1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_bhyve_snapshot.h"
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/sysctl.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sx.h>
45 #include <sys/vnode.h>
46
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vnode_pager.h>
57 #include <vm/swap_pager.h>
58 #include <vm/uma.h>
59
60 #include <machine/cpu.h>
61 #include <machine/pcb.h>
62 #include <machine/smp.h>
63 #include <machine/md_var.h>
64 #include <x86/psl.h>
65 #include <x86/apicreg.h>
66 #include <x86/ifunc.h>
67
68 #include <machine/vmm.h>
69 #include <machine/vmm_instruction_emul.h>
70 #include <machine/vmm_snapshot.h>
71
72 #include <dev/vmm/vmm_dev.h>
73 #include <dev/vmm/vmm_ktr.h>
74 #include <dev/vmm/vmm_mem.h>
75
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_mem.h"
79 #include "vmm_util.h"
80 #include "vatpic.h"
81 #include "vatpit.h"
82 #include "vhpet.h"
83 #include "vioapic.h"
84 #include "vlapic.h"
85 #include "vpmtmr.h"
86 #include "vrtc.h"
87 #include "vmm_stat.h"
88 #include "vmm_lapic.h"
89
90 #include "io/ppt.h"
91 #include "io/iommu.h"
92
93 struct vlapic;
94
95 /*
96 * Initialization:
97 * (a) allocated when vcpu is created
98 * (i) initialized when vcpu is created and when it is reinitialized
99 * (o) initialized the first time the vcpu is created
100 * (x) initialized before use
101 */
102 struct vcpu {
103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
104 enum vcpu_state state; /* (o) vcpu state */
105 int vcpuid; /* (o) */
106 int hostcpu; /* (o) vcpu's host cpu */
107 int reqidle; /* (i) request vcpu to idle */
108 struct vm *vm; /* (o) */
109 void *cookie; /* (i) cpu-specific data */
110 struct vlapic *vlapic; /* (i) APIC device model */
111 enum x2apic_state x2apic_state; /* (i) APIC mode */
112 uint64_t exitintinfo; /* (i) events pending at VM exit */
113 int nmi_pending; /* (i) NMI pending */
114 int extint_pending; /* (i) INTR pending */
115 int exception_pending; /* (i) exception pending */
116 int exc_vector; /* (x) exception collateral */
117 int exc_errcode_valid;
118 uint32_t exc_errcode;
119 struct savefpu *guestfpu; /* (a,i) guest fpu state */
120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
121 void *stats; /* (a,i) statistics */
122 struct vm_exit exitinfo; /* (x) exit reason and collateral */
123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
124 uint64_t nextrip; /* (x) next instruction to execute */
125 uint64_t tsc_offset; /* (o) TSC offsetting */
126 };
127
128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
133
134 /*
135 * Initialization:
136 * (o) initialized the first time the VM is created
137 * (i) initialized when VM is created and when it is reinitialized
138 * (x) initialized before use
139 *
140 * Locking:
141 * [m] mem_segs_lock
142 * [r] rendezvous_mtx
143 * [v] reads require one frozen vcpu, writes require freezing all vcpus
144 */
145 struct vm {
146 void *cookie; /* (i) cpu-specific data */
147 void *iommu; /* (x) iommu-specific data */
148 struct vhpet *vhpet; /* (i) virtual HPET */
149 struct vioapic *vioapic; /* (i) virtual ioapic */
150 struct vatpic *vatpic; /* (i) virtual atpic */
151 struct vatpit *vatpit; /* (i) virtual atpit */
152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
153 struct vrtc *vrtc; /* (o) virtual RTC */
154 volatile cpuset_t active_cpus; /* (i) active vcpus */
155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
156 cpuset_t startup_cpus; /* (i) [r] waiting for startup */
157 int suspend; /* (i) stop VM execution */
158 bool dying; /* (o) is dying */
159 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
160 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
161 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
162 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
163 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
164 vm_rendezvous_func_t rendezvous_func;
165 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
166 struct vm_mem mem; /* (i) [m+v] guest memory */
167 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
168 struct vcpu **vcpu; /* (o) guest vcpus */
169 /* The following describe the vm cpu topology */
170 uint16_t sockets; /* (o) num of sockets */
171 uint16_t cores; /* (o) num of cores/socket */
172 uint16_t threads; /* (o) num of threads/core */
173 uint16_t maxcpus; /* (o) max pluggable cpus */
174 struct sx vcpus_init_lock; /* (o) */
175 };
176
177 #define VMM_CTR0(vcpu, format) \
178 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
179
180 #define VMM_CTR1(vcpu, format, p1) \
181 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
182
183 #define VMM_CTR2(vcpu, format, p1, p2) \
184 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
185
186 #define VMM_CTR3(vcpu, format, p1, p2, p3) \
187 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
188
189 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
190 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
191
192 static int vmm_initialized;
193
194 static void vmmops_panic(void);
195
196 static void
vmmops_panic(void)197 vmmops_panic(void)
198 {
199 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
200 }
201
202 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
203 DEFINE_IFUNC(, ret_type, vmmops_##opname, args) \
204 { \
205 if (vmm_is_intel()) \
206 return (vmm_ops_intel.opname); \
207 else if (vmm_is_svm()) \
208 return (vmm_ops_amd.opname); \
209 else \
210 return ((ret_type (*)args)vmmops_panic); \
211 }
212
213 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
214 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
215 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
216 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
217 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
218 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
219 struct vm_eventinfo *info))
220 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
221 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
222 int vcpu_id))
223 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
224 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
225 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
226 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
227 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
228 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
229 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
230 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
231 vm_offset_t max))
232 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
233 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
234 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
235 #ifdef BHYVE_SNAPSHOT
236 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
237 struct vm_snapshot_meta *meta))
238 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
239 #endif
240
241 SDT_PROVIDER_DEFINE(vmm);
242
243 static MALLOC_DEFINE(M_VM, "vm", "vm");
244
245 /* statistics */
246 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
247
248 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
249 NULL);
250
251 /*
252 * Halt the guest if all vcpus are executing a HLT instruction with
253 * interrupts disabled.
254 */
255 static int halt_detection_enabled = 1;
256 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
257 &halt_detection_enabled, 0,
258 "Halt VM if all vcpus execute HLT with interrupts disabled");
259
260 static int vmm_ipinum;
261 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
262 "IPI vector used for vcpu notifications");
263
264 static int trace_guest_exceptions;
265 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
266 &trace_guest_exceptions, 0,
267 "Trap into hypervisor on all guest exceptions and reflect them back");
268
269 static int trap_wbinvd;
270 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
271 "WBINVD triggers a VM-exit");
272
273 u_int vm_maxcpu;
274 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
275 &vm_maxcpu, 0, "Maximum number of vCPUs");
276
277 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
278
279 /* global statistics */
280 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
281 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
282 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
283 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
284 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
285 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
286 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
287 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
288 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
289 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
290 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
291 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
292 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
293 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
294 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
295 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
296 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
297 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
298 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
299 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
300 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
301
302 /*
303 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
304 * counts as well as range of vpid values for VT-x and by the capacity
305 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
306 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
307 */
308 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
309
310 #ifdef KTR
311 static const char *
vcpu_state2str(enum vcpu_state state)312 vcpu_state2str(enum vcpu_state state)
313 {
314
315 switch (state) {
316 case VCPU_IDLE:
317 return ("idle");
318 case VCPU_FROZEN:
319 return ("frozen");
320 case VCPU_RUNNING:
321 return ("running");
322 case VCPU_SLEEPING:
323 return ("sleeping");
324 default:
325 return ("unknown");
326 }
327 }
328 #endif
329
330 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)331 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
332 {
333 vmmops_vlapic_cleanup(vcpu->vlapic);
334 vmmops_vcpu_cleanup(vcpu->cookie);
335 vcpu->cookie = NULL;
336 if (destroy) {
337 vmm_stat_free(vcpu->stats);
338 fpu_save_area_free(vcpu->guestfpu);
339 vcpu_lock_destroy(vcpu);
340 free(vcpu, M_VM);
341 }
342 }
343
344 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)345 vcpu_alloc(struct vm *vm, int vcpu_id)
346 {
347 struct vcpu *vcpu;
348
349 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
350 ("vcpu_init: invalid vcpu %d", vcpu_id));
351
352 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
353 vcpu_lock_init(vcpu);
354 vcpu->state = VCPU_IDLE;
355 vcpu->hostcpu = NOCPU;
356 vcpu->vcpuid = vcpu_id;
357 vcpu->vm = vm;
358 vcpu->guestfpu = fpu_save_area_alloc();
359 vcpu->stats = vmm_stat_alloc();
360 vcpu->tsc_offset = 0;
361 return (vcpu);
362 }
363
364 static void
vcpu_init(struct vcpu * vcpu)365 vcpu_init(struct vcpu *vcpu)
366 {
367 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
368 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
369 vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
370 vcpu->reqidle = 0;
371 vcpu->exitintinfo = 0;
372 vcpu->nmi_pending = 0;
373 vcpu->extint_pending = 0;
374 vcpu->exception_pending = 0;
375 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
376 fpu_save_area_reset(vcpu->guestfpu);
377 vmm_stat_init(vcpu->stats);
378 }
379
380 int
vcpu_trace_exceptions(struct vcpu * vcpu)381 vcpu_trace_exceptions(struct vcpu *vcpu)
382 {
383
384 return (trace_guest_exceptions);
385 }
386
387 int
vcpu_trap_wbinvd(struct vcpu * vcpu)388 vcpu_trap_wbinvd(struct vcpu *vcpu)
389 {
390 return (trap_wbinvd);
391 }
392
393 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)394 vm_exitinfo(struct vcpu *vcpu)
395 {
396 return (&vcpu->exitinfo);
397 }
398
399 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)400 vm_exitinfo_cpuset(struct vcpu *vcpu)
401 {
402 return (&vcpu->exitinfo_cpuset);
403 }
404
405 static int
vmm_init(void)406 vmm_init(void)
407 {
408 if (!vmm_is_hw_supported())
409 return (ENXIO);
410
411 vm_maxcpu = mp_ncpus;
412 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
413
414 if (vm_maxcpu > VM_MAXCPU) {
415 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
416 vm_maxcpu = VM_MAXCPU;
417 }
418 if (vm_maxcpu == 0)
419 vm_maxcpu = 1;
420
421 vmm_host_state_init();
422
423 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
424 &IDTVEC(justreturn));
425 if (vmm_ipinum < 0)
426 vmm_ipinum = IPI_AST;
427
428 vmm_suspend_p = vmmops_modsuspend;
429 vmm_resume_p = vmmops_modresume;
430
431 return (vmmops_modinit(vmm_ipinum));
432 }
433
434 static int
vmm_handler(module_t mod,int what,void * arg)435 vmm_handler(module_t mod, int what, void *arg)
436 {
437 int error;
438
439 switch (what) {
440 case MOD_LOAD:
441 if (vmm_is_hw_supported()) {
442 error = vmmdev_init();
443 if (error != 0)
444 break;
445 error = vmm_init();
446 if (error == 0)
447 vmm_initialized = 1;
448 else
449 (void)vmmdev_cleanup();
450 } else {
451 error = ENXIO;
452 }
453 break;
454 case MOD_UNLOAD:
455 if (vmm_is_hw_supported()) {
456 error = vmmdev_cleanup();
457 if (error == 0) {
458 vmm_suspend_p = NULL;
459 vmm_resume_p = NULL;
460 iommu_cleanup();
461 if (vmm_ipinum != IPI_AST)
462 lapic_ipi_free(vmm_ipinum);
463 error = vmmops_modcleanup();
464 /*
465 * Something bad happened - prevent new
466 * VMs from being created
467 */
468 if (error)
469 vmm_initialized = 0;
470 }
471 } else {
472 error = 0;
473 }
474 break;
475 default:
476 error = 0;
477 break;
478 }
479 return (error);
480 }
481
482 static moduledata_t vmm_kmod = {
483 "vmm",
484 vmm_handler,
485 NULL
486 };
487
488 /*
489 * vmm initialization has the following dependencies:
490 *
491 * - VT-x initialization requires smp_rendezvous() and therefore must happen
492 * after SMP is fully functional (after SI_SUB_SMP).
493 * - vmm device initialization requires an initialized devfs.
494 */
495 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
496 MODULE_VERSION(vmm, 1);
497
498 static void
vm_init(struct vm * vm,bool create)499 vm_init(struct vm *vm, bool create)
500 {
501 vm->cookie = vmmops_init(vm, vmspace_pmap(vm_vmspace(vm)));
502 vm->iommu = NULL;
503 vm->vioapic = vioapic_init(vm);
504 vm->vhpet = vhpet_init(vm);
505 vm->vatpic = vatpic_init(vm);
506 vm->vatpit = vatpit_init(vm);
507 vm->vpmtmr = vpmtmr_init(vm);
508 if (create)
509 vm->vrtc = vrtc_init(vm);
510
511 CPU_ZERO(&vm->active_cpus);
512 CPU_ZERO(&vm->debug_cpus);
513 CPU_ZERO(&vm->startup_cpus);
514
515 vm->suspend = 0;
516 CPU_ZERO(&vm->suspended_cpus);
517
518 if (!create) {
519 for (int i = 0; i < vm->maxcpus; i++) {
520 if (vm->vcpu[i] != NULL)
521 vcpu_init(vm->vcpu[i]);
522 }
523 }
524 }
525
526 void
vm_disable_vcpu_creation(struct vm * vm)527 vm_disable_vcpu_creation(struct vm *vm)
528 {
529 sx_xlock(&vm->vcpus_init_lock);
530 vm->dying = true;
531 sx_xunlock(&vm->vcpus_init_lock);
532 }
533
534 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)535 vm_alloc_vcpu(struct vm *vm, int vcpuid)
536 {
537 struct vcpu *vcpu;
538
539 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
540 return (NULL);
541
542 vcpu = (struct vcpu *)
543 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
544 if (__predict_true(vcpu != NULL))
545 return (vcpu);
546
547 sx_xlock(&vm->vcpus_init_lock);
548 vcpu = vm->vcpu[vcpuid];
549 if (vcpu == NULL && !vm->dying) {
550 vcpu = vcpu_alloc(vm, vcpuid);
551 vcpu_init(vcpu);
552
553 /*
554 * Ensure vCPU is fully created before updating pointer
555 * to permit unlocked reads above.
556 */
557 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
558 (uintptr_t)vcpu);
559 }
560 sx_xunlock(&vm->vcpus_init_lock);
561 return (vcpu);
562 }
563
564 void
vm_lock_vcpus(struct vm * vm)565 vm_lock_vcpus(struct vm *vm)
566 {
567 sx_xlock(&vm->vcpus_init_lock);
568 }
569
570 void
vm_unlock_vcpus(struct vm * vm)571 vm_unlock_vcpus(struct vm *vm)
572 {
573 sx_unlock(&vm->vcpus_init_lock);
574 }
575
576 /*
577 * The default CPU topology is a single thread per package.
578 */
579 u_int cores_per_package = 1;
580 u_int threads_per_core = 1;
581
582 int
vm_create(const char * name,struct vm ** retvm)583 vm_create(const char *name, struct vm **retvm)
584 {
585 struct vm *vm;
586 int error;
587
588 /*
589 * If vmm.ko could not be successfully initialized then don't attempt
590 * to create the virtual machine.
591 */
592 if (!vmm_initialized)
593 return (ENXIO);
594
595 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
596 VM_MAX_NAMELEN + 1)
597 return (EINVAL);
598
599 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
600 error = vm_mem_init(&vm->mem, 0, VM_MAXUSER_ADDRESS_LA48);
601 if (error != 0) {
602 free(vm, M_VM);
603 return (error);
604 }
605 strcpy(vm->name, name);
606 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
607 sx_init(&vm->vcpus_init_lock, "vm vcpus");
608 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
609 M_ZERO);
610
611 vm->sockets = 1;
612 vm->cores = cores_per_package; /* XXX backwards compatibility */
613 vm->threads = threads_per_core; /* XXX backwards compatibility */
614 vm->maxcpus = vm_maxcpu;
615
616 vm_init(vm, true);
617
618 *retvm = vm;
619 return (0);
620 }
621
622 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)623 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
624 uint16_t *threads, uint16_t *maxcpus)
625 {
626 *sockets = vm->sockets;
627 *cores = vm->cores;
628 *threads = vm->threads;
629 *maxcpus = vm->maxcpus;
630 }
631
632 uint16_t
vm_get_maxcpus(struct vm * vm)633 vm_get_maxcpus(struct vm *vm)
634 {
635 return (vm->maxcpus);
636 }
637
638 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)639 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
640 uint16_t threads, uint16_t maxcpus __unused)
641 {
642 /* Ignore maxcpus. */
643 if ((sockets * cores * threads) > vm->maxcpus)
644 return (EINVAL);
645 vm->sockets = sockets;
646 vm->cores = cores;
647 vm->threads = threads;
648 return(0);
649 }
650
651 static void
vm_cleanup(struct vm * vm,bool destroy)652 vm_cleanup(struct vm *vm, bool destroy)
653 {
654 if (destroy)
655 vm_xlock_memsegs(vm);
656 else
657 vm_assert_memseg_xlocked(vm);
658
659 ppt_unassign_all(vm);
660
661 if (vm->iommu != NULL)
662 iommu_destroy_domain(vm->iommu);
663
664 if (destroy)
665 vrtc_cleanup(vm->vrtc);
666 else
667 vrtc_reset(vm->vrtc);
668 vpmtmr_cleanup(vm->vpmtmr);
669 vatpit_cleanup(vm->vatpit);
670 vhpet_cleanup(vm->vhpet);
671 vatpic_cleanup(vm->vatpic);
672 vioapic_cleanup(vm->vioapic);
673
674 for (int i = 0; i < vm->maxcpus; i++) {
675 if (vm->vcpu[i] != NULL)
676 vcpu_cleanup(vm->vcpu[i], destroy);
677 }
678
679 vmmops_cleanup(vm->cookie);
680
681 vm_mem_cleanup(vm);
682
683 if (destroy) {
684 vm_mem_destroy(vm);
685
686 free(vm->vcpu, M_VM);
687 sx_destroy(&vm->vcpus_init_lock);
688 mtx_destroy(&vm->rendezvous_mtx);
689 }
690 }
691
692 void
vm_destroy(struct vm * vm)693 vm_destroy(struct vm *vm)
694 {
695 vm_cleanup(vm, true);
696 free(vm, M_VM);
697 }
698
699 int
vm_reinit(struct vm * vm)700 vm_reinit(struct vm *vm)
701 {
702 int error;
703
704 /*
705 * A virtual machine can be reset only if all vcpus are suspended.
706 */
707 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
708 vm_cleanup(vm, false);
709 vm_init(vm, false);
710 error = 0;
711 } else {
712 error = EBUSY;
713 }
714
715 return (error);
716 }
717
718 const char *
vm_name(struct vm * vm)719 vm_name(struct vm *vm)
720 {
721 return (vm->name);
722 }
723
724 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)725 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
726 {
727 vm_object_t obj;
728
729 if ((obj = vmm_mmio_alloc(vm_vmspace(vm), gpa, len, hpa)) == NULL)
730 return (ENOMEM);
731 else
732 return (0);
733 }
734
735 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)736 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
737 {
738
739 vmm_mmio_free(vm_vmspace(vm), gpa, len);
740 return (0);
741 }
742
743 static int
vm_iommu_map(struct vm * vm)744 vm_iommu_map(struct vm *vm)
745 {
746 pmap_t pmap;
747 vm_paddr_t gpa, hpa;
748 struct vm_mem_map *mm;
749 int error, i;
750
751 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
752
753 pmap = vmspace_pmap(vm_vmspace(vm));
754 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
755 if (!vm_memseg_sysmem(vm, i))
756 continue;
757
758 mm = &vm->mem.mem_maps[i];
759 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
760 ("iommu map found invalid memmap %#lx/%#lx/%#x",
761 mm->gpa, mm->len, mm->flags));
762 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
763 continue;
764 mm->flags |= VM_MEMMAP_F_IOMMU;
765
766 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
767 hpa = pmap_extract(pmap, gpa);
768
769 /*
770 * All mappings in the vmm vmspace must be
771 * present since they are managed by vmm in this way.
772 * Because we are in pass-through mode, the
773 * mappings must also be wired. This implies
774 * that all pages must be mapped and wired,
775 * allowing to use pmap_extract() and avoiding the
776 * need to use vm_gpa_hold_global().
777 *
778 * This could change if/when we start
779 * supporting page faults on IOMMU maps.
780 */
781 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
782 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
783 vm, (uintmax_t)gpa, (uintmax_t)hpa));
784
785 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
786 }
787 }
788
789 error = iommu_invalidate_tlb(iommu_host_domain());
790 return (error);
791 }
792
793 static int
vm_iommu_unmap(struct vm * vm)794 vm_iommu_unmap(struct vm *vm)
795 {
796 vm_paddr_t gpa;
797 struct vm_mem_map *mm;
798 int error, i;
799
800 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
801
802 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
803 if (!vm_memseg_sysmem(vm, i))
804 continue;
805
806 mm = &vm->mem.mem_maps[i];
807 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
808 continue;
809 mm->flags &= ~VM_MEMMAP_F_IOMMU;
810 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
811 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
812 mm->gpa, mm->len, mm->flags));
813
814 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
815 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
816 vmspace_pmap(vm_vmspace(vm)), gpa))),
817 ("vm_iommu_unmap: vm %p gpa %jx not wired",
818 vm, (uintmax_t)gpa));
819 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
820 }
821 }
822
823 /*
824 * Invalidate the cached translations associated with the domain
825 * from which pages were removed.
826 */
827 error = iommu_invalidate_tlb(vm->iommu);
828 return (error);
829 }
830
831 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)832 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
833 {
834 int error;
835
836 error = ppt_unassign_device(vm, bus, slot, func);
837 if (error)
838 return (error);
839
840 if (ppt_assigned_devices(vm) == 0)
841 error = vm_iommu_unmap(vm);
842
843 return (error);
844 }
845
846 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)847 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
848 {
849 int error;
850 vm_paddr_t maxaddr;
851 bool map = false;
852
853 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
854 if (ppt_assigned_devices(vm) == 0) {
855 KASSERT(vm->iommu == NULL,
856 ("vm_assign_pptdev: iommu must be NULL"));
857 maxaddr = vmm_sysmem_maxaddr(vm);
858 vm->iommu = iommu_create_domain(maxaddr);
859 if (vm->iommu == NULL)
860 return (ENXIO);
861 map = true;
862 }
863
864 error = ppt_assign_device(vm, bus, slot, func);
865 if (error == 0 && map)
866 error = vm_iommu_map(vm);
867 return (error);
868 }
869
870 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)871 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
872 {
873
874 if (reg >= VM_REG_LAST)
875 return (EINVAL);
876
877 return (vmmops_getreg(vcpu->cookie, reg, retval));
878 }
879
880 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)881 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
882 {
883 int error;
884
885 if (reg >= VM_REG_LAST)
886 return (EINVAL);
887
888 error = vmmops_setreg(vcpu->cookie, reg, val);
889 if (error || reg != VM_REG_GUEST_RIP)
890 return (error);
891
892 /* Set 'nextrip' to match the value of %rip */
893 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
894 vcpu->nextrip = val;
895 return (0);
896 }
897
898 static bool
is_descriptor_table(int reg)899 is_descriptor_table(int reg)
900 {
901
902 switch (reg) {
903 case VM_REG_GUEST_IDTR:
904 case VM_REG_GUEST_GDTR:
905 return (true);
906 default:
907 return (false);
908 }
909 }
910
911 static bool
is_segment_register(int reg)912 is_segment_register(int reg)
913 {
914
915 switch (reg) {
916 case VM_REG_GUEST_ES:
917 case VM_REG_GUEST_CS:
918 case VM_REG_GUEST_SS:
919 case VM_REG_GUEST_DS:
920 case VM_REG_GUEST_FS:
921 case VM_REG_GUEST_GS:
922 case VM_REG_GUEST_TR:
923 case VM_REG_GUEST_LDTR:
924 return (true);
925 default:
926 return (false);
927 }
928 }
929
930 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)931 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
932 {
933
934 if (!is_segment_register(reg) && !is_descriptor_table(reg))
935 return (EINVAL);
936
937 return (vmmops_getdesc(vcpu->cookie, reg, desc));
938 }
939
940 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)941 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
942 {
943
944 if (!is_segment_register(reg) && !is_descriptor_table(reg))
945 return (EINVAL);
946
947 return (vmmops_setdesc(vcpu->cookie, reg, desc));
948 }
949
950 static void
restore_guest_fpustate(struct vcpu * vcpu)951 restore_guest_fpustate(struct vcpu *vcpu)
952 {
953
954 /* flush host state to the pcb */
955 fpuexit(curthread);
956
957 /* restore guest FPU state */
958 fpu_enable();
959 fpurestore(vcpu->guestfpu);
960
961 /* restore guest XCR0 if XSAVE is enabled in the host */
962 if (rcr4() & CR4_XSAVE)
963 load_xcr(0, vcpu->guest_xcr0);
964
965 /*
966 * The FPU is now "dirty" with the guest's state so disable
967 * the FPU to trap any access by the host.
968 */
969 fpu_disable();
970 }
971
972 static void
save_guest_fpustate(struct vcpu * vcpu)973 save_guest_fpustate(struct vcpu *vcpu)
974 {
975
976 if ((rcr0() & CR0_TS) == 0)
977 panic("fpu emulation not enabled in host!");
978
979 /* save guest XCR0 and restore host XCR0 */
980 if (rcr4() & CR4_XSAVE) {
981 vcpu->guest_xcr0 = rxcr(0);
982 load_xcr(0, vmm_get_host_xcr0());
983 }
984
985 /* save guest FPU state */
986 fpu_enable();
987 fpusave(vcpu->guestfpu);
988 fpu_disable();
989 }
990
991 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
992
993 /*
994 * Invoke the rendezvous function on the specified vcpu if applicable. Return
995 * true if the rendezvous is finished, false otherwise.
996 */
997 static bool
vm_rendezvous(struct vcpu * vcpu)998 vm_rendezvous(struct vcpu *vcpu)
999 {
1000 struct vm *vm = vcpu->vm;
1001 int vcpuid;
1002
1003 mtx_assert(&vcpu->vm->rendezvous_mtx, MA_OWNED);
1004 KASSERT(vcpu->vm->rendezvous_func != NULL,
1005 ("vm_rendezvous: no rendezvous pending"));
1006
1007 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1008 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus,
1009 &vm->active_cpus);
1010
1011 vcpuid = vcpu->vcpuid;
1012 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1013 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1014 VMM_CTR0(vcpu, "Calling rendezvous func");
1015 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1016 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1017 }
1018 if (CPU_CMP(&vm->rendezvous_req_cpus,
1019 &vm->rendezvous_done_cpus) == 0) {
1020 VMM_CTR0(vcpu, "Rendezvous completed");
1021 CPU_ZERO(&vm->rendezvous_req_cpus);
1022 vm->rendezvous_func = NULL;
1023 wakeup(&vm->rendezvous_func);
1024 return (true);
1025 }
1026 return (false);
1027 }
1028
1029 static void
vcpu_wait_idle(struct vcpu * vcpu)1030 vcpu_wait_idle(struct vcpu *vcpu)
1031 {
1032 KASSERT(vcpu->state != VCPU_IDLE, ("vcpu already idle"));
1033
1034 vcpu->reqidle = 1;
1035 vcpu_notify_event_locked(vcpu, false);
1036 VMM_CTR1(vcpu, "vcpu state change from %s to "
1037 "idle requested", vcpu_state2str(vcpu->state));
1038 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1039 }
1040
1041 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1042 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1043 bool from_idle)
1044 {
1045 int error;
1046
1047 vcpu_assert_locked(vcpu);
1048
1049 /*
1050 * State transitions from the vmmdev_ioctl() must always begin from
1051 * the VCPU_IDLE state. This guarantees that there is only a single
1052 * ioctl() operating on a vcpu at any point.
1053 */
1054 if (from_idle) {
1055 while (vcpu->state != VCPU_IDLE)
1056 vcpu_wait_idle(vcpu);
1057 } else {
1058 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1059 "vcpu idle state"));
1060 }
1061
1062 if (vcpu->state == VCPU_RUNNING) {
1063 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1064 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1065 } else {
1066 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1067 "vcpu that is not running", vcpu->hostcpu));
1068 }
1069
1070 /*
1071 * The following state transitions are allowed:
1072 * IDLE -> FROZEN -> IDLE
1073 * FROZEN -> RUNNING -> FROZEN
1074 * FROZEN -> SLEEPING -> FROZEN
1075 */
1076 switch (vcpu->state) {
1077 case VCPU_IDLE:
1078 case VCPU_RUNNING:
1079 case VCPU_SLEEPING:
1080 error = (newstate != VCPU_FROZEN);
1081 break;
1082 case VCPU_FROZEN:
1083 error = (newstate == VCPU_FROZEN);
1084 break;
1085 default:
1086 error = 1;
1087 break;
1088 }
1089
1090 if (error)
1091 return (EBUSY);
1092
1093 VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1094 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1095
1096 vcpu->state = newstate;
1097 if (newstate == VCPU_RUNNING)
1098 vcpu->hostcpu = curcpu;
1099 else
1100 vcpu->hostcpu = NOCPU;
1101
1102 if (newstate == VCPU_IDLE)
1103 wakeup(&vcpu->state);
1104
1105 return (0);
1106 }
1107
1108 /*
1109 * Try to lock all of the vCPUs in the VM while taking care to avoid deadlocks
1110 * with vm_smp_rendezvous().
1111 *
1112 * The complexity here suggests that the rendezvous mechanism needs a rethink.
1113 */
1114 int
vcpu_set_state_all(struct vm * vm,enum vcpu_state newstate)1115 vcpu_set_state_all(struct vm *vm, enum vcpu_state newstate)
1116 {
1117 cpuset_t locked;
1118 struct vcpu *vcpu;
1119 int error, i;
1120 uint16_t maxcpus;
1121
1122 KASSERT(newstate != VCPU_IDLE,
1123 ("vcpu_set_state_all: invalid target state %d", newstate));
1124
1125 error = 0;
1126 CPU_ZERO(&locked);
1127 maxcpus = vm->maxcpus;
1128
1129 mtx_lock(&vm->rendezvous_mtx);
1130 restart:
1131 if (vm->rendezvous_func != NULL) {
1132 /*
1133 * If we have a pending rendezvous, then the initiator may be
1134 * blocked waiting for other vCPUs to execute the callback. The
1135 * current thread may be a vCPU thread so we must not block
1136 * waiting for the initiator, otherwise we get a deadlock.
1137 * Thus, execute the callback on behalf of any idle vCPUs.
1138 */
1139 for (i = 0; i < maxcpus; i++) {
1140 vcpu = vm_vcpu(vm, i);
1141 if (vcpu == NULL)
1142 continue;
1143 vcpu_lock(vcpu);
1144 if (vcpu->state == VCPU_IDLE) {
1145 (void)vcpu_set_state_locked(vcpu, VCPU_FROZEN,
1146 true);
1147 CPU_SET(i, &locked);
1148 }
1149 if (CPU_ISSET(i, &locked)) {
1150 /*
1151 * We can safely execute the callback on this
1152 * vCPU's behalf.
1153 */
1154 vcpu_unlock(vcpu);
1155 (void)vm_rendezvous(vcpu);
1156 vcpu_lock(vcpu);
1157 }
1158 vcpu_unlock(vcpu);
1159 }
1160 }
1161
1162 /*
1163 * Now wait for remaining vCPUs to become idle. This may include the
1164 * initiator of a rendezvous that is currently blocked on the rendezvous
1165 * mutex.
1166 */
1167 CPU_FOREACH_ISCLR(i, &locked) {
1168 if (i >= maxcpus)
1169 break;
1170 vcpu = vm_vcpu(vm, i);
1171 if (vcpu == NULL)
1172 continue;
1173 vcpu_lock(vcpu);
1174 while (vcpu->state != VCPU_IDLE) {
1175 mtx_unlock(&vm->rendezvous_mtx);
1176 vcpu_wait_idle(vcpu);
1177 vcpu_unlock(vcpu);
1178 mtx_lock(&vm->rendezvous_mtx);
1179 if (vm->rendezvous_func != NULL)
1180 goto restart;
1181 vcpu_lock(vcpu);
1182 }
1183 error = vcpu_set_state_locked(vcpu, newstate, true);
1184 vcpu_unlock(vcpu);
1185 if (error != 0) {
1186 /* Roll back state changes. */
1187 CPU_FOREACH_ISSET(i, &locked)
1188 (void)vcpu_set_state(vcpu, VCPU_IDLE, false);
1189 break;
1190 }
1191 CPU_SET(i, &locked);
1192 }
1193 mtx_unlock(&vm->rendezvous_mtx);
1194 return (error);
1195 }
1196
1197 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1198 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1199 {
1200 int error;
1201
1202 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1203 panic("Error %d setting state to %d\n", error, newstate);
1204 }
1205
1206 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1207 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1208 {
1209 int error;
1210
1211 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1212 panic("Error %d setting state to %d", error, newstate);
1213 }
1214
1215 static int
vm_handle_rendezvous(struct vcpu * vcpu)1216 vm_handle_rendezvous(struct vcpu *vcpu)
1217 {
1218 struct vm *vm;
1219 struct thread *td;
1220
1221 td = curthread;
1222 vm = vcpu->vm;
1223
1224 mtx_lock(&vm->rendezvous_mtx);
1225 while (vm->rendezvous_func != NULL) {
1226 if (vm_rendezvous(vcpu))
1227 break;
1228
1229 VMM_CTR0(vcpu, "Wait for rendezvous completion");
1230 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1231 "vmrndv", hz);
1232 if (td_ast_pending(td, TDA_SUSPEND)) {
1233 int error;
1234
1235 mtx_unlock(&vm->rendezvous_mtx);
1236 error = thread_check_susp(td, true);
1237 if (error != 0)
1238 return (error);
1239 mtx_lock(&vm->rendezvous_mtx);
1240 }
1241 }
1242 mtx_unlock(&vm->rendezvous_mtx);
1243 return (0);
1244 }
1245
1246 /*
1247 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1248 */
1249 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1250 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1251 {
1252 struct vm *vm = vcpu->vm;
1253 const char *wmesg;
1254 struct thread *td;
1255 int error, t, vcpuid, vcpu_halted, vm_halted;
1256
1257 vcpuid = vcpu->vcpuid;
1258 vcpu_halted = 0;
1259 vm_halted = 0;
1260 error = 0;
1261 td = curthread;
1262
1263 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1264
1265 vcpu_lock(vcpu);
1266 while (1) {
1267 /*
1268 * Do a final check for pending NMI or interrupts before
1269 * really putting this thread to sleep. Also check for
1270 * software events that would cause this vcpu to wakeup.
1271 *
1272 * These interrupts/events could have happened after the
1273 * vcpu returned from vmmops_run() and before it acquired the
1274 * vcpu lock above.
1275 */
1276 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1277 break;
1278 if (vm_nmi_pending(vcpu))
1279 break;
1280 if (!intr_disabled) {
1281 if (vm_extint_pending(vcpu) ||
1282 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1283 break;
1284 }
1285 }
1286
1287 /* Don't go to sleep if the vcpu thread needs to yield */
1288 if (vcpu_should_yield(vcpu))
1289 break;
1290
1291 if (vcpu_debugged(vcpu))
1292 break;
1293
1294 /*
1295 * Some Linux guests implement "halt" by having all vcpus
1296 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1297 * track of the vcpus that have entered this state. When all
1298 * vcpus enter the halted state the virtual machine is halted.
1299 */
1300 if (intr_disabled) {
1301 wmesg = "vmhalt";
1302 VMM_CTR0(vcpu, "Halted");
1303 if (!vcpu_halted && halt_detection_enabled) {
1304 vcpu_halted = 1;
1305 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1306 }
1307 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1308 vm_halted = 1;
1309 break;
1310 }
1311 } else {
1312 wmesg = "vmidle";
1313 }
1314
1315 t = ticks;
1316 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1317 /*
1318 * XXX msleep_spin() cannot be interrupted by signals so
1319 * wake up periodically to check pending signals.
1320 */
1321 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1322 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1323 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1324 if (td_ast_pending(td, TDA_SUSPEND)) {
1325 vcpu_unlock(vcpu);
1326 error = thread_check_susp(td, false);
1327 if (error != 0) {
1328 if (vcpu_halted) {
1329 CPU_CLR_ATOMIC(vcpuid,
1330 &vm->halted_cpus);
1331 }
1332 return (error);
1333 }
1334 vcpu_lock(vcpu);
1335 }
1336 }
1337
1338 if (vcpu_halted)
1339 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1340
1341 vcpu_unlock(vcpu);
1342
1343 if (vm_halted)
1344 vm_suspend(vm, VM_SUSPEND_HALT);
1345
1346 return (0);
1347 }
1348
1349 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1350 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1351 {
1352 struct vm *vm = vcpu->vm;
1353 int rv, ftype;
1354 struct vm_map *map;
1355 struct vm_exit *vme;
1356
1357 vme = &vcpu->exitinfo;
1358
1359 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1360 __func__, vme->inst_length));
1361
1362 ftype = vme->u.paging.fault_type;
1363 KASSERT(ftype == VM_PROT_READ ||
1364 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1365 ("vm_handle_paging: invalid fault_type %d", ftype));
1366
1367 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1368 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm_vmspace(vm)),
1369 vme->u.paging.gpa, ftype);
1370 if (rv == 0) {
1371 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1372 ftype == VM_PROT_READ ? "accessed" : "dirty",
1373 vme->u.paging.gpa);
1374 goto done;
1375 }
1376 }
1377
1378 map = &vm_vmspace(vm)->vm_map;
1379 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1380
1381 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1382 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1383
1384 if (rv != KERN_SUCCESS)
1385 return (EFAULT);
1386 done:
1387 return (0);
1388 }
1389
1390 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1391 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1392 {
1393 struct vie *vie;
1394 struct vm_exit *vme;
1395 uint64_t gla, gpa, cs_base;
1396 struct vm_guest_paging *paging;
1397 mem_region_read_t mread;
1398 mem_region_write_t mwrite;
1399 enum vm_cpu_mode cpu_mode;
1400 int cs_d, error, fault;
1401
1402 vme = &vcpu->exitinfo;
1403
1404 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1405 __func__, vme->inst_length));
1406
1407 gla = vme->u.inst_emul.gla;
1408 gpa = vme->u.inst_emul.gpa;
1409 cs_base = vme->u.inst_emul.cs_base;
1410 cs_d = vme->u.inst_emul.cs_d;
1411 vie = &vme->u.inst_emul.vie;
1412 paging = &vme->u.inst_emul.paging;
1413 cpu_mode = paging->cpu_mode;
1414
1415 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1416
1417 /* Fetch, decode and emulate the faulting instruction */
1418 if (vie->num_valid == 0) {
1419 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1420 VIE_INST_SIZE, vie, &fault);
1421 } else {
1422 /*
1423 * The instruction bytes have already been copied into 'vie'
1424 */
1425 error = fault = 0;
1426 }
1427 if (error || fault)
1428 return (error);
1429
1430 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1431 VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1432 vme->rip + cs_base);
1433 *retu = true; /* dump instruction bytes in userspace */
1434 return (0);
1435 }
1436
1437 /*
1438 * Update 'nextrip' based on the length of the emulated instruction.
1439 */
1440 vme->inst_length = vie->num_processed;
1441 vcpu->nextrip += vie->num_processed;
1442 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1443 vcpu->nextrip);
1444
1445 /* return to userland unless this is an in-kernel emulated device */
1446 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1447 mread = lapic_mmio_read;
1448 mwrite = lapic_mmio_write;
1449 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1450 mread = vioapic_mmio_read;
1451 mwrite = vioapic_mmio_write;
1452 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1453 mread = vhpet_mmio_read;
1454 mwrite = vhpet_mmio_write;
1455 } else {
1456 *retu = true;
1457 return (0);
1458 }
1459
1460 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1461 retu);
1462
1463 return (error);
1464 }
1465
1466 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1467 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1468 {
1469 struct vm *vm = vcpu->vm;
1470 int error, i;
1471 struct thread *td;
1472
1473 error = 0;
1474 td = curthread;
1475
1476 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1477
1478 /*
1479 * Wait until all 'active_cpus' have suspended themselves.
1480 *
1481 * Since a VM may be suspended at any time including when one or
1482 * more vcpus are doing a rendezvous we need to call the rendezvous
1483 * handler while we are waiting to prevent a deadlock.
1484 */
1485 vcpu_lock(vcpu);
1486 while (error == 0) {
1487 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1488 VMM_CTR0(vcpu, "All vcpus suspended");
1489 break;
1490 }
1491
1492 if (vm->rendezvous_func == NULL) {
1493 VMM_CTR0(vcpu, "Sleeping during suspend");
1494 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1495 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1496 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1497 if (td_ast_pending(td, TDA_SUSPEND)) {
1498 vcpu_unlock(vcpu);
1499 error = thread_check_susp(td, false);
1500 vcpu_lock(vcpu);
1501 }
1502 } else {
1503 VMM_CTR0(vcpu, "Rendezvous during suspend");
1504 vcpu_unlock(vcpu);
1505 error = vm_handle_rendezvous(vcpu);
1506 vcpu_lock(vcpu);
1507 }
1508 }
1509 vcpu_unlock(vcpu);
1510
1511 /*
1512 * Wakeup the other sleeping vcpus and return to userspace.
1513 */
1514 for (i = 0; i < vm->maxcpus; i++) {
1515 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1516 vcpu_notify_event(vm_vcpu(vm, i), false);
1517 }
1518 }
1519
1520 *retu = true;
1521 return (error);
1522 }
1523
1524 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1525 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1526 {
1527 vcpu_lock(vcpu);
1528 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1529 vcpu->reqidle = 0;
1530 vcpu_unlock(vcpu);
1531 *retu = true;
1532 return (0);
1533 }
1534
1535 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1536 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1537 {
1538 int error, fault;
1539 uint64_t rsp;
1540 uint64_t rflags;
1541 struct vm_copyinfo copyinfo[2];
1542
1543 *retu = true;
1544 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1545 return (0);
1546 }
1547
1548 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1549 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1550 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1551 if (error != 0 || fault != 0) {
1552 *retu = false;
1553 return (EINVAL);
1554 }
1555
1556 /* Read pushed rflags value from top of stack. */
1557 vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1558
1559 /* Clear TF bit. */
1560 rflags &= ~(PSL_T);
1561
1562 /* Write updated value back to memory. */
1563 vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1564 vm_copy_teardown(copyinfo, nitems(copyinfo));
1565
1566 return (0);
1567 }
1568
1569 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1570 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1571 {
1572 int i;
1573
1574 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1575 return (EINVAL);
1576
1577 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1578 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1579 vm->suspend, how);
1580 return (EALREADY);
1581 }
1582
1583 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1584
1585 /*
1586 * Notify all active vcpus that they are now suspended.
1587 */
1588 for (i = 0; i < vm->maxcpus; i++) {
1589 if (CPU_ISSET(i, &vm->active_cpus))
1590 vcpu_notify_event(vm_vcpu(vm, i), false);
1591 }
1592
1593 return (0);
1594 }
1595
1596 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1597 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1598 {
1599 struct vm *vm = vcpu->vm;
1600 struct vm_exit *vmexit;
1601
1602 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1603 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1604
1605 vmexit = vm_exitinfo(vcpu);
1606 vmexit->rip = rip;
1607 vmexit->inst_length = 0;
1608 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1609 vmexit->u.suspended.how = vm->suspend;
1610 }
1611
1612 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1613 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1614 {
1615 struct vm_exit *vmexit;
1616
1617 vmexit = vm_exitinfo(vcpu);
1618 vmexit->rip = rip;
1619 vmexit->inst_length = 0;
1620 vmexit->exitcode = VM_EXITCODE_DEBUG;
1621 }
1622
1623 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1624 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1625 {
1626 struct vm_exit *vmexit;
1627
1628 vmexit = vm_exitinfo(vcpu);
1629 vmexit->rip = rip;
1630 vmexit->inst_length = 0;
1631 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1632 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1633 }
1634
1635 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1636 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1637 {
1638 struct vm_exit *vmexit;
1639
1640 vmexit = vm_exitinfo(vcpu);
1641 vmexit->rip = rip;
1642 vmexit->inst_length = 0;
1643 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1644 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1645 }
1646
1647 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1648 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1649 {
1650 struct vm_exit *vmexit;
1651
1652 vmexit = vm_exitinfo(vcpu);
1653 vmexit->rip = rip;
1654 vmexit->inst_length = 0;
1655 vmexit->exitcode = VM_EXITCODE_BOGUS;
1656 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1657 }
1658
1659 int
vm_run(struct vcpu * vcpu)1660 vm_run(struct vcpu *vcpu)
1661 {
1662 struct vm *vm = vcpu->vm;
1663 struct vm_eventinfo evinfo;
1664 int error, vcpuid;
1665 struct pcb *pcb;
1666 uint64_t tscval;
1667 struct vm_exit *vme;
1668 bool retu, intr_disabled;
1669 pmap_t pmap;
1670
1671 vcpuid = vcpu->vcpuid;
1672
1673 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1674 return (EINVAL);
1675
1676 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1677 return (EINVAL);
1678
1679 pmap = vmspace_pmap(vm_vmspace(vm));
1680 vme = &vcpu->exitinfo;
1681 evinfo.rptr = &vm->rendezvous_req_cpus;
1682 evinfo.sptr = &vm->suspend;
1683 evinfo.iptr = &vcpu->reqidle;
1684 restart:
1685 critical_enter();
1686
1687 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1688 ("vm_run: absurd pm_active"));
1689
1690 tscval = rdtsc();
1691
1692 pcb = PCPU_GET(curpcb);
1693 set_pcb_flags(pcb, PCB_FULL_IRET);
1694
1695 restore_guest_fpustate(vcpu);
1696
1697 vcpu_require_state(vcpu, VCPU_RUNNING);
1698 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1699 vcpu_require_state(vcpu, VCPU_FROZEN);
1700
1701 save_guest_fpustate(vcpu);
1702
1703 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1704
1705 critical_exit();
1706
1707 if (error == 0) {
1708 retu = false;
1709 vcpu->nextrip = vme->rip + vme->inst_length;
1710 switch (vme->exitcode) {
1711 case VM_EXITCODE_REQIDLE:
1712 error = vm_handle_reqidle(vcpu, &retu);
1713 break;
1714 case VM_EXITCODE_SUSPENDED:
1715 error = vm_handle_suspend(vcpu, &retu);
1716 break;
1717 case VM_EXITCODE_IOAPIC_EOI:
1718 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1719 break;
1720 case VM_EXITCODE_RENDEZVOUS:
1721 error = vm_handle_rendezvous(vcpu);
1722 break;
1723 case VM_EXITCODE_HLT:
1724 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1725 error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1726 break;
1727 case VM_EXITCODE_PAGING:
1728 error = vm_handle_paging(vcpu, &retu);
1729 break;
1730 case VM_EXITCODE_INST_EMUL:
1731 error = vm_handle_inst_emul(vcpu, &retu);
1732 break;
1733 case VM_EXITCODE_INOUT:
1734 case VM_EXITCODE_INOUT_STR:
1735 error = vm_handle_inout(vcpu, vme, &retu);
1736 break;
1737 case VM_EXITCODE_DB:
1738 error = vm_handle_db(vcpu, vme, &retu);
1739 break;
1740 case VM_EXITCODE_MONITOR:
1741 case VM_EXITCODE_MWAIT:
1742 case VM_EXITCODE_VMINSN:
1743 vm_inject_ud(vcpu);
1744 break;
1745 default:
1746 retu = true; /* handled in userland */
1747 break;
1748 }
1749 }
1750
1751 /*
1752 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
1753 * exit code into VM_EXITCODE_IPI.
1754 */
1755 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
1756 error = vm_handle_ipi(vcpu, vme, &retu);
1757
1758 if (error == 0 && retu == false)
1759 goto restart;
1760
1761 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
1762 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
1763
1764 return (error);
1765 }
1766
1767 int
vm_restart_instruction(struct vcpu * vcpu)1768 vm_restart_instruction(struct vcpu *vcpu)
1769 {
1770 enum vcpu_state state;
1771 uint64_t rip;
1772 int error __diagused;
1773
1774 state = vcpu_get_state(vcpu, NULL);
1775 if (state == VCPU_RUNNING) {
1776 /*
1777 * When a vcpu is "running" the next instruction is determined
1778 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1779 * Thus setting 'inst_length' to zero will cause the current
1780 * instruction to be restarted.
1781 */
1782 vcpu->exitinfo.inst_length = 0;
1783 VMM_CTR1(vcpu, "restarting instruction at %#lx by "
1784 "setting inst_length to zero", vcpu->exitinfo.rip);
1785 } else if (state == VCPU_FROZEN) {
1786 /*
1787 * When a vcpu is "frozen" it is outside the critical section
1788 * around vmmops_run() and 'nextrip' points to the next
1789 * instruction. Thus instruction restart is achieved by setting
1790 * 'nextrip' to the vcpu's %rip.
1791 */
1792 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
1793 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1794 VMM_CTR2(vcpu, "restarting instruction by updating "
1795 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1796 vcpu->nextrip = rip;
1797 } else {
1798 panic("%s: invalid state %d", __func__, state);
1799 }
1800 return (0);
1801 }
1802
1803 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)1804 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
1805 {
1806 int type, vector;
1807
1808 if (info & VM_INTINFO_VALID) {
1809 type = info & VM_INTINFO_TYPE;
1810 vector = info & 0xff;
1811 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1812 return (EINVAL);
1813 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1814 return (EINVAL);
1815 if (info & VM_INTINFO_RSVD)
1816 return (EINVAL);
1817 } else {
1818 info = 0;
1819 }
1820 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
1821 vcpu->exitintinfo = info;
1822 return (0);
1823 }
1824
1825 enum exc_class {
1826 EXC_BENIGN,
1827 EXC_CONTRIBUTORY,
1828 EXC_PAGEFAULT
1829 };
1830
1831 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1832
1833 static enum exc_class
exception_class(uint64_t info)1834 exception_class(uint64_t info)
1835 {
1836 int type, vector;
1837
1838 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1839 type = info & VM_INTINFO_TYPE;
1840 vector = info & 0xff;
1841
1842 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1843 switch (type) {
1844 case VM_INTINFO_HWINTR:
1845 case VM_INTINFO_SWINTR:
1846 case VM_INTINFO_NMI:
1847 return (EXC_BENIGN);
1848 default:
1849 /*
1850 * Hardware exception.
1851 *
1852 * SVM and VT-x use identical type values to represent NMI,
1853 * hardware interrupt and software interrupt.
1854 *
1855 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1856 * for exceptions except #BP and #OF. #BP and #OF use a type
1857 * value of '5' or '6'. Therefore we don't check for explicit
1858 * values of 'type' to classify 'intinfo' into a hardware
1859 * exception.
1860 */
1861 break;
1862 }
1863
1864 switch (vector) {
1865 case IDT_PF:
1866 case IDT_VE:
1867 return (EXC_PAGEFAULT);
1868 case IDT_DE:
1869 case IDT_TS:
1870 case IDT_NP:
1871 case IDT_SS:
1872 case IDT_GP:
1873 return (EXC_CONTRIBUTORY);
1874 default:
1875 return (EXC_BENIGN);
1876 }
1877 }
1878
1879 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)1880 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
1881 uint64_t *retinfo)
1882 {
1883 enum exc_class exc1, exc2;
1884 int type1, vector1;
1885
1886 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1887 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1888
1889 /*
1890 * If an exception occurs while attempting to call the double-fault
1891 * handler the processor enters shutdown mode (aka triple fault).
1892 */
1893 type1 = info1 & VM_INTINFO_TYPE;
1894 vector1 = info1 & 0xff;
1895 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1896 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
1897 info1, info2);
1898 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
1899 *retinfo = 0;
1900 return (0);
1901 }
1902
1903 /*
1904 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1905 */
1906 exc1 = exception_class(info1);
1907 exc2 = exception_class(info2);
1908 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1909 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1910 /* Convert nested fault into a double fault. */
1911 *retinfo = IDT_DF;
1912 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1913 *retinfo |= VM_INTINFO_DEL_ERRCODE;
1914 } else {
1915 /* Handle exceptions serially */
1916 *retinfo = info2;
1917 }
1918 return (1);
1919 }
1920
1921 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)1922 vcpu_exception_intinfo(struct vcpu *vcpu)
1923 {
1924 uint64_t info = 0;
1925
1926 if (vcpu->exception_pending) {
1927 info = vcpu->exc_vector & 0xff;
1928 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1929 if (vcpu->exc_errcode_valid) {
1930 info |= VM_INTINFO_DEL_ERRCODE;
1931 info |= (uint64_t)vcpu->exc_errcode << 32;
1932 }
1933 }
1934 return (info);
1935 }
1936
1937 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)1938 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
1939 {
1940 uint64_t info1, info2;
1941 int valid;
1942
1943 info1 = vcpu->exitintinfo;
1944 vcpu->exitintinfo = 0;
1945
1946 info2 = 0;
1947 if (vcpu->exception_pending) {
1948 info2 = vcpu_exception_intinfo(vcpu);
1949 vcpu->exception_pending = 0;
1950 VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
1951 vcpu->exc_vector, info2);
1952 }
1953
1954 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1955 valid = nested_fault(vcpu, info1, info2, retinfo);
1956 } else if (info1 & VM_INTINFO_VALID) {
1957 *retinfo = info1;
1958 valid = 1;
1959 } else if (info2 & VM_INTINFO_VALID) {
1960 *retinfo = info2;
1961 valid = 1;
1962 } else {
1963 valid = 0;
1964 }
1965
1966 if (valid) {
1967 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
1968 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1969 }
1970
1971 return (valid);
1972 }
1973
1974 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1975 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1976 {
1977 *info1 = vcpu->exitintinfo;
1978 *info2 = vcpu_exception_intinfo(vcpu);
1979 return (0);
1980 }
1981
1982 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)1983 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
1984 uint32_t errcode, int restart_instruction)
1985 {
1986 uint64_t regval;
1987 int error __diagused;
1988
1989 if (vector < 0 || vector >= 32)
1990 return (EINVAL);
1991
1992 /*
1993 * A double fault exception should never be injected directly into
1994 * the guest. It is a derived exception that results from specific
1995 * combinations of nested faults.
1996 */
1997 if (vector == IDT_DF)
1998 return (EINVAL);
1999
2000 if (vcpu->exception_pending) {
2001 VMM_CTR2(vcpu, "Unable to inject exception %d due to "
2002 "pending exception %d", vector, vcpu->exc_vector);
2003 return (EBUSY);
2004 }
2005
2006 if (errcode_valid) {
2007 /*
2008 * Exceptions don't deliver an error code in real mode.
2009 */
2010 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
2011 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
2012 if (!(regval & CR0_PE))
2013 errcode_valid = 0;
2014 }
2015
2016 /*
2017 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2018 *
2019 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2020 * one instruction or incurs an exception.
2021 */
2022 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
2023 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
2024 __func__, error));
2025
2026 if (restart_instruction)
2027 vm_restart_instruction(vcpu);
2028
2029 vcpu->exception_pending = 1;
2030 vcpu->exc_vector = vector;
2031 vcpu->exc_errcode = errcode;
2032 vcpu->exc_errcode_valid = errcode_valid;
2033 VMM_CTR1(vcpu, "Exception %d pending", vector);
2034 return (0);
2035 }
2036
2037 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)2038 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
2039 {
2040 int error __diagused, restart_instruction;
2041
2042 restart_instruction = 1;
2043
2044 error = vm_inject_exception(vcpu, vector, errcode_valid,
2045 errcode, restart_instruction);
2046 KASSERT(error == 0, ("vm_inject_exception error %d", error));
2047 }
2048
2049 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)2050 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
2051 {
2052 int error __diagused;
2053
2054 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
2055 error_code, cr2);
2056
2057 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
2058 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2059
2060 vm_inject_fault(vcpu, IDT_PF, 1, error_code);
2061 }
2062
2063 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2064
2065 int
vm_inject_nmi(struct vcpu * vcpu)2066 vm_inject_nmi(struct vcpu *vcpu)
2067 {
2068
2069 vcpu->nmi_pending = 1;
2070 vcpu_notify_event(vcpu, false);
2071 return (0);
2072 }
2073
2074 int
vm_nmi_pending(struct vcpu * vcpu)2075 vm_nmi_pending(struct vcpu *vcpu)
2076 {
2077 return (vcpu->nmi_pending);
2078 }
2079
2080 void
vm_nmi_clear(struct vcpu * vcpu)2081 vm_nmi_clear(struct vcpu *vcpu)
2082 {
2083 if (vcpu->nmi_pending == 0)
2084 panic("vm_nmi_clear: inconsistent nmi_pending state");
2085
2086 vcpu->nmi_pending = 0;
2087 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
2088 }
2089
2090 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2091
2092 int
vm_inject_extint(struct vcpu * vcpu)2093 vm_inject_extint(struct vcpu *vcpu)
2094 {
2095
2096 vcpu->extint_pending = 1;
2097 vcpu_notify_event(vcpu, false);
2098 return (0);
2099 }
2100
2101 int
vm_extint_pending(struct vcpu * vcpu)2102 vm_extint_pending(struct vcpu *vcpu)
2103 {
2104 return (vcpu->extint_pending);
2105 }
2106
2107 void
vm_extint_clear(struct vcpu * vcpu)2108 vm_extint_clear(struct vcpu *vcpu)
2109 {
2110 if (vcpu->extint_pending == 0)
2111 panic("vm_extint_clear: inconsistent extint_pending state");
2112
2113 vcpu->extint_pending = 0;
2114 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
2115 }
2116
2117 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)2118 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2119 {
2120 if (type < 0 || type >= VM_CAP_MAX)
2121 return (EINVAL);
2122
2123 return (vmmops_getcap(vcpu->cookie, type, retval));
2124 }
2125
2126 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2127 vm_set_capability(struct vcpu *vcpu, int type, int val)
2128 {
2129 if (type < 0 || type >= VM_CAP_MAX)
2130 return (EINVAL);
2131
2132 return (vmmops_setcap(vcpu->cookie, type, val));
2133 }
2134
2135 struct vm *
vcpu_vm(struct vcpu * vcpu)2136 vcpu_vm(struct vcpu *vcpu)
2137 {
2138 return (vcpu->vm);
2139 }
2140
2141 int
vcpu_vcpuid(struct vcpu * vcpu)2142 vcpu_vcpuid(struct vcpu *vcpu)
2143 {
2144 return (vcpu->vcpuid);
2145 }
2146
2147 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2148 vm_vcpu(struct vm *vm, int vcpuid)
2149 {
2150 return (vm->vcpu[vcpuid]);
2151 }
2152
2153 struct vlapic *
vm_lapic(struct vcpu * vcpu)2154 vm_lapic(struct vcpu *vcpu)
2155 {
2156 return (vcpu->vlapic);
2157 }
2158
2159 struct vioapic *
vm_ioapic(struct vm * vm)2160 vm_ioapic(struct vm *vm)
2161 {
2162
2163 return (vm->vioapic);
2164 }
2165
2166 struct vhpet *
vm_hpet(struct vm * vm)2167 vm_hpet(struct vm *vm)
2168 {
2169
2170 return (vm->vhpet);
2171 }
2172
2173 bool
vmm_is_pptdev(int bus,int slot,int func)2174 vmm_is_pptdev(int bus, int slot, int func)
2175 {
2176 int b, f, i, n, s;
2177 char *val, *cp, *cp2;
2178 bool found;
2179
2180 /*
2181 * XXX
2182 * The length of an environment variable is limited to 128 bytes which
2183 * puts an upper limit on the number of passthru devices that may be
2184 * specified using a single environment variable.
2185 *
2186 * Work around this by scanning multiple environment variable
2187 * names instead of a single one - yuck!
2188 */
2189 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2190
2191 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2192 found = false;
2193 for (i = 0; names[i] != NULL && !found; i++) {
2194 cp = val = kern_getenv(names[i]);
2195 while (cp != NULL && *cp != '\0') {
2196 if ((cp2 = strchr(cp, ' ')) != NULL)
2197 *cp2 = '\0';
2198
2199 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2200 if (n == 3 && bus == b && slot == s && func == f) {
2201 found = true;
2202 break;
2203 }
2204
2205 if (cp2 != NULL)
2206 *cp2++ = ' ';
2207
2208 cp = cp2;
2209 }
2210 freeenv(val);
2211 }
2212 return (found);
2213 }
2214
2215 void *
vm_iommu_domain(struct vm * vm)2216 vm_iommu_domain(struct vm *vm)
2217 {
2218
2219 return (vm->iommu);
2220 }
2221
2222 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2223 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2224 {
2225 int error;
2226
2227 vcpu_lock(vcpu);
2228 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2229 vcpu_unlock(vcpu);
2230
2231 return (error);
2232 }
2233
2234 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2235 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2236 {
2237 enum vcpu_state state;
2238
2239 vcpu_lock(vcpu);
2240 state = vcpu->state;
2241 if (hostcpu != NULL)
2242 *hostcpu = vcpu->hostcpu;
2243 vcpu_unlock(vcpu);
2244
2245 return (state);
2246 }
2247
2248 int
vm_activate_cpu(struct vcpu * vcpu)2249 vm_activate_cpu(struct vcpu *vcpu)
2250 {
2251 struct vm *vm = vcpu->vm;
2252
2253 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2254 return (EBUSY);
2255
2256 VMM_CTR0(vcpu, "activated");
2257 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2258 return (0);
2259 }
2260
2261 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2262 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2263 {
2264 if (vcpu == NULL) {
2265 vm->debug_cpus = vm->active_cpus;
2266 for (int i = 0; i < vm->maxcpus; i++) {
2267 if (CPU_ISSET(i, &vm->active_cpus))
2268 vcpu_notify_event(vm_vcpu(vm, i), false);
2269 }
2270 } else {
2271 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2272 return (EINVAL);
2273
2274 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2275 vcpu_notify_event(vcpu, false);
2276 }
2277 return (0);
2278 }
2279
2280 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2281 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2282 {
2283
2284 if (vcpu == NULL) {
2285 CPU_ZERO(&vm->debug_cpus);
2286 } else {
2287 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2288 return (EINVAL);
2289
2290 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2291 }
2292 return (0);
2293 }
2294
2295 int
vcpu_debugged(struct vcpu * vcpu)2296 vcpu_debugged(struct vcpu *vcpu)
2297 {
2298
2299 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2300 }
2301
2302 cpuset_t
vm_active_cpus(struct vm * vm)2303 vm_active_cpus(struct vm *vm)
2304 {
2305
2306 return (vm->active_cpus);
2307 }
2308
2309 cpuset_t
vm_debug_cpus(struct vm * vm)2310 vm_debug_cpus(struct vm *vm)
2311 {
2312
2313 return (vm->debug_cpus);
2314 }
2315
2316 cpuset_t
vm_suspended_cpus(struct vm * vm)2317 vm_suspended_cpus(struct vm *vm)
2318 {
2319
2320 return (vm->suspended_cpus);
2321 }
2322
2323 /*
2324 * Returns the subset of vCPUs in tostart that are awaiting startup.
2325 * These vCPUs are also marked as no longer awaiting startup.
2326 */
2327 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2328 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2329 {
2330 cpuset_t set;
2331
2332 mtx_lock(&vm->rendezvous_mtx);
2333 CPU_AND(&set, &vm->startup_cpus, tostart);
2334 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2335 mtx_unlock(&vm->rendezvous_mtx);
2336 return (set);
2337 }
2338
2339 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2340 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2341 {
2342 mtx_lock(&vm->rendezvous_mtx);
2343 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2344 mtx_unlock(&vm->rendezvous_mtx);
2345 }
2346
2347 void *
vcpu_stats(struct vcpu * vcpu)2348 vcpu_stats(struct vcpu *vcpu)
2349 {
2350
2351 return (vcpu->stats);
2352 }
2353
2354 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2355 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2356 {
2357 *state = vcpu->x2apic_state;
2358
2359 return (0);
2360 }
2361
2362 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2363 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2364 {
2365 if (state >= X2APIC_STATE_LAST)
2366 return (EINVAL);
2367
2368 vcpu->x2apic_state = state;
2369
2370 vlapic_set_x2apic_state(vcpu, state);
2371
2372 return (0);
2373 }
2374
2375 /*
2376 * This function is called to ensure that a vcpu "sees" a pending event
2377 * as soon as possible:
2378 * - If the vcpu thread is sleeping then it is woken up.
2379 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2380 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2381 */
2382 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2383 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2384 {
2385 int hostcpu;
2386
2387 hostcpu = vcpu->hostcpu;
2388 if (vcpu->state == VCPU_RUNNING) {
2389 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2390 if (hostcpu != curcpu) {
2391 if (lapic_intr) {
2392 vlapic_post_intr(vcpu->vlapic, hostcpu,
2393 vmm_ipinum);
2394 } else {
2395 ipi_cpu(hostcpu, vmm_ipinum);
2396 }
2397 } else {
2398 /*
2399 * If the 'vcpu' is running on 'curcpu' then it must
2400 * be sending a notification to itself (e.g. SELF_IPI).
2401 * The pending event will be picked up when the vcpu
2402 * transitions back to guest context.
2403 */
2404 }
2405 } else {
2406 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2407 "with hostcpu %d", vcpu->state, hostcpu));
2408 if (vcpu->state == VCPU_SLEEPING)
2409 wakeup_one(vcpu);
2410 }
2411 }
2412
2413 void
vcpu_notify_event(struct vcpu * vcpu,bool lapic_intr)2414 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2415 {
2416 vcpu_lock(vcpu);
2417 vcpu_notify_event_locked(vcpu, lapic_intr);
2418 vcpu_unlock(vcpu);
2419 }
2420
2421 struct vm_mem *
vm_mem(struct vm * vm)2422 vm_mem(struct vm *vm)
2423 {
2424 return (&vm->mem);
2425 }
2426
2427 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2428 vm_apicid2vcpuid(struct vm *vm, int apicid)
2429 {
2430 /*
2431 * XXX apic id is assumed to be numerically identical to vcpu id
2432 */
2433 return (apicid);
2434 }
2435
2436 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2437 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2438 vm_rendezvous_func_t func, void *arg)
2439 {
2440 struct vm *vm = vcpu->vm;
2441 int error, i;
2442
2443 /*
2444 * Enforce that this function is called without any locks
2445 */
2446 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2447
2448 restart:
2449 mtx_lock(&vm->rendezvous_mtx);
2450 if (vm->rendezvous_func != NULL) {
2451 /*
2452 * If a rendezvous is already in progress then we need to
2453 * call the rendezvous handler in case this 'vcpu' is one
2454 * of the targets of the rendezvous.
2455 */
2456 VMM_CTR0(vcpu, "Rendezvous already in progress");
2457 mtx_unlock(&vm->rendezvous_mtx);
2458 error = vm_handle_rendezvous(vcpu);
2459 if (error != 0)
2460 return (error);
2461 goto restart;
2462 }
2463 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2464 "rendezvous is still in progress"));
2465
2466 VMM_CTR0(vcpu, "Initiating rendezvous");
2467 vm->rendezvous_req_cpus = dest;
2468 CPU_ZERO(&vm->rendezvous_done_cpus);
2469 vm->rendezvous_arg = arg;
2470 vm->rendezvous_func = func;
2471 mtx_unlock(&vm->rendezvous_mtx);
2472
2473 /*
2474 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2475 * vcpus so they handle the rendezvous as soon as possible.
2476 */
2477 for (i = 0; i < vm->maxcpus; i++) {
2478 if (CPU_ISSET(i, &dest))
2479 vcpu_notify_event(vm_vcpu(vm, i), false);
2480 }
2481
2482 return (vm_handle_rendezvous(vcpu));
2483 }
2484
2485 struct vatpic *
vm_atpic(struct vm * vm)2486 vm_atpic(struct vm *vm)
2487 {
2488 return (vm->vatpic);
2489 }
2490
2491 struct vatpit *
vm_atpit(struct vm * vm)2492 vm_atpit(struct vm *vm)
2493 {
2494 return (vm->vatpit);
2495 }
2496
2497 struct vpmtmr *
vm_pmtmr(struct vm * vm)2498 vm_pmtmr(struct vm *vm)
2499 {
2500
2501 return (vm->vpmtmr);
2502 }
2503
2504 struct vrtc *
vm_rtc(struct vm * vm)2505 vm_rtc(struct vm *vm)
2506 {
2507
2508 return (vm->vrtc);
2509 }
2510
2511 enum vm_reg_name
vm_segment_name(int seg)2512 vm_segment_name(int seg)
2513 {
2514 static enum vm_reg_name seg_names[] = {
2515 VM_REG_GUEST_ES,
2516 VM_REG_GUEST_CS,
2517 VM_REG_GUEST_SS,
2518 VM_REG_GUEST_DS,
2519 VM_REG_GUEST_FS,
2520 VM_REG_GUEST_GS
2521 };
2522
2523 KASSERT(seg >= 0 && seg < nitems(seg_names),
2524 ("%s: invalid segment encoding %d", __func__, seg));
2525 return (seg_names[seg]);
2526 }
2527
2528 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2529 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2530 {
2531 int idx;
2532
2533 for (idx = 0; idx < num_copyinfo; idx++) {
2534 if (copyinfo[idx].cookie != NULL)
2535 vm_gpa_release(copyinfo[idx].cookie);
2536 }
2537 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2538 }
2539
2540 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2541 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2542 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2543 int num_copyinfo, int *fault)
2544 {
2545 int error, idx, nused;
2546 size_t n, off, remaining;
2547 void *hva, *cookie;
2548 uint64_t gpa;
2549
2550 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2551
2552 nused = 0;
2553 remaining = len;
2554 while (remaining > 0) {
2555 if (nused >= num_copyinfo)
2556 return (EFAULT);
2557 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2558 if (error || *fault)
2559 return (error);
2560 off = gpa & PAGE_MASK;
2561 n = min(remaining, PAGE_SIZE - off);
2562 copyinfo[nused].gpa = gpa;
2563 copyinfo[nused].len = n;
2564 remaining -= n;
2565 gla += n;
2566 nused++;
2567 }
2568
2569 for (idx = 0; idx < nused; idx++) {
2570 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2571 copyinfo[idx].len, prot, &cookie);
2572 if (hva == NULL)
2573 break;
2574 copyinfo[idx].hva = hva;
2575 copyinfo[idx].cookie = cookie;
2576 }
2577
2578 if (idx != nused) {
2579 vm_copy_teardown(copyinfo, num_copyinfo);
2580 return (EFAULT);
2581 } else {
2582 *fault = 0;
2583 return (0);
2584 }
2585 }
2586
2587 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2588 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2589 {
2590 char *dst;
2591 int idx;
2592
2593 dst = kaddr;
2594 idx = 0;
2595 while (len > 0) {
2596 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2597 len -= copyinfo[idx].len;
2598 dst += copyinfo[idx].len;
2599 idx++;
2600 }
2601 }
2602
2603 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2604 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2605 {
2606 const char *src;
2607 int idx;
2608
2609 src = kaddr;
2610 idx = 0;
2611 while (len > 0) {
2612 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2613 len -= copyinfo[idx].len;
2614 src += copyinfo[idx].len;
2615 idx++;
2616 }
2617 }
2618
2619 /*
2620 * Return the amount of in-use and wired memory for the VM. Since
2621 * these are global stats, only return the values with for vCPU 0
2622 */
2623 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2624 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2625
2626 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2627 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2628 {
2629
2630 if (vcpu->vcpuid == 0) {
2631 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2632 vmspace_resident_count(vm_vmspace(vcpu->vm)));
2633 }
2634 }
2635
2636 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2637 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2638 {
2639
2640 if (vcpu->vcpuid == 0) {
2641 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2642 pmap_wired_count(vmspace_pmap(vm_vmspace(vcpu->vm))));
2643 }
2644 }
2645
2646 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2647 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2648
2649 #ifdef BHYVE_SNAPSHOT
2650 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2651 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2652 {
2653 uint64_t tsc, now;
2654 int ret;
2655 struct vcpu *vcpu;
2656 uint16_t i, maxcpus;
2657
2658 now = rdtsc();
2659 maxcpus = vm_get_maxcpus(vm);
2660 for (i = 0; i < maxcpus; i++) {
2661 vcpu = vm->vcpu[i];
2662 if (vcpu == NULL)
2663 continue;
2664
2665 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2666 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2667 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2668 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2669 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2670 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2671 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2672 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2673
2674 /*
2675 * Save the absolute TSC value by adding now to tsc_offset.
2676 *
2677 * It will be turned turned back into an actual offset when the
2678 * TSC restore function is called
2679 */
2680 tsc = now + vcpu->tsc_offset;
2681 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2682 if (meta->op == VM_SNAPSHOT_RESTORE)
2683 vcpu->tsc_offset = tsc;
2684 }
2685
2686 done:
2687 return (ret);
2688 }
2689
2690 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2691 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2692 {
2693 int ret;
2694
2695 ret = vm_snapshot_vcpus(vm, meta);
2696 if (ret != 0)
2697 goto done;
2698
2699 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2700 done:
2701 return (ret);
2702 }
2703
2704 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2705 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2706 {
2707 int error;
2708 struct vcpu *vcpu;
2709 uint16_t i, maxcpus;
2710
2711 error = 0;
2712
2713 maxcpus = vm_get_maxcpus(vm);
2714 for (i = 0; i < maxcpus; i++) {
2715 vcpu = vm->vcpu[i];
2716 if (vcpu == NULL)
2717 continue;
2718
2719 error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2720 if (error != 0) {
2721 printf("%s: failed to snapshot vmcs/vmcb data for "
2722 "vCPU: %d; error: %d\n", __func__, i, error);
2723 goto done;
2724 }
2725 }
2726
2727 done:
2728 return (error);
2729 }
2730
2731 /*
2732 * Save kernel-side structures to user-space for snapshotting.
2733 */
2734 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)2735 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2736 {
2737 int ret = 0;
2738
2739 switch (meta->dev_req) {
2740 case STRUCT_VMCX:
2741 ret = vm_snapshot_vcpu(vm, meta);
2742 break;
2743 case STRUCT_VM:
2744 ret = vm_snapshot_vm(vm, meta);
2745 break;
2746 case STRUCT_VIOAPIC:
2747 ret = vioapic_snapshot(vm_ioapic(vm), meta);
2748 break;
2749 case STRUCT_VLAPIC:
2750 ret = vlapic_snapshot(vm, meta);
2751 break;
2752 case STRUCT_VHPET:
2753 ret = vhpet_snapshot(vm_hpet(vm), meta);
2754 break;
2755 case STRUCT_VATPIC:
2756 ret = vatpic_snapshot(vm_atpic(vm), meta);
2757 break;
2758 case STRUCT_VATPIT:
2759 ret = vatpit_snapshot(vm_atpit(vm), meta);
2760 break;
2761 case STRUCT_VPMTMR:
2762 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
2763 break;
2764 case STRUCT_VRTC:
2765 ret = vrtc_snapshot(vm_rtc(vm), meta);
2766 break;
2767 default:
2768 printf("%s: failed to find the requested type %#x\n",
2769 __func__, meta->dev_req);
2770 ret = (EINVAL);
2771 }
2772 return (ret);
2773 }
2774
2775 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)2776 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
2777 {
2778 vcpu->tsc_offset = offset;
2779 }
2780
2781 int
vm_restore_time(struct vm * vm)2782 vm_restore_time(struct vm *vm)
2783 {
2784 int error;
2785 uint64_t now;
2786 struct vcpu *vcpu;
2787 uint16_t i, maxcpus;
2788
2789 now = rdtsc();
2790
2791 error = vhpet_restore_time(vm_hpet(vm));
2792 if (error)
2793 return (error);
2794
2795 maxcpus = vm_get_maxcpus(vm);
2796 for (i = 0; i < maxcpus; i++) {
2797 vcpu = vm->vcpu[i];
2798 if (vcpu == NULL)
2799 continue;
2800
2801 error = vmmops_restore_tsc(vcpu->cookie,
2802 vcpu->tsc_offset - now);
2803 if (error)
2804 return (error);
2805 }
2806
2807 return (0);
2808 }
2809 #endif
2810