1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013, Joyent, Inc. All rights reserved.
25 */
26
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/cred.h>
34 #include <sys/proc.h>
35 #include <sys/session.h>
36 #include <sys/strsubr.h>
37 #include <sys/signal.h>
38 #include <sys/user.h>
39 #include <sys/priocntl.h>
40 #include <sys/class.h>
41 #include <sys/disp.h>
42 #include <sys/procset.h>
43 #include <sys/debug.h>
44 #include <sys/ts.h>
45 #include <sys/tspriocntl.h>
46 #include <sys/iapriocntl.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/cpuvar.h>
50 #include <sys/systm.h> /* for lbolt */
51 #include <sys/vtrace.h>
52 #include <sys/vmsystm.h>
53 #include <sys/schedctl.h>
54 #include <sys/tnf_probe.h>
55 #include <sys/atomic.h>
56 #include <sys/policy.h>
57 #include <sys/sdt.h>
58 #include <sys/cpupart.h>
59 #include <vm/rm.h>
60 #include <vm/seg_kmem.h>
61 #include <sys/modctl.h>
62 #include <sys/cpucaps.h>
63
64 static pri_t ts_init(id_t, int, classfuncs_t **);
65
66 static struct sclass csw = {
67 "TS",
68 ts_init,
69 0
70 };
71
72 static struct modlsched modlsched = {
73 &mod_schedops, "time sharing sched class", &csw
74 };
75
76 static struct modlinkage modlinkage = {
77 MODREV_1, (void *)&modlsched, NULL
78 };
79
80 int
_init()81 _init()
82 {
83 return (mod_install(&modlinkage));
84 }
85
86 int
_fini()87 _fini()
88 {
89 return (EBUSY); /* don't remove TS for now */
90 }
91
92 int
_info(struct modinfo * modinfop)93 _info(struct modinfo *modinfop)
94 {
95 return (mod_info(&modlinkage, modinfop));
96 }
97
98 /*
99 * Class specific code for the time-sharing class
100 */
101
102
103 /*
104 * Extern declarations for variables defined in the ts master file
105 */
106 #define TSMAXUPRI 60
107
108 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */
109 pri_t ts_maxumdpri; /* maximum user mode ts priority */
110
111 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */
112 pri_t ia_boost = IA_BOOST; /* boost value for interactive */
113
114 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */
115 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */
116 /* sleeping or running in kernel after sleep */
117
118 static id_t ia_cid;
119
120 int ts_sleep_promote = 1;
121
122 #define tsmedumdpri (ts_maxumdpri >> 1)
123
124 #define TS_NEWUMDPRI(tspp) \
125 { \
126 pri_t pri; \
127 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \
128 if (pri > ts_maxumdpri) \
129 (tspp)->ts_umdpri = ts_maxumdpri; \
130 else if (pri < 0) \
131 (tspp)->ts_umdpri = 0; \
132 else \
133 (tspp)->ts_umdpri = pri; \
134 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \
135 }
136
137 /*
138 * The tsproc_t structures are kept in an array of circular doubly linked
139 * lists. A hash on the thread pointer is used to determine which list
140 * each thread should be placed. Each list has a dummy "head" which is
141 * never removed, so the list is never empty. ts_update traverses these
142 * lists to update the priorities of threads that have been waiting on
143 * the run queue.
144 */
145
146 #define TS_LISTS 16 /* number of lists, must be power of 2 */
147
148 /* hash function, argument is a thread pointer */
149 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1))
150
151 /* iterate to the next list */
152 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1))
153
154 /*
155 * Insert thread into the appropriate tsproc list.
156 */
157 #define TS_LIST_INSERT(tspp) \
158 { \
159 int index = TS_LIST_HASH(tspp->ts_tp); \
160 kmutex_t *lockp = &ts_list_lock[index]; \
161 tsproc_t *headp = &ts_plisthead[index]; \
162 mutex_enter(lockp); \
163 tspp->ts_next = headp->ts_next; \
164 tspp->ts_prev = headp; \
165 headp->ts_next->ts_prev = tspp; \
166 headp->ts_next = tspp; \
167 mutex_exit(lockp); \
168 }
169
170 /*
171 * Remove thread from tsproc list.
172 */
173 #define TS_LIST_DELETE(tspp) \
174 { \
175 int index = TS_LIST_HASH(tspp->ts_tp); \
176 kmutex_t *lockp = &ts_list_lock[index]; \
177 mutex_enter(lockp); \
178 tspp->ts_prev->ts_next = tspp->ts_next; \
179 tspp->ts_next->ts_prev = tspp->ts_prev; \
180 mutex_exit(lockp); \
181 }
182
183
184 static int ts_admin(caddr_t, cred_t *);
185 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
186 static int ts_fork(kthread_t *, kthread_t *, void *);
187 static int ts_getclinfo(void *);
188 static int ts_getclpri(pcpri_t *);
189 static int ts_parmsin(void *);
190 static int ts_parmsout(void *, pc_vaparms_t *);
191 static int ts_vaparmsin(void *, pc_vaparms_t *);
192 static int ts_vaparmsout(void *, pc_vaparms_t *);
193 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *);
194 static void ts_exit(kthread_t *);
195 static int ts_donice(kthread_t *, cred_t *, int, int *);
196 static int ts_doprio(kthread_t *, cred_t *, int, int *);
197 static void ts_exitclass(void *);
198 static int ts_canexit(kthread_t *, cred_t *);
199 static void ts_forkret(kthread_t *, kthread_t *);
200 static void ts_nullsys();
201 static void ts_parmsget(kthread_t *, void *);
202 static void ts_preempt(kthread_t *);
203 static void ts_setrun(kthread_t *);
204 static void ts_sleep(kthread_t *);
205 static pri_t ts_swapin(kthread_t *, int);
206 static pri_t ts_swapout(kthread_t *, int);
207 static void ts_tick(kthread_t *);
208 static void ts_trapret(kthread_t *);
209 static void ts_update(void *);
210 static int ts_update_list(int);
211 static void ts_wakeup(kthread_t *);
212 static pri_t ts_globpri(kthread_t *);
213 static void ts_yield(kthread_t *);
214 extern tsdpent_t *ts_getdptbl(void);
215 extern pri_t *ts_getkmdpris(void);
216 extern pri_t td_getmaxumdpri(void);
217 static int ts_alloc(void **, int);
218 static void ts_free(void *);
219
220 pri_t ia_init(id_t, int, classfuncs_t **);
221 static int ia_getclinfo(void *);
222 static int ia_getclpri(pcpri_t *);
223 static int ia_parmsin(void *);
224 static int ia_vaparmsin(void *, pc_vaparms_t *);
225 static int ia_vaparmsout(void *, pc_vaparms_t *);
226 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *);
227 static void ia_parmsget(kthread_t *, void *);
228 static void ia_set_process_group(pid_t, pid_t, pid_t);
229
230 static void ts_change_priority(kthread_t *, tsproc_t *);
231
232 extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */
233 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */
234 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */
235 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */
236 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */
237
238 static gid_t IA_gid = 0;
239
240 static struct classfuncs ts_classfuncs = {
241 /* class functions */
242 ts_admin,
243 ts_getclinfo,
244 ts_parmsin,
245 ts_parmsout,
246 ts_vaparmsin,
247 ts_vaparmsout,
248 ts_getclpri,
249 ts_alloc,
250 ts_free,
251
252 /* thread functions */
253 ts_enterclass,
254 ts_exitclass,
255 ts_canexit,
256 ts_fork,
257 ts_forkret,
258 ts_parmsget,
259 ts_parmsset,
260 ts_nullsys, /* stop */
261 ts_exit,
262 ts_nullsys, /* active */
263 ts_nullsys, /* inactive */
264 ts_swapin,
265 ts_swapout,
266 ts_trapret,
267 ts_preempt,
268 ts_setrun,
269 ts_sleep,
270 ts_tick,
271 ts_wakeup,
272 ts_donice,
273 ts_globpri,
274 ts_nullsys, /* set_process_group */
275 ts_yield,
276 ts_doprio,
277 };
278
279 /*
280 * ia_classfuncs is used for interactive class threads; IA threads are stored
281 * on the same class list as TS threads, and most of the class functions are
282 * identical, but a few have different enough functionality to require their
283 * own functions.
284 */
285 static struct classfuncs ia_classfuncs = {
286 /* class functions */
287 ts_admin,
288 ia_getclinfo,
289 ia_parmsin,
290 ts_parmsout,
291 ia_vaparmsin,
292 ia_vaparmsout,
293 ia_getclpri,
294 ts_alloc,
295 ts_free,
296
297 /* thread functions */
298 ts_enterclass,
299 ts_exitclass,
300 ts_canexit,
301 ts_fork,
302 ts_forkret,
303 ia_parmsget,
304 ia_parmsset,
305 ts_nullsys, /* stop */
306 ts_exit,
307 ts_nullsys, /* active */
308 ts_nullsys, /* inactive */
309 ts_swapin,
310 ts_swapout,
311 ts_trapret,
312 ts_preempt,
313 ts_setrun,
314 ts_sleep,
315 ts_tick,
316 ts_wakeup,
317 ts_donice,
318 ts_globpri,
319 ia_set_process_group,
320 ts_yield,
321 ts_doprio,
322 };
323
324
325 /*
326 * Time sharing class initialization. Called by dispinit() at boot time.
327 * We can ignore the clparmsz argument since we know that the smallest
328 * possible parameter buffer is big enough for us.
329 */
330 /* ARGSUSED */
331 static pri_t
ts_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)332 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
333 {
334 int i;
335 extern pri_t ts_getmaxumdpri(void);
336
337 ts_dptbl = ts_getdptbl();
338 ts_kmdpris = ts_getkmdpris();
339 ts_maxumdpri = ts_getmaxumdpri();
340 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri);
341
342 /*
343 * Initialize the tsproc lists.
344 */
345 for (i = 0; i < TS_LISTS; i++) {
346 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev =
347 &ts_plisthead[i];
348 }
349
350 /*
351 * We're required to return a pointer to our classfuncs
352 * structure and the highest global priority value we use.
353 */
354 *clfuncspp = &ts_classfuncs;
355 return (ts_maxglobpri);
356 }
357
358
359 /*
360 * Interactive class scheduler initialization
361 */
362 /* ARGSUSED */
363 pri_t
ia_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)364 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
365 {
366 /*
367 * We're required to return a pointer to our classfuncs
368 * structure and the highest global priority value we use.
369 */
370 ia_cid = cid;
371 *clfuncspp = &ia_classfuncs;
372 return (ts_maxglobpri);
373 }
374
375
376 /*
377 * Get or reset the ts_dptbl values per the user's request.
378 */
379 static int
ts_admin(caddr_t uaddr,cred_t * reqpcredp)380 ts_admin(caddr_t uaddr, cred_t *reqpcredp)
381 {
382 tsadmin_t tsadmin;
383 tsdpent_t *tmpdpp;
384 int userdpsz;
385 int i;
386 size_t tsdpsz;
387
388 if (get_udatamodel() == DATAMODEL_NATIVE) {
389 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t)))
390 return (EFAULT);
391 }
392 #ifdef _SYSCALL32_IMPL
393 else {
394 /* get tsadmin struct from ILP32 caller */
395 tsadmin32_t tsadmin32;
396 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t)))
397 return (EFAULT);
398 tsadmin.ts_dpents =
399 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents;
400 tsadmin.ts_ndpents = tsadmin32.ts_ndpents;
401 tsadmin.ts_cmd = tsadmin32.ts_cmd;
402 }
403 #endif /* _SYSCALL32_IMPL */
404
405 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t);
406
407 switch (tsadmin.ts_cmd) {
408 case TS_GETDPSIZE:
409 tsadmin.ts_ndpents = ts_maxumdpri + 1;
410
411 if (get_udatamodel() == DATAMODEL_NATIVE) {
412 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
413 return (EFAULT);
414 }
415 #ifdef _SYSCALL32_IMPL
416 else {
417 /* return tsadmin struct to ILP32 caller */
418 tsadmin32_t tsadmin32;
419 tsadmin32.ts_dpents =
420 (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
421 tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
422 tsadmin32.ts_cmd = tsadmin.ts_cmd;
423 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
424 return (EFAULT);
425 }
426 #endif /* _SYSCALL32_IMPL */
427 break;
428
429 case TS_GETDPTBL:
430 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t),
431 tsdpsz);
432 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz))
433 return (EFAULT);
434
435 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t);
436
437 if (get_udatamodel() == DATAMODEL_NATIVE) {
438 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
439 return (EFAULT);
440 }
441 #ifdef _SYSCALL32_IMPL
442 else {
443 /* return tsadmin struct to ILP32 callers */
444 tsadmin32_t tsadmin32;
445 tsadmin32.ts_dpents =
446 (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
447 tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
448 tsadmin32.ts_cmd = tsadmin.ts_cmd;
449 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
450 return (EFAULT);
451 }
452 #endif /* _SYSCALL32_IMPL */
453 break;
454
455 case TS_SETDPTBL:
456 /*
457 * We require that the requesting process has sufficient
458 * priveleges. We also require that the table supplied by
459 * the user exactly match the current ts_dptbl in size.
460 */
461 if (secpolicy_dispadm(reqpcredp) != 0)
462 return (EPERM);
463
464 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) {
465 return (EINVAL);
466 }
467
468 /*
469 * We read the user supplied table into a temporary buffer
470 * where it is validated before being copied over the
471 * ts_dptbl.
472 */
473 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP);
474 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp,
475 tsdpsz)) {
476 kmem_free(tmpdpp, tsdpsz);
477 return (EFAULT);
478 }
479 for (i = 0; i < tsadmin.ts_ndpents; i++) {
480
481 /*
482 * Validate the user supplied values. All we are doing
483 * here is verifying that the values are within their
484 * allowable ranges and will not panic the system. We
485 * make no attempt to ensure that the resulting
486 * configuration makes sense or results in reasonable
487 * performance.
488 */
489 if (tmpdpp[i].ts_quantum <= 0) {
490 kmem_free(tmpdpp, tsdpsz);
491 return (EINVAL);
492 }
493 if (tmpdpp[i].ts_tqexp > ts_maxumdpri ||
494 tmpdpp[i].ts_tqexp < 0) {
495 kmem_free(tmpdpp, tsdpsz);
496 return (EINVAL);
497 }
498 if (tmpdpp[i].ts_slpret > ts_maxumdpri ||
499 tmpdpp[i].ts_slpret < 0) {
500 kmem_free(tmpdpp, tsdpsz);
501 return (EINVAL);
502 }
503 if (tmpdpp[i].ts_maxwait < 0) {
504 kmem_free(tmpdpp, tsdpsz);
505 return (EINVAL);
506 }
507 if (tmpdpp[i].ts_lwait > ts_maxumdpri ||
508 tmpdpp[i].ts_lwait < 0) {
509 kmem_free(tmpdpp, tsdpsz);
510 return (EINVAL);
511 }
512 }
513
514 /*
515 * Copy the user supplied values over the current ts_dptbl
516 * values. The ts_globpri member is read-only so we don't
517 * overwrite it.
518 */
519 mutex_enter(&ts_dptblock);
520 for (i = 0; i < tsadmin.ts_ndpents; i++) {
521 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum;
522 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp;
523 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret;
524 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait;
525 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait;
526 }
527 mutex_exit(&ts_dptblock);
528 kmem_free(tmpdpp, tsdpsz);
529 break;
530
531 default:
532 return (EINVAL);
533 }
534 return (0);
535 }
536
537
538 /*
539 * Allocate a time-sharing class specific thread structure and
540 * initialize it with the parameters supplied. Also move the thread
541 * to specified time-sharing priority.
542 */
543 static int
ts_enterclass(kthread_t * t,id_t cid,void * parmsp,cred_t * reqpcredp,void * bufp)544 ts_enterclass(kthread_t *t, id_t cid, void *parmsp,
545 cred_t *reqpcredp, void *bufp)
546 {
547 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
548 tsproc_t *tspp;
549 pri_t reqtsuprilim;
550 pri_t reqtsupri;
551 static uint32_t tspexists = 0; /* set on first occurrence of */
552 /* a time-sharing process */
553
554 tspp = (tsproc_t *)bufp;
555 ASSERT(tspp != NULL);
556
557 /*
558 * Initialize the tsproc structure.
559 */
560 tspp->ts_cpupri = tsmedumdpri;
561 if (cid == ia_cid) {
562 /*
563 * Check to make sure caller is either privileged or the
564 * window system. When the window system is converted
565 * to using privileges, the second check can go away.
566 */
567 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
568 secpolicy_setpriority(reqpcredp) != 0)
569 return (EPERM);
570 /*
571 * Belongs to IA "class", so set appropriate flags.
572 * Mark as 'on' so it will not be a swap victim
573 * while forking.
574 */
575 tspp->ts_flags = TSIA | TSIASET;
576 tspp->ts_boost = ia_boost;
577 } else {
578 tspp->ts_flags = 0;
579 tspp->ts_boost = 0;
580 }
581
582 if (tsparmsp == NULL) {
583 /*
584 * Use default values.
585 */
586 tspp->ts_uprilim = tspp->ts_upri = 0;
587 tspp->ts_nice = NZERO;
588 } else {
589 /*
590 * Use supplied values.
591 */
592 if (tsparmsp->ts_uprilim == TS_NOCHANGE)
593 reqtsuprilim = 0;
594 else {
595 if (tsparmsp->ts_uprilim > 0 &&
596 secpolicy_setpriority(reqpcredp) != 0)
597 return (EPERM);
598 reqtsuprilim = tsparmsp->ts_uprilim;
599 }
600
601 if (tsparmsp->ts_upri == TS_NOCHANGE) {
602 reqtsupri = reqtsuprilim;
603 } else {
604 if (tsparmsp->ts_upri > 0 &&
605 secpolicy_setpriority(reqpcredp) != 0)
606 return (EPERM);
607 /*
608 * Set the user priority to the requested value
609 * or the upri limit, whichever is lower.
610 */
611 reqtsupri = tsparmsp->ts_upri;
612 if (reqtsupri > reqtsuprilim)
613 reqtsupri = reqtsuprilim;
614 }
615
616
617 tspp->ts_uprilim = reqtsuprilim;
618 tspp->ts_upri = reqtsupri;
619 tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri;
620 }
621 TS_NEWUMDPRI(tspp);
622
623 tspp->ts_dispwait = 0;
624 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
625 tspp->ts_tp = t;
626 cpucaps_sc_init(&tspp->ts_caps);
627
628 /*
629 * Reset priority. Process goes to a "user mode" priority
630 * here regardless of whether or not it has slept since
631 * entering the kernel.
632 */
633 thread_lock(t); /* get dispatcher lock on thread */
634 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
635 t->t_cid = cid;
636 t->t_cldata = (void *)tspp;
637 t->t_schedflag &= ~TS_RUNQMATCH;
638 ts_change_priority(t, tspp);
639 thread_unlock(t);
640
641 /*
642 * Link new structure into tsproc list.
643 */
644 TS_LIST_INSERT(tspp);
645
646 /*
647 * If this is the first time-sharing thread to occur since
648 * boot we set up the initial call to ts_update() here.
649 * Use an atomic compare-and-swap since that's easier and
650 * faster than a mutex (but check with an ordinary load first
651 * since most of the time this will already be done).
652 */
653 if (tspexists == 0 && atomic_cas_32(&tspexists, 0, 1) == 0)
654 (void) timeout(ts_update, NULL, hz);
655
656 return (0);
657 }
658
659
660 /*
661 * Free tsproc structure of thread.
662 */
663 static void
ts_exitclass(void * procp)664 ts_exitclass(void *procp)
665 {
666 tsproc_t *tspp = (tsproc_t *)procp;
667
668 /* Remove tsproc_t structure from list */
669 TS_LIST_DELETE(tspp);
670 kmem_free(tspp, sizeof (tsproc_t));
671 }
672
673 /* ARGSUSED */
674 static int
ts_canexit(kthread_t * t,cred_t * cred)675 ts_canexit(kthread_t *t, cred_t *cred)
676 {
677 /*
678 * A thread can always leave a TS/IA class
679 */
680 return (0);
681 }
682
683 static int
ts_fork(kthread_t * t,kthread_t * ct,void * bufp)684 ts_fork(kthread_t *t, kthread_t *ct, void *bufp)
685 {
686 tsproc_t *ptspp; /* ptr to parent's tsproc structure */
687 tsproc_t *ctspp; /* ptr to child's tsproc structure */
688
689 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
690
691 ctspp = (tsproc_t *)bufp;
692 ASSERT(ctspp != NULL);
693 ptspp = (tsproc_t *)t->t_cldata;
694 /*
695 * Initialize child's tsproc structure.
696 */
697 thread_lock(t);
698 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum;
699 ctspp->ts_cpupri = ptspp->ts_cpupri;
700 ctspp->ts_boost = ptspp->ts_boost;
701 ctspp->ts_uprilim = ptspp->ts_uprilim;
702 ctspp->ts_upri = ptspp->ts_upri;
703 TS_NEWUMDPRI(ctspp);
704 ctspp->ts_nice = ptspp->ts_nice;
705 ctspp->ts_dispwait = 0;
706 ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE);
707 ctspp->ts_tp = ct;
708 cpucaps_sc_init(&ctspp->ts_caps);
709 thread_unlock(t);
710
711 /*
712 * Link new structure into tsproc list.
713 */
714 ct->t_cldata = (void *)ctspp;
715 TS_LIST_INSERT(ctspp);
716 return (0);
717 }
718
719
720 /*
721 * Child is placed at back of dispatcher queue and parent gives
722 * up processor so that the child runs first after the fork.
723 * This allows the child immediately execing to break the multiple
724 * use of copy on write pages with no disk home. The parent will
725 * get to steal them back rather than uselessly copying them.
726 */
727 static void
ts_forkret(kthread_t * t,kthread_t * ct)728 ts_forkret(kthread_t *t, kthread_t *ct)
729 {
730 proc_t *pp = ttoproc(t);
731 proc_t *cp = ttoproc(ct);
732 tsproc_t *tspp;
733
734 ASSERT(t == curthread);
735 ASSERT(MUTEX_HELD(&pidlock));
736
737 /*
738 * Grab the child's p_lock before dropping pidlock to ensure
739 * the process does not disappear before we set it running.
740 */
741 mutex_enter(&cp->p_lock);
742 continuelwps(cp);
743 mutex_exit(&cp->p_lock);
744
745 mutex_enter(&pp->p_lock);
746 mutex_exit(&pidlock);
747 continuelwps(pp);
748
749 thread_lock(t);
750 tspp = (tsproc_t *)(t->t_cldata);
751 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
752 TS_NEWUMDPRI(tspp);
753 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
754 tspp->ts_dispwait = 0;
755 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
756 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
757 tspp->ts_flags &= ~TSKPRI;
758 THREAD_TRANSITION(t);
759 ts_setrun(t);
760 thread_unlock(t);
761 /*
762 * Safe to drop p_lock now since since it is safe to change
763 * the scheduling class after this point.
764 */
765 mutex_exit(&pp->p_lock);
766
767 swtch();
768 }
769
770
771 /*
772 * Get information about the time-sharing class into the buffer
773 * pointed to by tsinfop. The maximum configured user priority
774 * is the only information we supply. ts_getclinfo() is called
775 * for TS threads, and ia_getclinfo() is called for IA threads.
776 */
777 static int
ts_getclinfo(void * infop)778 ts_getclinfo(void *infop)
779 {
780 tsinfo_t *tsinfop = (tsinfo_t *)infop;
781 tsinfop->ts_maxupri = ts_maxupri;
782 return (0);
783 }
784
785 static int
ia_getclinfo(void * infop)786 ia_getclinfo(void *infop)
787 {
788 iainfo_t *iainfop = (iainfo_t *)infop;
789 iainfop->ia_maxupri = ia_maxupri;
790 return (0);
791 }
792
793
794 /*
795 * Return the user mode scheduling priority range.
796 */
797 static int
ts_getclpri(pcpri_t * pcprip)798 ts_getclpri(pcpri_t *pcprip)
799 {
800 pcprip->pc_clpmax = ts_maxupri;
801 pcprip->pc_clpmin = -ts_maxupri;
802 return (0);
803 }
804
805
806 static int
ia_getclpri(pcpri_t * pcprip)807 ia_getclpri(pcpri_t *pcprip)
808 {
809 pcprip->pc_clpmax = ia_maxupri;
810 pcprip->pc_clpmin = -ia_maxupri;
811 return (0);
812 }
813
814
815 static void
ts_nullsys()816 ts_nullsys()
817 {}
818
819
820 /*
821 * Get the time-sharing parameters of the thread pointed to by
822 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget()
823 * is called for TS threads, and ia_parmsget() is called for IA
824 * threads.
825 */
826 static void
ts_parmsget(kthread_t * t,void * parmsp)827 ts_parmsget(kthread_t *t, void *parmsp)
828 {
829 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
830 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
831
832 tsparmsp->ts_uprilim = tspp->ts_uprilim;
833 tsparmsp->ts_upri = tspp->ts_upri;
834 }
835
836 static void
ia_parmsget(kthread_t * t,void * parmsp)837 ia_parmsget(kthread_t *t, void *parmsp)
838 {
839 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
840 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
841
842 iaparmsp->ia_uprilim = tspp->ts_uprilim;
843 iaparmsp->ia_upri = tspp->ts_upri;
844 if (tspp->ts_flags & TSIASET)
845 iaparmsp->ia_mode = IA_SET_INTERACTIVE;
846 else
847 iaparmsp->ia_mode = IA_INTERACTIVE_OFF;
848 }
849
850
851 /*
852 * Check the validity of the time-sharing parameters in the buffer
853 * pointed to by tsparmsp.
854 * ts_parmsin() is called for TS threads, and ia_parmsin() is called
855 * for IA threads.
856 */
857 static int
ts_parmsin(void * parmsp)858 ts_parmsin(void *parmsp)
859 {
860 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
861 /*
862 * Check validity of parameters.
863 */
864 if ((tsparmsp->ts_uprilim > ts_maxupri ||
865 tsparmsp->ts_uprilim < -ts_maxupri) &&
866 tsparmsp->ts_uprilim != TS_NOCHANGE)
867 return (EINVAL);
868
869 if ((tsparmsp->ts_upri > ts_maxupri ||
870 tsparmsp->ts_upri < -ts_maxupri) &&
871 tsparmsp->ts_upri != TS_NOCHANGE)
872 return (EINVAL);
873
874 return (0);
875 }
876
877 static int
ia_parmsin(void * parmsp)878 ia_parmsin(void *parmsp)
879 {
880 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
881
882 if ((iaparmsp->ia_uprilim > ia_maxupri ||
883 iaparmsp->ia_uprilim < -ia_maxupri) &&
884 iaparmsp->ia_uprilim != IA_NOCHANGE) {
885 return (EINVAL);
886 }
887
888 if ((iaparmsp->ia_upri > ia_maxupri ||
889 iaparmsp->ia_upri < -ia_maxupri) &&
890 iaparmsp->ia_upri != IA_NOCHANGE) {
891 return (EINVAL);
892 }
893
894 return (0);
895 }
896
897
898 /*
899 * Check the validity of the time-sharing parameters in the pc_vaparms_t
900 * structure vaparmsp and put them in the buffer pointed to by tsparmsp.
901 * pc_vaparms_t contains (key, value) pairs of parameter.
902 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called
903 * for IA threads. ts_vaparmsin() is the variable parameter version of
904 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of
905 * ia_parmsin().
906 */
907 static int
ts_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)908 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
909 {
910 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
911 int priflag = 0;
912 int limflag = 0;
913 uint_t cnt;
914 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
915
916
917 /*
918 * TS_NOCHANGE (-32768) is outside of the range of values for
919 * ts_uprilim and ts_upri. If the structure tsparms_t is changed,
920 * TS_NOCHANGE should be replaced by a flag word (in the same manner
921 * as in rt.c).
922 */
923 tsparmsp->ts_uprilim = TS_NOCHANGE;
924 tsparmsp->ts_upri = TS_NOCHANGE;
925
926 /*
927 * Get the varargs parameter and check validity of parameters.
928 */
929 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
930 return (EINVAL);
931
932 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
933
934 switch (vpp->pc_key) {
935 case TS_KY_UPRILIM:
936 if (limflag++)
937 return (EINVAL);
938 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm;
939 if (tsparmsp->ts_uprilim > ts_maxupri ||
940 tsparmsp->ts_uprilim < -ts_maxupri)
941 return (EINVAL);
942 break;
943
944 case TS_KY_UPRI:
945 if (priflag++)
946 return (EINVAL);
947 tsparmsp->ts_upri = (pri_t)vpp->pc_parm;
948 if (tsparmsp->ts_upri > ts_maxupri ||
949 tsparmsp->ts_upri < -ts_maxupri)
950 return (EINVAL);
951 break;
952
953 default:
954 return (EINVAL);
955 }
956 }
957
958 if (vaparmsp->pc_vaparmscnt == 0) {
959 /*
960 * Use default parameters.
961 */
962 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0;
963 }
964
965 return (0);
966 }
967
968 static int
ia_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)969 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
970 {
971 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
972 int priflag = 0;
973 int limflag = 0;
974 int mflag = 0;
975 uint_t cnt;
976 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
977
978 /*
979 * IA_NOCHANGE (-32768) is outside of the range of values for
980 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is
981 * changed, IA_NOCHANGE should be replaced by a flag word (in the
982 * same manner as in rt.c).
983 */
984 iaparmsp->ia_uprilim = IA_NOCHANGE;
985 iaparmsp->ia_upri = IA_NOCHANGE;
986 iaparmsp->ia_mode = IA_NOCHANGE;
987
988 /*
989 * Get the varargs parameter and check validity of parameters.
990 */
991 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
992 return (EINVAL);
993
994 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
995
996 switch (vpp->pc_key) {
997 case IA_KY_UPRILIM:
998 if (limflag++)
999 return (EINVAL);
1000 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm;
1001 if (iaparmsp->ia_uprilim > ia_maxupri ||
1002 iaparmsp->ia_uprilim < -ia_maxupri)
1003 return (EINVAL);
1004 break;
1005
1006 case IA_KY_UPRI:
1007 if (priflag++)
1008 return (EINVAL);
1009 iaparmsp->ia_upri = (pri_t)vpp->pc_parm;
1010 if (iaparmsp->ia_upri > ia_maxupri ||
1011 iaparmsp->ia_upri < -ia_maxupri)
1012 return (EINVAL);
1013 break;
1014
1015 case IA_KY_MODE:
1016 if (mflag++)
1017 return (EINVAL);
1018 iaparmsp->ia_mode = (int)vpp->pc_parm;
1019 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE &&
1020 iaparmsp->ia_mode != IA_INTERACTIVE_OFF)
1021 return (EINVAL);
1022 break;
1023
1024 default:
1025 return (EINVAL);
1026 }
1027 }
1028
1029 if (vaparmsp->pc_vaparmscnt == 0) {
1030 /*
1031 * Use default parameters.
1032 */
1033 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0;
1034 iaparmsp->ia_mode = IA_SET_INTERACTIVE;
1035 }
1036
1037 return (0);
1038 }
1039
1040 /*
1041 * Nothing to do here but return success.
1042 */
1043 /* ARGSUSED */
1044 static int
ts_parmsout(void * parmsp,pc_vaparms_t * vaparmsp)1045 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1046 {
1047 return (0);
1048 }
1049
1050
1051 /*
1052 * Copy all selected time-sharing class parameters to the user.
1053 * The parameters are specified by a key.
1054 */
1055 static int
ts_vaparmsout(void * prmsp,pc_vaparms_t * vaparmsp)1056 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1057 {
1058 tsparms_t *tsprmsp = (tsparms_t *)prmsp;
1059 int priflag = 0;
1060 int limflag = 0;
1061 uint_t cnt;
1062 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1063
1064 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1065
1066 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1067 return (EINVAL);
1068
1069 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1070
1071 switch (vpp->pc_key) {
1072 case TS_KY_UPRILIM:
1073 if (limflag++)
1074 return (EINVAL);
1075 if (copyout(&tsprmsp->ts_uprilim,
1076 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1077 return (EFAULT);
1078 break;
1079
1080 case TS_KY_UPRI:
1081 if (priflag++)
1082 return (EINVAL);
1083 if (copyout(&tsprmsp->ts_upri,
1084 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1085 return (EFAULT);
1086 break;
1087
1088 default:
1089 return (EINVAL);
1090 }
1091 }
1092
1093 return (0);
1094 }
1095
1096
1097 /*
1098 * Copy all selected interactive class parameters to the user.
1099 * The parameters are specified by a key.
1100 */
1101 static int
ia_vaparmsout(void * prmsp,pc_vaparms_t * vaparmsp)1102 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1103 {
1104 iaparms_t *iaprmsp = (iaparms_t *)prmsp;
1105 int priflag = 0;
1106 int limflag = 0;
1107 int mflag = 0;
1108 uint_t cnt;
1109 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1110
1111 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1112
1113 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1114 return (EINVAL);
1115
1116 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1117
1118 switch (vpp->pc_key) {
1119 case IA_KY_UPRILIM:
1120 if (limflag++)
1121 return (EINVAL);
1122 if (copyout(&iaprmsp->ia_uprilim,
1123 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1124 return (EFAULT);
1125 break;
1126
1127 case IA_KY_UPRI:
1128 if (priflag++)
1129 return (EINVAL);
1130 if (copyout(&iaprmsp->ia_upri,
1131 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1132 return (EFAULT);
1133 break;
1134
1135 case IA_KY_MODE:
1136 if (mflag++)
1137 return (EINVAL);
1138 if (copyout(&iaprmsp->ia_mode,
1139 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int)))
1140 return (EFAULT);
1141 break;
1142
1143 default:
1144 return (EINVAL);
1145 }
1146 }
1147 return (0);
1148 }
1149
1150
1151 /*
1152 * Set the scheduling parameters of the thread pointed to by tsprocp
1153 * to those specified in the buffer pointed to by tsparmsp.
1154 * ts_parmsset() is called for TS threads, and ia_parmsset() is
1155 * called for IA threads.
1156 */
1157 /* ARGSUSED */
1158 static int
ts_parmsset(kthread_t * tx,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1159 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1160 {
1161 char nice;
1162 pri_t reqtsuprilim;
1163 pri_t reqtsupri;
1164 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
1165 tsproc_t *tspp = (tsproc_t *)tx->t_cldata;
1166
1167 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1168
1169 if (tsparmsp->ts_uprilim == TS_NOCHANGE)
1170 reqtsuprilim = tspp->ts_uprilim;
1171 else
1172 reqtsuprilim = tsparmsp->ts_uprilim;
1173
1174 if (tsparmsp->ts_upri == TS_NOCHANGE)
1175 reqtsupri = tspp->ts_upri;
1176 else
1177 reqtsupri = tsparmsp->ts_upri;
1178
1179 /*
1180 * Make sure the user priority doesn't exceed the upri limit.
1181 */
1182 if (reqtsupri > reqtsuprilim)
1183 reqtsupri = reqtsuprilim;
1184
1185 /*
1186 * Basic permissions enforced by generic kernel code
1187 * for all classes require that a thread attempting
1188 * to change the scheduling parameters of a target
1189 * thread be privileged or have a real or effective
1190 * UID matching that of the target thread. We are not
1191 * called unless these basic permission checks have
1192 * already passed. The time-sharing class requires in
1193 * addition that the calling thread be privileged if it
1194 * is attempting to raise the upri limit above its current
1195 * value This may have been checked previously but if our
1196 * caller passed us a non-NULL credential pointer we assume
1197 * it hasn't and we check it here.
1198 */
1199 if (reqpcredp != NULL &&
1200 reqtsuprilim > tspp->ts_uprilim &&
1201 secpolicy_raisepriority(reqpcredp) != 0)
1202 return (EPERM);
1203
1204 /*
1205 * Set ts_nice to the nice value corresponding to the user
1206 * priority we are setting. Note that setting the nice field
1207 * of the parameter struct won't affect upri or nice.
1208 */
1209 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri;
1210 if (nice >= 2 * NZERO)
1211 nice = 2 * NZERO - 1;
1212
1213 thread_lock(tx);
1214
1215 tspp->ts_uprilim = reqtsuprilim;
1216 tspp->ts_upri = reqtsupri;
1217 TS_NEWUMDPRI(tspp);
1218 tspp->ts_nice = nice;
1219
1220 if ((tspp->ts_flags & TSKPRI) != 0) {
1221 thread_unlock(tx);
1222 return (0);
1223 }
1224
1225 tspp->ts_dispwait = 0;
1226 ts_change_priority(tx, tspp);
1227 thread_unlock(tx);
1228 return (0);
1229 }
1230
1231
1232 static int
ia_parmsset(kthread_t * tx,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1233 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1234 {
1235 tsproc_t *tspp = (tsproc_t *)tx->t_cldata;
1236 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
1237 proc_t *p;
1238 pid_t pid, pgid, sid;
1239 pid_t on, off;
1240 struct stdata *stp;
1241 int sess_held;
1242
1243 /*
1244 * Handle user priority changes
1245 */
1246 if (iaparmsp->ia_mode == IA_NOCHANGE)
1247 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1248
1249 /*
1250 * Check permissions for changing modes.
1251 */
1252
1253 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
1254 secpolicy_raisepriority(reqpcredp) != 0) {
1255 /*
1256 * Silently fail in case this is just a priocntl
1257 * call with upri and uprilim set to IA_NOCHANGE.
1258 */
1259 return (0);
1260 }
1261
1262 ASSERT(MUTEX_HELD(&pidlock));
1263 if ((p = ttoproc(tx)) == NULL) {
1264 return (0);
1265 }
1266 ASSERT(MUTEX_HELD(&p->p_lock));
1267 if (p->p_stat == SIDL) {
1268 return (0);
1269 }
1270 pid = p->p_pid;
1271 sid = p->p_sessp->s_sid;
1272 pgid = p->p_pgrp;
1273 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1274 /*
1275 * session leaders must be turned on now so all processes
1276 * in the group controlling the tty will be turned on or off.
1277 * if the ia_mode is off for the session leader,
1278 * ia_set_process_group will return without setting the
1279 * processes in the group controlling the tty on.
1280 */
1281 thread_lock(tx);
1282 tspp->ts_flags |= TSIASET;
1283 thread_unlock(tx);
1284 }
1285 mutex_enter(&p->p_sessp->s_lock);
1286 sess_held = 1;
1287 if ((pid == sid) && (p->p_sessp->s_vp != NULL) &&
1288 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) {
1289 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) {
1290 pgid = stp->sd_pgidp->pid_id;
1291 sess_held = 0;
1292 mutex_exit(&p->p_sessp->s_lock);
1293 if (iaparmsp->ia_mode ==
1294 IA_SET_INTERACTIVE) {
1295 off = 0;
1296 on = pgid;
1297 } else {
1298 off = pgid;
1299 on = 0;
1300 }
1301 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN,
1302 "active chain:pid %d gid %d %p",
1303 pid, pgid, p);
1304 ia_set_process_group(sid, off, on);
1305 }
1306 }
1307 if (sess_held)
1308 mutex_exit(&p->p_sessp->s_lock);
1309
1310 thread_lock(tx);
1311
1312 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1313 tspp->ts_flags |= TSIASET;
1314 tspp->ts_boost = ia_boost;
1315 } else {
1316 tspp->ts_flags &= ~TSIASET;
1317 tspp->ts_boost = -ia_boost;
1318 }
1319 thread_unlock(tx);
1320
1321 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1322 }
1323
1324 static void
ts_exit(kthread_t * t)1325 ts_exit(kthread_t *t)
1326 {
1327 tsproc_t *tspp;
1328
1329 if (CPUCAPS_ON()) {
1330 /*
1331 * A thread could be exiting in between clock ticks,
1332 * so we need to calculate how much CPU time it used
1333 * since it was charged last time.
1334 *
1335 * CPU caps are not enforced on exiting processes - it is
1336 * usually desirable to exit as soon as possible to free
1337 * resources.
1338 */
1339 thread_lock(t);
1340 tspp = (tsproc_t *)t->t_cldata;
1341 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY);
1342 thread_unlock(t);
1343 }
1344 }
1345
1346 /*
1347 * Return the global scheduling priority that would be assigned
1348 * to a thread entering the time-sharing class with the ts_upri.
1349 */
1350 static pri_t
ts_globpri(kthread_t * t)1351 ts_globpri(kthread_t *t)
1352 {
1353 tsproc_t *tspp;
1354 pri_t tspri;
1355
1356 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1357 tspp = (tsproc_t *)t->t_cldata;
1358 tspri = tsmedumdpri + tspp->ts_upri;
1359 if (tspri > ts_maxumdpri)
1360 tspri = ts_maxumdpri;
1361 else if (tspri < 0)
1362 tspri = 0;
1363 return (ts_dptbl[tspri].ts_globpri);
1364 }
1365
1366 /*
1367 * Arrange for thread to be placed in appropriate location
1368 * on dispatcher queue.
1369 *
1370 * This is called with the current thread in TS_ONPROC and locked.
1371 */
1372 static void
ts_preempt(kthread_t * t)1373 ts_preempt(kthread_t *t)
1374 {
1375 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1376 klwp_t *lwp = curthread->t_lwp;
1377 pri_t oldpri = t->t_pri;
1378
1379 ASSERT(t == curthread);
1380 ASSERT(THREAD_LOCK_HELD(curthread));
1381
1382 /*
1383 * If preempted in the kernel, make sure the thread has
1384 * a kernel priority if needed.
1385 */
1386 if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) {
1387 tspp->ts_flags |= TSKPRI;
1388 THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1389 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1390 t->t_trapret = 1; /* so ts_trapret will run */
1391 aston(t);
1392 }
1393
1394 /*
1395 * This thread may be placed on wait queue by CPU Caps. In this case we
1396 * do not need to do anything until it is removed from the wait queue.
1397 * Do not enforce CPU caps on threads running at a kernel priority
1398 */
1399 if (CPUCAPS_ON()) {
1400 (void) cpucaps_charge(t, &tspp->ts_caps,
1401 CPUCAPS_CHARGE_ENFORCE);
1402 if (!(tspp->ts_flags & TSKPRI) && CPUCAPS_ENFORCE(t))
1403 return;
1404 }
1405
1406 /*
1407 * If thread got preempted in the user-land then we know
1408 * it isn't holding any locks. Mark it as swappable.
1409 */
1410 ASSERT(t->t_schedflag & TS_DONT_SWAP);
1411 if (lwp != NULL && lwp->lwp_state == LWP_USER)
1412 t->t_schedflag &= ~TS_DONT_SWAP;
1413
1414 /*
1415 * Check to see if we're doing "preemption control" here. If
1416 * we are, and if the user has requested that this thread not
1417 * be preempted, and if preemptions haven't been put off for
1418 * too long, let the preemption happen here but try to make
1419 * sure the thread is rescheduled as soon as possible. We do
1420 * this by putting it on the front of the highest priority run
1421 * queue in the TS class. If the preemption has been put off
1422 * for too long, clear the "nopreempt" bit and let the thread
1423 * be preempted.
1424 */
1425 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1426 if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1427 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1428 if (!(tspp->ts_flags & TSKPRI)) {
1429 /*
1430 * If not already remembered, remember current
1431 * priority for restoration in ts_yield().
1432 */
1433 if (!(tspp->ts_flags & TSRESTORE)) {
1434 tspp->ts_scpri = t->t_pri;
1435 tspp->ts_flags |= TSRESTORE;
1436 }
1437 THREAD_CHANGE_PRI(t, ts_maxumdpri);
1438 t->t_schedflag |= TS_DONT_SWAP;
1439 }
1440 schedctl_set_yield(t, 1);
1441 setfrontdq(t);
1442 goto done;
1443 } else {
1444 if (tspp->ts_flags & TSRESTORE) {
1445 THREAD_CHANGE_PRI(t, tspp->ts_scpri);
1446 tspp->ts_flags &= ~TSRESTORE;
1447 }
1448 schedctl_set_nopreempt(t, 0);
1449 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1450 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt",
1451 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1452 tnf_lwpid, lwpid, t->t_tid);
1453 /*
1454 * Fall through and be preempted below.
1455 */
1456 }
1457 }
1458
1459 if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) {
1460 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1461 tspp->ts_dispwait = 0;
1462 tspp->ts_flags &= ~TSBACKQ;
1463 setbackdq(t);
1464 } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) {
1465 tspp->ts_flags &= ~TSBACKQ;
1466 setbackdq(t);
1467 } else {
1468 setfrontdq(t);
1469 }
1470
1471 done:
1472 TRACE_2(TR_FAC_DISP, TR_PREEMPT,
1473 "preempt:tid %p old pri %d", t, oldpri);
1474 }
1475
1476 static void
ts_setrun(kthread_t * t)1477 ts_setrun(kthread_t *t)
1478 {
1479 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1480
1481 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
1482
1483 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1484 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1485 TS_NEWUMDPRI(tspp);
1486 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1487 tspp->ts_dispwait = 0;
1488 if ((tspp->ts_flags & TSKPRI) == 0) {
1489 THREAD_CHANGE_PRI(t,
1490 ts_dptbl[tspp->ts_umdpri].ts_globpri);
1491 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1492 }
1493 }
1494
1495 tspp->ts_flags &= ~TSBACKQ;
1496
1497 if (tspp->ts_flags & TSIA) {
1498 if (tspp->ts_flags & TSIASET)
1499 setfrontdq(t);
1500 else
1501 setbackdq(t);
1502 } else {
1503 if (t->t_disp_time != ddi_get_lbolt())
1504 setbackdq(t);
1505 else
1506 setfrontdq(t);
1507 }
1508 }
1509
1510
1511 /*
1512 * Prepare thread for sleep. We reset the thread priority so it will
1513 * run at the kernel priority level when it wakes up.
1514 */
1515 static void
ts_sleep(kthread_t * t)1516 ts_sleep(kthread_t *t)
1517 {
1518 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1519 int flags;
1520 pri_t old_pri = t->t_pri;
1521
1522 ASSERT(t == curthread);
1523 ASSERT(THREAD_LOCK_HELD(t));
1524
1525 /*
1526 * Account for time spent on CPU before going to sleep.
1527 */
1528 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
1529
1530 flags = tspp->ts_flags;
1531 if (t->t_kpri_req) {
1532 tspp->ts_flags = flags | TSKPRI;
1533 THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1534 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1535 t->t_trapret = 1; /* so ts_trapret will run */
1536 aston(t);
1537 } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1538 /*
1539 * If thread has blocked in the kernel (as opposed to
1540 * being merely preempted), recompute the user mode priority.
1541 */
1542 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1543 TS_NEWUMDPRI(tspp);
1544 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1545 tspp->ts_dispwait = 0;
1546
1547 THREAD_CHANGE_PRI(curthread,
1548 ts_dptbl[tspp->ts_umdpri].ts_globpri);
1549 ASSERT(curthread->t_pri >= 0 &&
1550 curthread->t_pri <= ts_maxglobpri);
1551 tspp->ts_flags = flags & ~TSKPRI;
1552
1553 if (DISP_MUST_SURRENDER(curthread))
1554 cpu_surrender(curthread);
1555 } else if (flags & TSKPRI) {
1556 THREAD_CHANGE_PRI(curthread,
1557 ts_dptbl[tspp->ts_umdpri].ts_globpri);
1558 ASSERT(curthread->t_pri >= 0 &&
1559 curthread->t_pri <= ts_maxglobpri);
1560 tspp->ts_flags = flags & ~TSKPRI;
1561
1562 if (DISP_MUST_SURRENDER(curthread))
1563 cpu_surrender(curthread);
1564 }
1565 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1566 TRACE_2(TR_FAC_DISP, TR_SLEEP,
1567 "sleep:tid %p old pri %d", t, old_pri);
1568 }
1569
1570
1571 /*
1572 * Return Values:
1573 *
1574 * -1 if the thread is loaded or is not eligible to be swapped in.
1575 *
1576 * effective priority of the specified thread based on swapout time
1577 * and size of process (epri >= 0 , epri <= SHRT_MAX).
1578 */
1579 /* ARGSUSED */
1580 static pri_t
ts_swapin(kthread_t * t,int flags)1581 ts_swapin(kthread_t *t, int flags)
1582 {
1583 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1584 long epri = -1;
1585 proc_t *pp = ttoproc(t);
1586
1587 ASSERT(THREAD_LOCK_HELD(t));
1588
1589 /*
1590 * We know that pri_t is a short.
1591 * Be sure not to overrun its range.
1592 */
1593 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1594 time_t swapout_time;
1595
1596 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
1597 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)))
1598 epri = (long)DISP_PRIO(t) + swapout_time;
1599 else {
1600 /*
1601 * Threads which have been out for a long time,
1602 * have high user mode priority and are associated
1603 * with a small address space are more deserving
1604 */
1605 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1606 ASSERT(epri >= 0 && epri <= ts_maxumdpri);
1607 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
1608 }
1609 /*
1610 * Scale epri so SHRT_MAX/2 represents zero priority.
1611 */
1612 epri += SHRT_MAX/2;
1613 if (epri < 0)
1614 epri = 0;
1615 else if (epri > SHRT_MAX)
1616 epri = SHRT_MAX;
1617 }
1618 return ((pri_t)epri);
1619 }
1620
1621 /*
1622 * Return Values
1623 * -1 if the thread isn't loaded or is not eligible to be swapped out.
1624 *
1625 * effective priority of the specified thread based on if the swapper
1626 * is in softswap or hardswap mode.
1627 *
1628 * Softswap: Return a low effective priority for threads
1629 * sleeping for more than maxslp secs.
1630 *
1631 * Hardswap: Return an effective priority such that threads
1632 * which have been in memory for a while and are
1633 * associated with a small address space are swapped
1634 * in before others.
1635 *
1636 * (epri >= 0 , epri <= SHRT_MAX).
1637 */
1638 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */
1639 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */
1640
1641 static pri_t
ts_swapout(kthread_t * t,int flags)1642 ts_swapout(kthread_t *t, int flags)
1643 {
1644 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1645 long epri = -1;
1646 proc_t *pp = ttoproc(t);
1647 time_t swapin_time;
1648
1649 ASSERT(THREAD_LOCK_HELD(t));
1650
1651 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) ||
1652 (t->t_proc_flag & TP_LWPEXIT) ||
1653 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED |
1654 TS_ONPROC | TS_WAIT)) ||
1655 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t))
1656 return (-1);
1657
1658 ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
1659
1660 /*
1661 * We know that pri_t is a short.
1662 * Be sure not to overrun its range.
1663 */
1664 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
1665 if (flags == SOFTSWAP) {
1666 if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
1667 epri = 0;
1668 } else {
1669 return ((pri_t)epri);
1670 }
1671 } else {
1672 pri_t pri;
1673
1674 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) ||
1675 (t->t_state == TS_RUN && swapin_time > ts_minrun)) {
1676 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1677 ASSERT(pri >= 0 && pri <= ts_maxumdpri);
1678 epri = swapin_time -
1679 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
1680 } else {
1681 return ((pri_t)epri);
1682 }
1683 }
1684
1685 /*
1686 * Scale epri so SHRT_MAX/2 represents zero priority.
1687 */
1688 epri += SHRT_MAX/2;
1689 if (epri < 0)
1690 epri = 0;
1691 else if (epri > SHRT_MAX)
1692 epri = SHRT_MAX;
1693
1694 return ((pri_t)epri);
1695 }
1696
1697 /*
1698 * Check for time slice expiration. If time slice has expired
1699 * move thread to priority specified in tsdptbl for time slice expiration
1700 * and set runrun to cause preemption.
1701 */
1702 static void
ts_tick(kthread_t * t)1703 ts_tick(kthread_t *t)
1704 {
1705 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1706 klwp_t *lwp;
1707 boolean_t call_cpu_surrender = B_FALSE;
1708 pri_t oldpri = t->t_pri;
1709
1710 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1711
1712 thread_lock(t);
1713
1714 /*
1715 * Keep track of thread's project CPU usage. Note that projects
1716 * get charged even when threads are running in the kernel.
1717 */
1718 if (CPUCAPS_ON()) {
1719 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps,
1720 CPUCAPS_CHARGE_ENFORCE) && !(tspp->ts_flags & TSKPRI);
1721 }
1722
1723 if ((tspp->ts_flags & TSKPRI) == 0) {
1724 if (--tspp->ts_timeleft <= 0) {
1725 pri_t new_pri;
1726
1727 /*
1728 * If we're doing preemption control and trying to
1729 * avoid preempting this thread, just note that
1730 * the thread should yield soon and let it keep
1731 * running (unless it's been a while).
1732 */
1733 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1734 if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1735 DTRACE_SCHED1(schedctl__nopreempt,
1736 kthread_t *, t);
1737 schedctl_set_yield(t, 1);
1738 thread_unlock_nopreempt(t);
1739 return;
1740 }
1741
1742 TNF_PROBE_2(schedctl_failsafe,
1743 "schedctl TS ts_tick", /* CSTYLED */,
1744 tnf_pid, pid, ttoproc(t)->p_pid,
1745 tnf_lwpid, lwpid, t->t_tid);
1746 }
1747 tspp->ts_flags &= ~TSRESTORE;
1748 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
1749 TS_NEWUMDPRI(tspp);
1750 tspp->ts_dispwait = 0;
1751 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1752 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
1753 /*
1754 * When the priority of a thread is changed,
1755 * it may be necessary to adjust its position
1756 * on a sleep queue or dispatch queue.
1757 * The function thread_change_pri accomplishes
1758 * this.
1759 */
1760 if (thread_change_pri(t, new_pri, 0)) {
1761 if ((t->t_schedflag & TS_LOAD) &&
1762 (lwp = t->t_lwp) &&
1763 lwp->lwp_state == LWP_USER)
1764 t->t_schedflag &= ~TS_DONT_SWAP;
1765 tspp->ts_timeleft =
1766 ts_dptbl[tspp->ts_cpupri].ts_quantum;
1767 } else {
1768 call_cpu_surrender = B_TRUE;
1769 }
1770 TRACE_2(TR_FAC_DISP, TR_TICK,
1771 "tick:tid %p old pri %d", t, oldpri);
1772 } else if (t->t_state == TS_ONPROC &&
1773 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1774 call_cpu_surrender = B_TRUE;
1775 }
1776 }
1777
1778 if (call_cpu_surrender) {
1779 tspp->ts_flags |= TSBACKQ;
1780 cpu_surrender(t);
1781 }
1782
1783 thread_unlock_nopreempt(t); /* clock thread can't be preempted */
1784 }
1785
1786
1787 /*
1788 * If thread is currently at a kernel mode priority (has slept)
1789 * we assign it the appropriate user mode priority and time quantum
1790 * here. If we are lowering the thread's priority below that of
1791 * other runnable threads we will normally set runrun via cpu_surrender() to
1792 * cause preemption.
1793 */
1794 static void
ts_trapret(kthread_t * t)1795 ts_trapret(kthread_t *t)
1796 {
1797 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
1798 cpu_t *cp = CPU;
1799 pri_t old_pri = curthread->t_pri;
1800
1801 ASSERT(THREAD_LOCK_HELD(t));
1802 ASSERT(t == curthread);
1803 ASSERT(cp->cpu_dispthread == t);
1804 ASSERT(t->t_state == TS_ONPROC);
1805
1806 t->t_kpri_req = 0;
1807 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1808 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1809 TS_NEWUMDPRI(tspp);
1810 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1811 tspp->ts_dispwait = 0;
1812
1813 /*
1814 * If thread has blocked in the kernel (as opposed to
1815 * being merely preempted), recompute the user mode priority.
1816 */
1817 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1818 cp->cpu_dispatch_pri = DISP_PRIO(t);
1819 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1820 tspp->ts_flags &= ~TSKPRI;
1821
1822 if (DISP_MUST_SURRENDER(t))
1823 cpu_surrender(t);
1824 } else if (tspp->ts_flags & TSKPRI) {
1825 /*
1826 * If thread has blocked in the kernel (as opposed to
1827 * being merely preempted), recompute the user mode priority.
1828 */
1829 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1830 cp->cpu_dispatch_pri = DISP_PRIO(t);
1831 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1832 tspp->ts_flags &= ~TSKPRI;
1833
1834 if (DISP_MUST_SURRENDER(t))
1835 cpu_surrender(t);
1836 }
1837
1838 /*
1839 * Swapout lwp if the swapper is waiting for this thread to
1840 * reach a safe point.
1841 */
1842 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) {
1843 thread_unlock(t);
1844 swapout_lwp(ttolwp(t));
1845 thread_lock(t);
1846 }
1847
1848 TRACE_2(TR_FAC_DISP, TR_TRAPRET,
1849 "trapret:tid %p old pri %d", t, old_pri);
1850 }
1851
1852
1853 /*
1854 * Update the ts_dispwait values of all time sharing threads that
1855 * are currently runnable at a user mode priority and bump the priority
1856 * if ts_dispwait exceeds ts_maxwait. Called once per second via
1857 * timeout which we reset here.
1858 *
1859 * There are several lists of time sharing threads broken up by a hash on
1860 * the thread pointer. Each list has its own lock. This avoids blocking
1861 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update
1862 * runs. ts_update traverses each list in turn.
1863 *
1864 * If multiple threads have their priorities updated to the same value,
1865 * the system implicitly favors the one that is updated first (since it
1866 * winds up first on the run queue). To avoid this unfairness, the
1867 * traversal of threads starts at the list indicated by a marker. When
1868 * threads in more than one list have their priorities updated, the marker
1869 * is moved. This changes the order the threads will be placed on the run
1870 * queue the next time ts_update is called and preserves fairness over the
1871 * long run. The marker doesn't need to be protected by a lock since it's
1872 * only accessed by ts_update, which is inherently single-threaded (only
1873 * one instance can be running at a time).
1874 */
1875 static void
ts_update(void * arg)1876 ts_update(void *arg)
1877 {
1878 int i;
1879 int new_marker = -1;
1880 static int ts_update_marker;
1881
1882 /*
1883 * Start with the ts_update_marker list, then do the rest.
1884 */
1885 i = ts_update_marker;
1886 do {
1887 /*
1888 * If this is the first list after the current marker to
1889 * have threads with priorities updated, advance the marker
1890 * to this list for the next time ts_update runs.
1891 */
1892 if (ts_update_list(i) && new_marker == -1 &&
1893 i != ts_update_marker) {
1894 new_marker = i;
1895 }
1896 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker);
1897
1898 /* advance marker for next ts_update call */
1899 if (new_marker != -1)
1900 ts_update_marker = new_marker;
1901
1902 (void) timeout(ts_update, arg, hz);
1903 }
1904
1905 /*
1906 * Updates priority for a list of threads. Returns 1 if the priority of
1907 * one of the threads was actually updated, 0 if none were for various
1908 * reasons (thread is no longer in the TS or IA class, isn't runnable,
1909 * hasn't waited long enough, has the preemption control no-preempt bit
1910 * set, etc.)
1911 */
1912 static int
ts_update_list(int i)1913 ts_update_list(int i)
1914 {
1915 tsproc_t *tspp;
1916 kthread_t *tx;
1917 int updated = 0;
1918
1919 mutex_enter(&ts_list_lock[i]);
1920 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i];
1921 tspp = tspp->ts_next) {
1922 tx = tspp->ts_tp;
1923 /*
1924 * Lock the thread and verify state.
1925 */
1926 thread_lock(tx);
1927 /*
1928 * Skip the thread if it is no longer in the TS (or IA) class.
1929 */
1930 if (tx->t_clfuncs != &ts_classfuncs.thread &&
1931 tx->t_clfuncs != &ia_classfuncs.thread)
1932 goto next;
1933 tspp->ts_dispwait++;
1934 if ((tspp->ts_flags & TSKPRI) != 0)
1935 goto next;
1936 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait)
1937 goto next;
1938 if (tx->t_schedctl && schedctl_get_nopreempt(tx))
1939 goto next;
1940 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT &&
1941 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) {
1942 /* make next syscall/trap do CL_TRAPRET */
1943 tx->t_trapret = 1;
1944 aston(tx);
1945 goto next;
1946 }
1947 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait;
1948 TS_NEWUMDPRI(tspp);
1949 tspp->ts_dispwait = 0;
1950 updated = 1;
1951
1952 /*
1953 * Only dequeue it if needs to move; otherwise it should
1954 * just round-robin here.
1955 */
1956 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) {
1957 pri_t oldpri = tx->t_pri;
1958 ts_change_priority(tx, tspp);
1959 TRACE_2(TR_FAC_DISP, TR_UPDATE,
1960 "update:tid %p old pri %d", tx, oldpri);
1961 }
1962 next:
1963 thread_unlock(tx);
1964 }
1965 mutex_exit(&ts_list_lock[i]);
1966
1967 return (updated);
1968 }
1969
1970 /*
1971 * Processes waking up go to the back of their queue. We don't
1972 * need to assign a time quantum here because thread is still
1973 * at a kernel mode priority and the time slicing is not done
1974 * for threads running in the kernel after sleeping. The proper
1975 * time quantum will be assigned by ts_trapret before the thread
1976 * returns to user mode.
1977 */
1978 static void
ts_wakeup(kthread_t * t)1979 ts_wakeup(kthread_t *t)
1980 {
1981 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1982
1983 ASSERT(THREAD_LOCK_HELD(t));
1984
1985 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1986
1987 if (tspp->ts_flags & TSKPRI) {
1988 tspp->ts_flags &= ~TSBACKQ;
1989 if (tspp->ts_flags & TSIASET)
1990 setfrontdq(t);
1991 else
1992 setbackdq(t);
1993 } else if (t->t_kpri_req) {
1994 /*
1995 * Give thread a priority boost if we were asked.
1996 */
1997 tspp->ts_flags |= TSKPRI;
1998 THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1999 setbackdq(t);
2000 t->t_trapret = 1; /* so that ts_trapret will run */
2001 aston(t);
2002 } else {
2003 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
2004 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
2005 TS_NEWUMDPRI(tspp);
2006 tspp->ts_timeleft =
2007 ts_dptbl[tspp->ts_cpupri].ts_quantum;
2008 tspp->ts_dispwait = 0;
2009 THREAD_CHANGE_PRI(t,
2010 ts_dptbl[tspp->ts_umdpri].ts_globpri);
2011 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
2012 }
2013
2014 tspp->ts_flags &= ~TSBACKQ;
2015
2016 if (tspp->ts_flags & TSIA) {
2017 if (tspp->ts_flags & TSIASET)
2018 setfrontdq(t);
2019 else
2020 setbackdq(t);
2021 } else {
2022 if (t->t_disp_time != ddi_get_lbolt())
2023 setbackdq(t);
2024 else
2025 setfrontdq(t);
2026 }
2027 }
2028 }
2029
2030
2031 /*
2032 * When a thread yields, put it on the back of the run queue.
2033 */
2034 static void
ts_yield(kthread_t * t)2035 ts_yield(kthread_t *t)
2036 {
2037 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
2038
2039 ASSERT(t == curthread);
2040 ASSERT(THREAD_LOCK_HELD(t));
2041
2042 /*
2043 * Collect CPU usage spent before yielding
2044 */
2045 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
2046
2047 /*
2048 * Clear the preemption control "yield" bit since the user is
2049 * doing a yield.
2050 */
2051 if (t->t_schedctl)
2052 schedctl_set_yield(t, 0);
2053 /*
2054 * If ts_preempt() artifically increased the thread's priority
2055 * to avoid preemption, restore the original priority now.
2056 */
2057 if (tspp->ts_flags & TSRESTORE) {
2058 THREAD_CHANGE_PRI(t, tspp->ts_scpri);
2059 tspp->ts_flags &= ~TSRESTORE;
2060 }
2061 if (tspp->ts_timeleft <= 0) {
2062 /*
2063 * Time slice was artificially extended to avoid
2064 * preemption, so pretend we're preempting it now.
2065 */
2066 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft);
2067 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
2068 TS_NEWUMDPRI(tspp);
2069 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
2070 tspp->ts_dispwait = 0;
2071 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
2072 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
2073 }
2074 tspp->ts_flags &= ~TSBACKQ;
2075 setbackdq(t);
2076 }
2077
2078
2079 /*
2080 * Increment the nice value of the specified thread by incr and
2081 * return the new value in *retvalp.
2082 */
2083 static int
ts_donice(kthread_t * t,cred_t * cr,int incr,int * retvalp)2084 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2085 {
2086 int newnice;
2087 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
2088 tsparms_t tsparms;
2089
2090 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2091
2092 /* If there's no change to priority, just return current setting */
2093 if (incr == 0) {
2094 if (retvalp) {
2095 *retvalp = tspp->ts_nice - NZERO;
2096 }
2097 return (0);
2098 }
2099
2100 if ((incr < 0 || incr > 2 * NZERO) &&
2101 secpolicy_raisepriority(cr) != 0)
2102 return (EPERM);
2103
2104 /*
2105 * Specifying a nice increment greater than the upper limit of
2106 * 2 * NZERO - 1 will result in the thread's nice value being
2107 * set to the upper limit. We check for this before computing
2108 * the new value because otherwise we could get overflow
2109 * if a privileged process specified some ridiculous increment.
2110 */
2111 if (incr > 2 * NZERO - 1)
2112 incr = 2 * NZERO - 1;
2113
2114 newnice = tspp->ts_nice + incr;
2115 if (newnice >= 2 * NZERO)
2116 newnice = 2 * NZERO - 1;
2117 else if (newnice < 0)
2118 newnice = 0;
2119
2120 tsparms.ts_uprilim = tsparms.ts_upri =
2121 -((newnice - NZERO) * ts_maxupri) / NZERO;
2122 /*
2123 * Reset the uprilim and upri values of the thread.
2124 * Call ts_parmsset even if thread is interactive since we're
2125 * not changing mode.
2126 */
2127 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL);
2128
2129 /*
2130 * Although ts_parmsset already reset ts_nice it may
2131 * not have been set to precisely the value calculated above
2132 * because ts_parmsset determines the nice value from the
2133 * user priority and we may have truncated during the integer
2134 * conversion from nice value to user priority and back.
2135 * We reset ts_nice to the value we calculated above.
2136 */
2137 tspp->ts_nice = (char)newnice;
2138
2139 if (retvalp)
2140 *retvalp = newnice - NZERO;
2141 return (0);
2142 }
2143
2144 /*
2145 * Increment the priority of the specified thread by incr and
2146 * return the new value in *retvalp.
2147 */
2148 static int
ts_doprio(kthread_t * t,cred_t * cr,int incr,int * retvalp)2149 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2150 {
2151 int newpri;
2152 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
2153 tsparms_t tsparms;
2154
2155 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2156
2157 /* If there's no change to the priority, just return current setting */
2158 if (incr == 0) {
2159 *retvalp = tspp->ts_upri;
2160 return (0);
2161 }
2162
2163 newpri = tspp->ts_upri + incr;
2164 if (newpri > ts_maxupri || newpri < -ts_maxupri)
2165 return (EINVAL);
2166
2167 *retvalp = newpri;
2168 tsparms.ts_uprilim = tsparms.ts_upri = newpri;
2169 /*
2170 * Reset the uprilim and upri values of the thread.
2171 * Call ts_parmsset even if thread is interactive since we're
2172 * not changing mode.
2173 */
2174 return (ts_parmsset(t, &tsparms, 0, cr));
2175 }
2176
2177 /*
2178 * ia_set_process_group marks foreground processes as interactive
2179 * and background processes as non-interactive iff the session
2180 * leader is interactive. This routine is called from two places:
2181 * strioctl:SPGRP when a new process group gets
2182 * control of the tty.
2183 * ia_parmsset-when the process in question is a session leader.
2184 * ia_set_process_group assumes that pidlock is held by the caller,
2185 * either strioctl or priocntlsys. If the caller is priocntlsys
2186 * (via ia_parmsset) then the p_lock of the session leader is held
2187 * and the code needs to be careful about acquiring other p_locks.
2188 */
2189 static void
ia_set_process_group(pid_t sid,pid_t bg_pgid,pid_t fg_pgid)2190 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid)
2191 {
2192 proc_t *leader, *fg, *bg;
2193 tsproc_t *tspp;
2194 kthread_t *tx;
2195 int plocked = 0;
2196
2197 ASSERT(MUTEX_HELD(&pidlock));
2198
2199 /*
2200 * see if the session leader is interactive AND
2201 * if it is currently "on" AND controlling a tty
2202 * iff it is then make the processes in the foreground
2203 * group interactive and the processes in the background
2204 * group non-interactive.
2205 */
2206 if ((leader = (proc_t *)prfind(sid)) == NULL) {
2207 return;
2208 }
2209 if (leader->p_stat == SIDL) {
2210 return;
2211 }
2212 if ((tx = proctot(leader)) == NULL) {
2213 return;
2214 }
2215 /*
2216 * XXX do all the threads in the leader
2217 */
2218 if (tx->t_cid != ia_cid) {
2219 return;
2220 }
2221 tspp = tx->t_cldata;
2222 /*
2223 * session leaders that are not interactive need not have
2224 * any processing done for them. They are typically shells
2225 * that do not have focus and are changing the process group
2226 * attatched to the tty, e.g. a process that is exiting
2227 */
2228 mutex_enter(&leader->p_sessp->s_lock);
2229 if (!(tspp->ts_flags & TSIASET) ||
2230 (leader->p_sessp->s_vp == NULL) ||
2231 (leader->p_sessp->s_vp->v_stream == NULL)) {
2232 mutex_exit(&leader->p_sessp->s_lock);
2233 return;
2234 }
2235 mutex_exit(&leader->p_sessp->s_lock);
2236
2237 /*
2238 * If we're already holding the leader's p_lock, we should use
2239 * mutex_tryenter instead of mutex_enter to avoid deadlocks from
2240 * lock ordering violations.
2241 */
2242 if (mutex_owned(&leader->p_lock))
2243 plocked = 1;
2244
2245 if (fg_pgid == 0)
2246 goto skip;
2247 /*
2248 * now look for all processes in the foreground group and
2249 * make them interactive
2250 */
2251 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) {
2252 /*
2253 * if the process is SIDL it's begin forked, ignore it
2254 */
2255 if (fg->p_stat == SIDL) {
2256 continue;
2257 }
2258 /*
2259 * sesssion leaders must be turned on/off explicitly
2260 * not implicitly as happens to other members of
2261 * the process group.
2262 */
2263 if (fg->p_pid == fg->p_sessp->s_sid) {
2264 continue;
2265 }
2266
2267 TRACE_1(TR_FAC_IA, TR_GROUP_ON,
2268 "group on:proc %p", fg);
2269
2270 if (plocked) {
2271 if (mutex_tryenter(&fg->p_lock) == 0)
2272 continue;
2273 } else {
2274 mutex_enter(&fg->p_lock);
2275 }
2276
2277 if ((tx = proctot(fg)) == NULL) {
2278 mutex_exit(&fg->p_lock);
2279 continue;
2280 }
2281 do {
2282 thread_lock(tx);
2283 /*
2284 * if this thread is not interactive continue
2285 */
2286 if (tx->t_cid != ia_cid) {
2287 thread_unlock(tx);
2288 continue;
2289 }
2290 tspp = tx->t_cldata;
2291 tspp->ts_flags |= TSIASET;
2292 tspp->ts_boost = ia_boost;
2293 TS_NEWUMDPRI(tspp);
2294 if ((tspp->ts_flags & TSKPRI) != 0) {
2295 thread_unlock(tx);
2296 continue;
2297 }
2298 tspp->ts_dispwait = 0;
2299 ts_change_priority(tx, tspp);
2300 thread_unlock(tx);
2301 } while ((tx = tx->t_forw) != fg->p_tlist);
2302 mutex_exit(&fg->p_lock);
2303 }
2304 skip:
2305 if (bg_pgid == 0)
2306 return;
2307 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) {
2308 if (bg->p_stat == SIDL) {
2309 continue;
2310 }
2311 /*
2312 * sesssion leaders must be turned off explicitly
2313 * not implicitly as happens to other members of
2314 * the process group.
2315 */
2316 if (bg->p_pid == bg->p_sessp->s_sid) {
2317 continue;
2318 }
2319
2320 TRACE_1(TR_FAC_IA, TR_GROUP_OFF,
2321 "group off:proc %p", bg);
2322
2323 if (plocked) {
2324 if (mutex_tryenter(&bg->p_lock) == 0)
2325 continue;
2326 } else {
2327 mutex_enter(&bg->p_lock);
2328 }
2329
2330 if ((tx = proctot(bg)) == NULL) {
2331 mutex_exit(&bg->p_lock);
2332 continue;
2333 }
2334 do {
2335 thread_lock(tx);
2336 /*
2337 * if this thread is not interactive continue
2338 */
2339 if (tx->t_cid != ia_cid) {
2340 thread_unlock(tx);
2341 continue;
2342 }
2343 tspp = tx->t_cldata;
2344 tspp->ts_flags &= ~TSIASET;
2345 tspp->ts_boost = -ia_boost;
2346 TS_NEWUMDPRI(tspp);
2347 if ((tspp->ts_flags & TSKPRI) != 0) {
2348 thread_unlock(tx);
2349 continue;
2350 }
2351
2352 tspp->ts_dispwait = 0;
2353 ts_change_priority(tx, tspp);
2354 thread_unlock(tx);
2355 } while ((tx = tx->t_forw) != bg->p_tlist);
2356 mutex_exit(&bg->p_lock);
2357 }
2358 }
2359
2360
2361 static void
ts_change_priority(kthread_t * t,tsproc_t * tspp)2362 ts_change_priority(kthread_t *t, tsproc_t *tspp)
2363 {
2364 pri_t new_pri;
2365
2366 ASSERT(THREAD_LOCK_HELD(t));
2367 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
2368 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
2369 tspp->ts_flags &= ~TSRESTORE;
2370 t->t_cpri = tspp->ts_upri;
2371 if (t == curthread || t->t_state == TS_ONPROC) {
2372 /* curthread is always onproc */
2373 cpu_t *cp = t->t_disp_queue->disp_cpu;
2374 THREAD_CHANGE_PRI(t, new_pri);
2375 if (t == cp->cpu_dispthread)
2376 cp->cpu_dispatch_pri = DISP_PRIO(t);
2377 if (DISP_MUST_SURRENDER(t)) {
2378 tspp->ts_flags |= TSBACKQ;
2379 cpu_surrender(t);
2380 } else {
2381 tspp->ts_timeleft =
2382 ts_dptbl[tspp->ts_cpupri].ts_quantum;
2383 }
2384 } else {
2385 int frontq;
2386
2387 frontq = (tspp->ts_flags & TSIASET) != 0;
2388 /*
2389 * When the priority of a thread is changed,
2390 * it may be necessary to adjust its position
2391 * on a sleep queue or dispatch queue.
2392 * The function thread_change_pri accomplishes
2393 * this.
2394 */
2395 if (thread_change_pri(t, new_pri, frontq)) {
2396 /*
2397 * The thread was on a run queue. Reset
2398 * its CPU timeleft from the quantum
2399 * associated with the new priority.
2400 */
2401 tspp->ts_timeleft =
2402 ts_dptbl[tspp->ts_cpupri].ts_quantum;
2403 } else {
2404 tspp->ts_flags |= TSBACKQ;
2405 }
2406 }
2407 }
2408
2409 static int
ts_alloc(void ** p,int flag)2410 ts_alloc(void **p, int flag)
2411 {
2412 void *bufp;
2413 bufp = kmem_alloc(sizeof (tsproc_t), flag);
2414 if (bufp == NULL) {
2415 return (ENOMEM);
2416 } else {
2417 *p = bufp;
2418 return (0);
2419 }
2420 }
2421
2422 static void
ts_free(void * bufp)2423 ts_free(void *bufp)
2424 {
2425 if (bufp)
2426 kmem_free(bufp, sizeof (tsproc_t));
2427 }
2428