1 //===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains common definitions used in the reading and writing of
10 // sample profile data.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
15 #define LLVM_PROFILEDATA_SAMPLEPROF_H
16
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/ProfileData/FunctionId.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorOr.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/ProfileData/HashKeyMap.h"
29 #include <algorithm>
30 #include <cstdint>
31 #include <list>
32 #include <map>
33 #include <set>
34 #include <sstream>
35 #include <string>
36 #include <system_error>
37 #include <unordered_map>
38 #include <utility>
39
40 namespace llvm {
41
42 class DILocation;
43 class raw_ostream;
44
45 const std::error_category &sampleprof_category();
46
47 enum class sampleprof_error {
48 success = 0,
49 bad_magic,
50 unsupported_version,
51 too_large,
52 truncated,
53 malformed,
54 unrecognized_format,
55 unsupported_writing_format,
56 truncated_name_table,
57 not_implemented,
58 counter_overflow,
59 ostream_seek_unsupported,
60 uncompress_failed,
61 zlib_unavailable,
62 hash_mismatch
63 };
64
make_error_code(sampleprof_error E)65 inline std::error_code make_error_code(sampleprof_error E) {
66 return std::error_code(static_cast<int>(E), sampleprof_category());
67 }
68
mergeSampleProfErrors(sampleprof_error & Accumulator,sampleprof_error Result)69 inline sampleprof_error mergeSampleProfErrors(sampleprof_error &Accumulator,
70 sampleprof_error Result) {
71 // Prefer first error encountered as later errors may be secondary effects of
72 // the initial problem.
73 if (Accumulator == sampleprof_error::success &&
74 Result != sampleprof_error::success)
75 Accumulator = Result;
76 return Accumulator;
77 }
78
79 } // end namespace llvm
80
81 namespace std {
82
83 template <>
84 struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
85
86 } // end namespace std
87
88 namespace llvm {
89 namespace sampleprof {
90
91 enum SampleProfileFormat {
92 SPF_None = 0,
93 SPF_Text = 0x1,
94 SPF_Compact_Binary = 0x2, // Deprecated
95 SPF_GCC = 0x3,
96 SPF_Ext_Binary = 0x4,
97 SPF_Binary = 0xff
98 };
99
100 enum SampleProfileLayout {
101 SPL_None = 0,
102 SPL_Nest = 0x1,
103 SPL_Flat = 0x2,
104 };
105
106 static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
107 return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
108 uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
109 uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
110 uint64_t('2') << (64 - 56) | uint64_t(Format);
111 }
112
113 static inline uint64_t SPVersion() { return 103; }
114
115 // Section Type used by SampleProfileExtBinaryBaseReader and
116 // SampleProfileExtBinaryBaseWriter. Never change the existing
117 // value of enum. Only append new ones.
118 enum SecType {
119 SecInValid = 0,
120 SecProfSummary = 1,
121 SecNameTable = 2,
122 SecProfileSymbolList = 3,
123 SecFuncOffsetTable = 4,
124 SecFuncMetadata = 5,
125 SecCSNameTable = 6,
126 // marker for the first type of profile.
127 SecFuncProfileFirst = 32,
128 SecLBRProfile = SecFuncProfileFirst
129 };
130
131 static inline std::string getSecName(SecType Type) {
132 switch (static_cast<int>(Type)) { // Avoid -Wcovered-switch-default
133 case SecInValid:
134 return "InvalidSection";
135 case SecProfSummary:
136 return "ProfileSummarySection";
137 case SecNameTable:
138 return "NameTableSection";
139 case SecProfileSymbolList:
140 return "ProfileSymbolListSection";
141 case SecFuncOffsetTable:
142 return "FuncOffsetTableSection";
143 case SecFuncMetadata:
144 return "FunctionMetadata";
145 case SecCSNameTable:
146 return "CSNameTableSection";
147 case SecLBRProfile:
148 return "LBRProfileSection";
149 default:
150 return "UnknownSection";
151 }
152 }
153
154 // Entry type of section header table used by SampleProfileExtBinaryBaseReader
155 // and SampleProfileExtBinaryBaseWriter.
156 struct SecHdrTableEntry {
157 SecType Type;
158 uint64_t Flags;
159 uint64_t Offset;
160 uint64_t Size;
161 // The index indicating the location of the current entry in
162 // SectionHdrLayout table.
163 uint64_t LayoutIndex;
164 };
165
166 // Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
167 // common flags will be saved in the lower 32bits and section specific flags
168 // will be saved in the higher 32 bits.
169 enum class SecCommonFlags : uint32_t {
170 SecFlagInValid = 0,
171 SecFlagCompress = (1 << 0),
172 // Indicate the section contains only profile without context.
173 SecFlagFlat = (1 << 1)
174 };
175
176 // Section specific flags are defined here.
177 // !!!Note: Everytime a new enum class is created here, please add
178 // a new check in verifySecFlag.
179 enum class SecNameTableFlags : uint32_t {
180 SecFlagInValid = 0,
181 SecFlagMD5Name = (1 << 0),
182 // Store MD5 in fixed length instead of ULEB128 so NameTable can be
183 // accessed like an array.
184 SecFlagFixedLengthMD5 = (1 << 1),
185 // Profile contains ".__uniq." suffix name. Compiler shouldn't strip
186 // the suffix when doing profile matching when seeing the flag.
187 SecFlagUniqSuffix = (1 << 2)
188 };
189 enum class SecProfSummaryFlags : uint32_t {
190 SecFlagInValid = 0,
191 /// SecFlagPartial means the profile is for common/shared code.
192 /// The common profile is usually merged from profiles collected
193 /// from running other targets.
194 SecFlagPartial = (1 << 0),
195 /// SecFlagContext means this is context-sensitive flat profile for
196 /// CSSPGO
197 SecFlagFullContext = (1 << 1),
198 /// SecFlagFSDiscriminator means this profile uses flow-sensitive
199 /// discriminators.
200 SecFlagFSDiscriminator = (1 << 2),
201 /// SecFlagIsPreInlined means this profile contains ShouldBeInlined
202 /// contexts thus this is CS preinliner computed.
203 SecFlagIsPreInlined = (1 << 4),
204 };
205
206 enum class SecFuncMetadataFlags : uint32_t {
207 SecFlagInvalid = 0,
208 SecFlagIsProbeBased = (1 << 0),
209 SecFlagHasAttribute = (1 << 1),
210 };
211
212 enum class SecFuncOffsetFlags : uint32_t {
213 SecFlagInvalid = 0,
214 // Store function offsets in an order of contexts. The order ensures that
215 // callee contexts of a given context laid out next to it.
216 SecFlagOrdered = (1 << 0),
217 };
218
219 // Verify section specific flag is used for the correct section.
220 template <class SecFlagType>
221 static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
222 // No verification is needed for common flags.
223 if (std::is_same<SecCommonFlags, SecFlagType>())
224 return;
225
226 // Verification starts here for section specific flag.
227 bool IsFlagLegal = false;
228 switch (Type) {
229 case SecNameTable:
230 IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
231 break;
232 case SecProfSummary:
233 IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
234 break;
235 case SecFuncMetadata:
236 IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
237 break;
238 default:
239 case SecFuncOffsetTable:
240 IsFlagLegal = std::is_same<SecFuncOffsetFlags, SecFlagType>();
241 break;
242 }
243 if (!IsFlagLegal)
244 llvm_unreachable("Misuse of a flag in an incompatible section");
245 }
246
247 template <class SecFlagType>
248 static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
249 verifySecFlag(Entry.Type, Flag);
250 auto FVal = static_cast<uint64_t>(Flag);
251 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
252 Entry.Flags |= IsCommon ? FVal : (FVal << 32);
253 }
254
255 template <class SecFlagType>
256 static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
257 verifySecFlag(Entry.Type, Flag);
258 auto FVal = static_cast<uint64_t>(Flag);
259 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
260 Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
261 }
262
263 template <class SecFlagType>
264 static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
265 verifySecFlag(Entry.Type, Flag);
266 auto FVal = static_cast<uint64_t>(Flag);
267 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
268 return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
269 }
270
271 /// Represents the relative location of an instruction.
272 ///
273 /// Instruction locations are specified by the line offset from the
274 /// beginning of the function (marked by the line where the function
275 /// header is) and the discriminator value within that line.
276 ///
277 /// The discriminator value is useful to distinguish instructions
278 /// that are on the same line but belong to different basic blocks
279 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
280 struct LineLocation {
281 LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
282
283 void print(raw_ostream &OS) const;
284 void dump() const;
285
286 bool operator<(const LineLocation &O) const {
287 return LineOffset < O.LineOffset ||
288 (LineOffset == O.LineOffset && Discriminator < O.Discriminator);
289 }
290
291 bool operator==(const LineLocation &O) const {
292 return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
293 }
294
295 bool operator!=(const LineLocation &O) const {
296 return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
297 }
298
299 uint64_t getHashCode() const {
300 return ((uint64_t) Discriminator << 32) | LineOffset;
301 }
302
303 uint32_t LineOffset;
304 uint32_t Discriminator;
305 };
306
307 struct LineLocationHash {
308 uint64_t operator()(const LineLocation &Loc) const {
309 return Loc.getHashCode();
310 }
311 };
312
313 raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
314
315 /// Representation of a single sample record.
316 ///
317 /// A sample record is represented by a positive integer value, which
318 /// indicates how frequently was the associated line location executed.
319 ///
320 /// Additionally, if the associated location contains a function call,
321 /// the record will hold a list of all the possible called targets. For
322 /// direct calls, this will be the exact function being invoked. For
323 /// indirect calls (function pointers, virtual table dispatch), this
324 /// will be a list of one or more functions.
325 class SampleRecord {
326 public:
327 using CallTarget = std::pair<FunctionId, uint64_t>;
328 struct CallTargetComparator {
329 bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
330 if (LHS.second != RHS.second)
331 return LHS.second > RHS.second;
332
333 return LHS.first < RHS.first;
334 }
335 };
336
337 using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
338 using CallTargetMap = std::unordered_map<FunctionId, uint64_t>;
339 SampleRecord() = default;
340
341 /// Increment the number of samples for this record by \p S.
342 /// Optionally scale sample count \p S by \p Weight.
343 ///
344 /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
345 /// around unsigned integers.
346 sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
347 bool Overflowed;
348 NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
349 return Overflowed ? sampleprof_error::counter_overflow
350 : sampleprof_error::success;
351 }
352
353 /// Decrease the number of samples for this record by \p S. Return the amout
354 /// of samples actually decreased.
355 uint64_t removeSamples(uint64_t S) {
356 if (S > NumSamples)
357 S = NumSamples;
358 NumSamples -= S;
359 return S;
360 }
361
362 /// Add called function \p F with samples \p S.
363 /// Optionally scale sample count \p S by \p Weight.
364 ///
365 /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
366 /// around unsigned integers.
367 sampleprof_error addCalledTarget(FunctionId F, uint64_t S,
368 uint64_t Weight = 1) {
369 uint64_t &TargetSamples = CallTargets[F];
370 bool Overflowed;
371 TargetSamples =
372 SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
373 return Overflowed ? sampleprof_error::counter_overflow
374 : sampleprof_error::success;
375 }
376
377 /// Remove called function from the call target map. Return the target sample
378 /// count of the called function.
379 uint64_t removeCalledTarget(FunctionId F) {
380 uint64_t Count = 0;
381 auto I = CallTargets.find(F);
382 if (I != CallTargets.end()) {
383 Count = I->second;
384 CallTargets.erase(I);
385 }
386 return Count;
387 }
388
389 /// Return true if this sample record contains function calls.
390 bool hasCalls() const { return !CallTargets.empty(); }
391
392 uint64_t getSamples() const { return NumSamples; }
393 const CallTargetMap &getCallTargets() const { return CallTargets; }
394 const SortedCallTargetSet getSortedCallTargets() const {
395 return sortCallTargets(CallTargets);
396 }
397
398 uint64_t getCallTargetSum() const {
399 uint64_t Sum = 0;
400 for (const auto &I : CallTargets)
401 Sum += I.second;
402 return Sum;
403 }
404
405 /// Sort call targets in descending order of call frequency.
406 static const SortedCallTargetSet
407 sortCallTargets(const CallTargetMap &Targets) {
408 SortedCallTargetSet SortedTargets;
409 for (const auto &[Target, Frequency] : Targets) {
410 SortedTargets.emplace(Target, Frequency);
411 }
412 return SortedTargets;
413 }
414
415 /// Prorate call targets by a distribution factor.
416 static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
417 float DistributionFactor) {
418 CallTargetMap AdjustedTargets;
419 for (const auto &[Target, Frequency] : Targets) {
420 AdjustedTargets[Target] = Frequency * DistributionFactor;
421 }
422 return AdjustedTargets;
423 }
424
425 /// Merge the samples in \p Other into this record.
426 /// Optionally scale sample counts by \p Weight.
427 sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1);
428 void print(raw_ostream &OS, unsigned Indent) const;
429 void dump() const;
430
431 bool operator==(const SampleRecord &Other) const {
432 return NumSamples == Other.NumSamples && CallTargets == Other.CallTargets;
433 }
434
435 bool operator!=(const SampleRecord &Other) const {
436 return !(*this == Other);
437 }
438
439 private:
440 uint64_t NumSamples = 0;
441 CallTargetMap CallTargets;
442 };
443
444 raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
445
446 // State of context associated with FunctionSamples
447 enum ContextStateMask {
448 UnknownContext = 0x0, // Profile without context
449 RawContext = 0x1, // Full context profile from input profile
450 SyntheticContext = 0x2, // Synthetic context created for context promotion
451 InlinedContext = 0x4, // Profile for context that is inlined into caller
452 MergedContext = 0x8 // Profile for context merged into base profile
453 };
454
455 // Attribute of context associated with FunctionSamples
456 enum ContextAttributeMask {
457 ContextNone = 0x0,
458 ContextWasInlined = 0x1, // Leaf of context was inlined in previous build
459 ContextShouldBeInlined = 0x2, // Leaf of context should be inlined
460 ContextDuplicatedIntoBase =
461 0x4, // Leaf of context is duplicated into the base profile
462 };
463
464 // Represents a context frame with profile function and line location
465 struct SampleContextFrame {
466 FunctionId Func;
467 LineLocation Location;
468
469 SampleContextFrame() : Location(0, 0) {}
470
471 SampleContextFrame(FunctionId Func, LineLocation Location)
472 : Func(Func), Location(Location) {}
473
474 bool operator==(const SampleContextFrame &That) const {
475 return Location == That.Location && Func == That.Func;
476 }
477
478 bool operator!=(const SampleContextFrame &That) const {
479 return !(*this == That);
480 }
481
482 std::string toString(bool OutputLineLocation) const {
483 std::ostringstream OContextStr;
484 OContextStr << Func.str();
485 if (OutputLineLocation) {
486 OContextStr << ":" << Location.LineOffset;
487 if (Location.Discriminator)
488 OContextStr << "." << Location.Discriminator;
489 }
490 return OContextStr.str();
491 }
492
493 uint64_t getHashCode() const {
494 uint64_t NameHash = Func.getHashCode();
495 uint64_t LocId = Location.getHashCode();
496 return NameHash + (LocId << 5) + LocId;
497 }
498 };
499
500 static inline hash_code hash_value(const SampleContextFrame &arg) {
501 return arg.getHashCode();
502 }
503
504 using SampleContextFrameVector = SmallVector<SampleContextFrame, 1>;
505 using SampleContextFrames = ArrayRef<SampleContextFrame>;
506
507 struct SampleContextFrameHash {
508 uint64_t operator()(const SampleContextFrameVector &S) const {
509 return hash_combine_range(S.begin(), S.end());
510 }
511 };
512
513 // Sample context for FunctionSamples. It consists of the calling context,
514 // the function name and context state. Internally sample context is represented
515 // using ArrayRef, which is also the input for constructing a `SampleContext`.
516 // It can accept and represent both full context string as well as context-less
517 // function name.
518 // For a CS profile, a full context vector can look like:
519 // `main:3 _Z5funcAi:1 _Z8funcLeafi`
520 // For a base CS profile without calling context, the context vector should only
521 // contain the leaf frame name.
522 // For a non-CS profile, the context vector should be empty.
523 class SampleContext {
524 public:
525 SampleContext() : State(UnknownContext), Attributes(ContextNone) {}
526
527 SampleContext(StringRef Name)
528 : Func(Name), State(UnknownContext), Attributes(ContextNone) {
529 assert(!Name.empty() && "Name is empty");
530 }
531
532 SampleContext(FunctionId Func)
533 : Func(Func), State(UnknownContext), Attributes(ContextNone) {}
534
535 SampleContext(SampleContextFrames Context,
536 ContextStateMask CState = RawContext)
537 : Attributes(ContextNone) {
538 assert(!Context.empty() && "Context is empty");
539 setContext(Context, CState);
540 }
541
542 // Give a context string, decode and populate internal states like
543 // Function name, Calling context and context state. Example of input
544 // `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
545 SampleContext(StringRef ContextStr,
546 std::list<SampleContextFrameVector> &CSNameTable,
547 ContextStateMask CState = RawContext)
548 : Attributes(ContextNone) {
549 assert(!ContextStr.empty());
550 // Note that `[]` wrapped input indicates a full context string, otherwise
551 // it's treated as context-less function name only.
552 bool HasContext = ContextStr.starts_with("[");
553 if (!HasContext) {
554 State = UnknownContext;
555 Func = FunctionId(ContextStr);
556 } else {
557 CSNameTable.emplace_back();
558 SampleContextFrameVector &Context = CSNameTable.back();
559 createCtxVectorFromStr(ContextStr, Context);
560 setContext(Context, CState);
561 }
562 }
563
564 /// Create a context vector from a given context string and save it in
565 /// `Context`.
566 static void createCtxVectorFromStr(StringRef ContextStr,
567 SampleContextFrameVector &Context) {
568 // Remove encapsulating '[' and ']' if any
569 ContextStr = ContextStr.substr(1, ContextStr.size() - 2);
570 StringRef ContextRemain = ContextStr;
571 StringRef ChildContext;
572 FunctionId Callee;
573 while (!ContextRemain.empty()) {
574 auto ContextSplit = ContextRemain.split(" @ ");
575 ChildContext = ContextSplit.first;
576 ContextRemain = ContextSplit.second;
577 LineLocation CallSiteLoc(0, 0);
578 decodeContextString(ChildContext, Callee, CallSiteLoc);
579 Context.emplace_back(Callee, CallSiteLoc);
580 }
581 }
582
583 // Decode context string for a frame to get function name and location.
584 // `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
585 static void decodeContextString(StringRef ContextStr,
586 FunctionId &Func,
587 LineLocation &LineLoc) {
588 // Get function name
589 auto EntrySplit = ContextStr.split(':');
590 Func = FunctionId(EntrySplit.first);
591
592 LineLoc = {0, 0};
593 if (!EntrySplit.second.empty()) {
594 // Get line offset, use signed int for getAsInteger so string will
595 // be parsed as signed.
596 int LineOffset = 0;
597 auto LocSplit = EntrySplit.second.split('.');
598 LocSplit.first.getAsInteger(10, LineOffset);
599 LineLoc.LineOffset = LineOffset;
600
601 // Get discriminator
602 if (!LocSplit.second.empty())
603 LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
604 }
605 }
606
607 operator SampleContextFrames() const { return FullContext; }
608 bool hasAttribute(ContextAttributeMask A) { return Attributes & (uint32_t)A; }
609 void setAttribute(ContextAttributeMask A) { Attributes |= (uint32_t)A; }
610 uint32_t getAllAttributes() { return Attributes; }
611 void setAllAttributes(uint32_t A) { Attributes = A; }
612 bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
613 void setState(ContextStateMask S) { State |= (uint32_t)S; }
614 void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
615 bool hasContext() const { return State != UnknownContext; }
616 bool isBaseContext() const { return FullContext.size() == 1; }
617 FunctionId getFunction() const { return Func; }
618 SampleContextFrames getContextFrames() const { return FullContext; }
619
620 static std::string getContextString(SampleContextFrames Context,
621 bool IncludeLeafLineLocation = false) {
622 std::ostringstream OContextStr;
623 for (uint32_t I = 0; I < Context.size(); I++) {
624 if (OContextStr.str().size()) {
625 OContextStr << " @ ";
626 }
627 OContextStr << Context[I].toString(I != Context.size() - 1 ||
628 IncludeLeafLineLocation);
629 }
630 return OContextStr.str();
631 }
632
633 std::string toString() const {
634 if (!hasContext())
635 return Func.str();
636 return getContextString(FullContext, false);
637 }
638
639 uint64_t getHashCode() const {
640 if (hasContext())
641 return hash_value(getContextFrames());
642 return getFunction().getHashCode();
643 }
644
645 /// Set the name of the function and clear the current context.
646 void setFunction(FunctionId NewFunctionID) {
647 Func = NewFunctionID;
648 FullContext = SampleContextFrames();
649 State = UnknownContext;
650 }
651
652 void setContext(SampleContextFrames Context,
653 ContextStateMask CState = RawContext) {
654 assert(CState != UnknownContext);
655 FullContext = Context;
656 Func = Context.back().Func;
657 State = CState;
658 }
659
660 bool operator==(const SampleContext &That) const {
661 return State == That.State && Func == That.Func &&
662 FullContext == That.FullContext;
663 }
664
665 bool operator!=(const SampleContext &That) const { return !(*this == That); }
666
667 bool operator<(const SampleContext &That) const {
668 if (State != That.State)
669 return State < That.State;
670
671 if (!hasContext()) {
672 return Func < That.Func;
673 }
674
675 uint64_t I = 0;
676 while (I < std::min(FullContext.size(), That.FullContext.size())) {
677 auto &Context1 = FullContext[I];
678 auto &Context2 = That.FullContext[I];
679 auto V = Context1.Func.compare(Context2.Func);
680 if (V)
681 return V < 0;
682 if (Context1.Location != Context2.Location)
683 return Context1.Location < Context2.Location;
684 I++;
685 }
686
687 return FullContext.size() < That.FullContext.size();
688 }
689
690 struct Hash {
691 uint64_t operator()(const SampleContext &Context) const {
692 return Context.getHashCode();
693 }
694 };
695
696 bool isPrefixOf(const SampleContext &That) const {
697 auto ThisContext = FullContext;
698 auto ThatContext = That.FullContext;
699 if (ThatContext.size() < ThisContext.size())
700 return false;
701 ThatContext = ThatContext.take_front(ThisContext.size());
702 // Compare Leaf frame first
703 if (ThisContext.back().Func != ThatContext.back().Func)
704 return false;
705 // Compare leading context
706 return ThisContext.drop_back() == ThatContext.drop_back();
707 }
708
709 private:
710 // The function associated with this context. If CS profile, this is the leaf
711 // function.
712 FunctionId Func;
713 // Full context including calling context and leaf function name
714 SampleContextFrames FullContext;
715 // State of the associated sample profile
716 uint32_t State;
717 // Attribute of the associated sample profile
718 uint32_t Attributes;
719 };
720
721 static inline hash_code hash_value(const SampleContext &Context) {
722 return Context.getHashCode();
723 }
724
725 inline raw_ostream &operator<<(raw_ostream &OS, const SampleContext &Context) {
726 return OS << Context.toString();
727 }
728
729 class FunctionSamples;
730 class SampleProfileReaderItaniumRemapper;
731
732 using BodySampleMap = std::map<LineLocation, SampleRecord>;
733 // NOTE: Using a StringMap here makes parsed profiles consume around 17% more
734 // memory, which is *very* significant for large profiles.
735 using FunctionSamplesMap = std::map<FunctionId, FunctionSamples>;
736 using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
737 using LocToLocMap =
738 std::unordered_map<LineLocation, LineLocation, LineLocationHash>;
739
740 /// Representation of the samples collected for a function.
741 ///
742 /// This data structure contains all the collected samples for the body
743 /// of a function. Each sample corresponds to a LineLocation instance
744 /// within the body of the function.
745 class FunctionSamples {
746 public:
747 FunctionSamples() = default;
748
749 void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
750 void dump() const;
751
752 sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
753 bool Overflowed;
754 TotalSamples =
755 SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
756 return Overflowed ? sampleprof_error::counter_overflow
757 : sampleprof_error::success;
758 }
759
760 void removeTotalSamples(uint64_t Num) {
761 if (TotalSamples < Num)
762 TotalSamples = 0;
763 else
764 TotalSamples -= Num;
765 }
766
767 void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
768
769 void setHeadSamples(uint64_t Num) { TotalHeadSamples = Num; }
770
771 sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
772 bool Overflowed;
773 TotalHeadSamples =
774 SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
775 return Overflowed ? sampleprof_error::counter_overflow
776 : sampleprof_error::success;
777 }
778
779 sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
780 uint64_t Num, uint64_t Weight = 1) {
781 return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
782 Num, Weight);
783 }
784
785 sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
786 uint32_t Discriminator,
787 FunctionId Func,
788 uint64_t Num,
789 uint64_t Weight = 1) {
790 return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
791 Func, Num, Weight);
792 }
793
794 sampleprof_error addSampleRecord(LineLocation Location,
795 const SampleRecord &SampleRecord,
796 uint64_t Weight = 1) {
797 return BodySamples[Location].merge(SampleRecord, Weight);
798 }
799
800 // Remove a call target and decrease the body sample correspondingly. Return
801 // the number of body samples actually decreased.
802 uint64_t removeCalledTargetAndBodySample(uint32_t LineOffset,
803 uint32_t Discriminator,
804 FunctionId Func) {
805 uint64_t Count = 0;
806 auto I = BodySamples.find(LineLocation(LineOffset, Discriminator));
807 if (I != BodySamples.end()) {
808 Count = I->second.removeCalledTarget(Func);
809 Count = I->second.removeSamples(Count);
810 if (!I->second.getSamples())
811 BodySamples.erase(I);
812 }
813 return Count;
814 }
815
816 // Remove all call site samples for inlinees. This is needed when flattening
817 // a nested profile.
818 void removeAllCallsiteSamples() {
819 CallsiteSamples.clear();
820 }
821
822 // Accumulate all call target samples to update the body samples.
823 void updateCallsiteSamples() {
824 for (auto &I : BodySamples) {
825 uint64_t TargetSamples = I.second.getCallTargetSum();
826 // It's possible that the body sample count can be greater than the call
827 // target sum. E.g, if some call targets are external targets, they won't
828 // be considered valid call targets, but the body sample count which is
829 // from lbr ranges can actually include them.
830 if (TargetSamples > I.second.getSamples())
831 I.second.addSamples(TargetSamples - I.second.getSamples());
832 }
833 }
834
835 // Accumulate all body samples to set total samples.
836 void updateTotalSamples() {
837 setTotalSamples(0);
838 for (const auto &I : BodySamples)
839 addTotalSamples(I.second.getSamples());
840
841 for (auto &I : CallsiteSamples) {
842 for (auto &CS : I.second) {
843 CS.second.updateTotalSamples();
844 addTotalSamples(CS.second.getTotalSamples());
845 }
846 }
847 }
848
849 // Set current context and all callee contexts to be synthetic.
850 void setContextSynthetic() {
851 Context.setState(SyntheticContext);
852 for (auto &I : CallsiteSamples) {
853 for (auto &CS : I.second) {
854 CS.second.setContextSynthetic();
855 }
856 }
857 }
858
859 // Query the stale profile matching results and remap the location.
860 const LineLocation &mapIRLocToProfileLoc(const LineLocation &IRLoc) const {
861 // There is no remapping if the profile is not stale or the matching gives
862 // the same location.
863 if (!IRToProfileLocationMap)
864 return IRLoc;
865 const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
866 if (ProfileLoc != IRToProfileLocationMap->end())
867 return ProfileLoc->second;
868 return IRLoc;
869 }
870
871 /// Return the number of samples collected at the given location.
872 /// Each location is specified by \p LineOffset and \p Discriminator.
873 /// If the location is not found in profile, return error.
874 ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
875 uint32_t Discriminator) const {
876 const auto &Ret = BodySamples.find(
877 mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
878 if (Ret == BodySamples.end())
879 return std::error_code();
880 return Ret->second.getSamples();
881 }
882
883 /// Returns the call target map collected at a given location.
884 /// Each location is specified by \p LineOffset and \p Discriminator.
885 /// If the location is not found in profile, return error.
886 ErrorOr<const SampleRecord::CallTargetMap &>
887 findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
888 const auto &Ret = BodySamples.find(
889 mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
890 if (Ret == BodySamples.end())
891 return std::error_code();
892 return Ret->second.getCallTargets();
893 }
894
895 /// Returns the call target map collected at a given location specified by \p
896 /// CallSite. If the location is not found in profile, return error.
897 ErrorOr<const SampleRecord::CallTargetMap &>
898 findCallTargetMapAt(const LineLocation &CallSite) const {
899 const auto &Ret = BodySamples.find(mapIRLocToProfileLoc(CallSite));
900 if (Ret == BodySamples.end())
901 return std::error_code();
902 return Ret->second.getCallTargets();
903 }
904
905 /// Return the function samples at the given callsite location.
906 FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
907 return CallsiteSamples[mapIRLocToProfileLoc(Loc)];
908 }
909
910 /// Returns the FunctionSamplesMap at the given \p Loc.
911 const FunctionSamplesMap *
912 findFunctionSamplesMapAt(const LineLocation &Loc) const {
913 auto Iter = CallsiteSamples.find(mapIRLocToProfileLoc(Loc));
914 if (Iter == CallsiteSamples.end())
915 return nullptr;
916 return &Iter->second;
917 }
918
919 /// Returns a pointer to FunctionSamples at the given callsite location
920 /// \p Loc with callee \p CalleeName. If no callsite can be found, relax
921 /// the restriction to return the FunctionSamples at callsite location
922 /// \p Loc with the maximum total sample count. If \p Remapper or \p
923 /// FuncNameToProfNameMap is not nullptr, use them to find FunctionSamples
924 /// with equivalent name as \p CalleeName.
925 const FunctionSamples *findFunctionSamplesAt(
926 const LineLocation &Loc, StringRef CalleeName,
927 SampleProfileReaderItaniumRemapper *Remapper,
928 const HashKeyMap<std::unordered_map, FunctionId, FunctionId>
929 *FuncNameToProfNameMap = nullptr) const;
930
931 bool empty() const { return TotalSamples == 0; }
932
933 /// Return the total number of samples collected inside the function.
934 uint64_t getTotalSamples() const { return TotalSamples; }
935
936 /// For top-level functions, return the total number of branch samples that
937 /// have the function as the branch target (or 0 otherwise). This is the raw
938 /// data fetched from the profile. This should be equivalent to the sample of
939 /// the first instruction of the symbol. But as we directly get this info for
940 /// raw profile without referring to potentially inaccurate debug info, this
941 /// gives more accurate profile data and is preferred for standalone symbols.
942 uint64_t getHeadSamples() const { return TotalHeadSamples; }
943
944 /// Return an estimate of the sample count of the function entry basic block.
945 /// The function can be either a standalone symbol or an inlined function.
946 /// For Context-Sensitive profiles, this will prefer returning the head
947 /// samples (i.e. getHeadSamples()), if non-zero. Otherwise it estimates from
948 /// the function body's samples or callsite samples.
949 uint64_t getHeadSamplesEstimate() const {
950 if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
951 // For CS profile, if we already have more accurate head samples
952 // counted by branch sample from caller, use them as entry samples.
953 return getHeadSamples();
954 }
955 uint64_t Count = 0;
956 // Use either BodySamples or CallsiteSamples which ever has the smaller
957 // lineno.
958 if (!BodySamples.empty() &&
959 (CallsiteSamples.empty() ||
960 BodySamples.begin()->first < CallsiteSamples.begin()->first))
961 Count = BodySamples.begin()->second.getSamples();
962 else if (!CallsiteSamples.empty()) {
963 // An indirect callsite may be promoted to several inlined direct calls.
964 // We need to get the sum of them.
965 for (const auto &FuncSamples : CallsiteSamples.begin()->second)
966 Count += FuncSamples.second.getHeadSamplesEstimate();
967 }
968 // Return at least 1 if total sample is not 0.
969 return Count ? Count : TotalSamples > 0;
970 }
971
972 /// Return all the samples collected in the body of the function.
973 const BodySampleMap &getBodySamples() const { return BodySamples; }
974
975 /// Return all the callsite samples collected in the body of the function.
976 const CallsiteSampleMap &getCallsiteSamples() const {
977 return CallsiteSamples;
978 }
979
980 /// Return the maximum of sample counts in a function body. When SkipCallSite
981 /// is false, which is the default, the return count includes samples in the
982 /// inlined functions. When SkipCallSite is true, the return count only
983 /// considers the body samples.
984 uint64_t getMaxCountInside(bool SkipCallSite = false) const {
985 uint64_t MaxCount = 0;
986 for (const auto &L : getBodySamples())
987 MaxCount = std::max(MaxCount, L.second.getSamples());
988 if (SkipCallSite)
989 return MaxCount;
990 for (const auto &C : getCallsiteSamples())
991 for (const FunctionSamplesMap::value_type &F : C.second)
992 MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
993 return MaxCount;
994 }
995
996 /// Merge the samples in \p Other into this one.
997 /// Optionally scale samples by \p Weight.
998 sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
999 sampleprof_error Result = sampleprof_error::success;
1000 if (!GUIDToFuncNameMap)
1001 GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
1002 if (Context.getFunction().empty())
1003 Context = Other.getContext();
1004 if (FunctionHash == 0) {
1005 // Set the function hash code for the target profile.
1006 FunctionHash = Other.getFunctionHash();
1007 } else if (FunctionHash != Other.getFunctionHash()) {
1008 // The two profiles coming with different valid hash codes indicates
1009 // either:
1010 // 1. They are same-named static functions from different compilation
1011 // units (without using -unique-internal-linkage-names), or
1012 // 2. They are really the same function but from different compilations.
1013 // Let's bail out in either case for now, which means one profile is
1014 // dropped.
1015 return sampleprof_error::hash_mismatch;
1016 }
1017
1018 mergeSampleProfErrors(Result,
1019 addTotalSamples(Other.getTotalSamples(), Weight));
1020 mergeSampleProfErrors(Result,
1021 addHeadSamples(Other.getHeadSamples(), Weight));
1022 for (const auto &I : Other.getBodySamples()) {
1023 const LineLocation &Loc = I.first;
1024 const SampleRecord &Rec = I.second;
1025 mergeSampleProfErrors(Result, BodySamples[Loc].merge(Rec, Weight));
1026 }
1027 for (const auto &I : Other.getCallsiteSamples()) {
1028 const LineLocation &Loc = I.first;
1029 FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
1030 for (const auto &Rec : I.second)
1031 mergeSampleProfErrors(Result,
1032 FSMap[Rec.first].merge(Rec.second, Weight));
1033 }
1034 return Result;
1035 }
1036
1037 /// Recursively traverses all children, if the total sample count of the
1038 /// corresponding function is no less than \p Threshold, add its corresponding
1039 /// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
1040 /// to \p S.
1041 void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S,
1042 const HashKeyMap<std::unordered_map, FunctionId,
1043 Function *> &SymbolMap,
1044 uint64_t Threshold) const {
1045 if (TotalSamples <= Threshold)
1046 return;
1047 auto IsDeclaration = [](const Function *F) {
1048 return !F || F->isDeclaration();
1049 };
1050 if (IsDeclaration(SymbolMap.lookup(getFunction()))) {
1051 // Add to the import list only when it's defined out of module.
1052 S.insert(getGUID());
1053 }
1054 // Import hot CallTargets, which may not be available in IR because full
1055 // profile annotation cannot be done until backend compilation in ThinLTO.
1056 for (const auto &BS : BodySamples)
1057 for (const auto &TS : BS.second.getCallTargets())
1058 if (TS.second > Threshold) {
1059 const Function *Callee = SymbolMap.lookup(TS.first);
1060 if (IsDeclaration(Callee))
1061 S.insert(TS.first.getHashCode());
1062 }
1063 for (const auto &CS : CallsiteSamples)
1064 for (const auto &NameFS : CS.second)
1065 NameFS.second.findInlinedFunctions(S, SymbolMap, Threshold);
1066 }
1067
1068 /// Set the name of the function.
1069 void setFunction(FunctionId NewFunctionID) {
1070 Context.setFunction(NewFunctionID);
1071 }
1072
1073 /// Return the function name.
1074 FunctionId getFunction() const { return Context.getFunction(); }
1075
1076 /// Return the original function name.
1077 StringRef getFuncName() const { return getFuncName(getFunction()); }
1078
1079 void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
1080
1081 uint64_t getFunctionHash() const { return FunctionHash; }
1082
1083 void setIRToProfileLocationMap(const LocToLocMap *LTLM) {
1084 assert(IRToProfileLocationMap == nullptr && "this should be set only once");
1085 IRToProfileLocationMap = LTLM;
1086 }
1087
1088 /// Return the canonical name for a function, taking into account
1089 /// suffix elision policy attributes.
1090 static StringRef getCanonicalFnName(const Function &F) {
1091 const char *AttrName = "sample-profile-suffix-elision-policy";
1092 auto Attr = F.getFnAttribute(AttrName).getValueAsString();
1093 return getCanonicalFnName(F.getName(), Attr);
1094 }
1095
1096 /// Name suffixes which canonicalization should handle to avoid
1097 /// profile mismatch.
1098 static constexpr const char *LLVMSuffix = ".llvm.";
1099 static constexpr const char *PartSuffix = ".part.";
1100 static constexpr const char *UniqSuffix = ".__uniq.";
1101
1102 static StringRef getCanonicalFnName(StringRef FnName,
1103 StringRef Attr = "selected") {
1104 // Note the sequence of the suffixes in the knownSuffixes array matters.
1105 // If suffix "A" is appended after the suffix "B", "A" should be in front
1106 // of "B" in knownSuffixes.
1107 const char *KnownSuffixes[] = {LLVMSuffix, PartSuffix, UniqSuffix};
1108 if (Attr == "" || Attr == "all")
1109 return FnName.split('.').first;
1110 if (Attr == "selected") {
1111 StringRef Cand(FnName);
1112 for (const auto &Suf : KnownSuffixes) {
1113 StringRef Suffix(Suf);
1114 // If the profile contains ".__uniq." suffix, don't strip the
1115 // suffix for names in the IR.
1116 if (Suffix == UniqSuffix && FunctionSamples::HasUniqSuffix)
1117 continue;
1118 auto It = Cand.rfind(Suffix);
1119 if (It == StringRef::npos)
1120 continue;
1121 auto Dit = Cand.rfind('.');
1122 if (Dit == It + Suffix.size() - 1)
1123 Cand = Cand.substr(0, It);
1124 }
1125 return Cand;
1126 }
1127 if (Attr == "none")
1128 return FnName;
1129 assert(false && "internal error: unknown suffix elision policy");
1130 return FnName;
1131 }
1132
1133 /// Translate \p Func into its original name.
1134 /// When profile doesn't use MD5, \p Func needs no translation.
1135 /// When profile uses MD5, \p Func in current FunctionSamples
1136 /// is actually GUID of the original function name. getFuncName will
1137 /// translate \p Func in current FunctionSamples into its original name
1138 /// by looking up in the function map GUIDToFuncNameMap.
1139 /// If the original name doesn't exist in the map, return empty StringRef.
1140 StringRef getFuncName(FunctionId Func) const {
1141 if (!UseMD5)
1142 return Func.stringRef();
1143
1144 assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be populated first");
1145 return GUIDToFuncNameMap->lookup(Func.getHashCode());
1146 }
1147
1148 /// Returns the line offset to the start line of the subprogram.
1149 /// We assume that a single function will not exceed 65535 LOC.
1150 static unsigned getOffset(const DILocation *DIL);
1151
1152 /// Returns a unique call site identifier for a given debug location of a call
1153 /// instruction. This is wrapper of two scenarios, the probe-based profile and
1154 /// regular profile, to hide implementation details from the sample loader and
1155 /// the context tracker.
1156 static LineLocation getCallSiteIdentifier(const DILocation *DIL,
1157 bool ProfileIsFS = false);
1158
1159 /// Returns a unique hash code for a combination of a callsite location and
1160 /// the callee function name.
1161 /// Guarantee MD5 and non-MD5 representation of the same function results in
1162 /// the same hash.
1163 static uint64_t getCallSiteHash(FunctionId Callee,
1164 const LineLocation &Callsite) {
1165 return SampleContextFrame(Callee, Callsite).getHashCode();
1166 }
1167
1168 /// Get the FunctionSamples of the inline instance where DIL originates
1169 /// from.
1170 ///
1171 /// The FunctionSamples of the instruction (Machine or IR) associated to
1172 /// \p DIL is the inlined instance in which that instruction is coming from.
1173 /// We traverse the inline stack of that instruction, and match it with the
1174 /// tree nodes in the profile.
1175 ///
1176 /// \returns the FunctionSamples pointer to the inlined instance.
1177 /// If \p Remapper or \p FuncNameToProfNameMap is not nullptr, it will be used
1178 /// to find matching FunctionSamples with not exactly the same but equivalent
1179 /// name.
1180 const FunctionSamples *findFunctionSamples(
1181 const DILocation *DIL,
1182 SampleProfileReaderItaniumRemapper *Remapper = nullptr,
1183 const HashKeyMap<std::unordered_map, FunctionId, FunctionId>
1184 *FuncNameToProfNameMap = nullptr) const;
1185
1186 static bool ProfileIsProbeBased;
1187
1188 static bool ProfileIsCS;
1189
1190 static bool ProfileIsPreInlined;
1191
1192 SampleContext &getContext() const { return Context; }
1193
1194 void setContext(const SampleContext &FContext) { Context = FContext; }
1195
1196 /// Whether the profile uses MD5 to represent string.
1197 static bool UseMD5;
1198
1199 /// Whether the profile contains any ".__uniq." suffix in a name.
1200 static bool HasUniqSuffix;
1201
1202 /// If this profile uses flow sensitive discriminators.
1203 static bool ProfileIsFS;
1204
1205 /// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
1206 /// all the function symbols defined or declared in current module.
1207 DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
1208
1209 /// Return the GUID of the context's name. If the context is already using
1210 /// MD5, don't hash it again.
1211 uint64_t getGUID() const {
1212 return getFunction().getHashCode();
1213 }
1214
1215 // Find all the names in the current FunctionSamples including names in
1216 // all the inline instances and names of call targets.
1217 void findAllNames(DenseSet<FunctionId> &NameSet) const;
1218
1219 bool operator==(const FunctionSamples &Other) const {
1220 return (GUIDToFuncNameMap == Other.GUIDToFuncNameMap ||
1221 (GUIDToFuncNameMap && Other.GUIDToFuncNameMap &&
1222 *GUIDToFuncNameMap == *Other.GUIDToFuncNameMap)) &&
1223 FunctionHash == Other.FunctionHash && Context == Other.Context &&
1224 TotalSamples == Other.TotalSamples &&
1225 TotalHeadSamples == Other.TotalHeadSamples &&
1226 BodySamples == Other.BodySamples &&
1227 CallsiteSamples == Other.CallsiteSamples;
1228 }
1229
1230 bool operator!=(const FunctionSamples &Other) const {
1231 return !(*this == Other);
1232 }
1233
1234 private:
1235 /// CFG hash value for the function.
1236 uint64_t FunctionHash = 0;
1237
1238 /// Calling context for function profile
1239 mutable SampleContext Context;
1240
1241 /// Total number of samples collected inside this function.
1242 ///
1243 /// Samples are cumulative, they include all the samples collected
1244 /// inside this function and all its inlined callees.
1245 uint64_t TotalSamples = 0;
1246
1247 /// Total number of samples collected at the head of the function.
1248 /// This is an approximation of the number of calls made to this function
1249 /// at runtime.
1250 uint64_t TotalHeadSamples = 0;
1251
1252 /// Map instruction locations to collected samples.
1253 ///
1254 /// Each entry in this map contains the number of samples
1255 /// collected at the corresponding line offset. All line locations
1256 /// are an offset from the start of the function.
1257 BodySampleMap BodySamples;
1258
1259 /// Map call sites to collected samples for the called function.
1260 ///
1261 /// Each entry in this map corresponds to all the samples
1262 /// collected for the inlined function call at the given
1263 /// location. For example, given:
1264 ///
1265 /// void foo() {
1266 /// 1 bar();
1267 /// ...
1268 /// 8 baz();
1269 /// }
1270 ///
1271 /// If the bar() and baz() calls were inlined inside foo(), this
1272 /// map will contain two entries. One for all the samples collected
1273 /// in the call to bar() at line offset 1, the other for all the samples
1274 /// collected in the call to baz() at line offset 8.
1275 CallsiteSampleMap CallsiteSamples;
1276
1277 /// IR to profile location map generated by stale profile matching.
1278 ///
1279 /// Each entry is a mapping from the location on current build to the matched
1280 /// location in the "stale" profile. For example:
1281 /// Profiled source code:
1282 /// void foo() {
1283 /// 1 bar();
1284 /// }
1285 ///
1286 /// Current source code:
1287 /// void foo() {
1288 /// 1 // Code change
1289 /// 2 bar();
1290 /// }
1291 /// Supposing the stale profile matching algorithm generated the mapping [2 ->
1292 /// 1], the profile query using the location of bar on the IR which is 2 will
1293 /// be remapped to 1 and find the location of bar in the profile.
1294 const LocToLocMap *IRToProfileLocationMap = nullptr;
1295 };
1296
1297 /// Get the proper representation of a string according to whether the
1298 /// current Format uses MD5 to represent the string.
1299 static inline FunctionId getRepInFormat(StringRef Name) {
1300 if (Name.empty() || !FunctionSamples::UseMD5)
1301 return FunctionId(Name);
1302 return FunctionId(Function::getGUID(Name));
1303 }
1304
1305 raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
1306
1307 /// This class provides operator overloads to the map container using MD5 as the
1308 /// key type, so that existing code can still work in most cases using
1309 /// SampleContext as key.
1310 /// Note: when populating container, make sure to assign the SampleContext to
1311 /// the mapped value immediately because the key no longer holds it.
1312 class SampleProfileMap
1313 : public HashKeyMap<std::unordered_map, SampleContext, FunctionSamples> {
1314 public:
1315 // Convenience method because this is being used in many places. Set the
1316 // FunctionSamples' context if its newly inserted.
1317 mapped_type &create(const SampleContext &Ctx) {
1318 auto Ret = try_emplace(Ctx, FunctionSamples());
1319 if (Ret.second)
1320 Ret.first->second.setContext(Ctx);
1321 return Ret.first->second;
1322 }
1323
1324 iterator find(const SampleContext &Ctx) {
1325 return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1326 Ctx);
1327 }
1328
1329 const_iterator find(const SampleContext &Ctx) const {
1330 return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1331 Ctx);
1332 }
1333
1334 size_t erase(const SampleContext &Ctx) {
1335 return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::
1336 erase(Ctx);
1337 }
1338
1339 size_t erase(const key_type &Key) { return base_type::erase(Key); }
1340
1341 iterator erase(iterator It) { return base_type::erase(It); }
1342 };
1343
1344 using NameFunctionSamples = std::pair<hash_code, const FunctionSamples *>;
1345
1346 void sortFuncProfiles(const SampleProfileMap &ProfileMap,
1347 std::vector<NameFunctionSamples> &SortedProfiles);
1348
1349 /// Sort a LocationT->SampleT map by LocationT.
1350 ///
1351 /// It produces a sorted list of <LocationT, SampleT> records by ascending
1352 /// order of LocationT.
1353 template <class LocationT, class SampleT> class SampleSorter {
1354 public:
1355 using SamplesWithLoc = std::pair<const LocationT, SampleT>;
1356 using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
1357
1358 SampleSorter(const std::map<LocationT, SampleT> &Samples) {
1359 for (const auto &I : Samples)
1360 V.push_back(&I);
1361 llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
1362 return A->first < B->first;
1363 });
1364 }
1365
1366 const SamplesWithLocList &get() const { return V; }
1367
1368 private:
1369 SamplesWithLocList V;
1370 };
1371
1372 /// SampleContextTrimmer impelements helper functions to trim, merge cold
1373 /// context profiles. It also supports context profile canonicalization to make
1374 /// sure ProfileMap's key is consistent with FunctionSample's name/context.
1375 class SampleContextTrimmer {
1376 public:
1377 SampleContextTrimmer(SampleProfileMap &Profiles) : ProfileMap(Profiles){};
1378 // Trim and merge cold context profile when requested. TrimBaseProfileOnly
1379 // should only be effective when TrimColdContext is true. On top of
1380 // TrimColdContext, TrimBaseProfileOnly can be used to specify to trim all
1381 // cold profiles or only cold base profiles. Trimming base profiles only is
1382 // mainly to honor the preinliner decsion. Note that when MergeColdContext is
1383 // true, preinliner decsion is not honored anyway so TrimBaseProfileOnly will
1384 // be ignored.
1385 void trimAndMergeColdContextProfiles(uint64_t ColdCountThreshold,
1386 bool TrimColdContext,
1387 bool MergeColdContext,
1388 uint32_t ColdContextFrameLength,
1389 bool TrimBaseProfileOnly);
1390
1391 private:
1392 SampleProfileMap &ProfileMap;
1393 };
1394
1395 /// Helper class for profile conversion.
1396 ///
1397 /// It supports full context-sensitive profile to nested profile conversion,
1398 /// nested profile to flatten profile conversion, etc.
1399 class ProfileConverter {
1400 public:
1401 ProfileConverter(SampleProfileMap &Profiles);
1402 // Convert a full context-sensitive flat sample profile into a nested sample
1403 // profile.
1404 void convertCSProfiles();
1405 struct FrameNode {
1406 FrameNode(FunctionId FName = FunctionId(),
1407 FunctionSamples *FSamples = nullptr,
1408 LineLocation CallLoc = {0, 0})
1409 : FuncName(FName), FuncSamples(FSamples), CallSiteLoc(CallLoc){};
1410
1411 // Map line+discriminator location to child frame
1412 std::map<uint64_t, FrameNode> AllChildFrames;
1413 // Function name for current frame
1414 FunctionId FuncName;
1415 // Function Samples for current frame
1416 FunctionSamples *FuncSamples;
1417 // Callsite location in parent context
1418 LineLocation CallSiteLoc;
1419
1420 FrameNode *getOrCreateChildFrame(const LineLocation &CallSite,
1421 FunctionId CalleeName);
1422 };
1423
1424 static void flattenProfile(SampleProfileMap &ProfileMap,
1425 bool ProfileIsCS = false) {
1426 SampleProfileMap TmpProfiles;
1427 flattenProfile(ProfileMap, TmpProfiles, ProfileIsCS);
1428 ProfileMap = std::move(TmpProfiles);
1429 }
1430
1431 static void flattenProfile(const SampleProfileMap &InputProfiles,
1432 SampleProfileMap &OutputProfiles,
1433 bool ProfileIsCS = false) {
1434 if (ProfileIsCS) {
1435 for (const auto &I : InputProfiles) {
1436 // Retain the profile name and clear the full context for each function
1437 // profile.
1438 FunctionSamples &FS = OutputProfiles.create(I.second.getFunction());
1439 FS.merge(I.second);
1440 }
1441 } else {
1442 for (const auto &I : InputProfiles)
1443 flattenNestedProfile(OutputProfiles, I.second);
1444 }
1445 }
1446
1447 private:
1448 static void flattenNestedProfile(SampleProfileMap &OutputProfiles,
1449 const FunctionSamples &FS) {
1450 // To retain the context, checksum, attributes of the original profile, make
1451 // a copy of it if no profile is found.
1452 SampleContext &Context = FS.getContext();
1453 auto Ret = OutputProfiles.try_emplace(Context, FS);
1454 FunctionSamples &Profile = Ret.first->second;
1455 if (Ret.second) {
1456 // Clear nested inlinees' samples for the flattened copy. These inlinees
1457 // will have their own top-level entries after flattening.
1458 Profile.removeAllCallsiteSamples();
1459 // We recompute TotalSamples later, so here set to zero.
1460 Profile.setTotalSamples(0);
1461 } else {
1462 for (const auto &[LineLocation, SampleRecord] : FS.getBodySamples()) {
1463 Profile.addSampleRecord(LineLocation, SampleRecord);
1464 }
1465 }
1466
1467 assert(Profile.getCallsiteSamples().empty() &&
1468 "There should be no inlinees' profiles after flattening.");
1469
1470 // TotalSamples might not be equal to the sum of all samples from
1471 // BodySamples and CallsiteSamples. So here we use "TotalSamples =
1472 // Original_TotalSamples - All_of_Callsite_TotalSamples +
1473 // All_of_Callsite_HeadSamples" to compute the new TotalSamples.
1474 uint64_t TotalSamples = FS.getTotalSamples();
1475
1476 for (const auto &I : FS.getCallsiteSamples()) {
1477 for (const auto &Callee : I.second) {
1478 const auto &CalleeProfile = Callee.second;
1479 // Add body sample.
1480 Profile.addBodySamples(I.first.LineOffset, I.first.Discriminator,
1481 CalleeProfile.getHeadSamplesEstimate());
1482 // Add callsite sample.
1483 Profile.addCalledTargetSamples(
1484 I.first.LineOffset, I.first.Discriminator,
1485 CalleeProfile.getFunction(),
1486 CalleeProfile.getHeadSamplesEstimate());
1487 // Update total samples.
1488 TotalSamples = TotalSamples >= CalleeProfile.getTotalSamples()
1489 ? TotalSamples - CalleeProfile.getTotalSamples()
1490 : 0;
1491 TotalSamples += CalleeProfile.getHeadSamplesEstimate();
1492 // Recursively convert callee profile.
1493 flattenNestedProfile(OutputProfiles, CalleeProfile);
1494 }
1495 }
1496 Profile.addTotalSamples(TotalSamples);
1497
1498 Profile.setHeadSamples(Profile.getHeadSamplesEstimate());
1499 }
1500
1501 // Nest all children profiles into the profile of Node.
1502 void convertCSProfiles(FrameNode &Node);
1503 FrameNode *getOrCreateContextPath(const SampleContext &Context);
1504
1505 SampleProfileMap &ProfileMap;
1506 FrameNode RootFrame;
1507 };
1508
1509 /// ProfileSymbolList records the list of function symbols shown up
1510 /// in the binary used to generate the profile. It is useful to
1511 /// to discriminate a function being so cold as not to shown up
1512 /// in the profile and a function newly added.
1513 class ProfileSymbolList {
1514 public:
1515 /// copy indicates whether we need to copy the underlying memory
1516 /// for the input Name.
1517 void add(StringRef Name, bool Copy = false) {
1518 if (!Copy) {
1519 Syms.insert(Name);
1520 return;
1521 }
1522 Syms.insert(Name.copy(Allocator));
1523 }
1524
1525 bool contains(StringRef Name) { return Syms.count(Name); }
1526
1527 void merge(const ProfileSymbolList &List) {
1528 for (auto Sym : List.Syms)
1529 add(Sym, true);
1530 }
1531
1532 unsigned size() { return Syms.size(); }
1533
1534 void setToCompress(bool TC) { ToCompress = TC; }
1535 bool toCompress() { return ToCompress; }
1536
1537 std::error_code read(const uint8_t *Data, uint64_t ListSize);
1538 std::error_code write(raw_ostream &OS);
1539 void dump(raw_ostream &OS = dbgs()) const;
1540
1541 private:
1542 // Determine whether or not to compress the symbol list when
1543 // writing it into profile. The variable is unused when the symbol
1544 // list is read from an existing profile.
1545 bool ToCompress = false;
1546 DenseSet<StringRef> Syms;
1547 BumpPtrAllocator Allocator;
1548 };
1549
1550 } // end namespace sampleprof
1551
1552 using namespace sampleprof;
1553 // Provide DenseMapInfo for SampleContext.
1554 template <> struct DenseMapInfo<SampleContext> {
1555 static inline SampleContext getEmptyKey() { return SampleContext(); }
1556
1557 static inline SampleContext getTombstoneKey() {
1558 return SampleContext(FunctionId(~1ULL));
1559 }
1560
1561 static unsigned getHashValue(const SampleContext &Val) {
1562 return Val.getHashCode();
1563 }
1564
1565 static bool isEqual(const SampleContext &LHS, const SampleContext &RHS) {
1566 return LHS == RHS;
1567 }
1568 };
1569
1570 // Prepend "__uniq" before the hash for tools like profilers to understand
1571 // that this symbol is of internal linkage type. The "__uniq" is the
1572 // pre-determined prefix that is used to tell tools that this symbol was
1573 // created with -funique-internal-linkage-symbols and the tools can strip or
1574 // keep the prefix as needed.
1575 inline std::string getUniqueInternalLinkagePostfix(const StringRef &FName) {
1576 llvm::MD5 Md5;
1577 Md5.update(FName);
1578 llvm::MD5::MD5Result R;
1579 Md5.final(R);
1580 SmallString<32> Str;
1581 llvm::MD5::stringifyResult(R, Str);
1582 // Convert MD5hash to Decimal. Demangler suffixes can either contain
1583 // numbers or characters but not both.
1584 llvm::APInt IntHash(128, Str.str(), 16);
1585 return toString(IntHash, /* Radix = */ 10, /* Signed = */ false)
1586 .insert(0, FunctionSamples::UniqSuffix);
1587 }
1588
1589 } // end namespace llvm
1590
1591 #endif // LLVM_PROFILEDATA_SAMPLEPROF_H
1592