1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13 * Copyright (c) 2013, 2014 The FreeBSD Foundation
14 *
15 * Portions of this software were developed by Konstantin Belousov
16 * under sponsorship from the FreeBSD Foundation.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * 3. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 */
42
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_hwt_hooks.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/buf.h>
49 #include <sys/disk.h>
50 #include <sys/dirent.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/ktr.h>
56 #include <sys/ktrace.h>
57 #include <sys/limits.h>
58 #include <sys/lock.h>
59 #include <sys/mman.h>
60 #include <sys/mount.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/priv.h>
64 #include <sys/prng.h>
65 #include <sys/proc.h>
66 #include <sys/rwlock.h>
67 #include <sys/sleepqueue.h>
68 #include <sys/stat.h>
69 #include <sys/sysctl.h>
70 #include <sys/unistd.h>
71 #include <sys/user.h>
72 #include <sys/vnode.h>
73
74 #include <security/audit/audit.h>
75 #include <security/mac/mac_framework.h>
76
77 #include <vm/vm.h>
78 #include <vm/vm_extern.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vnode_pager.h>
85
86 #ifdef HWPMC_HOOKS
87 #include <sys/pmckern.h>
88 #endif
89
90 #ifdef HWT_HOOKS
91 #include <dev/hwt/hwt_hook.h>
92 #endif
93
94 static fo_rdwr_t vn_read;
95 static fo_rdwr_t vn_write;
96 static fo_rdwr_t vn_io_fault;
97 static fo_truncate_t vn_truncate;
98 static fo_ioctl_t vn_ioctl;
99 static fo_poll_t vn_poll;
100 static fo_kqfilter_t vn_kqfilter;
101 static fo_close_t vn_closefile;
102 static fo_mmap_t vn_mmap;
103 static fo_fallocate_t vn_fallocate;
104 static fo_fspacectl_t vn_fspacectl;
105
106 const struct fileops vnops = {
107 .fo_read = vn_io_fault,
108 .fo_write = vn_io_fault,
109 .fo_truncate = vn_truncate,
110 .fo_ioctl = vn_ioctl,
111 .fo_poll = vn_poll,
112 .fo_kqfilter = vn_kqfilter,
113 .fo_stat = vn_statfile,
114 .fo_close = vn_closefile,
115 .fo_chmod = vn_chmod,
116 .fo_chown = vn_chown,
117 .fo_sendfile = vn_sendfile,
118 .fo_seek = vn_seek,
119 .fo_fill_kinfo = vn_fill_kinfo,
120 .fo_mmap = vn_mmap,
121 .fo_fallocate = vn_fallocate,
122 .fo_fspacectl = vn_fspacectl,
123 .fo_cmp = vn_cmp,
124 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
125 };
126
127 const u_int io_hold_cnt = 16;
128 static int vn_io_fault_enable = 1;
129 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
130 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
131 static int vn_io_fault_prefault = 0;
132 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
133 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
134 static int vn_io_pgcache_read_enable = 1;
135 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
136 &vn_io_pgcache_read_enable, 0,
137 "Enable copying from page cache for reads, avoiding fs");
138 static u_long vn_io_faults_cnt;
139 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
140 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
141
142 static int vfs_allow_read_dir = 0;
143 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
144 &vfs_allow_read_dir, 0,
145 "Enable read(2) of directory by root for filesystems that support it");
146
147 /*
148 * Returns true if vn_io_fault mode of handling the i/o request should
149 * be used.
150 */
151 static bool
do_vn_io_fault(struct vnode * vp,struct uio * uio)152 do_vn_io_fault(struct vnode *vp, struct uio *uio)
153 {
154 struct mount *mp;
155
156 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
157 (mp = vp->v_mount) != NULL &&
158 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
159 }
160
161 /*
162 * Structure used to pass arguments to vn_io_fault1(), to do either
163 * file- or vnode-based I/O calls.
164 */
165 struct vn_io_fault_args {
166 enum {
167 VN_IO_FAULT_FOP,
168 VN_IO_FAULT_VOP
169 } kind;
170 struct ucred *cred;
171 int flags;
172 union {
173 struct fop_args_tag {
174 struct file *fp;
175 fo_rdwr_t *doio;
176 } fop_args;
177 struct vop_args_tag {
178 struct vnode *vp;
179 } vop_args;
180 } args;
181 };
182
183 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
184 struct vn_io_fault_args *args, struct thread *td);
185
186 int
vn_open(struct nameidata * ndp,int * flagp,int cmode,struct file * fp)187 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
188 {
189 struct thread *td = curthread;
190
191 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
192 }
193
194 static uint64_t
open2nameif(int fmode,u_int vn_open_flags,uint64_t cn_flags)195 open2nameif(int fmode, u_int vn_open_flags, uint64_t cn_flags)
196 {
197 uint64_t res;
198
199 res = ISOPEN | LOCKLEAF | cn_flags;
200 if ((fmode & O_RESOLVE_BENEATH) != 0)
201 res |= RBENEATH;
202 if ((fmode & O_EMPTY_PATH) != 0)
203 res |= EMPTYPATH;
204 if ((fmode & FREAD) != 0)
205 res |= OPENREAD;
206 if ((fmode & FWRITE) != 0)
207 res |= OPENWRITE;
208 if ((fmode & O_NAMEDATTR) != 0)
209 res |= OPENNAMED | CREATENAMED;
210 if ((fmode & O_NOFOLLOW) != 0)
211 res &= ~FOLLOW;
212 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
213 res |= AUDITVNODE1;
214 else
215 res &= ~AUDITVNODE1;
216 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
217 res |= NOCAPCHECK;
218 if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
219 res |= WANTIOCTLCAPS;
220
221 return (res);
222 }
223
224 /*
225 * For the O_NAMEDATTR case, check for a valid use of it.
226 */
227 static int
vfs_check_namedattr(struct vnode * vp)228 vfs_check_namedattr(struct vnode *vp)
229 {
230 int error;
231 short irflag;
232
233 error = 0;
234 irflag = vn_irflag_read(vp);
235 if ((vp->v_mount->mnt_flag & MNT_NAMEDATTR) == 0 ||
236 ((irflag & VIRF_NAMEDATTR) != 0 && vp->v_type != VREG))
237 error = EINVAL;
238 else if ((irflag & (VIRF_NAMEDDIR | VIRF_NAMEDATTR)) == 0)
239 error = ENOATTR;
240 return (error);
241 }
242
243 /*
244 * Common code for vnode open operations via a name lookup.
245 * Lookup the vnode and invoke VOP_CREATE if needed.
246 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
247 *
248 * Note that this does NOT free nameidata for the successful case,
249 * due to the NDINIT being done elsewhere.
250 */
251 int
vn_open_cred(struct nameidata * ndp,int * flagp,int cmode,u_int vn_open_flags,struct ucred * cred,struct file * fp)252 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
253 struct ucred *cred, struct file *fp)
254 {
255 struct vnode *vp;
256 struct mount *mp;
257 struct vattr vat;
258 struct vattr *vap = &vat;
259 int fmode, error;
260 bool first_open;
261
262 restart:
263 first_open = false;
264 fmode = *flagp;
265 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
266 O_EXCL | O_DIRECTORY) ||
267 (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
268 return (EINVAL);
269 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
270 ndp->ni_cnd.cn_nameiop = CREATE;
271 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
272 ndp->ni_cnd.cn_flags);
273
274 /*
275 * Set NOCACHE to avoid flushing the cache when
276 * rolling in many files at once.
277 *
278 * Set NC_KEEPPOSENTRY to keep positive entries if they already
279 * exist despite NOCACHE.
280 */
281 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
282 if ((fmode & O_EXCL) != 0)
283 ndp->ni_cnd.cn_flags &= ~FOLLOW;
284 if ((vn_open_flags & VN_OPEN_INVFS) == 0)
285 bwillwrite();
286 if ((error = namei(ndp)) != 0)
287 return (error);
288 if (ndp->ni_vp == NULL) {
289 if ((fmode & O_NAMEDATTR) != 0 &&
290 (ndp->ni_dvp->v_mount->mnt_flag & MNT_NAMEDATTR) ==
291 0) {
292 error = EINVAL;
293 vp = ndp->ni_dvp;
294 ndp->ni_dvp = NULL;
295 goto bad;
296 }
297 VATTR_NULL(vap);
298 vap->va_type = VREG;
299 vap->va_mode = cmode;
300 if (fmode & O_EXCL)
301 vap->va_vaflags |= VA_EXCLUSIVE;
302 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
303 NDFREE_PNBUF(ndp);
304 vput(ndp->ni_dvp);
305 if ((error = vn_start_write(NULL, &mp,
306 V_XSLEEP | V_PCATCH)) != 0)
307 return (error);
308 NDREINIT(ndp);
309 goto restart;
310 }
311 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
312 ndp->ni_cnd.cn_flags |= MAKEENTRY;
313 #ifdef MAC
314 error = mac_vnode_check_create(cred, ndp->ni_dvp,
315 &ndp->ni_cnd, vap);
316 if (error == 0)
317 #endif
318 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
319 &ndp->ni_cnd, vap);
320 vp = ndp->ni_vp;
321 if (error == 0 && (fmode & O_EXCL) != 0 &&
322 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
323 VI_LOCK(vp);
324 vp->v_iflag |= VI_FOPENING;
325 VI_UNLOCK(vp);
326 first_open = true;
327 }
328 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
329 false);
330 vn_finished_write(mp);
331 if (error) {
332 NDFREE_PNBUF(ndp);
333 if (error == ERELOOKUP) {
334 NDREINIT(ndp);
335 goto restart;
336 }
337 return (error);
338 }
339 fmode &= ~O_TRUNC;
340 } else {
341 if (ndp->ni_dvp == ndp->ni_vp)
342 vrele(ndp->ni_dvp);
343 else
344 vput(ndp->ni_dvp);
345 ndp->ni_dvp = NULL;
346 vp = ndp->ni_vp;
347 if (fmode & O_EXCL) {
348 error = EEXIST;
349 goto bad;
350 }
351 if ((fmode & O_NAMEDATTR) != 0) {
352 error = vfs_check_namedattr(vp);
353 if (error != 0)
354 goto bad;
355 } else if (vp->v_type == VDIR) {
356 error = EISDIR;
357 goto bad;
358 }
359 fmode &= ~O_CREAT;
360 }
361 } else {
362 ndp->ni_cnd.cn_nameiop = LOOKUP;
363 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags,
364 ndp->ni_cnd.cn_flags);
365 if ((fmode & FWRITE) == 0)
366 ndp->ni_cnd.cn_flags |= LOCKSHARED;
367 if ((error = namei(ndp)) != 0)
368 return (error);
369 vp = ndp->ni_vp;
370 if ((fmode & O_NAMEDATTR) != 0) {
371 error = vfs_check_namedattr(vp);
372 if (error != 0)
373 goto bad;
374 }
375 }
376 error = vn_open_vnode(vp, fmode, cred, curthread, fp);
377 if (first_open) {
378 VI_LOCK(vp);
379 vp->v_iflag &= ~VI_FOPENING;
380 wakeup(vp);
381 VI_UNLOCK(vp);
382 }
383 if (error)
384 goto bad;
385 *flagp = fmode;
386 return (0);
387 bad:
388 NDFREE_PNBUF(ndp);
389 vput(vp);
390 *flagp = fmode;
391 ndp->ni_vp = NULL;
392 return (error);
393 }
394
395 static int
vn_open_vnode_advlock(struct vnode * vp,int fmode,struct file * fp)396 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
397 {
398 struct flock lf;
399 int error, lock_flags, type;
400
401 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
402 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
403 return (0);
404 KASSERT(fp != NULL, ("open with flock requires fp"));
405 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
406 return (EOPNOTSUPP);
407
408 lock_flags = VOP_ISLOCKED(vp);
409 VOP_UNLOCK(vp);
410
411 lf.l_whence = SEEK_SET;
412 lf.l_start = 0;
413 lf.l_len = 0;
414 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
415 type = F_FLOCK;
416 if ((fmode & FNONBLOCK) == 0)
417 type |= F_WAIT;
418 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
419 type |= F_FIRSTOPEN;
420 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
421 if (error == 0)
422 fp->f_flag |= FHASLOCK;
423
424 vn_lock(vp, lock_flags | LK_RETRY);
425 return (error);
426 }
427
428 /*
429 * Common code for vnode open operations once a vnode is located.
430 * Check permissions, and call the VOP_OPEN routine.
431 */
432 int
vn_open_vnode(struct vnode * vp,int fmode,struct ucred * cred,struct thread * td,struct file * fp)433 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
434 struct thread *td, struct file *fp)
435 {
436 accmode_t accmode;
437 int error;
438
439 KASSERT((fmode & O_PATH) == 0 || (fmode & O_ACCMODE) == 0,
440 ("%s: O_PATH and O_ACCMODE are mutually exclusive", __func__));
441
442 if (vp->v_type == VLNK) {
443 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
444 return (EMLINK);
445 }
446 if (vp->v_type != VDIR && fmode & O_DIRECTORY)
447 return (ENOTDIR);
448
449 accmode = 0;
450 if ((fmode & O_PATH) == 0) {
451 if (vp->v_type == VSOCK)
452 return (EOPNOTSUPP);
453 if ((fmode & (FWRITE | O_TRUNC)) != 0) {
454 if (vp->v_type == VDIR)
455 return (EISDIR);
456 accmode |= VWRITE;
457 }
458 if ((fmode & FREAD) != 0)
459 accmode |= VREAD;
460 if ((fmode & O_APPEND) && (fmode & FWRITE))
461 accmode |= VAPPEND;
462 #ifdef MAC
463 if ((fmode & O_CREAT) != 0)
464 accmode |= VCREAT;
465 #endif
466 }
467 if ((fmode & FEXEC) != 0)
468 accmode |= VEXEC;
469 #ifdef MAC
470 if ((fmode & O_VERIFY) != 0)
471 accmode |= VVERIFY;
472 error = mac_vnode_check_open(cred, vp, accmode);
473 if (error != 0)
474 return (error);
475
476 accmode &= ~(VCREAT | VVERIFY);
477 #endif
478 if ((fmode & O_CREAT) == 0 && accmode != 0) {
479 error = VOP_ACCESS(vp, accmode, cred, td);
480 if (error != 0)
481 return (error);
482 }
483 if ((fmode & O_PATH) != 0) {
484 if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
485 VOP_ACCESS(vp, VREAD, cred, td) == 0)
486 fp->f_flag |= FKQALLOWED;
487 return (0);
488 }
489
490 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
491 vn_lock(vp, LK_UPGRADE | LK_RETRY);
492 error = VOP_OPEN(vp, fmode, cred, td, fp);
493 if (error != 0)
494 return (error);
495
496 error = vn_open_vnode_advlock(vp, fmode, fp);
497 if (error == 0 && (fmode & FWRITE) != 0) {
498 error = VOP_ADD_WRITECOUNT(vp, 1);
499 if (error == 0) {
500 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
501 __func__, vp, vp->v_writecount);
502 }
503 }
504
505 /*
506 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
507 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
508 */
509 if (error != 0) {
510 if (fp != NULL) {
511 /*
512 * Arrange the call by having fdrop() to use
513 * vn_closefile(). This is to satisfy
514 * filesystems like devfs or tmpfs, which
515 * override fo_close().
516 */
517 fp->f_flag |= FOPENFAILED;
518 fp->f_vnode = vp;
519 if (fp->f_ops == &badfileops) {
520 fp->f_type = DTYPE_VNODE;
521 fp->f_ops = &vnops;
522 }
523 vref(vp);
524 } else {
525 /*
526 * If there is no fp, due to kernel-mode open,
527 * we can call VOP_CLOSE() now.
528 */
529 if ((vp->v_type == VFIFO ||
530 !MNT_EXTENDED_SHARED(vp->v_mount)) &&
531 VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
532 vn_lock(vp, LK_UPGRADE | LK_RETRY);
533 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
534 cred, td);
535 }
536 }
537
538 ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
539 return (error);
540
541 }
542
543 /*
544 * Check for write permissions on the specified vnode.
545 * Prototype text segments cannot be written.
546 * It is racy.
547 */
548 int
vn_writechk(struct vnode * vp)549 vn_writechk(struct vnode *vp)
550 {
551
552 ASSERT_VOP_LOCKED(vp, "vn_writechk");
553 /*
554 * If there's shared text associated with
555 * the vnode, try to free it up once. If
556 * we fail, we can't allow writing.
557 */
558 if (VOP_IS_TEXT(vp))
559 return (ETXTBSY);
560
561 return (0);
562 }
563
564 /*
565 * Vnode close call
566 */
567 static int
vn_close1(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td,bool keep_ref)568 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
569 struct thread *td, bool keep_ref)
570 {
571 struct mount *mp;
572 int error, lock_flags;
573
574 lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
575 LK_SHARED : LK_EXCLUSIVE;
576
577 vn_start_write(vp, &mp, V_WAIT);
578 vn_lock(vp, lock_flags | LK_RETRY);
579 AUDIT_ARG_VNODE1(vp);
580 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
581 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
582 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
583 __func__, vp, vp->v_writecount);
584 }
585 error = VOP_CLOSE(vp, flags, file_cred, td);
586 if (keep_ref)
587 VOP_UNLOCK(vp);
588 else
589 vput(vp);
590 vn_finished_write(mp);
591 return (error);
592 }
593
594 int
vn_close(struct vnode * vp,int flags,struct ucred * file_cred,struct thread * td)595 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
596 struct thread *td)
597 {
598
599 return (vn_close1(vp, flags, file_cred, td, false));
600 }
601
602 /*
603 * Heuristic to detect sequential operation.
604 */
605 static int
sequential_heuristic(struct uio * uio,struct file * fp)606 sequential_heuristic(struct uio *uio, struct file *fp)
607 {
608 enum uio_rw rw;
609
610 ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
611
612 rw = uio->uio_rw;
613 if (fp->f_flag & FRDAHEAD)
614 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
615
616 /*
617 * Offset 0 is handled specially. open() sets f_seqcount to 1 so
618 * that the first I/O is normally considered to be slightly
619 * sequential. Seeking to offset 0 doesn't change sequentiality
620 * unless previous seeks have reduced f_seqcount to 0, in which
621 * case offset 0 is not special.
622 */
623 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
624 uio->uio_offset == fp->f_nextoff[rw]) {
625 /*
626 * f_seqcount is in units of fixed-size blocks so that it
627 * depends mainly on the amount of sequential I/O and not
628 * much on the number of sequential I/O's. The fixed size
629 * of 16384 is hard-coded here since it is (not quite) just
630 * a magic size that works well here. This size is more
631 * closely related to the best I/O size for real disks than
632 * to any block size used by software.
633 */
634 if (uio->uio_resid >= IO_SEQMAX * 16384)
635 fp->f_seqcount[rw] = IO_SEQMAX;
636 else {
637 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
638 if (fp->f_seqcount[rw] > IO_SEQMAX)
639 fp->f_seqcount[rw] = IO_SEQMAX;
640 }
641 return (fp->f_seqcount[rw] << IO_SEQSHIFT);
642 }
643
644 /* Not sequential. Quickly draw-down sequentiality. */
645 if (fp->f_seqcount[rw] > 1)
646 fp->f_seqcount[rw] = 1;
647 else
648 fp->f_seqcount[rw] = 0;
649 return (0);
650 }
651
652 /*
653 * Package up an I/O request on a vnode into a uio and do it.
654 */
655 int
vn_rdwr(enum uio_rw rw,struct vnode * vp,void * base,int len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,ssize_t * aresid,struct thread * td)656 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
657 enum uio_seg segflg, int ioflg, struct ucred *active_cred,
658 struct ucred *file_cred, ssize_t *aresid, struct thread *td)
659 {
660 struct uio auio;
661 struct iovec aiov;
662 struct mount *mp;
663 struct ucred *cred;
664 void *rl_cookie;
665 struct vn_io_fault_args args;
666 int error, lock_flags;
667
668 if (offset < 0 && vp->v_type != VCHR)
669 return (EINVAL);
670 auio.uio_iov = &aiov;
671 auio.uio_iovcnt = 1;
672 aiov.iov_base = base;
673 aiov.iov_len = len;
674 auio.uio_resid = len;
675 auio.uio_offset = offset;
676 auio.uio_segflg = segflg;
677 auio.uio_rw = rw;
678 auio.uio_td = td;
679 error = 0;
680
681 if ((ioflg & IO_NODELOCKED) == 0) {
682 if ((ioflg & IO_RANGELOCKED) == 0) {
683 if (rw == UIO_READ) {
684 rl_cookie = vn_rangelock_rlock(vp, offset,
685 offset + len);
686 } else if ((ioflg & IO_APPEND) != 0) {
687 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
688 } else {
689 rl_cookie = vn_rangelock_wlock(vp, offset,
690 offset + len);
691 }
692 } else
693 rl_cookie = NULL;
694 mp = NULL;
695 if (rw == UIO_WRITE) {
696 if (vp->v_type != VCHR &&
697 (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
698 != 0)
699 goto out;
700 lock_flags = vn_lktype_write(mp, vp);
701 } else
702 lock_flags = LK_SHARED;
703 vn_lock(vp, lock_flags | LK_RETRY);
704 } else
705 rl_cookie = NULL;
706
707 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
708 #ifdef MAC
709 if ((ioflg & IO_NOMACCHECK) == 0) {
710 if (rw == UIO_READ)
711 error = mac_vnode_check_read(active_cred, file_cred,
712 vp);
713 else
714 error = mac_vnode_check_write(active_cred, file_cred,
715 vp);
716 }
717 #endif
718 if (error == 0) {
719 if (file_cred != NULL)
720 cred = file_cred;
721 else
722 cred = active_cred;
723 if (do_vn_io_fault(vp, &auio)) {
724 args.kind = VN_IO_FAULT_VOP;
725 args.cred = cred;
726 args.flags = ioflg;
727 args.args.vop_args.vp = vp;
728 error = vn_io_fault1(vp, &auio, &args, td);
729 } else if (rw == UIO_READ) {
730 error = VOP_READ(vp, &auio, ioflg, cred);
731 } else /* if (rw == UIO_WRITE) */ {
732 error = VOP_WRITE(vp, &auio, ioflg, cred);
733 }
734 }
735 if (aresid)
736 *aresid = auio.uio_resid;
737 else
738 if (auio.uio_resid && error == 0)
739 error = EIO;
740 if ((ioflg & IO_NODELOCKED) == 0) {
741 VOP_UNLOCK(vp);
742 if (mp != NULL)
743 vn_finished_write(mp);
744 }
745 out:
746 if (rl_cookie != NULL)
747 vn_rangelock_unlock(vp, rl_cookie);
748 return (error);
749 }
750
751 /*
752 * Package up an I/O request on a vnode into a uio and do it. The I/O
753 * request is split up into smaller chunks and we try to avoid saturating
754 * the buffer cache while potentially holding a vnode locked, so we
755 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield()
756 * to give other processes a chance to lock the vnode (either other processes
757 * core'ing the same binary, or unrelated processes scanning the directory).
758 */
759 int
vn_rdwr_inchunks(enum uio_rw rw,struct vnode * vp,void * base,size_t len,off_t offset,enum uio_seg segflg,int ioflg,struct ucred * active_cred,struct ucred * file_cred,size_t * aresid,struct thread * td)760 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
761 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
762 struct ucred *file_cred, size_t *aresid, struct thread *td)
763 {
764 int error = 0;
765 ssize_t iaresid;
766
767 do {
768 int chunk;
769
770 /*
771 * Force `offset' to a multiple of MAXBSIZE except possibly
772 * for the first chunk, so that filesystems only need to
773 * write full blocks except possibly for the first and last
774 * chunks.
775 */
776 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
777
778 if (chunk > len)
779 chunk = len;
780 if (rw != UIO_READ && vp->v_type == VREG)
781 bwillwrite();
782 iaresid = 0;
783 error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
784 ioflg, active_cred, file_cred, &iaresid, td);
785 len -= chunk; /* aresid calc already includes length */
786 if (error)
787 break;
788 offset += chunk;
789 base = (char *)base + chunk;
790 kern_yield(PRI_USER);
791 } while (len);
792 if (aresid)
793 *aresid = len + iaresid;
794 return (error);
795 }
796
797 #if OFF_MAX <= LONG_MAX
798 off_t
foffset_lock(struct file * fp,int flags)799 foffset_lock(struct file *fp, int flags)
800 {
801 volatile short *flagsp;
802 off_t res;
803 short state;
804
805 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
806
807 if ((flags & FOF_NOLOCK) != 0)
808 return (atomic_load_long(&fp->f_offset));
809
810 /*
811 * According to McKusick the vn lock was protecting f_offset here.
812 * It is now protected by the FOFFSET_LOCKED flag.
813 */
814 flagsp = &fp->f_vnread_flags;
815 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
816 return (atomic_load_long(&fp->f_offset));
817
818 sleepq_lock(&fp->f_vnread_flags);
819 state = atomic_load_16(flagsp);
820 for (;;) {
821 if ((state & FOFFSET_LOCKED) == 0) {
822 if (!atomic_fcmpset_acq_16(flagsp, &state,
823 FOFFSET_LOCKED))
824 continue;
825 break;
826 }
827 if ((state & FOFFSET_LOCK_WAITING) == 0) {
828 if (!atomic_fcmpset_acq_16(flagsp, &state,
829 state | FOFFSET_LOCK_WAITING))
830 continue;
831 }
832 DROP_GIANT();
833 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
834 sleepq_wait(&fp->f_vnread_flags, PRI_MAX_KERN);
835 PICKUP_GIANT();
836 sleepq_lock(&fp->f_vnread_flags);
837 state = atomic_load_16(flagsp);
838 }
839 res = atomic_load_long(&fp->f_offset);
840 sleepq_release(&fp->f_vnread_flags);
841 return (res);
842 }
843
844 void
foffset_unlock(struct file * fp,off_t val,int flags)845 foffset_unlock(struct file *fp, off_t val, int flags)
846 {
847 volatile short *flagsp;
848 short state;
849
850 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
851
852 if ((flags & FOF_NOUPDATE) == 0)
853 atomic_store_long(&fp->f_offset, val);
854 if ((flags & FOF_NEXTOFF_R) != 0)
855 fp->f_nextoff[UIO_READ] = val;
856 if ((flags & FOF_NEXTOFF_W) != 0)
857 fp->f_nextoff[UIO_WRITE] = val;
858
859 if ((flags & FOF_NOLOCK) != 0)
860 return;
861
862 flagsp = &fp->f_vnread_flags;
863 state = atomic_load_16(flagsp);
864 if ((state & FOFFSET_LOCK_WAITING) == 0 &&
865 atomic_cmpset_rel_16(flagsp, state, 0))
866 return;
867
868 sleepq_lock(&fp->f_vnread_flags);
869 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
870 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
871 fp->f_vnread_flags = 0;
872 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
873 sleepq_release(&fp->f_vnread_flags);
874 }
875
876 static off_t
foffset_read(struct file * fp)877 foffset_read(struct file *fp)
878 {
879
880 return (atomic_load_long(&fp->f_offset));
881 }
882 #else
883 off_t
foffset_lock(struct file * fp,int flags)884 foffset_lock(struct file *fp, int flags)
885 {
886 struct mtx *mtxp;
887 off_t res;
888
889 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
890
891 mtxp = mtx_pool_find(mtxpool_sleep, fp);
892 mtx_lock(mtxp);
893 if ((flags & FOF_NOLOCK) == 0) {
894 while (fp->f_vnread_flags & FOFFSET_LOCKED) {
895 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
896 msleep(&fp->f_vnread_flags, mtxp, PRI_MAX_KERN,
897 "vofflock", 0);
898 }
899 fp->f_vnread_flags |= FOFFSET_LOCKED;
900 }
901 res = fp->f_offset;
902 mtx_unlock(mtxp);
903 return (res);
904 }
905
906 void
foffset_unlock(struct file * fp,off_t val,int flags)907 foffset_unlock(struct file *fp, off_t val, int flags)
908 {
909 struct mtx *mtxp;
910
911 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
912
913 mtxp = mtx_pool_find(mtxpool_sleep, fp);
914 mtx_lock(mtxp);
915 if ((flags & FOF_NOUPDATE) == 0)
916 fp->f_offset = val;
917 if ((flags & FOF_NEXTOFF_R) != 0)
918 fp->f_nextoff[UIO_READ] = val;
919 if ((flags & FOF_NEXTOFF_W) != 0)
920 fp->f_nextoff[UIO_WRITE] = val;
921 if ((flags & FOF_NOLOCK) == 0) {
922 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
923 ("Lost FOFFSET_LOCKED"));
924 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
925 wakeup(&fp->f_vnread_flags);
926 fp->f_vnread_flags = 0;
927 }
928 mtx_unlock(mtxp);
929 }
930
931 static off_t
foffset_read(struct file * fp)932 foffset_read(struct file *fp)
933 {
934
935 return (foffset_lock(fp, FOF_NOLOCK));
936 }
937 #endif
938
939 void
foffset_lock_pair(struct file * fp1,off_t * off1p,struct file * fp2,off_t * off2p,int flags)940 foffset_lock_pair(struct file *fp1, off_t *off1p, struct file *fp2, off_t *off2p,
941 int flags)
942 {
943 KASSERT(fp1 != fp2, ("foffset_lock_pair: fp1 == fp2"));
944
945 /* Lock in a consistent order to avoid deadlock. */
946 if ((uintptr_t)fp1 > (uintptr_t)fp2) {
947 struct file *tmpfp;
948 off_t *tmpoffp;
949
950 tmpfp = fp1, fp1 = fp2, fp2 = tmpfp;
951 tmpoffp = off1p, off1p = off2p, off2p = tmpoffp;
952 }
953 if (fp1 != NULL)
954 *off1p = foffset_lock(fp1, flags);
955 if (fp2 != NULL)
956 *off2p = foffset_lock(fp2, flags);
957 }
958
959 void
foffset_lock_uio(struct file * fp,struct uio * uio,int flags)960 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
961 {
962
963 if ((flags & FOF_OFFSET) == 0)
964 uio->uio_offset = foffset_lock(fp, flags);
965 }
966
967 void
foffset_unlock_uio(struct file * fp,struct uio * uio,int flags)968 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
969 {
970
971 if ((flags & FOF_OFFSET) == 0)
972 foffset_unlock(fp, uio->uio_offset, flags);
973 }
974
975 static int
get_advice(struct file * fp,struct uio * uio)976 get_advice(struct file *fp, struct uio *uio)
977 {
978 struct mtx *mtxp;
979 int ret;
980
981 ret = POSIX_FADV_NORMAL;
982 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
983 return (ret);
984
985 mtxp = mtx_pool_find(mtxpool_sleep, fp);
986 mtx_lock(mtxp);
987 if (fp->f_advice != NULL &&
988 uio->uio_offset >= fp->f_advice->fa_start &&
989 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
990 ret = fp->f_advice->fa_advice;
991 mtx_unlock(mtxp);
992 return (ret);
993 }
994
995 static int
get_write_ioflag(struct file * fp)996 get_write_ioflag(struct file *fp)
997 {
998 int ioflag;
999 struct mount *mp;
1000 struct vnode *vp;
1001
1002 ioflag = 0;
1003 vp = fp->f_vnode;
1004 mp = atomic_load_ptr(&vp->v_mount);
1005
1006 if ((fp->f_flag & O_DIRECT) != 0)
1007 ioflag |= IO_DIRECT;
1008
1009 if ((fp->f_flag & O_FSYNC) != 0 ||
1010 (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
1011 ioflag |= IO_SYNC;
1012
1013 /*
1014 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
1015 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
1016 * fall back to full O_SYNC behavior.
1017 */
1018 if ((fp->f_flag & O_DSYNC) != 0)
1019 ioflag |= IO_SYNC | IO_DATASYNC;
1020
1021 return (ioflag);
1022 }
1023
1024 int
vn_read_from_obj(struct vnode * vp,struct uio * uio)1025 vn_read_from_obj(struct vnode *vp, struct uio *uio)
1026 {
1027 vm_object_t obj;
1028 vm_page_t ma[io_hold_cnt + 2];
1029 off_t off, vsz;
1030 ssize_t resid;
1031 int error, i, j;
1032
1033 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
1034 obj = atomic_load_ptr(&vp->v_object);
1035 if (obj == NULL)
1036 return (EJUSTRETURN);
1037
1038 /*
1039 * Depends on type stability of vm_objects.
1040 */
1041 vm_object_pip_add(obj, 1);
1042 if ((obj->flags & OBJ_DEAD) != 0) {
1043 /*
1044 * Note that object might be already reused from the
1045 * vnode, and the OBJ_DEAD flag cleared. This is fine,
1046 * we recheck for DOOMED vnode state after all pages
1047 * are busied, and retract then.
1048 *
1049 * But we check for OBJ_DEAD to ensure that we do not
1050 * busy pages while vm_object_terminate_pages()
1051 * processes the queue.
1052 */
1053 error = EJUSTRETURN;
1054 goto out_pip;
1055 }
1056
1057 resid = uio->uio_resid;
1058 off = uio->uio_offset;
1059 for (i = 0; resid > 0; i++) {
1060 MPASS(i < io_hold_cnt + 2);
1061 ma[i] = vm_page_grab_unlocked(obj, atop(off),
1062 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
1063 VM_ALLOC_NOWAIT);
1064 if (ma[i] == NULL)
1065 break;
1066
1067 /*
1068 * Skip invalid pages. Valid mask can be partial only
1069 * at EOF, and we clip later.
1070 */
1071 if (vm_page_none_valid(ma[i])) {
1072 vm_page_sunbusy(ma[i]);
1073 break;
1074 }
1075
1076 resid -= PAGE_SIZE;
1077 off += PAGE_SIZE;
1078 }
1079 if (i == 0) {
1080 error = EJUSTRETURN;
1081 goto out_pip;
1082 }
1083
1084 /*
1085 * Check VIRF_DOOMED after we busied our pages. Since
1086 * vgonel() terminates the vnode' vm_object, it cannot
1087 * process past pages busied by us.
1088 */
1089 if (VN_IS_DOOMED(vp)) {
1090 error = EJUSTRETURN;
1091 goto out;
1092 }
1093
1094 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1095 if (resid > uio->uio_resid)
1096 resid = uio->uio_resid;
1097
1098 /*
1099 * Unlocked read of vnp_size is safe because truncation cannot
1100 * pass busied page. But we load vnp_size into a local
1101 * variable so that possible concurrent extension does not
1102 * break calculation.
1103 */
1104 #if defined(__powerpc__) && !defined(__powerpc64__)
1105 vsz = obj->un_pager.vnp.vnp_size;
1106 #else
1107 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1108 #endif
1109 if (uio->uio_offset >= vsz) {
1110 error = EJUSTRETURN;
1111 goto out;
1112 }
1113 if (uio->uio_offset + resid > vsz)
1114 resid = vsz - uio->uio_offset;
1115
1116 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1117
1118 out:
1119 for (j = 0; j < i; j++) {
1120 if (error == 0)
1121 vm_page_reference(ma[j]);
1122 vm_page_sunbusy(ma[j]);
1123 }
1124 out_pip:
1125 vm_object_pip_wakeup(obj);
1126 if (error != 0)
1127 return (error);
1128 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1129 }
1130
1131 /*
1132 * File table vnode read routine.
1133 */
1134 static int
vn_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1135 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1136 struct thread *td)
1137 {
1138 struct vnode *vp;
1139 off_t orig_offset;
1140 int error, ioflag;
1141 int advice;
1142
1143 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1144 uio->uio_td, td));
1145 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1146 vp = fp->f_vnode;
1147 ioflag = 0;
1148 if (fp->f_flag & FNONBLOCK)
1149 ioflag |= IO_NDELAY;
1150 if (fp->f_flag & O_DIRECT)
1151 ioflag |= IO_DIRECT;
1152
1153 /*
1154 * Try to read from page cache. VIRF_DOOMED check is racy but
1155 * allows us to avoid unneeded work outright.
1156 */
1157 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1158 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1159 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1160 if (error == 0) {
1161 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1162 return (0);
1163 }
1164 if (error != EJUSTRETURN)
1165 return (error);
1166 }
1167
1168 advice = get_advice(fp, uio);
1169 vn_lock(vp, LK_SHARED | LK_RETRY);
1170
1171 switch (advice) {
1172 case POSIX_FADV_NORMAL:
1173 case POSIX_FADV_SEQUENTIAL:
1174 case POSIX_FADV_NOREUSE:
1175 ioflag |= sequential_heuristic(uio, fp);
1176 break;
1177 case POSIX_FADV_RANDOM:
1178 /* Disable read-ahead for random I/O. */
1179 break;
1180 }
1181 orig_offset = uio->uio_offset;
1182
1183 #ifdef MAC
1184 error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1185 if (error == 0)
1186 #endif
1187 error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1188 fp->f_nextoff[UIO_READ] = uio->uio_offset;
1189 VOP_UNLOCK(vp);
1190 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1191 orig_offset != uio->uio_offset)
1192 /*
1193 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1194 * for the backing file after a POSIX_FADV_NOREUSE
1195 * read(2).
1196 */
1197 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1198 POSIX_FADV_DONTNEED);
1199 return (error);
1200 }
1201
1202 /*
1203 * File table vnode write routine.
1204 */
1205 static int
vn_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1206 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1207 struct thread *td)
1208 {
1209 struct vnode *vp;
1210 struct mount *mp;
1211 off_t orig_offset;
1212 int error, ioflag;
1213 int advice;
1214 bool need_finished_write;
1215
1216 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1217 uio->uio_td, td));
1218 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1219 vp = fp->f_vnode;
1220 if (vp->v_type == VREG)
1221 bwillwrite();
1222 ioflag = IO_UNIT;
1223 if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1224 ioflag |= IO_APPEND;
1225 if ((fp->f_flag & FNONBLOCK) != 0)
1226 ioflag |= IO_NDELAY;
1227 ioflag |= get_write_ioflag(fp);
1228
1229 mp = NULL;
1230 need_finished_write = false;
1231 if (vp->v_type != VCHR) {
1232 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1233 if (error != 0)
1234 goto unlock;
1235 need_finished_write = true;
1236 }
1237
1238 advice = get_advice(fp, uio);
1239
1240 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1241 switch (advice) {
1242 case POSIX_FADV_NORMAL:
1243 case POSIX_FADV_SEQUENTIAL:
1244 case POSIX_FADV_NOREUSE:
1245 ioflag |= sequential_heuristic(uio, fp);
1246 break;
1247 case POSIX_FADV_RANDOM:
1248 /* XXX: Is this correct? */
1249 break;
1250 }
1251 orig_offset = uio->uio_offset;
1252
1253 #ifdef MAC
1254 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1255 if (error == 0)
1256 #endif
1257 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1258 fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1259 VOP_UNLOCK(vp);
1260 if (need_finished_write)
1261 vn_finished_write(mp);
1262 if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1263 orig_offset != uio->uio_offset)
1264 /*
1265 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1266 * for the backing file after a POSIX_FADV_NOREUSE
1267 * write(2).
1268 */
1269 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1270 POSIX_FADV_DONTNEED);
1271 unlock:
1272 return (error);
1273 }
1274
1275 /*
1276 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1277 * prevent the following deadlock:
1278 *
1279 * Assume that the thread A reads from the vnode vp1 into userspace
1280 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is
1281 * currently not resident, then system ends up with the call chain
1282 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1283 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1284 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1285 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1286 * backed by the pages of vnode vp1, and some page in buf2 is not
1287 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1288 *
1289 * To prevent the lock order reversal and deadlock, vn_io_fault() does
1290 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1291 * Instead, it first tries to do the whole range i/o with pagefaults
1292 * disabled. If all pages in the i/o buffer are resident and mapped,
1293 * VOP will succeed (ignoring the genuine filesystem errors).
1294 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1295 * i/o in chunks, with all pages in the chunk prefaulted and held
1296 * using vm_fault_quick_hold_pages().
1297 *
1298 * Filesystems using this deadlock avoidance scheme should use the
1299 * array of the held pages from uio, saved in the curthread->td_ma,
1300 * instead of doing uiomove(). A helper function
1301 * vn_io_fault_uiomove() converts uiomove request into
1302 * uiomove_fromphys() over td_ma array.
1303 *
1304 * Since vnode locks do not cover the whole i/o anymore, rangelocks
1305 * make the current i/o request atomic with respect to other i/os and
1306 * truncations.
1307 */
1308
1309 /*
1310 * Decode vn_io_fault_args and perform the corresponding i/o.
1311 */
1312 static int
vn_io_fault_doio(struct vn_io_fault_args * args,struct uio * uio,struct thread * td)1313 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1314 struct thread *td)
1315 {
1316 int error, save;
1317
1318 error = 0;
1319 save = vm_fault_disable_pagefaults();
1320 switch (args->kind) {
1321 case VN_IO_FAULT_FOP:
1322 error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1323 uio, args->cred, args->flags, td);
1324 break;
1325 case VN_IO_FAULT_VOP:
1326 switch (uio->uio_rw) {
1327 case UIO_READ:
1328 error = VOP_READ(args->args.vop_args.vp, uio,
1329 args->flags, args->cred);
1330 break;
1331 case UIO_WRITE:
1332 error = VOP_WRITE(args->args.vop_args.vp, uio,
1333 args->flags, args->cred);
1334 break;
1335 }
1336 break;
1337 default:
1338 panic("vn_io_fault_doio: unknown kind of io %d %d",
1339 args->kind, uio->uio_rw);
1340 }
1341 vm_fault_enable_pagefaults(save);
1342 return (error);
1343 }
1344
1345 static int
vn_io_fault_touch(char * base,const struct uio * uio)1346 vn_io_fault_touch(char *base, const struct uio *uio)
1347 {
1348 int r;
1349
1350 r = fubyte(base);
1351 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1352 return (EFAULT);
1353 return (0);
1354 }
1355
1356 static int
vn_io_fault_prefault_user(const struct uio * uio)1357 vn_io_fault_prefault_user(const struct uio *uio)
1358 {
1359 char *base;
1360 const struct iovec *iov;
1361 size_t len;
1362 ssize_t resid;
1363 int error, i;
1364
1365 KASSERT(uio->uio_segflg == UIO_USERSPACE,
1366 ("vn_io_fault_prefault userspace"));
1367
1368 error = i = 0;
1369 iov = uio->uio_iov;
1370 resid = uio->uio_resid;
1371 base = iov->iov_base;
1372 len = iov->iov_len;
1373 while (resid > 0) {
1374 error = vn_io_fault_touch(base, uio);
1375 if (error != 0)
1376 break;
1377 if (len < PAGE_SIZE) {
1378 if (len != 0) {
1379 error = vn_io_fault_touch(base + len - 1, uio);
1380 if (error != 0)
1381 break;
1382 resid -= len;
1383 }
1384 if (++i >= uio->uio_iovcnt)
1385 break;
1386 iov = uio->uio_iov + i;
1387 base = iov->iov_base;
1388 len = iov->iov_len;
1389 } else {
1390 len -= PAGE_SIZE;
1391 base += PAGE_SIZE;
1392 resid -= PAGE_SIZE;
1393 }
1394 }
1395 return (error);
1396 }
1397
1398 /*
1399 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1400 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1401 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1402 * into args and call vn_io_fault1() to handle faults during the user
1403 * mode buffer accesses.
1404 */
1405 static int
vn_io_fault1(struct vnode * vp,struct uio * uio,struct vn_io_fault_args * args,struct thread * td)1406 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1407 struct thread *td)
1408 {
1409 vm_page_t ma[io_hold_cnt + 2];
1410 struct uio *uio_clone, short_uio;
1411 struct iovec short_iovec[1];
1412 vm_page_t *prev_td_ma;
1413 vm_prot_t prot;
1414 vm_offset_t addr, end;
1415 size_t len, resid;
1416 ssize_t adv;
1417 int error, cnt, saveheld, prev_td_ma_cnt;
1418
1419 if (vn_io_fault_prefault) {
1420 error = vn_io_fault_prefault_user(uio);
1421 if (error != 0)
1422 return (error); /* Or ignore ? */
1423 }
1424
1425 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1426
1427 /*
1428 * The UFS follows IO_UNIT directive and replays back both
1429 * uio_offset and uio_resid if an error is encountered during the
1430 * operation. But, since the iovec may be already advanced,
1431 * uio is still in an inconsistent state.
1432 *
1433 * Cache a copy of the original uio, which is advanced to the redo
1434 * point using UIO_NOCOPY below.
1435 */
1436 uio_clone = cloneuio(uio);
1437 resid = uio->uio_resid;
1438
1439 short_uio.uio_segflg = UIO_USERSPACE;
1440 short_uio.uio_rw = uio->uio_rw;
1441 short_uio.uio_td = uio->uio_td;
1442
1443 error = vn_io_fault_doio(args, uio, td);
1444 if (error != EFAULT)
1445 goto out;
1446
1447 atomic_add_long(&vn_io_faults_cnt, 1);
1448 uio_clone->uio_segflg = UIO_NOCOPY;
1449 uiomove(NULL, resid - uio->uio_resid, uio_clone);
1450 uio_clone->uio_segflg = uio->uio_segflg;
1451
1452 saveheld = curthread_pflags_set(TDP_UIOHELD);
1453 prev_td_ma = td->td_ma;
1454 prev_td_ma_cnt = td->td_ma_cnt;
1455
1456 while (uio_clone->uio_resid != 0) {
1457 len = uio_clone->uio_iov->iov_len;
1458 if (len == 0) {
1459 KASSERT(uio_clone->uio_iovcnt >= 1,
1460 ("iovcnt underflow"));
1461 uio_clone->uio_iov++;
1462 uio_clone->uio_iovcnt--;
1463 continue;
1464 }
1465 if (len > ptoa(io_hold_cnt))
1466 len = ptoa(io_hold_cnt);
1467 addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1468 end = round_page(addr + len);
1469 if (end < addr) {
1470 error = EFAULT;
1471 break;
1472 }
1473 /*
1474 * A perfectly misaligned address and length could cause
1475 * both the start and the end of the chunk to use partial
1476 * page. +2 accounts for such a situation.
1477 */
1478 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1479 addr, len, prot, ma, io_hold_cnt + 2);
1480 if (cnt == -1) {
1481 error = EFAULT;
1482 break;
1483 }
1484 short_uio.uio_iov = &short_iovec[0];
1485 short_iovec[0].iov_base = (void *)addr;
1486 short_uio.uio_iovcnt = 1;
1487 short_uio.uio_resid = short_iovec[0].iov_len = len;
1488 short_uio.uio_offset = uio_clone->uio_offset;
1489 td->td_ma = ma;
1490 td->td_ma_cnt = cnt;
1491
1492 error = vn_io_fault_doio(args, &short_uio, td);
1493 vm_page_unhold_pages(ma, cnt);
1494 adv = len - short_uio.uio_resid;
1495
1496 uio_clone->uio_iov->iov_base =
1497 (char *)uio_clone->uio_iov->iov_base + adv;
1498 uio_clone->uio_iov->iov_len -= adv;
1499 uio_clone->uio_resid -= adv;
1500 uio_clone->uio_offset += adv;
1501
1502 uio->uio_resid -= adv;
1503 uio->uio_offset += adv;
1504
1505 if (error != 0 || adv == 0)
1506 break;
1507 }
1508 td->td_ma = prev_td_ma;
1509 td->td_ma_cnt = prev_td_ma_cnt;
1510 curthread_pflags_restore(saveheld);
1511 out:
1512 freeuio(uio_clone);
1513 return (error);
1514 }
1515
1516 static int
vn_io_fault(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1517 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1518 int flags, struct thread *td)
1519 {
1520 fo_rdwr_t *doio;
1521 struct vnode *vp;
1522 void *rl_cookie;
1523 struct vn_io_fault_args args;
1524 int error;
1525 bool do_io_fault, do_rangelock;
1526
1527 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1528 vp = fp->f_vnode;
1529
1530 /*
1531 * The ability to read(2) on a directory has historically been
1532 * allowed for all users, but this can and has been the source of
1533 * at least one security issue in the past. As such, it is now hidden
1534 * away behind a sysctl for those that actually need it to use it, and
1535 * restricted to root when it's turned on to make it relatively safe to
1536 * leave on for longer sessions of need.
1537 */
1538 if (vp->v_type == VDIR) {
1539 KASSERT(uio->uio_rw == UIO_READ,
1540 ("illegal write attempted on a directory"));
1541 if (!vfs_allow_read_dir)
1542 return (EISDIR);
1543 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1544 return (EISDIR);
1545 }
1546
1547 do_io_fault = do_vn_io_fault(vp, uio);
1548 do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0;
1549 foffset_lock_uio(fp, uio, flags);
1550 if (do_rangelock) {
1551 if (uio->uio_rw == UIO_READ) {
1552 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1553 uio->uio_offset + uio->uio_resid);
1554 } else if ((fp->f_flag & O_APPEND) != 0 ||
1555 (flags & FOF_OFFSET) == 0) {
1556 /* For appenders, punt and lock the whole range. */
1557 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1558 } else {
1559 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1560 uio->uio_offset + uio->uio_resid);
1561 }
1562 }
1563 if (do_io_fault) {
1564 args.kind = VN_IO_FAULT_FOP;
1565 args.args.fop_args.fp = fp;
1566 args.args.fop_args.doio = doio;
1567 args.cred = active_cred;
1568 args.flags = flags | FOF_OFFSET;
1569 error = vn_io_fault1(vp, uio, &args, td);
1570 } else {
1571 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1572 }
1573 if (do_rangelock)
1574 vn_rangelock_unlock(vp, rl_cookie);
1575 foffset_unlock_uio(fp, uio, flags);
1576 return (error);
1577 }
1578
1579 /*
1580 * Helper function to perform the requested uiomove operation using
1581 * the held pages for io->uio_iov[0].iov_base buffer instead of
1582 * copyin/copyout. Access to the pages with uiomove_fromphys()
1583 * instead of iov_base prevents page faults that could occur due to
1584 * pmap_collect() invalidating the mapping created by
1585 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1586 * object cleanup revoking the write access from page mappings.
1587 *
1588 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1589 * instead of plain uiomove().
1590 */
1591 int
vn_io_fault_uiomove(char * data,int xfersize,struct uio * uio)1592 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1593 {
1594 struct uio transp_uio;
1595 struct iovec transp_iov[1];
1596 struct thread *td;
1597 size_t adv;
1598 int error, pgadv;
1599
1600 td = curthread;
1601 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1602 uio->uio_segflg != UIO_USERSPACE)
1603 return (uiomove(data, xfersize, uio));
1604
1605 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1606 transp_iov[0].iov_base = data;
1607 transp_uio.uio_iov = &transp_iov[0];
1608 transp_uio.uio_iovcnt = 1;
1609 if (xfersize > uio->uio_resid)
1610 xfersize = uio->uio_resid;
1611 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1612 transp_uio.uio_offset = 0;
1613 transp_uio.uio_segflg = UIO_SYSSPACE;
1614 /*
1615 * Since transp_iov points to data, and td_ma page array
1616 * corresponds to original uio->uio_iov, we need to invert the
1617 * direction of the i/o operation as passed to
1618 * uiomove_fromphys().
1619 */
1620 switch (uio->uio_rw) {
1621 case UIO_WRITE:
1622 transp_uio.uio_rw = UIO_READ;
1623 break;
1624 case UIO_READ:
1625 transp_uio.uio_rw = UIO_WRITE;
1626 break;
1627 }
1628 transp_uio.uio_td = uio->uio_td;
1629 error = uiomove_fromphys(td->td_ma,
1630 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1631 xfersize, &transp_uio);
1632 adv = xfersize - transp_uio.uio_resid;
1633 pgadv =
1634 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1635 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1636 td->td_ma += pgadv;
1637 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1638 pgadv));
1639 td->td_ma_cnt -= pgadv;
1640 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1641 uio->uio_iov->iov_len -= adv;
1642 uio->uio_resid -= adv;
1643 uio->uio_offset += adv;
1644 return (error);
1645 }
1646
1647 int
vn_io_fault_pgmove(vm_page_t ma[],vm_offset_t offset,int xfersize,struct uio * uio)1648 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1649 struct uio *uio)
1650 {
1651 struct thread *td;
1652 vm_offset_t iov_base;
1653 int cnt, pgadv;
1654
1655 td = curthread;
1656 if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1657 uio->uio_segflg != UIO_USERSPACE)
1658 return (uiomove_fromphys(ma, offset, xfersize, uio));
1659
1660 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1661 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1662 iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1663 switch (uio->uio_rw) {
1664 case UIO_WRITE:
1665 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1666 offset, cnt);
1667 break;
1668 case UIO_READ:
1669 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1670 cnt);
1671 break;
1672 }
1673 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1674 td->td_ma += pgadv;
1675 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1676 pgadv));
1677 td->td_ma_cnt -= pgadv;
1678 uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1679 uio->uio_iov->iov_len -= cnt;
1680 uio->uio_resid -= cnt;
1681 uio->uio_offset += cnt;
1682 return (0);
1683 }
1684
1685 /*
1686 * File table truncate routine.
1687 */
1688 static int
vn_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1689 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1690 struct thread *td)
1691 {
1692 struct mount *mp;
1693 struct vnode *vp;
1694 void *rl_cookie;
1695 int error;
1696
1697 vp = fp->f_vnode;
1698
1699 retry:
1700 /*
1701 * Lock the whole range for truncation. Otherwise split i/o
1702 * might happen partly before and partly after the truncation.
1703 */
1704 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1705 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1706 if (error)
1707 goto out1;
1708 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1709 AUDIT_ARG_VNODE1(vp);
1710 if (vp->v_type == VDIR) {
1711 error = EISDIR;
1712 goto out;
1713 }
1714 #ifdef MAC
1715 error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1716 if (error)
1717 goto out;
1718 #endif
1719 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1720 fp->f_cred);
1721 out:
1722 VOP_UNLOCK(vp);
1723 vn_finished_write(mp);
1724 out1:
1725 vn_rangelock_unlock(vp, rl_cookie);
1726 if (error == ERELOOKUP)
1727 goto retry;
1728 return (error);
1729 }
1730
1731 /*
1732 * Truncate a file that is already locked.
1733 */
1734 int
vn_truncate_locked(struct vnode * vp,off_t length,bool sync,struct ucred * cred)1735 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1736 struct ucred *cred)
1737 {
1738 struct vattr vattr;
1739 int error;
1740
1741 error = VOP_ADD_WRITECOUNT(vp, 1);
1742 if (error == 0) {
1743 VATTR_NULL(&vattr);
1744 vattr.va_size = length;
1745 if (sync)
1746 vattr.va_vaflags |= VA_SYNC;
1747 error = VOP_SETATTR(vp, &vattr, cred);
1748 VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1749 }
1750 return (error);
1751 }
1752
1753 /*
1754 * File table vnode stat routine.
1755 */
1756 int
vn_statfile(struct file * fp,struct stat * sb,struct ucred * active_cred)1757 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1758 {
1759 struct vnode *vp = fp->f_vnode;
1760 int error;
1761
1762 vn_lock(vp, LK_SHARED | LK_RETRY);
1763 error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1764 VOP_UNLOCK(vp);
1765
1766 return (error);
1767 }
1768
1769 /*
1770 * File table vnode ioctl routine.
1771 */
1772 static int
vn_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)1773 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1774 struct thread *td)
1775 {
1776 struct vnode *vp;
1777 struct fiobmap2_arg *bmarg;
1778 off_t size;
1779 int error;
1780
1781 vp = fp->f_vnode;
1782 switch (vp->v_type) {
1783 case VDIR:
1784 case VREG:
1785 switch (com) {
1786 case FIONREAD:
1787 error = vn_getsize(vp, &size, active_cred);
1788 if (error == 0)
1789 *(int *)data = size - fp->f_offset;
1790 return (error);
1791 case FIOBMAP2:
1792 bmarg = (struct fiobmap2_arg *)data;
1793 vn_lock(vp, LK_SHARED | LK_RETRY);
1794 #ifdef MAC
1795 error = mac_vnode_check_read(active_cred, fp->f_cred,
1796 vp);
1797 if (error == 0)
1798 #endif
1799 error = VOP_BMAP(vp, bmarg->bn, NULL,
1800 &bmarg->bn, &bmarg->runp, &bmarg->runb);
1801 VOP_UNLOCK(vp);
1802 return (error);
1803 case FIONBIO:
1804 case FIOASYNC:
1805 return (0);
1806 default:
1807 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1808 active_cred, td));
1809 }
1810 break;
1811 case VCHR:
1812 return (VOP_IOCTL(vp, com, data, fp->f_flag,
1813 active_cred, td));
1814 default:
1815 return (ENOTTY);
1816 }
1817 }
1818
1819 /*
1820 * File table vnode poll routine.
1821 */
1822 static int
vn_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1823 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1824 struct thread *td)
1825 {
1826 struct vnode *vp;
1827 int error;
1828
1829 vp = fp->f_vnode;
1830 #if defined(MAC) || defined(AUDIT)
1831 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1832 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1833 AUDIT_ARG_VNODE1(vp);
1834 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1835 VOP_UNLOCK(vp);
1836 if (error != 0)
1837 return (error);
1838 }
1839 #endif
1840 error = VOP_POLL(vp, events, fp->f_cred, td);
1841 return (error);
1842 }
1843
1844 /*
1845 * Acquire the requested lock and then check for validity. LK_RETRY
1846 * permits vn_lock to return doomed vnodes.
1847 */
1848 static int __noinline
_vn_lock_fallback(struct vnode * vp,int flags,const char * file,int line,int error)1849 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1850 int error)
1851 {
1852
1853 KASSERT((flags & LK_RETRY) == 0 || error == 0,
1854 ("vn_lock: error %d incompatible with flags %#x", error, flags));
1855
1856 if (error == 0)
1857 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1858
1859 if ((flags & LK_RETRY) == 0) {
1860 if (error == 0) {
1861 VOP_UNLOCK(vp);
1862 error = ENOENT;
1863 }
1864 return (error);
1865 }
1866
1867 /*
1868 * LK_RETRY case.
1869 *
1870 * Nothing to do if we got the lock.
1871 */
1872 if (error == 0)
1873 return (0);
1874
1875 /*
1876 * Interlock was dropped by the call in _vn_lock.
1877 */
1878 flags &= ~LK_INTERLOCK;
1879 do {
1880 error = VOP_LOCK1(vp, flags, file, line);
1881 } while (error != 0);
1882 return (0);
1883 }
1884
1885 int
_vn_lock(struct vnode * vp,int flags,const char * file,int line)1886 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1887 {
1888 int error;
1889
1890 VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1891 ("vn_lock: no locktype (%d passed)", flags));
1892 VNPASS(vp->v_holdcnt > 0, vp);
1893 error = VOP_LOCK1(vp, flags, file, line);
1894 if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1895 return (_vn_lock_fallback(vp, flags, file, line, error));
1896 return (0);
1897 }
1898
1899 /*
1900 * File table vnode close routine.
1901 */
1902 static int
vn_closefile(struct file * fp,struct thread * td)1903 vn_closefile(struct file *fp, struct thread *td)
1904 {
1905 struct vnode *vp;
1906 struct flock lf;
1907 int error;
1908 bool ref;
1909
1910 vp = fp->f_vnode;
1911 fp->f_ops = &badfileops;
1912 ref = (fp->f_flag & FHASLOCK) != 0;
1913
1914 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1915
1916 if (__predict_false(ref)) {
1917 lf.l_whence = SEEK_SET;
1918 lf.l_start = 0;
1919 lf.l_len = 0;
1920 lf.l_type = F_UNLCK;
1921 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1922 vrele(vp);
1923 }
1924 return (error);
1925 }
1926
1927 /*
1928 * Preparing to start a filesystem write operation. If the operation is
1929 * permitted, then we bump the count of operations in progress and
1930 * proceed. If a suspend request is in progress, we wait until the
1931 * suspension is over, and then proceed.
1932 */
1933 static int
vn_start_write_refed(struct mount * mp,int flags,bool mplocked)1934 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1935 {
1936 struct mount_pcpu *mpcpu;
1937 int error, mflags;
1938
1939 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1940 vfs_op_thread_enter(mp, mpcpu)) {
1941 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1942 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1943 vfs_op_thread_exit(mp, mpcpu);
1944 return (0);
1945 }
1946
1947 if (mplocked)
1948 mtx_assert(MNT_MTX(mp), MA_OWNED);
1949 else
1950 MNT_ILOCK(mp);
1951
1952 error = 0;
1953
1954 /*
1955 * Check on status of suspension.
1956 */
1957 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1958 mp->mnt_susp_owner != curthread) {
1959 mflags = 0;
1960 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1961 if (flags & V_PCATCH)
1962 mflags |= PCATCH;
1963 }
1964 mflags |= PRI_MAX_KERN;
1965 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1966 if ((flags & V_NOWAIT) != 0) {
1967 error = EWOULDBLOCK;
1968 goto unlock;
1969 }
1970 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1971 "suspfs", 0);
1972 if (error != 0)
1973 goto unlock;
1974 }
1975 }
1976 if ((flags & V_XSLEEP) != 0)
1977 goto unlock;
1978 mp->mnt_writeopcount++;
1979 unlock:
1980 if (error != 0 || (flags & V_XSLEEP) != 0)
1981 MNT_REL(mp);
1982 MNT_IUNLOCK(mp);
1983 return (error);
1984 }
1985
1986 int
vn_start_write(struct vnode * vp,struct mount ** mpp,int flags)1987 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1988 {
1989 struct mount *mp;
1990 int error;
1991
1992 KASSERT((flags & ~V_VALID_FLAGS) == 0,
1993 ("%s: invalid flags passed %d\n", __func__, flags));
1994
1995 error = 0;
1996 /*
1997 * If a vnode is provided, get and return the mount point that
1998 * to which it will write.
1999 */
2000 if (vp != NULL) {
2001 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
2002 *mpp = NULL;
2003 if (error != EOPNOTSUPP)
2004 return (error);
2005 return (0);
2006 }
2007 }
2008 if ((mp = *mpp) == NULL)
2009 return (0);
2010
2011 /*
2012 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2013 * a vfs_ref().
2014 * As long as a vnode is not provided we need to acquire a
2015 * refcount for the provided mountpoint too, in order to
2016 * emulate a vfs_ref().
2017 */
2018 if (vp == NULL)
2019 vfs_ref(mp);
2020
2021 error = vn_start_write_refed(mp, flags, false);
2022 if (error != 0 && (flags & V_NOWAIT) == 0)
2023 *mpp = NULL;
2024 return (error);
2025 }
2026
2027 /*
2028 * Secondary suspension. Used by operations such as vop_inactive
2029 * routines that are needed by the higher level functions. These
2030 * are allowed to proceed until all the higher level functions have
2031 * completed (indicated by mnt_writeopcount dropping to zero). At that
2032 * time, these operations are halted until the suspension is over.
2033 */
2034 int
vn_start_secondary_write(struct vnode * vp,struct mount ** mpp,int flags)2035 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
2036 {
2037 struct mount *mp;
2038 int error, mflags;
2039
2040 KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
2041 ("%s: invalid flags passed %d\n", __func__, flags));
2042
2043 retry:
2044 if (vp != NULL) {
2045 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
2046 *mpp = NULL;
2047 if (error != EOPNOTSUPP)
2048 return (error);
2049 return (0);
2050 }
2051 }
2052 /*
2053 * If we are not suspended or have not yet reached suspended
2054 * mode, then let the operation proceed.
2055 */
2056 if ((mp = *mpp) == NULL)
2057 return (0);
2058
2059 /*
2060 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
2061 * a vfs_ref().
2062 * As long as a vnode is not provided we need to acquire a
2063 * refcount for the provided mountpoint too, in order to
2064 * emulate a vfs_ref().
2065 */
2066 MNT_ILOCK(mp);
2067 if (vp == NULL)
2068 MNT_REF(mp);
2069 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
2070 mp->mnt_secondary_writes++;
2071 mp->mnt_secondary_accwrites++;
2072 MNT_IUNLOCK(mp);
2073 return (0);
2074 }
2075 if ((flags & V_NOWAIT) != 0) {
2076 MNT_REL(mp);
2077 MNT_IUNLOCK(mp);
2078 *mpp = NULL;
2079 return (EWOULDBLOCK);
2080 }
2081 /*
2082 * Wait for the suspension to finish.
2083 */
2084 mflags = 0;
2085 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2086 if ((flags & V_PCATCH) != 0)
2087 mflags |= PCATCH;
2088 }
2089 mflags |= PRI_MAX_KERN | PDROP;
2090 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2091 vfs_rel(mp);
2092 if (error == 0)
2093 goto retry;
2094 *mpp = NULL;
2095 return (error);
2096 }
2097
2098 /*
2099 * Filesystem write operation has completed. If we are suspending and this
2100 * operation is the last one, notify the suspender that the suspension is
2101 * now in effect.
2102 */
2103 void
vn_finished_write(struct mount * mp)2104 vn_finished_write(struct mount *mp)
2105 {
2106 struct mount_pcpu *mpcpu;
2107 int c;
2108
2109 if (mp == NULL)
2110 return;
2111
2112 if (vfs_op_thread_enter(mp, mpcpu)) {
2113 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2114 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2115 vfs_op_thread_exit(mp, mpcpu);
2116 return;
2117 }
2118
2119 MNT_ILOCK(mp);
2120 vfs_assert_mount_counters(mp);
2121 MNT_REL(mp);
2122 c = --mp->mnt_writeopcount;
2123 if (mp->mnt_vfs_ops == 0) {
2124 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2125 MNT_IUNLOCK(mp);
2126 return;
2127 }
2128 if (c < 0)
2129 vfs_dump_mount_counters(mp);
2130 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2131 wakeup(&mp->mnt_writeopcount);
2132 MNT_IUNLOCK(mp);
2133 }
2134
2135 /*
2136 * Filesystem secondary write operation has completed. If we are
2137 * suspending and this operation is the last one, notify the suspender
2138 * that the suspension is now in effect.
2139 */
2140 void
vn_finished_secondary_write(struct mount * mp)2141 vn_finished_secondary_write(struct mount *mp)
2142 {
2143 if (mp == NULL)
2144 return;
2145 MNT_ILOCK(mp);
2146 MNT_REL(mp);
2147 mp->mnt_secondary_writes--;
2148 if (mp->mnt_secondary_writes < 0)
2149 panic("vn_finished_secondary_write: neg cnt");
2150 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2151 mp->mnt_secondary_writes <= 0)
2152 wakeup(&mp->mnt_secondary_writes);
2153 MNT_IUNLOCK(mp);
2154 }
2155
2156 /*
2157 * Request a filesystem to suspend write operations.
2158 */
2159 int
vfs_write_suspend(struct mount * mp,int flags)2160 vfs_write_suspend(struct mount *mp, int flags)
2161 {
2162 int error;
2163
2164 vfs_op_enter(mp);
2165
2166 MNT_ILOCK(mp);
2167 vfs_assert_mount_counters(mp);
2168 if (mp->mnt_susp_owner == curthread) {
2169 vfs_op_exit_locked(mp);
2170 MNT_IUNLOCK(mp);
2171 return (EALREADY);
2172 }
2173 while (mp->mnt_kern_flag & MNTK_SUSPEND)
2174 msleep(&mp->mnt_flag, MNT_MTX(mp), PRI_MAX_KERN, "wsuspfs", 0);
2175
2176 /*
2177 * Unmount holds a write reference on the mount point. If we
2178 * own busy reference and drain for writers, we deadlock with
2179 * the reference draining in the unmount path. Callers of
2180 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2181 * vfs_busy() reference is owned and caller is not in the
2182 * unmount context.
2183 */
2184 if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2185 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2186 vfs_op_exit_locked(mp);
2187 MNT_IUNLOCK(mp);
2188 return (EBUSY);
2189 }
2190
2191 mp->mnt_kern_flag |= MNTK_SUSPEND;
2192 mp->mnt_susp_owner = curthread;
2193 if (mp->mnt_writeopcount > 0)
2194 (void) msleep(&mp->mnt_writeopcount,
2195 MNT_MTX(mp), PRI_MAX_KERN | PDROP, "suspwt", 0);
2196 else
2197 MNT_IUNLOCK(mp);
2198 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2199 vfs_write_resume(mp, 0);
2200 /* vfs_write_resume does vfs_op_exit() for us */
2201 }
2202 return (error);
2203 }
2204
2205 /*
2206 * Request a filesystem to resume write operations.
2207 */
2208 void
vfs_write_resume(struct mount * mp,int flags)2209 vfs_write_resume(struct mount *mp, int flags)
2210 {
2211
2212 MNT_ILOCK(mp);
2213 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2214 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2215 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2216 MNTK_SUSPENDED);
2217 mp->mnt_susp_owner = NULL;
2218 wakeup(&mp->mnt_writeopcount);
2219 wakeup(&mp->mnt_flag);
2220 curthread->td_pflags &= ~TDP_IGNSUSP;
2221 if ((flags & VR_START_WRITE) != 0) {
2222 MNT_REF(mp);
2223 mp->mnt_writeopcount++;
2224 }
2225 MNT_IUNLOCK(mp);
2226 if ((flags & VR_NO_SUSPCLR) == 0)
2227 VFS_SUSP_CLEAN(mp);
2228 vfs_op_exit(mp);
2229 } else if ((flags & VR_START_WRITE) != 0) {
2230 MNT_REF(mp);
2231 vn_start_write_refed(mp, 0, true);
2232 } else {
2233 MNT_IUNLOCK(mp);
2234 }
2235 }
2236
2237 /*
2238 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2239 * methods.
2240 */
2241 int
vfs_write_suspend_umnt(struct mount * mp)2242 vfs_write_suspend_umnt(struct mount *mp)
2243 {
2244 int error;
2245
2246 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2247 ("vfs_write_suspend_umnt: recursed"));
2248
2249 /* dounmount() already called vn_start_write(). */
2250 for (;;) {
2251 vn_finished_write(mp);
2252 error = vfs_write_suspend(mp, 0);
2253 if (error != 0) {
2254 vn_start_write(NULL, &mp, V_WAIT);
2255 return (error);
2256 }
2257 MNT_ILOCK(mp);
2258 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2259 break;
2260 MNT_IUNLOCK(mp);
2261 vn_start_write(NULL, &mp, V_WAIT);
2262 }
2263 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2264 wakeup(&mp->mnt_flag);
2265 MNT_IUNLOCK(mp);
2266 curthread->td_pflags |= TDP_IGNSUSP;
2267 return (0);
2268 }
2269
2270 /*
2271 * Implement kqueues for files by translating it to vnode operation.
2272 */
2273 static int
vn_kqfilter(struct file * fp,struct knote * kn)2274 vn_kqfilter(struct file *fp, struct knote *kn)
2275 {
2276
2277 return (VOP_KQFILTER(fp->f_vnode, kn));
2278 }
2279
2280 int
vn_kqfilter_opath(struct file * fp,struct knote * kn)2281 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2282 {
2283 if ((fp->f_flag & FKQALLOWED) == 0)
2284 return (EBADF);
2285 return (vn_kqfilter(fp, kn));
2286 }
2287
2288 /*
2289 * Simplified in-kernel wrapper calls for extended attribute access.
2290 * Both calls pass in a NULL credential, authorizing as "kernel" access.
2291 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2292 */
2293 int
vn_extattr_get(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int * buflen,char * buf,struct thread * td)2294 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2295 const char *attrname, int *buflen, char *buf, struct thread *td)
2296 {
2297 struct uio auio;
2298 struct iovec iov;
2299 int error;
2300
2301 iov.iov_len = *buflen;
2302 iov.iov_base = buf;
2303
2304 auio.uio_iov = &iov;
2305 auio.uio_iovcnt = 1;
2306 auio.uio_rw = UIO_READ;
2307 auio.uio_segflg = UIO_SYSSPACE;
2308 auio.uio_td = td;
2309 auio.uio_offset = 0;
2310 auio.uio_resid = *buflen;
2311
2312 if ((ioflg & IO_NODELOCKED) == 0)
2313 vn_lock(vp, LK_SHARED | LK_RETRY);
2314
2315 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2316
2317 /* authorize attribute retrieval as kernel */
2318 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2319 td);
2320
2321 if ((ioflg & IO_NODELOCKED) == 0)
2322 VOP_UNLOCK(vp);
2323
2324 if (error == 0) {
2325 *buflen = *buflen - auio.uio_resid;
2326 }
2327
2328 return (error);
2329 }
2330
2331 /*
2332 * XXX failure mode if partially written?
2333 */
2334 int
vn_extattr_set(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,int buflen,char * buf,struct thread * td)2335 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2336 const char *attrname, int buflen, char *buf, struct thread *td)
2337 {
2338 struct uio auio;
2339 struct iovec iov;
2340 struct mount *mp;
2341 int error;
2342
2343 iov.iov_len = buflen;
2344 iov.iov_base = buf;
2345
2346 auio.uio_iov = &iov;
2347 auio.uio_iovcnt = 1;
2348 auio.uio_rw = UIO_WRITE;
2349 auio.uio_segflg = UIO_SYSSPACE;
2350 auio.uio_td = td;
2351 auio.uio_offset = 0;
2352 auio.uio_resid = buflen;
2353
2354 if ((ioflg & IO_NODELOCKED) == 0) {
2355 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2356 return (error);
2357 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2358 }
2359
2360 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2361
2362 /* authorize attribute setting as kernel */
2363 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2364
2365 if ((ioflg & IO_NODELOCKED) == 0) {
2366 vn_finished_write(mp);
2367 VOP_UNLOCK(vp);
2368 }
2369
2370 return (error);
2371 }
2372
2373 int
vn_extattr_rm(struct vnode * vp,int ioflg,int attrnamespace,const char * attrname,struct thread * td)2374 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2375 const char *attrname, struct thread *td)
2376 {
2377 struct mount *mp;
2378 int error;
2379
2380 if ((ioflg & IO_NODELOCKED) == 0) {
2381 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2382 return (error);
2383 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2384 }
2385
2386 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2387
2388 /* authorize attribute removal as kernel */
2389 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2390 if (error == EOPNOTSUPP)
2391 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2392 NULL, td);
2393
2394 if ((ioflg & IO_NODELOCKED) == 0) {
2395 vn_finished_write(mp);
2396 VOP_UNLOCK(vp);
2397 }
2398
2399 return (error);
2400 }
2401
2402 static int
vn_get_ino_alloc_vget(struct mount * mp,void * arg,int lkflags,struct vnode ** rvp)2403 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2404 struct vnode **rvp)
2405 {
2406
2407 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2408 }
2409
2410 int
vn_vget_ino(struct vnode * vp,ino_t ino,int lkflags,struct vnode ** rvp)2411 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2412 {
2413
2414 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2415 lkflags, rvp));
2416 }
2417
2418 int
vn_vget_ino_gen(struct vnode * vp,vn_get_ino_t alloc,void * alloc_arg,int lkflags,struct vnode ** rvp)2419 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2420 int lkflags, struct vnode **rvp)
2421 {
2422 struct mount *mp;
2423 int ltype, error;
2424
2425 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2426 mp = vp->v_mount;
2427 ltype = VOP_ISLOCKED(vp);
2428 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2429 ("vn_vget_ino: vp not locked"));
2430 error = vfs_busy(mp, MBF_NOWAIT);
2431 if (error != 0) {
2432 vfs_ref(mp);
2433 VOP_UNLOCK(vp);
2434 error = vfs_busy(mp, 0);
2435 vn_lock(vp, ltype | LK_RETRY);
2436 vfs_rel(mp);
2437 if (error != 0)
2438 return (ENOENT);
2439 if (VN_IS_DOOMED(vp)) {
2440 vfs_unbusy(mp);
2441 return (ENOENT);
2442 }
2443 }
2444 VOP_UNLOCK(vp);
2445 error = alloc(mp, alloc_arg, lkflags, rvp);
2446 vfs_unbusy(mp);
2447 if (error != 0 || *rvp != vp)
2448 vn_lock(vp, ltype | LK_RETRY);
2449 if (VN_IS_DOOMED(vp)) {
2450 if (error == 0) {
2451 if (*rvp == vp)
2452 vunref(vp);
2453 else
2454 vput(*rvp);
2455 }
2456 error = ENOENT;
2457 }
2458 return (error);
2459 }
2460
2461 static void
vn_send_sigxfsz(struct proc * p)2462 vn_send_sigxfsz(struct proc *p)
2463 {
2464 PROC_LOCK(p);
2465 kern_psignal(p, SIGXFSZ);
2466 PROC_UNLOCK(p);
2467 }
2468
2469 int
vn_rlimit_trunc(u_quad_t size,struct thread * td)2470 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2471 {
2472 if (size <= lim_cur(td, RLIMIT_FSIZE))
2473 return (0);
2474 vn_send_sigxfsz(td->td_proc);
2475 return (EFBIG);
2476 }
2477
2478 static int
vn_rlimit_fsizex1(const struct vnode * vp,struct uio * uio,off_t maxfsz,bool adj,struct thread * td)2479 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2480 bool adj, struct thread *td)
2481 {
2482 off_t lim;
2483 bool ktr_write;
2484
2485 if (vp->v_type != VREG)
2486 return (0);
2487
2488 /*
2489 * Handle file system maximum file size.
2490 */
2491 if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2492 if (!adj || uio->uio_offset >= maxfsz)
2493 return (EFBIG);
2494 uio->uio_resid = maxfsz - uio->uio_offset;
2495 }
2496
2497 /*
2498 * This is kernel write (e.g. vnode_pager) or accounting
2499 * write, ignore limit.
2500 */
2501 if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2502 return (0);
2503
2504 /*
2505 * Calculate file size limit.
2506 */
2507 ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2508 lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2509 lim_cur(td, RLIMIT_FSIZE);
2510
2511 /*
2512 * Is the limit reached?
2513 */
2514 if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2515 return (0);
2516
2517 /*
2518 * Prepared filesystems can handle writes truncated to the
2519 * file size limit.
2520 */
2521 if (adj && (uoff_t)uio->uio_offset < lim) {
2522 uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2523 return (0);
2524 }
2525
2526 if (!ktr_write || ktr_filesize_limit_signal)
2527 vn_send_sigxfsz(td->td_proc);
2528 return (EFBIG);
2529 }
2530
2531 /*
2532 * Helper for VOP_WRITE() implementations, the common code to
2533 * handle maximum supported file size on the filesystem, and
2534 * RLIMIT_FSIZE, except for special writes from accounting subsystem
2535 * and ktrace.
2536 *
2537 * For maximum file size (maxfsz argument):
2538 * - return EFBIG if uio_offset is beyond it
2539 * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2540 *
2541 * For RLIMIT_FSIZE:
2542 * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2543 * - otherwise, clamp uio_resid if write would extend file beyond limit.
2544 *
2545 * If clamping occured, the adjustment for uio_resid is stored in
2546 * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2547 * from the VOP.
2548 */
2549 int
vn_rlimit_fsizex(const struct vnode * vp,struct uio * uio,off_t maxfsz,ssize_t * resid_adj,struct thread * td)2550 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2551 ssize_t *resid_adj, struct thread *td)
2552 {
2553 ssize_t resid_orig;
2554 int error;
2555 bool adj;
2556
2557 resid_orig = uio->uio_resid;
2558 adj = resid_adj != NULL;
2559 error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2560 if (adj)
2561 *resid_adj = resid_orig - uio->uio_resid;
2562 return (error);
2563 }
2564
2565 void
vn_rlimit_fsizex_res(struct uio * uio,ssize_t resid_adj)2566 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2567 {
2568 uio->uio_resid += resid_adj;
2569 }
2570
2571 int
vn_rlimit_fsize(const struct vnode * vp,const struct uio * uio,struct thread * td)2572 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2573 struct thread *td)
2574 {
2575 return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2576 td));
2577 }
2578
2579 int
vn_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)2580 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2581 struct thread *td)
2582 {
2583 struct vnode *vp;
2584
2585 vp = fp->f_vnode;
2586 #ifdef AUDIT
2587 vn_lock(vp, LK_SHARED | LK_RETRY);
2588 AUDIT_ARG_VNODE1(vp);
2589 VOP_UNLOCK(vp);
2590 #endif
2591 return (setfmode(td, active_cred, vp, mode));
2592 }
2593
2594 int
vn_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)2595 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2596 struct thread *td)
2597 {
2598 struct vnode *vp;
2599
2600 vp = fp->f_vnode;
2601 #ifdef AUDIT
2602 vn_lock(vp, LK_SHARED | LK_RETRY);
2603 AUDIT_ARG_VNODE1(vp);
2604 VOP_UNLOCK(vp);
2605 #endif
2606 return (setfown(td, active_cred, vp, uid, gid));
2607 }
2608
2609 /*
2610 * Remove pages in the range ["start", "end") from the vnode's VM object. If
2611 * "end" is 0, then the range extends to the end of the object.
2612 */
2613 void
vn_pages_remove(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2614 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2615 {
2616 vm_object_t object;
2617
2618 if ((object = vp->v_object) == NULL)
2619 return;
2620 VM_OBJECT_WLOCK(object);
2621 vm_object_page_remove(object, start, end, 0);
2622 VM_OBJECT_WUNLOCK(object);
2623 }
2624
2625 /*
2626 * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2627 * mapped into any process' address space. Filesystems may use this in
2628 * preference to vn_pages_remove() to avoid blocking on pages busied in
2629 * preparation for a VOP_GETPAGES.
2630 */
2631 void
vn_pages_remove_valid(struct vnode * vp,vm_pindex_t start,vm_pindex_t end)2632 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2633 {
2634 vm_object_t object;
2635
2636 if ((object = vp->v_object) == NULL)
2637 return;
2638 VM_OBJECT_WLOCK(object);
2639 vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2640 VM_OBJECT_WUNLOCK(object);
2641 }
2642
2643 int
vn_bmap_seekhole_locked(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2644 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2645 struct ucred *cred)
2646 {
2647 off_t size;
2648 daddr_t bn, bnp;
2649 uint64_t bsize;
2650 off_t noff;
2651 int error;
2652
2653 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2654 ("%s: Wrong command %lu", __func__, cmd));
2655 ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2656
2657 if (vp->v_type != VREG) {
2658 error = ENOTTY;
2659 goto out;
2660 }
2661 error = vn_getsize_locked(vp, &size, cred);
2662 if (error != 0)
2663 goto out;
2664 noff = *off;
2665 if (noff < 0 || noff >= size) {
2666 error = ENXIO;
2667 goto out;
2668 }
2669
2670 /* See the comment in ufs_bmap_seekdata(). */
2671 vnode_pager_clean_sync(vp);
2672
2673 bsize = vp->v_mount->mnt_stat.f_iosize;
2674 for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2675 noff % bsize) {
2676 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2677 if (error == EOPNOTSUPP) {
2678 error = ENOTTY;
2679 goto out;
2680 }
2681 if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2682 (bnp != -1 && cmd == FIOSEEKDATA)) {
2683 noff = bn * bsize;
2684 if (noff < *off)
2685 noff = *off;
2686 goto out;
2687 }
2688 }
2689 if (noff > size)
2690 noff = size;
2691 /* noff == size. There is an implicit hole at the end of file. */
2692 if (cmd == FIOSEEKDATA)
2693 error = ENXIO;
2694 out:
2695 if (error == 0)
2696 *off = noff;
2697 return (error);
2698 }
2699
2700 int
vn_bmap_seekhole(struct vnode * vp,u_long cmd,off_t * off,struct ucred * cred)2701 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2702 {
2703 int error;
2704
2705 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2706 ("%s: Wrong command %lu", __func__, cmd));
2707
2708 if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2709 return (EBADF);
2710 error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2711 VOP_UNLOCK(vp);
2712 return (error);
2713 }
2714
2715 int
vn_seek(struct file * fp,off_t offset,int whence,struct thread * td)2716 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2717 {
2718 struct ucred *cred;
2719 struct vnode *vp;
2720 off_t foffset, fsize, size;
2721 int error, noneg;
2722
2723 cred = td->td_ucred;
2724 vp = fp->f_vnode;
2725 noneg = (vp->v_type != VCHR);
2726 /*
2727 * Try to dodge locking for common case of querying the offset.
2728 */
2729 if (whence == L_INCR && offset == 0) {
2730 foffset = foffset_read(fp);
2731 if (__predict_false(foffset < 0 && noneg)) {
2732 return (EOVERFLOW);
2733 }
2734 td->td_uretoff.tdu_off = foffset;
2735 return (0);
2736 }
2737 foffset = foffset_lock(fp, 0);
2738 error = 0;
2739 switch (whence) {
2740 case L_INCR:
2741 if (noneg &&
2742 (foffset < 0 ||
2743 (offset > 0 && foffset > OFF_MAX - offset))) {
2744 error = EOVERFLOW;
2745 break;
2746 }
2747 offset += foffset;
2748 break;
2749 case L_XTND:
2750 error = vn_getsize(vp, &fsize, cred);
2751 if (error != 0)
2752 break;
2753
2754 /*
2755 * If the file references a disk device, then fetch
2756 * the media size and use that to determine the ending
2757 * offset.
2758 */
2759 if (fsize == 0 && vp->v_type == VCHR &&
2760 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2761 fsize = size;
2762 if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2763 error = EOVERFLOW;
2764 break;
2765 }
2766 offset += fsize;
2767 break;
2768 case L_SET:
2769 break;
2770 case SEEK_DATA:
2771 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2772 if (error == ENOTTY)
2773 error = EINVAL;
2774 break;
2775 case SEEK_HOLE:
2776 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2777 if (error == ENOTTY)
2778 error = EINVAL;
2779 break;
2780 default:
2781 error = EINVAL;
2782 }
2783 if (error == 0 && noneg && offset < 0)
2784 error = EINVAL;
2785 if (error != 0)
2786 goto drop;
2787 VFS_KNOTE_UNLOCKED(vp, 0);
2788 td->td_uretoff.tdu_off = offset;
2789 drop:
2790 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2791 return (error);
2792 }
2793
2794 int
vn_utimes_perm(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2795 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2796 struct thread *td)
2797 {
2798 int error;
2799
2800 /*
2801 * Grant permission if the caller is the owner of the file, or
2802 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2803 * on the file. If the time pointer is null, then write
2804 * permission on the file is also sufficient.
2805 *
2806 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2807 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2808 * will be allowed to set the times [..] to the current
2809 * server time.
2810 */
2811 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2812 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2813 error = VOP_ACCESS(vp, VWRITE, cred, td);
2814 return (error);
2815 }
2816
2817 int
vn_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2818 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2819 {
2820 struct vnode *vp;
2821 int error;
2822
2823 if (fp->f_type == DTYPE_FIFO)
2824 kif->kf_type = KF_TYPE_FIFO;
2825 else
2826 kif->kf_type = KF_TYPE_VNODE;
2827 vp = fp->f_vnode;
2828 vref(vp);
2829 FILEDESC_SUNLOCK(fdp);
2830 error = vn_fill_kinfo_vnode(vp, kif);
2831 vrele(vp);
2832 FILEDESC_SLOCK(fdp);
2833 return (error);
2834 }
2835
2836 static inline void
vn_fill_junk(struct kinfo_file * kif)2837 vn_fill_junk(struct kinfo_file *kif)
2838 {
2839 size_t len, olen;
2840
2841 /*
2842 * Simulate vn_fullpath returning changing values for a given
2843 * vp during e.g. coredump.
2844 */
2845 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2846 olen = strlen(kif->kf_path);
2847 if (len < olen)
2848 strcpy(&kif->kf_path[len - 1], "$");
2849 else
2850 for (; olen < len; olen++)
2851 strcpy(&kif->kf_path[olen], "A");
2852 }
2853
2854 int
vn_fill_kinfo_vnode(struct vnode * vp,struct kinfo_file * kif)2855 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2856 {
2857 struct vattr va;
2858 char *fullpath, *freepath;
2859 int error;
2860
2861 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2862 freepath = NULL;
2863 fullpath = "-";
2864 error = vn_fullpath(vp, &fullpath, &freepath);
2865 if (error == 0) {
2866 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2867 }
2868 if (freepath != NULL)
2869 free(freepath, M_TEMP);
2870
2871 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2872 vn_fill_junk(kif);
2873 );
2874
2875 /*
2876 * Retrieve vnode attributes.
2877 */
2878 va.va_fsid = VNOVAL;
2879 va.va_rdev = NODEV;
2880 vn_lock(vp, LK_SHARED | LK_RETRY);
2881 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2882 VOP_UNLOCK(vp);
2883 if (error != 0)
2884 return (error);
2885 if (va.va_fsid != VNOVAL)
2886 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2887 else
2888 kif->kf_un.kf_file.kf_file_fsid =
2889 vp->v_mount->mnt_stat.f_fsid.val[0];
2890 kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2891 kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2892 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2893 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2894 kif->kf_un.kf_file.kf_file_size = va.va_size;
2895 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2896 kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2897 kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2898 kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2899 return (0);
2900 }
2901
2902 int
vn_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)2903 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2904 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2905 struct thread *td)
2906 {
2907 #ifdef HWPMC_HOOKS
2908 struct pmckern_map_in pkm;
2909 #endif
2910 struct mount *mp;
2911 struct vnode *vp;
2912 vm_object_t object;
2913 vm_prot_t maxprot;
2914 boolean_t writecounted;
2915 int error;
2916
2917 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2918 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2919 /*
2920 * POSIX shared-memory objects are defined to have
2921 * kernel persistence, and are not defined to support
2922 * read(2)/write(2) -- or even open(2). Thus, we can
2923 * use MAP_ASYNC to trade on-disk coherence for speed.
2924 * The shm_open(3) library routine turns on the FPOSIXSHM
2925 * flag to request this behavior.
2926 */
2927 if ((fp->f_flag & FPOSIXSHM) != 0)
2928 flags |= MAP_NOSYNC;
2929 #endif
2930 vp = fp->f_vnode;
2931
2932 /*
2933 * Ensure that file and memory protections are
2934 * compatible. Note that we only worry about
2935 * writability if mapping is shared; in this case,
2936 * current and max prot are dictated by the open file.
2937 * XXX use the vnode instead? Problem is: what
2938 * credentials do we use for determination? What if
2939 * proc does a setuid?
2940 */
2941 mp = vp->v_mount;
2942 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2943 maxprot = VM_PROT_NONE;
2944 if ((prot & VM_PROT_EXECUTE) != 0)
2945 return (EACCES);
2946 } else
2947 maxprot = VM_PROT_EXECUTE;
2948 if ((fp->f_flag & FREAD) != 0)
2949 maxprot |= VM_PROT_READ;
2950 else if ((prot & VM_PROT_READ) != 0)
2951 return (EACCES);
2952
2953 /*
2954 * If we are sharing potential changes via MAP_SHARED and we
2955 * are trying to get write permission although we opened it
2956 * without asking for it, bail out.
2957 */
2958 if ((flags & MAP_SHARED) != 0) {
2959 if ((fp->f_flag & FWRITE) != 0)
2960 maxprot |= VM_PROT_WRITE;
2961 else if ((prot & VM_PROT_WRITE) != 0)
2962 return (EACCES);
2963 } else {
2964 maxprot |= VM_PROT_WRITE;
2965 cap_maxprot |= VM_PROT_WRITE;
2966 }
2967 maxprot &= cap_maxprot;
2968
2969 /*
2970 * For regular files and shared memory, POSIX requires that
2971 * the value of foff be a legitimate offset within the data
2972 * object. In particular, negative offsets are invalid.
2973 * Blocking negative offsets and overflows here avoids
2974 * possible wraparound or user-level access into reserved
2975 * ranges of the data object later. In contrast, POSIX does
2976 * not dictate how offsets are used by device drivers, so in
2977 * the case of a device mapping a negative offset is passed
2978 * on.
2979 */
2980 if (
2981 #ifdef _LP64
2982 size > OFF_MAX ||
2983 #endif
2984 foff > OFF_MAX - size)
2985 return (EINVAL);
2986
2987 writecounted = FALSE;
2988 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2989 &foff, &object, &writecounted);
2990 if (error != 0)
2991 return (error);
2992 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2993 foff, writecounted, td);
2994 if (error != 0) {
2995 /*
2996 * If this mapping was accounted for in the vnode's
2997 * writecount, then undo that now.
2998 */
2999 if (writecounted)
3000 vm_pager_release_writecount(object, 0, size);
3001 vm_object_deallocate(object);
3002 }
3003 #ifdef HWPMC_HOOKS
3004 /* Inform hwpmc(4) if an executable is being mapped. */
3005 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
3006 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
3007 pkm.pm_file = vp;
3008 pkm.pm_address = (uintptr_t) *addr;
3009 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
3010 }
3011 }
3012 #endif
3013
3014 #ifdef HWT_HOOKS
3015 if (HWT_HOOK_INSTALLED && (prot & VM_PROT_EXECUTE) != 0 &&
3016 error == 0) {
3017 struct hwt_record_entry ent;
3018 char *fullpath;
3019 char *freepath;
3020
3021 if (vn_fullpath(vp, &fullpath, &freepath) == 0) {
3022 ent.fullpath = fullpath;
3023 ent.addr = (uintptr_t) *addr;
3024 ent.record_type = HWT_RECORD_MMAP;
3025 HWT_CALL_HOOK(td, HWT_MMAP, &ent);
3026 free(freepath, M_TEMP);
3027 }
3028 }
3029 #endif
3030
3031 return (error);
3032 }
3033
3034 void
vn_fsid(struct vnode * vp,struct vattr * va)3035 vn_fsid(struct vnode *vp, struct vattr *va)
3036 {
3037 fsid_t *f;
3038
3039 f = &vp->v_mount->mnt_stat.f_fsid;
3040 va->va_fsid = (uint32_t)f->val[1];
3041 va->va_fsid <<= sizeof(f->val[1]) * NBBY;
3042 va->va_fsid += (uint32_t)f->val[0];
3043 }
3044
3045 int
vn_fsync_buf(struct vnode * vp,int waitfor)3046 vn_fsync_buf(struct vnode *vp, int waitfor)
3047 {
3048 struct buf *bp, *nbp;
3049 struct bufobj *bo;
3050 struct mount *mp;
3051 int error, maxretry;
3052
3053 error = 0;
3054 maxretry = 10000; /* large, arbitrarily chosen */
3055 mp = NULL;
3056 if (vp->v_type == VCHR) {
3057 VI_LOCK(vp);
3058 mp = vp->v_rdev->si_mountpt;
3059 VI_UNLOCK(vp);
3060 }
3061 bo = &vp->v_bufobj;
3062 BO_LOCK(bo);
3063 loop1:
3064 /*
3065 * MARK/SCAN initialization to avoid infinite loops.
3066 */
3067 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
3068 bp->b_vflags &= ~BV_SCANNED;
3069 bp->b_error = 0;
3070 }
3071
3072 /*
3073 * Flush all dirty buffers associated with a vnode.
3074 */
3075 loop2:
3076 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
3077 if ((bp->b_vflags & BV_SCANNED) != 0)
3078 continue;
3079 bp->b_vflags |= BV_SCANNED;
3080 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
3081 if (waitfor != MNT_WAIT)
3082 continue;
3083 if (BUF_LOCK(bp,
3084 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
3085 BO_LOCKPTR(bo)) != 0) {
3086 BO_LOCK(bo);
3087 goto loop1;
3088 }
3089 BO_LOCK(bo);
3090 }
3091 BO_UNLOCK(bo);
3092 KASSERT(bp->b_bufobj == bo,
3093 ("bp %p wrong b_bufobj %p should be %p",
3094 bp, bp->b_bufobj, bo));
3095 if ((bp->b_flags & B_DELWRI) == 0)
3096 panic("fsync: not dirty");
3097 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
3098 vfs_bio_awrite(bp);
3099 } else {
3100 bremfree(bp);
3101 bawrite(bp);
3102 }
3103 if (maxretry < 1000)
3104 pause("dirty", hz < 1000 ? 1 : hz / 1000);
3105 BO_LOCK(bo);
3106 goto loop2;
3107 }
3108
3109 /*
3110 * If synchronous the caller expects us to completely resolve all
3111 * dirty buffers in the system. Wait for in-progress I/O to
3112 * complete (which could include background bitmap writes), then
3113 * retry if dirty blocks still exist.
3114 */
3115 if (waitfor == MNT_WAIT) {
3116 bufobj_wwait(bo, 0, 0);
3117 if (bo->bo_dirty.bv_cnt > 0) {
3118 /*
3119 * If we are unable to write any of these buffers
3120 * then we fail now rather than trying endlessly
3121 * to write them out.
3122 */
3123 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3124 if ((error = bp->b_error) != 0)
3125 break;
3126 if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3127 (error == 0 && --maxretry >= 0))
3128 goto loop1;
3129 if (error == 0)
3130 error = EAGAIN;
3131 }
3132 }
3133 BO_UNLOCK(bo);
3134 if (error != 0)
3135 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3136
3137 return (error);
3138 }
3139
3140 /*
3141 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE()
3142 * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3143 * to do the actual copy.
3144 * vn_generic_copy_file_range() is factored out, so it can be called
3145 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3146 * different file systems.
3147 */
3148 int
vn_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3149 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3150 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3151 struct ucred *outcred, struct thread *fsize_td)
3152 {
3153 struct mount *inmp, *outmp;
3154 struct vnode *invpl, *outvpl;
3155 int error;
3156 size_t len;
3157 uint64_t uval;
3158
3159 invpl = outvpl = NULL;
3160 len = *lenp;
3161 *lenp = 0; /* For error returns. */
3162 error = 0;
3163
3164 /* Do some sanity checks on the arguments. */
3165 if (invp->v_type == VDIR || outvp->v_type == VDIR)
3166 error = EISDIR;
3167 else if (*inoffp < 0 || *outoffp < 0 ||
3168 invp->v_type != VREG || outvp->v_type != VREG)
3169 error = EINVAL;
3170 if (error != 0)
3171 goto out;
3172
3173 /* Ensure offset + len does not wrap around. */
3174 uval = *inoffp;
3175 uval += len;
3176 if (uval > INT64_MAX)
3177 len = INT64_MAX - *inoffp;
3178 uval = *outoffp;
3179 uval += len;
3180 if (uval > INT64_MAX)
3181 len = INT64_MAX - *outoffp;
3182 if (len == 0)
3183 goto out;
3184
3185 error = VOP_GETLOWVNODE(invp, &invpl, FREAD);
3186 if (error != 0)
3187 goto out;
3188 error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE);
3189 if (error != 0)
3190 goto out1;
3191
3192 inmp = invpl->v_mount;
3193 outmp = outvpl->v_mount;
3194 if (inmp == NULL || outmp == NULL)
3195 goto out2;
3196
3197 for (;;) {
3198 error = vfs_busy(inmp, 0);
3199 if (error != 0)
3200 goto out2;
3201 if (inmp == outmp)
3202 break;
3203 error = vfs_busy(outmp, MBF_NOWAIT);
3204 if (error != 0) {
3205 vfs_unbusy(inmp);
3206 error = vfs_busy(outmp, 0);
3207 if (error == 0) {
3208 vfs_unbusy(outmp);
3209 continue;
3210 }
3211 goto out2;
3212 }
3213 break;
3214 }
3215
3216 /*
3217 * If the two vnodes are for the same file system type, call
3218 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3219 * which can handle copies across multiple file system types.
3220 */
3221 *lenp = len;
3222 if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc)
3223 error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp,
3224 lenp, flags, incred, outcred, fsize_td);
3225 else
3226 error = ENOSYS;
3227 if (error == ENOSYS)
3228 error = vn_generic_copy_file_range(invpl, inoffp, outvpl,
3229 outoffp, lenp, flags, incred, outcred, fsize_td);
3230 vfs_unbusy(outmp);
3231 if (inmp != outmp)
3232 vfs_unbusy(inmp);
3233 out2:
3234 if (outvpl != NULL)
3235 vrele(outvpl);
3236 out1:
3237 if (invpl != NULL)
3238 vrele(invpl);
3239 out:
3240 return (error);
3241 }
3242
3243 /*
3244 * Test len bytes of data starting at dat for all bytes == 0.
3245 * Return true if all bytes are zero, false otherwise.
3246 * Expects dat to be well aligned.
3247 */
3248 static bool
mem_iszero(void * dat,int len)3249 mem_iszero(void *dat, int len)
3250 {
3251 int i;
3252 const u_int *p;
3253 const char *cp;
3254
3255 for (p = dat; len > 0; len -= sizeof(*p), p++) {
3256 if (len >= sizeof(*p)) {
3257 if (*p != 0)
3258 return (false);
3259 } else {
3260 cp = (const char *)p;
3261 for (i = 0; i < len; i++, cp++)
3262 if (*cp != '\0')
3263 return (false);
3264 }
3265 }
3266 return (true);
3267 }
3268
3269 /*
3270 * Look for a hole in the output file and, if found, adjust *outoffp
3271 * and *xferp to skip past the hole.
3272 * *xferp is the entire hole length to be written and xfer2 is how many bytes
3273 * to be written as 0's upon return.
3274 */
3275 static off_t
vn_skip_hole(struct vnode * outvp,off_t xfer2,off_t * outoffp,off_t * xferp,off_t * dataoffp,off_t * holeoffp,struct ucred * cred)3276 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3277 off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3278 {
3279 int error;
3280 off_t delta;
3281
3282 if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3283 *dataoffp = *outoffp;
3284 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3285 curthread);
3286 if (error == 0) {
3287 *holeoffp = *dataoffp;
3288 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3289 curthread);
3290 }
3291 if (error != 0 || *holeoffp == *dataoffp) {
3292 /*
3293 * Since outvp is unlocked, it may be possible for
3294 * another thread to do a truncate(), lseek(), write()
3295 * creating a hole at startoff between the above
3296 * VOP_IOCTL() calls, if the other thread does not do
3297 * rangelocking.
3298 * If that happens, *holeoffp == *dataoffp and finding
3299 * the hole has failed, so disable vn_skip_hole().
3300 */
3301 *holeoffp = -1; /* Disable use of vn_skip_hole(). */
3302 return (xfer2);
3303 }
3304 KASSERT(*dataoffp >= *outoffp,
3305 ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3306 (intmax_t)*dataoffp, (intmax_t)*outoffp));
3307 KASSERT(*holeoffp > *dataoffp,
3308 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3309 (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3310 }
3311
3312 /*
3313 * If there is a hole before the data starts, advance *outoffp and
3314 * *xferp past the hole.
3315 */
3316 if (*dataoffp > *outoffp) {
3317 delta = *dataoffp - *outoffp;
3318 if (delta >= *xferp) {
3319 /* Entire *xferp is a hole. */
3320 *outoffp += *xferp;
3321 *xferp = 0;
3322 return (0);
3323 }
3324 *xferp -= delta;
3325 *outoffp += delta;
3326 xfer2 = MIN(xfer2, *xferp);
3327 }
3328
3329 /*
3330 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3331 * that the write ends at the start of the hole.
3332 * *holeoffp should always be greater than *outoffp, but for the
3333 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3334 * value.
3335 */
3336 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3337 xfer2 = *holeoffp - *outoffp;
3338 return (xfer2);
3339 }
3340
3341 /*
3342 * Write an xfer sized chunk to outvp in blksize blocks from dat.
3343 * dat is a maximum of blksize in length and can be written repeatedly in
3344 * the chunk.
3345 * If growfile == true, just grow the file via vn_truncate_locked() instead
3346 * of doing actual writes.
3347 * If checkhole == true, a hole is being punched, so skip over any hole
3348 * already in the output file.
3349 */
3350 static int
vn_write_outvp(struct vnode * outvp,char * dat,off_t outoff,off_t xfer,u_long blksize,bool growfile,bool checkhole,struct ucred * cred)3351 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3352 u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3353 {
3354 struct mount *mp;
3355 off_t dataoff, holeoff, xfer2;
3356 int error;
3357
3358 /*
3359 * Loop around doing writes of blksize until write has been completed.
3360 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3361 * done for each iteration, since the xfer argument can be very
3362 * large if there is a large hole to punch in the output file.
3363 */
3364 error = 0;
3365 holeoff = 0;
3366 do {
3367 xfer2 = MIN(xfer, blksize);
3368 if (checkhole) {
3369 /*
3370 * Punching a hole. Skip writing if there is
3371 * already a hole in the output file.
3372 */
3373 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3374 &dataoff, &holeoff, cred);
3375 if (xfer == 0)
3376 break;
3377 if (holeoff < 0)
3378 checkhole = false;
3379 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3380 (intmax_t)xfer2));
3381 }
3382 bwillwrite();
3383 mp = NULL;
3384 error = vn_start_write(outvp, &mp, V_WAIT);
3385 if (error != 0)
3386 break;
3387 if (growfile) {
3388 error = vn_lock(outvp, LK_EXCLUSIVE);
3389 if (error == 0) {
3390 error = vn_truncate_locked(outvp, outoff + xfer,
3391 false, cred);
3392 VOP_UNLOCK(outvp);
3393 }
3394 } else {
3395 error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3396 if (error == 0) {
3397 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3398 outoff, UIO_SYSSPACE, IO_NODELOCKED,
3399 curthread->td_ucred, cred, NULL, curthread);
3400 outoff += xfer2;
3401 xfer -= xfer2;
3402 VOP_UNLOCK(outvp);
3403 }
3404 }
3405 if (mp != NULL)
3406 vn_finished_write(mp);
3407 } while (!growfile && xfer > 0 && error == 0);
3408 return (error);
3409 }
3410
3411 /*
3412 * Copy a byte range of one file to another. This function can handle the
3413 * case where invp and outvp are on different file systems.
3414 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3415 * is no better file system specific way to do it.
3416 */
3417 int
vn_generic_copy_file_range(struct vnode * invp,off_t * inoffp,struct vnode * outvp,off_t * outoffp,size_t * lenp,unsigned int flags,struct ucred * incred,struct ucred * outcred,struct thread * fsize_td)3418 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3419 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3420 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3421 {
3422 struct vattr inva;
3423 struct mount *mp;
3424 off_t startoff, endoff, xfer, xfer2;
3425 u_long blksize;
3426 int error, interrupted;
3427 bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse;
3428 ssize_t aresid, r = 0;
3429 size_t copylen, len, savlen;
3430 off_t outsize;
3431 char *dat;
3432 long holein, holeout;
3433 struct timespec curts, endts;
3434
3435 holein = holeout = 0;
3436 savlen = len = *lenp;
3437 error = 0;
3438 interrupted = 0;
3439 dat = NULL;
3440
3441 error = vn_lock(invp, LK_SHARED);
3442 if (error != 0)
3443 goto out;
3444 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3445 holein = 0;
3446 error = VOP_GETATTR(invp, &inva, incred);
3447 if (error == 0 && inva.va_size > OFF_MAX)
3448 error = EFBIG;
3449 VOP_UNLOCK(invp);
3450 if (error != 0)
3451 goto out;
3452
3453 /*
3454 * Use va_bytes >= va_size as a hint that the file does not have
3455 * sufficient holes to justify the overhead of doing FIOSEEKHOLE.
3456 * This hint does not work well for file systems doing compression
3457 * and may fail when allocations for extended attributes increases
3458 * the value of va_bytes to >= va_size.
3459 */
3460 sparse = true;
3461 if (holein != 0 && inva.va_bytes >= inva.va_size) {
3462 holein = 0;
3463 sparse = false;
3464 }
3465
3466 mp = NULL;
3467 error = vn_start_write(outvp, &mp, V_WAIT);
3468 if (error == 0)
3469 error = vn_lock(outvp, LK_EXCLUSIVE);
3470 if (error == 0) {
3471 /*
3472 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3473 * now that outvp is locked.
3474 */
3475 if (fsize_td != NULL) {
3476 struct uio io;
3477
3478 io.uio_offset = *outoffp;
3479 io.uio_resid = len;
3480 error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3481 len = savlen = io.uio_resid;
3482 /*
3483 * No need to call vn_rlimit_fsizex_res before return,
3484 * since the uio is local.
3485 */
3486 }
3487 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3488 holeout = 0;
3489 /*
3490 * Holes that are past EOF do not need to be written as a block
3491 * of zero bytes. So, truncate the output file as far as
3492 * possible and then use size to decide if writing 0
3493 * bytes is necessary in the loop below.
3494 */
3495 if (error == 0)
3496 error = vn_getsize_locked(outvp, &outsize, outcred);
3497 if (error == 0 && outsize > *outoffp &&
3498 *outoffp <= OFF_MAX - len && outsize <= *outoffp + len &&
3499 *inoffp < inva.va_size &&
3500 *outoffp <= OFF_MAX - (inva.va_size - *inoffp) &&
3501 outsize <= *outoffp + (inva.va_size - *inoffp)) {
3502 #ifdef MAC
3503 error = mac_vnode_check_write(curthread->td_ucred,
3504 outcred, outvp);
3505 if (error == 0)
3506 #endif
3507 error = vn_truncate_locked(outvp, *outoffp,
3508 false, outcred);
3509 if (error == 0)
3510 outsize = *outoffp;
3511 }
3512 VOP_UNLOCK(outvp);
3513 }
3514 if (mp != NULL)
3515 vn_finished_write(mp);
3516 if (error != 0)
3517 goto out;
3518
3519 if (sparse && holein == 0 && holeout > 0) {
3520 /*
3521 * For this special case, the input data will be scanned
3522 * for blocks of all 0 bytes. For these blocks, the
3523 * write can be skipped for the output file to create
3524 * an unallocated region.
3525 * Therefore, use the appropriate size for the output file.
3526 */
3527 blksize = holeout;
3528 if (blksize <= 512) {
3529 /*
3530 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3531 * of 512, although it actually only creates
3532 * unallocated regions for blocks >= f_iosize.
3533 */
3534 blksize = outvp->v_mount->mnt_stat.f_iosize;
3535 }
3536 } else {
3537 /*
3538 * Use the larger of the two f_iosize values. If they are
3539 * not the same size, one will normally be an exact multiple of
3540 * the other, since they are both likely to be a power of 2.
3541 */
3542 blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3543 outvp->v_mount->mnt_stat.f_iosize);
3544 }
3545
3546 /* Clip to sane limits. */
3547 if (blksize < 4096)
3548 blksize = 4096;
3549 else if (blksize > maxphys)
3550 blksize = maxphys;
3551 dat = malloc(blksize, M_TEMP, M_WAITOK);
3552
3553 /*
3554 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3555 * to find holes. Otherwise, just scan the read block for all 0s
3556 * in the inner loop where the data copying is done.
3557 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3558 * support holes on the server, but do not support FIOSEEKHOLE.
3559 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3560 * that this function should return after 1second with a partial
3561 * completion.
3562 */
3563 if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3564 getnanouptime(&endts);
3565 endts.tv_sec++;
3566 } else
3567 timespecclear(&endts);
3568 first = true;
3569 holetoeof = eof = false;
3570 while (len > 0 && error == 0 && !eof && interrupted == 0) {
3571 endoff = 0; /* To shut up compilers. */
3572 cantseek = true;
3573 startoff = *inoffp;
3574 copylen = len;
3575
3576 /*
3577 * Find the next data area. If there is just a hole to EOF,
3578 * FIOSEEKDATA should fail with ENXIO.
3579 * (I do not know if any file system will report a hole to
3580 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3581 * will fail for those file systems.)
3582 *
3583 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3584 * the code just falls through to the inner copy loop.
3585 */
3586 error = EINVAL;
3587 if (holein > 0) {
3588 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3589 incred, curthread);
3590 if (error == ENXIO) {
3591 startoff = endoff = inva.va_size;
3592 eof = holetoeof = true;
3593 error = 0;
3594 }
3595 }
3596 if (error == 0 && !holetoeof) {
3597 endoff = startoff;
3598 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3599 incred, curthread);
3600 /*
3601 * Since invp is unlocked, it may be possible for
3602 * another thread to do a truncate(), lseek(), write()
3603 * creating a hole at startoff between the above
3604 * VOP_IOCTL() calls, if the other thread does not do
3605 * rangelocking.
3606 * If that happens, startoff == endoff and finding
3607 * the hole has failed, so set an error.
3608 */
3609 if (error == 0 && startoff == endoff)
3610 error = EINVAL; /* Any error. Reset to 0. */
3611 }
3612 if (error == 0) {
3613 if (startoff > *inoffp) {
3614 /* Found hole before data block. */
3615 xfer = MIN(startoff - *inoffp, len);
3616 if (*outoffp < outsize) {
3617 /* Must write 0s to punch hole. */
3618 xfer2 = MIN(outsize - *outoffp,
3619 xfer);
3620 memset(dat, 0, MIN(xfer2, blksize));
3621 error = vn_write_outvp(outvp, dat,
3622 *outoffp, xfer2, blksize, false,
3623 holeout > 0, outcred);
3624 }
3625
3626 if (error == 0 && *outoffp + xfer >
3627 outsize && (xfer == len || holetoeof)) {
3628 /* Grow output file (hole at end). */
3629 error = vn_write_outvp(outvp, dat,
3630 *outoffp, xfer, blksize, true,
3631 false, outcred);
3632 }
3633 if (error == 0) {
3634 *inoffp += xfer;
3635 *outoffp += xfer;
3636 len -= xfer;
3637 if (len < savlen) {
3638 interrupted = sig_intr();
3639 if (timespecisset(&endts) &&
3640 interrupted == 0) {
3641 getnanouptime(&curts);
3642 if (timespeccmp(&curts,
3643 &endts, >=))
3644 interrupted =
3645 EINTR;
3646 }
3647 }
3648 }
3649 }
3650 copylen = MIN(len, endoff - startoff);
3651 cantseek = false;
3652 } else {
3653 cantseek = true;
3654 if (!sparse)
3655 cantseek = false;
3656 startoff = *inoffp;
3657 copylen = len;
3658 error = 0;
3659 }
3660
3661 xfer = blksize;
3662 if (cantseek) {
3663 /*
3664 * Set first xfer to end at a block boundary, so that
3665 * holes are more likely detected in the loop below via
3666 * the for all bytes 0 method.
3667 */
3668 xfer -= (*inoffp % blksize);
3669 }
3670
3671 /*
3672 * Loop copying the data block. If this was our first attempt
3673 * to copy anything, allow a zero-length block so that the VOPs
3674 * get a chance to update metadata, specifically the atime.
3675 */
3676 while (error == 0 && ((copylen > 0 && !eof) || first) &&
3677 interrupted == 0) {
3678 if (copylen < xfer)
3679 xfer = copylen;
3680 first = false;
3681 error = vn_lock(invp, LK_SHARED);
3682 if (error != 0)
3683 goto out;
3684 error = vn_rdwr(UIO_READ, invp, dat, xfer,
3685 startoff, UIO_SYSSPACE, IO_NODELOCKED,
3686 curthread->td_ucred, incred, &aresid,
3687 curthread);
3688 VOP_UNLOCK(invp);
3689 lastblock = false;
3690 if (error == 0 && (xfer == 0 || aresid > 0)) {
3691 /* Stop the copy at EOF on the input file. */
3692 xfer -= aresid;
3693 eof = true;
3694 lastblock = true;
3695 }
3696 if (error == 0) {
3697 /*
3698 * Skip the write for holes past the initial EOF
3699 * of the output file, unless this is the last
3700 * write of the output file at EOF.
3701 */
3702 readzeros = cantseek ? mem_iszero(dat, xfer) :
3703 false;
3704 if (xfer == len)
3705 lastblock = true;
3706 if (!cantseek || *outoffp < outsize ||
3707 lastblock || !readzeros)
3708 error = vn_write_outvp(outvp, dat,
3709 *outoffp, xfer, blksize,
3710 readzeros && lastblock &&
3711 *outoffp >= outsize, false,
3712 outcred);
3713 if (error == 0) {
3714 *inoffp += xfer;
3715 startoff += xfer;
3716 *outoffp += xfer;
3717 copylen -= xfer;
3718 len -= xfer;
3719 if (len < savlen) {
3720 interrupted = sig_intr();
3721 if (timespecisset(&endts) &&
3722 interrupted == 0) {
3723 getnanouptime(&curts);
3724 if (timespeccmp(&curts,
3725 &endts, >=))
3726 interrupted =
3727 EINTR;
3728 }
3729 }
3730 }
3731 }
3732 xfer = blksize;
3733 }
3734 }
3735 out:
3736 *lenp = savlen - len;
3737 free(dat, M_TEMP);
3738 return (error);
3739 }
3740
3741 static int
vn_fallocate(struct file * fp,off_t offset,off_t len,struct thread * td)3742 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3743 {
3744 struct mount *mp;
3745 struct vnode *vp;
3746 off_t olen, ooffset;
3747 int error;
3748 #ifdef AUDIT
3749 int audited_vnode1 = 0;
3750 #endif
3751
3752 vp = fp->f_vnode;
3753 if (vp->v_type != VREG)
3754 return (ENODEV);
3755
3756 /* Allocating blocks may take a long time, so iterate. */
3757 for (;;) {
3758 olen = len;
3759 ooffset = offset;
3760
3761 bwillwrite();
3762 mp = NULL;
3763 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3764 if (error != 0)
3765 break;
3766 error = vn_lock(vp, LK_EXCLUSIVE);
3767 if (error != 0) {
3768 vn_finished_write(mp);
3769 break;
3770 }
3771 #ifdef AUDIT
3772 if (!audited_vnode1) {
3773 AUDIT_ARG_VNODE1(vp);
3774 audited_vnode1 = 1;
3775 }
3776 #endif
3777 #ifdef MAC
3778 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3779 if (error == 0)
3780 #endif
3781 error = VOP_ALLOCATE(vp, &offset, &len, 0,
3782 td->td_ucred);
3783 VOP_UNLOCK(vp);
3784 vn_finished_write(mp);
3785
3786 if (olen + ooffset != offset + len) {
3787 panic("offset + len changed from %jx/%jx to %jx/%jx",
3788 ooffset, olen, offset, len);
3789 }
3790 if (error != 0 || len == 0)
3791 break;
3792 KASSERT(olen > len, ("Iteration did not make progress?"));
3793 maybe_yield();
3794 }
3795
3796 return (error);
3797 }
3798
3799 static int
vn_deallocate_impl(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * cred,struct ucred * active_cred,struct ucred * file_cred)3800 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3801 int ioflag, struct ucred *cred, struct ucred *active_cred,
3802 struct ucred *file_cred)
3803 {
3804 struct mount *mp;
3805 void *rl_cookie;
3806 off_t off, len;
3807 int error;
3808 #ifdef AUDIT
3809 bool audited_vnode1 = false;
3810 #endif
3811
3812 rl_cookie = NULL;
3813 error = 0;
3814 mp = NULL;
3815 off = *offset;
3816 len = *length;
3817
3818 if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3819 rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3820 while (len > 0 && error == 0) {
3821 /*
3822 * Try to deallocate the longest range in one pass.
3823 * In case a pass takes too long to be executed, it returns
3824 * partial result. The residue will be proceeded in the next
3825 * pass.
3826 */
3827
3828 if ((ioflag & IO_NODELOCKED) == 0) {
3829 bwillwrite();
3830 if ((error = vn_start_write(vp, &mp,
3831 V_WAIT | V_PCATCH)) != 0)
3832 goto out;
3833 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3834 }
3835 #ifdef AUDIT
3836 if (!audited_vnode1) {
3837 AUDIT_ARG_VNODE1(vp);
3838 audited_vnode1 = true;
3839 }
3840 #endif
3841
3842 #ifdef MAC
3843 if ((ioflag & IO_NOMACCHECK) == 0)
3844 error = mac_vnode_check_write(active_cred, file_cred,
3845 vp);
3846 #endif
3847 if (error == 0)
3848 error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3849 cred);
3850
3851 if ((ioflag & IO_NODELOCKED) == 0) {
3852 VOP_UNLOCK(vp);
3853 if (mp != NULL) {
3854 vn_finished_write(mp);
3855 mp = NULL;
3856 }
3857 }
3858 if (error == 0 && len != 0)
3859 maybe_yield();
3860 }
3861 out:
3862 if (rl_cookie != NULL)
3863 vn_rangelock_unlock(vp, rl_cookie);
3864 *offset = off;
3865 *length = len;
3866 return (error);
3867 }
3868
3869 /*
3870 * This function is supposed to be used in the situations where the deallocation
3871 * is not triggered by a user request.
3872 */
3873 int
vn_deallocate(struct vnode * vp,off_t * offset,off_t * length,int flags,int ioflag,struct ucred * active_cred,struct ucred * file_cred)3874 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3875 int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3876 {
3877 struct ucred *cred;
3878
3879 if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3880 flags != 0)
3881 return (EINVAL);
3882 if (vp->v_type != VREG)
3883 return (ENODEV);
3884
3885 cred = file_cred != NOCRED ? file_cred : active_cred;
3886 return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3887 active_cred, file_cred));
3888 }
3889
3890 static int
vn_fspacectl(struct file * fp,int cmd,off_t * offset,off_t * length,int flags,struct ucred * active_cred,struct thread * td)3891 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3892 struct ucred *active_cred, struct thread *td)
3893 {
3894 int error;
3895 struct vnode *vp;
3896 int ioflag;
3897
3898 KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3899 KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3900 ("vn_fspacectl: non-zero flags"));
3901 KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3902 ("vn_fspacectl: offset/length overflow or underflow"));
3903 vp = fp->f_vnode;
3904
3905 if (vp->v_type != VREG)
3906 return (ENODEV);
3907
3908 ioflag = get_write_ioflag(fp);
3909
3910 switch (cmd) {
3911 case SPACECTL_DEALLOC:
3912 error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3913 active_cred, active_cred, fp->f_cred);
3914 break;
3915 default:
3916 panic("vn_fspacectl: unknown cmd %d", cmd);
3917 }
3918
3919 return (error);
3920 }
3921
3922 /*
3923 * Keep this assert as long as sizeof(struct dirent) is used as the maximum
3924 * entry size.
3925 */
3926 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent),
3927 "'struct dirent' size must be a multiple of its alignment "
3928 "(see _GENERIC_DIRLEN())");
3929
3930 /*
3931 * Returns successive directory entries through some caller's provided buffer.
3932 *
3933 * This function automatically refills the provided buffer with calls to
3934 * VOP_READDIR() (after MAC permission checks).
3935 *
3936 * 'td' is used for credentials and passed to uiomove(). 'dirbuf' is the
3937 * caller's buffer to fill and 'dirbuflen' its allocated size. 'dirbuf' must
3938 * be properly aligned to access 'struct dirent' structures and 'dirbuflen'
3939 * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning
3940 * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always
3941 * be returned if this requirement is not verified). '*dpp' points to the
3942 * current directory entry in the buffer and '*len' contains the remaining
3943 * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry).
3944 *
3945 * At first call (or when restarting the read), '*len' must have been set to 0,
3946 * '*off' to 0 (or any valid start offset) and '*eofflag' to 0. There are no
3947 * more entries as soon as '*len' is 0 after a call that returned 0. Calling
3948 * again this function after such a condition is considered an error and EINVAL
3949 * will be returned. Other possible error codes are those of VOP_READDIR(),
3950 * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL
3951 * (bad call). All errors are unrecoverable, i.e., the state ('*len', '*off'
3952 * and '*eofflag') must be re-initialized before a subsequent call. On error
3953 * or at end of directory, '*dpp' is reset to NULL.
3954 *
3955 * '*len', '*off' and '*eofflag' are internal state the caller should not
3956 * tamper with except as explained above. '*off' is the next directory offset
3957 * to read from to refill the buffer. '*eofflag' is set to 0 or 1 by the last
3958 * internal call to VOP_READDIR() that returned without error, indicating
3959 * whether it reached the end of the directory, and to 2 by this function after
3960 * all entries have been read.
3961 */
3962 int
vn_dir_next_dirent(struct vnode * vp,struct thread * td,char * dirbuf,size_t dirbuflen,struct dirent ** dpp,size_t * len,off_t * off,int * eofflag)3963 vn_dir_next_dirent(struct vnode *vp, struct thread *td,
3964 char *dirbuf, size_t dirbuflen,
3965 struct dirent **dpp, size_t *len, off_t *off, int *eofflag)
3966 {
3967 struct dirent *dp = NULL;
3968 int reclen;
3969 int error;
3970 struct uio uio;
3971 struct iovec iov;
3972
3973 ASSERT_VOP_LOCKED(vp, "vnode not locked");
3974 VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory"));
3975 MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen,
3976 "Address space overflow");
3977
3978 if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) {
3979 /* Don't take any chances in this case */
3980 error = EINVAL;
3981 goto out;
3982 }
3983
3984 if (*len != 0) {
3985 dp = *dpp;
3986
3987 /*
3988 * The caller continued to call us after an error (we set dp to
3989 * NULL in a previous iteration). Bail out right now.
3990 */
3991 if (__predict_false(dp == NULL))
3992 return (EINVAL);
3993
3994 MPASS(*len <= dirbuflen);
3995 MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp &&
3996 (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen,
3997 "Filled range not inside buffer");
3998
3999 reclen = dp->d_reclen;
4000 if (reclen >= *len) {
4001 /* End of buffer reached */
4002 *len = 0;
4003 } else {
4004 dp = (struct dirent *)((char *)dp + reclen);
4005 *len -= reclen;
4006 }
4007 }
4008
4009 if (*len == 0) {
4010 dp = NULL;
4011
4012 /* Have to refill. */
4013 switch (*eofflag) {
4014 case 0:
4015 break;
4016
4017 case 1:
4018 /* Nothing more to read. */
4019 *eofflag = 2; /* Remember the caller reached EOF. */
4020 goto success;
4021
4022 default:
4023 /* The caller didn't test for EOF. */
4024 error = EINVAL;
4025 goto out;
4026 }
4027
4028 iov.iov_base = dirbuf;
4029 iov.iov_len = dirbuflen;
4030
4031 uio.uio_iov = &iov;
4032 uio.uio_iovcnt = 1;
4033 uio.uio_offset = *off;
4034 uio.uio_resid = dirbuflen;
4035 uio.uio_segflg = UIO_SYSSPACE;
4036 uio.uio_rw = UIO_READ;
4037 uio.uio_td = td;
4038
4039 #ifdef MAC
4040 error = mac_vnode_check_readdir(td->td_ucred, vp);
4041 if (error == 0)
4042 #endif
4043 error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag,
4044 NULL, NULL);
4045 if (error != 0)
4046 goto out;
4047
4048 *len = dirbuflen - uio.uio_resid;
4049 *off = uio.uio_offset;
4050
4051 if (*len == 0) {
4052 /* Sanity check on INVARIANTS. */
4053 MPASS(*eofflag != 0);
4054 *eofflag = 1;
4055 goto success;
4056 }
4057
4058 /*
4059 * Normalize the flag returned by VOP_READDIR(), since we use 2
4060 * as a sentinel value.
4061 */
4062 if (*eofflag != 0)
4063 *eofflag = 1;
4064
4065 dp = (struct dirent *)dirbuf;
4066 }
4067
4068 if (__predict_false(*len < GENERIC_MINDIRSIZ ||
4069 dp->d_reclen < GENERIC_MINDIRSIZ)) {
4070 error = EINTEGRITY;
4071 dp = NULL;
4072 goto out;
4073 }
4074
4075 success:
4076 error = 0;
4077 out:
4078 *dpp = dp;
4079 return (error);
4080 }
4081
4082 /*
4083 * Checks whether a directory is empty or not.
4084 *
4085 * If the directory is empty, returns 0, and if it is not, ENOTEMPTY. Other
4086 * values are genuine errors preventing the check.
4087 */
4088 int
vn_dir_check_empty(struct vnode * vp)4089 vn_dir_check_empty(struct vnode *vp)
4090 {
4091 struct thread *const td = curthread;
4092 char *dirbuf;
4093 size_t dirbuflen, len;
4094 off_t off;
4095 int eofflag, error;
4096 struct dirent *dp;
4097 struct vattr va;
4098
4099 ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
4100 VNPASS(vp->v_type == VDIR, vp);
4101
4102 error = VOP_GETATTR(vp, &va, td->td_ucred);
4103 if (error != 0)
4104 return (error);
4105
4106 dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ);
4107 if (dirbuflen < va.va_blocksize)
4108 dirbuflen = va.va_blocksize;
4109 dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK);
4110
4111 len = 0;
4112 off = 0;
4113 eofflag = 0;
4114
4115 for (;;) {
4116 error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen,
4117 &dp, &len, &off, &eofflag);
4118 if (error != 0)
4119 goto end;
4120
4121 if (len == 0) {
4122 /* EOF */
4123 error = 0;
4124 goto end;
4125 }
4126
4127 /*
4128 * Skip whiteouts. Unionfs operates on filesystems only and
4129 * not on hierarchies, so these whiteouts would be shadowed on
4130 * the system hierarchy but not for a union using the
4131 * filesystem of their directories as the upper layer.
4132 * Additionally, unionfs currently transparently exposes
4133 * union-specific metadata of its upper layer, meaning that
4134 * whiteouts can be seen through the union view in empty
4135 * directories. Taking into account these whiteouts would then
4136 * prevent mounting another filesystem on such effectively
4137 * empty directories.
4138 */
4139 if (dp->d_type == DT_WHT)
4140 continue;
4141
4142 /*
4143 * Any file in the directory which is not '.' or '..' indicates
4144 * the directory is not empty.
4145 */
4146 switch (dp->d_namlen) {
4147 case 2:
4148 if (dp->d_name[1] != '.') {
4149 /* Can't be '..' (nor '.') */
4150 error = ENOTEMPTY;
4151 goto end;
4152 }
4153 /* FALLTHROUGH */
4154 case 1:
4155 if (dp->d_name[0] != '.') {
4156 /* Can't be '..' nor '.' */
4157 error = ENOTEMPTY;
4158 goto end;
4159 }
4160 break;
4161
4162 default:
4163 error = ENOTEMPTY;
4164 goto end;
4165 }
4166 }
4167
4168 end:
4169 free(dirbuf, M_TEMP);
4170 return (error);
4171 }
4172
4173
4174 static u_long vn_lock_pair_pause_cnt;
4175 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
4176 &vn_lock_pair_pause_cnt, 0,
4177 "Count of vn_lock_pair deadlocks");
4178
4179 u_int vn_lock_pair_pause_max;
4180 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
4181 &vn_lock_pair_pause_max, 0,
4182 "Max ticks for vn_lock_pair deadlock avoidance sleep");
4183
4184 static void
vn_lock_pair_pause(const char * wmesg)4185 vn_lock_pair_pause(const char *wmesg)
4186 {
4187 atomic_add_long(&vn_lock_pair_pause_cnt, 1);
4188 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
4189 }
4190
4191 /*
4192 * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order
4193 * reversal. vp1_locked indicates whether vp1 is locked; if not, vp1
4194 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes
4195 * can be NULL.
4196 *
4197 * The function returns with both vnodes exclusively or shared locked,
4198 * according to corresponding lkflags, and guarantees that it does not
4199 * create lock order reversal with other threads during its execution.
4200 * Both vnodes could be unlocked temporary (and reclaimed).
4201 *
4202 * If requesting shared locking, locked vnode lock must not be recursed.
4203 *
4204 * Only one of LK_SHARED and LK_EXCLUSIVE must be specified.
4205 * LK_NODDLKTREAT can be optionally passed.
4206 *
4207 * If vp1 == vp2, only one, most exclusive, lock is obtained on it.
4208 */
4209 void
vn_lock_pair(struct vnode * vp1,bool vp1_locked,int lkflags1,struct vnode * vp2,bool vp2_locked,int lkflags2)4210 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
4211 struct vnode *vp2, bool vp2_locked, int lkflags2)
4212 {
4213 int error, locked1;
4214
4215 MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) ||
4216 (vp1 == NULL && lkflags1 == 0));
4217 MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4218 MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) ||
4219 (vp2 == NULL && lkflags2 == 0));
4220 MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0);
4221
4222 if (vp1 == NULL && vp2 == NULL)
4223 return;
4224
4225 if (vp1 == vp2) {
4226 MPASS(vp1_locked == vp2_locked);
4227
4228 /* Select the most exclusive mode for lock. */
4229 if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK))
4230 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4231
4232 if (vp1_locked) {
4233 ASSERT_VOP_LOCKED(vp1, "vp1");
4234
4235 /* No need to relock if any lock is exclusive. */
4236 if ((vp1->v_vnlock->lock_object.lo_flags &
4237 LK_NOSHARE) != 0)
4238 return;
4239
4240 locked1 = VOP_ISLOCKED(vp1);
4241 if (((lkflags1 & LK_SHARED) != 0 &&
4242 locked1 != LK_EXCLUSIVE) ||
4243 ((lkflags1 & LK_EXCLUSIVE) != 0 &&
4244 locked1 == LK_EXCLUSIVE))
4245 return;
4246 VOP_UNLOCK(vp1);
4247 }
4248
4249 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4250 vn_lock(vp1, lkflags1 | LK_RETRY);
4251 return;
4252 }
4253
4254 if (vp1 != NULL) {
4255 if ((lkflags1 & LK_SHARED) != 0 &&
4256 (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4257 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE;
4258 if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
4259 ASSERT_VOP_LOCKED(vp1, "vp1");
4260 if ((lkflags1 & LK_EXCLUSIVE) != 0) {
4261 VOP_UNLOCK(vp1);
4262 ASSERT_VOP_UNLOCKED(vp1,
4263 "vp1 shared recursed");
4264 vp1_locked = false;
4265 }
4266 } else if (!vp1_locked)
4267 ASSERT_VOP_UNLOCKED(vp1, "vp1");
4268 } else {
4269 vp1_locked = true;
4270 }
4271
4272 if (vp2 != NULL) {
4273 if ((lkflags2 & LK_SHARED) != 0 &&
4274 (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
4275 lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE;
4276 if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
4277 ASSERT_VOP_LOCKED(vp2, "vp2");
4278 if ((lkflags2 & LK_EXCLUSIVE) != 0) {
4279 VOP_UNLOCK(vp2);
4280 ASSERT_VOP_UNLOCKED(vp2,
4281 "vp2 shared recursed");
4282 vp2_locked = false;
4283 }
4284 } else if (!vp2_locked)
4285 ASSERT_VOP_UNLOCKED(vp2, "vp2");
4286 } else {
4287 vp2_locked = true;
4288 }
4289
4290 if (!vp1_locked && !vp2_locked) {
4291 vn_lock(vp1, lkflags1 | LK_RETRY);
4292 vp1_locked = true;
4293 }
4294
4295 while (!vp1_locked || !vp2_locked) {
4296 if (vp1_locked && vp2 != NULL) {
4297 if (vp1 != NULL) {
4298 error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
4299 __FILE__, __LINE__);
4300 if (error == 0)
4301 break;
4302 VOP_UNLOCK(vp1);
4303 vp1_locked = false;
4304 vn_lock_pair_pause("vlp1");
4305 }
4306 vn_lock(vp2, lkflags2 | LK_RETRY);
4307 vp2_locked = true;
4308 }
4309 if (vp2_locked && vp1 != NULL) {
4310 if (vp2 != NULL) {
4311 error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
4312 __FILE__, __LINE__);
4313 if (error == 0)
4314 break;
4315 VOP_UNLOCK(vp2);
4316 vp2_locked = false;
4317 vn_lock_pair_pause("vlp2");
4318 }
4319 vn_lock(vp1, lkflags1 | LK_RETRY);
4320 vp1_locked = true;
4321 }
4322 }
4323 if (vp1 != NULL) {
4324 if (lkflags1 == LK_EXCLUSIVE)
4325 ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
4326 else
4327 ASSERT_VOP_LOCKED(vp1, "vp1 ret");
4328 }
4329 if (vp2 != NULL) {
4330 if (lkflags2 == LK_EXCLUSIVE)
4331 ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
4332 else
4333 ASSERT_VOP_LOCKED(vp2, "vp2 ret");
4334 }
4335 }
4336
4337 int
vn_lktype_write(struct mount * mp,struct vnode * vp)4338 vn_lktype_write(struct mount *mp, struct vnode *vp)
4339 {
4340 if (MNT_SHARED_WRITES(mp) ||
4341 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
4342 return (LK_SHARED);
4343 return (LK_EXCLUSIVE);
4344 }
4345
4346 int
vn_cmp(struct file * fp1,struct file * fp2,struct thread * td)4347 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td)
4348 {
4349 if (fp2->f_type != DTYPE_VNODE)
4350 return (3);
4351 return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode));
4352 }
4353