < tsc_last) {
630 		/*
631 		 * The TSC has just jumped into the past.  We assume that
632 		 * this is due to a suspend/resume cycle, and we're going
633 		 * to use the _current_ value of TSC as the delta.  This
634 		 * will keep tsc_hrtime_base correct.  We're also going to
635 		 * assume that rate of tsc does not change after a suspend
636 		 * resume (i.e nsec_scale remains the same).
637 		 */
638 		delta = now;
639 		delta = tsc_protect(delta);
640 		tsc_last_jumped += tsc_last;
641 		tsc_jumped = 1;
642 	} else {
643 		/*
644 		 * Determine the number of TSC ticks since the last clock
645 		 * tick, and add that to the hrtime base.
646 		 */
647 		delta = now - tsc_last;
648 	}
649 
650 	TSC_CONVERT_AND_ADD(delta, tsc_hrtime_base, nsec_scale);
651 	tsc_last = now;
652 
653 	CLOCK_UNLOCK(spl);
654 }
655 
656 void
tsc_hrtimeinit(uint64_t cpu_freq_hz)657 tsc_hrtimeinit(uint64_t cpu_freq_hz)
658 {
659 	extern int gethrtime_hires;
660 	longlong_t tsc;
661 	ulong_t flags;
662 
663 	/*
664 	 * cpu_freq_hz is the measured cpu frequency in hertz
665 	 */
666 
667 	/*
668 	 * We can't accommodate CPUs slower than 31.25 MHz.
669 	 */
670 	ASSERT(cpu_freq_hz > NANOSEC / (1 << NSEC_SHIFT));
671 	nsec_scale =
672 	    (uint_t)(((uint64_t)NANOSEC << (32 - NSEC_SHIFT)) / cpu_freq_hz);
673 	nsec_unscale =
674 	    (uint_t)(((uint64_t)cpu_freq_hz << (32 - NSEC_SHIFT)) / NANOSEC);
675 
676 	flags = clear_int_flag();
677 	tsc = tsc_read();
678 	(void) tsc_gethrtime();
679 	tsc_max_delta = tsc_read() - tsc;
680 	restore_int_flag(flags);
681 	gethrtimef = tsc_gethrtime;
682 	gethrtimeunscaledf = tsc_gethrtimeunscaled;
683 	scalehrtimef = tsc_scalehrtime;
684 	unscalehrtimef = tsc_unscalehrtime;
685 	hrtime_tick = tsc_tick;
686 	gethrtime_hires = 1;
687 	/*
688 	 * Being part of the comm page, tsc_ncpu communicates the published
689 	 * length of the tsc_sync_tick_delta array.  This is kept zeroed to
690 	 * ignore the absent delta data while the TSCs are synced.
691 	 */
692 	tsc_ncpu = 0;
693 	/*
694 	 * Allocate memory for the structure used in the tsc sync logic.
695 	 * This structure should be aligned on a multiple of cache line size.
696 	 */
697 	tscp = kmem_zalloc(PAGESIZE, KM_SLEEP);
698 
699 	/*
700 	 * Convert the TSC resume cap ns value into its unscaled TSC value.
701 	 * See tsc_gethrtime().
702 	 */
703 	if (tsc_resume_cap == 0)
704 		TSC_CONVERT(tsc_resume_cap_ns, tsc_resume_cap, nsec_unscale);
705 }
706 
707 int
get_tsc_ready()708 get_tsc_ready()
709 {
710 	return (tsc_ready);
711 }
712 
713 /*
714  * Adjust all the deltas by adding the passed value to the array.
715  * Then use the "delt" versions of the the gethrtime functions.
716  * Note that 'tdelta' _could_ be a negative number, which should
717  * reduce the values in the array (used, for example, if the Solaris
718  * instance was moved by a virtual manager to a machine with a higher
719  * value of tsc).
720  */
721 void
tsc_adjust_delta(hrtime_t tdelta)722 tsc_adjust_delta(hrtime_t tdelta)
723 {
724 	int		i;
725 
726 	for (i = 0; i < NCPU; i++) {
727 		tsc_sync_tick_delta[i] += tdelta;
728 	}
729 
730 	gethrtimef = tsc_gethrtime_delta;
731 	gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
732 	tsc_ncpu = NCPU;
733 }
734 
735 /*
736  * Functions to manage TSC and high-res time on suspend and resume.
737  */
738 
739 /*
740  * declarations needed for time adjustment
741  */
742 extern void	rtcsync(void);
743 extern tod_ops_t *tod_ops;
744 /* There must be a better way than exposing nsec_scale! */
745 extern uint_t	nsec_scale;
746 static uint64_t tsc_saved_tsc = 0; /* 1 in 2^64 chance this'll screw up! */
747 static timestruc_t tsc_saved_ts;
748 static int	tsc_needs_resume = 0;	/* We only want to do this once. */
749 int		tsc_delta_onsuspend = 0;
750 int		tsc_adjust_seconds = 1;
751 int		tsc_suspend_count = 0;
752 int		tsc_resume_in_cyclic = 0;
753 
754 /*
755  * Let timestamp.c know that we are suspending.  It needs to take
756  * snapshots of the current time, and do any pre-suspend work.
757  */
758 void
tsc_suspend(void)759 tsc_suspend(void)
760 {
761 /*
762  * What we need to do here, is to get the time we suspended, so that we
763  * know how much we should add to the resume.
764  * This routine is called by each CPU, so we need to handle reentry.
765  */
766 	if (tsc_gethrtime_enable) {
767 		/*
768 		 * We put the tsc_read() inside the lock as it
769 		 * as no locking constraints, and it puts the
770 		 * aquired value closer to the time stamp (in
771 		 * case we delay getting the lock).
772 		 */
773 		mutex_enter(&tod_lock);
774 		tsc_saved_tsc = tsc_read();
775 		tsc_saved_ts = TODOP_GET(tod_ops);
776 		mutex_exit(&tod_lock);
777 		/* We only want to do this once. */
778 		if (tsc_needs_resume == 0) {
779 			if (tsc_delta_onsuspend) {
780 				tsc_adjust_delta(tsc_saved_tsc);
781 			} else {
782 				tsc_adjust_delta(nsec_scale);
783 			}
784 			tsc_suspend_count++;
785 		}
786 	}
787 
788 	invalidate_cache();
789 	tsc_needs_resume = 1;
790 }
791 
792 /*
793  * Restore all timestamp state based on the snapshots taken at
794  * suspend time.
795  */
796 void
tsc_resume(void)797 tsc_resume(void)
798 {
799 	/*
800 	 * We only need to (and want to) do this once.  So let the first
801 	 * caller handle this (we are locked by the cpu lock), as it
802 	 * is preferential that we get the earliest sync.
803 	 */
804 	if (tsc_needs_resume) {
805 		/*
806 		 * If using the TSC, adjust the delta based on how long
807 		 * we were sleeping (or away).  We also adjust for
808 		 * migration and a grown TSC.
809 		 */
810 		if (tsc_saved_tsc != 0) {
811 			timestruc_t	ts;
812 			hrtime_t	now, sleep_tsc = 0;
813 			int		sleep_sec;
814 			extern void	tsc_tick(void);
815 			extern uint64_t cpu_freq_hz;
816 
817 			/* tsc_read() MUST be before TODOP_GET() */
818 			mutex_enter(&tod_lock);
819 			now = tsc_read();
820 			ts = TODOP_GET(tod_ops);
821 			mutex_exit(&tod_lock);
822 
823 			/* Compute seconds of sleep time */
824 			sleep_sec = ts.tv_sec - tsc_saved_ts.tv_sec;
825 
826 			/*
827 			 * If the saved sec is less that or equal to
828 			 * the current ts, then there is likely a
829 			 * problem with the clock.  Assume at least
830 			 * one second has passed, so that time goes forward.
831 			 */
832 			if (sleep_sec <= 0) {
833 				sleep_sec = 1;
834 			}
835 
836 			/* How many TSC's should have occured while sleeping */
837 			if (tsc_adjust_seconds)
838 				sleep_tsc = sleep_sec * cpu_freq_hz;
839 
840 			/*
841 			 * We also want to subtract from the "sleep_tsc"
842 			 * the current value of tsc_read(), so that our
843 			 * adjustment accounts for the amount of time we
844 			 * have been resumed _or_ an adjustment based on
845 			 * the fact that we didn't actually power off the
846 			 * CPU (migration is another issue, but _should_
847 			 * also comply with this calculation).  If the CPU
848 			 * never powered off, then:
849 			 *    'now == sleep_tsc + saved_tsc'
850 			 * and the delta will effectively be "0".
851 			 */
852 			sleep_tsc -= now;
853 			if (tsc_delta_onsuspend) {
854 				tsc_adjust_delta(sleep_tsc);
855 			} else {
856 				tsc_adjust_delta(tsc_saved_tsc + sleep_tsc);
857 			}
858 			tsc_saved_tsc = 0;
859 
860 			tsc_tick();
861 		}
862 		tsc_needs_resume = 0;
863 	}
864 
865 }
866