xref: /linux/fs/f2fs/node.c (revision 81d8e5e2132215d21f2cddffcd2b16d08c0389fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 	if (PageDirty(page)) {
126 		f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 		clear_page_dirty_for_io(page);
128 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 	}
130 	ClearPageUptodate(page);
131 }
132 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct page *src_page;
141 	struct page *dst_page;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_page = get_current_nat_page(sbi, nid);
151 	if (IS_ERR(src_page))
152 		return src_page;
153 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 	f2fs_bug_on(sbi, PageDirty(src_page));
155 
156 	src_addr = page_address(src_page);
157 	dst_addr = page_address(dst_page);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	set_page_dirty(dst_page);
160 	f2fs_put_page(src_page, 1);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return dst_page;
165 }
166 
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,const struct folio * folio)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, const struct folio *folio)
314 {
315 	return NODE_MAPPING(sbi) == folio->mapping &&
316 			IS_DNODE(&folio->page) && is_cold_node(&folio->page);
317 }
318 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 							struct page *page)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	get_page(page);
338 	fn->page = page;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->page == page) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			put_page(page);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct page *page = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->flag = 0;
562 	ni->nid = nid;
563 retry:
564 	/* Check nat cache */
565 	f2fs_down_read(&nm_i->nat_tree_lock);
566 	e = __lookup_nat_cache(nm_i, nid);
567 	if (e) {
568 		ni->ino = nat_get_ino(e);
569 		ni->blk_addr = nat_get_blkaddr(e);
570 		ni->version = nat_get_version(e);
571 		f2fs_up_read(&nm_i->nat_tree_lock);
572 		return 0;
573 	}
574 
575 	/*
576 	 * Check current segment summary by trying to grab journal_rwsem first.
577 	 * This sem is on the critical path on the checkpoint requiring the above
578 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 	 * while not bothering checkpoint.
580 	 */
581 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 		down_read(&curseg->journal_rwsem);
583 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 				!down_read_trylock(&curseg->journal_rwsem)) {
585 		f2fs_up_read(&nm_i->nat_tree_lock);
586 		goto retry;
587 	}
588 
589 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 	if (i >= 0) {
591 		ne = nat_in_journal(journal, i);
592 		node_info_from_raw_nat(ni, &ne);
593 	}
594 	up_read(&curseg->journal_rwsem);
595 	if (i >= 0) {
596 		f2fs_up_read(&nm_i->nat_tree_lock);
597 		goto cache;
598 	}
599 
600 	/* Fill node_info from nat page */
601 	index = current_nat_addr(sbi, nid);
602 	f2fs_up_read(&nm_i->nat_tree_lock);
603 
604 	page = f2fs_get_meta_page(sbi, index);
605 	if (IS_ERR(page))
606 		return PTR_ERR(page);
607 
608 	nat_blk = (struct f2fs_nat_block *)page_address(page);
609 	ne = nat_blk->entries[nid - start_nid];
610 	node_info_from_raw_nat(ni, &ne);
611 	f2fs_put_page(page, 1);
612 cache:
613 	blkaddr = le32_to_cpu(ne.block_addr);
614 	if (__is_valid_data_blkaddr(blkaddr) &&
615 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 		return -EFAULT;
617 
618 	/* cache nat entry */
619 	cache_nat_entry(sbi, nid, &ne);
620 	return 0;
621 }
622 
623 /*
624  * readahead MAX_RA_NODE number of node pages.
625  */
f2fs_ra_node_pages(struct page * parent,int start,int n)626 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 {
628 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 	struct blk_plug plug;
630 	int i, end;
631 	nid_t nid;
632 
633 	blk_start_plug(&plug);
634 
635 	/* Then, try readahead for siblings of the desired node */
636 	end = start + n;
637 	end = min(end, (int)NIDS_PER_BLOCK);
638 	for (i = start; i < end; i++) {
639 		nid = get_nid(parent, i, false);
640 		f2fs_ra_node_page(sbi, nid);
641 	}
642 
643 	blk_finish_plug(&plug);
644 }
645 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 	const long direct_index = ADDRS_PER_INODE(dn->inode);
649 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 	int cur_level = dn->cur_level;
653 	int max_level = dn->max_level;
654 	pgoff_t base = 0;
655 
656 	if (!dn->max_level)
657 		return pgofs + 1;
658 
659 	while (max_level-- > cur_level)
660 		skipped_unit *= NIDS_PER_BLOCK;
661 
662 	switch (dn->max_level) {
663 	case 3:
664 		base += 2 * indirect_blks;
665 		fallthrough;
666 	case 2:
667 		base += 2 * direct_blks;
668 		fallthrough;
669 	case 1:
670 		base += direct_index;
671 		break;
672 	default:
673 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 	}
675 
676 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678 
679 /*
680  * The maximum depth is four.
681  * Offset[0] will have raw inode offset.
682  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])683 static int get_node_path(struct inode *inode, long block,
684 				int offset[4], unsigned int noffset[4])
685 {
686 	const long direct_index = ADDRS_PER_INODE(inode);
687 	const long direct_blks = ADDRS_PER_BLOCK(inode);
688 	const long dptrs_per_blk = NIDS_PER_BLOCK;
689 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 	int n = 0;
692 	int level = 0;
693 
694 	noffset[0] = 0;
695 
696 	if (block < direct_index) {
697 		offset[n] = block;
698 		goto got;
699 	}
700 	block -= direct_index;
701 	if (block < direct_blks) {
702 		offset[n++] = NODE_DIR1_BLOCK;
703 		noffset[n] = 1;
704 		offset[n] = block;
705 		level = 1;
706 		goto got;
707 	}
708 	block -= direct_blks;
709 	if (block < direct_blks) {
710 		offset[n++] = NODE_DIR2_BLOCK;
711 		noffset[n] = 2;
712 		offset[n] = block;
713 		level = 1;
714 		goto got;
715 	}
716 	block -= direct_blks;
717 	if (block < indirect_blks) {
718 		offset[n++] = NODE_IND1_BLOCK;
719 		noffset[n] = 3;
720 		offset[n++] = block / direct_blks;
721 		noffset[n] = 4 + offset[n - 1];
722 		offset[n] = block % direct_blks;
723 		level = 2;
724 		goto got;
725 	}
726 	block -= indirect_blks;
727 	if (block < indirect_blks) {
728 		offset[n++] = NODE_IND2_BLOCK;
729 		noffset[n] = 4 + dptrs_per_blk;
730 		offset[n++] = block / direct_blks;
731 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 		offset[n] = block % direct_blks;
733 		level = 2;
734 		goto got;
735 	}
736 	block -= indirect_blks;
737 	if (block < dindirect_blks) {
738 		offset[n++] = NODE_DIND_BLOCK;
739 		noffset[n] = 5 + (dptrs_per_blk * 2);
740 		offset[n++] = block / indirect_blks;
741 		noffset[n] = 6 + (dptrs_per_blk * 2) +
742 			      offset[n - 1] * (dptrs_per_blk + 1);
743 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 		noffset[n] = 7 + (dptrs_per_blk * 2) +
745 			      offset[n - 2] * (dptrs_per_blk + 1) +
746 			      offset[n - 1];
747 		offset[n] = block % direct_blks;
748 		level = 3;
749 		goto got;
750 	} else {
751 		return -E2BIG;
752 	}
753 got:
754 	return level;
755 }
756 
757 /*
758  * Caller should call f2fs_put_dnode(dn).
759  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 {
764 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 	struct page *npage[4];
766 	struct page *parent = NULL;
767 	int offset[4];
768 	unsigned int noffset[4];
769 	nid_t nids[4];
770 	int level, i = 0;
771 	int err = 0;
772 
773 	level = get_node_path(dn->inode, index, offset, noffset);
774 	if (level < 0)
775 		return level;
776 
777 	nids[0] = dn->inode->i_ino;
778 	npage[0] = dn->inode_page;
779 
780 	if (!npage[0]) {
781 		npage[0] = f2fs_get_inode_page(sbi, nids[0]);
782 		if (IS_ERR(npage[0]))
783 			return PTR_ERR(npage[0]);
784 	}
785 
786 	/* if inline_data is set, should not report any block indices */
787 	if (f2fs_has_inline_data(dn->inode) && index) {
788 		err = -ENOENT;
789 		f2fs_put_page(npage[0], 1);
790 		goto release_out;
791 	}
792 
793 	parent = npage[0];
794 	if (level != 0)
795 		nids[1] = get_nid(parent, offset[0], true);
796 	dn->inode_page = npage[0];
797 	dn->inode_page_locked = true;
798 
799 	/* get indirect or direct nodes */
800 	for (i = 1; i <= level; i++) {
801 		bool done = false;
802 
803 		if (!nids[i] && mode == ALLOC_NODE) {
804 			/* alloc new node */
805 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
806 				err = -ENOSPC;
807 				goto release_pages;
808 			}
809 
810 			dn->nid = nids[i];
811 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
812 			if (IS_ERR(npage[i])) {
813 				f2fs_alloc_nid_failed(sbi, nids[i]);
814 				err = PTR_ERR(npage[i]);
815 				goto release_pages;
816 			}
817 
818 			set_nid(parent, offset[i - 1], nids[i], i == 1);
819 			f2fs_alloc_nid_done(sbi, nids[i]);
820 			done = true;
821 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
822 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
823 			if (IS_ERR(npage[i])) {
824 				err = PTR_ERR(npage[i]);
825 				goto release_pages;
826 			}
827 			done = true;
828 		}
829 		if (i == 1) {
830 			dn->inode_page_locked = false;
831 			unlock_page(parent);
832 		} else {
833 			f2fs_put_page(parent, 1);
834 		}
835 
836 		if (!done) {
837 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
838 			if (IS_ERR(npage[i])) {
839 				err = PTR_ERR(npage[i]);
840 				f2fs_put_page(npage[0], 0);
841 				goto release_out;
842 			}
843 		}
844 		if (i < level) {
845 			parent = npage[i];
846 			nids[i + 1] = get_nid(parent, offset[i], false);
847 		}
848 	}
849 	dn->nid = nids[level];
850 	dn->ofs_in_node = offset[level];
851 	dn->node_page = npage[level];
852 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
853 
854 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
855 					f2fs_sb_has_readonly(sbi)) {
856 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
857 		unsigned int ofs_in_node = dn->ofs_in_node;
858 		pgoff_t fofs = index;
859 		unsigned int c_len;
860 		block_t blkaddr;
861 
862 		/* should align fofs and ofs_in_node to cluster_size */
863 		if (fofs % cluster_size) {
864 			fofs = round_down(fofs, cluster_size);
865 			ofs_in_node = round_down(ofs_in_node, cluster_size);
866 		}
867 
868 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
869 		if (!c_len)
870 			goto out;
871 
872 		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
873 		if (blkaddr == COMPRESS_ADDR)
874 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
875 						ofs_in_node + 1);
876 
877 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
878 					fofs, blkaddr, cluster_size, c_len);
879 	}
880 out:
881 	return 0;
882 
883 release_pages:
884 	f2fs_put_page(parent, 1);
885 	if (i > 1)
886 		f2fs_put_page(npage[0], 0);
887 release_out:
888 	dn->inode_page = NULL;
889 	dn->node_page = NULL;
890 	if (err == -ENOENT) {
891 		dn->cur_level = i;
892 		dn->max_level = level;
893 		dn->ofs_in_node = offset[level];
894 	}
895 	return err;
896 }
897 
truncate_node(struct dnode_of_data * dn)898 static int truncate_node(struct dnode_of_data *dn)
899 {
900 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
901 	struct node_info ni;
902 	int err;
903 	pgoff_t index;
904 
905 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
906 	if (err)
907 		return err;
908 
909 	if (ni.blk_addr != NEW_ADDR &&
910 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
911 		f2fs_err_ratelimited(sbi,
912 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
913 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
914 		set_sbi_flag(sbi, SBI_NEED_FSCK);
915 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
916 		return -EFSCORRUPTED;
917 	}
918 
919 	/* Deallocate node address */
920 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
921 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
922 	set_node_addr(sbi, &ni, NULL_ADDR, false);
923 
924 	if (dn->nid == dn->inode->i_ino) {
925 		f2fs_remove_orphan_inode(sbi, dn->nid);
926 		dec_valid_inode_count(sbi);
927 		f2fs_inode_synced(dn->inode);
928 	}
929 
930 	clear_node_page_dirty(dn->node_page);
931 	set_sbi_flag(sbi, SBI_IS_DIRTY);
932 
933 	index = page_folio(dn->node_page)->index;
934 	f2fs_put_page(dn->node_page, 1);
935 
936 	invalidate_mapping_pages(NODE_MAPPING(sbi),
937 			index, index);
938 
939 	dn->node_page = NULL;
940 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
941 
942 	return 0;
943 }
944 
truncate_dnode(struct dnode_of_data * dn)945 static int truncate_dnode(struct dnode_of_data *dn)
946 {
947 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
948 	struct page *page;
949 	int err;
950 
951 	if (dn->nid == 0)
952 		return 1;
953 
954 	/* get direct node */
955 	page = f2fs_get_node_page(sbi, dn->nid);
956 	if (PTR_ERR(page) == -ENOENT)
957 		return 1;
958 	else if (IS_ERR(page))
959 		return PTR_ERR(page);
960 
961 	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
962 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
963 				dn->inode->i_ino, dn->nid, ino_of_node(page));
964 		set_sbi_flag(sbi, SBI_NEED_FSCK);
965 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
966 		f2fs_put_page(page, 1);
967 		return -EFSCORRUPTED;
968 	}
969 
970 	/* Make dnode_of_data for parameter */
971 	dn->node_page = page;
972 	dn->ofs_in_node = 0;
973 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
974 	err = truncate_node(dn);
975 	if (err) {
976 		f2fs_put_page(page, 1);
977 		return err;
978 	}
979 
980 	return 1;
981 }
982 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)983 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
984 						int ofs, int depth)
985 {
986 	struct dnode_of_data rdn = *dn;
987 	struct page *page;
988 	struct f2fs_node *rn;
989 	nid_t child_nid;
990 	unsigned int child_nofs;
991 	int freed = 0;
992 	int i, ret;
993 
994 	if (dn->nid == 0)
995 		return NIDS_PER_BLOCK + 1;
996 
997 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
998 
999 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
1000 	if (IS_ERR(page)) {
1001 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1002 		return PTR_ERR(page);
1003 	}
1004 
1005 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1006 
1007 	rn = F2FS_NODE(page);
1008 	if (depth < 3) {
1009 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1010 			child_nid = le32_to_cpu(rn->in.nid[i]);
1011 			if (child_nid == 0)
1012 				continue;
1013 			rdn.nid = child_nid;
1014 			ret = truncate_dnode(&rdn);
1015 			if (ret < 0)
1016 				goto out_err;
1017 			if (set_nid(page, i, 0, false))
1018 				dn->node_changed = true;
1019 		}
1020 	} else {
1021 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1022 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1023 			child_nid = le32_to_cpu(rn->in.nid[i]);
1024 			if (child_nid == 0) {
1025 				child_nofs += NIDS_PER_BLOCK + 1;
1026 				continue;
1027 			}
1028 			rdn.nid = child_nid;
1029 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1030 			if (ret == (NIDS_PER_BLOCK + 1)) {
1031 				if (set_nid(page, i, 0, false))
1032 					dn->node_changed = true;
1033 				child_nofs += ret;
1034 			} else if (ret < 0 && ret != -ENOENT) {
1035 				goto out_err;
1036 			}
1037 		}
1038 		freed = child_nofs;
1039 	}
1040 
1041 	if (!ofs) {
1042 		/* remove current indirect node */
1043 		dn->node_page = page;
1044 		ret = truncate_node(dn);
1045 		if (ret)
1046 			goto out_err;
1047 		freed++;
1048 	} else {
1049 		f2fs_put_page(page, 1);
1050 	}
1051 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1052 	return freed;
1053 
1054 out_err:
1055 	f2fs_put_page(page, 1);
1056 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1057 	return ret;
1058 }
1059 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1060 static int truncate_partial_nodes(struct dnode_of_data *dn,
1061 			struct f2fs_inode *ri, int *offset, int depth)
1062 {
1063 	struct page *pages[2];
1064 	nid_t nid[3];
1065 	nid_t child_nid;
1066 	int err = 0;
1067 	int i;
1068 	int idx = depth - 2;
1069 
1070 	nid[0] = get_nid(dn->inode_page, offset[0], true);
1071 	if (!nid[0])
1072 		return 0;
1073 
1074 	/* get indirect nodes in the path */
1075 	for (i = 0; i < idx + 1; i++) {
1076 		/* reference count'll be increased */
1077 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1078 		if (IS_ERR(pages[i])) {
1079 			err = PTR_ERR(pages[i]);
1080 			idx = i - 1;
1081 			goto fail;
1082 		}
1083 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1084 	}
1085 
1086 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1087 
1088 	/* free direct nodes linked to a partial indirect node */
1089 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1090 		child_nid = get_nid(pages[idx], i, false);
1091 		if (!child_nid)
1092 			continue;
1093 		dn->nid = child_nid;
1094 		err = truncate_dnode(dn);
1095 		if (err < 0)
1096 			goto fail;
1097 		if (set_nid(pages[idx], i, 0, false))
1098 			dn->node_changed = true;
1099 	}
1100 
1101 	if (offset[idx + 1] == 0) {
1102 		dn->node_page = pages[idx];
1103 		dn->nid = nid[idx];
1104 		err = truncate_node(dn);
1105 		if (err)
1106 			goto fail;
1107 	} else {
1108 		f2fs_put_page(pages[idx], 1);
1109 	}
1110 	offset[idx]++;
1111 	offset[idx + 1] = 0;
1112 	idx--;
1113 fail:
1114 	for (i = idx; i >= 0; i--)
1115 		f2fs_put_page(pages[i], 1);
1116 
1117 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1118 
1119 	return err;
1120 }
1121 
1122 /*
1123  * All the block addresses of data and nodes should be nullified.
1124  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1125 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1126 {
1127 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 	int err = 0, cont = 1;
1129 	int level, offset[4], noffset[4];
1130 	unsigned int nofs = 0;
1131 	struct f2fs_inode *ri;
1132 	struct dnode_of_data dn;
1133 	struct folio *folio;
1134 
1135 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1136 
1137 	level = get_node_path(inode, from, offset, noffset);
1138 	if (level <= 0) {
1139 		if (!level) {
1140 			level = -EFSCORRUPTED;
1141 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1142 					__func__, inode->i_ino,
1143 					from, ADDRS_PER_INODE(inode));
1144 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1145 		}
1146 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1147 		return level;
1148 	}
1149 
1150 	folio = f2fs_get_inode_folio(sbi, inode->i_ino);
1151 	if (IS_ERR(folio)) {
1152 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio));
1153 		return PTR_ERR(folio);
1154 	}
1155 
1156 	set_new_dnode(&dn, inode, &folio->page, NULL, 0);
1157 	folio_unlock(folio);
1158 
1159 	ri = F2FS_INODE(&folio->page);
1160 	switch (level) {
1161 	case 0:
1162 	case 1:
1163 		nofs = noffset[1];
1164 		break;
1165 	case 2:
1166 		nofs = noffset[1];
1167 		if (!offset[level - 1])
1168 			goto skip_partial;
1169 		err = truncate_partial_nodes(&dn, ri, offset, level);
1170 		if (err < 0 && err != -ENOENT)
1171 			goto fail;
1172 		nofs += 1 + NIDS_PER_BLOCK;
1173 		break;
1174 	case 3:
1175 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1176 		if (!offset[level - 1])
1177 			goto skip_partial;
1178 		err = truncate_partial_nodes(&dn, ri, offset, level);
1179 		if (err < 0 && err != -ENOENT)
1180 			goto fail;
1181 		break;
1182 	default:
1183 		BUG();
1184 	}
1185 
1186 skip_partial:
1187 	while (cont) {
1188 		dn.nid = get_nid(&folio->page, offset[0], true);
1189 		switch (offset[0]) {
1190 		case NODE_DIR1_BLOCK:
1191 		case NODE_DIR2_BLOCK:
1192 			err = truncate_dnode(&dn);
1193 			break;
1194 
1195 		case NODE_IND1_BLOCK:
1196 		case NODE_IND2_BLOCK:
1197 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1198 			break;
1199 
1200 		case NODE_DIND_BLOCK:
1201 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1202 			cont = 0;
1203 			break;
1204 
1205 		default:
1206 			BUG();
1207 		}
1208 		if (err == -ENOENT) {
1209 			set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK);
1210 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1211 			f2fs_err_ratelimited(sbi,
1212 				"truncate node fail, ino:%lu, nid:%u, "
1213 				"offset[0]:%d, offset[1]:%d, nofs:%d",
1214 				inode->i_ino, dn.nid, offset[0],
1215 				offset[1], nofs);
1216 			err = 0;
1217 		}
1218 		if (err < 0)
1219 			goto fail;
1220 		if (offset[1] == 0 && get_nid(&folio->page, offset[0], true)) {
1221 			folio_lock(folio);
1222 			BUG_ON(folio->mapping != NODE_MAPPING(sbi));
1223 			set_nid(&folio->page, offset[0], 0, true);
1224 			folio_unlock(folio);
1225 		}
1226 		offset[1] = 0;
1227 		offset[0]++;
1228 		nofs += err;
1229 	}
1230 fail:
1231 	f2fs_folio_put(folio, false);
1232 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1233 	return err > 0 ? 0 : err;
1234 }
1235 
1236 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1237 int f2fs_truncate_xattr_node(struct inode *inode)
1238 {
1239 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1240 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1241 	struct dnode_of_data dn;
1242 	struct page *npage;
1243 	int err;
1244 
1245 	if (!nid)
1246 		return 0;
1247 
1248 	npage = f2fs_get_xnode_page(sbi, nid);
1249 	if (IS_ERR(npage))
1250 		return PTR_ERR(npage);
1251 
1252 	set_new_dnode(&dn, inode, NULL, npage, nid);
1253 	err = truncate_node(&dn);
1254 	if (err) {
1255 		f2fs_put_page(npage, 1);
1256 		return err;
1257 	}
1258 
1259 	f2fs_i_xnid_write(inode, 0);
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1266  * f2fs_unlock_op().
1267  */
f2fs_remove_inode_page(struct inode * inode)1268 int f2fs_remove_inode_page(struct inode *inode)
1269 {
1270 	struct dnode_of_data dn;
1271 	int err;
1272 
1273 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1274 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1275 	if (err)
1276 		return err;
1277 
1278 	err = f2fs_truncate_xattr_node(inode);
1279 	if (err) {
1280 		f2fs_put_dnode(&dn);
1281 		return err;
1282 	}
1283 
1284 	/* remove potential inline_data blocks */
1285 	if (!IS_DEVICE_ALIASING(inode) &&
1286 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287 	     S_ISLNK(inode->i_mode)))
1288 		f2fs_truncate_data_blocks_range(&dn, 1);
1289 
1290 	/* 0 is possible, after f2fs_new_inode() has failed */
1291 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1292 		f2fs_put_dnode(&dn);
1293 		return -EIO;
1294 	}
1295 
1296 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1297 		f2fs_warn(F2FS_I_SB(inode),
1298 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1299 			inode->i_ino, (unsigned long long)inode->i_blocks);
1300 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1301 	}
1302 
1303 	/* will put inode & node pages */
1304 	err = truncate_node(&dn);
1305 	if (err) {
1306 		f2fs_put_dnode(&dn);
1307 		return err;
1308 	}
1309 	return 0;
1310 }
1311 
f2fs_new_inode_page(struct inode * inode)1312 struct page *f2fs_new_inode_page(struct inode *inode)
1313 {
1314 	struct dnode_of_data dn;
1315 
1316 	/* allocate inode page for new inode */
1317 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1318 
1319 	/* caller should f2fs_put_page(page, 1); */
1320 	return f2fs_new_node_page(&dn, 0);
1321 }
1322 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1323 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1324 {
1325 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1326 	struct node_info new_ni;
1327 	struct page *page;
1328 	int err;
1329 
1330 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1331 		return ERR_PTR(-EPERM);
1332 
1333 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1334 	if (!page)
1335 		return ERR_PTR(-ENOMEM);
1336 
1337 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1338 		goto fail;
1339 
1340 #ifdef CONFIG_F2FS_CHECK_FS
1341 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1342 	if (err) {
1343 		dec_valid_node_count(sbi, dn->inode, !ofs);
1344 		goto fail;
1345 	}
1346 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1347 		err = -EFSCORRUPTED;
1348 		dec_valid_node_count(sbi, dn->inode, !ofs);
1349 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1350 		f2fs_warn_ratelimited(sbi,
1351 			"f2fs_new_node_page: inconsistent nat entry, "
1352 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1353 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1354 			new_ni.version, new_ni.flag);
1355 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1356 		goto fail;
1357 	}
1358 #endif
1359 	new_ni.nid = dn->nid;
1360 	new_ni.ino = dn->inode->i_ino;
1361 	new_ni.blk_addr = NULL_ADDR;
1362 	new_ni.flag = 0;
1363 	new_ni.version = 0;
1364 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1365 
1366 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1367 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1368 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1369 	if (!PageUptodate(page))
1370 		SetPageUptodate(page);
1371 	if (set_page_dirty(page))
1372 		dn->node_changed = true;
1373 
1374 	if (f2fs_has_xattr_block(ofs))
1375 		f2fs_i_xnid_write(dn->inode, dn->nid);
1376 
1377 	if (ofs == 0)
1378 		inc_valid_inode_count(sbi);
1379 	return page;
1380 fail:
1381 	clear_node_page_dirty(page);
1382 	f2fs_put_page(page, 1);
1383 	return ERR_PTR(err);
1384 }
1385 
1386 /*
1387  * Caller should do after getting the following values.
1388  * 0: f2fs_put_page(page, 0)
1389  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1390  */
read_node_page(struct page * page,blk_opf_t op_flags)1391 static int read_node_page(struct page *page, blk_opf_t op_flags)
1392 {
1393 	struct folio *folio = page_folio(page);
1394 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395 	struct node_info ni;
1396 	struct f2fs_io_info fio = {
1397 		.sbi = sbi,
1398 		.type = NODE,
1399 		.op = REQ_OP_READ,
1400 		.op_flags = op_flags,
1401 		.page = page,
1402 		.encrypted_page = NULL,
1403 	};
1404 	int err;
1405 
1406 	if (folio_test_uptodate(folio)) {
1407 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1408 			folio_clear_uptodate(folio);
1409 			return -EFSBADCRC;
1410 		}
1411 		return LOCKED_PAGE;
1412 	}
1413 
1414 	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1415 	if (err)
1416 		return err;
1417 
1418 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1419 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1420 		folio_clear_uptodate(folio);
1421 		return -ENOENT;
1422 	}
1423 
1424 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1425 
1426 	err = f2fs_submit_page_bio(&fio);
1427 
1428 	if (!err)
1429 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1430 
1431 	return err;
1432 }
1433 
1434 /*
1435  * Readahead a node page
1436  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1437 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1438 {
1439 	struct page *apage;
1440 	int err;
1441 
1442 	if (!nid)
1443 		return;
1444 	if (f2fs_check_nid_range(sbi, nid))
1445 		return;
1446 
1447 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1448 	if (apage)
1449 		return;
1450 
1451 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1452 	if (!apage)
1453 		return;
1454 
1455 	err = read_node_page(apage, REQ_RAHEAD);
1456 	f2fs_put_page(apage, err ? 1 : 0);
1457 }
1458 
sanity_check_node_footer(struct f2fs_sb_info * sbi,struct page * page,pgoff_t nid,enum node_type ntype)1459 static int sanity_check_node_footer(struct f2fs_sb_info *sbi,
1460 					struct page *page, pgoff_t nid,
1461 					enum node_type ntype)
1462 {
1463 	if (unlikely(nid != nid_of_node(page) ||
1464 		(ntype == NODE_TYPE_INODE && !IS_INODE(page)) ||
1465 		(ntype == NODE_TYPE_XATTR &&
1466 		!f2fs_has_xattr_block(ofs_of_node(page))) ||
1467 		time_to_inject(sbi, FAULT_INCONSISTENT_FOOTER))) {
1468 		f2fs_warn(sbi, "inconsistent node block, node_type:%d, nid:%lu, "
1469 			  "node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1470 			  ntype, nid, nid_of_node(page), ino_of_node(page),
1471 			  ofs_of_node(page), cpver_of_node(page),
1472 			  next_blkaddr_of_node(page));
1473 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1474 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1475 		return -EFSCORRUPTED;
1476 	}
1477 	return 0;
1478 }
1479 
__get_node_folio(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start,enum node_type ntype)1480 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
1481 					struct page *parent, int start,
1482 					enum node_type ntype)
1483 {
1484 	struct folio *folio;
1485 	int err;
1486 
1487 	if (!nid)
1488 		return ERR_PTR(-ENOENT);
1489 	if (f2fs_check_nid_range(sbi, nid))
1490 		return ERR_PTR(-EINVAL);
1491 repeat:
1492 	folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1493 	if (IS_ERR(folio))
1494 		return folio;
1495 
1496 	err = read_node_page(&folio->page, 0);
1497 	if (err < 0) {
1498 		goto out_put_err;
1499 	} else if (err == LOCKED_PAGE) {
1500 		err = 0;
1501 		goto page_hit;
1502 	}
1503 
1504 	if (parent)
1505 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1506 
1507 	folio_lock(folio);
1508 
1509 	if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1510 		f2fs_folio_put(folio, true);
1511 		goto repeat;
1512 	}
1513 
1514 	if (unlikely(!folio_test_uptodate(folio))) {
1515 		err = -EIO;
1516 		goto out_err;
1517 	}
1518 
1519 	if (!f2fs_inode_chksum_verify(sbi, &folio->page)) {
1520 		err = -EFSBADCRC;
1521 		goto out_err;
1522 	}
1523 page_hit:
1524 	err = sanity_check_node_footer(sbi, &folio->page, nid, ntype);
1525 	if (!err)
1526 		return folio;
1527 out_err:
1528 	folio_clear_uptodate(folio);
1529 out_put_err:
1530 	/* ENOENT comes from read_node_page which is not an error. */
1531 	if (err != -ENOENT)
1532 		f2fs_handle_page_eio(sbi, folio, NODE);
1533 	f2fs_folio_put(folio, true);
1534 	return ERR_PTR(err);
1535 }
1536 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1537 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1538 {
1539 	struct folio *folio = __get_node_folio(sbi, nid, NULL, 0,
1540 						NODE_TYPE_REGULAR);
1541 
1542 	return &folio->page;
1543 }
1544 
f2fs_get_inode_folio(struct f2fs_sb_info * sbi,pgoff_t ino)1545 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino)
1546 {
1547 	return __get_node_folio(sbi, ino, NULL, 0, NODE_TYPE_INODE);
1548 }
1549 
f2fs_get_inode_page(struct f2fs_sb_info * sbi,pgoff_t ino)1550 struct page *f2fs_get_inode_page(struct f2fs_sb_info *sbi, pgoff_t ino)
1551 {
1552 	struct folio *folio = f2fs_get_inode_folio(sbi, ino);
1553 
1554 	return &folio->page;
1555 }
1556 
f2fs_get_xnode_page(struct f2fs_sb_info * sbi,pgoff_t xnid)1557 struct page *f2fs_get_xnode_page(struct f2fs_sb_info *sbi, pgoff_t xnid)
1558 {
1559 	struct folio *folio = __get_node_folio(sbi, xnid, NULL, 0,
1560 						NODE_TYPE_XATTR);
1561 
1562 	return &folio->page;
1563 }
1564 
f2fs_get_node_page_ra(struct page * parent,int start)1565 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1566 {
1567 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1568 	nid_t nid = get_nid(parent, start, false);
1569 	struct folio *folio = __get_node_folio(sbi, nid, parent, start,
1570 							NODE_TYPE_REGULAR);
1571 
1572 	return &folio->page;
1573 }
1574 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1575 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1576 {
1577 	struct inode *inode;
1578 	struct page *page;
1579 	int ret;
1580 
1581 	/* should flush inline_data before evict_inode */
1582 	inode = ilookup(sbi->sb, ino);
1583 	if (!inode)
1584 		return;
1585 
1586 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1587 					FGP_LOCK|FGP_NOWAIT, 0);
1588 	if (!page)
1589 		goto iput_out;
1590 
1591 	if (!PageUptodate(page))
1592 		goto page_out;
1593 
1594 	if (!PageDirty(page))
1595 		goto page_out;
1596 
1597 	if (!clear_page_dirty_for_io(page))
1598 		goto page_out;
1599 
1600 	ret = f2fs_write_inline_data(inode, page_folio(page));
1601 	inode_dec_dirty_pages(inode);
1602 	f2fs_remove_dirty_inode(inode);
1603 	if (ret)
1604 		set_page_dirty(page);
1605 page_out:
1606 	f2fs_put_page(page, 1);
1607 iput_out:
1608 	iput(inode);
1609 }
1610 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1611 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1612 {
1613 	pgoff_t index;
1614 	struct folio_batch fbatch;
1615 	struct folio *last_folio = NULL;
1616 	int nr_folios;
1617 
1618 	folio_batch_init(&fbatch);
1619 	index = 0;
1620 
1621 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1622 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1623 					&fbatch))) {
1624 		int i;
1625 
1626 		for (i = 0; i < nr_folios; i++) {
1627 			struct folio *folio = fbatch.folios[i];
1628 
1629 			if (unlikely(f2fs_cp_error(sbi))) {
1630 				f2fs_folio_put(last_folio, false);
1631 				folio_batch_release(&fbatch);
1632 				return ERR_PTR(-EIO);
1633 			}
1634 
1635 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1636 				continue;
1637 			if (ino_of_node(&folio->page) != ino)
1638 				continue;
1639 
1640 			folio_lock(folio);
1641 
1642 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1643 continue_unlock:
1644 				folio_unlock(folio);
1645 				continue;
1646 			}
1647 			if (ino_of_node(&folio->page) != ino)
1648 				goto continue_unlock;
1649 
1650 			if (!folio_test_dirty(folio)) {
1651 				/* someone wrote it for us */
1652 				goto continue_unlock;
1653 			}
1654 
1655 			if (last_folio)
1656 				f2fs_folio_put(last_folio, false);
1657 
1658 			folio_get(folio);
1659 			last_folio = folio;
1660 			folio_unlock(folio);
1661 		}
1662 		folio_batch_release(&fbatch);
1663 		cond_resched();
1664 	}
1665 	return last_folio;
1666 }
1667 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1668 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1669 				struct writeback_control *wbc, bool do_balance,
1670 				enum iostat_type io_type, unsigned int *seq_id)
1671 {
1672 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1673 	struct folio *folio = page_folio(page);
1674 	nid_t nid;
1675 	struct node_info ni;
1676 	struct f2fs_io_info fio = {
1677 		.sbi = sbi,
1678 		.ino = ino_of_node(page),
1679 		.type = NODE,
1680 		.op = REQ_OP_WRITE,
1681 		.op_flags = wbc_to_write_flags(wbc),
1682 		.page = page,
1683 		.encrypted_page = NULL,
1684 		.submitted = 0,
1685 		.io_type = io_type,
1686 		.io_wbc = wbc,
1687 	};
1688 	unsigned int seq;
1689 
1690 	trace_f2fs_writepage(folio, NODE);
1691 
1692 	if (unlikely(f2fs_cp_error(sbi))) {
1693 		/* keep node pages in remount-ro mode */
1694 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1695 			goto redirty_out;
1696 		folio_clear_uptodate(folio);
1697 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1698 		folio_unlock(folio);
1699 		return 0;
1700 	}
1701 
1702 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1703 		goto redirty_out;
1704 
1705 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1706 			wbc->sync_mode == WB_SYNC_NONE &&
1707 			IS_DNODE(page) && is_cold_node(page))
1708 		goto redirty_out;
1709 
1710 	/* get old block addr of this node page */
1711 	nid = nid_of_node(page);
1712 	f2fs_bug_on(sbi, folio->index != nid);
1713 
1714 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1715 		goto redirty_out;
1716 
1717 	if (wbc->for_reclaim) {
1718 		if (!f2fs_down_read_trylock(&sbi->node_write))
1719 			goto redirty_out;
1720 	} else {
1721 		f2fs_down_read(&sbi->node_write);
1722 	}
1723 
1724 	/* This page is already truncated */
1725 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1726 		folio_clear_uptodate(folio);
1727 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1728 		f2fs_up_read(&sbi->node_write);
1729 		folio_unlock(folio);
1730 		return 0;
1731 	}
1732 
1733 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1734 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1735 					DATA_GENERIC_ENHANCE)) {
1736 		f2fs_up_read(&sbi->node_write);
1737 		goto redirty_out;
1738 	}
1739 
1740 	if (atomic && !test_opt(sbi, NOBARRIER))
1741 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1742 
1743 	/* should add to global list before clearing PAGECACHE status */
1744 	if (f2fs_in_warm_node_list(sbi, folio)) {
1745 		seq = f2fs_add_fsync_node_entry(sbi, page);
1746 		if (seq_id)
1747 			*seq_id = seq;
1748 	}
1749 
1750 	folio_start_writeback(folio);
1751 
1752 	fio.old_blkaddr = ni.blk_addr;
1753 	f2fs_do_write_node_page(nid, &fio);
1754 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1755 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1756 	f2fs_up_read(&sbi->node_write);
1757 
1758 	if (wbc->for_reclaim) {
1759 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1760 		submitted = NULL;
1761 	}
1762 
1763 	folio_unlock(folio);
1764 
1765 	if (unlikely(f2fs_cp_error(sbi))) {
1766 		f2fs_submit_merged_write(sbi, NODE);
1767 		submitted = NULL;
1768 	}
1769 	if (submitted)
1770 		*submitted = fio.submitted;
1771 
1772 	if (do_balance)
1773 		f2fs_balance_fs(sbi, false);
1774 	return 0;
1775 
1776 redirty_out:
1777 	folio_redirty_for_writepage(wbc, folio);
1778 	return AOP_WRITEPAGE_ACTIVATE;
1779 }
1780 
f2fs_move_node_page(struct page * node_page,int gc_type)1781 int f2fs_move_node_page(struct page *node_page, int gc_type)
1782 {
1783 	int err = 0;
1784 
1785 	if (gc_type == FG_GC) {
1786 		struct writeback_control wbc = {
1787 			.sync_mode = WB_SYNC_ALL,
1788 			.nr_to_write = 1,
1789 			.for_reclaim = 0,
1790 		};
1791 
1792 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1793 
1794 		set_page_dirty(node_page);
1795 
1796 		if (!clear_page_dirty_for_io(node_page)) {
1797 			err = -EAGAIN;
1798 			goto out_page;
1799 		}
1800 
1801 		if (__write_node_page(node_page, false, NULL,
1802 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1803 			err = -EAGAIN;
1804 			unlock_page(node_page);
1805 		}
1806 		goto release_page;
1807 	} else {
1808 		/* set page dirty and write it */
1809 		if (!folio_test_writeback(page_folio(node_page)))
1810 			set_page_dirty(node_page);
1811 	}
1812 out_page:
1813 	unlock_page(node_page);
1814 release_page:
1815 	f2fs_put_page(node_page, 0);
1816 	return err;
1817 }
1818 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1819 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1820 			struct writeback_control *wbc, bool atomic,
1821 			unsigned int *seq_id)
1822 {
1823 	pgoff_t index;
1824 	struct folio_batch fbatch;
1825 	int ret = 0;
1826 	struct folio *last_folio = NULL;
1827 	bool marked = false;
1828 	nid_t ino = inode->i_ino;
1829 	int nr_folios;
1830 	int nwritten = 0;
1831 
1832 	if (atomic) {
1833 		last_folio = last_fsync_dnode(sbi, ino);
1834 		if (IS_ERR_OR_NULL(last_folio))
1835 			return PTR_ERR_OR_ZERO(last_folio);
1836 	}
1837 retry:
1838 	folio_batch_init(&fbatch);
1839 	index = 0;
1840 
1841 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1842 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1843 					&fbatch))) {
1844 		int i;
1845 
1846 		for (i = 0; i < nr_folios; i++) {
1847 			struct folio *folio = fbatch.folios[i];
1848 			bool submitted = false;
1849 
1850 			if (unlikely(f2fs_cp_error(sbi))) {
1851 				f2fs_folio_put(last_folio, false);
1852 				folio_batch_release(&fbatch);
1853 				ret = -EIO;
1854 				goto out;
1855 			}
1856 
1857 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1858 				continue;
1859 			if (ino_of_node(&folio->page) != ino)
1860 				continue;
1861 
1862 			folio_lock(folio);
1863 
1864 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1865 continue_unlock:
1866 				folio_unlock(folio);
1867 				continue;
1868 			}
1869 			if (ino_of_node(&folio->page) != ino)
1870 				goto continue_unlock;
1871 
1872 			if (!folio_test_dirty(folio) && folio != last_folio) {
1873 				/* someone wrote it for us */
1874 				goto continue_unlock;
1875 			}
1876 
1877 			f2fs_folio_wait_writeback(folio, NODE, true, true);
1878 
1879 			set_fsync_mark(&folio->page, 0);
1880 			set_dentry_mark(&folio->page, 0);
1881 
1882 			if (!atomic || folio == last_folio) {
1883 				set_fsync_mark(&folio->page, 1);
1884 				percpu_counter_inc(&sbi->rf_node_block_count);
1885 				if (IS_INODE(&folio->page)) {
1886 					if (is_inode_flag_set(inode,
1887 								FI_DIRTY_INODE))
1888 						f2fs_update_inode(inode, &folio->page);
1889 					set_dentry_mark(&folio->page,
1890 						f2fs_need_dentry_mark(sbi, ino));
1891 				}
1892 				/* may be written by other thread */
1893 				if (!folio_test_dirty(folio))
1894 					folio_mark_dirty(folio);
1895 			}
1896 
1897 			if (!folio_clear_dirty_for_io(folio))
1898 				goto continue_unlock;
1899 
1900 			ret = __write_node_page(&folio->page, atomic &&
1901 						folio == last_folio,
1902 						&submitted, wbc, true,
1903 						FS_NODE_IO, seq_id);
1904 			if (ret) {
1905 				folio_unlock(folio);
1906 				f2fs_folio_put(last_folio, false);
1907 				break;
1908 			} else if (submitted) {
1909 				nwritten++;
1910 			}
1911 
1912 			if (folio == last_folio) {
1913 				f2fs_folio_put(folio, false);
1914 				marked = true;
1915 				break;
1916 			}
1917 		}
1918 		folio_batch_release(&fbatch);
1919 		cond_resched();
1920 
1921 		if (ret || marked)
1922 			break;
1923 	}
1924 	if (!ret && atomic && !marked) {
1925 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1926 			   ino, last_folio->index);
1927 		folio_lock(last_folio);
1928 		f2fs_folio_wait_writeback(last_folio, NODE, true, true);
1929 		folio_mark_dirty(last_folio);
1930 		folio_unlock(last_folio);
1931 		goto retry;
1932 	}
1933 out:
1934 	if (nwritten)
1935 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1936 	return ret ? -EIO : 0;
1937 }
1938 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1939 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1940 {
1941 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1942 	bool clean;
1943 
1944 	if (inode->i_ino != ino)
1945 		return 0;
1946 
1947 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1948 		return 0;
1949 
1950 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1951 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1952 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1953 
1954 	if (clean)
1955 		return 0;
1956 
1957 	inode = igrab(inode);
1958 	if (!inode)
1959 		return 0;
1960 	return 1;
1961 }
1962 
flush_dirty_inode(struct folio * folio)1963 static bool flush_dirty_inode(struct folio *folio)
1964 {
1965 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1966 	struct inode *inode;
1967 	nid_t ino = ino_of_node(&folio->page);
1968 
1969 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1970 	if (!inode)
1971 		return false;
1972 
1973 	f2fs_update_inode(inode, &folio->page);
1974 	folio_unlock(folio);
1975 
1976 	iput(inode);
1977 	return true;
1978 }
1979 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1980 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1981 {
1982 	pgoff_t index = 0;
1983 	struct folio_batch fbatch;
1984 	int nr_folios;
1985 
1986 	folio_batch_init(&fbatch);
1987 
1988 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1989 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1990 					&fbatch))) {
1991 		int i;
1992 
1993 		for (i = 0; i < nr_folios; i++) {
1994 			struct folio *folio = fbatch.folios[i];
1995 
1996 			if (!IS_INODE(&folio->page))
1997 				continue;
1998 
1999 			folio_lock(folio);
2000 
2001 			if (unlikely(folio->mapping != NODE_MAPPING(sbi)))
2002 				goto unlock;
2003 			if (!folio_test_dirty(folio))
2004 				goto unlock;
2005 
2006 			/* flush inline_data, if it's async context. */
2007 			if (page_private_inline(&folio->page)) {
2008 				clear_page_private_inline(&folio->page);
2009 				folio_unlock(folio);
2010 				flush_inline_data(sbi, ino_of_node(&folio->page));
2011 				continue;
2012 			}
2013 unlock:
2014 			folio_unlock(folio);
2015 		}
2016 		folio_batch_release(&fbatch);
2017 		cond_resched();
2018 	}
2019 }
2020 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)2021 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2022 				struct writeback_control *wbc,
2023 				bool do_balance, enum iostat_type io_type)
2024 {
2025 	pgoff_t index;
2026 	struct folio_batch fbatch;
2027 	int step = 0;
2028 	int nwritten = 0;
2029 	int ret = 0;
2030 	int nr_folios, done = 0;
2031 
2032 	folio_batch_init(&fbatch);
2033 
2034 next_step:
2035 	index = 0;
2036 
2037 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2038 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2039 				&fbatch))) {
2040 		int i;
2041 
2042 		for (i = 0; i < nr_folios; i++) {
2043 			struct folio *folio = fbatch.folios[i];
2044 			bool submitted = false;
2045 
2046 			/* give a priority to WB_SYNC threads */
2047 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2048 					wbc->sync_mode == WB_SYNC_NONE) {
2049 				done = 1;
2050 				break;
2051 			}
2052 
2053 			/*
2054 			 * flushing sequence with step:
2055 			 * 0. indirect nodes
2056 			 * 1. dentry dnodes
2057 			 * 2. file dnodes
2058 			 */
2059 			if (step == 0 && IS_DNODE(&folio->page))
2060 				continue;
2061 			if (step == 1 && (!IS_DNODE(&folio->page) ||
2062 						is_cold_node(&folio->page)))
2063 				continue;
2064 			if (step == 2 && (!IS_DNODE(&folio->page) ||
2065 						!is_cold_node(&folio->page)))
2066 				continue;
2067 lock_node:
2068 			if (wbc->sync_mode == WB_SYNC_ALL)
2069 				folio_lock(folio);
2070 			else if (!folio_trylock(folio))
2071 				continue;
2072 
2073 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
2074 continue_unlock:
2075 				folio_unlock(folio);
2076 				continue;
2077 			}
2078 
2079 			if (!folio_test_dirty(folio)) {
2080 				/* someone wrote it for us */
2081 				goto continue_unlock;
2082 			}
2083 
2084 			/* flush inline_data/inode, if it's async context. */
2085 			if (!do_balance)
2086 				goto write_node;
2087 
2088 			/* flush inline_data */
2089 			if (page_private_inline(&folio->page)) {
2090 				clear_page_private_inline(&folio->page);
2091 				folio_unlock(folio);
2092 				flush_inline_data(sbi, ino_of_node(&folio->page));
2093 				goto lock_node;
2094 			}
2095 
2096 			/* flush dirty inode */
2097 			if (IS_INODE(&folio->page) && flush_dirty_inode(folio))
2098 				goto lock_node;
2099 write_node:
2100 			f2fs_folio_wait_writeback(folio, NODE, true, true);
2101 
2102 			if (!folio_clear_dirty_for_io(folio))
2103 				goto continue_unlock;
2104 
2105 			set_fsync_mark(&folio->page, 0);
2106 			set_dentry_mark(&folio->page, 0);
2107 
2108 			ret = __write_node_page(&folio->page, false, &submitted,
2109 						wbc, do_balance, io_type, NULL);
2110 			if (ret)
2111 				folio_unlock(folio);
2112 			else if (submitted)
2113 				nwritten++;
2114 
2115 			if (--wbc->nr_to_write == 0)
2116 				break;
2117 		}
2118 		folio_batch_release(&fbatch);
2119 		cond_resched();
2120 
2121 		if (wbc->nr_to_write == 0) {
2122 			step = 2;
2123 			break;
2124 		}
2125 	}
2126 
2127 	if (step < 2) {
2128 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2129 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2130 			goto out;
2131 		step++;
2132 		goto next_step;
2133 	}
2134 out:
2135 	if (nwritten)
2136 		f2fs_submit_merged_write(sbi, NODE);
2137 
2138 	if (unlikely(f2fs_cp_error(sbi)))
2139 		return -EIO;
2140 	return ret;
2141 }
2142 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2143 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2144 						unsigned int seq_id)
2145 {
2146 	struct fsync_node_entry *fn;
2147 	struct page *page;
2148 	struct list_head *head = &sbi->fsync_node_list;
2149 	unsigned long flags;
2150 	unsigned int cur_seq_id = 0;
2151 
2152 	while (seq_id && cur_seq_id < seq_id) {
2153 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2154 		if (list_empty(head)) {
2155 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2156 			break;
2157 		}
2158 		fn = list_first_entry(head, struct fsync_node_entry, list);
2159 		if (fn->seq_id > seq_id) {
2160 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2161 			break;
2162 		}
2163 		cur_seq_id = fn->seq_id;
2164 		page = fn->page;
2165 		get_page(page);
2166 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2167 
2168 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2169 
2170 		put_page(page);
2171 	}
2172 
2173 	return filemap_check_errors(NODE_MAPPING(sbi));
2174 }
2175 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2176 static int f2fs_write_node_pages(struct address_space *mapping,
2177 			    struct writeback_control *wbc)
2178 {
2179 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2180 	struct blk_plug plug;
2181 	long diff;
2182 
2183 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2184 		goto skip_write;
2185 
2186 	/* balancing f2fs's metadata in background */
2187 	f2fs_balance_fs_bg(sbi, true);
2188 
2189 	/* collect a number of dirty node pages and write together */
2190 	if (wbc->sync_mode != WB_SYNC_ALL &&
2191 			get_pages(sbi, F2FS_DIRTY_NODES) <
2192 					nr_pages_to_skip(sbi, NODE))
2193 		goto skip_write;
2194 
2195 	if (wbc->sync_mode == WB_SYNC_ALL)
2196 		atomic_inc(&sbi->wb_sync_req[NODE]);
2197 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2198 		/* to avoid potential deadlock */
2199 		if (current->plug)
2200 			blk_finish_plug(current->plug);
2201 		goto skip_write;
2202 	}
2203 
2204 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2205 
2206 	diff = nr_pages_to_write(sbi, NODE, wbc);
2207 	blk_start_plug(&plug);
2208 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2209 	blk_finish_plug(&plug);
2210 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2211 
2212 	if (wbc->sync_mode == WB_SYNC_ALL)
2213 		atomic_dec(&sbi->wb_sync_req[NODE]);
2214 	return 0;
2215 
2216 skip_write:
2217 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2218 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2219 	return 0;
2220 }
2221 
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2222 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2223 		struct folio *folio)
2224 {
2225 	trace_f2fs_set_page_dirty(folio, NODE);
2226 
2227 	if (!folio_test_uptodate(folio))
2228 		folio_mark_uptodate(folio);
2229 #ifdef CONFIG_F2FS_CHECK_FS
2230 	if (IS_INODE(&folio->page))
2231 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2232 #endif
2233 	if (filemap_dirty_folio(mapping, folio)) {
2234 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2235 		set_page_private_reference(&folio->page);
2236 		return true;
2237 	}
2238 	return false;
2239 }
2240 
2241 /*
2242  * Structure of the f2fs node operations
2243  */
2244 const struct address_space_operations f2fs_node_aops = {
2245 	.writepages	= f2fs_write_node_pages,
2246 	.dirty_folio	= f2fs_dirty_node_folio,
2247 	.invalidate_folio = f2fs_invalidate_folio,
2248 	.release_folio	= f2fs_release_folio,
2249 	.migrate_folio	= filemap_migrate_folio,
2250 };
2251 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2252 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2253 						nid_t n)
2254 {
2255 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2256 }
2257 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2258 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2259 				struct free_nid *i)
2260 {
2261 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2262 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2263 
2264 	if (err)
2265 		return err;
2266 
2267 	nm_i->nid_cnt[FREE_NID]++;
2268 	list_add_tail(&i->list, &nm_i->free_nid_list);
2269 	return 0;
2270 }
2271 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2272 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2273 			struct free_nid *i, enum nid_state state)
2274 {
2275 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2276 
2277 	f2fs_bug_on(sbi, state != i->state);
2278 	nm_i->nid_cnt[state]--;
2279 	if (state == FREE_NID)
2280 		list_del(&i->list);
2281 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2282 }
2283 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2284 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2285 			enum nid_state org_state, enum nid_state dst_state)
2286 {
2287 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2288 
2289 	f2fs_bug_on(sbi, org_state != i->state);
2290 	i->state = dst_state;
2291 	nm_i->nid_cnt[org_state]--;
2292 	nm_i->nid_cnt[dst_state]++;
2293 
2294 	switch (dst_state) {
2295 	case PREALLOC_NID:
2296 		list_del(&i->list);
2297 		break;
2298 	case FREE_NID:
2299 		list_add_tail(&i->list, &nm_i->free_nid_list);
2300 		break;
2301 	default:
2302 		BUG_ON(1);
2303 	}
2304 }
2305 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2306 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2307 							bool set, bool build)
2308 {
2309 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2310 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2311 	unsigned int nid_ofs = nid - START_NID(nid);
2312 
2313 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2314 		return;
2315 
2316 	if (set) {
2317 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2318 			return;
2319 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2320 		nm_i->free_nid_count[nat_ofs]++;
2321 	} else {
2322 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2323 			return;
2324 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2325 		if (!build)
2326 			nm_i->free_nid_count[nat_ofs]--;
2327 	}
2328 }
2329 
2330 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2331 static bool add_free_nid(struct f2fs_sb_info *sbi,
2332 				nid_t nid, bool build, bool update)
2333 {
2334 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2335 	struct free_nid *i, *e;
2336 	struct nat_entry *ne;
2337 	int err = -EINVAL;
2338 	bool ret = false;
2339 
2340 	/* 0 nid should not be used */
2341 	if (unlikely(nid == 0))
2342 		return false;
2343 
2344 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2345 		return false;
2346 
2347 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2348 	i->nid = nid;
2349 	i->state = FREE_NID;
2350 
2351 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2352 
2353 	spin_lock(&nm_i->nid_list_lock);
2354 
2355 	if (build) {
2356 		/*
2357 		 *   Thread A             Thread B
2358 		 *  - f2fs_create
2359 		 *   - f2fs_new_inode
2360 		 *    - f2fs_alloc_nid
2361 		 *     - __insert_nid_to_list(PREALLOC_NID)
2362 		 *                     - f2fs_balance_fs_bg
2363 		 *                      - f2fs_build_free_nids
2364 		 *                       - __f2fs_build_free_nids
2365 		 *                        - scan_nat_page
2366 		 *                         - add_free_nid
2367 		 *                          - __lookup_nat_cache
2368 		 *  - f2fs_add_link
2369 		 *   - f2fs_init_inode_metadata
2370 		 *    - f2fs_new_inode_page
2371 		 *     - f2fs_new_node_page
2372 		 *      - set_node_addr
2373 		 *  - f2fs_alloc_nid_done
2374 		 *   - __remove_nid_from_list(PREALLOC_NID)
2375 		 *                         - __insert_nid_to_list(FREE_NID)
2376 		 */
2377 		ne = __lookup_nat_cache(nm_i, nid);
2378 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2379 				nat_get_blkaddr(ne) != NULL_ADDR))
2380 			goto err_out;
2381 
2382 		e = __lookup_free_nid_list(nm_i, nid);
2383 		if (e) {
2384 			if (e->state == FREE_NID)
2385 				ret = true;
2386 			goto err_out;
2387 		}
2388 	}
2389 	ret = true;
2390 	err = __insert_free_nid(sbi, i);
2391 err_out:
2392 	if (update) {
2393 		update_free_nid_bitmap(sbi, nid, ret, build);
2394 		if (!build)
2395 			nm_i->available_nids++;
2396 	}
2397 	spin_unlock(&nm_i->nid_list_lock);
2398 	radix_tree_preload_end();
2399 
2400 	if (err)
2401 		kmem_cache_free(free_nid_slab, i);
2402 	return ret;
2403 }
2404 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2405 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2406 {
2407 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2408 	struct free_nid *i;
2409 	bool need_free = false;
2410 
2411 	spin_lock(&nm_i->nid_list_lock);
2412 	i = __lookup_free_nid_list(nm_i, nid);
2413 	if (i && i->state == FREE_NID) {
2414 		__remove_free_nid(sbi, i, FREE_NID);
2415 		need_free = true;
2416 	}
2417 	spin_unlock(&nm_i->nid_list_lock);
2418 
2419 	if (need_free)
2420 		kmem_cache_free(free_nid_slab, i);
2421 }
2422 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2423 static int scan_nat_page(struct f2fs_sb_info *sbi,
2424 			struct page *nat_page, nid_t start_nid)
2425 {
2426 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2427 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2428 	block_t blk_addr;
2429 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2430 	int i;
2431 
2432 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2433 
2434 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2435 
2436 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2437 		if (unlikely(start_nid >= nm_i->max_nid))
2438 			break;
2439 
2440 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2441 
2442 		if (blk_addr == NEW_ADDR)
2443 			return -EFSCORRUPTED;
2444 
2445 		if (blk_addr == NULL_ADDR) {
2446 			add_free_nid(sbi, start_nid, true, true);
2447 		} else {
2448 			spin_lock(&NM_I(sbi)->nid_list_lock);
2449 			update_free_nid_bitmap(sbi, start_nid, false, true);
2450 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2451 		}
2452 	}
2453 
2454 	return 0;
2455 }
2456 
scan_curseg_cache(struct f2fs_sb_info * sbi)2457 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2458 {
2459 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2460 	struct f2fs_journal *journal = curseg->journal;
2461 	int i;
2462 
2463 	down_read(&curseg->journal_rwsem);
2464 	for (i = 0; i < nats_in_cursum(journal); i++) {
2465 		block_t addr;
2466 		nid_t nid;
2467 
2468 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2469 		nid = le32_to_cpu(nid_in_journal(journal, i));
2470 		if (addr == NULL_ADDR)
2471 			add_free_nid(sbi, nid, true, false);
2472 		else
2473 			remove_free_nid(sbi, nid);
2474 	}
2475 	up_read(&curseg->journal_rwsem);
2476 }
2477 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2478 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2479 {
2480 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2481 	unsigned int i, idx;
2482 	nid_t nid;
2483 
2484 	f2fs_down_read(&nm_i->nat_tree_lock);
2485 
2486 	for (i = 0; i < nm_i->nat_blocks; i++) {
2487 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2488 			continue;
2489 		if (!nm_i->free_nid_count[i])
2490 			continue;
2491 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2492 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2493 						NAT_ENTRY_PER_BLOCK, idx);
2494 			if (idx >= NAT_ENTRY_PER_BLOCK)
2495 				break;
2496 
2497 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2498 			add_free_nid(sbi, nid, true, false);
2499 
2500 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2501 				goto out;
2502 		}
2503 	}
2504 out:
2505 	scan_curseg_cache(sbi);
2506 
2507 	f2fs_up_read(&nm_i->nat_tree_lock);
2508 }
2509 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2510 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2511 						bool sync, bool mount)
2512 {
2513 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2514 	int i = 0, ret;
2515 	nid_t nid = nm_i->next_scan_nid;
2516 
2517 	if (unlikely(nid >= nm_i->max_nid))
2518 		nid = 0;
2519 
2520 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2521 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2522 
2523 	/* Enough entries */
2524 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2525 		return 0;
2526 
2527 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2528 		return 0;
2529 
2530 	if (!mount) {
2531 		/* try to find free nids in free_nid_bitmap */
2532 		scan_free_nid_bits(sbi);
2533 
2534 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2535 			return 0;
2536 	}
2537 
2538 	/* readahead nat pages to be scanned */
2539 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2540 							META_NAT, true);
2541 
2542 	f2fs_down_read(&nm_i->nat_tree_lock);
2543 
2544 	while (1) {
2545 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2546 						nm_i->nat_block_bitmap)) {
2547 			struct page *page = get_current_nat_page(sbi, nid);
2548 
2549 			if (IS_ERR(page)) {
2550 				ret = PTR_ERR(page);
2551 			} else {
2552 				ret = scan_nat_page(sbi, page, nid);
2553 				f2fs_put_page(page, 1);
2554 			}
2555 
2556 			if (ret) {
2557 				f2fs_up_read(&nm_i->nat_tree_lock);
2558 
2559 				if (ret == -EFSCORRUPTED) {
2560 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2561 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2562 					f2fs_handle_error(sbi,
2563 						ERROR_INCONSISTENT_NAT);
2564 				}
2565 
2566 				return ret;
2567 			}
2568 		}
2569 
2570 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2571 		if (unlikely(nid >= nm_i->max_nid))
2572 			nid = 0;
2573 
2574 		if (++i >= FREE_NID_PAGES)
2575 			break;
2576 	}
2577 
2578 	/* go to the next free nat pages to find free nids abundantly */
2579 	nm_i->next_scan_nid = nid;
2580 
2581 	/* find free nids from current sum_pages */
2582 	scan_curseg_cache(sbi);
2583 
2584 	f2fs_up_read(&nm_i->nat_tree_lock);
2585 
2586 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2587 					nm_i->ra_nid_pages, META_NAT, false);
2588 
2589 	return 0;
2590 }
2591 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2592 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2593 {
2594 	int ret;
2595 
2596 	mutex_lock(&NM_I(sbi)->build_lock);
2597 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2598 	mutex_unlock(&NM_I(sbi)->build_lock);
2599 
2600 	return ret;
2601 }
2602 
2603 /*
2604  * If this function returns success, caller can obtain a new nid
2605  * from second parameter of this function.
2606  * The returned nid could be used ino as well as nid when inode is created.
2607  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2608 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2609 {
2610 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2611 	struct free_nid *i = NULL;
2612 retry:
2613 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2614 		return false;
2615 
2616 	spin_lock(&nm_i->nid_list_lock);
2617 
2618 	if (unlikely(nm_i->available_nids == 0)) {
2619 		spin_unlock(&nm_i->nid_list_lock);
2620 		return false;
2621 	}
2622 
2623 	/* We should not use stale free nids created by f2fs_build_free_nids */
2624 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2625 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2626 		i = list_first_entry(&nm_i->free_nid_list,
2627 					struct free_nid, list);
2628 		*nid = i->nid;
2629 
2630 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2631 		nm_i->available_nids--;
2632 
2633 		update_free_nid_bitmap(sbi, *nid, false, false);
2634 
2635 		spin_unlock(&nm_i->nid_list_lock);
2636 		return true;
2637 	}
2638 	spin_unlock(&nm_i->nid_list_lock);
2639 
2640 	/* Let's scan nat pages and its caches to get free nids */
2641 	if (!f2fs_build_free_nids(sbi, true, false))
2642 		goto retry;
2643 	return false;
2644 }
2645 
2646 /*
2647  * f2fs_alloc_nid() should be called prior to this function.
2648  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2649 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2650 {
2651 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2652 	struct free_nid *i;
2653 
2654 	spin_lock(&nm_i->nid_list_lock);
2655 	i = __lookup_free_nid_list(nm_i, nid);
2656 	f2fs_bug_on(sbi, !i);
2657 	__remove_free_nid(sbi, i, PREALLOC_NID);
2658 	spin_unlock(&nm_i->nid_list_lock);
2659 
2660 	kmem_cache_free(free_nid_slab, i);
2661 }
2662 
2663 /*
2664  * f2fs_alloc_nid() should be called prior to this function.
2665  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2666 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2667 {
2668 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2669 	struct free_nid *i;
2670 	bool need_free = false;
2671 
2672 	if (!nid)
2673 		return;
2674 
2675 	spin_lock(&nm_i->nid_list_lock);
2676 	i = __lookup_free_nid_list(nm_i, nid);
2677 	f2fs_bug_on(sbi, !i);
2678 
2679 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2680 		__remove_free_nid(sbi, i, PREALLOC_NID);
2681 		need_free = true;
2682 	} else {
2683 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2684 	}
2685 
2686 	nm_i->available_nids++;
2687 
2688 	update_free_nid_bitmap(sbi, nid, true, false);
2689 
2690 	spin_unlock(&nm_i->nid_list_lock);
2691 
2692 	if (need_free)
2693 		kmem_cache_free(free_nid_slab, i);
2694 }
2695 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2696 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2697 {
2698 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2699 	int nr = nr_shrink;
2700 
2701 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2702 		return 0;
2703 
2704 	if (!mutex_trylock(&nm_i->build_lock))
2705 		return 0;
2706 
2707 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2708 		struct free_nid *i, *next;
2709 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2710 
2711 		spin_lock(&nm_i->nid_list_lock);
2712 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2713 			if (!nr_shrink || !batch ||
2714 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2715 				break;
2716 			__remove_free_nid(sbi, i, FREE_NID);
2717 			kmem_cache_free(free_nid_slab, i);
2718 			nr_shrink--;
2719 			batch--;
2720 		}
2721 		spin_unlock(&nm_i->nid_list_lock);
2722 	}
2723 
2724 	mutex_unlock(&nm_i->build_lock);
2725 
2726 	return nr - nr_shrink;
2727 }
2728 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2729 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2730 {
2731 	void *src_addr, *dst_addr;
2732 	size_t inline_size;
2733 	struct page *ipage;
2734 	struct f2fs_inode *ri;
2735 
2736 	ipage = f2fs_get_inode_page(F2FS_I_SB(inode), inode->i_ino);
2737 	if (IS_ERR(ipage))
2738 		return PTR_ERR(ipage);
2739 
2740 	ri = F2FS_INODE(page);
2741 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2742 		if (!f2fs_has_inline_xattr(inode)) {
2743 			set_inode_flag(inode, FI_INLINE_XATTR);
2744 			stat_inc_inline_xattr(inode);
2745 		}
2746 	} else {
2747 		if (f2fs_has_inline_xattr(inode)) {
2748 			stat_dec_inline_xattr(inode);
2749 			clear_inode_flag(inode, FI_INLINE_XATTR);
2750 		}
2751 		goto update_inode;
2752 	}
2753 
2754 	dst_addr = inline_xattr_addr(inode, ipage);
2755 	src_addr = inline_xattr_addr(inode, page);
2756 	inline_size = inline_xattr_size(inode);
2757 
2758 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2759 	memcpy(dst_addr, src_addr, inline_size);
2760 update_inode:
2761 	f2fs_update_inode(inode, ipage);
2762 	f2fs_put_page(ipage, 1);
2763 	return 0;
2764 }
2765 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2766 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2767 {
2768 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2769 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2770 	nid_t new_xnid;
2771 	struct dnode_of_data dn;
2772 	struct node_info ni;
2773 	struct page *xpage;
2774 	int err;
2775 
2776 	if (!prev_xnid)
2777 		goto recover_xnid;
2778 
2779 	/* 1: invalidate the previous xattr nid */
2780 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2781 	if (err)
2782 		return err;
2783 
2784 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2785 	dec_valid_node_count(sbi, inode, false);
2786 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2787 
2788 recover_xnid:
2789 	/* 2: update xattr nid in inode */
2790 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2791 		return -ENOSPC;
2792 
2793 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2794 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2795 	if (IS_ERR(xpage)) {
2796 		f2fs_alloc_nid_failed(sbi, new_xnid);
2797 		return PTR_ERR(xpage);
2798 	}
2799 
2800 	f2fs_alloc_nid_done(sbi, new_xnid);
2801 	f2fs_update_inode_page(inode);
2802 
2803 	/* 3: update and set xattr node page dirty */
2804 	if (page) {
2805 		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2806 				VALID_XATTR_BLOCK_SIZE);
2807 		set_page_dirty(xpage);
2808 	}
2809 	f2fs_put_page(xpage, 1);
2810 
2811 	return 0;
2812 }
2813 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2814 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2815 {
2816 	struct f2fs_inode *src, *dst;
2817 	nid_t ino = ino_of_node(page);
2818 	struct node_info old_ni, new_ni;
2819 	struct page *ipage;
2820 	int err;
2821 
2822 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2823 	if (err)
2824 		return err;
2825 
2826 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2827 		return -EINVAL;
2828 retry:
2829 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2830 	if (!ipage) {
2831 		memalloc_retry_wait(GFP_NOFS);
2832 		goto retry;
2833 	}
2834 
2835 	/* Should not use this inode from free nid list */
2836 	remove_free_nid(sbi, ino);
2837 
2838 	if (!PageUptodate(ipage))
2839 		SetPageUptodate(ipage);
2840 	fill_node_footer(ipage, ino, ino, 0, true);
2841 	set_cold_node(ipage, false);
2842 
2843 	src = F2FS_INODE(page);
2844 	dst = F2FS_INODE(ipage);
2845 
2846 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2847 	dst->i_size = 0;
2848 	dst->i_blocks = cpu_to_le64(1);
2849 	dst->i_links = cpu_to_le32(1);
2850 	dst->i_xattr_nid = 0;
2851 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2852 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2853 		dst->i_extra_isize = src->i_extra_isize;
2854 
2855 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2856 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2857 							i_inline_xattr_size))
2858 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2859 
2860 		if (f2fs_sb_has_project_quota(sbi) &&
2861 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2862 								i_projid))
2863 			dst->i_projid = src->i_projid;
2864 
2865 		if (f2fs_sb_has_inode_crtime(sbi) &&
2866 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2867 							i_crtime_nsec)) {
2868 			dst->i_crtime = src->i_crtime;
2869 			dst->i_crtime_nsec = src->i_crtime_nsec;
2870 		}
2871 	}
2872 
2873 	new_ni = old_ni;
2874 	new_ni.ino = ino;
2875 
2876 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2877 		WARN_ON(1);
2878 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2879 	inc_valid_inode_count(sbi);
2880 	set_page_dirty(ipage);
2881 	f2fs_put_page(ipage, 1);
2882 	return 0;
2883 }
2884 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2885 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2886 			unsigned int segno, struct f2fs_summary_block *sum)
2887 {
2888 	struct f2fs_node *rn;
2889 	struct f2fs_summary *sum_entry;
2890 	block_t addr;
2891 	int i, idx, last_offset, nrpages;
2892 
2893 	/* scan the node segment */
2894 	last_offset = BLKS_PER_SEG(sbi);
2895 	addr = START_BLOCK(sbi, segno);
2896 	sum_entry = &sum->entries[0];
2897 
2898 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2899 		nrpages = bio_max_segs(last_offset - i);
2900 
2901 		/* readahead node pages */
2902 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2903 
2904 		for (idx = addr; idx < addr + nrpages; idx++) {
2905 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2906 
2907 			if (IS_ERR(page))
2908 				return PTR_ERR(page);
2909 
2910 			rn = F2FS_NODE(page);
2911 			sum_entry->nid = rn->footer.nid;
2912 			sum_entry->version = 0;
2913 			sum_entry->ofs_in_node = 0;
2914 			sum_entry++;
2915 			f2fs_put_page(page, 1);
2916 		}
2917 
2918 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2919 							addr + nrpages);
2920 	}
2921 	return 0;
2922 }
2923 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2924 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2925 {
2926 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2927 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2928 	struct f2fs_journal *journal = curseg->journal;
2929 	int i;
2930 
2931 	down_write(&curseg->journal_rwsem);
2932 	for (i = 0; i < nats_in_cursum(journal); i++) {
2933 		struct nat_entry *ne;
2934 		struct f2fs_nat_entry raw_ne;
2935 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2936 
2937 		if (f2fs_check_nid_range(sbi, nid))
2938 			continue;
2939 
2940 		raw_ne = nat_in_journal(journal, i);
2941 
2942 		ne = __lookup_nat_cache(nm_i, nid);
2943 		if (!ne) {
2944 			ne = __alloc_nat_entry(sbi, nid, true);
2945 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2946 		}
2947 
2948 		/*
2949 		 * if a free nat in journal has not been used after last
2950 		 * checkpoint, we should remove it from available nids,
2951 		 * since later we will add it again.
2952 		 */
2953 		if (!get_nat_flag(ne, IS_DIRTY) &&
2954 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2955 			spin_lock(&nm_i->nid_list_lock);
2956 			nm_i->available_nids--;
2957 			spin_unlock(&nm_i->nid_list_lock);
2958 		}
2959 
2960 		__set_nat_cache_dirty(nm_i, ne);
2961 	}
2962 	update_nats_in_cursum(journal, -i);
2963 	up_write(&curseg->journal_rwsem);
2964 }
2965 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2966 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2967 						struct list_head *head, int max)
2968 {
2969 	struct nat_entry_set *cur;
2970 
2971 	if (nes->entry_cnt >= max)
2972 		goto add_out;
2973 
2974 	list_for_each_entry(cur, head, set_list) {
2975 		if (cur->entry_cnt >= nes->entry_cnt) {
2976 			list_add(&nes->set_list, cur->set_list.prev);
2977 			return;
2978 		}
2979 	}
2980 add_out:
2981 	list_add_tail(&nes->set_list, head);
2982 }
2983 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2984 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2985 						struct page *page)
2986 {
2987 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2988 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2989 	struct f2fs_nat_block *nat_blk = page_address(page);
2990 	int valid = 0;
2991 	int i = 0;
2992 
2993 	if (!enabled_nat_bits(sbi, NULL))
2994 		return;
2995 
2996 	if (nat_index == 0) {
2997 		valid = 1;
2998 		i = 1;
2999 	}
3000 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
3001 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3002 			valid++;
3003 	}
3004 	if (valid == 0) {
3005 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
3006 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
3007 		return;
3008 	}
3009 
3010 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
3011 	if (valid == NAT_ENTRY_PER_BLOCK)
3012 		__set_bit_le(nat_index, nm_i->full_nat_bits);
3013 	else
3014 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
3015 }
3016 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)3017 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3018 		struct nat_entry_set *set, struct cp_control *cpc)
3019 {
3020 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3021 	struct f2fs_journal *journal = curseg->journal;
3022 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3023 	bool to_journal = true;
3024 	struct f2fs_nat_block *nat_blk;
3025 	struct nat_entry *ne, *cur;
3026 	struct page *page = NULL;
3027 
3028 	/*
3029 	 * there are two steps to flush nat entries:
3030 	 * #1, flush nat entries to journal in current hot data summary block.
3031 	 * #2, flush nat entries to nat page.
3032 	 */
3033 	if (enabled_nat_bits(sbi, cpc) ||
3034 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3035 		to_journal = false;
3036 
3037 	if (to_journal) {
3038 		down_write(&curseg->journal_rwsem);
3039 	} else {
3040 		page = get_next_nat_page(sbi, start_nid);
3041 		if (IS_ERR(page))
3042 			return PTR_ERR(page);
3043 
3044 		nat_blk = page_address(page);
3045 		f2fs_bug_on(sbi, !nat_blk);
3046 	}
3047 
3048 	/* flush dirty nats in nat entry set */
3049 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3050 		struct f2fs_nat_entry *raw_ne;
3051 		nid_t nid = nat_get_nid(ne);
3052 		int offset;
3053 
3054 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3055 
3056 		if (to_journal) {
3057 			offset = f2fs_lookup_journal_in_cursum(journal,
3058 							NAT_JOURNAL, nid, 1);
3059 			f2fs_bug_on(sbi, offset < 0);
3060 			raw_ne = &nat_in_journal(journal, offset);
3061 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3062 		} else {
3063 			raw_ne = &nat_blk->entries[nid - start_nid];
3064 		}
3065 		raw_nat_from_node_info(raw_ne, &ne->ni);
3066 		nat_reset_flag(ne);
3067 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3068 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3069 			add_free_nid(sbi, nid, false, true);
3070 		} else {
3071 			spin_lock(&NM_I(sbi)->nid_list_lock);
3072 			update_free_nid_bitmap(sbi, nid, false, false);
3073 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3074 		}
3075 	}
3076 
3077 	if (to_journal) {
3078 		up_write(&curseg->journal_rwsem);
3079 	} else {
3080 		__update_nat_bits(sbi, start_nid, page);
3081 		f2fs_put_page(page, 1);
3082 	}
3083 
3084 	/* Allow dirty nats by node block allocation in write_begin */
3085 	if (!set->entry_cnt) {
3086 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3087 		kmem_cache_free(nat_entry_set_slab, set);
3088 	}
3089 	return 0;
3090 }
3091 
3092 /*
3093  * This function is called during the checkpointing process.
3094  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3095 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3096 {
3097 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3098 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3099 	struct f2fs_journal *journal = curseg->journal;
3100 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3101 	struct nat_entry_set *set, *tmp;
3102 	unsigned int found;
3103 	nid_t set_idx = 0;
3104 	LIST_HEAD(sets);
3105 	int err = 0;
3106 
3107 	/*
3108 	 * during unmount, let's flush nat_bits before checking
3109 	 * nat_cnt[DIRTY_NAT].
3110 	 */
3111 	if (enabled_nat_bits(sbi, cpc)) {
3112 		f2fs_down_write(&nm_i->nat_tree_lock);
3113 		remove_nats_in_journal(sbi);
3114 		f2fs_up_write(&nm_i->nat_tree_lock);
3115 	}
3116 
3117 	if (!nm_i->nat_cnt[DIRTY_NAT])
3118 		return 0;
3119 
3120 	f2fs_down_write(&nm_i->nat_tree_lock);
3121 
3122 	/*
3123 	 * if there are no enough space in journal to store dirty nat
3124 	 * entries, remove all entries from journal and merge them
3125 	 * into nat entry set.
3126 	 */
3127 	if (enabled_nat_bits(sbi, cpc) ||
3128 		!__has_cursum_space(journal,
3129 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3130 		remove_nats_in_journal(sbi);
3131 
3132 	while ((found = __gang_lookup_nat_set(nm_i,
3133 					set_idx, NAT_VEC_SIZE, setvec))) {
3134 		unsigned idx;
3135 
3136 		set_idx = setvec[found - 1]->set + 1;
3137 		for (idx = 0; idx < found; idx++)
3138 			__adjust_nat_entry_set(setvec[idx], &sets,
3139 						MAX_NAT_JENTRIES(journal));
3140 	}
3141 
3142 	/* flush dirty nats in nat entry set */
3143 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3144 		err = __flush_nat_entry_set(sbi, set, cpc);
3145 		if (err)
3146 			break;
3147 	}
3148 
3149 	f2fs_up_write(&nm_i->nat_tree_lock);
3150 	/* Allow dirty nats by node block allocation in write_begin */
3151 
3152 	return err;
3153 }
3154 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3155 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3156 {
3157 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3158 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3159 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3160 	unsigned int i;
3161 	__u64 cp_ver = cur_cp_version(ckpt);
3162 	block_t nat_bits_addr;
3163 
3164 	if (!enabled_nat_bits(sbi, NULL))
3165 		return 0;
3166 
3167 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3168 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3169 			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3170 	if (!nm_i->nat_bits)
3171 		return -ENOMEM;
3172 
3173 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3174 						nm_i->nat_bits_blocks;
3175 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3176 		struct page *page;
3177 
3178 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3179 		if (IS_ERR(page))
3180 			return PTR_ERR(page);
3181 
3182 		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3183 					page_address(page), F2FS_BLKSIZE);
3184 		f2fs_put_page(page, 1);
3185 	}
3186 
3187 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3188 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3189 		disable_nat_bits(sbi, true);
3190 		return 0;
3191 	}
3192 
3193 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3194 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3195 
3196 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3197 	return 0;
3198 }
3199 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3200 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3201 {
3202 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3203 	unsigned int i = 0;
3204 	nid_t nid, last_nid;
3205 
3206 	if (!enabled_nat_bits(sbi, NULL))
3207 		return;
3208 
3209 	for (i = 0; i < nm_i->nat_blocks; i++) {
3210 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3211 		if (i >= nm_i->nat_blocks)
3212 			break;
3213 
3214 		__set_bit_le(i, nm_i->nat_block_bitmap);
3215 
3216 		nid = i * NAT_ENTRY_PER_BLOCK;
3217 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3218 
3219 		spin_lock(&NM_I(sbi)->nid_list_lock);
3220 		for (; nid < last_nid; nid++)
3221 			update_free_nid_bitmap(sbi, nid, true, true);
3222 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3223 	}
3224 
3225 	for (i = 0; i < nm_i->nat_blocks; i++) {
3226 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3227 		if (i >= nm_i->nat_blocks)
3228 			break;
3229 
3230 		__set_bit_le(i, nm_i->nat_block_bitmap);
3231 	}
3232 }
3233 
init_node_manager(struct f2fs_sb_info * sbi)3234 static int init_node_manager(struct f2fs_sb_info *sbi)
3235 {
3236 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3237 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3238 	unsigned char *version_bitmap;
3239 	unsigned int nat_segs;
3240 	int err;
3241 
3242 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3243 
3244 	/* segment_count_nat includes pair segment so divide to 2. */
3245 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3246 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3247 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3248 
3249 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3250 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3251 						F2FS_RESERVED_NODE_NUM;
3252 	nm_i->nid_cnt[FREE_NID] = 0;
3253 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3254 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3255 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3256 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3257 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3258 
3259 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3260 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3261 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3262 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3263 	INIT_LIST_HEAD(&nm_i->nat_entries);
3264 	spin_lock_init(&nm_i->nat_list_lock);
3265 
3266 	mutex_init(&nm_i->build_lock);
3267 	spin_lock_init(&nm_i->nid_list_lock);
3268 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3269 
3270 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3271 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3272 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3273 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3274 					GFP_KERNEL);
3275 	if (!nm_i->nat_bitmap)
3276 		return -ENOMEM;
3277 
3278 	if (!test_opt(sbi, NAT_BITS))
3279 		disable_nat_bits(sbi, true);
3280 
3281 	err = __get_nat_bitmaps(sbi);
3282 	if (err)
3283 		return err;
3284 
3285 #ifdef CONFIG_F2FS_CHECK_FS
3286 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3287 					GFP_KERNEL);
3288 	if (!nm_i->nat_bitmap_mir)
3289 		return -ENOMEM;
3290 #endif
3291 
3292 	return 0;
3293 }
3294 
init_free_nid_cache(struct f2fs_sb_info * sbi)3295 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3296 {
3297 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3298 	int i;
3299 
3300 	nm_i->free_nid_bitmap =
3301 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3302 					      nm_i->nat_blocks),
3303 			      GFP_KERNEL);
3304 	if (!nm_i->free_nid_bitmap)
3305 		return -ENOMEM;
3306 
3307 	for (i = 0; i < nm_i->nat_blocks; i++) {
3308 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3309 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3310 		if (!nm_i->free_nid_bitmap[i])
3311 			return -ENOMEM;
3312 	}
3313 
3314 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3315 								GFP_KERNEL);
3316 	if (!nm_i->nat_block_bitmap)
3317 		return -ENOMEM;
3318 
3319 	nm_i->free_nid_count =
3320 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3321 					      nm_i->nat_blocks),
3322 			      GFP_KERNEL);
3323 	if (!nm_i->free_nid_count)
3324 		return -ENOMEM;
3325 	return 0;
3326 }
3327 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3328 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3329 {
3330 	int err;
3331 
3332 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3333 							GFP_KERNEL);
3334 	if (!sbi->nm_info)
3335 		return -ENOMEM;
3336 
3337 	err = init_node_manager(sbi);
3338 	if (err)
3339 		return err;
3340 
3341 	err = init_free_nid_cache(sbi);
3342 	if (err)
3343 		return err;
3344 
3345 	/* load free nid status from nat_bits table */
3346 	load_free_nid_bitmap(sbi);
3347 
3348 	return f2fs_build_free_nids(sbi, true, true);
3349 }
3350 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3351 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3352 {
3353 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3354 	struct free_nid *i, *next_i;
3355 	void *vec[NAT_VEC_SIZE];
3356 	struct nat_entry **natvec = (struct nat_entry **)vec;
3357 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3358 	nid_t nid = 0;
3359 	unsigned int found;
3360 
3361 	if (!nm_i)
3362 		return;
3363 
3364 	/* destroy free nid list */
3365 	spin_lock(&nm_i->nid_list_lock);
3366 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3367 		__remove_free_nid(sbi, i, FREE_NID);
3368 		spin_unlock(&nm_i->nid_list_lock);
3369 		kmem_cache_free(free_nid_slab, i);
3370 		spin_lock(&nm_i->nid_list_lock);
3371 	}
3372 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3373 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3374 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3375 	spin_unlock(&nm_i->nid_list_lock);
3376 
3377 	/* destroy nat cache */
3378 	f2fs_down_write(&nm_i->nat_tree_lock);
3379 	while ((found = __gang_lookup_nat_cache(nm_i,
3380 					nid, NAT_VEC_SIZE, natvec))) {
3381 		unsigned idx;
3382 
3383 		nid = nat_get_nid(natvec[found - 1]) + 1;
3384 		for (idx = 0; idx < found; idx++) {
3385 			spin_lock(&nm_i->nat_list_lock);
3386 			list_del(&natvec[idx]->list);
3387 			spin_unlock(&nm_i->nat_list_lock);
3388 
3389 			__del_from_nat_cache(nm_i, natvec[idx]);
3390 		}
3391 	}
3392 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3393 
3394 	/* destroy nat set cache */
3395 	nid = 0;
3396 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3397 	while ((found = __gang_lookup_nat_set(nm_i,
3398 					nid, NAT_VEC_SIZE, setvec))) {
3399 		unsigned idx;
3400 
3401 		nid = setvec[found - 1]->set + 1;
3402 		for (idx = 0; idx < found; idx++) {
3403 			/* entry_cnt is not zero, when cp_error was occurred */
3404 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3405 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3406 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3407 		}
3408 	}
3409 	f2fs_up_write(&nm_i->nat_tree_lock);
3410 
3411 	kvfree(nm_i->nat_block_bitmap);
3412 	if (nm_i->free_nid_bitmap) {
3413 		int i;
3414 
3415 		for (i = 0; i < nm_i->nat_blocks; i++)
3416 			kvfree(nm_i->free_nid_bitmap[i]);
3417 		kvfree(nm_i->free_nid_bitmap);
3418 	}
3419 	kvfree(nm_i->free_nid_count);
3420 
3421 	kvfree(nm_i->nat_bitmap);
3422 	kvfree(nm_i->nat_bits);
3423 #ifdef CONFIG_F2FS_CHECK_FS
3424 	kvfree(nm_i->nat_bitmap_mir);
3425 #endif
3426 	sbi->nm_info = NULL;
3427 	kfree(nm_i);
3428 }
3429 
f2fs_create_node_manager_caches(void)3430 int __init f2fs_create_node_manager_caches(void)
3431 {
3432 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3433 			sizeof(struct nat_entry));
3434 	if (!nat_entry_slab)
3435 		goto fail;
3436 
3437 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3438 			sizeof(struct free_nid));
3439 	if (!free_nid_slab)
3440 		goto destroy_nat_entry;
3441 
3442 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3443 			sizeof(struct nat_entry_set));
3444 	if (!nat_entry_set_slab)
3445 		goto destroy_free_nid;
3446 
3447 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3448 			sizeof(struct fsync_node_entry));
3449 	if (!fsync_node_entry_slab)
3450 		goto destroy_nat_entry_set;
3451 	return 0;
3452 
3453 destroy_nat_entry_set:
3454 	kmem_cache_destroy(nat_entry_set_slab);
3455 destroy_free_nid:
3456 	kmem_cache_destroy(free_nid_slab);
3457 destroy_nat_entry:
3458 	kmem_cache_destroy(nat_entry_slab);
3459 fail:
3460 	return -ENOMEM;
3461 }
3462 
f2fs_destroy_node_manager_caches(void)3463 void f2fs_destroy_node_manager_caches(void)
3464 {
3465 	kmem_cache_destroy(fsync_node_entry_slab);
3466 	kmem_cache_destroy(nat_entry_set_slab);
3467 	kmem_cache_destroy(free_nid_slab);
3468 	kmem_cache_destroy(nat_entry_slab);
3469 }
3470