1 /*-
2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause)
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61
62 #include <sys/cdefs.h>
63 #include "opt_quota.h"
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/capsicum.h>
70 #include <sys/conf.h>
71 #include <sys/fcntl.h>
72 #include <sys/file.h>
73 #include <sys/filedesc.h>
74 #include <sys/gsb_crc32.h>
75 #include <sys/kernel.h>
76 #include <sys/mount.h>
77 #include <sys/priv.h>
78 #include <sys/proc.h>
79 #include <sys/stat.h>
80 #include <sys/syscallsubr.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/taskqueue.h>
84 #include <sys/vnode.h>
85
86 #include <security/audit/audit.h>
87
88 #include <geom/geom.h>
89 #include <geom/geom_vfs.h>
90
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/extattr.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/ufs_extern.h>
96 #include <ufs/ufs/ufsmount.h>
97
98 #include <ufs/ffs/fs.h>
99 #include <ufs/ffs/ffs_extern.h>
100 #include <ufs/ffs/softdep.h>
101
102 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, uint64_t cg,
103 ufs2_daddr_t bpref, int size, int rsize);
104
105 static ufs2_daddr_t ffs_alloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
106 int);
107 static ufs2_daddr_t
108 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
109 static void ffs_blkfree_cg(struct ufsmount *, struct fs *,
110 struct vnode *, ufs2_daddr_t, long, ino_t,
111 struct workhead *);
112 #ifdef INVARIANTS
113 static int ffs_checkfreeblk(struct inode *, ufs2_daddr_t, long);
114 #endif
115 static void ffs_checkcgintegrity(struct fs *, uint64_t, int);
116 static ufs2_daddr_t ffs_clusteralloc(struct inode *, uint64_t, ufs2_daddr_t,
117 int);
118 static ino_t ffs_dirpref(struct inode *);
119 static ufs2_daddr_t ffs_fragextend(struct inode *, uint64_t, ufs2_daddr_t,
120 int, int);
121 static ufs2_daddr_t ffs_hashalloc(struct inode *, uint64_t, ufs2_daddr_t,
122 int, int, allocfcn_t *);
123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
124 int);
125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
128 static void ffs_ckhash_cg(struct buf *);
129
130 /*
131 * Allocate a block in the filesystem.
132 *
133 * The size of the requested block is given, which must be some
134 * multiple of fs_fsize and <= fs_bsize.
135 * A preference may be optionally specified. If a preference is given
136 * the following hierarchy is used to allocate a block:
137 * 1) allocate the requested block.
138 * 2) allocate a rotationally optimal block in the same cylinder.
139 * 3) allocate a block in the same cylinder group.
140 * 4) quadratically rehash into other cylinder groups, until an
141 * available block is located.
142 * If no block preference is given the following hierarchy is used
143 * to allocate a block:
144 * 1) allocate a block in the cylinder group that contains the
145 * inode for the file.
146 * 2) quadratically rehash into other cylinder groups, until an
147 * available block is located.
148 */
149 int
ffs_alloc(struct inode * ip,ufs2_daddr_t lbn,ufs2_daddr_t bpref,int size,int flags,struct ucred * cred,ufs2_daddr_t * bnp)150 ffs_alloc(struct inode *ip,
151 ufs2_daddr_t lbn,
152 ufs2_daddr_t bpref,
153 int size,
154 int flags,
155 struct ucred *cred,
156 ufs2_daddr_t *bnp)
157 {
158 struct fs *fs;
159 struct ufsmount *ump;
160 ufs2_daddr_t bno;
161 uint64_t cg, reclaimed;
162 int64_t delta;
163 #ifdef QUOTA
164 int error;
165 #endif
166
167 *bnp = 0;
168 ump = ITOUMP(ip);
169 fs = ump->um_fs;
170 mtx_assert(UFS_MTX(ump), MA_OWNED);
171 #ifdef INVARIANTS
172 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
173 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
174 devtoname(ump->um_dev), (long)fs->fs_bsize, size,
175 fs->fs_fsmnt);
176 panic("ffs_alloc: bad size");
177 }
178 if (cred == NOCRED)
179 panic("ffs_alloc: missing credential");
180 #endif /* INVARIANTS */
181 reclaimed = 0;
182 retry:
183 #ifdef QUOTA
184 UFS_UNLOCK(ump);
185 error = chkdq(ip, btodb(size), cred, 0);
186 if (error)
187 return (error);
188 UFS_LOCK(ump);
189 #endif
190 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
191 goto nospace;
192 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
193 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
194 goto nospace;
195 if (bpref >= fs->fs_size)
196 bpref = 0;
197 if (bpref == 0)
198 cg = ino_to_cg(fs, ip->i_number);
199 else
200 cg = dtog(fs, bpref);
201 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
202 if (bno > 0) {
203 delta = btodb(size);
204 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
205 if (flags & IO_EXT)
206 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
207 else
208 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
209 *bnp = bno;
210 return (0);
211 }
212 nospace:
213 #ifdef QUOTA
214 UFS_UNLOCK(ump);
215 /*
216 * Restore user's disk quota because allocation failed.
217 */
218 (void) chkdq(ip, -btodb(size), cred, FORCE);
219 UFS_LOCK(ump);
220 #endif
221 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
222 reclaimed = 1;
223 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
224 goto retry;
225 }
226 if (ffs_fsfail_cleanup_locked(ump, 0)) {
227 UFS_UNLOCK(ump);
228 return (ENXIO);
229 }
230 if (reclaimed > 0 &&
231 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
232 UFS_UNLOCK(ump);
233 ffs_fserr(fs, ip->i_number, "filesystem full");
234 uprintf("\n%s: write failed, filesystem is full\n",
235 fs->fs_fsmnt);
236 } else {
237 UFS_UNLOCK(ump);
238 }
239 return (ENOSPC);
240 }
241
242 /*
243 * Reallocate a fragment to a bigger size
244 *
245 * The number and size of the old block is given, and a preference
246 * and new size is also specified. The allocator attempts to extend
247 * the original block. Failing that, the regular block allocator is
248 * invoked to get an appropriate block.
249 */
250 int
ffs_realloccg(struct inode * ip,ufs2_daddr_t lbprev,ufs2_daddr_t bprev,ufs2_daddr_t bpref,int osize,int nsize,int flags,struct ucred * cred,struct buf ** bpp)251 ffs_realloccg(struct inode *ip,
252 ufs2_daddr_t lbprev,
253 ufs2_daddr_t bprev,
254 ufs2_daddr_t bpref,
255 int osize,
256 int nsize,
257 int flags,
258 struct ucred *cred,
259 struct buf **bpp)
260 {
261 struct vnode *vp;
262 struct fs *fs;
263 struct buf *bp;
264 struct ufsmount *ump;
265 uint64_t cg, request, reclaimed;
266 int error, gbflags;
267 ufs2_daddr_t bno;
268 int64_t delta;
269
270 vp = ITOV(ip);
271 ump = ITOUMP(ip);
272 fs = ump->um_fs;
273 bp = NULL;
274 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
275 #ifdef WITNESS
276 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
277 #endif
278
279 mtx_assert(UFS_MTX(ump), MA_OWNED);
280 #ifdef INVARIANTS
281 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
282 panic("ffs_realloccg: allocation on suspended filesystem");
283 if ((uint64_t)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
284 (uint64_t)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
285 printf(
286 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
287 devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
288 nsize, fs->fs_fsmnt);
289 panic("ffs_realloccg: bad size");
290 }
291 if (cred == NOCRED)
292 panic("ffs_realloccg: missing credential");
293 #endif /* INVARIANTS */
294 reclaimed = 0;
295 retry:
296 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
297 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
298 goto nospace;
299 }
300 if (bprev == 0) {
301 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
302 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
303 fs->fs_fsmnt);
304 panic("ffs_realloccg: bad bprev");
305 }
306 UFS_UNLOCK(ump);
307 /*
308 * Allocate the extra space in the buffer.
309 */
310 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
311 if (error) {
312 return (error);
313 }
314
315 if (bp->b_blkno == bp->b_lblkno) {
316 if (lbprev >= UFS_NDADDR)
317 panic("ffs_realloccg: lbprev out of range");
318 bp->b_blkno = fsbtodb(fs, bprev);
319 }
320
321 #ifdef QUOTA
322 error = chkdq(ip, btodb(nsize - osize), cred, 0);
323 if (error) {
324 brelse(bp);
325 return (error);
326 }
327 #endif
328 /*
329 * Check for extension in the existing location.
330 */
331 *bpp = NULL;
332 cg = dtog(fs, bprev);
333 UFS_LOCK(ump);
334 bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
335 if (bno) {
336 if (bp->b_blkno != fsbtodb(fs, bno))
337 panic("ffs_realloccg: bad blockno");
338 delta = btodb(nsize - osize);
339 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
340 if (flags & IO_EXT)
341 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
342 else
343 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
344 allocbuf(bp, nsize);
345 bp->b_flags |= B_DONE;
346 vfs_bio_bzero_buf(bp, osize, nsize - osize);
347 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
348 vfs_bio_set_valid(bp, osize, nsize - osize);
349 *bpp = bp;
350 return (0);
351 }
352 /*
353 * Allocate a new disk location.
354 */
355 if (bpref >= fs->fs_size)
356 bpref = 0;
357 switch ((int)fs->fs_optim) {
358 case FS_OPTSPACE:
359 /*
360 * Allocate an exact sized fragment. Although this makes
361 * best use of space, we will waste time relocating it if
362 * the file continues to grow. If the fragmentation is
363 * less than half of the minimum free reserve, we choose
364 * to begin optimizing for time.
365 */
366 request = nsize;
367 if (fs->fs_minfree <= 5 ||
368 fs->fs_cstotal.cs_nffree >
369 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
370 break;
371 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
372 fs->fs_fsmnt);
373 fs->fs_optim = FS_OPTTIME;
374 break;
375 case FS_OPTTIME:
376 /*
377 * At this point we have discovered a file that is trying to
378 * grow a small fragment to a larger fragment. To save time,
379 * we allocate a full sized block, then free the unused portion.
380 * If the file continues to grow, the `ffs_fragextend' call
381 * above will be able to grow it in place without further
382 * copying. If aberrant programs cause disk fragmentation to
383 * grow within 2% of the free reserve, we choose to begin
384 * optimizing for space.
385 */
386 request = fs->fs_bsize;
387 if (fs->fs_cstotal.cs_nffree <
388 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
389 break;
390 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
391 fs->fs_fsmnt);
392 fs->fs_optim = FS_OPTSPACE;
393 break;
394 default:
395 printf("dev = %s, optim = %ld, fs = %s\n",
396 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
397 panic("ffs_realloccg: bad optim");
398 /* NOTREACHED */
399 }
400 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
401 if (bno > 0) {
402 bp->b_blkno = fsbtodb(fs, bno);
403 if (!DOINGSOFTDEP(vp))
404 /*
405 * The usual case is that a smaller fragment that
406 * was just allocated has been replaced with a bigger
407 * fragment or a full-size block. If it is marked as
408 * B_DELWRI, the current contents have not been written
409 * to disk. It is possible that the block was written
410 * earlier, but very uncommon. If the block has never
411 * been written, there is no need to send a BIO_DELETE
412 * for it when it is freed. The gain from avoiding the
413 * TRIMs for the common case of unwritten blocks far
414 * exceeds the cost of the write amplification for the
415 * uncommon case of failing to send a TRIM for a block
416 * that had been written.
417 */
418 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
419 ip->i_number, vp->v_type, NULL,
420 (bp->b_flags & B_DELWRI) != 0 ?
421 NOTRIM_KEY : SINGLETON_KEY);
422 delta = btodb(nsize - osize);
423 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
424 if (flags & IO_EXT)
425 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
426 else
427 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
428 allocbuf(bp, nsize);
429 bp->b_flags |= B_DONE;
430 vfs_bio_bzero_buf(bp, osize, nsize - osize);
431 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
432 vfs_bio_set_valid(bp, osize, nsize - osize);
433 *bpp = bp;
434 return (0);
435 }
436 #ifdef QUOTA
437 UFS_UNLOCK(ump);
438 /*
439 * Restore user's disk quota because allocation failed.
440 */
441 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
442 UFS_LOCK(ump);
443 #endif
444 nospace:
445 /*
446 * no space available
447 */
448 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
449 reclaimed = 1;
450 UFS_UNLOCK(ump);
451 if (bp) {
452 brelse(bp);
453 bp = NULL;
454 }
455 UFS_LOCK(ump);
456 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
457 goto retry;
458 }
459 if (bp)
460 brelse(bp);
461 if (ffs_fsfail_cleanup_locked(ump, 0)) {
462 UFS_UNLOCK(ump);
463 return (ENXIO);
464 }
465 if (reclaimed > 0 &&
466 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
467 UFS_UNLOCK(ump);
468 ffs_fserr(fs, ip->i_number, "filesystem full");
469 uprintf("\n%s: write failed, filesystem is full\n",
470 fs->fs_fsmnt);
471 } else {
472 UFS_UNLOCK(ump);
473 }
474 return (ENOSPC);
475 }
476
477 /*
478 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
479 *
480 * The vnode and an array of buffer pointers for a range of sequential
481 * logical blocks to be made contiguous is given. The allocator attempts
482 * to find a range of sequential blocks starting as close as possible
483 * from the end of the allocation for the logical block immediately
484 * preceding the current range. If successful, the physical block numbers
485 * in the buffer pointers and in the inode are changed to reflect the new
486 * allocation. If unsuccessful, the allocation is left unchanged. The
487 * success in doing the reallocation is returned. Note that the error
488 * return is not reflected back to the user. Rather the previous block
489 * allocation will be used.
490 */
491
492 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
493 "FFS filesystem");
494
495 static int doasyncfree = 1;
496 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
497 "do not force synchronous writes when blocks are reallocated");
498
499 static int doreallocblks = 1;
500 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
501 "enable block reallocation");
502
503 static int dotrimcons = 1;
504 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
505 "enable BIO_DELETE / TRIM consolidation");
506
507 static int maxclustersearch = 10;
508 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
509 0, "max number of cylinder group to search for contigous blocks");
510
511 #ifdef DIAGNOSTIC
512 static int prtrealloc = 0;
513 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
514 "print out FFS filesystem block reallocation operations");
515 #endif
516
517 int
ffs_reallocblks(struct vop_reallocblks_args * ap)518 ffs_reallocblks(
519 struct vop_reallocblks_args /* {
520 struct vnode *a_vp;
521 struct cluster_save *a_buflist;
522 } */ *ap)
523 {
524 struct ufsmount *ump;
525 int error;
526
527 /*
528 * We used to skip reallocating the blocks of a file into a
529 * contiguous sequence if the underlying flash device requested
530 * BIO_DELETE notifications, because devices that benefit from
531 * BIO_DELETE also benefit from not moving the data. However,
532 * the destination for the data is usually moved before the data
533 * is written to the initially allocated location, so we rarely
534 * suffer the penalty of extra writes. With the addition of the
535 * consolidation of contiguous blocks into single BIO_DELETE
536 * operations, having fewer but larger contiguous blocks reduces
537 * the number of (slow and expensive) BIO_DELETE operations. So
538 * when doing BIO_DELETE consolidation, we do block reallocation.
539 *
540 * Skip if reallocblks has been disabled globally.
541 */
542 ump = ap->a_vp->v_mount->mnt_data;
543 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
544 doreallocblks == 0)
545 return (ENOSPC);
546
547 /*
548 * We can't wait in softdep prealloc as it may fsync and recurse
549 * here. Instead we simply fail to reallocate blocks if this
550 * rare condition arises.
551 */
552 if (DOINGSUJ(ap->a_vp))
553 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
554 return (ENOSPC);
555 vn_seqc_write_begin(ap->a_vp);
556 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) :
557 ffs_reallocblks_ufs2(ap);
558 vn_seqc_write_end(ap->a_vp);
559 return (error);
560 }
561
562 static int
ffs_reallocblks_ufs1(struct vop_reallocblks_args * ap)563 ffs_reallocblks_ufs1(
564 struct vop_reallocblks_args /* {
565 struct vnode *a_vp;
566 struct cluster_save *a_buflist;
567 } */ *ap)
568 {
569 struct fs *fs;
570 struct inode *ip;
571 struct vnode *vp;
572 struct buf *sbp, *ebp, *bp;
573 ufs1_daddr_t *bap, *sbap, *ebap;
574 struct cluster_save *buflist;
575 struct ufsmount *ump;
576 ufs_lbn_t start_lbn, end_lbn;
577 ufs1_daddr_t soff, newblk, blkno;
578 ufs2_daddr_t pref;
579 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
580 int i, cg, len, start_lvl, end_lvl, ssize;
581
582 vp = ap->a_vp;
583 ip = VTOI(vp);
584 ump = ITOUMP(ip);
585 fs = ump->um_fs;
586 /*
587 * If we are not tracking block clusters or if we have less than 4%
588 * free blocks left, then do not attempt to cluster. Running with
589 * less than 5% free block reserve is not recommended and those that
590 * choose to do so do not expect to have good file layout.
591 */
592 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
593 return (ENOSPC);
594 buflist = ap->a_buflist;
595 len = buflist->bs_nchildren;
596 start_lbn = buflist->bs_children[0]->b_lblkno;
597 end_lbn = start_lbn + len - 1;
598 #ifdef INVARIANTS
599 for (i = 0; i < len; i++)
600 if (!ffs_checkfreeblk(ip,
601 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
602 panic("ffs_reallocblks: unallocated block 1");
603 for (i = 1; i < len; i++)
604 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
605 panic("ffs_reallocblks: non-logical cluster");
606 blkno = buflist->bs_children[0]->b_blkno;
607 ssize = fsbtodb(fs, fs->fs_frag);
608 for (i = 1; i < len - 1; i++)
609 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
610 panic("ffs_reallocblks: non-physical cluster %d", i);
611 #endif
612 /*
613 * If the cluster crosses the boundary for the first indirect
614 * block, leave space for the indirect block. Indirect blocks
615 * are initially laid out in a position after the last direct
616 * block. Block reallocation would usually destroy locality by
617 * moving the indirect block out of the way to make room for
618 * data blocks if we didn't compensate here. We should also do
619 * this for other indirect block boundaries, but it is only
620 * important for the first one.
621 */
622 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
623 return (ENOSPC);
624 /*
625 * If the latest allocation is in a new cylinder group, assume that
626 * the filesystem has decided to move and do not force it back to
627 * the previous cylinder group.
628 */
629 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
630 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
631 return (ENOSPC);
632 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
633 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
634 return (ENOSPC);
635 /*
636 * Get the starting offset and block map for the first block.
637 */
638 if (start_lvl == 0) {
639 sbap = &ip->i_din1->di_db[0];
640 soff = start_lbn;
641 } else {
642 idp = &start_ap[start_lvl - 1];
643 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
644 brelse(sbp);
645 return (ENOSPC);
646 }
647 sbap = (ufs1_daddr_t *)sbp->b_data;
648 soff = idp->in_off;
649 }
650 /*
651 * If the block range spans two block maps, get the second map.
652 */
653 ebap = NULL;
654 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
655 ssize = len;
656 } else {
657 #ifdef INVARIANTS
658 if (start_lvl > 0 &&
659 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
660 panic("ffs_reallocblk: start == end");
661 #endif
662 ssize = len - (idp->in_off + 1);
663 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
664 goto fail;
665 ebap = (ufs1_daddr_t *)ebp->b_data;
666 }
667 /*
668 * Find the preferred location for the cluster. If we have not
669 * previously failed at this endeavor, then follow our standard
670 * preference calculation. If we have failed at it, then pick up
671 * where we last ended our search.
672 */
673 UFS_LOCK(ump);
674 if (ip->i_nextclustercg == -1)
675 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
676 else
677 pref = cgdata(fs, ip->i_nextclustercg);
678 /*
679 * Search the block map looking for an allocation of the desired size.
680 * To avoid wasting too much time, we limit the number of cylinder
681 * groups that we will search.
682 */
683 cg = dtog(fs, pref);
684 MPASS(cg < fs->fs_ncg);
685 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
686 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
687 break;
688 cg += 1;
689 if (cg >= fs->fs_ncg)
690 cg = 0;
691 }
692 /*
693 * If we have failed in our search, record where we gave up for
694 * next time. Otherwise, fall back to our usual search citerion.
695 */
696 if (newblk == 0) {
697 ip->i_nextclustercg = cg;
698 UFS_UNLOCK(ump);
699 goto fail;
700 }
701 ip->i_nextclustercg = -1;
702 /*
703 * We have found a new contiguous block.
704 *
705 * First we have to replace the old block pointers with the new
706 * block pointers in the inode and indirect blocks associated
707 * with the file.
708 */
709 #ifdef DIAGNOSTIC
710 if (prtrealloc)
711 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
712 (uintmax_t)ip->i_number,
713 (intmax_t)start_lbn, (intmax_t)end_lbn);
714 #endif
715 blkno = newblk;
716 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
717 if (i == ssize) {
718 bap = ebap;
719 soff = -i;
720 }
721 #ifdef INVARIANTS
722 if (!ffs_checkfreeblk(ip,
723 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
724 panic("ffs_reallocblks: unallocated block 2");
725 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
726 panic("ffs_reallocblks: alloc mismatch");
727 #endif
728 #ifdef DIAGNOSTIC
729 if (prtrealloc)
730 printf(" %d,", *bap);
731 #endif
732 if (DOINGSOFTDEP(vp)) {
733 if (sbap == &ip->i_din1->di_db[0] && i < ssize)
734 softdep_setup_allocdirect(ip, start_lbn + i,
735 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
736 buflist->bs_children[i]);
737 else
738 softdep_setup_allocindir_page(ip, start_lbn + i,
739 i < ssize ? sbp : ebp, soff + i, blkno,
740 *bap, buflist->bs_children[i]);
741 }
742 *bap++ = blkno;
743 }
744 /*
745 * Next we must write out the modified inode and indirect blocks.
746 * For strict correctness, the writes should be synchronous since
747 * the old block values may have been written to disk. In practise
748 * they are almost never written, but if we are concerned about
749 * strict correctness, the `doasyncfree' flag should be set to zero.
750 *
751 * The test on `doasyncfree' should be changed to test a flag
752 * that shows whether the associated buffers and inodes have
753 * been written. The flag should be set when the cluster is
754 * started and cleared whenever the buffer or inode is flushed.
755 * We can then check below to see if it is set, and do the
756 * synchronous write only when it has been cleared.
757 */
758 if (sbap != &ip->i_din1->di_db[0]) {
759 if (doasyncfree)
760 bdwrite(sbp);
761 else
762 bwrite(sbp);
763 } else {
764 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
765 if (!doasyncfree)
766 ffs_update(vp, 1);
767 }
768 if (ssize < len) {
769 if (doasyncfree)
770 bdwrite(ebp);
771 else
772 bwrite(ebp);
773 }
774 /*
775 * Last, free the old blocks and assign the new blocks to the buffers.
776 */
777 #ifdef DIAGNOSTIC
778 if (prtrealloc)
779 printf("\n\tnew:");
780 #endif
781 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
782 bp = buflist->bs_children[i];
783 if (!DOINGSOFTDEP(vp))
784 /*
785 * The usual case is that a set of N-contiguous blocks
786 * that was just allocated has been replaced with a
787 * set of N+1-contiguous blocks. If they are marked as
788 * B_DELWRI, the current contents have not been written
789 * to disk. It is possible that the blocks were written
790 * earlier, but very uncommon. If the blocks have never
791 * been written, there is no need to send a BIO_DELETE
792 * for them when they are freed. The gain from avoiding
793 * the TRIMs for the common case of unwritten blocks
794 * far exceeds the cost of the write amplification for
795 * the uncommon case of failing to send a TRIM for the
796 * blocks that had been written.
797 */
798 ffs_blkfree(ump, fs, ump->um_devvp,
799 dbtofsb(fs, bp->b_blkno),
800 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
801 (bp->b_flags & B_DELWRI) != 0 ?
802 NOTRIM_KEY : SINGLETON_KEY);
803 bp->b_blkno = fsbtodb(fs, blkno);
804 #ifdef INVARIANTS
805 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
806 fs->fs_bsize))
807 panic("ffs_reallocblks: unallocated block 3");
808 #endif
809 #ifdef DIAGNOSTIC
810 if (prtrealloc)
811 printf(" %d,", blkno);
812 #endif
813 }
814 #ifdef DIAGNOSTIC
815 if (prtrealloc) {
816 prtrealloc--;
817 printf("\n");
818 }
819 #endif
820 return (0);
821
822 fail:
823 if (ssize < len)
824 brelse(ebp);
825 if (sbap != &ip->i_din1->di_db[0])
826 brelse(sbp);
827 return (ENOSPC);
828 }
829
830 static int
ffs_reallocblks_ufs2(struct vop_reallocblks_args * ap)831 ffs_reallocblks_ufs2(
832 struct vop_reallocblks_args /* {
833 struct vnode *a_vp;
834 struct cluster_save *a_buflist;
835 } */ *ap)
836 {
837 struct fs *fs;
838 struct inode *ip;
839 struct vnode *vp;
840 struct buf *sbp, *ebp, *bp;
841 ufs2_daddr_t *bap, *sbap, *ebap;
842 struct cluster_save *buflist;
843 struct ufsmount *ump;
844 ufs_lbn_t start_lbn, end_lbn;
845 ufs2_daddr_t soff, newblk, blkno, pref;
846 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
847 int i, cg, len, start_lvl, end_lvl, ssize;
848
849 vp = ap->a_vp;
850 ip = VTOI(vp);
851 ump = ITOUMP(ip);
852 fs = ump->um_fs;
853 /*
854 * If we are not tracking block clusters or if we have less than 4%
855 * free blocks left, then do not attempt to cluster. Running with
856 * less than 5% free block reserve is not recommended and those that
857 * choose to do so do not expect to have good file layout.
858 */
859 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
860 return (ENOSPC);
861 buflist = ap->a_buflist;
862 len = buflist->bs_nchildren;
863 start_lbn = buflist->bs_children[0]->b_lblkno;
864 end_lbn = start_lbn + len - 1;
865 #ifdef INVARIANTS
866 for (i = 0; i < len; i++)
867 if (!ffs_checkfreeblk(ip,
868 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
869 panic("ffs_reallocblks: unallocated block 1");
870 for (i = 1; i < len; i++)
871 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
872 panic("ffs_reallocblks: non-logical cluster");
873 blkno = buflist->bs_children[0]->b_blkno;
874 ssize = fsbtodb(fs, fs->fs_frag);
875 for (i = 1; i < len - 1; i++)
876 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
877 panic("ffs_reallocblks: non-physical cluster %d", i);
878 #endif
879 /*
880 * If the cluster crosses the boundary for the first indirect
881 * block, do not move anything in it. Indirect blocks are
882 * usually initially laid out in a position between the data
883 * blocks. Block reallocation would usually destroy locality by
884 * moving the indirect block out of the way to make room for
885 * data blocks if we didn't compensate here. We should also do
886 * this for other indirect block boundaries, but it is only
887 * important for the first one.
888 */
889 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
890 return (ENOSPC);
891 /*
892 * If the latest allocation is in a new cylinder group, assume that
893 * the filesystem has decided to move and do not force it back to
894 * the previous cylinder group.
895 */
896 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
897 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
898 return (ENOSPC);
899 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
900 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
901 return (ENOSPC);
902 /*
903 * Get the starting offset and block map for the first block.
904 */
905 if (start_lvl == 0) {
906 sbap = &ip->i_din2->di_db[0];
907 soff = start_lbn;
908 } else {
909 idp = &start_ap[start_lvl - 1];
910 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
911 brelse(sbp);
912 return (ENOSPC);
913 }
914 sbap = (ufs2_daddr_t *)sbp->b_data;
915 soff = idp->in_off;
916 }
917 /*
918 * If the block range spans two block maps, get the second map.
919 */
920 ebap = NULL;
921 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
922 ssize = len;
923 } else {
924 #ifdef INVARIANTS
925 if (start_lvl > 0 &&
926 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
927 panic("ffs_reallocblk: start == end");
928 #endif
929 ssize = len - (idp->in_off + 1);
930 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
931 goto fail;
932 ebap = (ufs2_daddr_t *)ebp->b_data;
933 }
934 /*
935 * Find the preferred location for the cluster. If we have not
936 * previously failed at this endeavor, then follow our standard
937 * preference calculation. If we have failed at it, then pick up
938 * where we last ended our search.
939 */
940 UFS_LOCK(ump);
941 if (ip->i_nextclustercg == -1)
942 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
943 else
944 pref = cgdata(fs, ip->i_nextclustercg);
945 /*
946 * Search the block map looking for an allocation of the desired size.
947 * To avoid wasting too much time, we limit the number of cylinder
948 * groups that we will search.
949 */
950 cg = dtog(fs, pref);
951 MPASS(cg < fs->fs_ncg);
952 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
953 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
954 break;
955 cg += 1;
956 if (cg >= fs->fs_ncg)
957 cg = 0;
958 }
959 /*
960 * If we have failed in our search, record where we gave up for
961 * next time. Otherwise, fall back to our usual search citerion.
962 */
963 if (newblk == 0) {
964 ip->i_nextclustercg = cg;
965 UFS_UNLOCK(ump);
966 goto fail;
967 }
968 ip->i_nextclustercg = -1;
969 /*
970 * We have found a new contiguous block.
971 *
972 * First we have to replace the old block pointers with the new
973 * block pointers in the inode and indirect blocks associated
974 * with the file.
975 */
976 #ifdef DIAGNOSTIC
977 if (prtrealloc)
978 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
979 (intmax_t)start_lbn, (intmax_t)end_lbn);
980 #endif
981 blkno = newblk;
982 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
983 if (i == ssize) {
984 bap = ebap;
985 soff = -i;
986 }
987 #ifdef INVARIANTS
988 if (!ffs_checkfreeblk(ip,
989 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
990 panic("ffs_reallocblks: unallocated block 2");
991 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
992 panic("ffs_reallocblks: alloc mismatch");
993 #endif
994 #ifdef DIAGNOSTIC
995 if (prtrealloc)
996 printf(" %jd,", (intmax_t)*bap);
997 #endif
998 if (DOINGSOFTDEP(vp)) {
999 if (sbap == &ip->i_din2->di_db[0] && i < ssize)
1000 softdep_setup_allocdirect(ip, start_lbn + i,
1001 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
1002 buflist->bs_children[i]);
1003 else
1004 softdep_setup_allocindir_page(ip, start_lbn + i,
1005 i < ssize ? sbp : ebp, soff + i, blkno,
1006 *bap, buflist->bs_children[i]);
1007 }
1008 *bap++ = blkno;
1009 }
1010 /*
1011 * Next we must write out the modified inode and indirect blocks.
1012 * For strict correctness, the writes should be synchronous since
1013 * the old block values may have been written to disk. In practise
1014 * they are almost never written, but if we are concerned about
1015 * strict correctness, the `doasyncfree' flag should be set to zero.
1016 *
1017 * The test on `doasyncfree' should be changed to test a flag
1018 * that shows whether the associated buffers and inodes have
1019 * been written. The flag should be set when the cluster is
1020 * started and cleared whenever the buffer or inode is flushed.
1021 * We can then check below to see if it is set, and do the
1022 * synchronous write only when it has been cleared.
1023 */
1024 if (sbap != &ip->i_din2->di_db[0]) {
1025 if (doasyncfree)
1026 bdwrite(sbp);
1027 else
1028 bwrite(sbp);
1029 } else {
1030 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1031 if (!doasyncfree)
1032 ffs_update(vp, 1);
1033 }
1034 if (ssize < len) {
1035 if (doasyncfree)
1036 bdwrite(ebp);
1037 else
1038 bwrite(ebp);
1039 }
1040 /*
1041 * Last, free the old blocks and assign the new blocks to the buffers.
1042 */
1043 #ifdef DIAGNOSTIC
1044 if (prtrealloc)
1045 printf("\n\tnew:");
1046 #endif
1047 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1048 bp = buflist->bs_children[i];
1049 if (!DOINGSOFTDEP(vp))
1050 /*
1051 * The usual case is that a set of N-contiguous blocks
1052 * that was just allocated has been replaced with a
1053 * set of N+1-contiguous blocks. If they are marked as
1054 * B_DELWRI, the current contents have not been written
1055 * to disk. It is possible that the blocks were written
1056 * earlier, but very uncommon. If the blocks have never
1057 * been written, there is no need to send a BIO_DELETE
1058 * for them when they are freed. The gain from avoiding
1059 * the TRIMs for the common case of unwritten blocks
1060 * far exceeds the cost of the write amplification for
1061 * the uncommon case of failing to send a TRIM for the
1062 * blocks that had been written.
1063 */
1064 ffs_blkfree(ump, fs, ump->um_devvp,
1065 dbtofsb(fs, bp->b_blkno),
1066 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1067 (bp->b_flags & B_DELWRI) != 0 ?
1068 NOTRIM_KEY : SINGLETON_KEY);
1069 bp->b_blkno = fsbtodb(fs, blkno);
1070 #ifdef INVARIANTS
1071 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
1072 fs->fs_bsize))
1073 panic("ffs_reallocblks: unallocated block 3");
1074 #endif
1075 #ifdef DIAGNOSTIC
1076 if (prtrealloc)
1077 printf(" %jd,", (intmax_t)blkno);
1078 #endif
1079 }
1080 #ifdef DIAGNOSTIC
1081 if (prtrealloc) {
1082 prtrealloc--;
1083 printf("\n");
1084 }
1085 #endif
1086 return (0);
1087
1088 fail:
1089 if (ssize < len)
1090 brelse(ebp);
1091 if (sbap != &ip->i_din2->di_db[0])
1092 brelse(sbp);
1093 return (ENOSPC);
1094 }
1095
1096 /*
1097 * Allocate an inode in the filesystem.
1098 *
1099 * If allocating a directory, use ffs_dirpref to select the inode.
1100 * If allocating in a directory, the following hierarchy is followed:
1101 * 1) allocate the preferred inode.
1102 * 2) allocate an inode in the same cylinder group.
1103 * 3) quadratically rehash into other cylinder groups, until an
1104 * available inode is located.
1105 * If no inode preference is given the following hierarchy is used
1106 * to allocate an inode:
1107 * 1) allocate an inode in cylinder group 0.
1108 * 2) quadratically rehash into other cylinder groups, until an
1109 * available inode is located.
1110 */
1111 int
ffs_valloc(struct vnode * pvp,int mode,struct ucred * cred,struct vnode ** vpp)1112 ffs_valloc(struct vnode *pvp,
1113 int mode,
1114 struct ucred *cred,
1115 struct vnode **vpp)
1116 {
1117 struct inode *pip;
1118 struct fs *fs;
1119 struct inode *ip;
1120 struct timespec ts;
1121 struct ufsmount *ump;
1122 ino_t ino, ipref;
1123 uint64_t cg;
1124 int error, reclaimed;
1125
1126 *vpp = NULL;
1127 pip = VTOI(pvp);
1128 ump = ITOUMP(pip);
1129 fs = ump->um_fs;
1130
1131 UFS_LOCK(ump);
1132 reclaimed = 0;
1133 retry:
1134 if (fs->fs_cstotal.cs_nifree == 0)
1135 goto noinodes;
1136
1137 if ((mode & IFMT) == IFDIR)
1138 ipref = ffs_dirpref(pip);
1139 else
1140 ipref = pip->i_number;
1141 if (ipref >= fs->fs_ncg * fs->fs_ipg)
1142 ipref = 0;
1143 cg = ino_to_cg(fs, ipref);
1144 /*
1145 * Track number of dirs created one after another
1146 * in a same cg without intervening by files.
1147 */
1148 if ((mode & IFMT) == IFDIR) {
1149 if (fs->fs_contigdirs[cg] < 255)
1150 fs->fs_contigdirs[cg]++;
1151 } else {
1152 if (fs->fs_contigdirs[cg] > 0)
1153 fs->fs_contigdirs[cg]--;
1154 }
1155 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1156 (allocfcn_t *)ffs_nodealloccg);
1157 if (ino == 0)
1158 goto noinodes;
1159 /*
1160 * Get rid of the cached old vnode, force allocation of a new vnode
1161 * for this inode. If this fails, release the allocated ino and
1162 * return the error.
1163 */
1164 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1165 FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) {
1166 ffs_vfree(pvp, ino, mode);
1167 return (error);
1168 }
1169 /*
1170 * We got an inode, so check mode and panic if it is already allocated.
1171 */
1172 ip = VTOI(*vpp);
1173 if (ip->i_mode) {
1174 printf("mode = 0%o, inum = %ju, fs = %s\n",
1175 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1176 panic("ffs_valloc: dup alloc");
1177 }
1178 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
1179 printf("free inode %s/%ju had %ld blocks\n",
1180 fs->fs_fsmnt, (intmax_t)ino, (long)DIP(ip, i_blocks));
1181 DIP_SET(ip, i_blocks, 0);
1182 }
1183 ip->i_flags = 0;
1184 DIP_SET(ip, i_flags, 0);
1185 if ((mode & IFMT) == IFDIR)
1186 DIP_SET(ip, i_dirdepth, DIP(pip, i_dirdepth) + 1);
1187 /*
1188 * Set up a new generation number for this inode.
1189 */
1190 while (ip->i_gen == 0 || ++ip->i_gen == 0)
1191 ip->i_gen = arc4random();
1192 DIP_SET(ip, i_gen, ip->i_gen);
1193 if (fs->fs_magic == FS_UFS2_MAGIC) {
1194 vfs_timestamp(&ts);
1195 ip->i_din2->di_birthtime = ts.tv_sec;
1196 ip->i_din2->di_birthnsec = ts.tv_nsec;
1197 }
1198 ip->i_flag = 0;
1199 (*vpp)->v_vflag = 0;
1200 (*vpp)->v_type = VNON;
1201 if (fs->fs_magic == FS_UFS2_MAGIC) {
1202 (*vpp)->v_op = &ffs_vnodeops2;
1203 UFS_INODE_SET_FLAG(ip, IN_UFS2);
1204 } else {
1205 (*vpp)->v_op = &ffs_vnodeops1;
1206 }
1207 return (0);
1208 noinodes:
1209 if (reclaimed == 0) {
1210 reclaimed = 1;
1211 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1212 goto retry;
1213 }
1214 if (ffs_fsfail_cleanup_locked(ump, 0)) {
1215 UFS_UNLOCK(ump);
1216 return (ENXIO);
1217 }
1218 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1219 UFS_UNLOCK(ump);
1220 ffs_fserr(fs, pip->i_number, "out of inodes");
1221 uprintf("\n%s: create/symlink failed, no inodes free\n",
1222 fs->fs_fsmnt);
1223 } else {
1224 UFS_UNLOCK(ump);
1225 }
1226 return (ENOSPC);
1227 }
1228
1229 /*
1230 * Find a cylinder group to place a directory.
1231 *
1232 * The policy implemented by this algorithm is to allocate a
1233 * directory inode in the same cylinder group as its parent
1234 * directory, but also to reserve space for its files inodes
1235 * and data. Restrict the number of directories which may be
1236 * allocated one after another in the same cylinder group
1237 * without intervening allocation of files.
1238 *
1239 * If we allocate a first level directory then force allocation
1240 * in another cylinder group.
1241 */
1242 static ino_t
ffs_dirpref(struct inode * pip)1243 ffs_dirpref(struct inode *pip)
1244 {
1245 struct fs *fs;
1246 int cg, prefcg, curcg, dirsize, cgsize;
1247 int depth, range, start, end, numdirs, power, numerator, denominator;
1248 uint64_t avgifree, avgbfree, avgndir, curdirsize;
1249 uint64_t minifree, minbfree, maxndir;
1250 uint64_t maxcontigdirs;
1251
1252 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1253 fs = ITOFS(pip);
1254
1255 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1256 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1257 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1258
1259 /*
1260 * Select a preferred cylinder group to place a new directory.
1261 * If we are near the root of the filesystem we aim to spread
1262 * them out as much as possible. As we descend deeper from the
1263 * root we cluster them closer together around their parent as
1264 * we expect them to be more closely interactive. Higher-level
1265 * directories like usr/src/sys and usr/src/bin should be
1266 * separated while the directories in these areas are more
1267 * likely to be accessed together so should be closer.
1268 *
1269 * We pick a range of cylinder groups around the cylinder group
1270 * of the directory in which we are being created. The size of
1271 * the range for our search is based on our depth from the root
1272 * of our filesystem. We then probe that range based on how many
1273 * directories are already present. The first new directory is at
1274 * 1/2 (middle) of the range; the second is in the first 1/4 of the
1275 * range, then at 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, etc.
1276 */
1277 depth = DIP(pip, i_dirdepth);
1278 range = fs->fs_ncg / (1 << depth);
1279 curcg = ino_to_cg(fs, pip->i_number);
1280 start = curcg - (range / 2);
1281 if (start < 0)
1282 start += fs->fs_ncg;
1283 end = curcg + (range / 2);
1284 if (end >= fs->fs_ncg)
1285 end -= fs->fs_ncg;
1286 numdirs = pip->i_effnlink - 1;
1287 power = fls(numdirs);
1288 numerator = (numdirs & ~(1 << (power - 1))) * 2 + 1;
1289 denominator = 1 << power;
1290 prefcg = (curcg - (range / 2) + (range * numerator / denominator));
1291 if (prefcg < 0)
1292 prefcg += fs->fs_ncg;
1293 if (prefcg >= fs->fs_ncg)
1294 prefcg -= fs->fs_ncg;
1295 /*
1296 * If this filesystem is not tracking directory depths,
1297 * revert to the old algorithm.
1298 */
1299 if (depth == 0 && pip->i_number != UFS_ROOTINO)
1300 prefcg = curcg;
1301
1302 /*
1303 * Count various limits which used for
1304 * optimal allocation of a directory inode.
1305 */
1306 maxndir = min(avgndir + (1 << depth), fs->fs_ipg);
1307 minifree = avgifree - avgifree / 4;
1308 if (minifree < 1)
1309 minifree = 1;
1310 minbfree = avgbfree - avgbfree / 4;
1311 if (minbfree < 1)
1312 minbfree = 1;
1313 cgsize = fs->fs_fsize * fs->fs_fpg;
1314 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1315 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1316 if (dirsize < curdirsize)
1317 dirsize = curdirsize;
1318 if (dirsize <= 0)
1319 maxcontigdirs = 0; /* dirsize overflowed */
1320 else
1321 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1322 if (fs->fs_avgfpdir > 0)
1323 maxcontigdirs = min(maxcontigdirs,
1324 fs->fs_ipg / fs->fs_avgfpdir);
1325 if (maxcontigdirs == 0)
1326 maxcontigdirs = 1;
1327
1328 /*
1329 * Limit number of dirs in one cg and reserve space for
1330 * regular files, but only if we have no deficit in
1331 * inodes or space.
1332 *
1333 * We are trying to find a suitable cylinder group nearby
1334 * our preferred cylinder group to place a new directory.
1335 * We scan from our preferred cylinder group forward looking
1336 * for a cylinder group that meets our criterion. If we get
1337 * to the final cylinder group and do not find anything,
1338 * we start scanning forwards from the beginning of the
1339 * filesystem. While it might seem sensible to start scanning
1340 * backwards or even to alternate looking forward and backward,
1341 * this approach fails badly when the filesystem is nearly full.
1342 * Specifically, we first search all the areas that have no space
1343 * and finally try the one preceding that. We repeat this on
1344 * every request and in the case of the final block end up
1345 * searching the entire filesystem. By jumping to the front
1346 * of the filesystem, our future forward searches always look
1347 * in new cylinder groups so finds every possible block after
1348 * one pass over the filesystem.
1349 */
1350 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1351 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1352 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1353 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1354 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1355 return ((ino_t)(fs->fs_ipg * cg));
1356 }
1357 for (cg = 0; cg < prefcg; cg++)
1358 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1359 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1360 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1361 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1362 return ((ino_t)(fs->fs_ipg * cg));
1363 }
1364 /*
1365 * This is a backstop when we have deficit in space.
1366 */
1367 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1368 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1369 return ((ino_t)(fs->fs_ipg * cg));
1370 for (cg = 0; cg < prefcg; cg++)
1371 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1372 break;
1373 return ((ino_t)(fs->fs_ipg * cg));
1374 }
1375
1376 /*
1377 * Select the desired position for the next block in a file. The file is
1378 * logically divided into sections. The first section is composed of the
1379 * direct blocks and the next fs_maxbpg blocks. Each additional section
1380 * contains fs_maxbpg blocks.
1381 *
1382 * If no blocks have been allocated in the first section, the policy is to
1383 * request a block in the same cylinder group as the inode that describes
1384 * the file. The first indirect is allocated immediately following the last
1385 * direct block and the data blocks for the first indirect immediately
1386 * follow it.
1387 *
1388 * If no blocks have been allocated in any other section, the indirect
1389 * block(s) are allocated in the same cylinder group as its inode in an
1390 * area reserved immediately following the inode blocks. The policy for
1391 * the data blocks is to place them in a cylinder group with a greater than
1392 * average number of free blocks. An appropriate cylinder group is found
1393 * by using a rotor that sweeps the cylinder groups. When a new group of
1394 * blocks is needed, the sweep begins in the cylinder group following the
1395 * cylinder group from which the previous allocation was made. The sweep
1396 * continues until a cylinder group with greater than the average number
1397 * of free blocks is found. If the allocation is for the first block in an
1398 * indirect block or the previous block is a hole, then the information on
1399 * the previous allocation is unavailable; here a best guess is made based
1400 * on the logical block number being allocated.
1401 *
1402 * If a section is already partially allocated, the policy is to
1403 * allocate blocks contiguously within the section if possible.
1404 */
1405 ufs2_daddr_t
ffs_blkpref_ufs1(struct inode * ip,ufs_lbn_t lbn,int indx,ufs1_daddr_t * bap)1406 ffs_blkpref_ufs1(struct inode *ip,
1407 ufs_lbn_t lbn,
1408 int indx,
1409 ufs1_daddr_t *bap)
1410 {
1411 struct fs *fs;
1412 uint64_t cg, inocg;
1413 uint64_t avgbfree, startcg;
1414 ufs2_daddr_t pref, prevbn;
1415
1416 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1417 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1418 fs = ITOFS(ip);
1419 /*
1420 * Allocation of indirect blocks is indicated by passing negative
1421 * values in indx: -1 for single indirect, -2 for double indirect,
1422 * -3 for triple indirect. As noted below, we attempt to allocate
1423 * the first indirect inline with the file data. For all later
1424 * indirect blocks, the data is often allocated in other cylinder
1425 * groups. However to speed random file access and to speed up
1426 * fsck, the filesystem reserves the first fs_metaspace blocks
1427 * (typically half of fs_minfree) of the data area of each cylinder
1428 * group to hold these later indirect blocks.
1429 */
1430 inocg = ino_to_cg(fs, ip->i_number);
1431 if (indx < 0) {
1432 /*
1433 * Our preference for indirect blocks is the zone at the
1434 * beginning of the inode's cylinder group data area that
1435 * we try to reserve for indirect blocks.
1436 */
1437 pref = cgmeta(fs, inocg);
1438 /*
1439 * If we are allocating the first indirect block, try to
1440 * place it immediately following the last direct block.
1441 */
1442 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1443 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) {
1444 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1445 if (dtog(fs, pref) >= fs->fs_ncg)
1446 pref = 0;
1447 }
1448 return (pref);
1449 }
1450 /*
1451 * If we are allocating the first data block in the first indirect
1452 * block and the indirect has been allocated in the data block area,
1453 * try to place it immediately following the indirect block.
1454 */
1455 if (lbn == UFS_NDADDR) {
1456 pref = ip->i_din1->di_ib[0];
1457 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1458 pref < cgbase(fs, inocg + 1)) {
1459 if (dtog(fs, pref + fs->fs_frag) >= fs->fs_ncg)
1460 return (0);
1461 return (pref + fs->fs_frag);
1462 }
1463 }
1464 /*
1465 * If we are at the beginning of a file, or we have already allocated
1466 * the maximum number of blocks per cylinder group, or we do not
1467 * have a block allocated immediately preceding us, then we need
1468 * to decide where to start allocating new blocks.
1469 */
1470 if (indx == 0) {
1471 prevbn = 0;
1472 } else {
1473 prevbn = bap[indx - 1];
1474 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1475 fs->fs_bsize) != 0)
1476 prevbn = 0;
1477 }
1478 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1479 /*
1480 * If we are allocating a directory data block, we want
1481 * to place it in the metadata area.
1482 */
1483 if ((ip->i_mode & IFMT) == IFDIR)
1484 return (cgmeta(fs, inocg));
1485 /*
1486 * Until we fill all the direct and all the first indirect's
1487 * blocks, we try to allocate in the data area of the inode's
1488 * cylinder group.
1489 */
1490 if (lbn < UFS_NDADDR + NINDIR(fs))
1491 return (cgdata(fs, inocg));
1492 /*
1493 * Find a cylinder with greater than average number of
1494 * unused data blocks.
1495 */
1496 if (indx == 0 || prevbn == 0)
1497 startcg = inocg + lbn / fs->fs_maxbpg;
1498 else
1499 startcg = dtog(fs, prevbn) + 1;
1500 startcg %= fs->fs_ncg;
1501 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1502 for (cg = startcg; cg < fs->fs_ncg; cg++)
1503 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1504 fs->fs_cgrotor = cg;
1505 return (cgdata(fs, cg));
1506 }
1507 for (cg = 0; cg < startcg; cg++)
1508 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1509 fs->fs_cgrotor = cg;
1510 return (cgdata(fs, cg));
1511 }
1512 return (0);
1513 }
1514 /*
1515 * Otherwise, we just always try to lay things out contiguously.
1516 */
1517 if (dtog(fs, prevbn + fs->fs_frag) >= fs->fs_ncg)
1518 return (0);
1519 return (prevbn + fs->fs_frag);
1520 }
1521
1522 /*
1523 * Same as above, but for UFS2
1524 */
1525 ufs2_daddr_t
ffs_blkpref_ufs2(struct inode * ip,ufs_lbn_t lbn,int indx,ufs2_daddr_t * bap)1526 ffs_blkpref_ufs2(struct inode *ip,
1527 ufs_lbn_t lbn,
1528 int indx,
1529 ufs2_daddr_t *bap)
1530 {
1531 struct fs *fs;
1532 uint64_t cg, inocg;
1533 uint64_t avgbfree, startcg;
1534 ufs2_daddr_t pref, prevbn;
1535
1536 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1537 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1538 fs = ITOFS(ip);
1539 /*
1540 * Allocation of indirect blocks is indicated by passing negative
1541 * values in indx: -1 for single indirect, -2 for double indirect,
1542 * -3 for triple indirect. As noted below, we attempt to allocate
1543 * the first indirect inline with the file data. For all later
1544 * indirect blocks, the data is often allocated in other cylinder
1545 * groups. However to speed random file access and to speed up
1546 * fsck, the filesystem reserves the first fs_metaspace blocks
1547 * (typically half of fs_minfree) of the data area of each cylinder
1548 * group to hold these later indirect blocks.
1549 */
1550 inocg = ino_to_cg(fs, ip->i_number);
1551 if (indx < 0) {
1552 /*
1553 * Our preference for indirect blocks is the zone at the
1554 * beginning of the inode's cylinder group data area that
1555 * we try to reserve for indirect blocks.
1556 */
1557 pref = cgmeta(fs, inocg);
1558 /*
1559 * If we are allocating the first indirect block, try to
1560 * place it immediately following the last direct block.
1561 */
1562 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1563 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) {
1564 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1565 if (dtog(fs, pref) >= fs->fs_ncg)
1566 pref = 0;
1567 }
1568 return (pref);
1569 }
1570 /*
1571 * If we are allocating the first data block in the first indirect
1572 * block and the indirect has been allocated in the data block area,
1573 * try to place it immediately following the indirect block.
1574 */
1575 if (lbn == UFS_NDADDR) {
1576 pref = ip->i_din2->di_ib[0];
1577 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1578 pref < cgbase(fs, inocg + 1)) {
1579 if (dtog(fs, pref + fs->fs_frag) >= fs->fs_ncg)
1580 return (0);
1581 return (pref + fs->fs_frag);
1582 }
1583 }
1584 /*
1585 * If we are at the beginning of a file, or we have already allocated
1586 * the maximum number of blocks per cylinder group, or we do not
1587 * have a block allocated immediately preceding us, then we need
1588 * to decide where to start allocating new blocks.
1589 */
1590 if (indx == 0) {
1591 prevbn = 0;
1592 } else {
1593 prevbn = bap[indx - 1];
1594 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1595 fs->fs_bsize) != 0)
1596 prevbn = 0;
1597 }
1598 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1599 /*
1600 * If we are allocating a directory data block, we want
1601 * to place it in the metadata area.
1602 */
1603 if ((ip->i_mode & IFMT) == IFDIR)
1604 return (cgmeta(fs, inocg));
1605 /*
1606 * Until we fill all the direct and all the first indirect's
1607 * blocks, we try to allocate in the data area of the inode's
1608 * cylinder group.
1609 */
1610 if (lbn < UFS_NDADDR + NINDIR(fs))
1611 return (cgdata(fs, inocg));
1612 /*
1613 * Find a cylinder with greater than average number of
1614 * unused data blocks.
1615 */
1616 if (indx == 0 || prevbn == 0)
1617 startcg = inocg + lbn / fs->fs_maxbpg;
1618 else
1619 startcg = dtog(fs, prevbn) + 1;
1620 startcg %= fs->fs_ncg;
1621 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1622 for (cg = startcg; cg < fs->fs_ncg; cg++)
1623 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1624 fs->fs_cgrotor = cg;
1625 return (cgdata(fs, cg));
1626 }
1627 for (cg = 0; cg < startcg; cg++)
1628 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1629 fs->fs_cgrotor = cg;
1630 return (cgdata(fs, cg));
1631 }
1632 return (0);
1633 }
1634 /*
1635 * Otherwise, we just always try to lay things out contiguously.
1636 */
1637 if (dtog(fs, prevbn + fs->fs_frag) >= fs->fs_ncg)
1638 return (0);
1639 return (prevbn + fs->fs_frag);
1640 }
1641
1642 /*
1643 * Implement the cylinder overflow algorithm.
1644 *
1645 * The policy implemented by this algorithm is:
1646 * 1) allocate the block in its requested cylinder group.
1647 * 2) quadratically rehash on the cylinder group number.
1648 * 3) brute force search for a free block.
1649 *
1650 * Must be called with the UFS lock held. Will release the lock on success
1651 * and return with it held on failure.
1652 */
1653 /*VARARGS5*/
1654 static ufs2_daddr_t
ffs_hashalloc(struct inode * ip,uint64_t cg,ufs2_daddr_t pref,int size,int rsize,allocfcn_t * allocator)1655 ffs_hashalloc(struct inode *ip,
1656 uint64_t cg,
1657 ufs2_daddr_t pref,
1658 int size, /* Search size for data blocks, mode for inodes */
1659 int rsize, /* Real allocated size. */
1660 allocfcn_t *allocator)
1661 {
1662 struct fs *fs;
1663 ufs2_daddr_t result;
1664 uint64_t i, icg = cg;
1665
1666 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1667 #ifdef INVARIANTS
1668 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1669 panic("ffs_hashalloc: allocation on suspended filesystem");
1670 #endif
1671 fs = ITOFS(ip);
1672 /*
1673 * 1: preferred cylinder group
1674 */
1675 result = (*allocator)(ip, cg, pref, size, rsize);
1676 if (result)
1677 return (result);
1678 /*
1679 * 2: quadratic rehash
1680 */
1681 for (i = 1; i < fs->fs_ncg; i *= 2) {
1682 cg += i;
1683 if (cg >= fs->fs_ncg)
1684 cg -= fs->fs_ncg;
1685 result = (*allocator)(ip, cg, 0, size, rsize);
1686 if (result)
1687 return (result);
1688 }
1689 /*
1690 * 3: brute force search
1691 * Note that we start at i == 2, since 0 was checked initially,
1692 * and 1 is always checked in the quadratic rehash.
1693 */
1694 cg = (icg + 2) % fs->fs_ncg;
1695 for (i = 2; i < fs->fs_ncg; i++) {
1696 result = (*allocator)(ip, cg, 0, size, rsize);
1697 if (result)
1698 return (result);
1699 cg++;
1700 if (cg == fs->fs_ncg)
1701 cg = 0;
1702 }
1703 return (0);
1704 }
1705
1706 /*
1707 * Determine whether a fragment can be extended.
1708 *
1709 * Check to see if the necessary fragments are available, and
1710 * if they are, allocate them.
1711 */
1712 static ufs2_daddr_t
ffs_fragextend(struct inode * ip,uint64_t cg,ufs2_daddr_t bprev,int osize,int nsize)1713 ffs_fragextend(struct inode *ip,
1714 uint64_t cg,
1715 ufs2_daddr_t bprev,
1716 int osize,
1717 int nsize)
1718 {
1719 struct fs *fs;
1720 struct cg *cgp;
1721 struct buf *bp;
1722 struct ufsmount *ump;
1723 int nffree;
1724 long bno;
1725 int frags, bbase;
1726 int i, error;
1727 uint8_t *blksfree;
1728
1729 ump = ITOUMP(ip);
1730 fs = ump->um_fs;
1731 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1732 return (0);
1733 frags = numfrags(fs, nsize);
1734 bbase = fragnum(fs, bprev);
1735 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1736 /* cannot extend across a block boundary */
1737 return (0);
1738 }
1739 UFS_UNLOCK(ump);
1740 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1741 ffs_checkcgintegrity(fs, cg, error);
1742 goto fail;
1743 }
1744 bno = dtogd(fs, bprev);
1745 blksfree = cg_blksfree(cgp);
1746 for (i = numfrags(fs, osize); i < frags; i++)
1747 if (isclr(blksfree, bno + i))
1748 goto fail;
1749 /*
1750 * the current fragment can be extended
1751 * deduct the count on fragment being extended into
1752 * increase the count on the remaining fragment (if any)
1753 * allocate the extended piece
1754 */
1755 for (i = frags; i < fs->fs_frag - bbase; i++)
1756 if (isclr(blksfree, bno + i))
1757 break;
1758 cgp->cg_frsum[i - numfrags(fs, osize)]--;
1759 if (i != frags)
1760 cgp->cg_frsum[i - frags]++;
1761 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1762 clrbit(blksfree, bno + i);
1763 cgp->cg_cs.cs_nffree--;
1764 nffree++;
1765 }
1766 UFS_LOCK(ump);
1767 fs->fs_cstotal.cs_nffree -= nffree;
1768 fs->fs_cs(fs, cg).cs_nffree -= nffree;
1769 fs->fs_fmod = 1;
1770 ACTIVECLEAR(fs, cg);
1771 UFS_UNLOCK(ump);
1772 if (DOINGSOFTDEP(ITOV(ip)))
1773 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1774 frags, numfrags(fs, osize));
1775 bdwrite(bp);
1776 return (bprev);
1777
1778 fail:
1779 brelse(bp);
1780 UFS_LOCK(ump);
1781 return (0);
1782
1783 }
1784
1785 /*
1786 * Determine whether a block can be allocated.
1787 *
1788 * Check to see if a block of the appropriate size is available,
1789 * and if it is, allocate it.
1790 */
1791 static ufs2_daddr_t
ffs_alloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int size,int rsize)1792 ffs_alloccg(struct inode *ip,
1793 uint64_t cg,
1794 ufs2_daddr_t bpref,
1795 int size,
1796 int rsize)
1797 {
1798 struct fs *fs;
1799 struct cg *cgp;
1800 struct buf *bp;
1801 struct ufsmount *ump;
1802 ufs1_daddr_t bno;
1803 ufs2_daddr_t blkno;
1804 int i, allocsiz, error, frags;
1805 uint8_t *blksfree;
1806
1807 ump = ITOUMP(ip);
1808 fs = ump->um_fs;
1809 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1810 return (0);
1811 UFS_UNLOCK(ump);
1812 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
1813 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1814 ffs_checkcgintegrity(fs, cg, error);
1815 goto fail;
1816 }
1817 if (size == fs->fs_bsize) {
1818 UFS_LOCK(ump);
1819 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1820 ACTIVECLEAR(fs, cg);
1821 UFS_UNLOCK(ump);
1822 bdwrite(bp);
1823 return (blkno);
1824 }
1825 /*
1826 * check to see if any fragments are already available
1827 * allocsiz is the size which will be allocated, hacking
1828 * it down to a smaller size if necessary
1829 */
1830 blksfree = cg_blksfree(cgp);
1831 frags = numfrags(fs, size);
1832 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1833 if (cgp->cg_frsum[allocsiz] != 0)
1834 break;
1835 if (allocsiz == fs->fs_frag) {
1836 /*
1837 * no fragments were available, so a block will be
1838 * allocated, and hacked up
1839 */
1840 if (cgp->cg_cs.cs_nbfree == 0)
1841 goto fail;
1842 UFS_LOCK(ump);
1843 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1844 ACTIVECLEAR(fs, cg);
1845 UFS_UNLOCK(ump);
1846 bdwrite(bp);
1847 return (blkno);
1848 }
1849 KASSERT(size == rsize,
1850 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1851 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1852 if (bno < 0)
1853 goto fail;
1854 for (i = 0; i < frags; i++)
1855 clrbit(blksfree, bno + i);
1856 cgp->cg_cs.cs_nffree -= frags;
1857 cgp->cg_frsum[allocsiz]--;
1858 if (frags != allocsiz)
1859 cgp->cg_frsum[allocsiz - frags]++;
1860 UFS_LOCK(ump);
1861 fs->fs_cstotal.cs_nffree -= frags;
1862 fs->fs_cs(fs, cg).cs_nffree -= frags;
1863 fs->fs_fmod = 1;
1864 blkno = cgbase(fs, cg) + bno;
1865 ACTIVECLEAR(fs, cg);
1866 UFS_UNLOCK(ump);
1867 if (DOINGSOFTDEP(ITOV(ip)))
1868 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1869 bdwrite(bp);
1870 return (blkno);
1871
1872 fail:
1873 brelse(bp);
1874 UFS_LOCK(ump);
1875 return (0);
1876 }
1877
1878 /*
1879 * Allocate a block in a cylinder group.
1880 *
1881 * This algorithm implements the following policy:
1882 * 1) allocate the requested block.
1883 * 2) allocate a rotationally optimal block in the same cylinder.
1884 * 3) allocate the next available block on the block rotor for the
1885 * specified cylinder group.
1886 * Note that this routine only allocates fs_bsize blocks; these
1887 * blocks may be fragmented by the routine that allocates them.
1888 */
1889 static ufs2_daddr_t
ffs_alloccgblk(struct inode * ip,struct buf * bp,ufs2_daddr_t bpref,int size)1890 ffs_alloccgblk(struct inode *ip,
1891 struct buf *bp,
1892 ufs2_daddr_t bpref,
1893 int size)
1894 {
1895 struct fs *fs;
1896 struct cg *cgp;
1897 struct ufsmount *ump;
1898 ufs1_daddr_t bno;
1899 ufs2_daddr_t blkno;
1900 uint8_t *blksfree;
1901 int i, cgbpref;
1902
1903 ump = ITOUMP(ip);
1904 fs = ump->um_fs;
1905 mtx_assert(UFS_MTX(ump), MA_OWNED);
1906 cgp = (struct cg *)bp->b_data;
1907 blksfree = cg_blksfree(cgp);
1908 if (bpref == 0) {
1909 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1910 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1911 /* map bpref to correct zone in this cg */
1912 if (bpref < cgdata(fs, cgbpref))
1913 bpref = cgmeta(fs, cgp->cg_cgx);
1914 else
1915 bpref = cgdata(fs, cgp->cg_cgx);
1916 }
1917 /*
1918 * if the requested block is available, use it
1919 */
1920 bno = dtogd(fs, blknum(fs, bpref));
1921 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1922 goto gotit;
1923 /*
1924 * Take the next available block in this cylinder group.
1925 */
1926 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1927 if (bno < 0)
1928 return (0);
1929 /* Update cg_rotor only if allocated from the data zone */
1930 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1931 cgp->cg_rotor = bno;
1932 gotit:
1933 blkno = fragstoblks(fs, bno);
1934 ffs_clrblock(fs, blksfree, (long)blkno);
1935 ffs_clusteracct(fs, cgp, blkno, -1);
1936 cgp->cg_cs.cs_nbfree--;
1937 fs->fs_cstotal.cs_nbfree--;
1938 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1939 fs->fs_fmod = 1;
1940 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1941 /*
1942 * If the caller didn't want the whole block free the frags here.
1943 */
1944 size = numfrags(fs, size);
1945 if (size != fs->fs_frag) {
1946 bno = dtogd(fs, blkno);
1947 for (i = size; i < fs->fs_frag; i++)
1948 setbit(blksfree, bno + i);
1949 i = fs->fs_frag - size;
1950 cgp->cg_cs.cs_nffree += i;
1951 fs->fs_cstotal.cs_nffree += i;
1952 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1953 fs->fs_fmod = 1;
1954 cgp->cg_frsum[i]++;
1955 }
1956 /* XXX Fixme. */
1957 UFS_UNLOCK(ump);
1958 if (DOINGSOFTDEP(ITOV(ip)))
1959 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1960 UFS_LOCK(ump);
1961 return (blkno);
1962 }
1963
1964 /*
1965 * Determine whether a cluster can be allocated.
1966 *
1967 * We do not currently check for optimal rotational layout if there
1968 * are multiple choices in the same cylinder group. Instead we just
1969 * take the first one that we find following bpref.
1970 */
1971 static ufs2_daddr_t
ffs_clusteralloc(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int len)1972 ffs_clusteralloc(struct inode *ip,
1973 uint64_t cg,
1974 ufs2_daddr_t bpref,
1975 int len)
1976 {
1977 struct fs *fs;
1978 struct cg *cgp;
1979 struct buf *bp;
1980 struct ufsmount *ump;
1981 int i, run, bit, map, got, error;
1982 ufs2_daddr_t bno;
1983 uint8_t *mapp;
1984 int32_t *lp;
1985 uint8_t *blksfree;
1986
1987 ump = ITOUMP(ip);
1988 fs = ump->um_fs;
1989 MPASS(cg < fs->fs_ncg);
1990 if (fs->fs_maxcluster[cg] < len)
1991 return (0);
1992 UFS_UNLOCK(ump);
1993 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1994 ffs_checkcgintegrity(fs, cg, error);
1995 UFS_LOCK(ump);
1996 return (0);
1997 }
1998 /*
1999 * Check to see if a cluster of the needed size (or bigger) is
2000 * available in this cylinder group.
2001 */
2002 lp = &cg_clustersum(cgp)[len];
2003 for (i = len; i <= fs->fs_contigsumsize; i++)
2004 if (*lp++ > 0)
2005 break;
2006 if (i > fs->fs_contigsumsize) {
2007 /*
2008 * This is the first time looking for a cluster in this
2009 * cylinder group. Update the cluster summary information
2010 * to reflect the true maximum sized cluster so that
2011 * future cluster allocation requests can avoid reading
2012 * the cylinder group map only to find no clusters.
2013 */
2014 lp = &cg_clustersum(cgp)[len - 1];
2015 for (i = len - 1; i > 0; i--)
2016 if (*lp-- > 0)
2017 break;
2018 UFS_LOCK(ump);
2019 fs->fs_maxcluster[cg] = i;
2020 brelse(bp);
2021 return (0);
2022 }
2023 /*
2024 * Search the cluster map to find a big enough cluster.
2025 * We take the first one that we find, even if it is larger
2026 * than we need as we prefer to get one close to the previous
2027 * block allocation. We do not search before the current
2028 * preference point as we do not want to allocate a block
2029 * that is allocated before the previous one (as we will
2030 * then have to wait for another pass of the elevator
2031 * algorithm before it will be read). We prefer to fail and
2032 * be recalled to try an allocation in the next cylinder group.
2033 */
2034 if (dtog(fs, bpref) != cg)
2035 bpref = cgdata(fs, cg);
2036 else
2037 bpref = blknum(fs, bpref);
2038 bpref = fragstoblks(fs, dtogd(fs, bpref));
2039 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
2040 map = *mapp++;
2041 bit = 1 << (bpref % NBBY);
2042 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
2043 if ((map & bit) == 0) {
2044 run = 0;
2045 } else {
2046 run++;
2047 if (run == len)
2048 break;
2049 }
2050 if ((got & (NBBY - 1)) != (NBBY - 1)) {
2051 bit <<= 1;
2052 } else {
2053 map = *mapp++;
2054 bit = 1;
2055 }
2056 }
2057 if (got >= cgp->cg_nclusterblks) {
2058 UFS_LOCK(ump);
2059 brelse(bp);
2060 return (0);
2061 }
2062 /*
2063 * Allocate the cluster that we have found.
2064 */
2065 blksfree = cg_blksfree(cgp);
2066 for (i = 1; i <= len; i++)
2067 if (!ffs_isblock(fs, blksfree, got - run + i))
2068 panic("ffs_clusteralloc: map mismatch");
2069 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2070 if (dtog(fs, bno) != cg)
2071 panic("ffs_clusteralloc: allocated out of group");
2072 len = blkstofrags(fs, len);
2073 UFS_LOCK(ump);
2074 for (i = 0; i < len; i += fs->fs_frag)
2075 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2076 panic("ffs_clusteralloc: lost block");
2077 ACTIVECLEAR(fs, cg);
2078 UFS_UNLOCK(ump);
2079 bdwrite(bp);
2080 return (bno);
2081 }
2082
2083 static inline struct buf *
getinobuf(struct inode * ip,uint64_t cg,uint32_t cginoblk,int gbflags)2084 getinobuf(struct inode *ip,
2085 uint64_t cg,
2086 uint32_t cginoblk,
2087 int gbflags)
2088 {
2089 struct fs *fs;
2090
2091 fs = ITOFS(ip);
2092 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2093 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2094 gbflags));
2095 }
2096
2097 /*
2098 * Synchronous inode initialization is needed only when barrier writes do not
2099 * work as advertised, and will impose a heavy cost on file creation in a newly
2100 * created filesystem.
2101 */
2102 static int doasyncinodeinit = 1;
2103 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2104 &doasyncinodeinit, 0,
2105 "Perform inode block initialization using asynchronous writes");
2106
2107 /*
2108 * Determine whether an inode can be allocated.
2109 *
2110 * Check to see if an inode is available, and if it is,
2111 * allocate it using the following policy:
2112 * 1) allocate the requested inode.
2113 * 2) allocate the next available inode after the requested
2114 * inode in the specified cylinder group.
2115 */
2116 static ufs2_daddr_t
ffs_nodealloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t ipref,int mode,int unused)2117 ffs_nodealloccg(struct inode *ip,
2118 uint64_t cg,
2119 ufs2_daddr_t ipref,
2120 int mode,
2121 int unused)
2122 {
2123 struct fs *fs;
2124 struct cg *cgp;
2125 struct buf *bp, *ibp;
2126 struct ufsmount *ump;
2127 uint8_t *inosused, *loc;
2128 struct ufs2_dinode *dp2;
2129 int error, start, len, i;
2130 uint32_t old_initediblk;
2131
2132 ump = ITOUMP(ip);
2133 fs = ump->um_fs;
2134 check_nifree:
2135 if (fs->fs_cs(fs, cg).cs_nifree == 0)
2136 return (0);
2137 UFS_UNLOCK(ump);
2138 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
2139 ffs_checkcgintegrity(fs, cg, error);
2140 UFS_LOCK(ump);
2141 return (0);
2142 }
2143 restart:
2144 if (cgp->cg_cs.cs_nifree == 0) {
2145 brelse(bp);
2146 UFS_LOCK(ump);
2147 return (0);
2148 }
2149 inosused = cg_inosused(cgp);
2150 if (ipref) {
2151 ipref %= fs->fs_ipg;
2152 if (isclr(inosused, ipref))
2153 goto gotit;
2154 }
2155 start = cgp->cg_irotor / NBBY;
2156 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2157 loc = memcchr(&inosused[start], 0xff, len);
2158 if (loc == NULL) {
2159 len = start + 1;
2160 start = 0;
2161 loc = memcchr(&inosused[start], 0xff, len);
2162 if (loc == NULL) {
2163 printf("cg = %ju, irotor = %ld, fs = %s\n",
2164 (intmax_t)cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2165 panic("ffs_nodealloccg: map corrupted");
2166 /* NOTREACHED */
2167 }
2168 }
2169 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2170 gotit:
2171 /*
2172 * Check to see if we need to initialize more inodes.
2173 */
2174 if (fs->fs_magic == FS_UFS2_MAGIC &&
2175 ipref + INOPB(fs) > cgp->cg_initediblk &&
2176 cgp->cg_initediblk < cgp->cg_niblk) {
2177 old_initediblk = cgp->cg_initediblk;
2178
2179 /*
2180 * Free the cylinder group lock before writing the
2181 * initialized inode block. Entering the
2182 * babarrierwrite() with the cylinder group lock
2183 * causes lock order violation between the lock and
2184 * snaplk.
2185 *
2186 * Another thread can decide to initialize the same
2187 * inode block, but whichever thread first gets the
2188 * cylinder group lock after writing the newly
2189 * allocated inode block will update it and the other
2190 * will realize that it has lost and leave the
2191 * cylinder group unchanged.
2192 */
2193 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2194 brelse(bp);
2195 if (ibp == NULL) {
2196 /*
2197 * The inode block buffer is already owned by
2198 * another thread, which must initialize it.
2199 * Wait on the buffer to allow another thread
2200 * to finish the updates, with dropped cg
2201 * buffer lock, then retry.
2202 */
2203 ibp = getinobuf(ip, cg, old_initediblk, 0);
2204 brelse(ibp);
2205 UFS_LOCK(ump);
2206 goto check_nifree;
2207 }
2208 bzero(ibp->b_data, (int)fs->fs_bsize);
2209 dp2 = (struct ufs2_dinode *)(ibp->b_data);
2210 for (i = 0; i < INOPB(fs); i++) {
2211 while (dp2->di_gen == 0)
2212 dp2->di_gen = arc4random();
2213 dp2++;
2214 }
2215
2216 /*
2217 * Rather than adding a soft updates dependency to ensure
2218 * that the new inode block is written before it is claimed
2219 * by the cylinder group map, we just do a barrier write
2220 * here. The barrier write will ensure that the inode block
2221 * gets written before the updated cylinder group map can be
2222 * written. The barrier write should only slow down bulk
2223 * loading of newly created filesystems.
2224 */
2225 if (doasyncinodeinit)
2226 babarrierwrite(ibp);
2227 else
2228 bwrite(ibp);
2229
2230 /*
2231 * After the inode block is written, try to update the
2232 * cg initediblk pointer. If another thread beat us
2233 * to it, then leave it unchanged as the other thread
2234 * has already set it correctly.
2235 */
2236 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2237 UFS_LOCK(ump);
2238 ACTIVECLEAR(fs, cg);
2239 UFS_UNLOCK(ump);
2240 if (error != 0)
2241 return (error);
2242 if (cgp->cg_initediblk == old_initediblk)
2243 cgp->cg_initediblk += INOPB(fs);
2244 goto restart;
2245 }
2246 cgp->cg_irotor = ipref;
2247 UFS_LOCK(ump);
2248 ACTIVECLEAR(fs, cg);
2249 setbit(inosused, ipref);
2250 cgp->cg_cs.cs_nifree--;
2251 fs->fs_cstotal.cs_nifree--;
2252 fs->fs_cs(fs, cg).cs_nifree--;
2253 fs->fs_fmod = 1;
2254 if ((mode & IFMT) == IFDIR) {
2255 cgp->cg_cs.cs_ndir++;
2256 fs->fs_cstotal.cs_ndir++;
2257 fs->fs_cs(fs, cg).cs_ndir++;
2258 }
2259 UFS_UNLOCK(ump);
2260 if (DOINGSOFTDEP(ITOV(ip)))
2261 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2262 bdwrite(bp);
2263 return ((ino_t)(cg * fs->fs_ipg + ipref));
2264 }
2265
2266 /*
2267 * Free a block or fragment.
2268 *
2269 * The specified block or fragment is placed back in the
2270 * free map. If a fragment is deallocated, a possible
2271 * block reassembly is checked.
2272 */
2273 static void
ffs_blkfree_cg(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,struct workhead * dephd)2274 ffs_blkfree_cg(struct ufsmount *ump,
2275 struct fs *fs,
2276 struct vnode *devvp,
2277 ufs2_daddr_t bno,
2278 long size,
2279 ino_t inum,
2280 struct workhead *dephd)
2281 {
2282 struct mount *mp;
2283 struct cg *cgp;
2284 struct buf *bp;
2285 daddr_t dbn;
2286 ufs1_daddr_t fragno, cgbno;
2287 int i, blk, frags, bbase, error;
2288 uint64_t cg;
2289 uint8_t *blksfree;
2290 struct cdev *dev;
2291
2292 cg = dtog(fs, bno);
2293 if (devvp->v_type == VREG) {
2294 /* devvp is a snapshot */
2295 MPASS(devvp->v_mount->mnt_data == ump);
2296 dev = ump->um_devvp->v_rdev;
2297 } else if (devvp->v_type == VCHR) {
2298 /*
2299 * devvp is a normal disk device
2300 * XXXKIB: devvp is not locked there, v_rdev access depends on
2301 * busy mount, which prevents mntfs devvp from reclamation.
2302 */
2303 dev = devvp->v_rdev;
2304 } else
2305 return;
2306 #ifdef INVARIANTS
2307 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2308 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2309 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2310 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2311 size, fs->fs_fsmnt);
2312 panic("ffs_blkfree_cg: invalid size");
2313 }
2314 #endif
2315 if ((uint64_t)bno >= fs->fs_size) {
2316 printf("bad block %jd, ino %ju\n", (intmax_t)bno,
2317 (intmax_t)inum);
2318 ffs_fserr(fs, inum, "bad block");
2319 return;
2320 }
2321 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2322 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2323 return;
2324 /*
2325 * Would like to just downgrade to read-only. Until that
2326 * capability is available, just toss the cylinder group
2327 * update and mark the filesystem as needing to run fsck.
2328 */
2329 fs->fs_flags |= FS_NEEDSFSCK;
2330 if (devvp->v_type == VREG)
2331 dbn = fragstoblks(fs, cgtod(fs, cg));
2332 else
2333 dbn = fsbtodb(fs, cgtod(fs, cg));
2334 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2335 KASSERT(error == 0, ("getblkx failed"));
2336 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2337 numfrags(fs, size), dephd, true);
2338 bp->b_flags |= B_RELBUF | B_NOCACHE;
2339 bp->b_flags &= ~B_CACHE;
2340 bawrite(bp);
2341 return;
2342 }
2343 cgbno = dtogd(fs, bno);
2344 blksfree = cg_blksfree(cgp);
2345 UFS_LOCK(ump);
2346 if (size == fs->fs_bsize) {
2347 fragno = fragstoblks(fs, cgbno);
2348 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2349 if (devvp->v_type == VREG) {
2350 UFS_UNLOCK(ump);
2351 /* devvp is a snapshot */
2352 brelse(bp);
2353 return;
2354 }
2355 printf("dev = %s, block = %jd, fs = %s\n",
2356 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2357 panic("ffs_blkfree_cg: freeing free block");
2358 }
2359 ffs_setblock(fs, blksfree, fragno);
2360 ffs_clusteracct(fs, cgp, fragno, 1);
2361 cgp->cg_cs.cs_nbfree++;
2362 fs->fs_cstotal.cs_nbfree++;
2363 fs->fs_cs(fs, cg).cs_nbfree++;
2364 } else {
2365 bbase = cgbno - fragnum(fs, cgbno);
2366 /*
2367 * decrement the counts associated with the old frags
2368 */
2369 blk = blkmap(fs, blksfree, bbase);
2370 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2371 /*
2372 * deallocate the fragment
2373 */
2374 frags = numfrags(fs, size);
2375 for (i = 0; i < frags; i++) {
2376 if (isset(blksfree, cgbno + i)) {
2377 printf("dev = %s, block = %jd, fs = %s\n",
2378 devtoname(dev), (intmax_t)(bno + i),
2379 fs->fs_fsmnt);
2380 panic("ffs_blkfree_cg: freeing free frag");
2381 }
2382 setbit(blksfree, cgbno + i);
2383 }
2384 cgp->cg_cs.cs_nffree += i;
2385 fs->fs_cstotal.cs_nffree += i;
2386 fs->fs_cs(fs, cg).cs_nffree += i;
2387 /*
2388 * add back in counts associated with the new frags
2389 */
2390 blk = blkmap(fs, blksfree, bbase);
2391 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2392 /*
2393 * if a complete block has been reassembled, account for it
2394 */
2395 fragno = fragstoblks(fs, bbase);
2396 if (ffs_isblock(fs, blksfree, fragno)) {
2397 cgp->cg_cs.cs_nffree -= fs->fs_frag;
2398 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2399 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2400 ffs_clusteracct(fs, cgp, fragno, 1);
2401 cgp->cg_cs.cs_nbfree++;
2402 fs->fs_cstotal.cs_nbfree++;
2403 fs->fs_cs(fs, cg).cs_nbfree++;
2404 }
2405 }
2406 fs->fs_fmod = 1;
2407 ACTIVECLEAR(fs, cg);
2408 UFS_UNLOCK(ump);
2409 mp = UFSTOVFS(ump);
2410 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2411 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2412 numfrags(fs, size), dephd, false);
2413 bdwrite(bp);
2414 }
2415
2416 /*
2417 * Structures and routines associated with trim management.
2418 *
2419 * The following requests are passed to trim_lookup to indicate
2420 * the actions that should be taken.
2421 */
2422 #define NEW 1 /* if found, error else allocate and hash it */
2423 #define OLD 2 /* if not found, error, else return it */
2424 #define REPLACE 3 /* if not found, error else unhash and reallocate it */
2425 #define DONE 4 /* if not found, error else unhash and return it */
2426 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */
2427
2428 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2429
2430 #define TRIMLIST_HASH(ump, key) \
2431 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2432
2433 /*
2434 * These structures describe each of the block free requests aggregated
2435 * together to make up a trim request.
2436 */
2437 struct trim_blkreq {
2438 TAILQ_ENTRY(trim_blkreq) blkreqlist;
2439 ufs2_daddr_t bno;
2440 long size;
2441 struct workhead *pdephd;
2442 struct workhead dephd;
2443 };
2444
2445 /*
2446 * Description of a trim request.
2447 */
2448 struct ffs_blkfree_trim_params {
2449 TAILQ_HEAD(, trim_blkreq) blklist;
2450 LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2451 struct task task;
2452 struct ufsmount *ump;
2453 struct vnode *devvp;
2454 ino_t inum;
2455 ufs2_daddr_t bno;
2456 long size;
2457 long key;
2458 };
2459
2460 static void ffs_blkfree_trim_completed(struct buf *);
2461 static void ffs_blkfree_trim_task(void *ctx, int pending __unused);
2462 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2463 struct vnode *, ufs2_daddr_t, long, ino_t, uint64_t, int);
2464 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2465
2466 /*
2467 * Called on trim completion to start a task to free the associated block(s).
2468 */
2469 static void
ffs_blkfree_trim_completed(struct buf * bp)2470 ffs_blkfree_trim_completed(struct buf *bp)
2471 {
2472 struct ffs_blkfree_trim_params *tp;
2473
2474 tp = bp->b_fsprivate1;
2475 free(bp, M_TRIM);
2476 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2477 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2478 }
2479
2480 /*
2481 * Trim completion task that free associated block(s).
2482 */
2483 static void
ffs_blkfree_trim_task(void * ctx,int pending)2484 ffs_blkfree_trim_task(void *ctx, int pending)
2485 {
2486 struct ffs_blkfree_trim_params *tp;
2487 struct trim_blkreq *blkelm;
2488 struct ufsmount *ump;
2489
2490 tp = ctx;
2491 ump = tp->ump;
2492 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2493 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2494 blkelm->size, tp->inum, blkelm->pdephd);
2495 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2496 free(blkelm, M_TRIM);
2497 }
2498 vn_finished_secondary_write(UFSTOVFS(ump));
2499 UFS_LOCK(ump);
2500 ump->um_trim_inflight -= 1;
2501 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2502 UFS_UNLOCK(ump);
2503 free(tp, M_TRIM);
2504 }
2505
2506 /*
2507 * Lookup a trim request by inode number.
2508 * Allocate if requested (NEW, REPLACE, SINGLE).
2509 */
2510 static struct ffs_blkfree_trim_params *
trim_lookup(struct ufsmount * ump,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,uint64_t key,int alloctype)2511 trim_lookup(struct ufsmount *ump,
2512 struct vnode *devvp,
2513 ufs2_daddr_t bno,
2514 long size,
2515 ino_t inum,
2516 uint64_t key,
2517 int alloctype)
2518 {
2519 struct trimlist_hashhead *tphashhead;
2520 struct ffs_blkfree_trim_params *tp, *ntp;
2521
2522 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2523 if (alloctype != SINGLE) {
2524 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2525 UFS_LOCK(ump);
2526 tphashhead = TRIMLIST_HASH(ump, key);
2527 LIST_FOREACH(tp, tphashhead, hashlist)
2528 if (key == tp->key)
2529 break;
2530 }
2531 switch (alloctype) {
2532 case NEW:
2533 KASSERT(tp == NULL, ("trim_lookup: found trim"));
2534 break;
2535 case OLD:
2536 KASSERT(tp != NULL,
2537 ("trim_lookup: missing call to ffs_blkrelease_start()"));
2538 UFS_UNLOCK(ump);
2539 free(ntp, M_TRIM);
2540 return (tp);
2541 case REPLACE:
2542 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2543 LIST_REMOVE(tp, hashlist);
2544 /* tp will be freed by caller */
2545 break;
2546 case DONE:
2547 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2548 LIST_REMOVE(tp, hashlist);
2549 UFS_UNLOCK(ump);
2550 free(ntp, M_TRIM);
2551 return (tp);
2552 }
2553 TAILQ_INIT(&ntp->blklist);
2554 ntp->ump = ump;
2555 ntp->devvp = devvp;
2556 ntp->bno = bno;
2557 ntp->size = size;
2558 ntp->inum = inum;
2559 ntp->key = key;
2560 if (alloctype != SINGLE) {
2561 LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2562 UFS_UNLOCK(ump);
2563 }
2564 return (ntp);
2565 }
2566
2567 /*
2568 * Dispatch a trim request.
2569 */
2570 static void
ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params * tp)2571 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp)
2572 {
2573 struct ufsmount *ump;
2574 struct mount *mp;
2575 struct buf *bp;
2576
2577 /*
2578 * Postpone the set of the free bit in the cg bitmap until the
2579 * BIO_DELETE is completed. Otherwise, due to disk queue
2580 * reordering, TRIM might be issued after we reuse the block
2581 * and write some new data into it.
2582 */
2583 ump = tp->ump;
2584 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2585 bp->b_iocmd = BIO_DELETE;
2586 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2587 bp->b_iodone = ffs_blkfree_trim_completed;
2588 bp->b_bcount = tp->size;
2589 bp->b_fsprivate1 = tp;
2590 UFS_LOCK(ump);
2591 ump->um_trim_total += 1;
2592 ump->um_trim_inflight += 1;
2593 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2594 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2595 UFS_UNLOCK(ump);
2596
2597 mp = UFSTOVFS(ump);
2598 vn_start_secondary_write(NULL, &mp, 0);
2599 g_vfs_strategy(ump->um_bo, bp);
2600 }
2601
2602 /*
2603 * Allocate a new key to use to identify a range of blocks.
2604 */
2605 uint64_t
ffs_blkrelease_start(struct ufsmount * ump,struct vnode * devvp,ino_t inum)2606 ffs_blkrelease_start(struct ufsmount *ump,
2607 struct vnode *devvp,
2608 ino_t inum)
2609 {
2610 static u_long masterkey;
2611 uint64_t key;
2612
2613 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2614 return (SINGLETON_KEY);
2615 do {
2616 key = atomic_fetchadd_long(&masterkey, 1);
2617 } while (key < FIRST_VALID_KEY);
2618 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2619 return (key);
2620 }
2621
2622 /*
2623 * Deallocate a key that has been used to identify a range of blocks.
2624 */
2625 void
ffs_blkrelease_finish(struct ufsmount * ump,uint64_t key)2626 ffs_blkrelease_finish(struct ufsmount *ump, uint64_t key)
2627 {
2628 struct ffs_blkfree_trim_params *tp;
2629
2630 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2631 return;
2632 /*
2633 * If the vfs.ffs.dotrimcons sysctl option is enabled while
2634 * a file deletion is active, specifically after a call
2635 * to ffs_blkrelease_start() but before the call to
2636 * ffs_blkrelease_finish(), ffs_blkrelease_start() will
2637 * have handed out SINGLETON_KEY rather than starting a
2638 * collection sequence. Thus if we get a SINGLETON_KEY
2639 * passed to ffs_blkrelease_finish(), we just return rather
2640 * than trying to finish the nonexistent sequence.
2641 */
2642 if (key == SINGLETON_KEY) {
2643 #ifdef INVARIANTS
2644 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
2645 ump->um_mountp->mnt_stat.f_mntonname);
2646 #endif
2647 return;
2648 }
2649 /*
2650 * We are done with sending blocks using this key. Look up the key
2651 * using the DONE alloctype (in tp) to request that it be unhashed
2652 * as we will not be adding to it. If the key has never been used,
2653 * tp->size will be zero, so we can just free tp. Otherwise the call
2654 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2655 * tp to be issued (and then tp to be freed).
2656 */
2657 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2658 if (tp->size == 0)
2659 free(tp, M_TRIM);
2660 else
2661 ffs_blkfree_sendtrim(tp);
2662 }
2663
2664 /*
2665 * Setup to free a block or fragment.
2666 *
2667 * Check for snapshots that might want to claim the block.
2668 * If trims are requested, prepare a trim request. Attempt to
2669 * aggregate consecutive blocks into a single trim request.
2670 */
2671 void
ffs_blkfree(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,__enum_uint8 (vtype)vtype,struct workhead * dephd,uint64_t key)2672 ffs_blkfree(struct ufsmount *ump,
2673 struct fs *fs,
2674 struct vnode *devvp,
2675 ufs2_daddr_t bno,
2676 long size,
2677 ino_t inum,
2678 __enum_uint8(vtype) vtype,
2679 struct workhead *dephd,
2680 uint64_t key)
2681 {
2682 struct ffs_blkfree_trim_params *tp, *ntp;
2683 struct trim_blkreq *blkelm;
2684
2685 /*
2686 * Check to see if a snapshot wants to claim the block.
2687 * Check that devvp is a normal disk device, not a snapshot,
2688 * it has a snapshot(s) associated with it, and one of the
2689 * snapshots wants to claim the block.
2690 */
2691 if (devvp->v_type == VCHR &&
2692 (devvp->v_vflag & VV_COPYONWRITE) &&
2693 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2694 return;
2695 }
2696 /*
2697 * Nothing to delay if TRIM is not required for this block or TRIM
2698 * is disabled or the operation is performed on a snapshot.
2699 */
2700 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2701 devvp->v_type == VREG) {
2702 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2703 return;
2704 }
2705 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2706 blkelm->bno = bno;
2707 blkelm->size = size;
2708 if (dephd == NULL) {
2709 blkelm->pdephd = NULL;
2710 } else {
2711 LIST_INIT(&blkelm->dephd);
2712 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2713 blkelm->pdephd = &blkelm->dephd;
2714 }
2715 if (key == SINGLETON_KEY) {
2716 /*
2717 * Just a single non-contiguous piece. Use the SINGLE
2718 * alloctype to return a trim request that will not be
2719 * hashed for future lookup.
2720 */
2721 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2722 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2723 ffs_blkfree_sendtrim(tp);
2724 return;
2725 }
2726 /*
2727 * The callers of this function are not tracking whether or not
2728 * the blocks are contiguous. They are just saying that they
2729 * are freeing a set of blocks. It is this code that determines
2730 * the pieces of that range that are actually contiguous.
2731 *
2732 * Calling ffs_blkrelease_start() will have created an entry
2733 * that we will use.
2734 */
2735 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2736 if (tp->size == 0) {
2737 /*
2738 * First block of a potential range, set block and size
2739 * for the trim block.
2740 */
2741 tp->bno = bno;
2742 tp->size = size;
2743 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2744 return;
2745 }
2746 /*
2747 * If this block is a continuation of the range (either
2748 * follows at the end or preceeds in the front) then we
2749 * add it to the front or back of the list and return.
2750 *
2751 * If it is not a continuation of the trim that we were
2752 * building, using the REPLACE alloctype, we request that
2753 * the old trim request (still in tp) be unhashed and a
2754 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2755 * call causes the block range described by tp to be issued
2756 * (and then tp to be freed).
2757 */
2758 if (bno + numfrags(fs, size) == tp->bno) {
2759 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2760 tp->bno = bno;
2761 tp->size += size;
2762 return;
2763 } else if (bno == tp->bno + numfrags(fs, tp->size)) {
2764 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2765 tp->size += size;
2766 return;
2767 }
2768 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2769 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2770 ffs_blkfree_sendtrim(tp);
2771 }
2772
2773 #ifdef INVARIANTS
2774 /*
2775 * Verify allocation of a block or fragment.
2776 * Return 1 if block or fragment is free.
2777 */
2778 static int
ffs_checkfreeblk(struct inode * ip,ufs2_daddr_t bno,long size)2779 ffs_checkfreeblk(struct inode *ip,
2780 ufs2_daddr_t bno,
2781 long size)
2782 {
2783 struct fs *fs;
2784 struct cg *cgp;
2785 struct buf *bp;
2786 ufs1_daddr_t cgbno;
2787 int i, frags, blkalloced;
2788 uint8_t *blksfree;
2789
2790 fs = ITOFS(ip);
2791 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2792 printf("bsize = %ld, size = %ld, fs = %s\n",
2793 (long)fs->fs_bsize, size, fs->fs_fsmnt);
2794 panic("ffs_checkfreeblk: bad size");
2795 }
2796 if ((uint64_t)bno >= fs->fs_size)
2797 panic("ffs_checkfreeblk: too big block %jd", (intmax_t)bno);
2798 if (ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp) != 0)
2799 return (0);
2800 blksfree = cg_blksfree(cgp);
2801 cgbno = dtogd(fs, bno);
2802 if (size == fs->fs_bsize) {
2803 blkalloced = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2804 } else {
2805 frags = numfrags(fs, size);
2806 for (blkalloced = 0, i = 0; i < frags; i++)
2807 if (isset(blksfree, cgbno + i))
2808 blkalloced++;
2809 if (blkalloced != 0 && blkalloced != frags)
2810 panic("ffs_checkfreeblk: partially free fragment");
2811 }
2812 brelse(bp);
2813 return (blkalloced == 0);
2814 }
2815 #endif /* INVARIANTS */
2816
2817 /*
2818 * Free an inode.
2819 */
2820 int
ffs_vfree(struct vnode * pvp,ino_t ino,int mode)2821 ffs_vfree(struct vnode *pvp,
2822 ino_t ino,
2823 int mode)
2824 {
2825 struct ufsmount *ump;
2826
2827 if (DOINGSOFTDEP(pvp)) {
2828 softdep_freefile(pvp, ino, mode);
2829 return (0);
2830 }
2831 ump = VFSTOUFS(pvp->v_mount);
2832 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2833 }
2834
2835 /*
2836 * Do the actual free operation.
2837 * The specified inode is placed back in the free map.
2838 */
2839 int
ffs_freefile(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ino_t ino,int mode,struct workhead * wkhd)2840 ffs_freefile(struct ufsmount *ump,
2841 struct fs *fs,
2842 struct vnode *devvp,
2843 ino_t ino,
2844 int mode,
2845 struct workhead *wkhd)
2846 {
2847 struct cg *cgp;
2848 struct buf *bp;
2849 daddr_t dbn;
2850 int error;
2851 uint64_t cg;
2852 uint8_t *inosused;
2853 struct cdev *dev;
2854 ino_t cgino;
2855
2856 cg = ino_to_cg(fs, ino);
2857 if (devvp->v_type == VREG) {
2858 /* devvp is a snapshot */
2859 MPASS(devvp->v_mount->mnt_data == ump);
2860 dev = ump->um_devvp->v_rdev;
2861 } else if (devvp->v_type == VCHR) {
2862 /* devvp is a normal disk device */
2863 dev = devvp->v_rdev;
2864 } else {
2865 bp = NULL;
2866 return (0);
2867 }
2868 if (ino >= fs->fs_ipg * fs->fs_ncg)
2869 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2870 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2871 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2872 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2873 return (error);
2874 /*
2875 * Would like to just downgrade to read-only. Until that
2876 * capability is available, just toss the cylinder group
2877 * update and mark the filesystem as needing to run fsck.
2878 */
2879 fs->fs_flags |= FS_NEEDSFSCK;
2880 if (devvp->v_type == VREG)
2881 dbn = fragstoblks(fs, cgtod(fs, cg));
2882 else
2883 dbn = fsbtodb(fs, cgtod(fs, cg));
2884 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2885 KASSERT(error == 0, ("getblkx failed"));
2886 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, true);
2887 bp->b_flags |= B_RELBUF | B_NOCACHE;
2888 bp->b_flags &= ~B_CACHE;
2889 bawrite(bp);
2890 return (error);
2891 }
2892 inosused = cg_inosused(cgp);
2893 cgino = ino % fs->fs_ipg;
2894 if (isclr(inosused, cgino)) {
2895 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2896 (uintmax_t)ino, fs->fs_fsmnt);
2897 if (fs->fs_ronly == 0)
2898 panic("ffs_freefile: freeing free inode");
2899 }
2900 clrbit(inosused, cgino);
2901 if (cgino < cgp->cg_irotor)
2902 cgp->cg_irotor = cgino;
2903 cgp->cg_cs.cs_nifree++;
2904 UFS_LOCK(ump);
2905 fs->fs_cstotal.cs_nifree++;
2906 fs->fs_cs(fs, cg).cs_nifree++;
2907 if ((mode & IFMT) == IFDIR) {
2908 cgp->cg_cs.cs_ndir--;
2909 fs->fs_cstotal.cs_ndir--;
2910 fs->fs_cs(fs, cg).cs_ndir--;
2911 }
2912 fs->fs_fmod = 1;
2913 ACTIVECLEAR(fs, cg);
2914 UFS_UNLOCK(ump);
2915 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2916 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, false);
2917 bdwrite(bp);
2918 return (0);
2919 }
2920
2921 /*
2922 * Check to see if a file is free.
2923 * Used to check for allocated files in snapshots.
2924 * Return 1 if file is free.
2925 */
2926 int
ffs_checkfreefile(struct fs * fs,struct vnode * devvp,ino_t ino)2927 ffs_checkfreefile(struct fs *fs,
2928 struct vnode *devvp,
2929 ino_t ino)
2930 {
2931 struct cg *cgp;
2932 struct buf *bp;
2933 int ret, error;
2934 uint64_t cg;
2935 uint8_t *inosused;
2936
2937 cg = ino_to_cg(fs, ino);
2938 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2939 return (1);
2940 if (ino >= fs->fs_ipg * fs->fs_ncg)
2941 return (1);
2942 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
2943 return (1);
2944 inosused = cg_inosused(cgp);
2945 ino %= fs->fs_ipg;
2946 ret = isclr(inosused, ino);
2947 brelse(bp);
2948 return (ret);
2949 }
2950
2951 /*
2952 * Find a block of the specified size in the specified cylinder group.
2953 *
2954 * It is a panic if a request is made to find a block if none are
2955 * available.
2956 */
2957 static ufs1_daddr_t
ffs_mapsearch(struct fs * fs,struct cg * cgp,ufs2_daddr_t bpref,int allocsiz)2958 ffs_mapsearch(struct fs *fs,
2959 struct cg *cgp,
2960 ufs2_daddr_t bpref,
2961 int allocsiz)
2962 {
2963 ufs1_daddr_t bno;
2964 int start, len, loc, i;
2965 int blk, field, subfield, pos;
2966 uint8_t *blksfree;
2967
2968 /*
2969 * find the fragment by searching through the free block
2970 * map for an appropriate bit pattern
2971 */
2972 if (bpref)
2973 start = dtogd(fs, bpref) / NBBY;
2974 else
2975 start = cgp->cg_frotor / NBBY;
2976 blksfree = cg_blksfree(cgp);
2977 len = howmany(fs->fs_fpg, NBBY) - start;
2978 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[start],
2979 fragtbl[fs->fs_frag],
2980 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2981 if (loc == 0) {
2982 len = start + 1;
2983 start = 0;
2984 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[0],
2985 fragtbl[fs->fs_frag],
2986 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2987 if (loc == 0) {
2988 printf("start = %d, len = %d, fs = %s\n",
2989 start, len, fs->fs_fsmnt);
2990 panic("ffs_alloccg: map corrupted");
2991 /* NOTREACHED */
2992 }
2993 }
2994 bno = (start + len - loc) * NBBY;
2995 cgp->cg_frotor = bno;
2996 /*
2997 * found the byte in the map
2998 * sift through the bits to find the selected frag
2999 */
3000 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
3001 blk = blkmap(fs, blksfree, bno);
3002 blk <<= 1;
3003 field = around[allocsiz];
3004 subfield = inside[allocsiz];
3005 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
3006 if ((blk & field) == subfield)
3007 return (bno + pos);
3008 field <<= 1;
3009 subfield <<= 1;
3010 }
3011 }
3012 printf("bno = %ju, fs = %s\n", (intmax_t)bno, fs->fs_fsmnt);
3013 panic("ffs_alloccg: block not in map");
3014 return (-1);
3015 }
3016
3017 /*
3018 * Fetch and verify a cylinder group.
3019 */
3020 int
ffs_getcg(struct fs * fs,struct vnode * devvp,uint64_t cg,int flags,struct buf ** bpp,struct cg ** cgpp)3021 ffs_getcg(struct fs *fs,
3022 struct vnode *devvp,
3023 uint64_t cg,
3024 int flags,
3025 struct buf **bpp,
3026 struct cg **cgpp)
3027 {
3028 struct buf *bp;
3029 struct cg *cgp;
3030 struct mount *mp;
3031 const struct statfs *sfs;
3032 daddr_t blkno;
3033 int error;
3034
3035 *bpp = NULL;
3036 *cgpp = NULL;
3037 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3038 flags |= GB_CKHASH;
3039 if (devvp->v_type == VCHR) {
3040 blkno = fsbtodb(fs, cgtod(fs, cg));
3041 mp = devvp->v_rdev->si_mountpt;
3042 } else {
3043 blkno = fragstoblks(fs, cgtod(fs, cg));
3044 mp = devvp->v_mount;
3045 }
3046 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
3047 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
3048 if (error != 0)
3049 return (error);
3050 cgp = (struct cg *)bp->b_data;
3051 if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
3052 (bp->b_flags & B_CKHASH) != 0 &&
3053 cgp->cg_ckhash != bp->b_ckhash) {
3054 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3055 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3056 sfs = &mp->mnt_stat;
3057 printf("UFS %s%s (%s) cylinder checkhash failed: "
3058 "cg %ju, cgp: 0x%x != bp: 0x%jx\n",
3059 devvp->v_type == VCHR ? "" : "snapshot of ",
3060 sfs->f_mntfromname, sfs->f_mntonname, (intmax_t)cg,
3061 cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
3062 }
3063 bp->b_flags &= ~B_CKHASH;
3064 bp->b_flags |= B_INVAL | B_NOCACHE;
3065 brelse(bp);
3066 return (EINTEGRITY);
3067 }
3068 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
3069 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3070 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3071 sfs = &mp->mnt_stat;
3072 printf("UFS %s%s (%s)",
3073 devvp->v_type == VCHR ? "" : "snapshot of ",
3074 sfs->f_mntfromname, sfs->f_mntonname);
3075 if (!cg_chkmagic(cgp))
3076 printf(" cg %ju: bad magic number 0x%x should "
3077 "be 0x%x\n", (intmax_t)cg, cgp->cg_magic,
3078 CG_MAGIC);
3079 else
3080 printf(": wrong cylinder group cg %ju != "
3081 "cgx %u\n", (intmax_t)cg, cgp->cg_cgx);
3082 }
3083 bp->b_flags &= ~B_CKHASH;
3084 bp->b_flags |= B_INVAL | B_NOCACHE;
3085 brelse(bp);
3086 return (EINTEGRITY);
3087 }
3088 bp->b_flags &= ~B_CKHASH;
3089 bp->b_xflags |= BX_BKGRDWRITE;
3090 /*
3091 * If we are using check hashes on the cylinder group then we want
3092 * to limit changing the cylinder group time to when we are actually
3093 * going to write it to disk so that its check hash remains correct
3094 * in memory. If the CK_CYLGRP flag is set the time is updated in
3095 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
3096 * update the time here as we have done historically.
3097 */
3098 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3099 bp->b_xflags |= BX_CYLGRP;
3100 else
3101 cgp->cg_old_time = cgp->cg_time = time_second;
3102 *bpp = bp;
3103 *cgpp = cgp;
3104 return (0);
3105 }
3106
3107 static void
ffs_ckhash_cg(struct buf * bp)3108 ffs_ckhash_cg(struct buf *bp)
3109 {
3110 uint32_t ckhash;
3111 struct cg *cgp;
3112
3113 cgp = (struct cg *)bp->b_data;
3114 ckhash = cgp->cg_ckhash;
3115 cgp->cg_ckhash = 0;
3116 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3117 cgp->cg_ckhash = ckhash;
3118 }
3119
3120 /*
3121 * Called when a cylinder group read has failed. If an integrity check
3122 * is the cause of failure then the cylinder group will not be usable
3123 * until the filesystem has been unmounted and fsck has been run to
3124 * repair it. To avoid future attempts to allocate resources from the
3125 * cylinder group, its available resources are set to zero in the
3126 * superblock summary information. Since it will appear to have no
3127 * resources available, no further calls will be made to allocate
3128 * resources from it. When resources are freed to the cylinder group
3129 * the resource free routines will find the cylinder group unusable so
3130 * the resource will simply be discarded and thus will not show up in
3131 * the superblock summary information until they are recovered by fsck.
3132 */
3133 static void
ffs_checkcgintegrity(struct fs * fs,uint64_t cg,int error)3134 ffs_checkcgintegrity(struct fs *fs,
3135 uint64_t cg,
3136 int error)
3137 {
3138
3139 if (error != EINTEGRITY)
3140 return;
3141 fs->fs_cstotal.cs_nffree -= fs->fs_cs(fs, cg).cs_nffree;
3142 fs->fs_cs(fs, cg).cs_nffree = 0;
3143 fs->fs_cstotal.cs_nbfree -= fs->fs_cs(fs, cg).cs_nbfree;
3144 fs->fs_cs(fs, cg).cs_nbfree = 0;
3145 fs->fs_cstotal.cs_nifree -= fs->fs_cs(fs, cg).cs_nifree;
3146 fs->fs_cs(fs, cg).cs_nifree = 0;
3147 fs->fs_maxcluster[cg] = 0;
3148 fs->fs_flags |= FS_NEEDSFSCK;
3149 fs->fs_fmod = 1;
3150 }
3151
3152 /*
3153 * Fserr prints the name of a filesystem with an error diagnostic.
3154 *
3155 * The form of the error message is:
3156 * fs: error message
3157 */
3158 void
ffs_fserr(struct fs * fs,ino_t inum,char * cp)3159 ffs_fserr(struct fs *fs,
3160 ino_t inum,
3161 char *cp)
3162 {
3163 struct thread *td = curthread; /* XXX */
3164 struct proc *p = td->td_proc;
3165
3166 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3167 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3168 fs->fs_fsmnt, cp);
3169 }
3170
3171 /*
3172 * This function provides the capability for the fsck program to
3173 * update an active filesystem. Sixteen operations are provided:
3174 *
3175 * adjrefcnt(inode, amt) - adjusts the reference count on the
3176 * specified inode by the specified amount. Under normal
3177 * operation the count should always go down. Decrementing
3178 * the count to zero will cause the inode to be freed.
3179 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3180 * inode by the specified amount.
3181 * adjdepth(inode, amt) - adjust the depth of the specified directory
3182 * inode by the specified amount.
3183 * setsize(inode, size) - set the size of the inode to the
3184 * specified size.
3185 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3186 * adjust the superblock summary.
3187 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3188 * are marked as free. Inodes should never have to be marked
3189 * as in use.
3190 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3191 * are marked as free. Inodes should never have to be marked
3192 * as in use.
3193 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3194 * are marked as free. Blocks should never have to be marked
3195 * as in use.
3196 * setflags(flags, set/clear) - the fs_flags field has the specified
3197 * flags set (second parameter +1) or cleared (second parameter -1).
3198 * setcwd(dirinode) - set the current directory to dirinode in the
3199 * filesystem associated with the snapshot.
3200 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3201 * in the current directory is oldvalue then change it to newvalue.
3202 * unlink(nameptr, oldvalue) - Verify that the inode number associated
3203 * with nameptr in the current directory is oldvalue then unlink it.
3204 */
3205
3206 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3207
3208 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
3209 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
3210 0, 0, sysctl_ffs_fsck, "S,fsck",
3211 "Adjust Inode Reference Count");
3212
3213 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
3214 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3215 "Adjust Inode Used Blocks Count");
3216
3217 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_DEPTH, adjdepth,
3218 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3219 "Adjust Directory Inode Depth");
3220
3221 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
3222 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3223 "Set the inode size");
3224
3225 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
3226 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3227 "Adjust number of directories");
3228
3229 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
3230 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3231 "Adjust number of free blocks");
3232
3233 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
3234 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3235 "Adjust number of free inodes");
3236
3237 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
3238 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3239 "Adjust number of free frags");
3240
3241 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
3242 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3243 "Adjust number of free clusters");
3244
3245 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
3246 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3247 "Free Range of Directory Inodes");
3248
3249 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
3250 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3251 "Free Range of File Inodes");
3252
3253 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
3254 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3255 "Free Range of Blocks");
3256
3257 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
3258 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3259 "Change Filesystem Flags");
3260
3261 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
3262 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3263 "Set Current Working Directory");
3264
3265 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
3266 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3267 "Change Value of .. Entry");
3268
3269 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
3270 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3271 "Unlink a Duplicate Name");
3272
3273 #ifdef DIAGNOSTIC
3274 static int fsckcmds = 0;
3275 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
3276 "print out fsck_ffs-based filesystem update commands");
3277 #endif /* DIAGNOSTIC */
3278
3279 static int
sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)3280 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3281 {
3282 struct thread *td = curthread;
3283 struct fsck_cmd cmd;
3284 struct ufsmount *ump;
3285 struct vnode *vp, *dvp, *fdvp;
3286 struct inode *ip, *dp;
3287 struct mount *mp;
3288 struct fs *fs;
3289 struct pwd *pwd;
3290 ufs2_daddr_t blkno;
3291 long blkcnt, blksize;
3292 uint64_t key;
3293 struct file *fp;
3294 cap_rights_t rights;
3295 int filetype, error;
3296
3297 if (req->newptr == NULL || req->newlen > sizeof(cmd))
3298 return (EBADRPC);
3299 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3300 return (error);
3301 if (cmd.version != FFS_CMD_VERSION)
3302 return (ERPCMISMATCH);
3303 if ((error = getvnode(td, cmd.handle,
3304 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
3305 return (error);
3306 vp = fp->f_vnode;
3307 if (vp->v_type != VREG && vp->v_type != VDIR) {
3308 fdrop(fp, td);
3309 return (EINVAL);
3310 }
3311 vn_start_write(vp, &mp, V_WAIT);
3312 if (mp == NULL ||
3313 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3314 vn_finished_write(mp);
3315 fdrop(fp, td);
3316 return (EINVAL);
3317 }
3318 ump = VFSTOUFS(mp);
3319 if (mp->mnt_flag & MNT_RDONLY) {
3320 vn_finished_write(mp);
3321 fdrop(fp, td);
3322 return (EROFS);
3323 }
3324 fs = ump->um_fs;
3325 filetype = IFREG;
3326
3327 switch (oidp->oid_number) {
3328 case FFS_SET_FLAGS:
3329 #ifdef DIAGNOSTIC
3330 if (fsckcmds)
3331 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3332 cmd.size > 0 ? "set" : "clear");
3333 #endif /* DIAGNOSTIC */
3334 if (cmd.size > 0)
3335 fs->fs_flags |= (long)cmd.value;
3336 else
3337 fs->fs_flags &= ~(long)cmd.value;
3338 break;
3339
3340 case FFS_ADJ_REFCNT:
3341 #ifdef DIAGNOSTIC
3342 if (fsckcmds) {
3343 printf("%s: adjust inode %jd link count by %jd\n",
3344 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3345 (intmax_t)cmd.size);
3346 }
3347 #endif /* DIAGNOSTIC */
3348 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3349 break;
3350 ip = VTOI(vp);
3351 ip->i_nlink += cmd.size;
3352 DIP_SET_NLINK(ip, ip->i_nlink);
3353 ip->i_effnlink += cmd.size;
3354 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3355 error = ffs_update(vp, 1);
3356 if (DOINGSOFTDEP(vp))
3357 softdep_change_linkcnt(ip);
3358 vput(vp);
3359 break;
3360
3361 case FFS_ADJ_BLKCNT:
3362 #ifdef DIAGNOSTIC
3363 if (fsckcmds) {
3364 printf("%s: adjust inode %jd block count by %jd\n",
3365 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3366 (intmax_t)cmd.size);
3367 }
3368 #endif /* DIAGNOSTIC */
3369 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3370 break;
3371 ip = VTOI(vp);
3372 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3373 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3374 error = ffs_update(vp, 1);
3375 vput(vp);
3376 break;
3377
3378 case FFS_ADJ_DEPTH:
3379 #ifdef DIAGNOSTIC
3380 if (fsckcmds) {
3381 printf("%s: adjust directory inode %jd depth by %jd\n",
3382 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3383 (intmax_t)cmd.size);
3384 }
3385 #endif /* DIAGNOSTIC */
3386 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3387 break;
3388 if (vp->v_type != VDIR) {
3389 vput(vp);
3390 error = ENOTDIR;
3391 break;
3392 }
3393 ip = VTOI(vp);
3394 DIP_SET(ip, i_dirdepth, DIP(ip, i_dirdepth) + cmd.size);
3395 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3396 error = ffs_update(vp, 1);
3397 vput(vp);
3398 break;
3399
3400 case FFS_SET_SIZE:
3401 #ifdef DIAGNOSTIC
3402 if (fsckcmds) {
3403 printf("%s: set inode %jd size to %jd\n",
3404 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3405 (intmax_t)cmd.size);
3406 }
3407 #endif /* DIAGNOSTIC */
3408 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3409 break;
3410 ip = VTOI(vp);
3411 DIP_SET(ip, i_size, cmd.size);
3412 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
3413 error = ffs_update(vp, 1);
3414 vput(vp);
3415 break;
3416
3417 case FFS_DIR_FREE:
3418 filetype = IFDIR;
3419 /* fall through */
3420
3421 case FFS_FILE_FREE:
3422 #ifdef DIAGNOSTIC
3423 if (fsckcmds) {
3424 if (cmd.size == 1)
3425 printf("%s: free %s inode %ju\n",
3426 mp->mnt_stat.f_mntonname,
3427 filetype == IFDIR ? "directory" : "file",
3428 (uintmax_t)cmd.value);
3429 else
3430 printf("%s: free %s inodes %ju-%ju\n",
3431 mp->mnt_stat.f_mntonname,
3432 filetype == IFDIR ? "directory" : "file",
3433 (uintmax_t)cmd.value,
3434 (uintmax_t)(cmd.value + cmd.size - 1));
3435 }
3436 #endif /* DIAGNOSTIC */
3437 while (cmd.size > 0) {
3438 if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3439 cmd.value, filetype, NULL)))
3440 break;
3441 cmd.size -= 1;
3442 cmd.value += 1;
3443 }
3444 break;
3445
3446 case FFS_BLK_FREE:
3447 #ifdef DIAGNOSTIC
3448 if (fsckcmds) {
3449 if (cmd.size == 1)
3450 printf("%s: free block %jd\n",
3451 mp->mnt_stat.f_mntonname,
3452 (intmax_t)cmd.value);
3453 else
3454 printf("%s: free blocks %jd-%jd\n",
3455 mp->mnt_stat.f_mntonname,
3456 (intmax_t)cmd.value,
3457 (intmax_t)cmd.value + cmd.size - 1);
3458 }
3459 #endif /* DIAGNOSTIC */
3460 blkno = cmd.value;
3461 blkcnt = cmd.size;
3462 blksize = fs->fs_frag - (blkno % fs->fs_frag);
3463 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3464 while (blkcnt > 0) {
3465 if (blkcnt < blksize)
3466 blksize = blkcnt;
3467 ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3468 blksize * fs->fs_fsize, UFS_ROOTINO,
3469 VDIR, NULL, key);
3470 blkno += blksize;
3471 blkcnt -= blksize;
3472 blksize = fs->fs_frag;
3473 }
3474 ffs_blkrelease_finish(ump, key);
3475 break;
3476
3477 /*
3478 * Adjust superblock summaries. fsck(8) is expected to
3479 * submit deltas when necessary.
3480 */
3481 case FFS_ADJ_NDIR:
3482 #ifdef DIAGNOSTIC
3483 if (fsckcmds) {
3484 printf("%s: adjust number of directories by %jd\n",
3485 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3486 }
3487 #endif /* DIAGNOSTIC */
3488 fs->fs_cstotal.cs_ndir += cmd.value;
3489 break;
3490
3491 case FFS_ADJ_NBFREE:
3492 #ifdef DIAGNOSTIC
3493 if (fsckcmds) {
3494 printf("%s: adjust number of free blocks by %+jd\n",
3495 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3496 }
3497 #endif /* DIAGNOSTIC */
3498 fs->fs_cstotal.cs_nbfree += cmd.value;
3499 break;
3500
3501 case FFS_ADJ_NIFREE:
3502 #ifdef DIAGNOSTIC
3503 if (fsckcmds) {
3504 printf("%s: adjust number of free inodes by %+jd\n",
3505 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3506 }
3507 #endif /* DIAGNOSTIC */
3508 fs->fs_cstotal.cs_nifree += cmd.value;
3509 break;
3510
3511 case FFS_ADJ_NFFREE:
3512 #ifdef DIAGNOSTIC
3513 if (fsckcmds) {
3514 printf("%s: adjust number of free frags by %+jd\n",
3515 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3516 }
3517 #endif /* DIAGNOSTIC */
3518 fs->fs_cstotal.cs_nffree += cmd.value;
3519 break;
3520
3521 case FFS_ADJ_NUMCLUSTERS:
3522 #ifdef DIAGNOSTIC
3523 if (fsckcmds) {
3524 printf("%s: adjust number of free clusters by %+jd\n",
3525 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3526 }
3527 #endif /* DIAGNOSTIC */
3528 fs->fs_cstotal.cs_numclusters += cmd.value;
3529 break;
3530
3531 case FFS_SET_CWD:
3532 #ifdef DIAGNOSTIC
3533 if (fsckcmds) {
3534 printf("%s: set current directory to inode %jd\n",
3535 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3536 }
3537 #endif /* DIAGNOSTIC */
3538 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3539 break;
3540 AUDIT_ARG_VNODE1(vp);
3541 if ((error = change_dir(vp, td)) != 0) {
3542 vput(vp);
3543 break;
3544 }
3545 VOP_UNLOCK(vp);
3546 pwd_chdir(td, vp);
3547 break;
3548
3549 case FFS_SET_DOTDOT:
3550 #ifdef DIAGNOSTIC
3551 if (fsckcmds) {
3552 printf("%s: change .. in cwd from %jd to %jd\n",
3553 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3554 (intmax_t)cmd.size);
3555 }
3556 #endif /* DIAGNOSTIC */
3557 /*
3558 * First we have to get and lock the parent directory
3559 * to which ".." points.
3560 */
3561 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3562 if (error)
3563 break;
3564 /*
3565 * Now we get and lock the child directory containing "..".
3566 */
3567 pwd = pwd_hold(td);
3568 dvp = pwd->pwd_cdir;
3569 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
3570 vput(fdvp);
3571 pwd_drop(pwd);
3572 break;
3573 }
3574 dp = VTOI(dvp);
3575 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */
3576 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3577 DT_DIR, 0);
3578 cache_purge(fdvp);
3579 cache_purge(dvp);
3580 vput(dvp);
3581 vput(fdvp);
3582 pwd_drop(pwd);
3583 break;
3584
3585 case FFS_UNLINK:
3586 #ifdef DIAGNOSTIC
3587 if (fsckcmds) {
3588 char buf[32];
3589
3590 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3591 strncpy(buf, "Name_too_long", 32);
3592 printf("%s: unlink %s (inode %jd)\n",
3593 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3594 }
3595 #endif /* DIAGNOSTIC */
3596 /*
3597 * kern_funlinkat will do its own start/finish writes and
3598 * they do not nest, so drop ours here. Setting mp == NULL
3599 * indicates that vn_finished_write is not needed down below.
3600 */
3601 vn_finished_write(mp);
3602 mp = NULL;
3603 error = kern_funlinkat(td, AT_FDCWD,
3604 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
3605 0, (ino_t)cmd.size);
3606 break;
3607
3608 default:
3609 #ifdef DIAGNOSTIC
3610 if (fsckcmds) {
3611 printf("Invalid request %d from fsck\n",
3612 oidp->oid_number);
3613 }
3614 #endif /* DIAGNOSTIC */
3615 error = EINVAL;
3616 break;
3617 }
3618 fdrop(fp, td);
3619 vn_finished_write(mp);
3620 return (error);
3621 }
3622