1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 */
26
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/cred.h>
34 #include <sys/proc.h>
35 #include <sys/session.h>
36 #include <sys/strsubr.h>
37 #include <sys/signal.h>
38 #include <sys/user.h>
39 #include <sys/priocntl.h>
40 #include <sys/class.h>
41 #include <sys/disp.h>
42 #include <sys/procset.h>
43 #include <sys/debug.h>
44 #include <sys/ts.h>
45 #include <sys/tspriocntl.h>
46 #include <sys/iapriocntl.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/cpuvar.h>
50 #include <sys/systm.h> /* for lbolt */
51 #include <sys/vtrace.h>
52 #include <sys/vmsystm.h>
53 #include <sys/schedctl.h>
54 #include <sys/tnf_probe.h>
55 #include <sys/atomic.h>
56 #include <sys/policy.h>
57 #include <sys/sdt.h>
58 #include <sys/cpupart.h>
59 #include <vm/rm.h>
60 #include <vm/seg_kmem.h>
61 #include <sys/modctl.h>
62 #include <sys/cpucaps.h>
63
64 static pri_t ts_init(id_t, int, classfuncs_t **);
65
66 static struct sclass csw = {
67 "TS",
68 ts_init,
69 0
70 };
71
72 static struct modlsched modlsched = {
73 &mod_schedops, "time sharing sched class", &csw
74 };
75
76 static struct modlinkage modlinkage = {
77 MODREV_1, (void *)&modlsched, NULL
78 };
79
80 int
_init()81 _init()
82 {
83 return (mod_install(&modlinkage));
84 }
85
86 int
_fini()87 _fini()
88 {
89 return (EBUSY); /* don't remove TS for now */
90 }
91
92 int
_info(struct modinfo * modinfop)93 _info(struct modinfo *modinfop)
94 {
95 return (mod_info(&modlinkage, modinfop));
96 }
97
98 /*
99 * Class specific code for the time-sharing class
100 */
101
102
103 /*
104 * Extern declarations for variables defined in the ts master file
105 */
106 #define TSMAXUPRI 60
107
108 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */
109 pri_t ts_maxumdpri; /* maximum user mode ts priority */
110
111 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */
112 pri_t ia_boost = IA_BOOST; /* boost value for interactive */
113
114 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */
115 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */
116 /* sleeping or running in kernel after sleep */
117
118 static id_t ia_cid;
119
120 int ts_sleep_promote = 1;
121
122 #define tsmedumdpri (ts_maxumdpri >> 1)
123
124 #define TS_NEWUMDPRI(tspp) \
125 { \
126 pri_t pri; \
127 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \
128 if (pri > ts_maxumdpri) \
129 (tspp)->ts_umdpri = ts_maxumdpri; \
130 else if (pri < 0) \
131 (tspp)->ts_umdpri = 0; \
132 else \
133 (tspp)->ts_umdpri = pri; \
134 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \
135 }
136
137 /*
138 * The tsproc_t structures are kept in an array of circular doubly linked
139 * lists. A hash on the thread pointer is used to determine which list
140 * each thread should be placed. Each list has a dummy "head" which is
141 * never removed, so the list is never empty. ts_update traverses these
142 * lists to update the priorities of threads that have been waiting on
143 * the run queue.
144 */
145
146 #define TS_LISTS 16 /* number of lists, must be power of 2 */
147
148 /* hash function, argument is a thread pointer */
149 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1))
150
151 /* iterate to the next list */
152 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1))
153
154 /*
155 * Insert thread into the appropriate tsproc list.
156 */
157 #define TS_LIST_INSERT(tspp) \
158 { \
159 int index = TS_LIST_HASH(tspp->ts_tp); \
160 kmutex_t *lockp = &ts_list_lock[index]; \
161 tsproc_t *headp = &ts_plisthead[index]; \
162 mutex_enter(lockp); \
163 tspp->ts_next = headp->ts_next; \
164 tspp->ts_prev = headp; \
165 headp->ts_next->ts_prev = tspp; \
166 headp->ts_next = tspp; \
167 mutex_exit(lockp); \
168 }
169
170 /*
171 * Remove thread from tsproc list.
172 */
173 #define TS_LIST_DELETE(tspp) \
174 { \
175 int index = TS_LIST_HASH(tspp->ts_tp); \
176 kmutex_t *lockp = &ts_list_lock[index]; \
177 mutex_enter(lockp); \
178 tspp->ts_prev->ts_next = tspp->ts_next; \
179 tspp->ts_next->ts_prev = tspp->ts_prev; \
180 mutex_exit(lockp); \
181 }
182
183
184 static int ts_admin(caddr_t, cred_t *);
185 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
186 static int ts_fork(kthread_t *, kthread_t *, void *);
187 static int ts_getclinfo(void *);
188 static int ts_getclpri(pcpri_t *);
189 static int ts_parmsin(void *);
190 static int ts_parmsout(void *, pc_vaparms_t *);
191 static int ts_vaparmsin(void *, pc_vaparms_t *);
192 static int ts_vaparmsout(void *, pc_vaparms_t *);
193 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *);
194 static void ts_exit(kthread_t *);
195 static int ts_donice(kthread_t *, cred_t *, int, int *);
196 static int ts_doprio(kthread_t *, cred_t *, int, int *);
197 static void ts_exitclass(void *);
198 static int ts_canexit(kthread_t *, cred_t *);
199 static void ts_forkret(kthread_t *, kthread_t *);
200 static void ts_nullsys();
201 static void ts_parmsget(kthread_t *, void *);
202 static void ts_preempt(kthread_t *);
203 static void ts_setrun(kthread_t *);
204 static void ts_sleep(kthread_t *);
205 static pri_t ts_swapin(kthread_t *, int);
206 static pri_t ts_swapout(kthread_t *, int);
207 static void ts_tick(kthread_t *);
208 static void ts_trapret(kthread_t *);
209 static void ts_update(void *);
210 static int ts_update_list(int);
211 static void ts_wakeup(kthread_t *);
212 static pri_t ts_globpri(kthread_t *);
213 static void ts_yield(kthread_t *);
214 extern tsdpent_t *ts_getdptbl(void);
215 extern pri_t *ts_getkmdpris(void);
216 extern pri_t td_getmaxumdpri(void);
217 static int ts_alloc(void **, int);
218 static void ts_free(void *);
219
220 pri_t ia_init(id_t, int, classfuncs_t **);
221 static int ia_getclinfo(void *);
222 static int ia_getclpri(pcpri_t *);
223 static int ia_parmsin(void *);
224 static int ia_vaparmsin(void *, pc_vaparms_t *);
225 static int ia_vaparmsout(void *, pc_vaparms_t *);
226 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *);
227 static void ia_parmsget(kthread_t *, void *);
228 static void ia_set_process_group(pid_t, pid_t, pid_t);
229
230 static void ts_change_priority(kthread_t *, tsproc_t *);
231
232 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */
233 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */
234 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */
235 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */
236
237 static gid_t IA_gid = 0;
238
239 static struct classfuncs ts_classfuncs = {
240 /* class functions */
241 ts_admin,
242 ts_getclinfo,
243 ts_parmsin,
244 ts_parmsout,
245 ts_vaparmsin,
246 ts_vaparmsout,
247 ts_getclpri,
248 ts_alloc,
249 ts_free,
250
251 /* thread functions */
252 ts_enterclass,
253 ts_exitclass,
254 ts_canexit,
255 ts_fork,
256 ts_forkret,
257 ts_parmsget,
258 ts_parmsset,
259 ts_nullsys, /* stop */
260 ts_exit,
261 ts_nullsys, /* active */
262 ts_nullsys, /* inactive */
263 ts_swapin,
264 ts_swapout,
265 ts_trapret,
266 ts_preempt,
267 ts_setrun,
268 ts_sleep,
269 ts_tick,
270 ts_wakeup,
271 ts_donice,
272 ts_globpri,
273 ts_nullsys, /* set_process_group */
274 ts_yield,
275 ts_doprio,
276 };
277
278 /*
279 * ia_classfuncs is used for interactive class threads; IA threads are stored
280 * on the same class list as TS threads, and most of the class functions are
281 * identical, but a few have different enough functionality to require their
282 * own functions.
283 */
284 static struct classfuncs ia_classfuncs = {
285 /* class functions */
286 ts_admin,
287 ia_getclinfo,
288 ia_parmsin,
289 ts_parmsout,
290 ia_vaparmsin,
291 ia_vaparmsout,
292 ia_getclpri,
293 ts_alloc,
294 ts_free,
295
296 /* thread functions */
297 ts_enterclass,
298 ts_exitclass,
299 ts_canexit,
300 ts_fork,
301 ts_forkret,
302 ia_parmsget,
303 ia_parmsset,
304 ts_nullsys, /* stop */
305 ts_exit,
306 ts_nullsys, /* active */
307 ts_nullsys, /* inactive */
308 ts_swapin,
309 ts_swapout,
310 ts_trapret,
311 ts_preempt,
312 ts_setrun,
313 ts_sleep,
314 ts_tick,
315 ts_wakeup,
316 ts_donice,
317 ts_globpri,
318 ia_set_process_group,
319 ts_yield,
320 ts_doprio,
321 };
322
323
324 /*
325 * Time sharing class initialization. Called by dispinit() at boot time.
326 * We can ignore the clparmsz argument since we know that the smallest
327 * possible parameter buffer is big enough for us.
328 */
329 /* ARGSUSED */
330 static pri_t
ts_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)331 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
332 {
333 int i;
334 extern pri_t ts_getmaxumdpri(void);
335
336 ts_dptbl = ts_getdptbl();
337 ts_kmdpris = ts_getkmdpris();
338 ts_maxumdpri = ts_getmaxumdpri();
339 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri);
340
341 /*
342 * Initialize the tsproc lists.
343 */
344 for (i = 0; i < TS_LISTS; i++) {
345 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev =
346 &ts_plisthead[i];
347 }
348
349 /*
350 * We're required to return a pointer to our classfuncs
351 * structure and the highest global priority value we use.
352 */
353 *clfuncspp = &ts_classfuncs;
354 return (ts_maxglobpri);
355 }
356
357
358 /*
359 * Interactive class scheduler initialization
360 */
361 /* ARGSUSED */
362 pri_t
ia_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)363 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
364 {
365 /*
366 * We're required to return a pointer to our classfuncs
367 * structure and the highest global priority value we use.
368 */
369 ia_cid = cid;
370 *clfuncspp = &ia_classfuncs;
371 return (ts_maxglobpri);
372 }
373
374
375 /*
376 * Get or reset the ts_dptbl values per the user's request.
377 */
378 static int
ts_admin(caddr_t uaddr,cred_t * reqpcredp)379 ts_admin(caddr_t uaddr, cred_t *reqpcredp)
380 {
381 tsadmin_t tsadmin;
382 tsdpent_t *tmpdpp;
383 int userdpsz;
384 int i;
385 size_t tsdpsz;
386
387 if (get_udatamodel() == DATAMODEL_NATIVE) {
388 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t)))
389 return (EFAULT);
390 }
391 #ifdef _SYSCALL32_IMPL
392 else {
393 /* get tsadmin struct from ILP32 caller */
394 tsadmin32_t tsadmin32;
395 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t)))
396 return (EFAULT);
397 tsadmin.ts_dpents =
398 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents;
399 tsadmin.ts_ndpents = tsadmin32.ts_ndpents;
400 tsadmin.ts_cmd = tsadmin32.ts_cmd;
401 }
402 #endif /* _SYSCALL32_IMPL */
403
404 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t);
405
406 switch (tsadmin.ts_cmd) {
407 case TS_GETDPSIZE:
408 tsadmin.ts_ndpents = ts_maxumdpri + 1;
409
410 if (get_udatamodel() == DATAMODEL_NATIVE) {
411 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
412 return (EFAULT);
413 }
414 #ifdef _SYSCALL32_IMPL
415 else {
416 /* return tsadmin struct to ILP32 caller */
417 tsadmin32_t tsadmin32;
418 tsadmin32.ts_dpents =
419 (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
420 tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
421 tsadmin32.ts_cmd = tsadmin.ts_cmd;
422 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
423 return (EFAULT);
424 }
425 #endif /* _SYSCALL32_IMPL */
426 break;
427
428 case TS_GETDPTBL:
429 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t),
430 tsdpsz);
431 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz))
432 return (EFAULT);
433
434 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t);
435
436 if (get_udatamodel() == DATAMODEL_NATIVE) {
437 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
438 return (EFAULT);
439 }
440 #ifdef _SYSCALL32_IMPL
441 else {
442 /* return tsadmin struct to ILP32 callers */
443 tsadmin32_t tsadmin32;
444 tsadmin32.ts_dpents =
445 (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
446 tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
447 tsadmin32.ts_cmd = tsadmin.ts_cmd;
448 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
449 return (EFAULT);
450 }
451 #endif /* _SYSCALL32_IMPL */
452 break;
453
454 case TS_SETDPTBL:
455 /*
456 * We require that the requesting process has sufficient
457 * priveleges. We also require that the table supplied by
458 * the user exactly match the current ts_dptbl in size.
459 */
460 if (secpolicy_dispadm(reqpcredp) != 0)
461 return (EPERM);
462
463 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) {
464 return (EINVAL);
465 }
466
467 /*
468 * We read the user supplied table into a temporary buffer
469 * where it is validated before being copied over the
470 * ts_dptbl.
471 */
472 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP);
473 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp,
474 tsdpsz)) {
475 kmem_free(tmpdpp, tsdpsz);
476 return (EFAULT);
477 }
478 for (i = 0; i < tsadmin.ts_ndpents; i++) {
479
480 /*
481 * Validate the user supplied values. All we are doing
482 * here is verifying that the values are within their
483 * allowable ranges and will not panic the system. We
484 * make no attempt to ensure that the resulting
485 * configuration makes sense or results in reasonable
486 * performance.
487 */
488 if (tmpdpp[i].ts_quantum <= 0) {
489 kmem_free(tmpdpp, tsdpsz);
490 return (EINVAL);
491 }
492 if (tmpdpp[i].ts_tqexp > ts_maxumdpri ||
493 tmpdpp[i].ts_tqexp < 0) {
494 kmem_free(tmpdpp, tsdpsz);
495 return (EINVAL);
496 }
497 if (tmpdpp[i].ts_slpret > ts_maxumdpri ||
498 tmpdpp[i].ts_slpret < 0) {
499 kmem_free(tmpdpp, tsdpsz);
500 return (EINVAL);
501 }
502 if (tmpdpp[i].ts_maxwait < 0) {
503 kmem_free(tmpdpp, tsdpsz);
504 return (EINVAL);
505 }
506 if (tmpdpp[i].ts_lwait > ts_maxumdpri ||
507 tmpdpp[i].ts_lwait < 0) {
508 kmem_free(tmpdpp, tsdpsz);
509 return (EINVAL);
510 }
511 }
512
513 /*
514 * Copy the user supplied values over the current ts_dptbl
515 * values. The ts_globpri member is read-only so we don't
516 * overwrite it.
517 */
518 mutex_enter(&ts_dptblock);
519 for (i = 0; i < tsadmin.ts_ndpents; i++) {
520 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum;
521 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp;
522 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret;
523 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait;
524 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait;
525 }
526 mutex_exit(&ts_dptblock);
527 kmem_free(tmpdpp, tsdpsz);
528 break;
529
530 default:
531 return (EINVAL);
532 }
533 return (0);
534 }
535
536
537 /*
538 * Allocate a time-sharing class specific thread structure and
539 * initialize it with the parameters supplied. Also move the thread
540 * to specified time-sharing priority.
541 */
542 static int
ts_enterclass(kthread_t * t,id_t cid,void * parmsp,cred_t * reqpcredp,void * bufp)543 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
544 void *bufp)
545 {
546 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
547 tsproc_t *tspp;
548 pri_t reqtsuprilim;
549 pri_t reqtsupri;
550 static uint32_t tspexists = 0; /* set on first occurrence of */
551 /* a time-sharing process */
552
553 tspp = (tsproc_t *)bufp;
554 ASSERT(tspp != NULL);
555
556 /*
557 * Initialize the tsproc structure.
558 */
559 tspp->ts_cpupri = tsmedumdpri;
560 if (cid == ia_cid) {
561 /*
562 * Check to make sure caller is either privileged or the
563 * window system. When the window system is converted
564 * to using privileges, the second check can go away.
565 */
566 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
567 secpolicy_setpriority(reqpcredp) != 0)
568 return (EPERM);
569 /*
570 * Belongs to IA "class", so set appropriate flags.
571 * Mark as 'on' so it will not be a swap victim
572 * while forking.
573 */
574 tspp->ts_flags = TSIA | TSIASET;
575 tspp->ts_boost = ia_boost;
576 } else {
577 tspp->ts_flags = 0;
578 tspp->ts_boost = 0;
579 }
580
581 if (tsparmsp == NULL) {
582 /*
583 * Use default values.
584 */
585 tspp->ts_uprilim = tspp->ts_upri = 0;
586 tspp->ts_nice = NZERO;
587 } else {
588 /*
589 * Use supplied values.
590 */
591 if (tsparmsp->ts_uprilim == TS_NOCHANGE)
592 reqtsuprilim = 0;
593 else {
594 if (tsparmsp->ts_uprilim > 0 &&
595 secpolicy_setpriority(reqpcredp) != 0)
596 return (EPERM);
597 reqtsuprilim = tsparmsp->ts_uprilim;
598 }
599
600 if (tsparmsp->ts_upri == TS_NOCHANGE) {
601 reqtsupri = reqtsuprilim;
602 } else {
603 if (tsparmsp->ts_upri > 0 &&
604 secpolicy_setpriority(reqpcredp) != 0)
605 return (EPERM);
606 /*
607 * Set the user priority to the requested value
608 * or the upri limit, whichever is lower.
609 */
610 reqtsupri = tsparmsp->ts_upri;
611 if (reqtsupri > reqtsuprilim)
612 reqtsupri = reqtsuprilim;
613 }
614
615
616 tspp->ts_uprilim = reqtsuprilim;
617 tspp->ts_upri = reqtsupri;
618 tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri;
619 }
620 TS_NEWUMDPRI(tspp);
621
622 tspp->ts_dispwait = 0;
623 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
624 tspp->ts_tp = t;
625 cpucaps_sc_init(&tspp->ts_caps);
626
627 /*
628 * Reset priority. Process goes to a "user mode" priority
629 * here regardless of whether or not it has slept since
630 * entering the kernel.
631 */
632 thread_lock(t); /* get dispatcher lock on thread */
633 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
634 t->t_cid = cid;
635 t->t_cldata = (void *)tspp;
636 t->t_schedflag &= ~TS_RUNQMATCH;
637 ts_change_priority(t, tspp);
638 thread_unlock(t);
639
640 /*
641 * Link new structure into tsproc list.
642 */
643 TS_LIST_INSERT(tspp);
644
645 /*
646 * If this is the first time-sharing thread to occur since
647 * boot we set up the initial call to ts_update() here.
648 * Use an atomic compare-and-swap since that's easier and
649 * faster than a mutex (but check with an ordinary load first
650 * since most of the time this will already be done).
651 */
652 if (tspexists == 0 && atomic_cas_32(&tspexists, 0, 1) == 0)
653 (void) timeout(ts_update, NULL, hz);
654
655 return (0);
656 }
657
658
659 /*
660 * Free tsproc structure of thread.
661 */
662 static void
ts_exitclass(void * procp)663 ts_exitclass(void *procp)
664 {
665 tsproc_t *tspp = (tsproc_t *)procp;
666
667 /* Remove tsproc_t structure from list */
668 TS_LIST_DELETE(tspp);
669 kmem_free(tspp, sizeof (tsproc_t));
670 }
671
672 /* ARGSUSED */
673 static int
ts_canexit(kthread_t * t,cred_t * cred)674 ts_canexit(kthread_t *t, cred_t *cred)
675 {
676 /*
677 * A thread can always leave a TS/IA class
678 */
679 return (0);
680 }
681
682 static int
ts_fork(kthread_t * t,kthread_t * ct,void * bufp)683 ts_fork(kthread_t *t, kthread_t *ct, void *bufp)
684 {
685 tsproc_t *ptspp; /* ptr to parent's tsproc structure */
686 tsproc_t *ctspp; /* ptr to child's tsproc structure */
687
688 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
689
690 ctspp = (tsproc_t *)bufp;
691 ASSERT(ctspp != NULL);
692 ptspp = (tsproc_t *)t->t_cldata;
693 /*
694 * Initialize child's tsproc structure.
695 */
696 thread_lock(t);
697 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum;
698 ctspp->ts_cpupri = ptspp->ts_cpupri;
699 ctspp->ts_boost = ptspp->ts_boost;
700 ctspp->ts_uprilim = ptspp->ts_uprilim;
701 ctspp->ts_upri = ptspp->ts_upri;
702 TS_NEWUMDPRI(ctspp);
703 ctspp->ts_nice = ptspp->ts_nice;
704 ctspp->ts_dispwait = 0;
705 ctspp->ts_flags = ptspp->ts_flags & ~(TSBACKQ | TSRESTORE);
706 ctspp->ts_tp = ct;
707 cpucaps_sc_init(&ctspp->ts_caps);
708 thread_unlock(t);
709
710 /*
711 * Link new structure into tsproc list.
712 */
713 ct->t_cldata = (void *)ctspp;
714 TS_LIST_INSERT(ctspp);
715 return (0);
716 }
717
718
719 /*
720 * Child is placed at back of dispatcher queue and parent gives
721 * up processor so that the child runs first after the fork.
722 * This allows the child immediately execing to break the multiple
723 * use of copy on write pages with no disk home. The parent will
724 * get to steal them back rather than uselessly copying them.
725 */
726 static void
ts_forkret(kthread_t * t,kthread_t * ct)727 ts_forkret(kthread_t *t, kthread_t *ct)
728 {
729 proc_t *pp = ttoproc(t);
730 proc_t *cp = ttoproc(ct);
731 tsproc_t *tspp;
732
733 ASSERT(t == curthread);
734 ASSERT(MUTEX_HELD(&pidlock));
735
736 /*
737 * Grab the child's p_lock before dropping pidlock to ensure
738 * the process does not disappear before we set it running.
739 */
740 mutex_enter(&cp->p_lock);
741 continuelwps(cp);
742 mutex_exit(&cp->p_lock);
743
744 mutex_enter(&pp->p_lock);
745 mutex_exit(&pidlock);
746 continuelwps(pp);
747
748 thread_lock(t);
749 tspp = (tsproc_t *)(t->t_cldata);
750 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
751 TS_NEWUMDPRI(tspp);
752 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
753 tspp->ts_dispwait = 0;
754 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
755 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
756 THREAD_TRANSITION(t);
757 ts_setrun(t);
758 thread_unlock(t);
759 /*
760 * Safe to drop p_lock now since since it is safe to change
761 * the scheduling class after this point.
762 */
763 mutex_exit(&pp->p_lock);
764
765 swtch();
766 }
767
768
769 /*
770 * Get information about the time-sharing class into the buffer
771 * pointed to by tsinfop. The maximum configured user priority
772 * is the only information we supply. ts_getclinfo() is called
773 * for TS threads, and ia_getclinfo() is called for IA threads.
774 */
775 static int
ts_getclinfo(void * infop)776 ts_getclinfo(void *infop)
777 {
778 tsinfo_t *tsinfop = (tsinfo_t *)infop;
779 tsinfop->ts_maxupri = ts_maxupri;
780 return (0);
781 }
782
783 static int
ia_getclinfo(void * infop)784 ia_getclinfo(void *infop)
785 {
786 iainfo_t *iainfop = (iainfo_t *)infop;
787 iainfop->ia_maxupri = ia_maxupri;
788 return (0);
789 }
790
791
792 /*
793 * Return the user mode scheduling priority range.
794 */
795 static int
ts_getclpri(pcpri_t * pcprip)796 ts_getclpri(pcpri_t *pcprip)
797 {
798 pcprip->pc_clpmax = ts_maxupri;
799 pcprip->pc_clpmin = -ts_maxupri;
800 return (0);
801 }
802
803
804 static int
ia_getclpri(pcpri_t * pcprip)805 ia_getclpri(pcpri_t *pcprip)
806 {
807 pcprip->pc_clpmax = ia_maxupri;
808 pcprip->pc_clpmin = -ia_maxupri;
809 return (0);
810 }
811
812
813 static void
ts_nullsys()814 ts_nullsys()
815 {}
816
817
818 /*
819 * Get the time-sharing parameters of the thread pointed to by
820 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget()
821 * is called for TS threads, and ia_parmsget() is called for IA
822 * threads.
823 */
824 static void
ts_parmsget(kthread_t * t,void * parmsp)825 ts_parmsget(kthread_t *t, void *parmsp)
826 {
827 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
828 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
829
830 tsparmsp->ts_uprilim = tspp->ts_uprilim;
831 tsparmsp->ts_upri = tspp->ts_upri;
832 }
833
834 static void
ia_parmsget(kthread_t * t,void * parmsp)835 ia_parmsget(kthread_t *t, void *parmsp)
836 {
837 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
838 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
839
840 iaparmsp->ia_uprilim = tspp->ts_uprilim;
841 iaparmsp->ia_upri = tspp->ts_upri;
842 if (tspp->ts_flags & TSIASET)
843 iaparmsp->ia_mode = IA_SET_INTERACTIVE;
844 else
845 iaparmsp->ia_mode = IA_INTERACTIVE_OFF;
846 }
847
848
849 /*
850 * Check the validity of the time-sharing parameters in the buffer
851 * pointed to by tsparmsp.
852 * ts_parmsin() is called for TS threads, and ia_parmsin() is called
853 * for IA threads.
854 */
855 static int
ts_parmsin(void * parmsp)856 ts_parmsin(void *parmsp)
857 {
858 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
859 /*
860 * Check validity of parameters.
861 */
862 if ((tsparmsp->ts_uprilim > ts_maxupri ||
863 tsparmsp->ts_uprilim < -ts_maxupri) &&
864 tsparmsp->ts_uprilim != TS_NOCHANGE)
865 return (EINVAL);
866
867 if ((tsparmsp->ts_upri > ts_maxupri ||
868 tsparmsp->ts_upri < -ts_maxupri) &&
869 tsparmsp->ts_upri != TS_NOCHANGE)
870 return (EINVAL);
871
872 return (0);
873 }
874
875 static int
ia_parmsin(void * parmsp)876 ia_parmsin(void *parmsp)
877 {
878 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
879
880 if ((iaparmsp->ia_uprilim > ia_maxupri ||
881 iaparmsp->ia_uprilim < -ia_maxupri) &&
882 iaparmsp->ia_uprilim != IA_NOCHANGE) {
883 return (EINVAL);
884 }
885
886 if ((iaparmsp->ia_upri > ia_maxupri ||
887 iaparmsp->ia_upri < -ia_maxupri) &&
888 iaparmsp->ia_upri != IA_NOCHANGE) {
889 return (EINVAL);
890 }
891
892 return (0);
893 }
894
895
896 /*
897 * Check the validity of the time-sharing parameters in the pc_vaparms_t
898 * structure vaparmsp and put them in the buffer pointed to by tsparmsp.
899 * pc_vaparms_t contains (key, value) pairs of parameter.
900 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called
901 * for IA threads. ts_vaparmsin() is the variable parameter version of
902 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of
903 * ia_parmsin().
904 */
905 static int
ts_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)906 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
907 {
908 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
909 int priflag = 0;
910 int limflag = 0;
911 uint_t cnt;
912 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
913
914
915 /*
916 * TS_NOCHANGE (-32768) is outside of the range of values for
917 * ts_uprilim and ts_upri. If the structure tsparms_t is changed,
918 * TS_NOCHANGE should be replaced by a flag word (in the same manner
919 * as in rt.c).
920 */
921 tsparmsp->ts_uprilim = TS_NOCHANGE;
922 tsparmsp->ts_upri = TS_NOCHANGE;
923
924 /*
925 * Get the varargs parameter and check validity of parameters.
926 */
927 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
928 return (EINVAL);
929
930 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
931
932 switch (vpp->pc_key) {
933 case TS_KY_UPRILIM:
934 if (limflag++)
935 return (EINVAL);
936 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm;
937 if (tsparmsp->ts_uprilim > ts_maxupri ||
938 tsparmsp->ts_uprilim < -ts_maxupri)
939 return (EINVAL);
940 break;
941
942 case TS_KY_UPRI:
943 if (priflag++)
944 return (EINVAL);
945 tsparmsp->ts_upri = (pri_t)vpp->pc_parm;
946 if (tsparmsp->ts_upri > ts_maxupri ||
947 tsparmsp->ts_upri < -ts_maxupri)
948 return (EINVAL);
949 break;
950
951 default:
952 return (EINVAL);
953 }
954 }
955
956 if (vaparmsp->pc_vaparmscnt == 0) {
957 /*
958 * Use default parameters.
959 */
960 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0;
961 }
962
963 return (0);
964 }
965
966 static int
ia_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)967 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
968 {
969 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
970 int priflag = 0;
971 int limflag = 0;
972 int mflag = 0;
973 uint_t cnt;
974 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
975
976 /*
977 * IA_NOCHANGE (-32768) is outside of the range of values for
978 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is
979 * changed, IA_NOCHANGE should be replaced by a flag word (in the
980 * same manner as in rt.c).
981 */
982 iaparmsp->ia_uprilim = IA_NOCHANGE;
983 iaparmsp->ia_upri = IA_NOCHANGE;
984 iaparmsp->ia_mode = IA_NOCHANGE;
985
986 /*
987 * Get the varargs parameter and check validity of parameters.
988 */
989 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
990 return (EINVAL);
991
992 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
993
994 switch (vpp->pc_key) {
995 case IA_KY_UPRILIM:
996 if (limflag++)
997 return (EINVAL);
998 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm;
999 if (iaparmsp->ia_uprilim > ia_maxupri ||
1000 iaparmsp->ia_uprilim < -ia_maxupri)
1001 return (EINVAL);
1002 break;
1003
1004 case IA_KY_UPRI:
1005 if (priflag++)
1006 return (EINVAL);
1007 iaparmsp->ia_upri = (pri_t)vpp->pc_parm;
1008 if (iaparmsp->ia_upri > ia_maxupri ||
1009 iaparmsp->ia_upri < -ia_maxupri)
1010 return (EINVAL);
1011 break;
1012
1013 case IA_KY_MODE:
1014 if (mflag++)
1015 return (EINVAL);
1016 iaparmsp->ia_mode = (int)vpp->pc_parm;
1017 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE &&
1018 iaparmsp->ia_mode != IA_INTERACTIVE_OFF)
1019 return (EINVAL);
1020 break;
1021
1022 default:
1023 return (EINVAL);
1024 }
1025 }
1026
1027 if (vaparmsp->pc_vaparmscnt == 0) {
1028 /*
1029 * Use default parameters.
1030 */
1031 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0;
1032 iaparmsp->ia_mode = IA_SET_INTERACTIVE;
1033 }
1034
1035 return (0);
1036 }
1037
1038 /*
1039 * Nothing to do here but return success.
1040 */
1041 /* ARGSUSED */
1042 static int
ts_parmsout(void * parmsp,pc_vaparms_t * vaparmsp)1043 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1044 {
1045 return (0);
1046 }
1047
1048
1049 /*
1050 * Copy all selected time-sharing class parameters to the user.
1051 * The parameters are specified by a key.
1052 */
1053 static int
ts_vaparmsout(void * prmsp,pc_vaparms_t * vaparmsp)1054 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1055 {
1056 tsparms_t *tsprmsp = (tsparms_t *)prmsp;
1057 int priflag = 0;
1058 int limflag = 0;
1059 uint_t cnt;
1060 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1061
1062 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1063
1064 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1065 return (EINVAL);
1066
1067 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1068
1069 switch (vpp->pc_key) {
1070 case TS_KY_UPRILIM:
1071 if (limflag++)
1072 return (EINVAL);
1073 if (copyout(&tsprmsp->ts_uprilim,
1074 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1075 return (EFAULT);
1076 break;
1077
1078 case TS_KY_UPRI:
1079 if (priflag++)
1080 return (EINVAL);
1081 if (copyout(&tsprmsp->ts_upri,
1082 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1083 return (EFAULT);
1084 break;
1085
1086 default:
1087 return (EINVAL);
1088 }
1089 }
1090
1091 return (0);
1092 }
1093
1094
1095 /*
1096 * Copy all selected interactive class parameters to the user.
1097 * The parameters are specified by a key.
1098 */
1099 static int
ia_vaparmsout(void * prmsp,pc_vaparms_t * vaparmsp)1100 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1101 {
1102 iaparms_t *iaprmsp = (iaparms_t *)prmsp;
1103 int priflag = 0;
1104 int limflag = 0;
1105 int mflag = 0;
1106 uint_t cnt;
1107 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1108
1109 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1110
1111 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1112 return (EINVAL);
1113
1114 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1115
1116 switch (vpp->pc_key) {
1117 case IA_KY_UPRILIM:
1118 if (limflag++)
1119 return (EINVAL);
1120 if (copyout(&iaprmsp->ia_uprilim,
1121 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1122 return (EFAULT);
1123 break;
1124
1125 case IA_KY_UPRI:
1126 if (priflag++)
1127 return (EINVAL);
1128 if (copyout(&iaprmsp->ia_upri,
1129 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1130 return (EFAULT);
1131 break;
1132
1133 case IA_KY_MODE:
1134 if (mflag++)
1135 return (EINVAL);
1136 if (copyout(&iaprmsp->ia_mode,
1137 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int)))
1138 return (EFAULT);
1139 break;
1140
1141 default:
1142 return (EINVAL);
1143 }
1144 }
1145 return (0);
1146 }
1147
1148
1149 /*
1150 * Set the scheduling parameters of the thread pointed to by tsprocp
1151 * to those specified in the buffer pointed to by tsparmsp.
1152 * ts_parmsset() is called for TS threads, and ia_parmsset() is
1153 * called for IA threads.
1154 */
1155 /* ARGSUSED */
1156 static int
ts_parmsset(kthread_t * tx,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1157 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1158 {
1159 char nice;
1160 pri_t reqtsuprilim;
1161 pri_t reqtsupri;
1162 tsparms_t *tsparmsp = (tsparms_t *)parmsp;
1163 tsproc_t *tspp = (tsproc_t *)tx->t_cldata;
1164
1165 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1166
1167 if (tsparmsp->ts_uprilim == TS_NOCHANGE)
1168 reqtsuprilim = tspp->ts_uprilim;
1169 else
1170 reqtsuprilim = tsparmsp->ts_uprilim;
1171
1172 if (tsparmsp->ts_upri == TS_NOCHANGE)
1173 reqtsupri = tspp->ts_upri;
1174 else
1175 reqtsupri = tsparmsp->ts_upri;
1176
1177 /*
1178 * Make sure the user priority doesn't exceed the upri limit.
1179 */
1180 if (reqtsupri > reqtsuprilim)
1181 reqtsupri = reqtsuprilim;
1182
1183 /*
1184 * Basic permissions enforced by generic kernel code
1185 * for all classes require that a thread attempting
1186 * to change the scheduling parameters of a target
1187 * thread be privileged or have a real or effective
1188 * UID matching that of the target thread. We are not
1189 * called unless these basic permission checks have
1190 * already passed. The time-sharing class requires in
1191 * addition that the calling thread be privileged if it
1192 * is attempting to raise the upri limit above its current
1193 * value This may have been checked previously but if our
1194 * caller passed us a non-NULL credential pointer we assume
1195 * it hasn't and we check it here.
1196 */
1197 if (reqpcredp != NULL &&
1198 reqtsuprilim > tspp->ts_uprilim &&
1199 secpolicy_raisepriority(reqpcredp) != 0)
1200 return (EPERM);
1201
1202 /*
1203 * Set ts_nice to the nice value corresponding to the user
1204 * priority we are setting. Note that setting the nice field
1205 * of the parameter struct won't affect upri or nice.
1206 */
1207 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri;
1208 if (nice >= 2 * NZERO)
1209 nice = 2 * NZERO - 1;
1210
1211 thread_lock(tx);
1212
1213 tspp->ts_uprilim = reqtsuprilim;
1214 tspp->ts_upri = reqtsupri;
1215 TS_NEWUMDPRI(tspp);
1216 tspp->ts_nice = nice;
1217
1218 tspp->ts_dispwait = 0;
1219 ts_change_priority(tx, tspp);
1220 thread_unlock(tx);
1221 return (0);
1222 }
1223
1224
1225 static int
ia_parmsset(kthread_t * tx,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1226 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1227 {
1228 tsproc_t *tspp = (tsproc_t *)tx->t_cldata;
1229 iaparms_t *iaparmsp = (iaparms_t *)parmsp;
1230 proc_t *p;
1231 pid_t pid, pgid, sid;
1232 pid_t on, off;
1233 struct stdata *stp;
1234 int sess_held;
1235
1236 /*
1237 * Handle user priority changes
1238 */
1239 if (iaparmsp->ia_mode == IA_NOCHANGE)
1240 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1241
1242 /*
1243 * Check permissions for changing modes.
1244 */
1245
1246 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
1247 secpolicy_raisepriority(reqpcredp) != 0) {
1248 /*
1249 * Silently fail in case this is just a priocntl
1250 * call with upri and uprilim set to IA_NOCHANGE.
1251 */
1252 return (0);
1253 }
1254
1255 ASSERT(MUTEX_HELD(&pidlock));
1256 if ((p = ttoproc(tx)) == NULL) {
1257 return (0);
1258 }
1259 ASSERT(MUTEX_HELD(&p->p_lock));
1260 if (p->p_stat == SIDL) {
1261 return (0);
1262 }
1263 pid = p->p_pid;
1264 sid = p->p_sessp->s_sid;
1265 pgid = p->p_pgrp;
1266 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1267 /*
1268 * session leaders must be turned on now so all processes
1269 * in the group controlling the tty will be turned on or off.
1270 * if the ia_mode is off for the session leader,
1271 * ia_set_process_group will return without setting the
1272 * processes in the group controlling the tty on.
1273 */
1274 thread_lock(tx);
1275 tspp->ts_flags |= TSIASET;
1276 thread_unlock(tx);
1277 }
1278 mutex_enter(&p->p_sessp->s_lock);
1279 sess_held = 1;
1280 if ((pid == sid) && (p->p_sessp->s_vp != NULL) &&
1281 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) {
1282 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) {
1283 pgid = stp->sd_pgidp->pid_id;
1284 sess_held = 0;
1285 mutex_exit(&p->p_sessp->s_lock);
1286 if (iaparmsp->ia_mode ==
1287 IA_SET_INTERACTIVE) {
1288 off = 0;
1289 on = pgid;
1290 } else {
1291 off = pgid;
1292 on = 0;
1293 }
1294 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN,
1295 "active chain:pid %d gid %d %p",
1296 pid, pgid, p);
1297 ia_set_process_group(sid, off, on);
1298 }
1299 }
1300 if (sess_held)
1301 mutex_exit(&p->p_sessp->s_lock);
1302
1303 thread_lock(tx);
1304
1305 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1306 tspp->ts_flags |= TSIASET;
1307 tspp->ts_boost = ia_boost;
1308 } else {
1309 tspp->ts_flags &= ~TSIASET;
1310 tspp->ts_boost = -ia_boost;
1311 }
1312 thread_unlock(tx);
1313
1314 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1315 }
1316
1317 static void
ts_exit(kthread_t * t)1318 ts_exit(kthread_t *t)
1319 {
1320 tsproc_t *tspp;
1321
1322 if (CPUCAPS_ON()) {
1323 /*
1324 * A thread could be exiting in between clock ticks,
1325 * so we need to calculate how much CPU time it used
1326 * since it was charged last time.
1327 *
1328 * CPU caps are not enforced on exiting processes - it is
1329 * usually desirable to exit as soon as possible to free
1330 * resources.
1331 */
1332 thread_lock(t);
1333 tspp = (tsproc_t *)t->t_cldata;
1334 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY);
1335 thread_unlock(t);
1336 }
1337 }
1338
1339 /*
1340 * Return the global scheduling priority that would be assigned
1341 * to a thread entering the time-sharing class with the ts_upri.
1342 */
1343 static pri_t
ts_globpri(kthread_t * t)1344 ts_globpri(kthread_t *t)
1345 {
1346 tsproc_t *tspp;
1347 pri_t tspri;
1348
1349 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1350 tspp = (tsproc_t *)t->t_cldata;
1351 tspri = tsmedumdpri + tspp->ts_upri;
1352 if (tspri > ts_maxumdpri)
1353 tspri = ts_maxumdpri;
1354 else if (tspri < 0)
1355 tspri = 0;
1356 return (ts_dptbl[tspri].ts_globpri);
1357 }
1358
1359 /*
1360 * Arrange for thread to be placed in appropriate location
1361 * on dispatcher queue.
1362 *
1363 * This is called with the current thread in TS_ONPROC and locked.
1364 */
1365 static void
ts_preempt(kthread_t * t)1366 ts_preempt(kthread_t *t)
1367 {
1368 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1369 klwp_t *lwp = ttolwp(t);
1370 pri_t oldpri = t->t_pri;
1371
1372 ASSERT(t == curthread);
1373 ASSERT(THREAD_LOCK_HELD(curthread));
1374
1375 /*
1376 * This thread may be placed on wait queue by CPU Caps. In this case we
1377 * do not need to do anything until it is removed from the wait queue.
1378 */
1379 if (CPUCAPS_ON()) {
1380 (void) cpucaps_charge(t, &tspp->ts_caps,
1381 CPUCAPS_CHARGE_ENFORCE);
1382 if (CPUCAPS_ENFORCE(t))
1383 return;
1384 }
1385
1386 /*
1387 * If thread got preempted in the user-land then we know
1388 * it isn't holding any locks. Mark it as swappable.
1389 */
1390 ASSERT(t->t_schedflag & TS_DONT_SWAP);
1391 if (lwp != NULL && lwp->lwp_state == LWP_USER)
1392 t->t_schedflag &= ~TS_DONT_SWAP;
1393
1394 /*
1395 * Check to see if we're doing "preemption control" here. If
1396 * we are, and if the user has requested that this thread not
1397 * be preempted, and if preemptions haven't been put off for
1398 * too long, let the preemption happen here but try to make
1399 * sure the thread is rescheduled as soon as possible. We do
1400 * this by putting it on the front of the highest priority run
1401 * queue in the TS class. If the preemption has been put off
1402 * for too long, clear the "nopreempt" bit and let the thread
1403 * be preempted.
1404 */
1405 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1406 if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1407 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1408 /*
1409 * If not already remembered, remember current
1410 * priority for restoration in ts_yield().
1411 */
1412 if (!(tspp->ts_flags & TSRESTORE)) {
1413 tspp->ts_scpri = t->t_pri;
1414 tspp->ts_flags |= TSRESTORE;
1415 }
1416 THREAD_CHANGE_PRI(t, ts_maxumdpri);
1417 t->t_schedflag |= TS_DONT_SWAP;
1418 schedctl_set_yield(t, 1);
1419 setfrontdq(t);
1420 goto done;
1421 } else {
1422 if (tspp->ts_flags & TSRESTORE) {
1423 THREAD_CHANGE_PRI(t, tspp->ts_scpri);
1424 tspp->ts_flags &= ~TSRESTORE;
1425 }
1426 schedctl_set_nopreempt(t, 0);
1427 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1428 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt",
1429 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1430 tnf_lwpid, lwpid, t->t_tid);
1431 /*
1432 * Fall through and be preempted below.
1433 */
1434 }
1435 }
1436
1437 if ((tspp->ts_flags & TSBACKQ) != 0) {
1438 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1439 tspp->ts_dispwait = 0;
1440 tspp->ts_flags &= ~TSBACKQ;
1441 setbackdq(t);
1442 } else {
1443 setfrontdq(t);
1444 }
1445
1446 done:
1447 TRACE_2(TR_FAC_DISP, TR_PREEMPT,
1448 "preempt:tid %p old pri %d", t, oldpri);
1449 }
1450
1451 static void
ts_setrun(kthread_t * t)1452 ts_setrun(kthread_t *t)
1453 {
1454 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1455
1456 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
1457
1458 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1459 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1460 TS_NEWUMDPRI(tspp);
1461 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1462 tspp->ts_dispwait = 0;
1463 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1464 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1465 }
1466
1467 tspp->ts_flags &= ~TSBACKQ;
1468
1469 if (tspp->ts_flags & TSIA) {
1470 if (tspp->ts_flags & TSIASET)
1471 setfrontdq(t);
1472 else
1473 setbackdq(t);
1474 } else {
1475 if (t->t_disp_time != ddi_get_lbolt())
1476 setbackdq(t);
1477 else
1478 setfrontdq(t);
1479 }
1480 }
1481
1482
1483 /*
1484 * Prepare thread for sleep.
1485 */
1486 static void
ts_sleep(kthread_t * t)1487 ts_sleep(kthread_t *t)
1488 {
1489 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1490 pri_t old_pri = t->t_pri;
1491
1492 ASSERT(t == curthread);
1493 ASSERT(THREAD_LOCK_HELD(t));
1494
1495 /*
1496 * Account for time spent on CPU before going to sleep.
1497 */
1498 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
1499
1500 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1501 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1502 TS_NEWUMDPRI(tspp);
1503 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1504 tspp->ts_dispwait = 0;
1505
1506 THREAD_CHANGE_PRI(curthread,
1507 ts_dptbl[tspp->ts_umdpri].ts_globpri);
1508 ASSERT(curthread->t_pri >= 0 &&
1509 curthread->t_pri <= ts_maxglobpri);
1510
1511 if (DISP_MUST_SURRENDER(curthread))
1512 cpu_surrender(curthread);
1513 }
1514 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1515 TRACE_2(TR_FAC_DISP, TR_SLEEP,
1516 "sleep:tid %p old pri %d", t, old_pri);
1517 }
1518
1519
1520 /*
1521 * Return Values:
1522 *
1523 * -1 if the thread is loaded or is not eligible to be swapped in.
1524 *
1525 * effective priority of the specified thread based on swapout time
1526 * and size of process (epri >= 0 , epri <= SHRT_MAX).
1527 */
1528 /* ARGSUSED */
1529 static pri_t
ts_swapin(kthread_t * t,int flags)1530 ts_swapin(kthread_t *t, int flags)
1531 {
1532 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1533 long epri = -1;
1534 proc_t *pp = ttoproc(t);
1535
1536 ASSERT(THREAD_LOCK_HELD(t));
1537
1538 /*
1539 * We know that pri_t is a short.
1540 * Be sure not to overrun its range.
1541 */
1542 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1543 time_t swapout_time;
1544
1545 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
1546 if (INHERITED(t) || (tspp->ts_flags & TSIASET)) {
1547 epri = (long)DISP_PRIO(t) + swapout_time;
1548 } else {
1549 /*
1550 * Threads which have been out for a long time,
1551 * have high user mode priority and are associated
1552 * with a small address space are more deserving
1553 */
1554 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1555 ASSERT(epri >= 0 && epri <= ts_maxumdpri);
1556 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
1557 }
1558 /*
1559 * Scale epri so SHRT_MAX/2 represents zero priority.
1560 */
1561 epri += SHRT_MAX/2;
1562 if (epri < 0)
1563 epri = 0;
1564 else if (epri > SHRT_MAX)
1565 epri = SHRT_MAX;
1566 }
1567 return ((pri_t)epri);
1568 }
1569
1570 /*
1571 * Return Values
1572 * -1 if the thread isn't loaded or is not eligible to be swapped out.
1573 *
1574 * effective priority of the specified thread based on if the swapper
1575 * is in softswap or hardswap mode.
1576 *
1577 * Softswap: Return a low effective priority for threads
1578 * sleeping for more than maxslp secs.
1579 *
1580 * Hardswap: Return an effective priority such that threads
1581 * which have been in memory for a while and are
1582 * associated with a small address space are swapped
1583 * in before others.
1584 *
1585 * (epri >= 0 , epri <= SHRT_MAX).
1586 */
1587 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */
1588 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */
1589
1590 static pri_t
ts_swapout(kthread_t * t,int flags)1591 ts_swapout(kthread_t *t, int flags)
1592 {
1593 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1594 long epri = -1;
1595 proc_t *pp = ttoproc(t);
1596 time_t swapin_time;
1597
1598 ASSERT(THREAD_LOCK_HELD(t));
1599
1600 if (INHERITED(t) || (tspp->ts_flags & TSIASET) ||
1601 (t->t_proc_flag & TP_LWPEXIT) ||
1602 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED |
1603 TS_ONPROC | TS_WAIT)) ||
1604 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t))
1605 return (-1);
1606
1607 ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
1608
1609 /*
1610 * We know that pri_t is a short.
1611 * Be sure not to overrun its range.
1612 */
1613 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
1614 if (flags == SOFTSWAP) {
1615 if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
1616 epri = 0;
1617 } else {
1618 return ((pri_t)epri);
1619 }
1620 } else {
1621 pri_t pri;
1622
1623 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) ||
1624 (t->t_state == TS_RUN && swapin_time > ts_minrun)) {
1625 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1626 ASSERT(pri >= 0 && pri <= ts_maxumdpri);
1627 epri = swapin_time -
1628 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
1629 } else {
1630 return ((pri_t)epri);
1631 }
1632 }
1633
1634 /*
1635 * Scale epri so SHRT_MAX/2 represents zero priority.
1636 */
1637 epri += SHRT_MAX/2;
1638 if (epri < 0)
1639 epri = 0;
1640 else if (epri > SHRT_MAX)
1641 epri = SHRT_MAX;
1642
1643 return ((pri_t)epri);
1644 }
1645
1646 /*
1647 * Check for time slice expiration. If time slice has expired
1648 * move thread to priority specified in tsdptbl for time slice expiration
1649 * and set runrun to cause preemption.
1650 */
1651 static void
ts_tick(kthread_t * t)1652 ts_tick(kthread_t *t)
1653 {
1654 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1655 klwp_t *lwp;
1656 boolean_t call_cpu_surrender = B_FALSE;
1657 pri_t oldpri = t->t_pri;
1658
1659 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1660
1661 thread_lock(t);
1662
1663 /*
1664 * Keep track of thread's project CPU usage. Note that projects
1665 * get charged even when threads are running in the kernel.
1666 */
1667 if (CPUCAPS_ON()) {
1668 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps,
1669 CPUCAPS_CHARGE_ENFORCE);
1670 }
1671
1672 if (--tspp->ts_timeleft <= 0) {
1673 pri_t new_pri;
1674
1675 /*
1676 * If we're doing preemption control and trying to avoid
1677 * preempting this thread, just note that the thread should
1678 * yield soon and let it keep running (unless it's been a
1679 * while).
1680 */
1681 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1682 if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1683 DTRACE_SCHED1(schedctl__nopreempt,
1684 kthread_t *, t);
1685 schedctl_set_yield(t, 1);
1686 thread_unlock_nopreempt(t);
1687 return;
1688 }
1689
1690 TNF_PROBE_2(schedctl_failsafe,
1691 "schedctl TS ts_tick", /* CSTYLED */,
1692 tnf_pid, pid, ttoproc(t)->p_pid,
1693 tnf_lwpid, lwpid, t->t_tid);
1694 }
1695 tspp->ts_flags &= ~TSRESTORE;
1696 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
1697 TS_NEWUMDPRI(tspp);
1698 tspp->ts_dispwait = 0;
1699 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1700 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
1701 /*
1702 * When the priority of a thread is changed, it may be
1703 * necessary to adjust its position on a sleep queue or
1704 * dispatch queue. The function thread_change_pri accomplishes
1705 * this.
1706 */
1707 if (thread_change_pri(t, new_pri, 0)) {
1708 if ((t->t_schedflag & TS_LOAD) &&
1709 (lwp = t->t_lwp) &&
1710 lwp->lwp_state == LWP_USER)
1711 t->t_schedflag &= ~TS_DONT_SWAP;
1712 tspp->ts_timeleft =
1713 ts_dptbl[tspp->ts_cpupri].ts_quantum;
1714 } else {
1715 call_cpu_surrender = B_TRUE;
1716 }
1717 TRACE_2(TR_FAC_DISP, TR_TICK,
1718 "tick:tid %p old pri %d", t, oldpri);
1719 } else if (t->t_state == TS_ONPROC &&
1720 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1721 call_cpu_surrender = B_TRUE;
1722 }
1723
1724 if (call_cpu_surrender) {
1725 tspp->ts_flags |= TSBACKQ;
1726 cpu_surrender(t);
1727 }
1728
1729 thread_unlock_nopreempt(t); /* clock thread can't be preempted */
1730 }
1731
1732
1733 /*
1734 * If we are lowering the thread's priority below that of other runnable
1735 * threads we will normally set runrun via cpu_surrender() to cause preemption.
1736 */
1737 static void
ts_trapret(kthread_t * t)1738 ts_trapret(kthread_t *t)
1739 {
1740 tsproc_t *tspp = (tsproc_t *)t->t_cldata;
1741 cpu_t *cp = CPU;
1742 pri_t old_pri = curthread->t_pri;
1743
1744 ASSERT(THREAD_LOCK_HELD(t));
1745 ASSERT(t == curthread);
1746 ASSERT(cp->cpu_dispthread == t);
1747 ASSERT(t->t_state == TS_ONPROC);
1748
1749 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1750 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1751 TS_NEWUMDPRI(tspp);
1752 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1753 tspp->ts_dispwait = 0;
1754
1755 /*
1756 * If thread has blocked in the kernel (as opposed to
1757 * being merely preempted), recompute the user mode priority.
1758 */
1759 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1760 cp->cpu_dispatch_pri = DISP_PRIO(t);
1761 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1762
1763 if (DISP_MUST_SURRENDER(t))
1764 cpu_surrender(t);
1765 }
1766
1767 /*
1768 * Swapout lwp if the swapper is waiting for this thread to reach a
1769 * safe point.
1770 */
1771 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) {
1772 thread_unlock(t);
1773 swapout_lwp(ttolwp(t));
1774 thread_lock(t);
1775 }
1776
1777 TRACE_2(TR_FAC_DISP, TR_TRAPRET,
1778 "trapret:tid %p old pri %d", t, old_pri);
1779 }
1780
1781
1782 /*
1783 * Update the ts_dispwait values of all time sharing threads that
1784 * are currently runnable at a user mode priority and bump the priority
1785 * if ts_dispwait exceeds ts_maxwait. Called once per second via
1786 * timeout which we reset here.
1787 *
1788 * There are several lists of time sharing threads broken up by a hash on
1789 * the thread pointer. Each list has its own lock. This avoids blocking
1790 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update
1791 * runs. ts_update traverses each list in turn.
1792 *
1793 * If multiple threads have their priorities updated to the same value,
1794 * the system implicitly favors the one that is updated first (since it
1795 * winds up first on the run queue). To avoid this unfairness, the
1796 * traversal of threads starts at the list indicated by a marker. When
1797 * threads in more than one list have their priorities updated, the marker
1798 * is moved. This changes the order the threads will be placed on the run
1799 * queue the next time ts_update is called and preserves fairness over the
1800 * long run. The marker doesn't need to be protected by a lock since it's
1801 * only accessed by ts_update, which is inherently single-threaded (only
1802 * one instance can be running at a time).
1803 */
1804 static void
ts_update(void * arg)1805 ts_update(void *arg)
1806 {
1807 int i;
1808 int new_marker = -1;
1809 static int ts_update_marker;
1810
1811 /*
1812 * Start with the ts_update_marker list, then do the rest.
1813 */
1814 i = ts_update_marker;
1815 do {
1816 /*
1817 * If this is the first list after the current marker to
1818 * have threads with priorities updated, advance the marker
1819 * to this list for the next time ts_update runs.
1820 */
1821 if (ts_update_list(i) && new_marker == -1 &&
1822 i != ts_update_marker) {
1823 new_marker = i;
1824 }
1825 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker);
1826
1827 /* advance marker for next ts_update call */
1828 if (new_marker != -1)
1829 ts_update_marker = new_marker;
1830
1831 (void) timeout(ts_update, arg, hz);
1832 }
1833
1834 /*
1835 * Updates priority for a list of threads. Returns 1 if the priority of
1836 * one of the threads was actually updated, 0 if none were for various
1837 * reasons (thread is no longer in the TS or IA class, isn't runnable,
1838 * hasn't waited long enough, has the preemption control no-preempt bit
1839 * set, etc.)
1840 */
1841 static int
ts_update_list(int i)1842 ts_update_list(int i)
1843 {
1844 tsproc_t *tspp;
1845 kthread_t *tx;
1846 int updated = 0;
1847
1848 mutex_enter(&ts_list_lock[i]);
1849 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i];
1850 tspp = tspp->ts_next) {
1851 tx = tspp->ts_tp;
1852 /*
1853 * Lock the thread and verify state.
1854 */
1855 thread_lock(tx);
1856 /*
1857 * Skip the thread if it is no longer in the TS (or IA) class.
1858 */
1859 if (tx->t_clfuncs != &ts_classfuncs.thread &&
1860 tx->t_clfuncs != &ia_classfuncs.thread)
1861 goto next;
1862 tspp->ts_dispwait++;
1863 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait)
1864 goto next;
1865 if (tx->t_schedctl && schedctl_get_nopreempt(tx))
1866 goto next;
1867 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT &&
1868 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) {
1869 /* make next syscall/trap do CL_TRAPRET */
1870 tx->t_trapret = 1;
1871 aston(tx);
1872 goto next;
1873 }
1874 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait;
1875 TS_NEWUMDPRI(tspp);
1876 tspp->ts_dispwait = 0;
1877 updated = 1;
1878
1879 /*
1880 * Only dequeue it if needs to move; otherwise it should
1881 * just round-robin here.
1882 */
1883 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) {
1884 pri_t oldpri = tx->t_pri;
1885 ts_change_priority(tx, tspp);
1886 TRACE_2(TR_FAC_DISP, TR_UPDATE,
1887 "update:tid %p old pri %d", tx, oldpri);
1888 }
1889 next:
1890 thread_unlock(tx);
1891 }
1892 mutex_exit(&ts_list_lock[i]);
1893
1894 return (updated);
1895 }
1896
1897 /*
1898 * Processes waking up go to the back of their queue.
1899 */
1900 static void
ts_wakeup(kthread_t * t)1901 ts_wakeup(kthread_t *t)
1902 {
1903 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1904
1905 ASSERT(THREAD_LOCK_HELD(t));
1906
1907 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1908
1909 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1910 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1911 TS_NEWUMDPRI(tspp);
1912 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1913 tspp->ts_dispwait = 0;
1914 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1915 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1916 }
1917
1918 tspp->ts_flags &= ~TSBACKQ;
1919
1920 if (tspp->ts_flags & TSIA) {
1921 if (tspp->ts_flags & TSIASET)
1922 setfrontdq(t);
1923 else
1924 setbackdq(t);
1925 } else {
1926 if (t->t_disp_time != ddi_get_lbolt())
1927 setbackdq(t);
1928 else
1929 setfrontdq(t);
1930 }
1931 }
1932
1933
1934 /*
1935 * When a thread yields, put it on the back of the run queue.
1936 */
1937 static void
ts_yield(kthread_t * t)1938 ts_yield(kthread_t *t)
1939 {
1940 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1941
1942 ASSERT(t == curthread);
1943 ASSERT(THREAD_LOCK_HELD(t));
1944
1945 /*
1946 * Collect CPU usage spent before yielding
1947 */
1948 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
1949
1950 /*
1951 * Clear the preemption control "yield" bit since the user is
1952 * doing a yield.
1953 */
1954 if (t->t_schedctl)
1955 schedctl_set_yield(t, 0);
1956 /*
1957 * If ts_preempt() artifically increased the thread's priority
1958 * to avoid preemption, restore the original priority now.
1959 */
1960 if (tspp->ts_flags & TSRESTORE) {
1961 THREAD_CHANGE_PRI(t, tspp->ts_scpri);
1962 tspp->ts_flags &= ~TSRESTORE;
1963 }
1964 if (tspp->ts_timeleft <= 0) {
1965 /*
1966 * Time slice was artificially extended to avoid
1967 * preemption, so pretend we're preempting it now.
1968 */
1969 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft);
1970 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
1971 TS_NEWUMDPRI(tspp);
1972 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1973 tspp->ts_dispwait = 0;
1974 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1975 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1976 }
1977 tspp->ts_flags &= ~TSBACKQ;
1978 setbackdq(t);
1979 }
1980
1981
1982 /*
1983 * Increment the nice value of the specified thread by incr and
1984 * return the new value in *retvalp.
1985 */
1986 static int
ts_donice(kthread_t * t,cred_t * cr,int incr,int * retvalp)1987 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1988 {
1989 int newnice;
1990 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1991 tsparms_t tsparms;
1992
1993 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1994
1995 /* If there's no change to priority, just return current setting */
1996 if (incr == 0) {
1997 if (retvalp) {
1998 *retvalp = tspp->ts_nice - NZERO;
1999 }
2000 return (0);
2001 }
2002
2003 if ((incr < 0 || incr > 2 * NZERO) &&
2004 secpolicy_raisepriority(cr) != 0)
2005 return (EPERM);
2006
2007 /*
2008 * Specifying a nice increment greater than the upper limit of
2009 * 2 * NZERO - 1 will result in the thread's nice value being
2010 * set to the upper limit. We check for this before computing
2011 * the new value because otherwise we could get overflow
2012 * if a privileged process specified some ridiculous increment.
2013 */
2014 if (incr > 2 * NZERO - 1)
2015 incr = 2 * NZERO - 1;
2016
2017 newnice = tspp->ts_nice + incr;
2018 if (newnice >= 2 * NZERO)
2019 newnice = 2 * NZERO - 1;
2020 else if (newnice < 0)
2021 newnice = 0;
2022
2023 tsparms.ts_uprilim = tsparms.ts_upri =
2024 -((newnice - NZERO) * ts_maxupri) / NZERO;
2025 /*
2026 * Reset the uprilim and upri values of the thread.
2027 * Call ts_parmsset even if thread is interactive since we're
2028 * not changing mode.
2029 */
2030 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL);
2031
2032 /*
2033 * Although ts_parmsset already reset ts_nice it may
2034 * not have been set to precisely the value calculated above
2035 * because ts_parmsset determines the nice value from the
2036 * user priority and we may have truncated during the integer
2037 * conversion from nice value to user priority and back.
2038 * We reset ts_nice to the value we calculated above.
2039 */
2040 tspp->ts_nice = (char)newnice;
2041
2042 if (retvalp)
2043 *retvalp = newnice - NZERO;
2044 return (0);
2045 }
2046
2047 /*
2048 * Increment the priority of the specified thread by incr and
2049 * return the new value in *retvalp.
2050 */
2051 static int
ts_doprio(kthread_t * t,cred_t * cr,int incr,int * retvalp)2052 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2053 {
2054 int newpri;
2055 tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
2056 tsparms_t tsparms;
2057
2058 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2059
2060 /* If there's no change to the priority, just return current setting */
2061 if (incr == 0) {
2062 *retvalp = tspp->ts_upri;
2063 return (0);
2064 }
2065
2066 newpri = tspp->ts_upri + incr;
2067 if (newpri > ts_maxupri || newpri < -ts_maxupri)
2068 return (EINVAL);
2069
2070 *retvalp = newpri;
2071 tsparms.ts_uprilim = tsparms.ts_upri = newpri;
2072 /*
2073 * Reset the uprilim and upri values of the thread.
2074 * Call ts_parmsset even if thread is interactive since we're
2075 * not changing mode.
2076 */
2077 return (ts_parmsset(t, &tsparms, 0, cr));
2078 }
2079
2080 /*
2081 * ia_set_process_group marks foreground processes as interactive
2082 * and background processes as non-interactive iff the session
2083 * leader is interactive. This routine is called from two places:
2084 * strioctl:SPGRP when a new process group gets
2085 * control of the tty.
2086 * ia_parmsset-when the process in question is a session leader.
2087 * ia_set_process_group assumes that pidlock is held by the caller,
2088 * either strioctl or priocntlsys. If the caller is priocntlsys
2089 * (via ia_parmsset) then the p_lock of the session leader is held
2090 * and the code needs to be careful about acquiring other p_locks.
2091 */
2092 static void
ia_set_process_group(pid_t sid,pid_t bg_pgid,pid_t fg_pgid)2093 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid)
2094 {
2095 proc_t *leader, *fg, *bg;
2096 tsproc_t *tspp;
2097 kthread_t *tx;
2098 int plocked = 0;
2099
2100 ASSERT(MUTEX_HELD(&pidlock));
2101
2102 /*
2103 * see if the session leader is interactive AND
2104 * if it is currently "on" AND controlling a tty
2105 * iff it is then make the processes in the foreground
2106 * group interactive and the processes in the background
2107 * group non-interactive.
2108 */
2109 if ((leader = (proc_t *)prfind(sid)) == NULL) {
2110 return;
2111 }
2112 if (leader->p_stat == SIDL) {
2113 return;
2114 }
2115 if ((tx = proctot(leader)) == NULL) {
2116 return;
2117 }
2118 /*
2119 * XXX do all the threads in the leader
2120 */
2121 if (tx->t_cid != ia_cid) {
2122 return;
2123 }
2124 tspp = tx->t_cldata;
2125 /*
2126 * session leaders that are not interactive need not have
2127 * any processing done for them. They are typically shells
2128 * that do not have focus and are changing the process group
2129 * attatched to the tty, e.g. a process that is exiting
2130 */
2131 mutex_enter(&leader->p_sessp->s_lock);
2132 if (!(tspp->ts_flags & TSIASET) ||
2133 (leader->p_sessp->s_vp == NULL) ||
2134 (leader->p_sessp->s_vp->v_stream == NULL)) {
2135 mutex_exit(&leader->p_sessp->s_lock);
2136 return;
2137 }
2138 mutex_exit(&leader->p_sessp->s_lock);
2139
2140 /*
2141 * If we're already holding the leader's p_lock, we should use
2142 * mutex_tryenter instead of mutex_enter to avoid deadlocks from
2143 * lock ordering violations.
2144 */
2145 if (mutex_owned(&leader->p_lock))
2146 plocked = 1;
2147
2148 if (fg_pgid == 0)
2149 goto skip;
2150 /*
2151 * now look for all processes in the foreground group and
2152 * make them interactive
2153 */
2154 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) {
2155 /*
2156 * if the process is SIDL it's begin forked, ignore it
2157 */
2158 if (fg->p_stat == SIDL) {
2159 continue;
2160 }
2161 /*
2162 * sesssion leaders must be turned on/off explicitly
2163 * not implicitly as happens to other members of
2164 * the process group.
2165 */
2166 if (fg->p_pid == fg->p_sessp->s_sid) {
2167 continue;
2168 }
2169
2170 TRACE_1(TR_FAC_IA, TR_GROUP_ON,
2171 "group on:proc %p", fg);
2172
2173 if (plocked) {
2174 if (mutex_tryenter(&fg->p_lock) == 0)
2175 continue;
2176 } else {
2177 mutex_enter(&fg->p_lock);
2178 }
2179
2180 if ((tx = proctot(fg)) == NULL) {
2181 mutex_exit(&fg->p_lock);
2182 continue;
2183 }
2184 do {
2185 thread_lock(tx);
2186 /*
2187 * if this thread is not interactive continue
2188 */
2189 if (tx->t_cid != ia_cid) {
2190 thread_unlock(tx);
2191 continue;
2192 }
2193 tspp = tx->t_cldata;
2194 tspp->ts_flags |= TSIASET;
2195 tspp->ts_boost = ia_boost;
2196 TS_NEWUMDPRI(tspp);
2197 tspp->ts_dispwait = 0;
2198 ts_change_priority(tx, tspp);
2199 thread_unlock(tx);
2200 } while ((tx = tx->t_forw) != fg->p_tlist);
2201 mutex_exit(&fg->p_lock);
2202 }
2203 skip:
2204 if (bg_pgid == 0)
2205 return;
2206 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) {
2207 if (bg->p_stat == SIDL) {
2208 continue;
2209 }
2210 /*
2211 * sesssion leaders must be turned off explicitly
2212 * not implicitly as happens to other members of
2213 * the process group.
2214 */
2215 if (bg->p_pid == bg->p_sessp->s_sid) {
2216 continue;
2217 }
2218
2219 TRACE_1(TR_FAC_IA, TR_GROUP_OFF,
2220 "group off:proc %p", bg);
2221
2222 if (plocked) {
2223 if (mutex_tryenter(&bg->p_lock) == 0)
2224 continue;
2225 } else {
2226 mutex_enter(&bg->p_lock);
2227 }
2228
2229 if ((tx = proctot(bg)) == NULL) {
2230 mutex_exit(&bg->p_lock);
2231 continue;
2232 }
2233 do {
2234 thread_lock(tx);
2235 /*
2236 * if this thread is not interactive continue
2237 */
2238 if (tx->t_cid != ia_cid) {
2239 thread_unlock(tx);
2240 continue;
2241 }
2242 tspp = tx->t_cldata;
2243 tspp->ts_flags &= ~TSIASET;
2244 tspp->ts_boost = -ia_boost;
2245 TS_NEWUMDPRI(tspp);
2246
2247 tspp->ts_dispwait = 0;
2248 ts_change_priority(tx, tspp);
2249 thread_unlock(tx);
2250 } while ((tx = tx->t_forw) != bg->p_tlist);
2251 mutex_exit(&bg->p_lock);
2252 }
2253 }
2254
2255
2256 static void
ts_change_priority(kthread_t * t,tsproc_t * tspp)2257 ts_change_priority(kthread_t *t, tsproc_t *tspp)
2258 {
2259 pri_t new_pri;
2260
2261 ASSERT(THREAD_LOCK_HELD(t));
2262 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
2263 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
2264 tspp->ts_flags &= ~TSRESTORE;
2265 t->t_cpri = tspp->ts_upri;
2266 if (t == curthread || t->t_state == TS_ONPROC) {
2267 /* curthread is always onproc */
2268 cpu_t *cp = t->t_disp_queue->disp_cpu;
2269 THREAD_CHANGE_PRI(t, new_pri);
2270 if (t == cp->cpu_dispthread)
2271 cp->cpu_dispatch_pri = DISP_PRIO(t);
2272 if (DISP_MUST_SURRENDER(t)) {
2273 tspp->ts_flags |= TSBACKQ;
2274 cpu_surrender(t);
2275 } else {
2276 tspp->ts_timeleft =
2277 ts_dptbl[tspp->ts_cpupri].ts_quantum;
2278 }
2279 } else {
2280 int frontq;
2281
2282 frontq = (tspp->ts_flags & TSIASET) != 0;
2283 /*
2284 * When the priority of a thread is changed,
2285 * it may be necessary to adjust its position
2286 * on a sleep queue or dispatch queue.
2287 * The function thread_change_pri accomplishes
2288 * this.
2289 */
2290 if (thread_change_pri(t, new_pri, frontq)) {
2291 /*
2292 * The thread was on a run queue. Reset
2293 * its CPU timeleft from the quantum
2294 * associated with the new priority.
2295 */
2296 tspp->ts_timeleft =
2297 ts_dptbl[tspp->ts_cpupri].ts_quantum;
2298 } else {
2299 tspp->ts_flags |= TSBACKQ;
2300 }
2301 }
2302 }
2303
2304 static int
ts_alloc(void ** p,int flag)2305 ts_alloc(void **p, int flag)
2306 {
2307 void *bufp;
2308 bufp = kmem_alloc(sizeof (tsproc_t), flag);
2309 if (bufp == NULL) {
2310 return (ENOMEM);
2311 } else {
2312 *p = bufp;
2313 return (0);
2314 }
2315 }
2316
2317 static void
ts_free(void * bufp)2318 ts_free(void *bufp)
2319 {
2320 if (bufp)
2321 kmem_free(bufp, sizeof (tsproc_t));
2322 }
2323