1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 */
26
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/cred.h>
34 #include <sys/proc.h>
35 #include <sys/session.h>
36 #include <sys/strsubr.h>
37 #include <sys/signal.h>
38 #include <sys/user.h>
39 #include <sys/priocntl.h>
40 #include <sys/class.h>
41 #include <sys/disp.h>
42 #include <sys/procset.h>
43 #include <sys/debug.h>
44 #include <sys/ts.h>
45 #include <sys/tspriocntl.h>
46 #include <sys/iapriocntl.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/cpuvar.h>
50 #include <sys/systm.h> /* for lbolt */
51 #include <sys/vtrace.h>
52 #include <sys/vmsystm.h>
53 #include <sys/schedctl.h>
54 #include <sys/atomic.h>
55 #include <sys/policy.h>
56 #include <sys/sdt.h>
57 #include <sys/cpupart.h>
58 #include <vm/rm.h>
59 #include <vm/seg_kmem.h>
60 #include <sys/modctl.h>
61 #include <sys/cpucaps.h>
62
63 static pri_t ts_init(id_t, int, classfuncs_t **);
64
65 static struct sclass csw = {
66 "TS",
67 ts_init,
68 0
69 };
70
71 static struct modlsched modlsched = {
72 &mod_schedops, "time sharing sched class", &csw
73 };
74
75 static struct modlinkage modlinkage = {
76 MODREV_1, (void *)&modlsched, NULL
77 };
78
79 int
_init()80 _init()
81 {
82 return (mod_install(&modlinkage));
83 }
84
85 int
_fini()86 _fini()
87 {
88 return (EBUSY); /* don't remove TS for now */
89 }
90
91 int
_info(struct modinfo * modinfop)92 _info(struct modinfo *modinfop)
93 {
94 return (mod_info(&modlinkage, modinfop));
95 }
96
97 /*
98 * Class specific code for the time-sharing class
99 */
100
101
102 /*
103 * Extern declarations for variables defined in the ts master file
104 */
105 #define TSMAXUPRI 60
106
107 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */
108 pri_t ts_maxumdpri; /* maximum user mode ts priority */
109
110 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */
111 pri_t ia_boost = IA_BOOST; /* boost value for interactive */
112
113 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */
114 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */
115 /* sleeping or running in kernel after sleep */
116
117 static id_t ia_cid;
118
119 int ts_sleep_promote = 1;
120
121 #define tsmedumdpri (ts_maxumdpri >> 1)
122
123 #define TS_NEWUMDPRI(tspp) \
124 { \
125 pri_t pri; \
126 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \
127 if (pri > ts_maxumdpri) \
128 (tspp)->ts_umdpri = ts_maxumdpri; \
129 else if (pri < 0) \
130 (tspp)->ts_umdpri = 0; \
131 else \
132 (tspp)->ts_umdpri = pri; \
133 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \
134 }
135
136 /*
137 * The tsproc_t structures are kept in an array of circular doubly linked
138 * lists. A hash on the thread pointer is used to determine which list
139 * each thread should be placed. Each list has a dummy "head" which is
140 * never removed, so the list is never empty. ts_update traverses these
141 * lists to update the priorities of threads that have been waiting on
142 * the run queue.
143 */
144
145 #define TS_LISTS 16 /* number of lists, must be power of 2 */
146
147 /* hash function, argument is a thread pointer */
148 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1))
149
150 /* iterate to the next list */
151 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1))
152
153 /*
154 * Insert thread into the appropriate tsproc list.
155 */
156 #define TS_LIST_INSERT(tspp) \
157 { \
158 int index = TS_LIST_HASH(tspp->ts_tp); \
159 kmutex_t *lockp = &ts_list_lock[index]; \
160 tsproc_t *headp = &ts_plisthead[index]; \
161 mutex_enter(lockp); \
162 tspp->ts_next = headp->ts_next; \
163 tspp->ts_prev = headp; \
164 headp->ts_next->ts_prev = tspp; \
165 headp->ts_next = tspp; \
166 mutex_exit(lockp); \
167 }
168
169 /*
170 * Remove thread from tsproc list.
171 */
172 #define TS_LIST_DELETE(tspp) \
173 { \
174 int index = TS_LIST_HASH(tspp->ts_tp); \
175 kmutex_t *lockp = &ts_list_lock[index]; \
176 mutex_enter(lockp); \
177 tspp->ts_prev->ts_next = tspp->ts_next; \
178 tspp->ts_next->ts_prev = tspp->ts_prev; \
179 mutex_exit(lockp); \
180 }
181
182
183 static int ts_admin(caddr_t, cred_t *);
184 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
185 static int ts_fork(kthread_t *, kthread_t *, void *);
186 static int ts_getclinfo(void *);
187 static int ts_getclpri(pcpri_t *);
188 static int ts_parmsin(void *);
189 static int ts_parmsout(void *, pc_vaparms_t *);
190 static int ts_vaparmsin(void *, pc_vaparms_t *);
191 static int ts_vaparmsout(void *, pc_vaparms_t *);
192 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *);
193 static void ts_exit(kthread_t *);
194 static int ts_donice(kthread_t *, cred_t *, int, int *);
195 static int ts_doprio(kthread_t *, cred_t *, int, int *);
196 static void ts_exitclass(void *);
197 static int ts_canexit(kthread_t *, cred_t *);
198 static void ts_forkret(kthread_t *, kthread_t *);
199 static void ts_nullsys();
200 static void ts_parmsget(kthread_t *, void *);
201 static void ts_preempt(kthread_t *);
202 static void ts_setrun(kthread_t *);
203 static void ts_sleep(kthread_t *);
204 static pri_t ts_swapin(kthread_t *, int);
205 static pri_t ts_swapout(kthread_t *, int);
206 static void ts_tick(kthread_t *);
207 static void ts_trapret(kthread_t *);
208 static void ts_update(void *);
209 static int ts_update_list(int);
210 static void ts_wakeup(kthread_t *);
211 static pri_t ts_globpri(kthread_t *);
212 static void ts_yield(kthread_t *);
213 extern tsdpent_t *ts_getdptbl(void);
214 extern pri_t *ts_getkmdpris(void);
215 extern pri_t td_getmaxumdpri(void);
216 static int ts_alloc(void **, int);
217 static void ts_free(void *);
218
219 pri_t ia_init(id_t, int, classfuncs_t **);
220 static int ia_getclinfo(void *);
221 static int ia_getclpri(pcpri_t *);
222 static int ia_parmsin(void *);
223 static int ia_vaparmsin(void *, pc_vaparms_t *);
224 static int ia_vaparmsout(void *, pc_vaparms_t *);
225 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *);
226 static void ia_parmsget(kthread_t *, void *);
227 static void ia_set_process_group(pid_t, pid_t, pid_t);
228
229 static void ts_change_priority(kthread_t *, tsproc_t *);
230
231 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */
232 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */
233 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */
234 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */
235
236 static gid_t IA_gid = 0;
237
238 static struct classfuncs ts_classfuncs = {
239 /* class functions */
240 ts_admin,
241 ts_getclinfo,
242 ts_parmsin,
243 ts_parmsout,
244 ts_vaparmsin,
245 ts_vaparmsout,
246 ts_getclpri,
247 ts_alloc,
248 ts_free,
249
250 /* thread functions */
251 ts_enterclass,
252 ts_exitclass,
253 ts_canexit,
254 ts_fork,
255 ts_forkret,
256 ts_parmsget,
257 ts_parmsset,
258 ts_nullsys, /* stop */
259 ts_exit,
260 ts_nullsys, /* active */
261 ts_nullsys, /* inactive */
262 ts_swapin,
263 ts_swapout,
264 ts_trapret,
265 ts_preempt,
266 ts_setrun,
267 ts_sleep,
268 ts_tick,
269 ts_wakeup,
270 ts_donice,
271 ts_globpri,
272 ts_nullsys, /* set_process_group */
273 ts_yield,
274 ts_doprio,
275 };
276
277 /*
278 * ia_classfuncs is used for interactive class threads; IA threads are stored
279 * on the same class list as TS threads, and most of the class functions are
280 * identical, but a few have different enough functionality to require their
281 * own functions.
282 */
283 static struct classfuncs ia_classfuncs = {
284 /* class functions */
285 ts_admin,
286 ia_getclinfo,
287 ia_parmsin,
288 ts_parmsout,
289 ia_vaparmsin,
290 ia_vaparmsout,
291 ia_getclpri,
292 ts_alloc,
293 ts_free,
294
295 /* thread functions */
296 ts_enterclass,
297 ts_exitclass,
298 ts_canexit,
299 ts_fork,
300 ts_forkret,
301 ia_parmsget,
302 ia_parmsset,
303 ts_nullsys, /* stop */
304 ts_exit,
305 ts_nullsys, /* active */
306 ts_nullsys, /* inactive */
307 ts_swapin,
308 ts_swapout,
309 ts_trapret,
310 ts_preempt,
311 ts_setrun,
312 ts_sleep,
313 ts_tick,
314 ts_wakeup,
315 ts_donice,
316 ts_globpri,
317 ia_set_process_group,
318 ts_yield,
319 ts_doprio,
320 };
321
322
323 /*
324 * Time sharing class initialization. Called by dispinit() at boot time.
325 * We can ignore the clparmsz argument since we know that the smallest
326 * possible parameter buffer is big enough for us.
327 */
328 /* ARGSUSED */
329 static pri_t
ts_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)330 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
331 {
332 int i;
333 extern pri_t ts_getmaxumdpri(void);
334
335 ts_dptbl = ts_getdptbl();
336 ts_kmdpris = ts_getkmdpris();
337 ts_maxumdpri = ts_getmaxumdpri();
338 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri);
339
340 /*
341 * Initialize the tsproc lists.
342 */
343 for (i = 0; i < TS_LISTS; i++) {
344 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev =
345 &ts_plisthead[i];
346 }
347
348 /*
349 * We're required to return a pointer to our classfuncs
350 * structure and the highest global priority value we use.
351 */
352 *clfuncspp = &ts_classfuncs;
353 return (ts_maxglobpri);
354 }
355
356
357 /*
358 * Interactive class scheduler initialization
359 */
360 /* ARGSUSED */
361 pri_t
ia_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)362 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
363 {
364 /*
365 * We're required to return a pointer to our classfuncs
366 * structure and the highest global priority value we use.
367 */
368 ia_cid = cid;
369 *clfuncspp = &ia_classfuncs;
370 return (ts_maxglobpri);
371 }
372
373
374 /*
375 * Get or reset the ts_dptbl values per the user's request.
376 */
377 static int
ts_admin(caddr_t uaddr,cred_t * reqpcredp)378 ts_admin(caddr_t uaddr, cred_t *reqpcredp)
379 {
380 tsadmin_t tsadmin;
381 tsdpent_t *tmpdpp;
382 int userdpsz;
383 int i;
384 size_t tsdpsz;
385
386 if (get_udatamodel() == DATAMODEL_NATIVE) {
387 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t)))
388 return (EFAULT);
389 }
390 #ifdef _SYSCALL32_IMPL
391 else {
392 /* get tsadmin struct from ILP32 caller */
393 tsadmin32_t tsadmin32;
394 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t)))
395 return (EFAULT);
396 tsadmin.ts_dpents =
397 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents;
398 tsadmin.ts_ndpents = tsadmin32.ts_ndpents;
399 tsadmin.ts_cmd = tsadmin32.ts_cmd;
400 }
401 #endif /* _SYSCALL32_IMPL */
402
403 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t);
404
405 switch (tsadmin.ts_cmd) {
406 case TS_GETDPSIZE:
407 tsadmin.ts_ndpents = ts_maxumdpri + 1;
408
409 if (get_udatamodel() == DATAMODEL_NATIVE) {
410 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
411 return (EFAULT);
412 }
413 #ifdef _SYSCALL32_IMPL
414 else {
415 /* return tsadmin struct to ILP32 caller */
416 tsadmin32_t tsadmin32;
417 tsadmin32.ts_dpents =
418 (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
419 tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
420 tsadmin32.ts_cmd = tsadmin.ts_cmd;
421 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
422 return (EFAULT);
423 }
424 #endif /* _SYSCALL32_IMPL */
425 break;
426
427 case TS_GETDPTBL:
428 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t),
429 tsdpsz);
430 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz))
431 return (EFAULT);
432
433 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t);
434
435 if (get_udatamodel() == DATAMODEL_NATIVE) {
436 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
437 return (EFAULT);
438 }
439 #ifdef _SYSCALL32_IMPL
440 else {
441 /* return tsadmin struct to ILP32 callers */
442 tsadmin32_t tsadmin32;
443 tsadmin32.ts_dpents =
444 (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
445 tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
446 tsadmin32.ts_cmd = tsadmin.ts_cmd;
447 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
448 return (EFAULT);
449 }
450 #endif /* _SYSCALL32_IMPL */
451 break;
452
453 case TS_SETDPTBL:
454 /*
455 * We require that the requesting process has sufficient
456 * priveleges. We also require that the table supplied by
457 * the user exactly match the current ts_dptbl in size.
458 */
459 if (secpolicy_dispadm(reqpcredp) != 0)
460 return (EPERM);
461
462 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) {
463 return (EINVAL);
464 }
465
466 /*
467 * We read the user supplied table into a temporary buffer
468 * where it is validated before being copied over the
469 * ts_dptbl.
470 */
471 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP);
472 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp,
473 tsdpsz)) {
474 kmem_free(tmpdpp, tsdpsz);
475 return (EFAULT);
476 }
477 for (i = 0; i < tsadmin.ts_ndpents; i++) {
478
479 /*
480 * Validate the user supplied values. All we are doing
481 * here is verifying that the values are within their
482 * allowable ranges and will not panic the system. We
483 * make no attempt to ensure that the resulting
484 * configuration makes sense or results in reasonable
485 * performance.
486 */
487 if (tmpdpp[i].ts_quantum <= 0) {
488 kmem_free(tmpdpp, tsdpsz);
489 return (EINVAL);
490 }
491 if (tmpdpp[i].ts_tqexp > ts_maxumdpri ||
492 tmpdpp[i].ts_tqexp < 0) {
493 kmem_free(tmpdpp, tsdpsz);
494 return (EINVAL);
495 }
496 if (tmpdpp[i].ts_slpret > ts_maxumdpri ||
497 tmpdpp[i].ts_slpret < 0) {
498 kmem_free(tmpdpp, tsdpsz);
499 return (EINVAL);
500 }
501 if (tmpdpp[i].ts_maxwait < 0) {
502 kmem_free(tmpdpp, tsdpsz);
503 return (EINVAL);
504 }
505 if (tmpdpp[i].ts_lwait > ts_maxumdpri ||
506 tmpdpp[i].ts_lwait < 0) {
507 kmem_free(tmpdpp, tsdpsz);
508 return (EINVAL);
509 }
510 }
511
512 /*
513 * Copy the user supplied values over the current ts_dptbl
514 * values. The ts_globpri member is read-only so we don't
515 * overwrite it.
516 */
517 mutex_enter(&ts_dptblock);
518 for (i = 0; i < tsadmin.ts_ndpents; i++) {
519 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum;
520 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp;
521 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret;
522 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait;
523 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait;
524 }
525 mutex_exit(&ts_dptblock);
526 kmem_free(tmpdpp, tsdpsz);
527 break;
528
529 default:
530 return (EINVAL);
531 }
532 return (0);
533 }
534
535
536 /*
537 * Allocate a time-sharing class specific thread structure and
538 * initialize it with the parameters supplied. Also move the thread
539 * to specified time-sharing priority.
540 */
541 static int
ts_enterclass(kthread_t * t,id_t cid,void * parmsp,cred_t * reqpcredp,void * bufp)542 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
543 void *bufp)
544 {
545 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
546 tsproc_t *tspp;
547 pri_t reqtsuprilim;
548 pri_t reqtsupri;
549 static uint32_t tspexists = 0; /* set on first occurrence of */
550 /* a time-sharing process */
551
552 tspp = (tsproc_t *)bufp;
553 ASSERT(tspp != NULL);
554
555 /*
556 * Initialize the tsproc structure.
557 */
558 tspp->ts_cpupri = tsmedumdpri;
559 if (cid == ia_cid) {
560 /*
561 * Check to make sure caller is either privileged or the
562 * window system. When the window system is converted
563 * to using privileges, the second check can go away.
564 */
565 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
566 secpolicy_setpriority(reqpcredp) != 0)
567 return (EPERM);
568 /*
569 * Belongs to IA "class", so set appropriate flags.
570 * Mark as 'on' so it will not be a swap victim
571 * while forking.
572 */
573 tspp->ts_flags = TSIA | TSIASET;
574 tspp->ts_boost = ia_boost;
575 } else {
576 tspp->ts_flags = 0;
577 tspp->ts_boost = 0;
578 }
579
580 if (tsparmsp == NULL) {
581 /*
582 * Use default values.
583 */
584 tspp->ts_uprilim = tspp->ts_upri = 0;
585 tspp->ts_nice = NZERO;
586 } else {
587 /*
588 * Use supplied values.
589 */
590 if (tsparmsp->ts_uprilim == TS_NOCHANGE)
591 reqtsuprilim = 0;
592 else {
593 if (tsparmsp->ts_uprilim > 0 &&
594 secpolicy_setpriority(reqpcredp) != 0)
595 return (EPERM);
596 reqtsuprilim = tsparmsp->ts_uprilim;
597 }
598
599 if (tsparmsp->ts_upri == TS_NOCHANGE) {
600 reqtsupri = reqtsuprilim;
601 } else {
602 if (tsparmsp->ts_upri > 0 &&
603 secpolicy_setpriority(reqpcredp) != 0)
604 return (EPERM);
605 /*
606 * Set the user priority to the requested value
607 * or the upri limit, whichever is lower.
608 */
609 reqtsupri = tsparmsp->ts_upri;
610 if (reqtsupri > reqtsuprilim)
611 reqtsupri = reqtsuprilim;
612 }
613
614
615 tspp->ts_uprilim = reqtsuprilim;
616 tspp->ts_upri = reqtsupri;
617 tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri;
618 }
619 TS_NEWUMDPRI(tspp);
620
621 tspp->ts_dispwait = 0;
622 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
623 tspp->ts_tp = t;
624 cpucaps_sc_init(&tspp->ts_caps);
625
626 /*
627 * Reset priority. Process goes to a "user mode" priority
628 * here regardless of whether or not it has slept since
629 * entering the kernel.
630 */
631 thread_lock(t); /* get dispatcher lock on thread */
632 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
633 t->t_cid = cid;
634 t->t_cldata = (void *)tspp;
635 t->t_schedflag &= ~TS_RUNQMATCH;
636 ts_change_priority(t, tspp);
637 thread_unlock(t);
638
639 /*
640 * Link new structure into tsproc list.
641 */
642 TS_LIST_INSERT(tspp);
643
644 /*
645 * If this is the first time-sharing thread to occur since
646 * boot we set up the initial call to ts_update() here.
647 * Use an atomic compare-and-swap since that's easier and
648 * faster than a mutex (but check with an ordinary load first
649 * since most of the time this will already be done).
650 */
651 if (tspexists == 0 && atomic_cas_32(&tspexists, 0, 1) == 0)
652 (void) timeout(ts_update, NULL, hz);
653
654 return (0);
655 }
656
657
658 /*
659 * Free tsproc structure of thread.
660 */
661 static void
ts_exitclass(void * procp)662 ts_exitclass(void *procp)
663 {
664 tsproc_t *tspp = (tsproc_t *)procp;
665
666 /* Remove tsproc_t structure from list */
667 TS_LIST_DELETE(tspp);
668 kmem_free(tspp, sizeof (tsproc_t));
669 }
670
671 /* ARGSUSED */
672 static int
ts_canexit(kthread_t * t,cred_t * cred)673 ts_canexit(kthread_t *t, cred_t *cred)
674 {
675 /*
676 * A thread can always leave a TS/IA class
677 */
678 return (0);
679 }
680
681 static int
ts_fork(kthread_t * t,kthread_t * ct,void * bufp)682 ts_fork(kthread_t *t, kthread_t *ct, void *bufp)
683 {
684 tsproc_t *ptspp; /* ptr to parent's tsproc structure */
685 tsproc_t *ctspp; /* ptr to child's tsproc structure */
686
687 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
688
689 ctspp = (tsproc_t *)bufp;
690 ASSERT(ctspp != NULL);
691 ptspp = (tsproc_t *)t->t_cldata;
692 /*
693 * Initialize child's tsproc structure.
694 */
695 thread_lock(t);
696 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum;
697 ctspp->ts_cpupri = ptspp->ts_cpupri;
698 ctspp->ts_boost = ptspp->ts_boost;
699 ctspp->ts_uprilim = ptspp->ts_uprilim;
700 ctspp->ts_upri = ptspp->ts_upri;
701 TS_NEWUMDPRI(ctspp);
702 ctspp->ts_nice = ptspp->ts_nice;
703 ctspp->ts_dispwait = 0;
704 ctspp->ts_flags = ptspp->ts_flags & ~(TSBACKQ | TSRESTORE);
705 ctspp->ts_tp = ct;
706 cpucaps_sc_init(&ctspp->ts_caps);
707 thread_unlock(t);
708
709 /*
710 * Link new structure into tsproc list.
711 */
712 ct->t_cldata = (void *)ctspp;
713 TS_LIST_INSERT(ctspp);
714 return (0);
715 }
716
717
718 /*
719 * Child is placed at back of dispatcher queue and parent gives
720 * up processor so that the child runs first after the fork.
721 * This allows the child immediately execing to break the multiple
722 * use of copy on write pages with no disk home. The parent will
723 * get to steal them back rather than uselessly copying them.
724 */
725 static void
ts_forkret(kthread_t * t,kthread_t * ct)726 ts_forkret(kthread_t *t, kthread_t *ct)
727 {
728 proc_t *pp = ttoproc(t);
729 proc_t *cp = ttoproc(ct);
730 tsproc_t *tspp;
731
732 ASSERT(t == curthread);
733 ASSERT(MUTEX_HELD(&pidlock));
734
735 /*
736 * Grab the child's p_lock before dropping pidlock to ensure
737 * the process does not disappear before we set it running.
738 */
739 mutex_enter(&cp->p_lock);
740 continuelwps(cp);
741 mutex_exit(&cp->p_lock);
742
743 mutex_enter(&pp->p_lock);
744 mutex_exit(&pidlock);
745 continuelwps(pp);
746
747 thread_lock(t);
748 tspp = (tsproc_t *)(t->t_cldata);
749 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
750 TS_NEWUMDPRI(tspp);
751 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
752 tspp->ts_dispwait = 0;
753 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
754 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
755 THREAD_TRANSITION(t);
756 ts_setrun(t);
757 thread_unlock(t);
758 /*
759 * Safe to drop p_lock now since since it is safe to change
760 * the scheduling class after this point.
761 */
762 mutex_exit(&pp->p_lock);
763
764 swtch();
765 }
766
767
768 /*
769 * Get information about the time-sharing class into the buffer
770 * pointed to by tsinfop. The maximum configured user priority
771 * is the only information we supply. ts_getclinfo() is called
772 * for TS threads, and ia_getclinfo() is called for IA threads.
773 */
774 static int
ts_getclinfo(void * infop)775 ts_getclinfo(void *infop)
776 {
777 tsinfo_t *tsinfop = (tsinfo_t *)infop;
778 tsinfop->ts_maxupri = ts_maxupri;
779 return (0);
780 }
781
782 static int
ia_getclinfo(void * infop)783 ia_getclinfo(void *infop)
784 {
785 iainfo_t *iainfop = (iainfo_t *)infop;
786 iainfop->ia_maxupri = ia_maxupri;
787 return (0);
788 }
789
790
791 /*
792 * Return the user mode scheduling priority range.
793 */
794 static int
ts_getclpri(pcpri_t * pcprip)795 ts_getclpri(pcpri_t *pcprip)
796 {
797 pcprip->pc_clpmax = ts_maxupri;
798 pcprip->pc_clpmin = -ts_maxupri;
799 return (0);
800 }
801
802
803 static int
ia_getclpri(pcpri_t * pcprip)804 ia_getclpri(pcpri_t *pcprip)
805 {
806 pcprip->pc_clpmax = ia_maxupri;
807 pcprip->pc_clpmin = -ia_maxupri;
808 return (0);
809 }
810
811
812 static void
ts_nullsys()813 ts_nullsys()
814 {}
815
816
817 /*
818 * Get the time-sharing parameters of the thread pointed to by
819 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget()
820 * is called for TS threads, and ia_parmsget() is called for IA
821 * threads.
822 */
823 static void
ts_parmsget(kthread_t * t,void * parmsp)824 ts_parmsget(kthread_t *t, void *parmsp)
825 {
826 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
827 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
828
829 tsparmsp->ts_uprilim = tspp->ts_uprilim;
830 tsparmsp->ts_upri = tspp->ts_upri;
831 }
832
833 static void
ia_parmsget(kthread_t * t,void * parmsp)834 ia_parmsget(kthread_t *t, void *parmsp)
835 {
836 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
837 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
838
839 iaparmsp->ia_uprilim = tspp->ts_uprilim;
840 iaparmsp->ia_upri = tspp->ts_upri;
841 if (tspp->ts_flags & TSIASET)
842 iaparmsp->ia_mode = IA_SET_INTERACTIVE;
843 else
844 iaparmsp->ia_mode = IA_INTERACTIVE_OFF;
845 }
846
847
848 /*
849 * Check the validity of the time-sharing parameters in the buffer
850 * pointed to by tsparmsp.
851 * ts_parmsin() is called for TS threads, and ia_parmsin() is called
852 * for IA threads.
853 */
854 static int
ts_parmsin(void * parmsp)855 ts_parmsin(void *parmsp)
856 {
857 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
858 /*
859 * Check validity of parameters.
860 */
861 if ((tsparmsp->ts_uprilim > ts_maxupri ||
862 tsparmsp->ts_uprilim < -ts_maxupri) &&
863 tsparmsp->ts_uprilim != TS_NOCHANGE)
864 return (EINVAL);
865
866 if ((tsparmsp->ts_upri > ts_maxupri ||
867 tsparmsp->ts_upri < -ts_maxupri) &&
868 tsparmsp->ts_upri != TS_NOCHANGE)
869 return (EINVAL);
870
871 return (0);
872 }
873
874 static int
ia_parmsin(void * parmsp)875 ia_parmsin(void *parmsp)
876 {
877 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
878
879 if ((iaparmsp->ia_uprilim > ia_maxupri ||
880 iaparmsp->ia_uprilim < -ia_maxupri) &&
881 iaparmsp->ia_uprilim != IA_NOCHANGE) {
882 return (EINVAL);
883 }
884
885 if ((iaparmsp->ia_upri > ia_maxupri ||
886 iaparmsp->ia_upri < -ia_maxupri) &&
887 iaparmsp->ia_upri != IA_NOCHANGE) {
888 return (EINVAL);
889 }
890
891 return (0);
892 }
893
894
895 /*
896 * Check the validity of the time-sharing parameters in the pc_vaparms_t
897 * structure vaparmsp and put them in the buffer pointed to by tsparmsp.
898 * pc_vaparms_t contains (key, value) pairs of parameter.
899 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called
900 * for IA threads. ts_vaparmsin() is the variable parameter version of
901 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of
902 * ia_parmsin().
903 */
904 static int
ts_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)905 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
906 {
907 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
908 int priflag = 0;
909 int limflag = 0;
910 uint_t cnt;
911 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
912
913
914 /*
915 * TS_NOCHANGE (-32768) is outside of the range of values for
916 * ts_uprilim and ts_upri. If the structure tsparms_t is changed,
917 * TS_NOCHANGE should be replaced by a flag word (in the same manner
918 * as in rt.c).
919 */
920 tsparmsp->ts_uprilim = TS_NOCHANGE;
921 tsparmsp->ts_upri = TS_NOCHANGE;
922
923 /*
924 * Get the varargs parameter and check validity of parameters.
925 */
926 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
927 return (EINVAL);
928
929 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
930
931 switch (vpp->pc_key) {
932 case TS_KY_UPRILIM:
933 if (limflag++)
934 return (EINVAL);
935 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm;
936 if (tsparmsp->ts_uprilim > ts_maxupri ||
937 tsparmsp->ts_uprilim < -ts_maxupri)
938 return (EINVAL);
939 break;
940
941 case TS_KY_UPRI:
942 if (priflag++)
943 return (EINVAL);
944 tsparmsp->ts_upri = (pri_t)vpp->pc_parm;
945 if (tsparmsp->ts_upri > ts_maxupri ||
946 tsparmsp->ts_upri < -ts_maxupri)
947 return (EINVAL);
948 break;
949
950 default:
951 return (EINVAL);
952 }
953 }
954
955 if (vaparmsp->pc_vaparmscnt == 0) {
956 /*
957 * Use default parameters.
958 */
959 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0;
960 }
961
962 return (0);
963 }
964
965 static int
ia_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)966 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
967 {
968 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
969 int priflag = 0;
970 int limflag = 0;
971 int mflag = 0;
972 uint_t cnt;
973 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
974
975 /*
976 * IA_NOCHANGE (-32768) is outside of the range of values for
977 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is
978 * changed, IA_NOCHANGE should be replaced by a flag word (in the
979 * same manner as in rt.c).
980 */
981 iaparmsp->ia_uprilim = IA_NOCHANGE;
982 iaparmsp->ia_upri = IA_NOCHANGE;
983 iaparmsp->ia_mode = IA_NOCHANGE;
984
985 /*
986 * Get the varargs parameter and check validity of parameters.
987 */
988 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
989 return (EINVAL);
990
991 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
992
993 switch (vpp->pc_key) {
994 case IA_KY_UPRILIM:
995 if (limflag++)
996 return (EINVAL);
997 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm;
998 if (iaparmsp->ia_uprilim > ia_maxupri ||
999 iaparmsp->ia_uprilim < -ia_maxupri)
1000 return (EINVAL);
1001 break;
1002
1003 case IA_KY_UPRI:
1004 if (priflag++)
1005 return (EINVAL);
1006 iaparmsp->ia_upri = (pri_t)vpp->pc_parm;
1007 if (iaparmsp->ia_upri > ia_maxupri ||
1008 iaparmsp->ia_upri < -ia_maxupri)
1009 return (EINVAL);
1010 break;
1011
1012 case IA_KY_MODE:
1013 if (mflag++)
1014 return (EINVAL);
1015 iaparmsp->ia_mode = (int)vpp->pc_parm;
1016 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE &&
1017 iaparmsp->ia_mode != IA_INTERACTIVE_OFF)
1018 return (EINVAL);
1019 break;
1020
1021 default:
1022 return (EINVAL);
1023 }
1024 }
1025
1026 if (vaparmsp->pc_vaparmscnt == 0) {
1027 /*
1028 * Use default parameters.
1029 */
1030 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0;
1031 iaparmsp->ia_mode = IA_SET_INTERACTIVE;
1032 }
1033
1034 return (0);
1035 }
1036
1037 /*
1038 * Nothing to do here but return success.
1039 */
1040 /* ARGSUSED */
1041 static int
ts_parmsout(void * parmsp,pc_vaparms_t * vaparmsp)1042 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1043 {
1044 return (0);
1045 }
1046
1047
1048 /*
1049 * Copy all selected time-sharing class parameters to the user.
1050 * The parameters are specified by a key.
1051 */
1052 static int
ts_vaparmsout(void * prmsp,pc_vaparms_t * vaparmsp)1053 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1054 {
1055 tsparms_t *tsprmsp = (tsparms_t *)prmsp;
1056 int priflag = 0;
1057 int limflag = 0;
1058 uint_t cnt;
1059 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1060
1061 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1062
1063 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1064 return (EINVAL);
1065
1066 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1067
1068 switch (vpp->pc_key) {
1069 case TS_KY_UPRILIM:
1070 if (limflag++)
1071 return (EINVAL);
1072 if (copyout(&tsprmsp->ts_uprilim,
1073 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1074 return (EFAULT);
1075 break;
1076
1077 case TS_KY_UPRI:
1078 if (priflag++)
1079 return (EINVAL);
1080 if (copyout(&tsprmsp->ts_upri,
1081 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1082 return (EFAULT);
1083 break;
1084
1085 default:
1086 return (EINVAL);
1087 }
1088 }
1089
1090 return (0);
1091 }
1092
1093
1094 /*
1095 * Copy all selected interactive class parameters to the user.
1096 * The parameters are specified by a key.
1097 */
1098 static int
ia_vaparmsout(void * prmsp,pc_vaparms_t * vaparmsp)1099 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1100 {
1101 iaparms_t *iaprmsp = (iaparms_t *)prmsp;
1102 int priflag = 0;
1103 int limflag = 0;
1104 int mflag = 0;
1105 uint_t cnt;
1106 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1107
1108 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1109
1110 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1111 return (EINVAL);
1112
1113 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1114
1115 switch (vpp->pc_key) {
1116 case IA_KY_UPRILIM:
1117 if (limflag++)
1118 return (EINVAL);
1119 if (copyout(&iaprmsp->ia_uprilim,
1120 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1121 return (EFAULT);
1122 break;
1123
1124 case IA_KY_UPRI:
1125 if (priflag++)
1126 return (EINVAL);
1127 if (copyout(&iaprmsp->ia_upri,
1128 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1129 return (EFAULT);
1130 break;
1131
1132 case IA_KY_MODE:
1133 if (mflag++)
1134 return (EINVAL);
1135 if (copyout(&iaprmsp->ia_mode,
1136 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int)))
1137 return (EFAULT);
1138 break;
1139
1140 default:
1141 return (EINVAL);
1142 }
1143 }
1144 return (0);
1145 }
1146
1147
1148 /*
1149 * Set the scheduling parameters of the thread pointed to by tsprocp
1150 * to those specified in the buffer pointed to by tsparmsp.
1151 * ts_parmsset() is called for TS threads, and ia_parmsset() is
1152 * called for IA threads.
1153 */
1154 /* ARGSUSED */
1155 static int
ts_parmsset(kthread_t * tx,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1156 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1157 {
1158 char nice;
1159 pri_t reqtsuprilim;
1160 pri_t reqtsupri;
1161 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
1162 tsproc_t *tspp = (tsproc_t *)tx->t_cldata;
1163
1164 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1165
1166 if (tsparmsp->ts_uprilim == TS_NOCHANGE)
1167 reqtsuprilim = tspp->ts_uprilim;
1168 else
1169 reqtsuprilim = tsparmsp->ts_uprilim;
1170
1171 if (tsparmsp->ts_upri == TS_NOCHANGE)
1172 reqtsupri = tspp->ts_upri;
1173 else
1174 reqtsupri = tsparmsp->ts_upri;
1175
1176 /*
1177 * Make sure the user priority doesn't exceed the upri limit.
1178 */
1179 if (reqtsupri > reqtsuprilim)
1180 reqtsupri = reqtsuprilim;
1181
1182 /*
1183 * Basic permissions enforced by generic kernel code
1184 * for all classes require that a thread attempting
1185 * to change the scheduling parameters of a target
1186 * thread be privileged or have a real or effective
1187 * UID matching that of the target thread. We are not
1188 * called unless these basic permission checks have
1189 * already passed. The time-sharing class requires in
1190 * addition that the calling thread be privileged if it
1191 * is attempting to raise the upri limit above its current
1192 * value This may have been checked previously but if our
1193 * caller passed us a non-NULL credential pointer we assume
1194 * it hasn't and we check it here.
1195 */
1196 if (reqpcredp != NULL &&
1197 reqtsuprilim > tspp->ts_uprilim &&
1198 secpolicy_raisepriority(reqpcredp) != 0)
1199 return (EPERM);
1200
1201 /*
1202 * Set ts_nice to the nice value corresponding to the user
1203 * priority we are setting. Note that setting the nice field
1204 * of the parameter struct won't affect upri or nice.
1205 */
1206 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri;
1207 if (nice >= 2 * NZERO)
1208 nice = 2 * NZERO - 1;
1209
1210 thread_lock(tx);
1211
1212 tspp->ts_uprilim = reqtsuprilim;
1213 tspp->ts_upri = reqtsupri;
1214 TS_NEWUMDPRI(tspp);
1215 tspp->ts_nice = nice;
1216
1217 tspp->ts_dispwait = 0;
1218 ts_change_priority(tx, tspp);
1219 thread_unlock(tx);
1220 return (0);
1221 }
1222
1223
1224 static int
ia_parmsset(kthread_t * tx,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1225 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1226 {
1227 tsproc_t *tspp = (tsproc_t *)tx->t_cldata;
1228 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
1229 proc_t *p;
1230 pid_t pid, pgid, sid;
1231 pid_t on, off;
1232 struct stdata *stp;
1233 int sess_held;
1234
1235 /*
1236 * Handle user priority changes
1237 */
1238 if (iaparmsp->ia_mode == IA_NOCHANGE)
1239 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1240
1241 /*
1242 * Check permissions for changing modes.
1243 */
1244
1245 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
1246 secpolicy_raisepriority(reqpcredp) != 0) {
1247 /*
1248 * Silently fail in case this is just a priocntl
1249 * call with upri and uprilim set to IA_NOCHANGE.
1250 */
1251 return (0);
1252 }
1253
1254 ASSERT(MUTEX_HELD(&pidlock));
1255 if ((p = ttoproc(tx)) == NULL) {
1256 return (0);
1257 }
1258 ASSERT(MUTEX_HELD(&p->p_lock));
1259 if (p->p_stat == SIDL) {
1260 return (0);
1261 }
1262 pid = p->p_pid;
1263 sid = p->p_sessp->s_sid;
1264 pgid = p->p_pgrp;
1265 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1266 /*
1267 * session leaders must be turned on now so all processes
1268 * in the group controlling the tty will be turned on or off.
1269 * if the ia_mode is off for the session leader,
1270 * ia_set_process_group will return without setting the
1271 * processes in the group controlling the tty on.
1272 */
1273 thread_lock(tx);
1274 tspp->ts_flags |= TSIASET;
1275 thread_unlock(tx);
1276 }
1277 mutex_enter(&p->p_sessp->s_lock);
1278 sess_held = 1;
1279 if ((pid == sid) && (p->p_sessp->s_vp != NULL) &&
1280 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) {
1281 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) {
1282 pgid = stp->sd_pgidp->pid_id;
1283 sess_held = 0;
1284 mutex_exit(&p->p_sessp->s_lock);
1285 if (iaparmsp->ia_mode ==
1286 IA_SET_INTERACTIVE) {
1287 off = 0;
1288 on = pgid;
1289 } else {
1290 off = pgid;
1291 on = 0;
1292 }
1293 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN,
1294 "active chain:pid %d gid %d %p",
1295 pid, pgid, p);
1296 ia_set_process_group(sid, off, on);
1297 }
1298 }
1299 if (sess_held)
1300 mutex_exit(&p->p_sessp->s_lock);
1301
1302 thread_lock(tx);
1303
1304 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1305 tspp->ts_flags |= TSIASET;
1306 tspp->ts_boost = ia_boost;
1307 } else {
1308 tspp->ts_flags &= ~TSIASET;
1309 tspp->ts_boost = -ia_boost;
1310 }
1311 thread_unlock(tx);
1312
1313 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1314 }
1315
1316 static void
ts_exit(kthread_t * t)1317 ts_exit(kthread_t *t)
1318 {
1319 tsproc_t *tspp;
1320
1321 if (CPUCAPS_ON()) {
1322 /*
1323 * A thread could be exiting in between clock ticks,
1324 * so we need to calculate how much CPU time it used
1325 * since it was charged last time.
1326 *
1327 * CPU caps are not enforced on exiting processes - it is
1328 * usually desirable to exit as soon as possible to free
1329 * resources.
1330 */
1331 thread_lock(t);
1332 tspp = (tsproc_t *)t->t_cldata;
1333 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY);
1334 thread_unlock(t);
1335 }
1336 }
1337
1338 /*
1339 * Return the global scheduling priority that would be assigned
1340 * to a thread entering the time-sharing class with the ts_upri.
1341 */
1342 static pri_t
ts_globpri(kthread_t * t)1343 ts_globpri(kthread_t *t)
1344 {
1345 tsproc_t *tspp;
1346 pri_t tspri;
1347
1348 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1349 tspp = (tsproc_t *)t->t_cldata;
1350 tspri = tsmedumdpri + tspp->ts_upri;
1351 if (tspri > ts_maxumdpri)
1352 tspri = ts_maxumdpri;
1353 else if (tspri < 0)
1354 tspri = 0;
1355 return (ts_dptbl[tspri].ts_globpri);
1356 }
1357
1358 /*
1359 * Arrange for thread to be placed in appropriate location
1360 * on dispatcher queue.
1361 *
1362 * This is called with the current thread in TS_ONPROC and locked.
1363 */
1364 static void
ts_preempt(kthread_t * t)1365 ts_preempt(kthread_t *t)
1366 {
1367 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1368 klwp_t *lwp = ttolwp(t);
1369 pri_t oldpri = t->t_pri;
1370
1371 ASSERT(t == curthread);
1372 ASSERT(THREAD_LOCK_HELD(curthread));
1373
1374 /*
1375 * This thread may be placed on wait queue by CPU Caps. In this case we
1376 * do not need to do anything until it is removed from the wait queue.
1377 */
1378 if (CPUCAPS_ON()) {
1379 (void) cpucaps_charge(t, &tspp->ts_caps,
1380 CPUCAPS_CHARGE_ENFORCE);
1381 if (CPUCAPS_ENFORCE(t))
1382 return;
1383 }
1384
1385 /*
1386 * If thread got preempted in the user-land then we know
1387 * it isn't holding any locks. Mark it as swappable.
1388 */
1389 ASSERT(t->t_schedflag & TS_DONT_SWAP);
1390 if (lwp != NULL && lwp->lwp_state == LWP_USER)
1391 t->t_schedflag &= ~TS_DONT_SWAP;
1392
1393 /*
1394 * Check to see if we're doing "preemption control" here. If
1395 * we are, and if the user has requested that this thread not
1396 * be preempted, and if preemptions haven't been put off for
1397 * too long, let the preemption happen here but try to make
1398 * sure the thread is rescheduled as soon as possible. We do
1399 * this by putting it on the front of the highest priority run
1400 * queue in the TS class. If the preemption has been put off
1401 * for too long, clear the "nopreempt" bit and let the thread
1402 * be preempted.
1403 */
1404 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1405 if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1406 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1407 /*
1408 * If not already remembered, remember current
1409 * priority for restoration in ts_yield().
1410 */
1411 if (!(tspp->ts_flags & TSRESTORE)) {
1412 tspp->ts_scpri = t->t_pri;
1413 tspp->ts_flags |= TSRESTORE;
1414 }
1415 THREAD_CHANGE_PRI(t, ts_maxumdpri);
1416 t->t_schedflag |= TS_DONT_SWAP;
1417 schedctl_set_yield(t, 1);
1418 setfrontdq(t);
1419 goto done;
1420 } else {
1421 if (tspp->ts_flags & TSRESTORE) {
1422 THREAD_CHANGE_PRI(t, tspp->ts_scpri);
1423 tspp->ts_flags &= ~TSRESTORE;
1424 }
1425 schedctl_set_nopreempt(t, 0);
1426 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1427 /*
1428 * Fall through and be preempted below.
1429 */
1430 }
1431 }
1432
1433 if ((tspp->ts_flags & TSBACKQ) != 0) {
1434 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1435 tspp->ts_dispwait = 0;
1436 tspp->ts_flags &= ~TSBACKQ;
1437 setbackdq(t);
1438 } else {
1439 setfrontdq(t);
1440 }
1441
1442 done:
1443 TRACE_2(TR_FAC_DISP, TR_PREEMPT,
1444 "preempt:tid %p old pri %d", t, oldpri);
1445 }
1446
1447 static void
ts_setrun(kthread_t * t)1448 ts_setrun(kthread_t *t)
1449 {
1450 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1451
1452 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
1453
1454 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1455 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1456 TS_NEWUMDPRI(tspp);
1457 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1458 tspp->ts_dispwait = 0;
1459 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1460 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1461 }
1462
1463 tspp->ts_flags &= ~TSBACKQ;
1464
1465 if (tspp->ts_flags & TSIA) {
1466 if (tspp->ts_flags & TSIASET)
1467 setfrontdq(t);
1468 else
1469 setbackdq(t);
1470 } else {
1471 if (t->t_disp_time != ddi_get_lbolt())
1472 setbackdq(t);
1473 else
1474 setfrontdq(t);
1475 }
1476 }
1477
1478
1479 /*
1480 * Prepare thread for sleep.
1481 */
1482 static void
ts_sleep(kthread_t * t)1483 ts_sleep(kthread_t *t)
1484 {
1485 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1486 pri_t old_pri = t->t_pri;
1487
1488 ASSERT(t == curthread);
1489 ASSERT(THREAD_LOCK_HELD(t));
1490
1491 /*
1492 * Account for time spent on CPU before going to sleep.
1493 */
1494 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
1495
1496 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1497 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1498 TS_NEWUMDPRI(tspp);
1499 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1500 tspp->ts_dispwait = 0;
1501
1502 THREAD_CHANGE_PRI(curthread,
1503 ts_dptbl[tspp->ts_umdpri].ts_globpri);
1504 ASSERT(curthread->t_pri >= 0 &&
1505 curthread->t_pri <= ts_maxglobpri);
1506
1507 if (DISP_MUST_SURRENDER(curthread))
1508 cpu_surrender(curthread);
1509 }
1510 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1511 TRACE_2(TR_FAC_DISP, TR_SLEEP,
1512 "sleep:tid %p old pri %d", t, old_pri);
1513 }
1514
1515
1516 /*
1517 * Return Values:
1518 *
1519 * -1 if the thread is loaded or is not eligible to be swapped in.
1520 *
1521 * effective priority of the specified thread based on swapout time
1522 * and size of process (epri >= 0 , epri <= SHRT_MAX).
1523 */
1524 /* ARGSUSED */
1525 static pri_t
ts_swapin(kthread_t * t,int flags)1526 ts_swapin(kthread_t *t, int flags)
1527 {
1528 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1529 long epri = -1;
1530 proc_t *pp = ttoproc(t);
1531
1532 ASSERT(THREAD_LOCK_HELD(t));
1533
1534 /*
1535 * We know that pri_t is a short.
1536 * Be sure not to overrun its range.
1537 */
1538 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1539 time_t swapout_time;
1540
1541 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
1542 if (INHERITED(t) || (tspp->ts_flags & TSIASET)) {
1543 epri = (long)DISP_PRIO(t) + swapout_time;
1544 } else {
1545 /*
1546 * Threads which have been out for a long time,
1547 * have high user mode priority and are associated
1548 * with a small address space are more deserving
1549 */
1550 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1551 ASSERT(epri >= 0 && epri <= ts_maxumdpri);
1552 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
1553 }
1554 /*
1555 * Scale epri so SHRT_MAX/2 represents zero priority.
1556 */
1557 epri += SHRT_MAX/2;
1558 if (epri < 0)
1559 epri = 0;
1560 else if (epri > SHRT_MAX)
1561 epri = SHRT_MAX;
1562 }
1563 return ((pri_t)epri);
1564 }
1565
1566 /*
1567 * Return Values
1568 * -1 if the thread isn't loaded or is not eligible to be swapped out.
1569 *
1570 * effective priority of the specified thread based on if the swapper
1571 * is in softswap or hardswap mode.
1572 *
1573 * Softswap: Return a low effective priority for threads
1574 * sleeping for more than maxslp secs.
1575 *
1576 * Hardswap: Return an effective priority such that threads
1577 * which have been in memory for a while and are
1578 * associated with a small address space are swapped
1579 * in before others.
1580 *
1581 * (epri >= 0 , epri <= SHRT_MAX).
1582 */
1583 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */
1584 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */
1585
1586 static pri_t
ts_swapout(kthread_t * t,int flags)1587 ts_swapout(kthread_t *t, int flags)
1588 {
1589 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1590 long epri = -1;
1591 proc_t *pp = ttoproc(t);
1592 time_t swapin_time;
1593
1594 ASSERT(THREAD_LOCK_HELD(t));
1595
1596 if (INHERITED(t) || (tspp->ts_flags & TSIASET) ||
1597 (t->t_proc_flag & TP_LWPEXIT) ||
1598 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED |
1599 TS_ONPROC | TS_WAIT)) ||
1600 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t))
1601 return (-1);
1602
1603 ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
1604
1605 /*
1606 * We know that pri_t is a short.
1607 * Be sure not to overrun its range.
1608 */
1609 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
1610 if (flags == SOFTSWAP) {
1611 if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
1612 epri = 0;
1613 } else {
1614 return ((pri_t)epri);
1615 }
1616 } else {
1617 pri_t pri;
1618
1619 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) ||
1620 (t->t_state == TS_RUN && swapin_time > ts_minrun)) {
1621 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1622 ASSERT(pri >= 0 && pri <= ts_maxumdpri);
1623 epri = swapin_time -
1624 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
1625 } else {
1626 return ((pri_t)epri);
1627 }
1628 }
1629
1630 /*
1631 * Scale epri so SHRT_MAX/2 represents zero priority.
1632 */
1633 epri += SHRT_MAX/2;
1634 if (epri < 0)
1635 epri = 0;
1636 else if (epri > SHRT_MAX)
1637 epri = SHRT_MAX;
1638
1639 return ((pri_t)epri);
1640 }
1641
1642 /*
1643 * Check for time slice expiration. If time slice has expired
1644 * move thread to priority specified in tsdptbl for time slice expiration
1645 * and set runrun to cause preemption.
1646 */
1647 static void
ts_tick(kthread_t * t)1648 ts_tick(kthread_t *t)
1649 {
1650 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1651 klwp_t *lwp;
1652 boolean_t call_cpu_surrender = B_FALSE;
1653 pri_t oldpri = t->t_pri;
1654
1655 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1656
1657 thread_lock(t);
1658
1659 /*
1660 * Keep track of thread's project CPU usage. Note that projects
1661 * get charged even when threads are running in the kernel.
1662 */
1663 if (CPUCAPS_ON()) {
1664 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps,
1665 CPUCAPS_CHARGE_ENFORCE);
1666 }
1667
1668 if (--tspp->ts_timeleft <= 0) {
1669 pri_t new_pri;
1670
1671 /*
1672 * If we're doing preemption control and trying to avoid
1673 * preempting this thread, just note that the thread should
1674 * yield soon and let it keep running (unless it's been a
1675 * while).
1676 */
1677 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1678 if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1679 DTRACE_SCHED1(schedctl__nopreempt,
1680 kthread_t *, t);
1681 schedctl_set_yield(t, 1);
1682 thread_unlock_nopreempt(t);
1683 return;
1684 }
1685
1686 DTRACE_SCHED1(schedctl__failsafe,
1687 kthread_t *, t);
1688 }
1689 tspp->ts_flags &= ~TSRESTORE;
1690 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
1691 TS_NEWUMDPRI(tspp);
1692 tspp->ts_dispwait = 0;
1693 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1694 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
1695 /*
1696 * When the priority of a thread is changed, it may be
1697 * necessary to adjust its position on a sleep queue or
1698 * dispatch queue. The function thread_change_pri accomplishes
1699 * this.
1700 */
1701 if (thread_change_pri(t, new_pri, 0)) {
1702 if ((t->t_schedflag & TS_LOAD) &&
1703 (lwp = t->t_lwp) &&
1704 lwp->lwp_state == LWP_USER)
1705 t->t_schedflag &= ~TS_DONT_SWAP;
1706 tspp->ts_timeleft =
1707 ts_dptbl[tspp->ts_cpupri].ts_quantum;
1708 } else {
1709 call_cpu_surrender = B_TRUE;
1710 }
1711 TRACE_2(TR_FAC_DISP, TR_TICK,
1712 "tick:tid %p old pri %d", t, oldpri);
1713 } else if (t->t_state == TS_ONPROC &&
1714 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1715 call_cpu_surrender = B_TRUE;
1716 }
1717
1718 if (call_cpu_surrender) {
1719 tspp->ts_flags |= TSBACKQ;
1720 cpu_surrender(t);
1721 }
1722
1723 thread_unlock_nopreempt(t); /* clock thread can't be preempted */
1724 }
1725
1726
1727 /*
1728 * If we are lowering the thread's priority below that of other runnable
1729 * threads we will normally set runrun via cpu_surrender() to cause preemption.
1730 */
1731 static void
ts_trapret(kthread_t * t)1732 ts_trapret(kthread_t *t)
1733 {
1734 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
1735 cpu_t *cp = CPU;
1736 pri_t old_pri = curthread->t_pri;
1737
1738 ASSERT(THREAD_LOCK_HELD(t));
1739 ASSERT(t == curthread);
1740 ASSERT(cp->cpu_dispthread == t);
1741 ASSERT(t->t_state == TS_ONPROC);
1742
1743 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1744 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1745 TS_NEWUMDPRI(tspp);
1746 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1747 tspp->ts_dispwait = 0;
1748
1749 /*
1750 * If thread has blocked in the kernel (as opposed to
1751 * being merely preempted), recompute the user mode priority.
1752 */
1753 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1754 cp->cpu_dispatch_pri = DISP_PRIO(t);
1755 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1756
1757 if (DISP_MUST_SURRENDER(t))
1758 cpu_surrender(t);
1759 }
1760
1761 /*
1762 * Swapout lwp if the swapper is waiting for this thread to reach a
1763 * safe point.
1764 */
1765 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) {
1766 thread_unlock(t);
1767 swapout_lwp(ttolwp(t));
1768 thread_lock(t);
1769 }
1770
1771 TRACE_2(TR_FAC_DISP, TR_TRAPRET,
1772 "trapret:tid %p old pri %d", t, old_pri);
1773 }
1774
1775
1776 /*
1777 * Update the ts_dispwait values of all time sharing threads that
1778 * are currently runnable at a user mode priority and bump the priority
1779 * if ts_dispwait exceeds ts_maxwait. Called once per second via
1780 * timeout which we reset here.
1781 *
1782 * There are several lists of time sharing threads broken up by a hash on
1783 * the thread pointer. Each list has its own lock. This avoids blocking
1784 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update
1785 * runs. ts_update traverses each list in turn.
1786 *
1787 * If multiple threads have their priorities updated to the same value,
1788 * the system implicitly favors the one that is updated first (since it
1789 * winds up first on the run queue). To avoid this unfairness, the
1790 * traversal of threads starts at the list indicated by a marker. When
1791 * threads in more than one list have their priorities updated, the marker
1792 * is moved. This changes the order the threads will be placed on the run
1793 * queue the next time ts_update is called and preserves fairness over the
1794 * long run. The marker doesn't need to be protected by a lock since it's
1795 * only accessed by ts_update, which is inherently single-threaded (only
1796 * one instance can be running at a time).
1797 */
1798 static void
ts_update(void * arg)1799 ts_update(void *arg)
1800 {
1801 int i;
1802 int new_marker = -1;
1803 static int ts_update_marker;
1804
1805 /*
1806 * Start with the ts_update_marker list, then do the rest.
1807 */
1808 i = ts_update_marker;
1809 do {
1810 /*
1811 * If this is the first list after the current marker to
1812 * have threads with priorities updated, advance the marker
1813 * to this list for the next time ts_update runs.
1814 */
1815 if (ts_update_list(i) && new_marker == -1 &&
1816 i != ts_update_marker) {
1817 new_marker = i;
1818 }
1819 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker);
1820
1821 /* advance marker for next ts_update call */
1822 if (new_marker != -1)
1823 ts_update_marker = new_marker;
1824
1825 (void) timeout(ts_update, arg, hz);
1826 }
1827
1828 /*
1829 * Updates priority for a list of threads. Returns 1 if the priority of
1830 * one of the threads was actually updated, 0 if none were for various
1831 * reasons (thread is no longer in the TS or IA class, isn't runnable,
1832 * hasn't waited long enough, has the preemption control no-preempt bit
1833 * set, etc.)
1834 */
1835 static int
ts_update_list(int i)1836 ts_update_list(int i)
1837 {
1838 tsproc_t *tspp;
1839 kthread_t *tx;
1840 int updated = 0;
1841
1842 mutex_enter(&ts_list_lock[i]);
1843 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i];
1844 tspp = tspp->ts_next) {
1845 tx = tspp->ts_tp;
1846 /*
1847 * Lock the thread and verify state.
1848 */
1849 thread_lock(tx);
1850 /*
1851 * Skip the thread if it is no longer in the TS (or IA) class.
1852 */
1853 if (tx->t_clfuncs != &ts_classfuncs.thread &&
1854 tx->t_clfuncs != &ia_classfuncs.thread)
1855 goto next;
1856 tspp->ts_dispwait++;
1857 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait)
1858 goto next;
1859 if (tx->t_schedctl && schedctl_get_nopreempt(tx))
1860 goto next;
1861 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT &&
1862 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) {
1863 /* make next syscall/trap do CL_TRAPRET */
1864 tx->t_trapret = 1;
1865 aston(tx);
1866 goto next;
1867 }
1868 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait;
1869 TS_NEWUMDPRI(tspp);
1870 tspp->ts_dispwait = 0;
1871 updated = 1;
1872
1873 /*
1874 * Only dequeue it if needs to move; otherwise it should
1875 * just round-robin here.
1876 */
1877 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) {
1878 pri_t oldpri = tx->t_pri;
1879 ts_change_priority(tx, tspp);
1880 TRACE_2(TR_FAC_DISP, TR_UPDATE,
1881 "update:tid %p old pri %d", tx, oldpri);
1882 }
1883 next:
1884 thread_unlock(tx);
1885 }
1886 mutex_exit(&ts_list_lock[i]);
1887
1888 return (updated);
1889 }
1890
1891 /*
1892 * Processes waking up go to the back of their queue.
1893 */
1894 static void
ts_wakeup(kthread_t * t)1895 ts_wakeup(kthread_t *t)
1896 {
1897 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1898
1899 ASSERT(THREAD_LOCK_HELD(t));
1900
1901 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1902
1903 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1904 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1905 TS_NEWUMDPRI(tspp);
1906 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1907 tspp->ts_dispwait = 0;
1908 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1909 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1910 }
1911
1912 tspp->ts_flags &= ~TSBACKQ;
1913
1914 if (tspp->ts_flags & TSIA) {
1915 if (tspp->ts_flags & TSIASET)
1916 setfrontdq(t);
1917 else
1918 setbackdq(t);
1919 } else {
1920 if (t->t_disp_time != ddi_get_lbolt())
1921 setbackdq(t);
1922 else
1923 setfrontdq(t);
1924 }
1925 }
1926
1927
1928 /*
1929 * When a thread yields, put it on the back of the run queue.
1930 */
1931 static void
ts_yield(kthread_t * t)1932 ts_yield(kthread_t *t)
1933 {
1934 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1935
1936 ASSERT(t == curthread);
1937 ASSERT(THREAD_LOCK_HELD(t));
1938
1939 /*
1940 * Collect CPU usage spent before yielding
1941 */
1942 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
1943
1944 /*
1945 * Clear the preemption control "yield" bit since the user is
1946 * doing a yield.
1947 */
1948 if (t->t_schedctl)
1949 schedctl_set_yield(t, 0);
1950 /*
1951 * If ts_preempt() artifically increased the thread's priority
1952 * to avoid preemption, restore the original priority now.
1953 */
1954 if (tspp->ts_flags & TSRESTORE) {
1955 THREAD_CHANGE_PRI(t, tspp->ts_scpri);
1956 tspp->ts_flags &= ~TSRESTORE;
1957 }
1958 if (tspp->ts_timeleft <= 0) {
1959 /*
1960 * Time slice was artificially extended to avoid
1961 * preemption, so pretend we're preempting it now.
1962 */
1963 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft);
1964 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
1965 TS_NEWUMDPRI(tspp);
1966 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1967 tspp->ts_dispwait = 0;
1968 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1969 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1970 }
1971 tspp->ts_flags &= ~TSBACKQ;
1972 setbackdq(t);
1973 }
1974
1975
1976 /*
1977 * Increment the nice value of the specified thread by incr and
1978 * return the new value in *retvalp.
1979 */
1980 static int
ts_donice(kthread_t * t,cred_t * cr,int incr,int * retvalp)1981 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1982 {
1983 int newnice;
1984 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1985 tsparms_t tsparms;
1986
1987 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1988
1989 /* If there's no change to priority, just return current setting */
1990 if (incr == 0) {
1991 if (retvalp) {
1992 *retvalp = tspp->ts_nice - NZERO;
1993 }
1994 return (0);
1995 }
1996
1997 if ((incr < 0 || incr > 2 * NZERO) &&
1998 secpolicy_raisepriority(cr) != 0)
1999 return (EPERM);
2000
2001 /*
2002 * Specifying a nice increment greater than the upper limit of
2003 * 2 * NZERO - 1 will result in the thread's nice value being
2004 * set to the upper limit. We check for this before computing
2005 * the new value because otherwise we could get overflow
2006 * if a privileged process specified some ridiculous increment.
2007 */
2008 if (incr > 2 * NZERO - 1)
2009 incr = 2 * NZERO - 1;
2010
2011 newnice = tspp->ts_nice + incr;
2012 if (newnice >= 2 * NZERO)
2013 newnice = 2 * NZERO - 1;
2014 else if (newnice < 0)
2015 newnice = 0;
2016
2017 tsparms.ts_uprilim = tsparms.ts_upri =
2018 -((newnice - NZERO) * ts_maxupri) / NZERO;
2019 /*
2020 * Reset the uprilim and upri values of the thread.
2021 * Call ts_parmsset even if thread is interactive since we're
2022 * not changing mode.
2023 */
2024 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL);
2025
2026 /*
2027 * Although ts_parmsset already reset ts_nice it may
2028 * not have been set to precisely the value calculated above
2029 * because ts_parmsset determines the nice value from the
2030 * user priority and we may have truncated during the integer
2031 * conversion from nice value to user priority and back.
2032 * We reset ts_nice to the value we calculated above.
2033 */
2034 tspp->ts_nice = (char)newnice;
2035
2036 if (retvalp)
2037 *retvalp = newnice - NZERO;
2038 return (0);
2039 }
2040
2041 /*
2042 * Increment the priority of the specified thread by incr and
2043 * return the new value in *retvalp.
2044 */
2045 static int
ts_doprio(kthread_t * t,cred_t * cr,int incr,int * retvalp)2046 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2047 {
2048 int newpri;
2049 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
2050 tsparms_t tsparms;
2051
2052 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2053
2054 /* If there's no change to the priority, just return current setting */
2055 if (incr == 0) {
2056 *retvalp = tspp->ts_upri;
2057 return (0);
2058 }
2059
2060 newpri = tspp->ts_upri + incr;
2061 if (newpri > ts_maxupri || newpri < -ts_maxupri)
2062 return (EINVAL);
2063
2064 *retvalp = newpri;
2065 tsparms.ts_uprilim = tsparms.ts_upri = newpri;
2066 /*
2067 * Reset the uprilim and upri values of the thread.
2068 * Call ts_parmsset even if thread is interactive since we're
2069 * not changing mode.
2070 */
2071 return (ts_parmsset(t, &tsparms, 0, cr));
2072 }
2073
2074 /*
2075 * ia_set_process_group marks foreground processes as interactive
2076 * and background processes as non-interactive iff the session
2077 * leader is interactive. This routine is called from two places:
2078 * strioctl:SPGRP when a new process group gets
2079 * control of the tty.
2080 * ia_parmsset-when the process in question is a session leader.
2081 * ia_set_process_group assumes that pidlock is held by the caller,
2082 * either strioctl or priocntlsys. If the caller is priocntlsys
2083 * (via ia_parmsset) then the p_lock of the session leader is held
2084 * and the code needs to be careful about acquiring other p_locks.
2085 */
2086 static void
ia_set_process_group(pid_t sid,pid_t bg_pgid,pid_t fg_pgid)2087 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid)
2088 {
2089 proc_t *leader, *fg, *bg;
2090 tsproc_t *tspp;
2091 kthread_t *tx;
2092 int plocked = 0;
2093
2094 ASSERT(MUTEX_HELD(&pidlock));
2095
2096 /*
2097 * see if the session leader is interactive AND
2098 * if it is currently "on" AND controlling a tty
2099 * iff it is then make the processes in the foreground
2100 * group interactive and the processes in the background
2101 * group non-interactive.
2102 */
2103 if ((leader = (proc_t *)prfind(sid)) == NULL) {
2104 return;
2105 }
2106 if (leader->p_stat == SIDL) {
2107 return;
2108 }
2109 if ((tx = proctot(leader)) == NULL) {
2110 return;
2111 }
2112 /*
2113 * XXX do all the threads in the leader
2114 */
2115 if (tx->t_cid != ia_cid) {
2116 return;
2117 }
2118 tspp = tx->t_cldata;
2119 /*
2120 * session leaders that are not interactive need not have
2121 * any processing done for them. They are typically shells
2122 * that do not have focus and are changing the process group
2123 * attatched to the tty, e.g. a process that is exiting
2124 */
2125 mutex_enter(&leader->p_sessp->s_lock);
2126 if (!(tspp->ts_flags & TSIASET) ||
2127 (leader->p_sessp->s_vp == NULL) ||
2128 (leader->p_sessp->s_vp->v_stream == NULL)) {
2129 mutex_exit(&leader->p_sessp->s_lock);
2130 return;
2131 }
2132 mutex_exit(&leader->p_sessp->s_lock);
2133
2134 /*
2135 * If we're already holding the leader's p_lock, we should use
2136 * mutex_tryenter instead of mutex_enter to avoid deadlocks from
2137 * lock ordering violations.
2138 */
2139 if (mutex_owned(&leader->p_lock))
2140 plocked = 1;
2141
2142 if (fg_pgid == 0)
2143 goto skip;
2144 /*
2145 * now look for all processes in the foreground group and
2146 * make them interactive
2147 */
2148 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) {
2149 /*
2150 * if the process is SIDL it's begin forked, ignore it
2151 */
2152 if (fg->p_stat == SIDL) {
2153 continue;
2154 }
2155 /*
2156 * sesssion leaders must be turned on/off explicitly
2157 * not implicitly as happens to other members of
2158 * the process group.
2159 */
2160 if (fg->p_pid == fg->p_sessp->s_sid) {
2161 continue;
2162 }
2163
2164 TRACE_1(TR_FAC_IA, TR_GROUP_ON,
2165 "group on:proc %p", fg);
2166
2167 if (plocked) {
2168 if (mutex_tryenter(&fg->p_lock) == 0)
2169 continue;
2170 } else {
2171 mutex_enter(&fg->p_lock);
2172 }
2173
2174 if ((tx = proctot(fg)) == NULL) {
2175 mutex_exit(&fg->p_lock);
2176 continue;
2177 }
2178 do {
2179 thread_lock(tx);
2180 /*
2181 * if this thread is not interactive continue
2182 */
2183 if (tx->t_cid != ia_cid) {
2184 thread_unlock(tx);
2185 continue;
2186 }
2187 tspp = tx->t_cldata;
2188 tspp->ts_flags |= TSIASET;
2189 tspp->ts_boost = ia_boost;
2190 TS_NEWUMDPRI(tspp);
2191 tspp->ts_dispwait = 0;
2192 ts_change_priority(tx, tspp);
2193 thread_unlock(tx);
2194 } while ((tx = tx->t_forw) != fg->p_tlist);
2195 mutex_exit(&fg->p_lock);
2196 }
2197 skip:
2198 if (bg_pgid == 0)
2199 return;
2200 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) {
2201 if (bg->p_stat == SIDL) {
2202 continue;
2203 }
2204 /*
2205 * sesssion leaders must be turned off explicitly
2206 * not implicitly as happens to other members of
2207 * the process group.
2208 */
2209 if (bg->p_pid == bg->p_sessp->s_sid) {
2210 continue;
2211 }
2212
2213 TRACE_1(TR_FAC_IA, TR_GROUP_OFF,
2214 "group off:proc %p", bg);
2215
2216 if (plocked) {
2217 if (mutex_tryenter(&bg->p_lock) == 0)
2218 continue;
2219 } else {
2220 mutex_enter(&bg->p_lock);
2221 }
2222
2223 if ((tx = proctot(bg)) == NULL) {
2224 mutex_exit(&bg->p_lock);
2225 continue;
2226 }
2227 do {
2228 thread_lock(tx);
2229 /*
2230 * if this thread is not interactive continue
2231 */
2232 if (tx->t_cid != ia_cid) {
2233 thread_unlock(tx);
2234 continue;
2235 }
2236 tspp = tx->t_cldata;
2237 tspp->ts_flags &= ~TSIASET;
2238 tspp->ts_boost = -ia_boost;
2239 TS_NEWUMDPRI(tspp);
2240
2241 tspp->ts_dispwait = 0;
2242 ts_change_priority(tx, tspp);
2243 thread_unlock(tx);
2244 } while ((tx = tx->t_forw) != bg->p_tlist);
2245 mutex_exit(&bg->p_lock);
2246 }
2247 }
2248
2249
2250 static void
ts_change_priority(kthread_t * t,tsproc_t * tspp)2251 ts_change_priority(kthread_t *t, tsproc_t *tspp)
2252 {
2253 pri_t new_pri;
2254
2255 ASSERT(THREAD_LOCK_HELD(t));
2256 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
2257 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
2258 tspp->ts_flags &= ~TSRESTORE;
2259 t->t_cpri = tspp->ts_upri;
2260 if (t == curthread || t->t_state == TS_ONPROC) {
2261 /* curthread is always onproc */
2262 cpu_t *cp = t->t_disp_queue->disp_cpu;
2263 THREAD_CHANGE_PRI(t, new_pri);
2264 if (t == cp->cpu_dispthread)
2265 cp->cpu_dispatch_pri = DISP_PRIO(t);
2266 if (DISP_MUST_SURRENDER(t)) {
2267 tspp->ts_flags |= TSBACKQ;
2268 cpu_surrender(t);
2269 } else {
2270 tspp->ts_timeleft =
2271 ts_dptbl[tspp->ts_cpupri].ts_quantum;
2272 }
2273 } else {
2274 int frontq;
2275
2276 frontq = (tspp->ts_flags & TSIASET) != 0;
2277 /*
2278 * When the priority of a thread is changed,
2279 * it may be necessary to adjust its position
2280 * on a sleep queue or dispatch queue.
2281 * The function thread_change_pri accomplishes
2282 * this.
2283 */
2284 if (thread_change_pri(t, new_pri, frontq)) {
2285 /*
2286 * The thread was on a run queue. Reset
2287 * its CPU timeleft from the quantum
2288 * associated with the new priority.
2289 */
2290 tspp->ts_timeleft =
2291 ts_dptbl[tspp->ts_cpupri].ts_quantum;
2292 } else {
2293 tspp->ts_flags |= TSBACKQ;
2294 }
2295 }
2296 }
2297
2298 static int
ts_alloc(void ** p,int flag)2299 ts_alloc(void **p, int flag)
2300 {
2301 void *bufp;
2302 bufp = kmem_alloc(sizeof (tsproc_t), flag);
2303 if (bufp == NULL) {
2304 return (ENOMEM);
2305 } else {
2306 *p = bufp;
2307 return (0);
2308 }
2309 }
2310
2311 static void
ts_free(void * bufp)2312 ts_free(void *bufp)
2313 {
2314 if (bufp)
2315 kmem_free(bufp, sizeof (tsproc_t));
2316 }
2317