xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ProfileData/SampleProf.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains common definitions used in the reading and writing of
10 // sample profile data.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
15 #define LLVM_PROFILEDATA_SAMPLEPROF_H
16 
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/ProfileData/FunctionId.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorOr.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/ProfileData/HashKeyMap.h"
29 #include <algorithm>
30 #include <cstdint>
31 #include <list>
32 #include <map>
33 #include <set>
34 #include <sstream>
35 #include <string>
36 #include <system_error>
37 #include <unordered_map>
38 #include <utility>
39 
40 namespace llvm {
41 
42 class DILocation;
43 class raw_ostream;
44 
45 const std::error_category &sampleprof_category();
46 
47 enum class sampleprof_error {
48   success = 0,
49   bad_magic,
50   unsupported_version,
51   too_large,
52   truncated,
53   malformed,
54   unrecognized_format,
55   unsupported_writing_format,
56   truncated_name_table,
57   not_implemented,
58   counter_overflow,
59   ostream_seek_unsupported,
60   uncompress_failed,
61   zlib_unavailable,
62   hash_mismatch
63 };
64 
make_error_code(sampleprof_error E)65 inline std::error_code make_error_code(sampleprof_error E) {
66   return std::error_code(static_cast<int>(E), sampleprof_category());
67 }
68 
mergeSampleProfErrors(sampleprof_error & Accumulator,sampleprof_error Result)69 inline sampleprof_error mergeSampleProfErrors(sampleprof_error &Accumulator,
70                                               sampleprof_error Result) {
71   // Prefer first error encountered as later errors may be secondary effects of
72   // the initial problem.
73   if (Accumulator == sampleprof_error::success &&
74       Result != sampleprof_error::success)
75     Accumulator = Result;
76   return Accumulator;
77 }
78 
79 } // end namespace llvm
80 
81 namespace std {
82 
83 template <>
84 struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
85 
86 } // end namespace std
87 
88 namespace llvm {
89 namespace sampleprof {
90 
91 enum SampleProfileFormat {
92   SPF_None = 0,
93   SPF_Text = 0x1,
94   SPF_Compact_Binary = 0x2, // Deprecated
95   SPF_GCC = 0x3,
96   SPF_Ext_Binary = 0x4,
97   SPF_Binary = 0xff
98 };
99 
100 enum SampleProfileLayout {
101   SPL_None = 0,
102   SPL_Nest = 0x1,
103   SPL_Flat = 0x2,
104 };
105 
106 static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
107   return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
108          uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
109          uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
110          uint64_t('2') << (64 - 56) | uint64_t(Format);
111 }
112 
113 static inline uint64_t SPVersion() { return 103; }
114 
115 // Section Type used by SampleProfileExtBinaryBaseReader and
116 // SampleProfileExtBinaryBaseWriter. Never change the existing
117 // value of enum. Only append new ones.
118 enum SecType {
119   SecInValid = 0,
120   SecProfSummary = 1,
121   SecNameTable = 2,
122   SecProfileSymbolList = 3,
123   SecFuncOffsetTable = 4,
124   SecFuncMetadata = 5,
125   SecCSNameTable = 6,
126   // marker for the first type of profile.
127   SecFuncProfileFirst = 32,
128   SecLBRProfile = SecFuncProfileFirst
129 };
130 
131 static inline std::string getSecName(SecType Type) {
132   switch (static_cast<int>(Type)) { // Avoid -Wcovered-switch-default
133   case SecInValid:
134     return "InvalidSection";
135   case SecProfSummary:
136     return "ProfileSummarySection";
137   case SecNameTable:
138     return "NameTableSection";
139   case SecProfileSymbolList:
140     return "ProfileSymbolListSection";
141   case SecFuncOffsetTable:
142     return "FuncOffsetTableSection";
143   case SecFuncMetadata:
144     return "FunctionMetadata";
145   case SecCSNameTable:
146     return "CSNameTableSection";
147   case SecLBRProfile:
148     return "LBRProfileSection";
149   default:
150     return "UnknownSection";
151   }
152 }
153 
154 // Entry type of section header table used by SampleProfileExtBinaryBaseReader
155 // and SampleProfileExtBinaryBaseWriter.
156 struct SecHdrTableEntry {
157   SecType Type;
158   uint64_t Flags;
159   uint64_t Offset;
160   uint64_t Size;
161   // The index indicating the location of the current entry in
162   // SectionHdrLayout table.
163   uint64_t LayoutIndex;
164 };
165 
166 // Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
167 // common flags will be saved in the lower 32bits and section specific flags
168 // will be saved in the higher 32 bits.
169 enum class SecCommonFlags : uint32_t {
170   SecFlagInValid = 0,
171   SecFlagCompress = (1 << 0),
172   // Indicate the section contains only profile without context.
173   SecFlagFlat = (1 << 1)
174 };
175 
176 // Section specific flags are defined here.
177 // !!!Note: Everytime a new enum class is created here, please add
178 // a new check in verifySecFlag.
179 enum class SecNameTableFlags : uint32_t {
180   SecFlagInValid = 0,
181   SecFlagMD5Name = (1 << 0),
182   // Store MD5 in fixed length instead of ULEB128 so NameTable can be
183   // accessed like an array.
184   SecFlagFixedLengthMD5 = (1 << 1),
185   // Profile contains ".__uniq." suffix name. Compiler shouldn't strip
186   // the suffix when doing profile matching when seeing the flag.
187   SecFlagUniqSuffix = (1 << 2)
188 };
189 enum class SecProfSummaryFlags : uint32_t {
190   SecFlagInValid = 0,
191   /// SecFlagPartial means the profile is for common/shared code.
192   /// The common profile is usually merged from profiles collected
193   /// from running other targets.
194   SecFlagPartial = (1 << 0),
195   /// SecFlagContext means this is context-sensitive flat profile for
196   /// CSSPGO
197   SecFlagFullContext = (1 << 1),
198   /// SecFlagFSDiscriminator means this profile uses flow-sensitive
199   /// discriminators.
200   SecFlagFSDiscriminator = (1 << 2),
201   /// SecFlagIsPreInlined means this profile contains ShouldBeInlined
202   /// contexts thus this is CS preinliner computed.
203   SecFlagIsPreInlined = (1 << 4),
204 };
205 
206 enum class SecFuncMetadataFlags : uint32_t {
207   SecFlagInvalid = 0,
208   SecFlagIsProbeBased = (1 << 0),
209   SecFlagHasAttribute = (1 << 1),
210 };
211 
212 enum class SecFuncOffsetFlags : uint32_t {
213   SecFlagInvalid = 0,
214   // Store function offsets in an order of contexts. The order ensures that
215   // callee contexts of a given context laid out next to it.
216   SecFlagOrdered = (1 << 0),
217 };
218 
219 // Verify section specific flag is used for the correct section.
220 template <class SecFlagType>
221 static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
222   // No verification is needed for common flags.
223   if (std::is_same<SecCommonFlags, SecFlagType>())
224     return;
225 
226   // Verification starts here for section specific flag.
227   bool IsFlagLegal = false;
228   switch (Type) {
229   case SecNameTable:
230     IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
231     break;
232   case SecProfSummary:
233     IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
234     break;
235   case SecFuncMetadata:
236     IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
237     break;
238   default:
239   case SecFuncOffsetTable:
240     IsFlagLegal = std::is_same<SecFuncOffsetFlags, SecFlagType>();
241     break;
242   }
243   if (!IsFlagLegal)
244     llvm_unreachable("Misuse of a flag in an incompatible section");
245 }
246 
247 template <class SecFlagType>
248 static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
249   verifySecFlag(Entry.Type, Flag);
250   auto FVal = static_cast<uint64_t>(Flag);
251   bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
252   Entry.Flags |= IsCommon ? FVal : (FVal << 32);
253 }
254 
255 template <class SecFlagType>
256 static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
257   verifySecFlag(Entry.Type, Flag);
258   auto FVal = static_cast<uint64_t>(Flag);
259   bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
260   Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
261 }
262 
263 template <class SecFlagType>
264 static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
265   verifySecFlag(Entry.Type, Flag);
266   auto FVal = static_cast<uint64_t>(Flag);
267   bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
268   return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
269 }
270 
271 /// Represents the relative location of an instruction.
272 ///
273 /// Instruction locations are specified by the line offset from the
274 /// beginning of the function (marked by the line where the function
275 /// header is) and the discriminator value within that line.
276 ///
277 /// The discriminator value is useful to distinguish instructions
278 /// that are on the same line but belong to different basic blocks
279 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
280 struct LineLocation {
281   LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
282 
283   void print(raw_ostream &OS) const;
284   void dump() const;
285 
286   bool operator<(const LineLocation &O) const {
287     return LineOffset < O.LineOffset ||
288            (LineOffset == O.LineOffset && Discriminator < O.Discriminator);
289   }
290 
291   bool operator==(const LineLocation &O) const {
292     return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
293   }
294 
295   bool operator!=(const LineLocation &O) const {
296     return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
297   }
298 
299   uint64_t getHashCode() const {
300     return ((uint64_t) Discriminator << 32) | LineOffset;
301   }
302 
303   uint32_t LineOffset;
304   uint32_t Discriminator;
305 };
306 
307 struct LineLocationHash {
308   uint64_t operator()(const LineLocation &Loc) const {
309     return Loc.getHashCode();
310   }
311 };
312 
313 raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
314 
315 /// Representation of a single sample record.
316 ///
317 /// A sample record is represented by a positive integer value, which
318 /// indicates how frequently was the associated line location executed.
319 ///
320 /// Additionally, if the associated location contains a function call,
321 /// the record will hold a list of all the possible called targets. For
322 /// direct calls, this will be the exact function being invoked. For
323 /// indirect calls (function pointers, virtual table dispatch), this
324 /// will be a list of one or more functions.
325 class SampleRecord {
326 public:
327   using CallTarget = std::pair<FunctionId, uint64_t>;
328   struct CallTargetComparator {
329     bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
330       if (LHS.second != RHS.second)
331         return LHS.second > RHS.second;
332 
333       return LHS.first < RHS.first;
334     }
335   };
336 
337   using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
338   using CallTargetMap = std::unordered_map<FunctionId, uint64_t>;
339   SampleRecord() = default;
340 
341   /// Increment the number of samples for this record by \p S.
342   /// Optionally scale sample count \p S by \p Weight.
343   ///
344   /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
345   /// around unsigned integers.
346   sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
347     bool Overflowed;
348     NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
349     return Overflowed ? sampleprof_error::counter_overflow
350                       : sampleprof_error::success;
351   }
352 
353   /// Decrease the number of samples for this record by \p S. Return the amout
354   /// of samples actually decreased.
355   uint64_t removeSamples(uint64_t S) {
356     if (S > NumSamples)
357       S = NumSamples;
358     NumSamples -= S;
359     return S;
360   }
361 
362   /// Add called function \p F with samples \p S.
363   /// Optionally scale sample count \p S by \p Weight.
364   ///
365   /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
366   /// around unsigned integers.
367   sampleprof_error addCalledTarget(FunctionId F, uint64_t S,
368                                    uint64_t Weight = 1) {
369     uint64_t &TargetSamples = CallTargets[F];
370     bool Overflowed;
371     TargetSamples =
372         SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
373     return Overflowed ? sampleprof_error::counter_overflow
374                       : sampleprof_error::success;
375   }
376 
377   /// Remove called function from the call target map. Return the target sample
378   /// count of the called function.
379   uint64_t removeCalledTarget(FunctionId F) {
380     uint64_t Count = 0;
381     auto I = CallTargets.find(F);
382     if (I != CallTargets.end()) {
383       Count = I->second;
384       CallTargets.erase(I);
385     }
386     return Count;
387   }
388 
389   /// Return true if this sample record contains function calls.
390   bool hasCalls() const { return !CallTargets.empty(); }
391 
392   uint64_t getSamples() const { return NumSamples; }
393   const CallTargetMap &getCallTargets() const { return CallTargets; }
394   const SortedCallTargetSet getSortedCallTargets() const {
395     return sortCallTargets(CallTargets);
396   }
397 
398   uint64_t getCallTargetSum() const {
399     uint64_t Sum = 0;
400     for (const auto &I : CallTargets)
401       Sum += I.second;
402     return Sum;
403   }
404 
405   /// Sort call targets in descending order of call frequency.
406   static const SortedCallTargetSet
407   sortCallTargets(const CallTargetMap &Targets) {
408     SortedCallTargetSet SortedTargets;
409     for (const auto &[Target, Frequency] : Targets) {
410       SortedTargets.emplace(Target, Frequency);
411     }
412     return SortedTargets;
413   }
414 
415   /// Prorate call targets by a distribution factor.
416   static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
417                                                float DistributionFactor) {
418     CallTargetMap AdjustedTargets;
419     for (const auto &[Target, Frequency] : Targets) {
420       AdjustedTargets[Target] = Frequency * DistributionFactor;
421     }
422     return AdjustedTargets;
423   }
424 
425   /// Merge the samples in \p Other into this record.
426   /// Optionally scale sample counts by \p Weight.
427   sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1);
428   void print(raw_ostream &OS, unsigned Indent) const;
429   void dump() const;
430 
431   bool operator==(const SampleRecord &Other) const {
432     return NumSamples == Other.NumSamples && CallTargets == Other.CallTargets;
433   }
434 
435   bool operator!=(const SampleRecord &Other) const {
436     return !(*this == Other);
437   }
438 
439 private:
440   uint64_t NumSamples = 0;
441   CallTargetMap CallTargets;
442 };
443 
444 raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
445 
446 // State of context associated with FunctionSamples
447 enum ContextStateMask {
448   UnknownContext = 0x0,   // Profile without context
449   RawContext = 0x1,       // Full context profile from input profile
450   SyntheticContext = 0x2, // Synthetic context created for context promotion
451   InlinedContext = 0x4,   // Profile for context that is inlined into caller
452   MergedContext = 0x8     // Profile for context merged into base profile
453 };
454 
455 // Attribute of context associated with FunctionSamples
456 enum ContextAttributeMask {
457   ContextNone = 0x0,
458   ContextWasInlined = 0x1,      // Leaf of context was inlined in previous build
459   ContextShouldBeInlined = 0x2, // Leaf of context should be inlined
460   ContextDuplicatedIntoBase =
461       0x4, // Leaf of context is duplicated into the base profile
462 };
463 
464 // Represents a context frame with profile function and line location
465 struct SampleContextFrame {
466   FunctionId Func;
467   LineLocation Location;
468 
469   SampleContextFrame() : Location(0, 0) {}
470 
471   SampleContextFrame(FunctionId Func, LineLocation Location)
472       : Func(Func), Location(Location) {}
473 
474   bool operator==(const SampleContextFrame &That) const {
475     return Location == That.Location && Func == That.Func;
476   }
477 
478   bool operator!=(const SampleContextFrame &That) const {
479     return !(*this == That);
480   }
481 
482   std::string toString(bool OutputLineLocation) const {
483     std::ostringstream OContextStr;
484     OContextStr << Func.str();
485     if (OutputLineLocation) {
486       OContextStr << ":" << Location.LineOffset;
487       if (Location.Discriminator)
488         OContextStr << "." << Location.Discriminator;
489     }
490     return OContextStr.str();
491   }
492 
493   uint64_t getHashCode() const {
494     uint64_t NameHash = Func.getHashCode();
495     uint64_t LocId = Location.getHashCode();
496     return NameHash + (LocId << 5) + LocId;
497   }
498 };
499 
500 static inline hash_code hash_value(const SampleContextFrame &arg) {
501   return arg.getHashCode();
502 }
503 
504 using SampleContextFrameVector = SmallVector<SampleContextFrame, 1>;
505 using SampleContextFrames = ArrayRef<SampleContextFrame>;
506 
507 struct SampleContextFrameHash {
508   uint64_t operator()(const SampleContextFrameVector &S) const {
509     return hash_combine_range(S.begin(), S.end());
510   }
511 };
512 
513 // Sample context for FunctionSamples. It consists of the calling context,
514 // the function name and context state. Internally sample context is represented
515 // using ArrayRef, which is also the input for constructing a `SampleContext`.
516 // It can accept and represent both full context string as well as context-less
517 // function name.
518 // For a CS profile, a full context vector can look like:
519 //    `main:3 _Z5funcAi:1 _Z8funcLeafi`
520 // For a base CS profile without calling context, the context vector should only
521 // contain the leaf frame name.
522 // For a non-CS profile, the context vector should be empty.
523 class SampleContext {
524 public:
525   SampleContext() : State(UnknownContext), Attributes(ContextNone) {}
526 
527   SampleContext(StringRef Name)
528       : Func(Name), State(UnknownContext), Attributes(ContextNone) {
529         assert(!Name.empty() && "Name is empty");
530       }
531 
532   SampleContext(FunctionId Func)
533       : Func(Func), State(UnknownContext), Attributes(ContextNone) {}
534 
535   SampleContext(SampleContextFrames Context,
536                 ContextStateMask CState = RawContext)
537       : Attributes(ContextNone) {
538     assert(!Context.empty() && "Context is empty");
539     setContext(Context, CState);
540   }
541 
542   // Give a context string, decode and populate internal states like
543   // Function name, Calling context and context state. Example of input
544   // `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
545   SampleContext(StringRef ContextStr,
546                 std::list<SampleContextFrameVector> &CSNameTable,
547                 ContextStateMask CState = RawContext)
548       : Attributes(ContextNone) {
549     assert(!ContextStr.empty());
550     // Note that `[]` wrapped input indicates a full context string, otherwise
551     // it's treated as context-less function name only.
552     bool HasContext = ContextStr.starts_with("[");
553     if (!HasContext) {
554       State = UnknownContext;
555       Func = FunctionId(ContextStr);
556     } else {
557       CSNameTable.emplace_back();
558       SampleContextFrameVector &Context = CSNameTable.back();
559       createCtxVectorFromStr(ContextStr, Context);
560       setContext(Context, CState);
561     }
562   }
563 
564   /// Create a context vector from a given context string and save it in
565   /// `Context`.
566   static void createCtxVectorFromStr(StringRef ContextStr,
567                                      SampleContextFrameVector &Context) {
568     // Remove encapsulating '[' and ']' if any
569     ContextStr = ContextStr.substr(1, ContextStr.size() - 2);
570     StringRef ContextRemain = ContextStr;
571     StringRef ChildContext;
572     FunctionId Callee;
573     while (!ContextRemain.empty()) {
574       auto ContextSplit = ContextRemain.split(" @ ");
575       ChildContext = ContextSplit.first;
576       ContextRemain = ContextSplit.second;
577       LineLocation CallSiteLoc(0, 0);
578       decodeContextString(ChildContext, Callee, CallSiteLoc);
579       Context.emplace_back(Callee, CallSiteLoc);
580     }
581   }
582 
583   // Decode context string for a frame to get function name and location.
584   // `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
585   static void decodeContextString(StringRef ContextStr,
586                                   FunctionId &Func,
587                                   LineLocation &LineLoc) {
588     // Get function name
589     auto EntrySplit = ContextStr.split(':');
590     Func = FunctionId(EntrySplit.first);
591 
592     LineLoc = {0, 0};
593     if (!EntrySplit.second.empty()) {
594       // Get line offset, use signed int for getAsInteger so string will
595       // be parsed as signed.
596       int LineOffset = 0;
597       auto LocSplit = EntrySplit.second.split('.');
598       LocSplit.first.getAsInteger(10, LineOffset);
599       LineLoc.LineOffset = LineOffset;
600 
601       // Get discriminator
602       if (!LocSplit.second.empty())
603         LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
604     }
605   }
606 
607   operator SampleContextFrames() const { return FullContext; }
608   bool hasAttribute(ContextAttributeMask A) { return Attributes & (uint32_t)A; }
609   void setAttribute(ContextAttributeMask A) { Attributes |= (uint32_t)A; }
610   uint32_t getAllAttributes() { return Attributes; }
611   void setAllAttributes(uint32_t A) { Attributes = A; }
612   bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
613   void setState(ContextStateMask S) { State |= (uint32_t)S; }
614   void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
615   bool hasContext() const { return State != UnknownContext; }
616   bool isBaseContext() const { return FullContext.size() == 1; }
617   FunctionId getFunction() const { return Func; }
618   SampleContextFrames getContextFrames() const { return FullContext; }
619 
620   static std::string getContextString(SampleContextFrames Context,
621                                       bool IncludeLeafLineLocation = false) {
622     std::ostringstream OContextStr;
623     for (uint32_t I = 0; I < Context.size(); I++) {
624       if (OContextStr.str().size()) {
625         OContextStr << " @ ";
626       }
627       OContextStr << Context[I].toString(I != Context.size() - 1 ||
628                                          IncludeLeafLineLocation);
629     }
630     return OContextStr.str();
631   }
632 
633   std::string toString() const {
634     if (!hasContext())
635       return Func.str();
636     return getContextString(FullContext, false);
637   }
638 
639   uint64_t getHashCode() const {
640     if (hasContext())
641       return hash_value(getContextFrames());
642     return getFunction().getHashCode();
643   }
644 
645   /// Set the name of the function and clear the current context.
646   void setFunction(FunctionId NewFunctionID) {
647     Func = NewFunctionID;
648     FullContext = SampleContextFrames();
649     State = UnknownContext;
650   }
651 
652   void setContext(SampleContextFrames Context,
653                   ContextStateMask CState = RawContext) {
654     assert(CState != UnknownContext);
655     FullContext = Context;
656     Func = Context.back().Func;
657     State = CState;
658   }
659 
660   bool operator==(const SampleContext &That) const {
661     return State == That.State && Func == That.Func &&
662            FullContext == That.FullContext;
663   }
664 
665   bool operator!=(const SampleContext &That) const { return !(*this == That); }
666 
667   bool operator<(const SampleContext &That) const {
668     if (State != That.State)
669       return State < That.State;
670 
671     if (!hasContext()) {
672       return Func < That.Func;
673     }
674 
675     uint64_t I = 0;
676     while (I < std::min(FullContext.size(), That.FullContext.size())) {
677       auto &Context1 = FullContext[I];
678       auto &Context2 = That.FullContext[I];
679       auto V = Context1.Func.compare(Context2.Func);
680       if (V)
681         return V < 0;
682       if (Context1.Location != Context2.Location)
683         return Context1.Location < Context2.Location;
684       I++;
685     }
686 
687     return FullContext.size() < That.FullContext.size();
688   }
689 
690   struct Hash {
691     uint64_t operator()(const SampleContext &Context) const {
692       return Context.getHashCode();
693     }
694   };
695 
696   bool isPrefixOf(const SampleContext &That) const {
697     auto ThisContext = FullContext;
698     auto ThatContext = That.FullContext;
699     if (ThatContext.size() < ThisContext.size())
700       return false;
701     ThatContext = ThatContext.take_front(ThisContext.size());
702     // Compare Leaf frame first
703     if (ThisContext.back().Func != ThatContext.back().Func)
704       return false;
705     // Compare leading context
706     return ThisContext.drop_back() == ThatContext.drop_back();
707   }
708 
709 private:
710   // The function associated with this context. If CS profile, this is the leaf
711   // function.
712   FunctionId Func;
713   // Full context including calling context and leaf function name
714   SampleContextFrames FullContext;
715   // State of the associated sample profile
716   uint32_t State;
717   // Attribute of the associated sample profile
718   uint32_t Attributes;
719 };
720 
721 static inline hash_code hash_value(const SampleContext &Context) {
722   return Context.getHashCode();
723 }
724 
725 inline raw_ostream &operator<<(raw_ostream &OS, const SampleContext &Context) {
726   return OS << Context.toString();
727 }
728 
729 class FunctionSamples;
730 class SampleProfileReaderItaniumRemapper;
731 
732 using BodySampleMap = std::map<LineLocation, SampleRecord>;
733 // NOTE: Using a StringMap here makes parsed profiles consume around 17% more
734 // memory, which is *very* significant for large profiles.
735 using FunctionSamplesMap = std::map<FunctionId, FunctionSamples>;
736 using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
737 using LocToLocMap =
738     std::unordered_map<LineLocation, LineLocation, LineLocationHash>;
739 
740 /// Representation of the samples collected for a function.
741 ///
742 /// This data structure contains all the collected samples for the body
743 /// of a function. Each sample corresponds to a LineLocation instance
744 /// within the body of the function.
745 class FunctionSamples {
746 public:
747   FunctionSamples() = default;
748 
749   void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
750   void dump() const;
751 
752   sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
753     bool Overflowed;
754     TotalSamples =
755         SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
756     return Overflowed ? sampleprof_error::counter_overflow
757                       : sampleprof_error::success;
758   }
759 
760   void removeTotalSamples(uint64_t Num) {
761     if (TotalSamples < Num)
762       TotalSamples = 0;
763     else
764       TotalSamples -= Num;
765   }
766 
767   void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
768 
769   void setHeadSamples(uint64_t Num) { TotalHeadSamples = Num; }
770 
771   sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
772     bool Overflowed;
773     TotalHeadSamples =
774         SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
775     return Overflowed ? sampleprof_error::counter_overflow
776                       : sampleprof_error::success;
777   }
778 
779   sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
780                                   uint64_t Num, uint64_t Weight = 1) {
781     return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
782         Num, Weight);
783   }
784 
785   sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
786                                           uint32_t Discriminator,
787                                           FunctionId Func,
788                                           uint64_t Num,
789                                           uint64_t Weight = 1) {
790     return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
791         Func, Num, Weight);
792   }
793 
794   sampleprof_error addSampleRecord(LineLocation Location,
795                                    const SampleRecord &SampleRecord,
796                                    uint64_t Weight = 1) {
797     return BodySamples[Location].merge(SampleRecord, Weight);
798   }
799 
800   // Remove a call target and decrease the body sample correspondingly. Return
801   // the number of body samples actually decreased.
802   uint64_t removeCalledTargetAndBodySample(uint32_t LineOffset,
803                                            uint32_t Discriminator,
804                                            FunctionId Func) {
805     uint64_t Count = 0;
806     auto I = BodySamples.find(LineLocation(LineOffset, Discriminator));
807     if (I != BodySamples.end()) {
808       Count = I->second.removeCalledTarget(Func);
809       Count = I->second.removeSamples(Count);
810       if (!I->second.getSamples())
811         BodySamples.erase(I);
812     }
813     return Count;
814   }
815 
816   // Remove all call site samples for inlinees. This is needed when flattening
817   // a nested profile.
818   void removeAllCallsiteSamples() {
819     CallsiteSamples.clear();
820   }
821 
822   // Accumulate all call target samples to update the body samples.
823   void updateCallsiteSamples() {
824     for (auto &I : BodySamples) {
825       uint64_t TargetSamples = I.second.getCallTargetSum();
826       // It's possible that the body sample count can be greater than the call
827       // target sum. E.g, if some call targets are external targets, they won't
828       // be considered valid call targets, but the body sample count which is
829       // from lbr ranges can actually include them.
830       if (TargetSamples > I.second.getSamples())
831         I.second.addSamples(TargetSamples - I.second.getSamples());
832     }
833   }
834 
835   // Accumulate all body samples to set total samples.
836   void updateTotalSamples() {
837     setTotalSamples(0);
838     for (const auto &I : BodySamples)
839       addTotalSamples(I.second.getSamples());
840 
841     for (auto &I : CallsiteSamples) {
842       for (auto &CS : I.second) {
843         CS.second.updateTotalSamples();
844         addTotalSamples(CS.second.getTotalSamples());
845       }
846     }
847   }
848 
849   // Set current context and all callee contexts to be synthetic.
850   void setContextSynthetic() {
851     Context.setState(SyntheticContext);
852     for (auto &I : CallsiteSamples) {
853       for (auto &CS : I.second) {
854         CS.second.setContextSynthetic();
855       }
856     }
857   }
858 
859   // Query the stale profile matching results and remap the location.
860   const LineLocation &mapIRLocToProfileLoc(const LineLocation &IRLoc) const {
861     // There is no remapping if the profile is not stale or the matching gives
862     // the same location.
863     if (!IRToProfileLocationMap)
864       return IRLoc;
865     const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
866     if (ProfileLoc != IRToProfileLocationMap->end())
867       return ProfileLoc->second;
868     return IRLoc;
869   }
870 
871   /// Return the number of samples collected at the given location.
872   /// Each location is specified by \p LineOffset and \p Discriminator.
873   /// If the location is not found in profile, return error.
874   ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
875                                   uint32_t Discriminator) const {
876     const auto &Ret = BodySamples.find(
877         mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
878     if (Ret == BodySamples.end())
879       return std::error_code();
880     return Ret->second.getSamples();
881   }
882 
883   /// Returns the call target map collected at a given location.
884   /// Each location is specified by \p LineOffset and \p Discriminator.
885   /// If the location is not found in profile, return error.
886   ErrorOr<const SampleRecord::CallTargetMap &>
887   findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
888     const auto &Ret = BodySamples.find(
889         mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
890     if (Ret == BodySamples.end())
891       return std::error_code();
892     return Ret->second.getCallTargets();
893   }
894 
895   /// Returns the call target map collected at a given location specified by \p
896   /// CallSite. If the location is not found in profile, return error.
897   ErrorOr<const SampleRecord::CallTargetMap &>
898   findCallTargetMapAt(const LineLocation &CallSite) const {
899     const auto &Ret = BodySamples.find(mapIRLocToProfileLoc(CallSite));
900     if (Ret == BodySamples.end())
901       return std::error_code();
902     return Ret->second.getCallTargets();
903   }
904 
905   /// Return the function samples at the given callsite location.
906   FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
907     return CallsiteSamples[mapIRLocToProfileLoc(Loc)];
908   }
909 
910   /// Returns the FunctionSamplesMap at the given \p Loc.
911   const FunctionSamplesMap *
912   findFunctionSamplesMapAt(const LineLocation &Loc) const {
913     auto Iter = CallsiteSamples.find(mapIRLocToProfileLoc(Loc));
914     if (Iter == CallsiteSamples.end())
915       return nullptr;
916     return &Iter->second;
917   }
918 
919   /// Returns a pointer to FunctionSamples at the given callsite location
920   /// \p Loc with callee \p CalleeName. If no callsite can be found, relax
921   /// the restriction to return the FunctionSamples at callsite location
922   /// \p Loc with the maximum total sample count. If \p Remapper or \p
923   /// FuncNameToProfNameMap is not nullptr, use them to find FunctionSamples
924   /// with equivalent name as \p CalleeName.
925   const FunctionSamples *findFunctionSamplesAt(
926       const LineLocation &Loc, StringRef CalleeName,
927       SampleProfileReaderItaniumRemapper *Remapper,
928       const HashKeyMap<std::unordered_map, FunctionId, FunctionId>
929           *FuncNameToProfNameMap = nullptr) const;
930 
931   bool empty() const { return TotalSamples == 0; }
932 
933   /// Return the total number of samples collected inside the function.
934   uint64_t getTotalSamples() const { return TotalSamples; }
935 
936   /// For top-level functions, return the total number of branch samples that
937   /// have the function as the branch target (or 0 otherwise). This is the raw
938   /// data fetched from the profile. This should be equivalent to the sample of
939   /// the first instruction of the symbol. But as we directly get this info for
940   /// raw profile without referring to potentially inaccurate debug info, this
941   /// gives more accurate profile data and is preferred for standalone symbols.
942   uint64_t getHeadSamples() const { return TotalHeadSamples; }
943 
944   /// Return an estimate of the sample count of the function entry basic block.
945   /// The function can be either a standalone symbol or an inlined function.
946   /// For Context-Sensitive profiles, this will prefer returning the head
947   /// samples (i.e. getHeadSamples()), if non-zero. Otherwise it estimates from
948   /// the function body's samples or callsite samples.
949   uint64_t getHeadSamplesEstimate() const {
950     if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
951       // For CS profile, if we already have more accurate head samples
952       // counted by branch sample from caller, use them as entry samples.
953       return getHeadSamples();
954     }
955     uint64_t Count = 0;
956     // Use either BodySamples or CallsiteSamples which ever has the smaller
957     // lineno.
958     if (!BodySamples.empty() &&
959         (CallsiteSamples.empty() ||
960          BodySamples.begin()->first < CallsiteSamples.begin()->first))
961       Count = BodySamples.begin()->second.getSamples();
962     else if (!CallsiteSamples.empty()) {
963       // An indirect callsite may be promoted to several inlined direct calls.
964       // We need to get the sum of them.
965       for (const auto &FuncSamples : CallsiteSamples.begin()->second)
966         Count += FuncSamples.second.getHeadSamplesEstimate();
967     }
968     // Return at least 1 if total sample is not 0.
969     return Count ? Count : TotalSamples > 0;
970   }
971 
972   /// Return all the samples collected in the body of the function.
973   const BodySampleMap &getBodySamples() const { return BodySamples; }
974 
975   /// Return all the callsite samples collected in the body of the function.
976   const CallsiteSampleMap &getCallsiteSamples() const {
977     return CallsiteSamples;
978   }
979 
980   /// Return the maximum of sample counts in a function body. When SkipCallSite
981   /// is false, which is the default, the return count includes samples in the
982   /// inlined functions. When SkipCallSite is true, the return count only
983   /// considers the body samples.
984   uint64_t getMaxCountInside(bool SkipCallSite = false) const {
985     uint64_t MaxCount = 0;
986     for (const auto &L : getBodySamples())
987       MaxCount = std::max(MaxCount, L.second.getSamples());
988     if (SkipCallSite)
989       return MaxCount;
990     for (const auto &C : getCallsiteSamples())
991       for (const FunctionSamplesMap::value_type &F : C.second)
992         MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
993     return MaxCount;
994   }
995 
996   /// Merge the samples in \p Other into this one.
997   /// Optionally scale samples by \p Weight.
998   sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
999     sampleprof_error Result = sampleprof_error::success;
1000     if (!GUIDToFuncNameMap)
1001       GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
1002     if (Context.getFunction().empty())
1003       Context = Other.getContext();
1004     if (FunctionHash == 0) {
1005       // Set the function hash code for the target profile.
1006       FunctionHash = Other.getFunctionHash();
1007     } else if (FunctionHash != Other.getFunctionHash()) {
1008       // The two profiles coming with different valid hash codes indicates
1009       // either:
1010       // 1. They are same-named static functions from different compilation
1011       // units (without using -unique-internal-linkage-names), or
1012       // 2. They are really the same function but from different compilations.
1013       // Let's bail out in either case for now, which means one profile is
1014       // dropped.
1015       return sampleprof_error::hash_mismatch;
1016     }
1017 
1018     mergeSampleProfErrors(Result,
1019                           addTotalSamples(Other.getTotalSamples(), Weight));
1020     mergeSampleProfErrors(Result,
1021                           addHeadSamples(Other.getHeadSamples(), Weight));
1022     for (const auto &I : Other.getBodySamples()) {
1023       const LineLocation &Loc = I.first;
1024       const SampleRecord &Rec = I.second;
1025       mergeSampleProfErrors(Result, BodySamples[Loc].merge(Rec, Weight));
1026     }
1027     for (const auto &I : Other.getCallsiteSamples()) {
1028       const LineLocation &Loc = I.first;
1029       FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
1030       for (const auto &Rec : I.second)
1031         mergeSampleProfErrors(Result,
1032                               FSMap[Rec.first].merge(Rec.second, Weight));
1033     }
1034     return Result;
1035   }
1036 
1037   /// Recursively traverses all children, if the total sample count of the
1038   /// corresponding function is no less than \p Threshold, add its corresponding
1039   /// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
1040   /// to \p S.
1041   void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S,
1042                             const HashKeyMap<std::unordered_map, FunctionId,
1043                                              Function *>  &SymbolMap,
1044                             uint64_t Threshold) const {
1045     if (TotalSamples <= Threshold)
1046       return;
1047     auto IsDeclaration = [](const Function *F) {
1048       return !F || F->isDeclaration();
1049     };
1050     if (IsDeclaration(SymbolMap.lookup(getFunction()))) {
1051       // Add to the import list only when it's defined out of module.
1052       S.insert(getGUID());
1053     }
1054     // Import hot CallTargets, which may not be available in IR because full
1055     // profile annotation cannot be done until backend compilation in ThinLTO.
1056     for (const auto &BS : BodySamples)
1057       for (const auto &TS : BS.second.getCallTargets())
1058         if (TS.second > Threshold) {
1059           const Function *Callee = SymbolMap.lookup(TS.first);
1060           if (IsDeclaration(Callee))
1061             S.insert(TS.first.getHashCode());
1062         }
1063     for (const auto &CS : CallsiteSamples)
1064       for (const auto &NameFS : CS.second)
1065         NameFS.second.findInlinedFunctions(S, SymbolMap, Threshold);
1066   }
1067 
1068   /// Set the name of the function.
1069   void setFunction(FunctionId NewFunctionID) {
1070     Context.setFunction(NewFunctionID);
1071   }
1072 
1073   /// Return the function name.
1074   FunctionId getFunction() const { return Context.getFunction(); }
1075 
1076   /// Return the original function name.
1077   StringRef getFuncName() const { return getFuncName(getFunction()); }
1078 
1079   void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
1080 
1081   uint64_t getFunctionHash() const { return FunctionHash; }
1082 
1083   void setIRToProfileLocationMap(const LocToLocMap *LTLM) {
1084     assert(IRToProfileLocationMap == nullptr && "this should be set only once");
1085     IRToProfileLocationMap = LTLM;
1086   }
1087 
1088   /// Return the canonical name for a function, taking into account
1089   /// suffix elision policy attributes.
1090   static StringRef getCanonicalFnName(const Function &F) {
1091     const char *AttrName = "sample-profile-suffix-elision-policy";
1092     auto Attr = F.getFnAttribute(AttrName).getValueAsString();
1093     return getCanonicalFnName(F.getName(), Attr);
1094   }
1095 
1096   /// Name suffixes which canonicalization should handle to avoid
1097   /// profile mismatch.
1098   static constexpr const char *LLVMSuffix = ".llvm.";
1099   static constexpr const char *PartSuffix = ".part.";
1100   static constexpr const char *UniqSuffix = ".__uniq.";
1101 
1102   static StringRef getCanonicalFnName(StringRef FnName,
1103                                       StringRef Attr = "selected") {
1104     // Note the sequence of the suffixes in the knownSuffixes array matters.
1105     // If suffix "A" is appended after the suffix "B", "A" should be in front
1106     // of "B" in knownSuffixes.
1107     const char *KnownSuffixes[] = {LLVMSuffix, PartSuffix, UniqSuffix};
1108     if (Attr == "" || Attr == "all")
1109       return FnName.split('.').first;
1110     if (Attr == "selected") {
1111       StringRef Cand(FnName);
1112       for (const auto &Suf : KnownSuffixes) {
1113         StringRef Suffix(Suf);
1114         // If the profile contains ".__uniq." suffix, don't strip the
1115         // suffix for names in the IR.
1116         if (Suffix == UniqSuffix && FunctionSamples::HasUniqSuffix)
1117           continue;
1118         auto It = Cand.rfind(Suffix);
1119         if (It == StringRef::npos)
1120           continue;
1121         auto Dit = Cand.rfind('.');
1122         if (Dit == It + Suffix.size() - 1)
1123           Cand = Cand.substr(0, It);
1124       }
1125       return Cand;
1126     }
1127     if (Attr == "none")
1128       return FnName;
1129     assert(false && "internal error: unknown suffix elision policy");
1130     return FnName;
1131   }
1132 
1133   /// Translate \p Func into its original name.
1134   /// When profile doesn't use MD5, \p Func needs no translation.
1135   /// When profile uses MD5, \p Func in current FunctionSamples
1136   /// is actually GUID of the original function name. getFuncName will
1137   /// translate \p Func in current FunctionSamples into its original name
1138   /// by looking up in the function map GUIDToFuncNameMap.
1139   /// If the original name doesn't exist in the map, return empty StringRef.
1140   StringRef getFuncName(FunctionId Func) const {
1141     if (!UseMD5)
1142       return Func.stringRef();
1143 
1144     assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be populated first");
1145     return GUIDToFuncNameMap->lookup(Func.getHashCode());
1146   }
1147 
1148   /// Returns the line offset to the start line of the subprogram.
1149   /// We assume that a single function will not exceed 65535 LOC.
1150   static unsigned getOffset(const DILocation *DIL);
1151 
1152   /// Returns a unique call site identifier for a given debug location of a call
1153   /// instruction. This is wrapper of two scenarios, the probe-based profile and
1154   /// regular profile, to hide implementation details from the sample loader and
1155   /// the context tracker.
1156   static LineLocation getCallSiteIdentifier(const DILocation *DIL,
1157                                             bool ProfileIsFS = false);
1158 
1159   /// Returns a unique hash code for a combination of a callsite location and
1160   /// the callee function name.
1161   /// Guarantee MD5 and non-MD5 representation of the same function results in
1162   /// the same hash.
1163   static uint64_t getCallSiteHash(FunctionId Callee,
1164                                   const LineLocation &Callsite) {
1165     return SampleContextFrame(Callee, Callsite).getHashCode();
1166   }
1167 
1168   /// Get the FunctionSamples of the inline instance where DIL originates
1169   /// from.
1170   ///
1171   /// The FunctionSamples of the instruction (Machine or IR) associated to
1172   /// \p DIL is the inlined instance in which that instruction is coming from.
1173   /// We traverse the inline stack of that instruction, and match it with the
1174   /// tree nodes in the profile.
1175   ///
1176   /// \returns the FunctionSamples pointer to the inlined instance.
1177   /// If \p Remapper or \p FuncNameToProfNameMap is not nullptr, it will be used
1178   /// to find matching FunctionSamples with not exactly the same but equivalent
1179   /// name.
1180   const FunctionSamples *findFunctionSamples(
1181       const DILocation *DIL,
1182       SampleProfileReaderItaniumRemapper *Remapper = nullptr,
1183       const HashKeyMap<std::unordered_map, FunctionId, FunctionId>
1184           *FuncNameToProfNameMap = nullptr) const;
1185 
1186   static bool ProfileIsProbeBased;
1187 
1188   static bool ProfileIsCS;
1189 
1190   static bool ProfileIsPreInlined;
1191 
1192   SampleContext &getContext() const { return Context; }
1193 
1194   void setContext(const SampleContext &FContext) { Context = FContext; }
1195 
1196   /// Whether the profile uses MD5 to represent string.
1197   static bool UseMD5;
1198 
1199   /// Whether the profile contains any ".__uniq." suffix in a name.
1200   static bool HasUniqSuffix;
1201 
1202   /// If this profile uses flow sensitive discriminators.
1203   static bool ProfileIsFS;
1204 
1205   /// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
1206   /// all the function symbols defined or declared in current module.
1207   DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
1208 
1209   /// Return the GUID of the context's name. If the context is already using
1210   /// MD5, don't hash it again.
1211   uint64_t getGUID() const {
1212     return getFunction().getHashCode();
1213   }
1214 
1215   // Find all the names in the current FunctionSamples including names in
1216   // all the inline instances and names of call targets.
1217   void findAllNames(DenseSet<FunctionId> &NameSet) const;
1218 
1219   bool operator==(const FunctionSamples &Other) const {
1220     return (GUIDToFuncNameMap == Other.GUIDToFuncNameMap ||
1221             (GUIDToFuncNameMap && Other.GUIDToFuncNameMap &&
1222              *GUIDToFuncNameMap == *Other.GUIDToFuncNameMap)) &&
1223            FunctionHash == Other.FunctionHash && Context == Other.Context &&
1224            TotalSamples == Other.TotalSamples &&
1225            TotalHeadSamples == Other.TotalHeadSamples &&
1226            BodySamples == Other.BodySamples &&
1227            CallsiteSamples == Other.CallsiteSamples;
1228   }
1229 
1230   bool operator!=(const FunctionSamples &Other) const {
1231     return !(*this == Other);
1232   }
1233 
1234 private:
1235   /// CFG hash value for the function.
1236   uint64_t FunctionHash = 0;
1237 
1238   /// Calling context for function profile
1239   mutable SampleContext Context;
1240 
1241   /// Total number of samples collected inside this function.
1242   ///
1243   /// Samples are cumulative, they include all the samples collected
1244   /// inside this function and all its inlined callees.
1245   uint64_t TotalSamples = 0;
1246 
1247   /// Total number of samples collected at the head of the function.
1248   /// This is an approximation of the number of calls made to this function
1249   /// at runtime.
1250   uint64_t TotalHeadSamples = 0;
1251 
1252   /// Map instruction locations to collected samples.
1253   ///
1254   /// Each entry in this map contains the number of samples
1255   /// collected at the corresponding line offset. All line locations
1256   /// are an offset from the start of the function.
1257   BodySampleMap BodySamples;
1258 
1259   /// Map call sites to collected samples for the called function.
1260   ///
1261   /// Each entry in this map corresponds to all the samples
1262   /// collected for the inlined function call at the given
1263   /// location. For example, given:
1264   ///
1265   ///     void foo() {
1266   ///  1    bar();
1267   ///  ...
1268   ///  8    baz();
1269   ///     }
1270   ///
1271   /// If the bar() and baz() calls were inlined inside foo(), this
1272   /// map will contain two entries.  One for all the samples collected
1273   /// in the call to bar() at line offset 1, the other for all the samples
1274   /// collected in the call to baz() at line offset 8.
1275   CallsiteSampleMap CallsiteSamples;
1276 
1277   /// IR to profile location map generated by stale profile matching.
1278   ///
1279   /// Each entry is a mapping from the location on current build to the matched
1280   /// location in the "stale" profile. For example:
1281   ///   Profiled source code:
1282   ///      void foo() {
1283   ///   1    bar();
1284   ///      }
1285   ///
1286   ///   Current source code:
1287   ///      void foo() {
1288   ///   1    // Code change
1289   ///   2    bar();
1290   ///      }
1291   /// Supposing the stale profile matching algorithm generated the mapping [2 ->
1292   /// 1], the profile query using the location of bar on the IR which is 2 will
1293   /// be remapped to 1 and find the location of bar in the profile.
1294   const LocToLocMap *IRToProfileLocationMap = nullptr;
1295 };
1296 
1297 /// Get the proper representation of a string according to whether the
1298 /// current Format uses MD5 to represent the string.
1299 static inline FunctionId getRepInFormat(StringRef Name) {
1300   if (Name.empty() || !FunctionSamples::UseMD5)
1301     return FunctionId(Name);
1302   return FunctionId(Function::getGUID(Name));
1303 }
1304 
1305 raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
1306 
1307 /// This class provides operator overloads to the map container using MD5 as the
1308 /// key type, so that existing code can still work in most cases using
1309 /// SampleContext as key.
1310 /// Note: when populating container, make sure to assign the SampleContext to
1311 /// the mapped value immediately because the key no longer holds it.
1312 class SampleProfileMap
1313     : public HashKeyMap<std::unordered_map, SampleContext, FunctionSamples> {
1314 public:
1315   // Convenience method because this is being used in many places. Set the
1316   // FunctionSamples' context if its newly inserted.
1317   mapped_type &create(const SampleContext &Ctx) {
1318     auto Ret = try_emplace(Ctx, FunctionSamples());
1319     if (Ret.second)
1320       Ret.first->second.setContext(Ctx);
1321     return Ret.first->second;
1322   }
1323 
1324   iterator find(const SampleContext &Ctx) {
1325     return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1326         Ctx);
1327   }
1328 
1329   const_iterator find(const SampleContext &Ctx) const {
1330     return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
1331         Ctx);
1332   }
1333 
1334   size_t erase(const SampleContext &Ctx) {
1335     return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::
1336         erase(Ctx);
1337   }
1338 
1339   size_t erase(const key_type &Key) { return base_type::erase(Key); }
1340 
1341   iterator erase(iterator It) { return base_type::erase(It); }
1342 };
1343 
1344 using NameFunctionSamples = std::pair<hash_code, const FunctionSamples *>;
1345 
1346 void sortFuncProfiles(const SampleProfileMap &ProfileMap,
1347                       std::vector<NameFunctionSamples> &SortedProfiles);
1348 
1349 /// Sort a LocationT->SampleT map by LocationT.
1350 ///
1351 /// It produces a sorted list of <LocationT, SampleT> records by ascending
1352 /// order of LocationT.
1353 template <class LocationT, class SampleT> class SampleSorter {
1354 public:
1355   using SamplesWithLoc = std::pair<const LocationT, SampleT>;
1356   using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
1357 
1358   SampleSorter(const std::map<LocationT, SampleT> &Samples) {
1359     for (const auto &I : Samples)
1360       V.push_back(&I);
1361     llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
1362       return A->first < B->first;
1363     });
1364   }
1365 
1366   const SamplesWithLocList &get() const { return V; }
1367 
1368 private:
1369   SamplesWithLocList V;
1370 };
1371 
1372 /// SampleContextTrimmer impelements helper functions to trim, merge cold
1373 /// context profiles. It also supports context profile canonicalization to make
1374 /// sure ProfileMap's key is consistent with FunctionSample's name/context.
1375 class SampleContextTrimmer {
1376 public:
1377   SampleContextTrimmer(SampleProfileMap &Profiles) : ProfileMap(Profiles){};
1378   // Trim and merge cold context profile when requested. TrimBaseProfileOnly
1379   // should only be effective when TrimColdContext is true. On top of
1380   // TrimColdContext, TrimBaseProfileOnly can be used to specify to trim all
1381   // cold profiles or only cold base profiles. Trimming base profiles only is
1382   // mainly to honor the preinliner decsion. Note that when MergeColdContext is
1383   // true, preinliner decsion is not honored anyway so TrimBaseProfileOnly will
1384   // be ignored.
1385   void trimAndMergeColdContextProfiles(uint64_t ColdCountThreshold,
1386                                        bool TrimColdContext,
1387                                        bool MergeColdContext,
1388                                        uint32_t ColdContextFrameLength,
1389                                        bool TrimBaseProfileOnly);
1390 
1391 private:
1392   SampleProfileMap &ProfileMap;
1393 };
1394 
1395 /// Helper class for profile conversion.
1396 ///
1397 /// It supports full context-sensitive profile to nested profile conversion,
1398 /// nested profile to flatten profile conversion, etc.
1399 class ProfileConverter {
1400 public:
1401   ProfileConverter(SampleProfileMap &Profiles);
1402   // Convert a full context-sensitive flat sample profile into a nested sample
1403   // profile.
1404   void convertCSProfiles();
1405   struct FrameNode {
1406     FrameNode(FunctionId FName = FunctionId(),
1407               FunctionSamples *FSamples = nullptr,
1408               LineLocation CallLoc = {0, 0})
1409         : FuncName(FName), FuncSamples(FSamples), CallSiteLoc(CallLoc){};
1410 
1411     // Map line+discriminator location to child frame
1412     std::map<uint64_t, FrameNode> AllChildFrames;
1413     // Function name for current frame
1414     FunctionId FuncName;
1415     // Function Samples for current frame
1416     FunctionSamples *FuncSamples;
1417     // Callsite location in parent context
1418     LineLocation CallSiteLoc;
1419 
1420     FrameNode *getOrCreateChildFrame(const LineLocation &CallSite,
1421                                      FunctionId CalleeName);
1422   };
1423 
1424   static void flattenProfile(SampleProfileMap &ProfileMap,
1425                              bool ProfileIsCS = false) {
1426     SampleProfileMap TmpProfiles;
1427     flattenProfile(ProfileMap, TmpProfiles, ProfileIsCS);
1428     ProfileMap = std::move(TmpProfiles);
1429   }
1430 
1431   static void flattenProfile(const SampleProfileMap &InputProfiles,
1432                              SampleProfileMap &OutputProfiles,
1433                              bool ProfileIsCS = false) {
1434     if (ProfileIsCS) {
1435       for (const auto &I : InputProfiles) {
1436         // Retain the profile name and clear the full context for each function
1437         // profile.
1438         FunctionSamples &FS = OutputProfiles.create(I.second.getFunction());
1439         FS.merge(I.second);
1440       }
1441     } else {
1442       for (const auto &I : InputProfiles)
1443         flattenNestedProfile(OutputProfiles, I.second);
1444     }
1445   }
1446 
1447 private:
1448   static void flattenNestedProfile(SampleProfileMap &OutputProfiles,
1449                                    const FunctionSamples &FS) {
1450     // To retain the context, checksum, attributes of the original profile, make
1451     // a copy of it if no profile is found.
1452     SampleContext &Context = FS.getContext();
1453     auto Ret = OutputProfiles.try_emplace(Context, FS);
1454     FunctionSamples &Profile = Ret.first->second;
1455     if (Ret.second) {
1456       // Clear nested inlinees' samples for the flattened copy. These inlinees
1457       // will have their own top-level entries after flattening.
1458       Profile.removeAllCallsiteSamples();
1459       // We recompute TotalSamples later, so here set to zero.
1460       Profile.setTotalSamples(0);
1461     } else {
1462       for (const auto &[LineLocation, SampleRecord] : FS.getBodySamples()) {
1463         Profile.addSampleRecord(LineLocation, SampleRecord);
1464       }
1465     }
1466 
1467     assert(Profile.getCallsiteSamples().empty() &&
1468            "There should be no inlinees' profiles after flattening.");
1469 
1470     // TotalSamples might not be equal to the sum of all samples from
1471     // BodySamples and CallsiteSamples. So here we use "TotalSamples =
1472     // Original_TotalSamples - All_of_Callsite_TotalSamples +
1473     // All_of_Callsite_HeadSamples" to compute the new TotalSamples.
1474     uint64_t TotalSamples = FS.getTotalSamples();
1475 
1476     for (const auto &I : FS.getCallsiteSamples()) {
1477       for (const auto &Callee : I.second) {
1478         const auto &CalleeProfile = Callee.second;
1479         // Add body sample.
1480         Profile.addBodySamples(I.first.LineOffset, I.first.Discriminator,
1481                                CalleeProfile.getHeadSamplesEstimate());
1482         // Add callsite sample.
1483         Profile.addCalledTargetSamples(
1484             I.first.LineOffset, I.first.Discriminator,
1485             CalleeProfile.getFunction(),
1486             CalleeProfile.getHeadSamplesEstimate());
1487         // Update total samples.
1488         TotalSamples = TotalSamples >= CalleeProfile.getTotalSamples()
1489                            ? TotalSamples - CalleeProfile.getTotalSamples()
1490                            : 0;
1491         TotalSamples += CalleeProfile.getHeadSamplesEstimate();
1492         // Recursively convert callee profile.
1493         flattenNestedProfile(OutputProfiles, CalleeProfile);
1494       }
1495     }
1496     Profile.addTotalSamples(TotalSamples);
1497 
1498     Profile.setHeadSamples(Profile.getHeadSamplesEstimate());
1499   }
1500 
1501   // Nest all children profiles into the profile of Node.
1502   void convertCSProfiles(FrameNode &Node);
1503   FrameNode *getOrCreateContextPath(const SampleContext &Context);
1504 
1505   SampleProfileMap &ProfileMap;
1506   FrameNode RootFrame;
1507 };
1508 
1509 /// ProfileSymbolList records the list of function symbols shown up
1510 /// in the binary used to generate the profile. It is useful to
1511 /// to discriminate a function being so cold as not to shown up
1512 /// in the profile and a function newly added.
1513 class ProfileSymbolList {
1514 public:
1515   /// copy indicates whether we need to copy the underlying memory
1516   /// for the input Name.
1517   void add(StringRef Name, bool Copy = false) {
1518     if (!Copy) {
1519       Syms.insert(Name);
1520       return;
1521     }
1522     Syms.insert(Name.copy(Allocator));
1523   }
1524 
1525   bool contains(StringRef Name) { return Syms.count(Name); }
1526 
1527   void merge(const ProfileSymbolList &List) {
1528     for (auto Sym : List.Syms)
1529       add(Sym, true);
1530   }
1531 
1532   unsigned size() { return Syms.size(); }
1533 
1534   void setToCompress(bool TC) { ToCompress = TC; }
1535   bool toCompress() { return ToCompress; }
1536 
1537   std::error_code read(const uint8_t *Data, uint64_t ListSize);
1538   std::error_code write(raw_ostream &OS);
1539   void dump(raw_ostream &OS = dbgs()) const;
1540 
1541 private:
1542   // Determine whether or not to compress the symbol list when
1543   // writing it into profile. The variable is unused when the symbol
1544   // list is read from an existing profile.
1545   bool ToCompress = false;
1546   DenseSet<StringRef> Syms;
1547   BumpPtrAllocator Allocator;
1548 };
1549 
1550 } // end namespace sampleprof
1551 
1552 using namespace sampleprof;
1553 // Provide DenseMapInfo for SampleContext.
1554 template <> struct DenseMapInfo<SampleContext> {
1555   static inline SampleContext getEmptyKey() { return SampleContext(); }
1556 
1557   static inline SampleContext getTombstoneKey() {
1558     return SampleContext(FunctionId(~1ULL));
1559   }
1560 
1561   static unsigned getHashValue(const SampleContext &Val) {
1562     return Val.getHashCode();
1563   }
1564 
1565   static bool isEqual(const SampleContext &LHS, const SampleContext &RHS) {
1566     return LHS == RHS;
1567   }
1568 };
1569 
1570 // Prepend "__uniq" before the hash for tools like profilers to understand
1571 // that this symbol is of internal linkage type.  The "__uniq" is the
1572 // pre-determined prefix that is used to tell tools that this symbol was
1573 // created with -funique-internal-linkage-symbols and the tools can strip or
1574 // keep the prefix as needed.
1575 inline std::string getUniqueInternalLinkagePostfix(const StringRef &FName) {
1576   llvm::MD5 Md5;
1577   Md5.update(FName);
1578   llvm::MD5::MD5Result R;
1579   Md5.final(R);
1580   SmallString<32> Str;
1581   llvm::MD5::stringifyResult(R, Str);
1582   // Convert MD5hash to Decimal. Demangler suffixes can either contain
1583   // numbers or characters but not both.
1584   llvm::APInt IntHash(128, Str.str(), 16);
1585   return toString(IntHash, /* Radix = */ 10, /* Signed = */ false)
1586       .insert(0, FunctionSamples::UniqSuffix);
1587 }
1588 
1589 } // end namespace llvm
1590 
1591 #endif // LLVM_PROFILEDATA_SAMPLEPROF_H
1592