1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 using namespace llvm;
22
23 #define DEBUG_TYPE "systemz-isel"
24 #define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection"
25
26 namespace {
27 // Used to build addressing modes.
28 struct SystemZAddressingMode {
29 // The shape of the address.
30 enum AddrForm {
31 // base+displacement
32 FormBD,
33
34 // base+displacement+index for load and store operands
35 FormBDXNormal,
36
37 // base+displacement+index for load address operands
38 FormBDXLA,
39
40 // base+displacement+index+ADJDYNALLOC
41 FormBDXDynAlloc
42 };
43 AddrForm Form;
44
45 // The type of displacement. The enum names here correspond directly
46 // to the definitions in SystemZOperand.td. We could split them into
47 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
48 enum DispRange {
49 Disp12Only,
50 Disp12Pair,
51 Disp20Only,
52 Disp20Only128,
53 Disp20Pair
54 };
55 DispRange DR;
56
57 // The parts of the address. The address is equivalent to:
58 //
59 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
60 SDValue Base;
61 int64_t Disp;
62 SDValue Index;
63 bool IncludesDynAlloc;
64
SystemZAddressingMode__anond7b4dcfb0111::SystemZAddressingMode65 SystemZAddressingMode(AddrForm form, DispRange dr)
66 : Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {}
67
68 // True if the address can have an index register.
hasIndexField__anond7b4dcfb0111::SystemZAddressingMode69 bool hasIndexField() { return Form != FormBD; }
70
71 // True if the address can (and must) include ADJDYNALLOC.
isDynAlloc__anond7b4dcfb0111::SystemZAddressingMode72 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73
dump__anond7b4dcfb0111::SystemZAddressingMode74 void dump(const llvm::SelectionDAG *DAG) {
75 errs() << "SystemZAddressingMode " << this << '\n';
76
77 errs() << " Base ";
78 if (Base.getNode())
79 Base.getNode()->dump(DAG);
80 else
81 errs() << "null\n";
82
83 if (hasIndexField()) {
84 errs() << " Index ";
85 if (Index.getNode())
86 Index.getNode()->dump(DAG);
87 else
88 errs() << "null\n";
89 }
90
91 errs() << " Disp " << Disp;
92 if (IncludesDynAlloc)
93 errs() << " + ADJDYNALLOC";
94 errs() << '\n';
95 }
96 };
97
98 // Return a mask with Count low bits set.
allOnes(unsigned int Count)99 static uint64_t allOnes(unsigned int Count) {
100 assert(Count <= 64);
101 if (Count > 63)
102 return UINT64_MAX;
103 return (uint64_t(1) << Count) - 1;
104 }
105
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
109 //
110 // (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 // (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
RxSBGOperands__anond7b4dcfb0111::RxSBGOperands120 RxSBGOperands(unsigned Op, SDValue N)
121 : Opcode(Op), BitSize(N.getValueSizeInBits()),
122 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123 Rotate(0) {}
124
125 unsigned Opcode;
126 unsigned BitSize;
127 uint64_t Mask;
128 SDValue Input;
129 unsigned Start;
130 unsigned End;
131 unsigned Rotate;
132 };
133
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135 const SystemZSubtarget *Subtarget;
136
137 // Used by SystemZOperands.td to create integer constants.
getImm(const SDNode * Node,uint64_t Imm) const138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140 }
141
getTargetMachine() const142 const SystemZTargetMachine &getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine &>(TM);
144 }
145
getInstrInfo() const146 const SystemZInstrInfo *getInstrInfo() const {
147 return Subtarget->getInstrInfo();
148 }
149
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159 SDValue &Base, SDValue &Disp) const;
160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161 SDValue &Base, SDValue &Disp, SDValue &Index) const;
162
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167 SDValue &Base, SDValue &Disp) const;
168
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp) const;
174
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179 SystemZAddressingMode::DispRange DR, SDValue Addr,
180 SDValue &Base, SDValue &Disp, SDValue &Index) const;
181
182 // PC-relative address matching routines used by SystemZOperands.td.
selectPCRelAddress(SDValue Addr,SDValue & Target) const183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184 if (SystemZISD::isPCREL(Addr.getOpcode())) {
185 Target = Addr.getOperand(0);
186 return true;
187 }
188 return false;
189 }
190
191 // BD matching routines used by SystemZOperands.td.
selectBDAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp) const192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194 }
selectBDAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197 }
selectBDAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp) const198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200 }
selectBDAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203 }
204
205 // MVI matching routines used by SystemZOperands.td.
selectMVIAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208 }
selectMVIAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211 }
212
213 // BDX matching routines used by SystemZOperands.td.
selectBDXAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215 SDValue &Index) const {
216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217 SystemZAddressingMode::Disp12Only,
218 Addr, Base, Disp, Index);
219 }
selectBDXAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221 SDValue &Index) const {
222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223 SystemZAddressingMode::Disp12Pair,
224 Addr, Base, Disp, Index);
225 }
selectDynAlloc12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227 SDValue &Index) const {
228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229 SystemZAddressingMode::Disp12Only,
230 Addr, Base, Disp, Index);
231 }
selectBDXAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233 SDValue &Index) const {
234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235 SystemZAddressingMode::Disp20Only,
236 Addr, Base, Disp, Index);
237 }
selectBDXAddr20Only128(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239 SDValue &Index) const {
240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241 SystemZAddressingMode::Disp20Only128,
242 Addr, Base, Disp, Index);
243 }
selectBDXAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245 SDValue &Index) const {
246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247 SystemZAddressingMode::Disp20Pair,
248 Addr, Base, Disp, Index);
249 }
selectLAAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251 SDValue &Index) const {
252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253 SystemZAddressingMode::Disp12Pair,
254 Addr, Base, Disp, Index);
255 }
selectLAAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257 SDValue &Index) const {
258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259 SystemZAddressingMode::Disp20Pair,
260 Addr, Base, Disp, Index);
261 }
262
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268 SDValue &Disp, SDValue &Index) const;
269
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
272 // set Op to that Y.
273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands &RxSBG) const;
282
283 // Return an undefined value of type VT.
284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285
286 // Convert N to VT, if it isn't already.
287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode *N);
292
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode *N, unsigned Opcode);
296
297 // If Op0 is null, then Node is a constant that can be loaded using:
298 //
299 // (Opcode UpperVal LowerVal)
300 //
301 // If Op0 is nonnull, then Node can be implemented using:
302 //
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305 uint64_t UpperVal, uint64_t LowerVal);
306
307 void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308 SDNode *Node);
309
310 SDNode *loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL);
311
312 // Try to use gather instruction Opcode to implement vector insertion N.
313 bool tryGather(SDNode *N, unsigned Opcode);
314
315 // Try to use scatter instruction Opcode to implement store Store.
316 bool tryScatter(StoreSDNode *Store, unsigned Opcode);
317
318 // Change a chain of {load; op; store} of the same value into a simple op
319 // through memory of that value, if the uses of the modified value and its
320 // address are suitable.
321 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
322
323 // Return true if Load and Store are loads and stores of the same size
324 // and are guaranteed not to overlap. Such operations can be implemented
325 // using block (SS-format) instructions.
326 //
327 // Partial overlap would lead to incorrect code, since the block operations
328 // are logically bytewise, even though they have a fast path for the
329 // non-overlapping case. We also need to avoid full overlap (i.e. two
330 // addresses that might be equal at run time) because although that case
331 // would be handled correctly, it might be implemented by millicode.
332 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
333
334 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
335 // from Y to X.
336 bool storeLoadCanUseMVC(SDNode *N) const;
337
338 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
339 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
340 // to X.
341 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
342
343 // Return true if N (a load or a store) fullfills the alignment
344 // requirements for a PC-relative access.
345 bool storeLoadIsAligned(SDNode *N) const;
346
347 // Return the load extension type of a load or atomic load.
348 ISD::LoadExtType getLoadExtType(SDNode *N) const;
349
350 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
351 SDValue expandSelectBoolean(SDNode *Node);
352
353 // Return true if the flags of N and the subtarget allows for
354 // reassociation, in which case a reg/reg opcode is needed as input to the
355 // MachineCombiner.
356 bool shouldSelectForReassoc(SDNode *N) const;
357
358 public:
359 SystemZDAGToDAGISel() = delete;
360
SystemZDAGToDAGISel(SystemZTargetMachine & TM,CodeGenOptLevel OptLevel)361 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOptLevel OptLevel)
362 : SelectionDAGISel(TM, OptLevel) {}
363
runOnMachineFunction(MachineFunction & MF)364 bool runOnMachineFunction(MachineFunction &MF) override {
365 const Function &F = MF.getFunction();
366 if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
367 if (F.hasFnAttribute("mnop-mcount"))
368 report_fatal_error("mnop-mcount only supported with fentry-call");
369 if (F.hasFnAttribute("mrecord-mcount"))
370 report_fatal_error("mrecord-mcount only supported with fentry-call");
371 }
372
373 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
374 return SelectionDAGISel::runOnMachineFunction(MF);
375 }
376
377 // Override SelectionDAGISel.
378 void Select(SDNode *Node) override;
379 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
380 InlineAsm::ConstraintCode ConstraintID,
381 std::vector<SDValue> &OutOps) override;
382 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
383 void PreprocessISelDAG() override;
384
385 // Include the pieces autogenerated from the target description.
386 #include "SystemZGenDAGISel.inc"
387 };
388
389 class SystemZDAGToDAGISelLegacy : public SelectionDAGISelLegacy {
390 public:
391 static char ID;
SystemZDAGToDAGISelLegacy(SystemZTargetMachine & TM,CodeGenOptLevel OptLevel)392 explicit SystemZDAGToDAGISelLegacy(SystemZTargetMachine &TM,
393 CodeGenOptLevel OptLevel)
394 : SelectionDAGISelLegacy(
395 ID, std::make_unique<SystemZDAGToDAGISel>(TM, OptLevel)) {}
396 };
397 } // end anonymous namespace
398
399 char SystemZDAGToDAGISelLegacy::ID = 0;
400
INITIALIZE_PASS(SystemZDAGToDAGISelLegacy,DEBUG_TYPE,PASS_NAME,false,false)401 INITIALIZE_PASS(SystemZDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false)
402
403 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
404 CodeGenOptLevel OptLevel) {
405 return new SystemZDAGToDAGISelLegacy(TM, OptLevel);
406 }
407
408 // Return true if Val should be selected as a displacement for an address
409 // with range DR. Here we're interested in the range of both the instruction
410 // described by DR and of any pairing instruction.
selectDisp(SystemZAddressingMode::DispRange DR,int64_t Val)411 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
412 switch (DR) {
413 case SystemZAddressingMode::Disp12Only:
414 return isUInt<12>(Val);
415
416 case SystemZAddressingMode::Disp12Pair:
417 case SystemZAddressingMode::Disp20Only:
418 case SystemZAddressingMode::Disp20Pair:
419 return isInt<20>(Val);
420
421 case SystemZAddressingMode::Disp20Only128:
422 return isInt<20>(Val) && isInt<20>(Val + 8);
423 }
424 llvm_unreachable("Unhandled displacement range");
425 }
426
427 // Change the base or index in AM to Value, where IsBase selects
428 // between the base and index.
changeComponent(SystemZAddressingMode & AM,bool IsBase,SDValue Value)429 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
430 SDValue Value) {
431 if (IsBase)
432 AM.Base = Value;
433 else
434 AM.Index = Value;
435 }
436
437 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
438 // where IsBase selects between the base and index. Try to fold the
439 // ADJDYNALLOC into AM.
expandAdjDynAlloc(SystemZAddressingMode & AM,bool IsBase,SDValue Value)440 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
441 SDValue Value) {
442 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
443 changeComponent(AM, IsBase, Value);
444 AM.IncludesDynAlloc = true;
445 return true;
446 }
447 return false;
448 }
449
450 // The base of AM is equivalent to Base + Index. Try to use Index as
451 // the index register.
expandIndex(SystemZAddressingMode & AM,SDValue Base,SDValue Index)452 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
453 SDValue Index) {
454 if (AM.hasIndexField() && !AM.Index.getNode()) {
455 AM.Base = Base;
456 AM.Index = Index;
457 return true;
458 }
459 return false;
460 }
461
462 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
463 // between the base and index. Try to fold Op1 into AM's displacement.
expandDisp(SystemZAddressingMode & AM,bool IsBase,SDValue Op0,uint64_t Op1)464 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
465 SDValue Op0, uint64_t Op1) {
466 // First try adjusting the displacement.
467 int64_t TestDisp = AM.Disp + Op1;
468 if (selectDisp(AM.DR, TestDisp)) {
469 changeComponent(AM, IsBase, Op0);
470 AM.Disp = TestDisp;
471 return true;
472 }
473
474 // We could consider forcing the displacement into a register and
475 // using it as an index, but it would need to be carefully tuned.
476 return false;
477 }
478
expandAddress(SystemZAddressingMode & AM,bool IsBase) const479 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
480 bool IsBase) const {
481 SDValue N = IsBase ? AM.Base : AM.Index;
482 unsigned Opcode = N.getOpcode();
483 // Look through no-op truncations.
484 if (Opcode == ISD::TRUNCATE && N.getOperand(0).getValueSizeInBits() <= 64) {
485 N = N.getOperand(0);
486 Opcode = N.getOpcode();
487 }
488 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
489 SDValue Op0 = N.getOperand(0);
490 SDValue Op1 = N.getOperand(1);
491
492 unsigned Op0Code = Op0->getOpcode();
493 unsigned Op1Code = Op1->getOpcode();
494
495 if (Op0Code == SystemZISD::ADJDYNALLOC)
496 return expandAdjDynAlloc(AM, IsBase, Op1);
497 if (Op1Code == SystemZISD::ADJDYNALLOC)
498 return expandAdjDynAlloc(AM, IsBase, Op0);
499
500 if (Op0Code == ISD::Constant)
501 return expandDisp(AM, IsBase, Op1,
502 cast<ConstantSDNode>(Op0)->getSExtValue());
503 if (Op1Code == ISD::Constant)
504 return expandDisp(AM, IsBase, Op0,
505 cast<ConstantSDNode>(Op1)->getSExtValue());
506
507 if (IsBase && expandIndex(AM, Op0, Op1))
508 return true;
509 }
510 if (Opcode == SystemZISD::PCREL_OFFSET) {
511 SDValue Full = N.getOperand(0);
512 SDValue Base = N.getOperand(1);
513 SDValue Anchor = Base.getOperand(0);
514 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
515 cast<GlobalAddressSDNode>(Anchor)->getOffset());
516 return expandDisp(AM, IsBase, Base, Offset);
517 }
518 return false;
519 }
520
521 // Return true if an instruction with displacement range DR should be
522 // used for displacement value Val. selectDisp(DR, Val) must already hold.
isValidDisp(SystemZAddressingMode::DispRange DR,int64_t Val)523 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
524 assert(selectDisp(DR, Val) && "Invalid displacement");
525 switch (DR) {
526 case SystemZAddressingMode::Disp12Only:
527 case SystemZAddressingMode::Disp20Only:
528 case SystemZAddressingMode::Disp20Only128:
529 return true;
530
531 case SystemZAddressingMode::Disp12Pair:
532 // Use the other instruction if the displacement is too large.
533 return isUInt<12>(Val);
534
535 case SystemZAddressingMode::Disp20Pair:
536 // Use the other instruction if the displacement is small enough.
537 return !isUInt<12>(Val);
538 }
539 llvm_unreachable("Unhandled displacement range");
540 }
541
542 // Return true if Base + Disp + Index should be performed by LA(Y).
shouldUseLA(SDNode * Base,int64_t Disp,SDNode * Index)543 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
544 // Don't use LA(Y) for constants.
545 if (!Base)
546 return false;
547
548 // Always use LA(Y) for frame addresses, since we know that the destination
549 // register is almost always (perhaps always) going to be different from
550 // the frame register.
551 if (Base->getOpcode() == ISD::FrameIndex)
552 return true;
553
554 if (Disp) {
555 // Always use LA(Y) if there is a base, displacement and index.
556 if (Index)
557 return true;
558
559 // Always use LA if the displacement is small enough. It should always
560 // be no worse than AGHI (and better if it avoids a move).
561 if (isUInt<12>(Disp))
562 return true;
563
564 // For similar reasons, always use LAY if the constant is too big for AGHI.
565 // LAY should be no worse than AGFI.
566 if (!isInt<16>(Disp))
567 return true;
568 } else {
569 // Don't use LA for plain registers.
570 if (!Index)
571 return false;
572
573 // Don't use LA for plain addition if the index operand is only used
574 // once. It should be a natural two-operand addition in that case.
575 if (Index->hasOneUse())
576 return false;
577
578 // Prefer addition if the second operation is sign-extended, in the
579 // hope of using AGF.
580 unsigned IndexOpcode = Index->getOpcode();
581 if (IndexOpcode == ISD::SIGN_EXTEND ||
582 IndexOpcode == ISD::SIGN_EXTEND_INREG)
583 return false;
584 }
585
586 // Don't use LA for two-operand addition if either operand is only
587 // used once. The addition instructions are better in that case.
588 if (Base->hasOneUse())
589 return false;
590
591 return true;
592 }
593
594 // Return true if Addr is suitable for AM, updating AM if so.
selectAddress(SDValue Addr,SystemZAddressingMode & AM) const595 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
596 SystemZAddressingMode &AM) const {
597 // Start out assuming that the address will need to be loaded separately,
598 // then try to extend it as much as we can.
599 AM.Base = Addr;
600
601 // First try treating the address as a constant.
602 if (Addr.getOpcode() == ISD::Constant &&
603 expandDisp(AM, true, SDValue(),
604 cast<ConstantSDNode>(Addr)->getSExtValue()))
605 ;
606 // Also see if it's a bare ADJDYNALLOC.
607 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
608 expandAdjDynAlloc(AM, true, SDValue()))
609 ;
610 else
611 // Otherwise try expanding each component.
612 while (expandAddress(AM, true) ||
613 (AM.Index.getNode() && expandAddress(AM, false)))
614 continue;
615
616 // Reject cases where it isn't profitable to use LA(Y).
617 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
618 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
619 return false;
620
621 // Reject cases where the other instruction in a pair should be used.
622 if (!isValidDisp(AM.DR, AM.Disp))
623 return false;
624
625 // Make sure that ADJDYNALLOC is included where necessary.
626 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
627 return false;
628
629 LLVM_DEBUG(AM.dump(CurDAG));
630 return true;
631 }
632
633 // Insert a node into the DAG at least before Pos. This will reposition
634 // the node as needed, and will assign it a node ID that is <= Pos's ID.
635 // Note that this does *not* preserve the uniqueness of node IDs!
636 // The selection DAG must no longer depend on their uniqueness when this
637 // function is used.
insertDAGNode(SelectionDAG * DAG,SDNode * Pos,SDValue N)638 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
639 if (N->getNodeId() == -1 ||
640 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
641 SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
642 DAG->RepositionNode(Pos->getIterator(), N.getNode());
643 // Mark Node as invalid for pruning as after this it may be a successor to a
644 // selected node but otherwise be in the same position of Pos.
645 // Conservatively mark it with the same -abs(Id) to assure node id
646 // invariant is preserved.
647 N->setNodeId(Pos->getNodeId());
648 SelectionDAGISel::InvalidateNodeId(N.getNode());
649 }
650 }
651
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp) const652 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
653 EVT VT, SDValue &Base,
654 SDValue &Disp) const {
655 Base = AM.Base;
656 if (!Base.getNode())
657 // Register 0 means "no base". This is mostly useful for shifts.
658 Base = CurDAG->getRegister(0, VT);
659 else if (Base.getOpcode() == ISD::FrameIndex) {
660 // Lower a FrameIndex to a TargetFrameIndex.
661 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
662 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
663 } else if (Base.getValueType() != VT) {
664 // Truncate values from i64 to i32, for shifts.
665 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
666 "Unexpected truncation");
667 SDLoc DL(Base);
668 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
669 insertDAGNode(CurDAG, Base.getNode(), Trunc);
670 Base = Trunc;
671 }
672
673 // Lower the displacement to a TargetConstant.
674 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
675 }
676
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp,SDValue & Index) const677 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
678 EVT VT, SDValue &Base,
679 SDValue &Disp,
680 SDValue &Index) const {
681 getAddressOperands(AM, VT, Base, Disp);
682
683 Index = AM.Index;
684 if (!Index.getNode())
685 // Register 0 means "no index".
686 Index = CurDAG->getRegister(0, VT);
687 }
688
selectBDAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const689 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
690 SDValue Addr, SDValue &Base,
691 SDValue &Disp) const {
692 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
693 if (!selectAddress(Addr, AM))
694 return false;
695
696 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
697 return true;
698 }
699
selectMVIAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const700 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
701 SDValue Addr, SDValue &Base,
702 SDValue &Disp) const {
703 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
704 if (!selectAddress(Addr, AM) || AM.Index.getNode())
705 return false;
706
707 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
708 return true;
709 }
710
selectBDXAddr(SystemZAddressingMode::AddrForm Form,SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const711 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
712 SystemZAddressingMode::DispRange DR,
713 SDValue Addr, SDValue &Base,
714 SDValue &Disp, SDValue &Index) const {
715 SystemZAddressingMode AM(Form, DR);
716 if (!selectAddress(Addr, AM))
717 return false;
718
719 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
720 return true;
721 }
722
selectBDVAddr12Only(SDValue Addr,SDValue Elem,SDValue & Base,SDValue & Disp,SDValue & Index) const723 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
724 SDValue &Base,
725 SDValue &Disp,
726 SDValue &Index) const {
727 SDValue Regs[2];
728 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
729 Regs[0].getNode() && Regs[1].getNode()) {
730 for (unsigned int I = 0; I < 2; ++I) {
731 Base = Regs[I];
732 Index = Regs[1 - I];
733 // We can't tell here whether the index vector has the right type
734 // for the access; the caller needs to do that instead.
735 if (Index.getOpcode() == ISD::ZERO_EXTEND)
736 Index = Index.getOperand(0);
737 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
738 Index.getOperand(1) == Elem) {
739 Index = Index.getOperand(0);
740 return true;
741 }
742 }
743 }
744 return false;
745 }
746
detectOrAndInsertion(SDValue & Op,uint64_t InsertMask) const747 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
748 uint64_t InsertMask) const {
749 // We're only interested in cases where the insertion is into some operand
750 // of Op, rather than into Op itself. The only useful case is an AND.
751 if (Op.getOpcode() != ISD::AND)
752 return false;
753
754 // We need a constant mask.
755 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
756 if (!MaskNode)
757 return false;
758
759 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
760 uint64_t AndMask = MaskNode->getZExtValue();
761 if (InsertMask & AndMask)
762 return false;
763
764 // It's only an insertion if all bits are covered or are known to be zero.
765 // The inner check covers all cases but is more expensive.
766 uint64_t Used = allOnes(Op.getValueSizeInBits());
767 if (Used != (AndMask | InsertMask)) {
768 KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
769 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
770 return false;
771 }
772
773 Op = Op.getOperand(0);
774 return true;
775 }
776
refineRxSBGMask(RxSBGOperands & RxSBG,uint64_t Mask) const777 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
778 uint64_t Mask) const {
779 const SystemZInstrInfo *TII = getInstrInfo();
780 if (RxSBG.Rotate != 0)
781 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
782 Mask &= RxSBG.Mask;
783 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
784 RxSBG.Mask = Mask;
785 return true;
786 }
787 return false;
788 }
789
790 // Return true if any bits of (RxSBG.Input & Mask) are significant.
maskMatters(RxSBGOperands & RxSBG,uint64_t Mask)791 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
792 // Rotate the mask in the same way as RxSBG.Input is rotated.
793 if (RxSBG.Rotate != 0)
794 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
795 return (Mask & RxSBG.Mask) != 0;
796 }
797
expandRxSBG(RxSBGOperands & RxSBG) const798 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
799 SDValue N = RxSBG.Input;
800 unsigned Opcode = N.getOpcode();
801 switch (Opcode) {
802 case ISD::TRUNCATE: {
803 if (RxSBG.Opcode == SystemZ::RNSBG)
804 return false;
805 if (N.getOperand(0).getValueSizeInBits() > 64)
806 return false;
807 uint64_t BitSize = N.getValueSizeInBits();
808 uint64_t Mask = allOnes(BitSize);
809 if (!refineRxSBGMask(RxSBG, Mask))
810 return false;
811 RxSBG.Input = N.getOperand(0);
812 return true;
813 }
814 case ISD::AND: {
815 if (RxSBG.Opcode == SystemZ::RNSBG)
816 return false;
817
818 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
819 if (!MaskNode)
820 return false;
821
822 SDValue Input = N.getOperand(0);
823 uint64_t Mask = MaskNode->getZExtValue();
824 if (!refineRxSBGMask(RxSBG, Mask)) {
825 // If some bits of Input are already known zeros, those bits will have
826 // been removed from the mask. See if adding them back in makes the
827 // mask suitable.
828 KnownBits Known = CurDAG->computeKnownBits(Input);
829 Mask |= Known.Zero.getZExtValue();
830 if (!refineRxSBGMask(RxSBG, Mask))
831 return false;
832 }
833 RxSBG.Input = Input;
834 return true;
835 }
836
837 case ISD::OR: {
838 if (RxSBG.Opcode != SystemZ::RNSBG)
839 return false;
840
841 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
842 if (!MaskNode)
843 return false;
844
845 SDValue Input = N.getOperand(0);
846 uint64_t Mask = ~MaskNode->getZExtValue();
847 if (!refineRxSBGMask(RxSBG, Mask)) {
848 // If some bits of Input are already known ones, those bits will have
849 // been removed from the mask. See if adding them back in makes the
850 // mask suitable.
851 KnownBits Known = CurDAG->computeKnownBits(Input);
852 Mask &= ~Known.One.getZExtValue();
853 if (!refineRxSBGMask(RxSBG, Mask))
854 return false;
855 }
856 RxSBG.Input = Input;
857 return true;
858 }
859
860 case ISD::ROTL: {
861 // Any 64-bit rotate left can be merged into the RxSBG.
862 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
863 return false;
864 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
865 if (!CountNode)
866 return false;
867
868 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
869 RxSBG.Input = N.getOperand(0);
870 return true;
871 }
872
873 case ISD::ANY_EXTEND:
874 // Bits above the extended operand are don't-care.
875 RxSBG.Input = N.getOperand(0);
876 return true;
877
878 case ISD::ZERO_EXTEND:
879 if (RxSBG.Opcode != SystemZ::RNSBG) {
880 // Restrict the mask to the extended operand.
881 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
882 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
883 return false;
884
885 RxSBG.Input = N.getOperand(0);
886 return true;
887 }
888 [[fallthrough]];
889
890 case ISD::SIGN_EXTEND: {
891 // Check that the extension bits are don't-care (i.e. are masked out
892 // by the final mask).
893 unsigned BitSize = N.getValueSizeInBits();
894 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
895 if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
896 // In the case where only the sign bit is active, increase Rotate with
897 // the extension width.
898 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
899 RxSBG.Rotate += (BitSize - InnerBitSize);
900 else
901 return false;
902 }
903
904 RxSBG.Input = N.getOperand(0);
905 return true;
906 }
907
908 case ISD::SHL: {
909 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
910 if (!CountNode)
911 return false;
912
913 uint64_t Count = CountNode->getZExtValue();
914 unsigned BitSize = N.getValueSizeInBits();
915 if (Count < 1 || Count >= BitSize)
916 return false;
917
918 if (RxSBG.Opcode == SystemZ::RNSBG) {
919 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
920 // count bits from RxSBG.Input are ignored.
921 if (maskMatters(RxSBG, allOnes(Count)))
922 return false;
923 } else {
924 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
925 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
926 return false;
927 }
928
929 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
930 RxSBG.Input = N.getOperand(0);
931 return true;
932 }
933
934 case ISD::SRL:
935 case ISD::SRA: {
936 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
937 if (!CountNode)
938 return false;
939
940 uint64_t Count = CountNode->getZExtValue();
941 unsigned BitSize = N.getValueSizeInBits();
942 if (Count < 1 || Count >= BitSize)
943 return false;
944
945 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
946 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
947 // count bits from RxSBG.Input are ignored.
948 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
949 return false;
950 } else {
951 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
952 // which is similar to SLL above.
953 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
954 return false;
955 }
956
957 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
958 RxSBG.Input = N.getOperand(0);
959 return true;
960 }
961 default:
962 return false;
963 }
964 }
965
getUNDEF(const SDLoc & DL,EVT VT) const966 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
967 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
968 return SDValue(N, 0);
969 }
970
convertTo(const SDLoc & DL,EVT VT,SDValue N) const971 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
972 SDValue N) const {
973 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
974 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
975 DL, VT, getUNDEF(DL, MVT::i64), N);
976 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
977 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
978 assert(N.getValueType() == VT && "Unexpected value types");
979 return N;
980 }
981
tryRISBGZero(SDNode * N)982 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
983 SDLoc DL(N);
984 EVT VT = N->getValueType(0);
985 if (!VT.isInteger() || VT.getSizeInBits() > 64)
986 return false;
987 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
988 unsigned Count = 0;
989 while (expandRxSBG(RISBG))
990 // The widening or narrowing is expected to be free.
991 // Counting widening or narrowing as a saved operation will result in
992 // preferring an R*SBG over a simple shift/logical instruction.
993 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
994 RISBG.Input.getOpcode() != ISD::TRUNCATE)
995 Count += 1;
996 if (Count == 0 || isa<ConstantSDNode>(RISBG.Input))
997 return false;
998
999 // Prefer to use normal shift instructions over RISBG, since they can handle
1000 // all cases and are sometimes shorter.
1001 if (Count == 1 && N->getOpcode() != ISD::AND)
1002 return false;
1003
1004 // Prefer register extensions like LLC over RISBG. Also prefer to start
1005 // out with normal ANDs if one instruction would be enough. We can convert
1006 // these ANDs into an RISBG later if a three-address instruction is useful.
1007 if (RISBG.Rotate == 0) {
1008 bool PreferAnd = false;
1009 // Prefer AND for any 32-bit and-immediate operation.
1010 if (VT == MVT::i32)
1011 PreferAnd = true;
1012 // As well as for any 64-bit operation that can be implemented via LLC(R),
1013 // LLH(R), LLGT(R), or one of the and-immediate instructions.
1014 else if (RISBG.Mask == 0xff ||
1015 RISBG.Mask == 0xffff ||
1016 RISBG.Mask == 0x7fffffff ||
1017 SystemZ::isImmLF(~RISBG.Mask) ||
1018 SystemZ::isImmHF(~RISBG.Mask))
1019 PreferAnd = true;
1020 // And likewise for the LLZRGF instruction, which doesn't have a register
1021 // to register version.
1022 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
1023 if (Load->getMemoryVT() == MVT::i32 &&
1024 (Load->getExtensionType() == ISD::EXTLOAD ||
1025 Load->getExtensionType() == ISD::ZEXTLOAD) &&
1026 RISBG.Mask == 0xffffff00 &&
1027 Subtarget->hasLoadAndZeroRightmostByte())
1028 PreferAnd = true;
1029 }
1030 if (PreferAnd) {
1031 // Replace the current node with an AND. Note that the current node
1032 // might already be that same AND, in which case it is already CSE'd
1033 // with it, and we must not call ReplaceNode.
1034 SDValue In = convertTo(DL, VT, RISBG.Input);
1035 SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1036 SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1037 if (N != New.getNode()) {
1038 insertDAGNode(CurDAG, N, Mask);
1039 insertDAGNode(CurDAG, N, New);
1040 ReplaceNode(N, New.getNode());
1041 N = New.getNode();
1042 }
1043 // Now, select the machine opcode to implement this operation.
1044 if (!N->isMachineOpcode())
1045 SelectCode(N);
1046 return true;
1047 }
1048 }
1049
1050 unsigned Opcode = SystemZ::RISBG;
1051 // Prefer RISBGN if available, since it does not clobber CC.
1052 if (Subtarget->hasMiscellaneousExtensions())
1053 Opcode = SystemZ::RISBGN;
1054 EVT OpcodeVT = MVT::i64;
1055 if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1056 // We can only use the 32-bit instructions if all source bits are
1057 // in the low 32 bits without wrapping, both after rotation (because
1058 // of the smaller range for Start and End) and before rotation
1059 // (because the input value is truncated).
1060 RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1061 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1062 ((RISBG.End + RISBG.Rotate) & 63) >=
1063 ((RISBG.Start + RISBG.Rotate) & 63)) {
1064 Opcode = SystemZ::RISBMux;
1065 OpcodeVT = MVT::i32;
1066 RISBG.Start &= 31;
1067 RISBG.End &= 31;
1068 }
1069 SDValue Ops[5] = {
1070 getUNDEF(DL, OpcodeVT),
1071 convertTo(DL, OpcodeVT, RISBG.Input),
1072 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1073 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1074 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1075 };
1076 SDValue New = convertTo(
1077 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1078 ReplaceNode(N, New.getNode());
1079 return true;
1080 }
1081
tryRxSBG(SDNode * N,unsigned Opcode)1082 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1083 SDLoc DL(N);
1084 EVT VT = N->getValueType(0);
1085 if (!VT.isInteger() || VT.getSizeInBits() > 64)
1086 return false;
1087 // Try treating each operand of N as the second operand of the RxSBG
1088 // and see which goes deepest.
1089 RxSBGOperands RxSBG[] = {
1090 RxSBGOperands(Opcode, N->getOperand(0)),
1091 RxSBGOperands(Opcode, N->getOperand(1))
1092 };
1093 unsigned Count[] = { 0, 0 };
1094 for (unsigned I = 0; I < 2; ++I)
1095 while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG[I]))
1096 // In cases of multiple users it seems better to keep the simple
1097 // instruction as they are one cycle faster, and it also helps in cases
1098 // where both inputs share a common node.
1099 // The widening or narrowing is expected to be free. Counting widening
1100 // or narrowing as a saved operation will result in preferring an R*SBG
1101 // over a simple shift/logical instruction.
1102 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1103 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1104 Count[I] += 1;
1105
1106 // Do nothing if neither operand is suitable.
1107 if (Count[0] == 0 && Count[1] == 0)
1108 return false;
1109
1110 // Pick the deepest second operand.
1111 unsigned I = Count[0] > Count[1] ? 0 : 1;
1112 SDValue Op0 = N->getOperand(I ^ 1);
1113
1114 // Prefer IC for character insertions from memory.
1115 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1116 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1117 if (Load->getMemoryVT() == MVT::i8)
1118 return false;
1119
1120 // See whether we can avoid an AND in the first operand by converting
1121 // ROSBG to RISBG.
1122 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1123 Opcode = SystemZ::RISBG;
1124 // Prefer RISBGN if available, since it does not clobber CC.
1125 if (Subtarget->hasMiscellaneousExtensions())
1126 Opcode = SystemZ::RISBGN;
1127 }
1128
1129 SDValue Ops[5] = {
1130 convertTo(DL, MVT::i64, Op0),
1131 convertTo(DL, MVT::i64, RxSBG[I].Input),
1132 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1133 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1134 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1135 };
1136 SDValue New = convertTo(
1137 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1138 ReplaceNode(N, New.getNode());
1139 return true;
1140 }
1141
splitLargeImmediate(unsigned Opcode,SDNode * Node,SDValue Op0,uint64_t UpperVal,uint64_t LowerVal)1142 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1143 SDValue Op0, uint64_t UpperVal,
1144 uint64_t LowerVal) {
1145 EVT VT = Node->getValueType(0);
1146 SDLoc DL(Node);
1147 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1148 if (Op0.getNode())
1149 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1150
1151 {
1152 // When we haven't passed in Op0, Upper will be a constant. In order to
1153 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1154 // SelectCode first and end up with an opaque machine node. This means that
1155 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1156 // SelectCode.
1157 //
1158 // Note that in the case where Op0 is passed in we could just call
1159 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1160 // the handle at all, but it's fine to do it here.
1161 //
1162 // TODO: This is a pretty hacky way to do this. Can we do something that
1163 // doesn't require a two paragraph explanation?
1164 HandleSDNode Handle(Upper);
1165 SelectCode(Upper.getNode());
1166 Upper = Handle.getValue();
1167 }
1168
1169 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1170 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1171
1172 ReplaceNode(Node, Or.getNode());
1173
1174 SelectCode(Or.getNode());
1175 }
1176
loadVectorConstant(const SystemZVectorConstantInfo & VCI,SDNode * Node)1177 void SystemZDAGToDAGISel::loadVectorConstant(
1178 const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1179 assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1180 VCI.Opcode == SystemZISD::REPLICATE ||
1181 VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1182 "Bad opcode!");
1183 assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1184 EVT VT = Node->getValueType(0);
1185 SDLoc DL(Node);
1186 SmallVector<SDValue, 2> Ops;
1187 for (unsigned OpVal : VCI.OpVals)
1188 Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1189 SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1190
1191 if (VCI.VecVT == VT.getSimpleVT())
1192 ReplaceNode(Node, Op.getNode());
1193 else if (VT.getSizeInBits() == 128) {
1194 SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1195 ReplaceNode(Node, BitCast.getNode());
1196 SelectCode(BitCast.getNode());
1197 } else { // float or double
1198 unsigned SubRegIdx =
1199 (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1200 ReplaceNode(
1201 Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1202 }
1203 SelectCode(Op.getNode());
1204 }
1205
loadPoolVectorConstant(APInt Val,EVT VT,SDLoc DL)1206 SDNode *SystemZDAGToDAGISel::loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL) {
1207 SDNode *ResNode;
1208 assert (VT.getSizeInBits() == 128);
1209
1210 SDValue CP = CurDAG->getTargetConstantPool(
1211 ConstantInt::get(Type::getInt128Ty(*CurDAG->getContext()), Val),
1212 TLI->getPointerTy(CurDAG->getDataLayout()));
1213
1214 EVT PtrVT = CP.getValueType();
1215 SDValue Ops[] = {
1216 SDValue(CurDAG->getMachineNode(SystemZ::LARL, DL, PtrVT, CP), 0),
1217 CurDAG->getTargetConstant(0, DL, PtrVT),
1218 CurDAG->getRegister(0, PtrVT),
1219 CurDAG->getEntryNode()
1220 };
1221 ResNode = CurDAG->getMachineNode(SystemZ::VL, DL, VT, MVT::Other, Ops);
1222
1223 // Annotate ResNode with memory operand information so that MachineInstr
1224 // queries work properly. This e.g. gives the register allocation the
1225 // required information for rematerialization.
1226 MachineFunction& MF = CurDAG->getMachineFunction();
1227 MachineMemOperand *MemOp =
1228 MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
1229 MachineMemOperand::MOLoad, 16, Align(8));
1230
1231 CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
1232 return ResNode;
1233 }
1234
tryGather(SDNode * N,unsigned Opcode)1235 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1236 SDValue ElemV = N->getOperand(2);
1237 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1238 if (!ElemN)
1239 return false;
1240
1241 unsigned Elem = ElemN->getZExtValue();
1242 EVT VT = N->getValueType(0);
1243 if (Elem >= VT.getVectorNumElements())
1244 return false;
1245
1246 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1247 if (!Load || !Load->hasNUsesOfValue(1, 0))
1248 return false;
1249 if (Load->getMemoryVT().getSizeInBits() !=
1250 Load->getValueType(0).getSizeInBits())
1251 return false;
1252
1253 SDValue Base, Disp, Index;
1254 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1255 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1256 return false;
1257
1258 SDLoc DL(Load);
1259 SDValue Ops[] = {
1260 N->getOperand(0), Base, Disp, Index,
1261 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1262 };
1263 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1264 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1265 ReplaceNode(N, Res);
1266 return true;
1267 }
1268
tryScatter(StoreSDNode * Store,unsigned Opcode)1269 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1270 SDValue Value = Store->getValue();
1271 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1272 return false;
1273 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1274 return false;
1275
1276 SDValue ElemV = Value.getOperand(1);
1277 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1278 if (!ElemN)
1279 return false;
1280
1281 SDValue Vec = Value.getOperand(0);
1282 EVT VT = Vec.getValueType();
1283 unsigned Elem = ElemN->getZExtValue();
1284 if (Elem >= VT.getVectorNumElements())
1285 return false;
1286
1287 SDValue Base, Disp, Index;
1288 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1289 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1290 return false;
1291
1292 SDLoc DL(Store);
1293 SDValue Ops[] = {
1294 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1295 Store->getChain()
1296 };
1297 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1298 return true;
1299 }
1300
1301 // Check whether or not the chain ending in StoreNode is suitable for doing
1302 // the {load; op; store} to modify transformation.
isFusableLoadOpStorePattern(StoreSDNode * StoreNode,SDValue StoredVal,SelectionDAG * CurDAG,LoadSDNode * & LoadNode,SDValue & InputChain)1303 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1304 SDValue StoredVal, SelectionDAG *CurDAG,
1305 LoadSDNode *&LoadNode,
1306 SDValue &InputChain) {
1307 // Is the stored value result 0 of the operation?
1308 if (StoredVal.getResNo() != 0)
1309 return false;
1310
1311 // Are there other uses of the loaded value than the operation?
1312 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1313 return false;
1314
1315 // Is the store non-extending and non-indexed?
1316 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1317 return false;
1318
1319 SDValue Load = StoredVal->getOperand(0);
1320 // Is the stored value a non-extending and non-indexed load?
1321 if (!ISD::isNormalLoad(Load.getNode()))
1322 return false;
1323
1324 // Return LoadNode by reference.
1325 LoadNode = cast<LoadSDNode>(Load);
1326
1327 // Is store the only read of the loaded value?
1328 if (!Load.hasOneUse())
1329 return false;
1330
1331 // Is the address of the store the same as the load?
1332 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1333 LoadNode->getOffset() != StoreNode->getOffset())
1334 return false;
1335
1336 // Check if the chain is produced by the load or is a TokenFactor with
1337 // the load output chain as an operand. Return InputChain by reference.
1338 SDValue Chain = StoreNode->getChain();
1339
1340 bool ChainCheck = false;
1341 if (Chain == Load.getValue(1)) {
1342 ChainCheck = true;
1343 InputChain = LoadNode->getChain();
1344 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1345 SmallVector<SDValue, 4> ChainOps;
1346 SmallVector<const SDNode *, 4> LoopWorklist;
1347 SmallPtrSet<const SDNode *, 16> Visited;
1348 const unsigned int Max = 1024;
1349 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1350 SDValue Op = Chain.getOperand(i);
1351 if (Op == Load.getValue(1)) {
1352 ChainCheck = true;
1353 // Drop Load, but keep its chain. No cycle check necessary.
1354 ChainOps.push_back(Load.getOperand(0));
1355 continue;
1356 }
1357 LoopWorklist.push_back(Op.getNode());
1358 ChainOps.push_back(Op);
1359 }
1360
1361 if (ChainCheck) {
1362 // Add the other operand of StoredVal to worklist.
1363 for (SDValue Op : StoredVal->ops())
1364 if (Op.getNode() != LoadNode)
1365 LoopWorklist.push_back(Op.getNode());
1366
1367 // Check if Load is reachable from any of the nodes in the worklist.
1368 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1369 true))
1370 return false;
1371
1372 // Make a new TokenFactor with all the other input chains except
1373 // for the load.
1374 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1375 MVT::Other, ChainOps);
1376 }
1377 }
1378 if (!ChainCheck)
1379 return false;
1380
1381 return true;
1382 }
1383
1384 // Change a chain of {load; op; store} of the same value into a simple op
1385 // through memory of that value, if the uses of the modified value and its
1386 // address are suitable.
1387 //
1388 // The tablegen pattern memory operand pattern is currently not able to match
1389 // the case where the CC on the original operation are used.
1390 //
1391 // See the equivalent routine in X86ISelDAGToDAG for further comments.
tryFoldLoadStoreIntoMemOperand(SDNode * Node)1392 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1393 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1394 SDValue StoredVal = StoreNode->getOperand(1);
1395 unsigned Opc = StoredVal->getOpcode();
1396 SDLoc DL(StoreNode);
1397
1398 // Before we try to select anything, make sure this is memory operand size
1399 // and opcode we can handle. Note that this must match the code below that
1400 // actually lowers the opcodes.
1401 EVT MemVT = StoreNode->getMemoryVT();
1402 unsigned NewOpc = 0;
1403 bool NegateOperand = false;
1404 switch (Opc) {
1405 default:
1406 return false;
1407 case SystemZISD::SSUBO:
1408 NegateOperand = true;
1409 [[fallthrough]];
1410 case SystemZISD::SADDO:
1411 if (MemVT == MVT::i32)
1412 NewOpc = SystemZ::ASI;
1413 else if (MemVT == MVT::i64)
1414 NewOpc = SystemZ::AGSI;
1415 else
1416 return false;
1417 break;
1418 case SystemZISD::USUBO:
1419 NegateOperand = true;
1420 [[fallthrough]];
1421 case SystemZISD::UADDO:
1422 if (MemVT == MVT::i32)
1423 NewOpc = SystemZ::ALSI;
1424 else if (MemVT == MVT::i64)
1425 NewOpc = SystemZ::ALGSI;
1426 else
1427 return false;
1428 break;
1429 }
1430
1431 LoadSDNode *LoadNode = nullptr;
1432 SDValue InputChain;
1433 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1434 InputChain))
1435 return false;
1436
1437 SDValue Operand = StoredVal.getOperand(1);
1438 auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1439 if (!OperandC)
1440 return false;
1441 auto OperandV = OperandC->getAPIntValue();
1442 if (NegateOperand)
1443 OperandV = -OperandV;
1444 if (OperandV.getSignificantBits() > 8)
1445 return false;
1446 Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1447
1448 SDValue Base, Disp;
1449 if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1450 return false;
1451
1452 SDValue Ops[] = { Base, Disp, Operand, InputChain };
1453 MachineSDNode *Result =
1454 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1455 CurDAG->setNodeMemRefs(
1456 Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1457
1458 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1459 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1460 CurDAG->RemoveDeadNode(Node);
1461 return true;
1462 }
1463
canUseBlockOperation(StoreSDNode * Store,LoadSDNode * Load) const1464 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1465 LoadSDNode *Load) const {
1466 // Check that the two memory operands have the same size.
1467 if (Load->getMemoryVT() != Store->getMemoryVT())
1468 return false;
1469
1470 // Volatility stops an access from being decomposed.
1471 if (Load->isVolatile() || Store->isVolatile())
1472 return false;
1473
1474 // There's no chance of overlap if the load is invariant.
1475 if (Load->isInvariant() && Load->isDereferenceable())
1476 return true;
1477
1478 // Otherwise we need to check whether there's an alias.
1479 const Value *V1 = Load->getMemOperand()->getValue();
1480 const Value *V2 = Store->getMemOperand()->getValue();
1481 if (!V1 || !V2)
1482 return false;
1483
1484 // Reject equality.
1485 uint64_t Size = Load->getMemoryVT().getStoreSize();
1486 int64_t End1 = Load->getSrcValueOffset() + Size;
1487 int64_t End2 = Store->getSrcValueOffset() + Size;
1488 if (V1 == V2 && End1 == End2)
1489 return false;
1490
1491 return AA->isNoAlias(MemoryLocation(V1, End1, Load->getAAInfo()),
1492 MemoryLocation(V2, End2, Store->getAAInfo()));
1493 }
1494
storeLoadCanUseMVC(SDNode * N) const1495 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1496 auto *Store = cast<StoreSDNode>(N);
1497 auto *Load = cast<LoadSDNode>(Store->getValue());
1498
1499 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1500 // instructions.
1501 uint64_t Size = Load->getMemoryVT().getStoreSize();
1502 if (Size > 1 && Size <= 8) {
1503 // Prefer LHRL, LRL and LGRL.
1504 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1505 return false;
1506 // Prefer STHRL, STRL and STGRL.
1507 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1508 return false;
1509 }
1510
1511 return canUseBlockOperation(Store, Load);
1512 }
1513
storeLoadCanUseBlockBinary(SDNode * N,unsigned I) const1514 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1515 unsigned I) const {
1516 auto *StoreA = cast<StoreSDNode>(N);
1517 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1518 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1519 return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() &&
1520 canUseBlockOperation(StoreA, LoadB);
1521 }
1522
storeLoadIsAligned(SDNode * N) const1523 bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const {
1524
1525 auto *MemAccess = cast<MemSDNode>(N);
1526 auto *LdSt = dyn_cast<LSBaseSDNode>(MemAccess);
1527 TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize();
1528 SDValue BasePtr = MemAccess->getBasePtr();
1529 MachineMemOperand *MMO = MemAccess->getMemOperand();
1530 assert(MMO && "Expected a memory operand.");
1531
1532 // The memory access must have a proper alignment and no index register.
1533 // Only load and store nodes have the offset operand (atomic loads do not).
1534 if (MemAccess->getAlign().value() < StoreSize ||
1535 (LdSt && !LdSt->getOffset().isUndef()))
1536 return false;
1537
1538 // The MMO must not have an unaligned offset.
1539 if (MMO->getOffset() % StoreSize != 0)
1540 return false;
1541
1542 // An access to GOT or the Constant Pool is aligned.
1543 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1544 if ((PSV->isGOT() || PSV->isConstantPool()))
1545 return true;
1546
1547 // Check the alignment of a Global Address.
1548 if (BasePtr.getNumOperands())
1549 if (GlobalAddressSDNode *GA =
1550 dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) {
1551 // The immediate offset must be aligned.
1552 if (GA->getOffset() % StoreSize != 0)
1553 return false;
1554
1555 // The alignment of the symbol itself must be at least the store size.
1556 const GlobalValue *GV = GA->getGlobal();
1557 const DataLayout &DL = GV->getDataLayout();
1558 if (GV->getPointerAlignment(DL).value() < StoreSize)
1559 return false;
1560 }
1561
1562 return true;
1563 }
1564
getLoadExtType(SDNode * N) const1565 ISD::LoadExtType SystemZDAGToDAGISel::getLoadExtType(SDNode *N) const {
1566 ISD::LoadExtType ETy;
1567 if (auto *L = dyn_cast<LoadSDNode>(N))
1568 ETy = L->getExtensionType();
1569 else if (auto *AL = dyn_cast<AtomicSDNode>(N))
1570 ETy = AL->getExtensionType();
1571 else
1572 llvm_unreachable("Unkown load node type.");
1573 return ETy;
1574 }
1575
Select(SDNode * Node)1576 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1577 // If we have a custom node, we already have selected!
1578 if (Node->isMachineOpcode()) {
1579 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1580 Node->setNodeId(-1);
1581 return;
1582 }
1583
1584 unsigned Opcode = Node->getOpcode();
1585 switch (Opcode) {
1586 case ISD::OR:
1587 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1588 if (tryRxSBG(Node, SystemZ::ROSBG))
1589 return;
1590 goto or_xor;
1591
1592 case ISD::XOR:
1593 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1594 if (tryRxSBG(Node, SystemZ::RXSBG))
1595 return;
1596 // Fall through.
1597 or_xor:
1598 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1599 // split the operation into two. If both operands here happen to be
1600 // constant, leave this to common code to optimize.
1601 if (Node->getValueType(0) == MVT::i64 &&
1602 Node->getOperand(0).getOpcode() != ISD::Constant)
1603 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1604 uint64_t Val = Op1->getZExtValue();
1605 // Don't split the operation if we can match one of the combined
1606 // logical operations provided by miscellaneous-extensions-3.
1607 if (Subtarget->hasMiscellaneousExtensions3()) {
1608 unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1609 // Check whether this expression matches NAND/NOR/NXOR.
1610 if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1611 if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1612 ChildOpcode == ISD::XOR)
1613 break;
1614 // Check whether this expression matches OR-with-complement
1615 // (or matches an alternate pattern for NXOR).
1616 if (ChildOpcode == ISD::XOR) {
1617 auto Op0 = Node->getOperand(0);
1618 if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1619 if (Op0Op1->getZExtValue() == (uint64_t)-1)
1620 break;
1621 }
1622 }
1623 // Don't split an XOR with -1 as LCGR/AGHI is more compact.
1624 if (Opcode == ISD::XOR && Op1->isAllOnes())
1625 break;
1626 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1627 splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1628 Val - uint32_t(Val), uint32_t(Val));
1629 return;
1630 }
1631 }
1632 break;
1633
1634 case ISD::AND:
1635 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1636 if (tryRxSBG(Node, SystemZ::RNSBG))
1637 return;
1638 [[fallthrough]];
1639 case ISD::ROTL:
1640 case ISD::SHL:
1641 case ISD::SRL:
1642 case ISD::ZERO_EXTEND:
1643 if (tryRISBGZero(Node))
1644 return;
1645 break;
1646
1647 case ISD::BSWAP:
1648 if (Node->getValueType(0) == MVT::i128) {
1649 SDLoc DL(Node);
1650 SDValue Src = Node->getOperand(0);
1651 Src = CurDAG->getNode(ISD::BITCAST, DL, MVT::v16i8, Src);
1652
1653 uint64_t Bytes[2] = { 0x0706050403020100ULL, 0x0f0e0d0c0b0a0908ULL };
1654 SDNode *Mask = loadPoolVectorConstant(APInt(128, Bytes), MVT::v16i8, DL);
1655 SDValue Ops[] = { Src, Src, SDValue(Mask, 0) };
1656 SDValue Res = SDValue(CurDAG->getMachineNode(SystemZ::VPERM, DL,
1657 MVT::v16i8, Ops), 0);
1658
1659 Res = CurDAG->getNode(ISD::BITCAST, DL, MVT::i128, Res);
1660 SDNode *ResNode = Res.getNode();
1661 ReplaceNode(Node, ResNode);
1662 SelectCode(Src.getNode());
1663 SelectCode(ResNode);
1664 return;
1665 }
1666 break;
1667
1668 case ISD::Constant:
1669 // If this is a 64-bit constant that is out of the range of LLILF,
1670 // LLIHF and LGFI, split it into two 32-bit pieces.
1671 if (Node->getValueType(0) == MVT::i64) {
1672 uint64_t Val = Node->getAsZExtVal();
1673 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1674 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1675 uint32_t(Val));
1676 return;
1677 }
1678 }
1679 if (Node->getValueType(0) == MVT::i128) {
1680 const APInt &Val = Node->getAsAPIntVal();
1681 SystemZVectorConstantInfo VCI(Val);
1682 if (VCI.isVectorConstantLegal(*Subtarget)) {
1683 loadVectorConstant(VCI, Node);
1684 return;
1685 }
1686 // If we can't materialize the constant we need to use a literal pool.
1687 SDNode *ResNode = loadPoolVectorConstant(Val, MVT::i128, SDLoc(Node));
1688 ReplaceNode(Node, ResNode);
1689 return;
1690 }
1691 break;
1692
1693 case SystemZISD::SELECT_CCMASK: {
1694 SDValue Op0 = Node->getOperand(0);
1695 SDValue Op1 = Node->getOperand(1);
1696 // Prefer to put any load first, so that it can be matched as a
1697 // conditional load. Likewise for constants in range for LOCHI.
1698 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1699 (Subtarget->hasLoadStoreOnCond2() &&
1700 Node->getValueType(0).isInteger() &&
1701 Node->getValueType(0).getSizeInBits() <= 64 &&
1702 Op1.getOpcode() == ISD::Constant &&
1703 isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1704 !(Op0.getOpcode() == ISD::Constant &&
1705 isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1706 SDValue CCValid = Node->getOperand(2);
1707 SDValue CCMask = Node->getOperand(3);
1708 uint64_t ConstCCValid = CCValid.getNode()->getAsZExtVal();
1709 uint64_t ConstCCMask = CCMask.getNode()->getAsZExtVal();
1710 // Invert the condition.
1711 CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1712 SDLoc(Node), CCMask.getValueType());
1713 SDValue Op4 = Node->getOperand(4);
1714 SDNode *UpdatedNode =
1715 CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1716 if (UpdatedNode != Node) {
1717 // In case this node already exists then replace Node with it.
1718 ReplaceNode(Node, UpdatedNode);
1719 Node = UpdatedNode;
1720 }
1721 }
1722 break;
1723 }
1724
1725 case ISD::INSERT_VECTOR_ELT: {
1726 EVT VT = Node->getValueType(0);
1727 unsigned ElemBitSize = VT.getScalarSizeInBits();
1728 if (ElemBitSize == 32) {
1729 if (tryGather(Node, SystemZ::VGEF))
1730 return;
1731 } else if (ElemBitSize == 64) {
1732 if (tryGather(Node, SystemZ::VGEG))
1733 return;
1734 }
1735 break;
1736 }
1737
1738 case ISD::BUILD_VECTOR: {
1739 auto *BVN = cast<BuildVectorSDNode>(Node);
1740 SystemZVectorConstantInfo VCI(BVN);
1741 if (VCI.isVectorConstantLegal(*Subtarget)) {
1742 loadVectorConstant(VCI, Node);
1743 return;
1744 }
1745 break;
1746 }
1747
1748 case ISD::ConstantFP: {
1749 APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1750 if (Imm.isZero() || Imm.isNegZero())
1751 break;
1752 SystemZVectorConstantInfo VCI(Imm);
1753 bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1754 assert(Success && "Expected legal FP immediate");
1755 loadVectorConstant(VCI, Node);
1756 return;
1757 }
1758
1759 case ISD::STORE: {
1760 if (tryFoldLoadStoreIntoMemOperand(Node))
1761 return;
1762 auto *Store = cast<StoreSDNode>(Node);
1763 unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1764 if (ElemBitSize == 32) {
1765 if (tryScatter(Store, SystemZ::VSCEF))
1766 return;
1767 } else if (ElemBitSize == 64) {
1768 if (tryScatter(Store, SystemZ::VSCEG))
1769 return;
1770 }
1771 break;
1772 }
1773
1774 case ISD::ATOMIC_STORE: {
1775 auto *AtomOp = cast<AtomicSDNode>(Node);
1776 // Replace the atomic_store with a regular store and select it. This is
1777 // ok since we know all store instructions <= 8 bytes are atomic, and the
1778 // 16 byte case is already handled during lowering.
1779 StoreSDNode *St = cast<StoreSDNode>(CurDAG->getTruncStore(
1780 AtomOp->getChain(), SDLoc(AtomOp), AtomOp->getVal(),
1781 AtomOp->getBasePtr(), AtomOp->getMemoryVT(), AtomOp->getMemOperand()));
1782 assert(St->getMemOperand()->isAtomic() && "Broken MMO.");
1783 SDNode *Chain = St;
1784 // We have to enforce sequential consistency by performing a
1785 // serialization operation after the store.
1786 if (AtomOp->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
1787 Chain = CurDAG->getMachineNode(SystemZ::Serialize, SDLoc(AtomOp),
1788 MVT::Other, SDValue(Chain, 0));
1789 ReplaceNode(Node, Chain);
1790 SelectCode(St);
1791 return;
1792 }
1793 }
1794
1795 SelectCode(Node);
1796 }
1797
SelectInlineAsmMemoryOperand(const SDValue & Op,InlineAsm::ConstraintCode ConstraintID,std::vector<SDValue> & OutOps)1798 bool SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand(
1799 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
1800 std::vector<SDValue> &OutOps) {
1801 SystemZAddressingMode::AddrForm Form;
1802 SystemZAddressingMode::DispRange DispRange;
1803 SDValue Base, Disp, Index;
1804
1805 switch(ConstraintID) {
1806 default:
1807 llvm_unreachable("Unexpected asm memory constraint");
1808 case InlineAsm::ConstraintCode::i:
1809 case InlineAsm::ConstraintCode::Q:
1810 case InlineAsm::ConstraintCode::ZQ:
1811 // Accept an address with a short displacement, but no index.
1812 Form = SystemZAddressingMode::FormBD;
1813 DispRange = SystemZAddressingMode::Disp12Only;
1814 break;
1815 case InlineAsm::ConstraintCode::R:
1816 case InlineAsm::ConstraintCode::ZR:
1817 // Accept an address with a short displacement and an index.
1818 Form = SystemZAddressingMode::FormBDXNormal;
1819 DispRange = SystemZAddressingMode::Disp12Only;
1820 break;
1821 case InlineAsm::ConstraintCode::S:
1822 case InlineAsm::ConstraintCode::ZS:
1823 // Accept an address with a long displacement, but no index.
1824 Form = SystemZAddressingMode::FormBD;
1825 DispRange = SystemZAddressingMode::Disp20Only;
1826 break;
1827 case InlineAsm::ConstraintCode::T:
1828 case InlineAsm::ConstraintCode::m:
1829 case InlineAsm::ConstraintCode::o:
1830 case InlineAsm::ConstraintCode::p:
1831 case InlineAsm::ConstraintCode::ZT:
1832 // Accept an address with a long displacement and an index.
1833 // m works the same as T, as this is the most general case.
1834 // We don't really have any special handling of "offsettable"
1835 // memory addresses, so just treat o the same as m.
1836 Form = SystemZAddressingMode::FormBDXNormal;
1837 DispRange = SystemZAddressingMode::Disp20Only;
1838 break;
1839 }
1840
1841 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1842 const TargetRegisterClass *TRC =
1843 Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1844 SDLoc DL(Base);
1845 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1846
1847 // Make sure that the base address doesn't go into %r0.
1848 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1849 if (Base.getOpcode() != ISD::TargetFrameIndex &&
1850 Base.getOpcode() != ISD::Register) {
1851 Base =
1852 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1853 DL, Base.getValueType(),
1854 Base, RC), 0);
1855 }
1856
1857 // Make sure that the index register isn't assigned to %r0 either.
1858 if (Index.getOpcode() != ISD::Register) {
1859 Index =
1860 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1861 DL, Index.getValueType(),
1862 Index, RC), 0);
1863 }
1864
1865 OutOps.push_back(Base);
1866 OutOps.push_back(Disp);
1867 OutOps.push_back(Index);
1868 return false;
1869 }
1870
1871 return true;
1872 }
1873
1874 // IsProfitableToFold - Returns true if is profitable to fold the specific
1875 // operand node N of U during instruction selection that starts at Root.
1876 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1877 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1878 SDNode *Root) const {
1879 // We want to avoid folding a LOAD into an ICMP node if as a result
1880 // we would be forced to spill the condition code into a GPR.
1881 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1882 if (!N.hasOneUse() || !U->hasOneUse())
1883 return false;
1884
1885 // The user of the CC value will usually be a CopyToReg into the
1886 // physical CC register, which in turn is glued and chained to the
1887 // actual instruction that uses the CC value. Bail out if we have
1888 // anything else than that.
1889 SDNode *CCUser = *U->use_begin();
1890 SDNode *CCRegUser = nullptr;
1891 if (CCUser->getOpcode() == ISD::CopyToReg ||
1892 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1893 for (auto *U : CCUser->uses()) {
1894 if (CCRegUser == nullptr)
1895 CCRegUser = U;
1896 else if (CCRegUser != U)
1897 return false;
1898 }
1899 }
1900 if (CCRegUser == nullptr)
1901 return false;
1902
1903 // If the actual instruction is a branch, the only thing that remains to be
1904 // checked is whether the CCUser chain is a predecessor of the load.
1905 if (CCRegUser->isMachineOpcode() &&
1906 CCRegUser->getMachineOpcode() == SystemZ::BRC)
1907 return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1908
1909 // Otherwise, the instruction may have multiple operands, and we need to
1910 // verify that none of them are a predecessor of the load. This is exactly
1911 // the same check that would be done by common code if the CC setter were
1912 // glued to the CC user, so simply invoke that check here.
1913 if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1914 return false;
1915 }
1916
1917 return true;
1918 }
1919
1920 namespace {
1921 // Represents a sequence for extracting a 0/1 value from an IPM result:
1922 // (((X ^ XORValue) + AddValue) >> Bit)
1923 struct IPMConversion {
IPMConversion__anond7b4dcfb0211::IPMConversion1924 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1925 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1926
1927 int64_t XORValue;
1928 int64_t AddValue;
1929 unsigned Bit;
1930 };
1931 } // end anonymous namespace
1932
1933 // Return a sequence for getting a 1 from an IPM result when CC has a
1934 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1935 // The handling of CC values outside CCValid doesn't matter.
getIPMConversion(unsigned CCValid,unsigned CCMask)1936 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1937 // Deal with cases where the result can be taken directly from a bit
1938 // of the IPM result.
1939 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1940 return IPMConversion(0, 0, SystemZ::IPM_CC);
1941 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1942 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1943
1944 // Deal with cases where we can add a value to force the sign bit
1945 // to contain the right value. Putting the bit in 31 means we can
1946 // use SRL rather than RISBG(L), and also makes it easier to get a
1947 // 0/-1 value, so it has priority over the other tests below.
1948 //
1949 // These sequences rely on the fact that the upper two bits of the
1950 // IPM result are zero.
1951 uint64_t TopBit = uint64_t(1) << 31;
1952 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1953 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1954 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1955 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1956 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1957 | SystemZ::CCMASK_1
1958 | SystemZ::CCMASK_2)))
1959 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1960 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1961 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1962 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1963 | SystemZ::CCMASK_2
1964 | SystemZ::CCMASK_3)))
1965 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1966
1967 // Next try inverting the value and testing a bit. 0/1 could be
1968 // handled this way too, but we dealt with that case above.
1969 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1970 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1971
1972 // Handle cases where adding a value forces a non-sign bit to contain
1973 // the right value.
1974 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1975 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1976 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1977 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1978
1979 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1980 // can be done by inverting the low CC bit and applying one of the
1981 // sign-based extractions above.
1982 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1983 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1984 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1985 return IPMConversion(1 << SystemZ::IPM_CC,
1986 TopBit - (3 << SystemZ::IPM_CC), 31);
1987 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1988 | SystemZ::CCMASK_1
1989 | SystemZ::CCMASK_3)))
1990 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1991 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1992 | SystemZ::CCMASK_2
1993 | SystemZ::CCMASK_3)))
1994 return IPMConversion(1 << SystemZ::IPM_CC,
1995 TopBit - (1 << SystemZ::IPM_CC), 31);
1996
1997 llvm_unreachable("Unexpected CC combination");
1998 }
1999
expandSelectBoolean(SDNode * Node)2000 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
2001 auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
2002 auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
2003 if (!TrueOp || !FalseOp)
2004 return SDValue();
2005 if (FalseOp->getZExtValue() != 0)
2006 return SDValue();
2007 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
2008 return SDValue();
2009
2010 auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
2011 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
2012 if (!CCValidOp || !CCMaskOp)
2013 return SDValue();
2014 int CCValid = CCValidOp->getZExtValue();
2015 int CCMask = CCMaskOp->getZExtValue();
2016
2017 SDLoc DL(Node);
2018 SDValue CCReg = Node->getOperand(4);
2019 IPMConversion IPM = getIPMConversion(CCValid, CCMask);
2020 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
2021
2022 if (IPM.XORValue)
2023 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
2024 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
2025
2026 if (IPM.AddValue)
2027 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
2028 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
2029
2030 EVT VT = Node->getValueType(0);
2031 if (VT == MVT::i32 && IPM.Bit == 31) {
2032 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
2033 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
2034 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2035 } else {
2036 if (VT != MVT::i32)
2037 Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
2038
2039 if (TrueOp->getSExtValue() == 1) {
2040 // The SHR/AND sequence should get optimized to an RISBG.
2041 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
2042 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2043 Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
2044 CurDAG->getConstant(1, DL, VT));
2045 } else {
2046 // Sign-extend from IPM.Bit using a pair of shifts.
2047 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
2048 int SraAmt = VT.getSizeInBits() - 1;
2049 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
2050 CurDAG->getConstant(ShlAmt, DL, MVT::i32));
2051 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
2052 CurDAG->getConstant(SraAmt, DL, MVT::i32));
2053 }
2054 }
2055
2056 return Result;
2057 }
2058
shouldSelectForReassoc(SDNode * N) const2059 bool SystemZDAGToDAGISel::shouldSelectForReassoc(SDNode *N) const {
2060 EVT VT = N->getValueType(0);
2061 assert(VT.isFloatingPoint() && "Expected FP SDNode");
2062 return N->getFlags().hasAllowReassociation() &&
2063 N->getFlags().hasNoSignedZeros() && Subtarget->hasVector() &&
2064 (VT != MVT::f32 || Subtarget->hasVectorEnhancements1()) &&
2065 !N->isStrictFPOpcode();
2066 }
2067
PreprocessISelDAG()2068 void SystemZDAGToDAGISel::PreprocessISelDAG() {
2069 // If we have conditional immediate loads, we always prefer
2070 // using those over an IPM sequence.
2071 if (Subtarget->hasLoadStoreOnCond2())
2072 return;
2073
2074 bool MadeChange = false;
2075
2076 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
2077 E = CurDAG->allnodes_end();
2078 I != E;) {
2079 SDNode *N = &*I++;
2080 if (N->use_empty())
2081 continue;
2082
2083 SDValue Res;
2084 switch (N->getOpcode()) {
2085 default: break;
2086 case SystemZISD::SELECT_CCMASK:
2087 Res = expandSelectBoolean(N);
2088 break;
2089 }
2090
2091 if (Res) {
2092 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
2093 LLVM_DEBUG(N->dump(CurDAG));
2094 LLVM_DEBUG(dbgs() << "\nNew: ");
2095 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
2096 LLVM_DEBUG(dbgs() << "\n");
2097
2098 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
2099 MadeChange = true;
2100 }
2101 }
2102
2103 if (MadeChange)
2104 CurDAG->RemoveDeadNodes();
2105 }
2106