1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 */
29
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50
51 /*
52 * Filesystem and Snapshot Limits
53 * ------------------------------
54 *
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
60 *
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
66 *
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
76 *
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
89 *
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
99 * them.
100 *
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
111 * modify the limit.
112 *
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
117 *
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
121 *
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
124 */
125
126 /*
127 * Tunable to control EDQUOT behaviour. With this set to a value != 0, zfs
128 * doesn't always wait for a dirty txg to complete when an operation can't
129 * get through due to space exhaustion. Instead it fails early in a range
130 * of the tunable around the quota.
131 * This vastly helps to reduce the number of threads waiting for the txg
132 * to commit when a busy filesystem is near quota, especially in combination
133 * with NFS, where each waiter takes up a server thread.
134 */
135 uint64_t early_edquot_threshold = 32 * 1048576; /* tunable */
136
137 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
138
139 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
140
141 static void
dsl_dir_evict_async(void * dbu)142 dsl_dir_evict_async(void *dbu)
143 {
144 dsl_dir_t *dd = dbu;
145 dsl_pool_t *dp = dd->dd_pool;
146 int t;
147
148 dd->dd_dbuf = NULL;
149
150 for (t = 0; t < TXG_SIZE; t++) {
151 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
152 ASSERT(dd->dd_tempreserved[t] == 0);
153 ASSERT(dd->dd_space_towrite[t] == 0);
154 }
155
156 if (dd->dd_parent)
157 dsl_dir_async_rele(dd->dd_parent, dd);
158
159 spa_async_close(dd->dd_pool->dp_spa, dd);
160
161 /*
162 * The props callback list should have been cleaned up by
163 * objset_evict().
164 */
165 list_destroy(&dd->dd_prop_cbs);
166 mutex_destroy(&dd->dd_lock);
167 kmem_free(dd, sizeof (dsl_dir_t));
168 }
169
170 int
dsl_dir_hold_obj(dsl_pool_t * dp,uint64_t ddobj,const char * tail,void * tag,dsl_dir_t ** ddp)171 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
172 const char *tail, void *tag, dsl_dir_t **ddp)
173 {
174 dmu_buf_t *dbuf;
175 dsl_dir_t *dd;
176 int err;
177
178 ASSERT(dsl_pool_config_held(dp));
179
180 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
181 if (err != 0)
182 return (err);
183 dd = dmu_buf_get_user(dbuf);
184 #ifdef ZFS_DEBUG
185 {
186 dmu_object_info_t doi;
187 dmu_object_info_from_db(dbuf, &doi);
188 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
189 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
190 }
191 #endif
192 if (dd == NULL) {
193 dsl_dir_t *winner;
194
195 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
196 dd->dd_object = ddobj;
197 dd->dd_dbuf = dbuf;
198 dd->dd_pool = dp;
199 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
200
201 list_create(&dd->dd_prop_cbs, sizeof (dsl_prop_cb_record_t),
202 offsetof(dsl_prop_cb_record_t, cbr_node));
203
204 dsl_dir_snap_cmtime_update(dd);
205
206 if (dsl_dir_phys(dd)->dd_parent_obj) {
207 err = dsl_dir_hold_obj(dp,
208 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
209 &dd->dd_parent);
210 if (err != 0)
211 goto errout;
212 if (tail) {
213 #ifdef ZFS_DEBUG
214 uint64_t foundobj;
215
216 err = zap_lookup(dp->dp_meta_objset,
217 dsl_dir_phys(dd->dd_parent)->
218 dd_child_dir_zapobj, tail,
219 sizeof (foundobj), 1, &foundobj);
220 ASSERT(err || foundobj == ddobj);
221 #endif
222 (void) strcpy(dd->dd_myname, tail);
223 } else {
224 err = zap_value_search(dp->dp_meta_objset,
225 dsl_dir_phys(dd->dd_parent)->
226 dd_child_dir_zapobj,
227 ddobj, 0, dd->dd_myname);
228 }
229 if (err != 0)
230 goto errout;
231 } else {
232 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
233 }
234
235 if (dsl_dir_is_clone(dd)) {
236 dmu_buf_t *origin_bonus;
237 dsl_dataset_phys_t *origin_phys;
238
239 /*
240 * We can't open the origin dataset, because
241 * that would require opening this dsl_dir.
242 * Just look at its phys directly instead.
243 */
244 err = dmu_bonus_hold(dp->dp_meta_objset,
245 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
246 &origin_bonus);
247 if (err != 0)
248 goto errout;
249 origin_phys = origin_bonus->db_data;
250 dd->dd_origin_txg =
251 origin_phys->ds_creation_txg;
252 dmu_buf_rele(origin_bonus, FTAG);
253 }
254
255 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
256 &dd->dd_dbuf);
257 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
258 if (winner != NULL) {
259 if (dd->dd_parent)
260 dsl_dir_rele(dd->dd_parent, dd);
261 mutex_destroy(&dd->dd_lock);
262 kmem_free(dd, sizeof (dsl_dir_t));
263 dd = winner;
264 } else {
265 spa_open_ref(dp->dp_spa, dd);
266 }
267 }
268
269 /*
270 * The dsl_dir_t has both open-to-close and instantiate-to-evict
271 * holds on the spa. We need the open-to-close holds because
272 * otherwise the spa_refcnt wouldn't change when we open a
273 * dir which the spa also has open, so we could incorrectly
274 * think it was OK to unload/export/destroy the pool. We need
275 * the instantiate-to-evict hold because the dsl_dir_t has a
276 * pointer to the dd_pool, which has a pointer to the spa_t.
277 */
278 spa_open_ref(dp->dp_spa, tag);
279 ASSERT3P(dd->dd_pool, ==, dp);
280 ASSERT3U(dd->dd_object, ==, ddobj);
281 ASSERT3P(dd->dd_dbuf, ==, dbuf);
282 *ddp = dd;
283 return (0);
284
285 errout:
286 if (dd->dd_parent)
287 dsl_dir_rele(dd->dd_parent, dd);
288 mutex_destroy(&dd->dd_lock);
289 kmem_free(dd, sizeof (dsl_dir_t));
290 dmu_buf_rele(dbuf, tag);
291 return (err);
292 }
293
294 void
dsl_dir_rele(dsl_dir_t * dd,void * tag)295 dsl_dir_rele(dsl_dir_t *dd, void *tag)
296 {
297 dprintf_dd(dd, "%s\n", "");
298 spa_close(dd->dd_pool->dp_spa, tag);
299 dmu_buf_rele(dd->dd_dbuf, tag);
300 }
301
302 /*
303 * Remove a reference to the given dsl dir that is being asynchronously
304 * released. Async releases occur from a taskq performing eviction of
305 * dsl datasets and dirs. This process is identical to a normal release
306 * with the exception of using the async API for releasing the reference on
307 * the spa.
308 */
309 void
dsl_dir_async_rele(dsl_dir_t * dd,void * tag)310 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
311 {
312 dprintf_dd(dd, "%s\n", "");
313 spa_async_close(dd->dd_pool->dp_spa, tag);
314 dmu_buf_rele(dd->dd_dbuf, tag);
315 }
316
317 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
318 void
dsl_dir_name(dsl_dir_t * dd,char * buf)319 dsl_dir_name(dsl_dir_t *dd, char *buf)
320 {
321 if (dd->dd_parent) {
322 dsl_dir_name(dd->dd_parent, buf);
323 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
324 ZFS_MAX_DATASET_NAME_LEN);
325 } else {
326 buf[0] = '\0';
327 }
328 if (!MUTEX_HELD(&dd->dd_lock)) {
329 /*
330 * recursive mutex so that we can use
331 * dprintf_dd() with dd_lock held
332 */
333 mutex_enter(&dd->dd_lock);
334 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
335 <, ZFS_MAX_DATASET_NAME_LEN);
336 mutex_exit(&dd->dd_lock);
337 } else {
338 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
339 <, ZFS_MAX_DATASET_NAME_LEN);
340 }
341 }
342
343 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
344 int
dsl_dir_namelen(dsl_dir_t * dd)345 dsl_dir_namelen(dsl_dir_t *dd)
346 {
347 int result = 0;
348
349 if (dd->dd_parent) {
350 /* parent's name + 1 for the "/" */
351 result = dsl_dir_namelen(dd->dd_parent) + 1;
352 }
353
354 if (!MUTEX_HELD(&dd->dd_lock)) {
355 /* see dsl_dir_name */
356 mutex_enter(&dd->dd_lock);
357 result += strlen(dd->dd_myname);
358 mutex_exit(&dd->dd_lock);
359 } else {
360 result += strlen(dd->dd_myname);
361 }
362
363 return (result);
364 }
365
366 static int
getcomponent(const char * path,char * component,const char ** nextp)367 getcomponent(const char *path, char *component, const char **nextp)
368 {
369 char *p;
370
371 if ((path == NULL) || (path[0] == '\0'))
372 return (SET_ERROR(ENOENT));
373 /* This would be a good place to reserve some namespace... */
374 p = strpbrk(path, "/@");
375 if (p && (p[1] == '/' || p[1] == '@')) {
376 /* two separators in a row */
377 return (SET_ERROR(EINVAL));
378 }
379 if (p == NULL || p == path) {
380 /*
381 * if the first thing is an @ or /, it had better be an
382 * @ and it had better not have any more ats or slashes,
383 * and it had better have something after the @.
384 */
385 if (p != NULL &&
386 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
387 return (SET_ERROR(EINVAL));
388 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
389 return (SET_ERROR(ENAMETOOLONG));
390 (void) strcpy(component, path);
391 p = NULL;
392 } else if (p[0] == '/') {
393 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
394 return (SET_ERROR(ENAMETOOLONG));
395 (void) strncpy(component, path, p - path);
396 component[p - path] = '\0';
397 p++;
398 } else if (p[0] == '@') {
399 /*
400 * if the next separator is an @, there better not be
401 * any more slashes.
402 */
403 if (strchr(path, '/'))
404 return (SET_ERROR(EINVAL));
405 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
406 return (SET_ERROR(ENAMETOOLONG));
407 (void) strncpy(component, path, p - path);
408 component[p - path] = '\0';
409 } else {
410 panic("invalid p=%p", (void *)p);
411 }
412 *nextp = p;
413 return (0);
414 }
415
416 /*
417 * Return the dsl_dir_t, and possibly the last component which couldn't
418 * be found in *tail. The name must be in the specified dsl_pool_t. This
419 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
420 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
421 * (*tail)[0] == '@' means that the last component is a snapshot.
422 */
423 int
dsl_dir_hold(dsl_pool_t * dp,const char * name,void * tag,dsl_dir_t ** ddp,const char ** tailp)424 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
425 dsl_dir_t **ddp, const char **tailp)
426 {
427 char buf[ZFS_MAX_DATASET_NAME_LEN];
428 const char *spaname, *next, *nextnext = NULL;
429 int err;
430 dsl_dir_t *dd;
431 uint64_t ddobj;
432
433 err = getcomponent(name, buf, &next);
434 if (err != 0)
435 return (err);
436
437 /* Make sure the name is in the specified pool. */
438 spaname = spa_name(dp->dp_spa);
439 if (strcmp(buf, spaname) != 0)
440 return (SET_ERROR(EXDEV));
441
442 ASSERT(dsl_pool_config_held(dp));
443
444 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
445 if (err != 0) {
446 return (err);
447 }
448
449 while (next != NULL) {
450 dsl_dir_t *child_dd;
451 err = getcomponent(next, buf, &nextnext);
452 if (err != 0)
453 break;
454 ASSERT(next[0] != '\0');
455 if (next[0] == '@')
456 break;
457 dprintf("looking up %s in obj%lld\n",
458 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
459
460 err = zap_lookup(dp->dp_meta_objset,
461 dsl_dir_phys(dd)->dd_child_dir_zapobj,
462 buf, sizeof (ddobj), 1, &ddobj);
463 if (err != 0) {
464 if (err == ENOENT)
465 err = 0;
466 break;
467 }
468
469 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
470 if (err != 0)
471 break;
472 dsl_dir_rele(dd, tag);
473 dd = child_dd;
474 next = nextnext;
475 }
476
477 if (err != 0) {
478 dsl_dir_rele(dd, tag);
479 return (err);
480 }
481
482 /*
483 * It's an error if there's more than one component left, or
484 * tailp==NULL and there's any component left.
485 */
486 if (next != NULL &&
487 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
488 /* bad path name */
489 dsl_dir_rele(dd, tag);
490 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
491 err = SET_ERROR(ENOENT);
492 }
493 if (tailp != NULL)
494 *tailp = next;
495 *ddp = dd;
496 return (err);
497 }
498
499 /*
500 * If the counts are already initialized for this filesystem and its
501 * descendants then do nothing, otherwise initialize the counts.
502 *
503 * The counts on this filesystem, and those below, may be uninitialized due to
504 * either the use of a pre-existing pool which did not support the
505 * filesystem/snapshot limit feature, or one in which the feature had not yet
506 * been enabled.
507 *
508 * Recursively descend the filesystem tree and update the filesystem/snapshot
509 * counts on each filesystem below, then update the cumulative count on the
510 * current filesystem. If the filesystem already has a count set on it,
511 * then we know that its counts, and the counts on the filesystems below it,
512 * are already correct, so we don't have to update this filesystem.
513 */
514 static void
dsl_dir_init_fs_ss_count(dsl_dir_t * dd,dmu_tx_t * tx)515 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
516 {
517 uint64_t my_fs_cnt = 0;
518 uint64_t my_ss_cnt = 0;
519 dsl_pool_t *dp = dd->dd_pool;
520 objset_t *os = dp->dp_meta_objset;
521 zap_cursor_t *zc;
522 zap_attribute_t *za;
523 dsl_dataset_t *ds;
524
525 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
526 ASSERT(dsl_pool_config_held(dp));
527 ASSERT(dmu_tx_is_syncing(tx));
528
529 dsl_dir_zapify(dd, tx);
530
531 /*
532 * If the filesystem count has already been initialized then we
533 * don't need to recurse down any further.
534 */
535 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
536 return;
537
538 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
539 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
540
541 /* Iterate my child dirs */
542 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
543 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
544 dsl_dir_t *chld_dd;
545 uint64_t count;
546
547 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
548 &chld_dd));
549
550 /*
551 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
552 * temporary datasets.
553 */
554 if (chld_dd->dd_myname[0] == '$' ||
555 chld_dd->dd_myname[0] == '%') {
556 dsl_dir_rele(chld_dd, FTAG);
557 continue;
558 }
559
560 my_fs_cnt++; /* count this child */
561
562 dsl_dir_init_fs_ss_count(chld_dd, tx);
563
564 VERIFY0(zap_lookup(os, chld_dd->dd_object,
565 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
566 my_fs_cnt += count;
567 VERIFY0(zap_lookup(os, chld_dd->dd_object,
568 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
569 my_ss_cnt += count;
570
571 dsl_dir_rele(chld_dd, FTAG);
572 }
573 zap_cursor_fini(zc);
574 /* Count my snapshots (we counted children's snapshots above) */
575 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
576 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
577
578 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
579 zap_cursor_retrieve(zc, za) == 0;
580 zap_cursor_advance(zc)) {
581 /* Don't count temporary snapshots */
582 if (za->za_name[0] != '%')
583 my_ss_cnt++;
584 }
585 zap_cursor_fini(zc);
586
587 dsl_dataset_rele(ds, FTAG);
588
589 kmem_free(zc, sizeof (zap_cursor_t));
590 kmem_free(za, sizeof (zap_attribute_t));
591
592 /* we're in a sync task, update counts */
593 dmu_buf_will_dirty(dd->dd_dbuf, tx);
594 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
595 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
596 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
597 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
598 }
599
600 static int
dsl_dir_actv_fs_ss_limit_check(void * arg,dmu_tx_t * tx)601 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
602 {
603 char *ddname = (char *)arg;
604 dsl_pool_t *dp = dmu_tx_pool(tx);
605 dsl_dataset_t *ds;
606 dsl_dir_t *dd;
607 int error;
608
609 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
610 if (error != 0)
611 return (error);
612
613 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
614 dsl_dataset_rele(ds, FTAG);
615 return (SET_ERROR(ENOTSUP));
616 }
617
618 dd = ds->ds_dir;
619 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
620 dsl_dir_is_zapified(dd) &&
621 zap_contains(dp->dp_meta_objset, dd->dd_object,
622 DD_FIELD_FILESYSTEM_COUNT) == 0) {
623 dsl_dataset_rele(ds, FTAG);
624 return (SET_ERROR(EALREADY));
625 }
626
627 dsl_dataset_rele(ds, FTAG);
628 return (0);
629 }
630
631 static void
dsl_dir_actv_fs_ss_limit_sync(void * arg,dmu_tx_t * tx)632 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
633 {
634 char *ddname = (char *)arg;
635 dsl_pool_t *dp = dmu_tx_pool(tx);
636 dsl_dataset_t *ds;
637 spa_t *spa;
638
639 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
640
641 spa = dsl_dataset_get_spa(ds);
642
643 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
644 /*
645 * Since the feature was not active and we're now setting a
646 * limit, increment the feature-active counter so that the
647 * feature becomes active for the first time.
648 *
649 * We are already in a sync task so we can update the MOS.
650 */
651 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
652 }
653
654 /*
655 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
656 * we need to ensure the counts are correct. Descend down the tree from
657 * this point and update all of the counts to be accurate.
658 */
659 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
660
661 dsl_dataset_rele(ds, FTAG);
662 }
663
664 /*
665 * Make sure the feature is enabled and activate it if necessary.
666 * Since we're setting a limit, ensure the on-disk counts are valid.
667 * This is only called by the ioctl path when setting a limit value.
668 *
669 * We do not need to validate the new limit, since users who can change the
670 * limit are also allowed to exceed the limit.
671 */
672 int
dsl_dir_activate_fs_ss_limit(const char * ddname)673 dsl_dir_activate_fs_ss_limit(const char *ddname)
674 {
675 int error;
676
677 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
678 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
679 ZFS_SPACE_CHECK_RESERVED);
680
681 if (error == EALREADY)
682 error = 0;
683
684 return (error);
685 }
686
687 /*
688 * Used to determine if the filesystem_limit or snapshot_limit should be
689 * enforced. We allow the limit to be exceeded if the user has permission to
690 * write the property value. We pass in the creds that we got in the open
691 * context since we will always be the GZ root in syncing context. We also have
692 * to handle the case where we are allowed to change the limit on the current
693 * dataset, but there may be another limit in the tree above.
694 *
695 * We can never modify these two properties within a non-global zone. In
696 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
697 * can't use that function since we are already holding the dp_config_rwlock.
698 * In addition, we already have the dd and dealing with snapshots is simplified
699 * in this code.
700 */
701
702 typedef enum {
703 ENFORCE_ALWAYS,
704 ENFORCE_NEVER,
705 ENFORCE_ABOVE
706 } enforce_res_t;
707
708 static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t * dd,zfs_prop_t prop,cred_t * cr)709 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
710 {
711 enforce_res_t enforce = ENFORCE_ALWAYS;
712 uint64_t obj;
713 dsl_dataset_t *ds;
714 uint64_t zoned;
715
716 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
717 prop == ZFS_PROP_SNAPSHOT_LIMIT);
718
719 #ifdef _KERNEL
720 if (crgetzoneid(cr) != GLOBAL_ZONEID)
721 return (ENFORCE_ALWAYS);
722
723 if (secpolicy_zfs(cr) == 0)
724 return (ENFORCE_NEVER);
725 #endif
726
727 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
728 return (ENFORCE_ALWAYS);
729
730 ASSERT(dsl_pool_config_held(dd->dd_pool));
731
732 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
733 return (ENFORCE_ALWAYS);
734
735 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
736 /* Only root can access zoned fs's from the GZ */
737 enforce = ENFORCE_ALWAYS;
738 } else {
739 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
740 enforce = ENFORCE_ABOVE;
741 }
742
743 dsl_dataset_rele(ds, FTAG);
744 return (enforce);
745 }
746
747 /*
748 * Check if adding additional child filesystem(s) would exceed any filesystem
749 * limits or adding additional snapshot(s) would exceed any snapshot limits.
750 * The prop argument indicates which limit to check.
751 *
752 * Note that all filesystem limits up to the root (or the highest
753 * initialized) filesystem or the given ancestor must be satisfied.
754 */
755 int
dsl_fs_ss_limit_check(dsl_dir_t * dd,uint64_t delta,zfs_prop_t prop,dsl_dir_t * ancestor,cred_t * cr)756 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
757 dsl_dir_t *ancestor, cred_t *cr)
758 {
759 objset_t *os = dd->dd_pool->dp_meta_objset;
760 uint64_t limit, count;
761 char *count_prop;
762 enforce_res_t enforce;
763 int err = 0;
764
765 ASSERT(dsl_pool_config_held(dd->dd_pool));
766 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
767 prop == ZFS_PROP_SNAPSHOT_LIMIT);
768
769 /*
770 * If we're allowed to change the limit, don't enforce the limit
771 * e.g. this can happen if a snapshot is taken by an administrative
772 * user in the global zone (i.e. a recursive snapshot by root).
773 * However, we must handle the case of delegated permissions where we
774 * are allowed to change the limit on the current dataset, but there
775 * is another limit in the tree above.
776 */
777 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
778 if (enforce == ENFORCE_NEVER)
779 return (0);
780
781 /*
782 * e.g. if renaming a dataset with no snapshots, count adjustment
783 * is 0.
784 */
785 if (delta == 0)
786 return (0);
787
788 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
789 /*
790 * We don't enforce the limit for temporary snapshots. This is
791 * indicated by a NULL cred_t argument.
792 */
793 if (cr == NULL)
794 return (0);
795
796 count_prop = DD_FIELD_SNAPSHOT_COUNT;
797 } else {
798 count_prop = DD_FIELD_FILESYSTEM_COUNT;
799 }
800
801 /*
802 * If an ancestor has been provided, stop checking the limit once we
803 * hit that dir. We need this during rename so that we don't overcount
804 * the check once we recurse up to the common ancestor.
805 */
806 if (ancestor == dd)
807 return (0);
808
809 /*
810 * If we hit an uninitialized node while recursing up the tree, we can
811 * stop since we know there is no limit here (or above). The counts are
812 * not valid on this node and we know we won't touch this node's counts.
813 */
814 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
815 count_prop, sizeof (count), 1, &count) == ENOENT)
816 return (0);
817
818 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
819 B_FALSE);
820 if (err != 0)
821 return (err);
822
823 /* Is there a limit which we've hit? */
824 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
825 return (SET_ERROR(EDQUOT));
826
827 if (dd->dd_parent != NULL)
828 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
829 ancestor, cr);
830
831 return (err);
832 }
833
834 /*
835 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
836 * parents. When a new filesystem/snapshot is created, increment the count on
837 * all parents, and when a filesystem/snapshot is destroyed, decrement the
838 * count.
839 */
840 void
dsl_fs_ss_count_adjust(dsl_dir_t * dd,int64_t delta,const char * prop,dmu_tx_t * tx)841 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
842 dmu_tx_t *tx)
843 {
844 int err;
845 objset_t *os = dd->dd_pool->dp_meta_objset;
846 uint64_t count;
847
848 ASSERT(dsl_pool_config_held(dd->dd_pool));
849 ASSERT(dmu_tx_is_syncing(tx));
850 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
851 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
852
853 /*
854 * When we receive an incremental stream into a filesystem that already
855 * exists, a temporary clone is created. We don't count this temporary
856 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
857 * $MOS & $ORIGIN) objsets.
858 */
859 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
860 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
861 return;
862
863 /*
864 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
865 */
866 if (delta == 0)
867 return;
868
869 /*
870 * If we hit an uninitialized node while recursing up the tree, we can
871 * stop since we know the counts are not valid on this node and we
872 * know we shouldn't touch this node's counts. An uninitialized count
873 * on the node indicates that either the feature has not yet been
874 * activated or there are no limits on this part of the tree.
875 */
876 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
877 prop, sizeof (count), 1, &count)) == ENOENT)
878 return;
879 VERIFY0(err);
880
881 count += delta;
882 /* Use a signed verify to make sure we're not neg. */
883 VERIFY3S(count, >=, 0);
884
885 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
886 tx));
887
888 /* Roll up this additional count into our ancestors */
889 if (dd->dd_parent != NULL)
890 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
891 }
892
893 uint64_t
dsl_dir_create_sync(dsl_pool_t * dp,dsl_dir_t * pds,const char * name,dmu_tx_t * tx)894 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
895 dmu_tx_t *tx)
896 {
897 objset_t *mos = dp->dp_meta_objset;
898 uint64_t ddobj;
899 dsl_dir_phys_t *ddphys;
900 dmu_buf_t *dbuf;
901
902 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
903 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
904 if (pds) {
905 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
906 name, sizeof (uint64_t), 1, &ddobj, tx));
907 } else {
908 /* it's the root dir */
909 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
910 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
911 }
912 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
913 dmu_buf_will_dirty(dbuf, tx);
914 ddphys = dbuf->db_data;
915
916 ddphys->dd_creation_time = gethrestime_sec();
917 if (pds) {
918 ddphys->dd_parent_obj = pds->dd_object;
919
920 /* update the filesystem counts */
921 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
922 }
923 ddphys->dd_props_zapobj = zap_create(mos,
924 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
925 ddphys->dd_child_dir_zapobj = zap_create(mos,
926 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
927 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
928 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
929 dmu_buf_rele(dbuf, FTAG);
930
931 return (ddobj);
932 }
933
934 boolean_t
dsl_dir_is_clone(dsl_dir_t * dd)935 dsl_dir_is_clone(dsl_dir_t *dd)
936 {
937 return (dsl_dir_phys(dd)->dd_origin_obj &&
938 (dd->dd_pool->dp_origin_snap == NULL ||
939 dsl_dir_phys(dd)->dd_origin_obj !=
940 dd->dd_pool->dp_origin_snap->ds_object));
941 }
942
943 void
dsl_dir_stats(dsl_dir_t * dd,nvlist_t * nv)944 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
945 {
946 mutex_enter(&dd->dd_lock);
947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
948 dsl_dir_phys(dd)->dd_used_bytes);
949 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
950 dsl_dir_phys(dd)->dd_quota);
951 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
952 dsl_dir_phys(dd)->dd_reserved);
953 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
954 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
955 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
956 dsl_dir_phys(dd)->dd_compressed_bytes));
957 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
958 dsl_dir_phys(dd)->dd_uncompressed_bytes);
959 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
960 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
961 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
962 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
963 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
964 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
965 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
966 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
967 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
968 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
969 }
970 mutex_exit(&dd->dd_lock);
971
972 if (dsl_dir_is_zapified(dd)) {
973 uint64_t count;
974 objset_t *os = dd->dd_pool->dp_meta_objset;
975
976 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
977 sizeof (count), 1, &count) == 0) {
978 dsl_prop_nvlist_add_uint64(nv,
979 ZFS_PROP_FILESYSTEM_COUNT, count);
980 }
981 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
982 sizeof (count), 1, &count) == 0) {
983 dsl_prop_nvlist_add_uint64(nv,
984 ZFS_PROP_SNAPSHOT_COUNT, count);
985 }
986 }
987
988 if (dsl_dir_is_clone(dd)) {
989 dsl_dataset_t *ds;
990 char buf[ZFS_MAX_DATASET_NAME_LEN];
991
992 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
993 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
994 dsl_dataset_name(ds, buf);
995 dsl_dataset_rele(ds, FTAG);
996 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
997 }
998 }
999
1000 void
dsl_dir_dirty(dsl_dir_t * dd,dmu_tx_t * tx)1001 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1002 {
1003 dsl_pool_t *dp = dd->dd_pool;
1004
1005 ASSERT(dsl_dir_phys(dd));
1006
1007 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1008 /* up the hold count until we can be written out */
1009 dmu_buf_add_ref(dd->dd_dbuf, dd);
1010 }
1011 }
1012
1013 static int64_t
parent_delta(dsl_dir_t * dd,uint64_t used,int64_t delta)1014 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1015 {
1016 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1017 uint64_t new_accounted =
1018 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1019 return (new_accounted - old_accounted);
1020 }
1021
1022 void
dsl_dir_sync(dsl_dir_t * dd,dmu_tx_t * tx)1023 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1024 {
1025 ASSERT(dmu_tx_is_syncing(tx));
1026
1027 mutex_enter(&dd->dd_lock);
1028 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1029 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1030 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1031 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1032 mutex_exit(&dd->dd_lock);
1033
1034 /* release the hold from dsl_dir_dirty */
1035 dmu_buf_rele(dd->dd_dbuf, dd);
1036 }
1037
1038 static uint64_t
dsl_dir_space_towrite(dsl_dir_t * dd)1039 dsl_dir_space_towrite(dsl_dir_t *dd)
1040 {
1041 uint64_t space = 0;
1042 int i;
1043
1044 ASSERT(MUTEX_HELD(&dd->dd_lock));
1045
1046 for (i = 0; i < TXG_SIZE; i++) {
1047 space += dd->dd_space_towrite[i&TXG_MASK];
1048 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1049 }
1050 return (space);
1051 }
1052
1053 /*
1054 * How much space would dd have available if ancestor had delta applied
1055 * to it? If ondiskonly is set, we're only interested in what's
1056 * on-disk, not estimated pending changes.
1057 */
1058 uint64_t
dsl_dir_space_available(dsl_dir_t * dd,dsl_dir_t * ancestor,int64_t delta,int ondiskonly)1059 dsl_dir_space_available(dsl_dir_t *dd,
1060 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1061 {
1062 uint64_t parentspace, myspace, quota, used;
1063
1064 /*
1065 * If there are no restrictions otherwise, assume we have
1066 * unlimited space available.
1067 */
1068 quota = UINT64_MAX;
1069 parentspace = UINT64_MAX;
1070
1071 if (dd->dd_parent != NULL) {
1072 parentspace = dsl_dir_space_available(dd->dd_parent,
1073 ancestor, delta, ondiskonly);
1074 }
1075
1076 mutex_enter(&dd->dd_lock);
1077 if (dsl_dir_phys(dd)->dd_quota != 0)
1078 quota = dsl_dir_phys(dd)->dd_quota;
1079 used = dsl_dir_phys(dd)->dd_used_bytes;
1080 if (!ondiskonly)
1081 used += dsl_dir_space_towrite(dd);
1082
1083 if (dd->dd_parent == NULL) {
1084 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1085 quota = MIN(quota, poolsize);
1086 }
1087
1088 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1089 /*
1090 * We have some space reserved, in addition to what our
1091 * parent gave us.
1092 */
1093 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1094 }
1095
1096 if (dd == ancestor) {
1097 ASSERT(delta <= 0);
1098 ASSERT(used >= -delta);
1099 used += delta;
1100 if (parentspace != UINT64_MAX)
1101 parentspace -= delta;
1102 }
1103
1104 if (used > quota) {
1105 /* over quota */
1106 myspace = 0;
1107 } else {
1108 /*
1109 * the lesser of the space provided by our parent and
1110 * the space left in our quota
1111 */
1112 myspace = MIN(parentspace, quota - used);
1113 }
1114
1115 mutex_exit(&dd->dd_lock);
1116
1117 return (myspace);
1118 }
1119
1120 struct tempreserve {
1121 list_node_t tr_node;
1122 dsl_dir_t *tr_ds;
1123 uint64_t tr_size;
1124 };
1125
1126 static int
dsl_dir_tempreserve_impl(dsl_dir_t * dd,uint64_t asize,boolean_t netfree,boolean_t ignorequota,boolean_t checkrefquota,list_t * tr_list,dmu_tx_t * tx,boolean_t first)1127 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1128 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1129 dmu_tx_t *tx, boolean_t first)
1130 {
1131 uint64_t txg = tx->tx_txg;
1132 uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1133 uint64_t deferred = 0;
1134 struct tempreserve *tr;
1135 int retval = EDQUOT;
1136 int txgidx = txg & TXG_MASK;
1137 int i;
1138 uint64_t ref_rsrv = 0;
1139
1140 ASSERT3U(txg, !=, 0);
1141 ASSERT3S(asize, >, 0);
1142
1143 mutex_enter(&dd->dd_lock);
1144
1145 /*
1146 * Check against the dsl_dir's quota. We don't add in the delta
1147 * when checking for over-quota because they get one free hit.
1148 */
1149 est_inflight = dsl_dir_space_towrite(dd);
1150 for (i = 0; i < TXG_SIZE; i++)
1151 est_inflight += dd->dd_tempreserved[i];
1152 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1153
1154 /*
1155 * On the first iteration, fetch the dataset's used-on-disk and
1156 * refreservation values. Also, if checkrefquota is set, test if
1157 * allocating this space would exceed the dataset's refquota.
1158 */
1159 if (first && tx->tx_objset) {
1160 int error;
1161 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1162
1163 error = dsl_dataset_check_quota(ds, checkrefquota,
1164 asize, est_inflight, &used_on_disk, &ref_rsrv);
1165 if (error) {
1166 mutex_exit(&dd->dd_lock);
1167 return (error);
1168 }
1169 }
1170
1171 /*
1172 * If this transaction will result in a net free of space,
1173 * we want to let it through.
1174 */
1175 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1176 quota = UINT64_MAX;
1177 else
1178 quota = dsl_dir_phys(dd)->dd_quota;
1179
1180 /*
1181 * Adjust the quota against the actual pool size at the root
1182 * minus any outstanding deferred frees.
1183 * To ensure that it's possible to remove files from a full
1184 * pool without inducing transient overcommits, we throttle
1185 * netfree transactions against a quota that is slightly larger,
1186 * but still within the pool's allocation slop. In cases where
1187 * we're very close to full, this will allow a steady trickle of
1188 * removes to get through.
1189 */
1190 if (dd->dd_parent == NULL) {
1191 spa_t *spa = dd->dd_pool->dp_spa;
1192 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1193 deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1194 if (poolsize - deferred < quota) {
1195 quota = poolsize - deferred;
1196 retval = ENOSPC;
1197 }
1198 }
1199
1200 /*
1201 * If they are requesting more space, and our current estimate
1202 * is over quota, they get to try again unless the actual
1203 * on-disk is over quota and there are no pending changes (which
1204 * may free up space for us).
1205 */
1206 if (used_on_disk + est_inflight >= quota) {
1207 if (est_inflight > early_edquot_threshold ||
1208 used_on_disk + early_edquot_threshold < quota ||
1209 (retval == ENOSPC && used_on_disk < quota + deferred))
1210 retval = ERESTART;
1211 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1212 "quota=%lluK tr=%lluK err=%d\n",
1213 used_on_disk>>10, est_inflight>>10,
1214 quota>>10, asize>>10, retval);
1215 mutex_exit(&dd->dd_lock);
1216 return (SET_ERROR(retval));
1217 }
1218
1219 /* We need to up our estimated delta before dropping dd_lock */
1220 dd->dd_tempreserved[txgidx] += asize;
1221
1222 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1223 asize - ref_rsrv);
1224 mutex_exit(&dd->dd_lock);
1225
1226 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1227 tr->tr_ds = dd;
1228 tr->tr_size = asize;
1229 list_insert_tail(tr_list, tr);
1230
1231 /* see if it's OK with our parent */
1232 if (dd->dd_parent && parent_rsrv) {
1233 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1234
1235 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1236 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1237 } else {
1238 return (0);
1239 }
1240 }
1241
1242 /*
1243 * Reserve space in this dsl_dir, to be used in this tx's txg.
1244 * After the space has been dirtied (and dsl_dir_willuse_space()
1245 * has been called), the reservation should be canceled, using
1246 * dsl_dir_tempreserve_clear().
1247 */
1248 int
dsl_dir_tempreserve_space(dsl_dir_t * dd,uint64_t lsize,uint64_t asize,uint64_t fsize,uint64_t usize,void ** tr_cookiep,dmu_tx_t * tx)1249 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1250 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1251 {
1252 int err;
1253 list_t *tr_list;
1254
1255 if (asize == 0) {
1256 *tr_cookiep = NULL;
1257 return (0);
1258 }
1259
1260 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1261 list_create(tr_list, sizeof (struct tempreserve),
1262 offsetof(struct tempreserve, tr_node));
1263 ASSERT3S(asize, >, 0);
1264 ASSERT3S(fsize, >=, 0);
1265
1266 err = arc_tempreserve_space(lsize, tx->tx_txg);
1267 if (err == 0) {
1268 struct tempreserve *tr;
1269
1270 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1271 tr->tr_size = lsize;
1272 list_insert_tail(tr_list, tr);
1273 } else {
1274 if (err == EAGAIN) {
1275 /*
1276 * If arc_memory_throttle() detected that pageout
1277 * is running and we are low on memory, we delay new
1278 * non-pageout transactions to give pageout an
1279 * advantage.
1280 *
1281 * It is unfortunate to be delaying while the caller's
1282 * locks are held.
1283 */
1284 txg_delay(dd->dd_pool, tx->tx_txg,
1285 MSEC2NSEC(10), MSEC2NSEC(10));
1286 err = SET_ERROR(ERESTART);
1287 }
1288 }
1289
1290 if (err == 0) {
1291 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1292 FALSE, asize > usize, tr_list, tx, TRUE);
1293 }
1294
1295 if (err != 0)
1296 dsl_dir_tempreserve_clear(tr_list, tx);
1297 else
1298 *tr_cookiep = tr_list;
1299
1300 return (err);
1301 }
1302
1303 /*
1304 * Clear a temporary reservation that we previously made with
1305 * dsl_dir_tempreserve_space().
1306 */
1307 void
dsl_dir_tempreserve_clear(void * tr_cookie,dmu_tx_t * tx)1308 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1309 {
1310 int txgidx = tx->tx_txg & TXG_MASK;
1311 list_t *tr_list = tr_cookie;
1312 struct tempreserve *tr;
1313
1314 ASSERT3U(tx->tx_txg, !=, 0);
1315
1316 if (tr_cookie == NULL)
1317 return;
1318
1319 while ((tr = list_head(tr_list)) != NULL) {
1320 if (tr->tr_ds) {
1321 mutex_enter(&tr->tr_ds->dd_lock);
1322 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1323 tr->tr_size);
1324 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1325 mutex_exit(&tr->tr_ds->dd_lock);
1326 } else {
1327 arc_tempreserve_clear(tr->tr_size);
1328 }
1329 list_remove(tr_list, tr);
1330 kmem_free(tr, sizeof (struct tempreserve));
1331 }
1332
1333 kmem_free(tr_list, sizeof (list_t));
1334 }
1335
1336 /*
1337 * This should be called from open context when we think we're going to write
1338 * or free space, for example when dirtying data. Be conservative; it's okay
1339 * to write less space or free more, but we don't want to write more or free
1340 * less than the amount specified.
1341 */
1342 void
dsl_dir_willuse_space(dsl_dir_t * dd,int64_t space,dmu_tx_t * tx)1343 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1344 {
1345 int64_t parent_space;
1346 uint64_t est_used;
1347
1348 mutex_enter(&dd->dd_lock);
1349 if (space > 0)
1350 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1351
1352 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1353 parent_space = parent_delta(dd, est_used, space);
1354 mutex_exit(&dd->dd_lock);
1355
1356 /* Make sure that we clean up dd_space_to* */
1357 dsl_dir_dirty(dd, tx);
1358
1359 /* XXX this is potentially expensive and unnecessary... */
1360 if (parent_space && dd->dd_parent)
1361 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1362 }
1363
1364 /* call from syncing context when we actually write/free space for this dd */
1365 void
dsl_dir_diduse_space(dsl_dir_t * dd,dd_used_t type,int64_t used,int64_t compressed,int64_t uncompressed,dmu_tx_t * tx)1366 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1367 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1368 {
1369 int64_t accounted_delta;
1370
1371 /*
1372 * dsl_dataset_set_refreservation_sync_impl() calls this with
1373 * dd_lock held, so that it can atomically update
1374 * ds->ds_reserved and the dsl_dir accounting, so that
1375 * dsl_dataset_check_quota() can see dataset and dir accounting
1376 * consistently.
1377 */
1378 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1379
1380 ASSERT(dmu_tx_is_syncing(tx));
1381 ASSERT(type < DD_USED_NUM);
1382
1383 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1384
1385 if (needlock)
1386 mutex_enter(&dd->dd_lock);
1387 accounted_delta =
1388 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1389 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1390 ASSERT(compressed >= 0 ||
1391 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1392 ASSERT(uncompressed >= 0 ||
1393 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1394 dsl_dir_phys(dd)->dd_used_bytes += used;
1395 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1396 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1397
1398 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1399 ASSERT(used > 0 ||
1400 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1401 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1402 #ifdef DEBUG
1403 dd_used_t t;
1404 uint64_t u = 0;
1405 for (t = 0; t < DD_USED_NUM; t++)
1406 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1407 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1408 #endif
1409 }
1410 if (needlock)
1411 mutex_exit(&dd->dd_lock);
1412
1413 if (dd->dd_parent != NULL) {
1414 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1415 accounted_delta, compressed, uncompressed, tx);
1416 dsl_dir_transfer_space(dd->dd_parent,
1417 used - accounted_delta,
1418 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1419 }
1420 }
1421
1422 void
dsl_dir_transfer_space(dsl_dir_t * dd,int64_t delta,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1423 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1424 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1425 {
1426 ASSERT(dmu_tx_is_syncing(tx));
1427 ASSERT(oldtype < DD_USED_NUM);
1428 ASSERT(newtype < DD_USED_NUM);
1429
1430 if (delta == 0 ||
1431 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1432 return;
1433
1434 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1435 mutex_enter(&dd->dd_lock);
1436 ASSERT(delta > 0 ?
1437 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1438 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1439 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1440 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1441 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1442 mutex_exit(&dd->dd_lock);
1443 }
1444
1445 typedef struct dsl_dir_set_qr_arg {
1446 const char *ddsqra_name;
1447 zprop_source_t ddsqra_source;
1448 uint64_t ddsqra_value;
1449 } dsl_dir_set_qr_arg_t;
1450
1451 static int
dsl_dir_set_quota_check(void * arg,dmu_tx_t * tx)1452 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1453 {
1454 dsl_dir_set_qr_arg_t *ddsqra = arg;
1455 dsl_pool_t *dp = dmu_tx_pool(tx);
1456 dsl_dataset_t *ds;
1457 int error;
1458 uint64_t towrite, newval;
1459
1460 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1461 if (error != 0)
1462 return (error);
1463
1464 error = dsl_prop_predict(ds->ds_dir, "quota",
1465 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1466 if (error != 0) {
1467 dsl_dataset_rele(ds, FTAG);
1468 return (error);
1469 }
1470
1471 if (newval == 0) {
1472 dsl_dataset_rele(ds, FTAG);
1473 return (0);
1474 }
1475
1476 mutex_enter(&ds->ds_dir->dd_lock);
1477 /*
1478 * If we are doing the preliminary check in open context, and
1479 * there are pending changes, then don't fail it, since the
1480 * pending changes could under-estimate the amount of space to be
1481 * freed up.
1482 */
1483 towrite = dsl_dir_space_towrite(ds->ds_dir);
1484 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1485 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1486 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1487 error = SET_ERROR(ENOSPC);
1488 }
1489 mutex_exit(&ds->ds_dir->dd_lock);
1490 dsl_dataset_rele(ds, FTAG);
1491 return (error);
1492 }
1493
1494 static void
dsl_dir_set_quota_sync(void * arg,dmu_tx_t * tx)1495 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1496 {
1497 dsl_dir_set_qr_arg_t *ddsqra = arg;
1498 dsl_pool_t *dp = dmu_tx_pool(tx);
1499 dsl_dataset_t *ds;
1500 uint64_t newval;
1501
1502 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1503
1504 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1505 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1506 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1507 &ddsqra->ddsqra_value, tx);
1508
1509 VERIFY0(dsl_prop_get_int_ds(ds,
1510 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1511 } else {
1512 newval = ddsqra->ddsqra_value;
1513 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1514 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1515 }
1516
1517 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1518 mutex_enter(&ds->ds_dir->dd_lock);
1519 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1520 mutex_exit(&ds->ds_dir->dd_lock);
1521 dsl_dataset_rele(ds, FTAG);
1522 }
1523
1524 int
dsl_dir_set_quota(const char * ddname,zprop_source_t source,uint64_t quota)1525 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1526 {
1527 dsl_dir_set_qr_arg_t ddsqra;
1528
1529 ddsqra.ddsqra_name = ddname;
1530 ddsqra.ddsqra_source = source;
1531 ddsqra.ddsqra_value = quota;
1532
1533 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1534 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1535 }
1536
1537 int
dsl_dir_set_reservation_check(void * arg,dmu_tx_t * tx)1538 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1539 {
1540 dsl_dir_set_qr_arg_t *ddsqra = arg;
1541 dsl_pool_t *dp = dmu_tx_pool(tx);
1542 dsl_dataset_t *ds;
1543 dsl_dir_t *dd;
1544 uint64_t newval, used, avail;
1545 int error;
1546
1547 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1548 if (error != 0)
1549 return (error);
1550 dd = ds->ds_dir;
1551
1552 /*
1553 * If we are doing the preliminary check in open context, the
1554 * space estimates may be inaccurate.
1555 */
1556 if (!dmu_tx_is_syncing(tx)) {
1557 dsl_dataset_rele(ds, FTAG);
1558 return (0);
1559 }
1560
1561 error = dsl_prop_predict(ds->ds_dir,
1562 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1563 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1564 if (error != 0) {
1565 dsl_dataset_rele(ds, FTAG);
1566 return (error);
1567 }
1568
1569 mutex_enter(&dd->dd_lock);
1570 used = dsl_dir_phys(dd)->dd_used_bytes;
1571 mutex_exit(&dd->dd_lock);
1572
1573 if (dd->dd_parent) {
1574 avail = dsl_dir_space_available(dd->dd_parent,
1575 NULL, 0, FALSE);
1576 } else {
1577 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1578 }
1579
1580 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1581 uint64_t delta = MAX(used, newval) -
1582 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1583
1584 if (delta > avail ||
1585 (dsl_dir_phys(dd)->dd_quota > 0 &&
1586 newval > dsl_dir_phys(dd)->dd_quota))
1587 error = SET_ERROR(ENOSPC);
1588 }
1589
1590 dsl_dataset_rele(ds, FTAG);
1591 return (error);
1592 }
1593
1594 void
dsl_dir_set_reservation_sync_impl(dsl_dir_t * dd,uint64_t value,dmu_tx_t * tx)1595 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1596 {
1597 uint64_t used;
1598 int64_t delta;
1599
1600 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1601
1602 mutex_enter(&dd->dd_lock);
1603 used = dsl_dir_phys(dd)->dd_used_bytes;
1604 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1605 dsl_dir_phys(dd)->dd_reserved = value;
1606
1607 if (dd->dd_parent != NULL) {
1608 /* Roll up this additional usage into our ancestors */
1609 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1610 delta, 0, 0, tx);
1611 }
1612 mutex_exit(&dd->dd_lock);
1613 }
1614
1615
1616 static void
dsl_dir_set_reservation_sync(void * arg,dmu_tx_t * tx)1617 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1618 {
1619 dsl_dir_set_qr_arg_t *ddsqra = arg;
1620 dsl_pool_t *dp = dmu_tx_pool(tx);
1621 dsl_dataset_t *ds;
1622 uint64_t newval;
1623
1624 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1625
1626 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1627 dsl_prop_set_sync_impl(ds,
1628 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1629 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1630 &ddsqra->ddsqra_value, tx);
1631
1632 VERIFY0(dsl_prop_get_int_ds(ds,
1633 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1634 } else {
1635 newval = ddsqra->ddsqra_value;
1636 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1637 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1638 (longlong_t)newval);
1639 }
1640
1641 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1642 dsl_dataset_rele(ds, FTAG);
1643 }
1644
1645 int
dsl_dir_set_reservation(const char * ddname,zprop_source_t source,uint64_t reservation)1646 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1647 uint64_t reservation)
1648 {
1649 dsl_dir_set_qr_arg_t ddsqra;
1650
1651 ddsqra.ddsqra_name = ddname;
1652 ddsqra.ddsqra_source = source;
1653 ddsqra.ddsqra_value = reservation;
1654
1655 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1656 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1657 }
1658
1659 static dsl_dir_t *
closest_common_ancestor(dsl_dir_t * ds1,dsl_dir_t * ds2)1660 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1661 {
1662 for (; ds1; ds1 = ds1->dd_parent) {
1663 dsl_dir_t *dd;
1664 for (dd = ds2; dd; dd = dd->dd_parent) {
1665 if (ds1 == dd)
1666 return (dd);
1667 }
1668 }
1669 return (NULL);
1670 }
1671
1672 /*
1673 * If delta is applied to dd, how much of that delta would be applied to
1674 * ancestor? Syncing context only.
1675 */
1676 static int64_t
would_change(dsl_dir_t * dd,int64_t delta,dsl_dir_t * ancestor)1677 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1678 {
1679 if (dd == ancestor)
1680 return (delta);
1681
1682 mutex_enter(&dd->dd_lock);
1683 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1684 mutex_exit(&dd->dd_lock);
1685 return (would_change(dd->dd_parent, delta, ancestor));
1686 }
1687
1688 typedef struct dsl_dir_rename_arg {
1689 const char *ddra_oldname;
1690 const char *ddra_newname;
1691 cred_t *ddra_cred;
1692 } dsl_dir_rename_arg_t;
1693
1694 /* ARGSUSED */
1695 static int
dsl_valid_rename(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1696 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1697 {
1698 int *deltap = arg;
1699 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1700
1701 dsl_dataset_name(ds, namebuf);
1702
1703 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1704 return (SET_ERROR(ENAMETOOLONG));
1705 return (0);
1706 }
1707
1708 static int
dsl_dir_rename_check(void * arg,dmu_tx_t * tx)1709 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1710 {
1711 dsl_dir_rename_arg_t *ddra = arg;
1712 dsl_pool_t *dp = dmu_tx_pool(tx);
1713 dsl_dir_t *dd, *newparent;
1714 const char *mynewname;
1715 int error;
1716 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1717
1718 /* target dir should exist */
1719 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1720 if (error != 0)
1721 return (error);
1722
1723 /* new parent should exist */
1724 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1725 &newparent, &mynewname);
1726 if (error != 0) {
1727 dsl_dir_rele(dd, FTAG);
1728 return (error);
1729 }
1730
1731 /* can't rename to different pool */
1732 if (dd->dd_pool != newparent->dd_pool) {
1733 dsl_dir_rele(newparent, FTAG);
1734 dsl_dir_rele(dd, FTAG);
1735 return (SET_ERROR(ENXIO));
1736 }
1737
1738 /* new name should not already exist */
1739 if (mynewname == NULL) {
1740 dsl_dir_rele(newparent, FTAG);
1741 dsl_dir_rele(dd, FTAG);
1742 return (SET_ERROR(EEXIST));
1743 }
1744
1745 /* if the name length is growing, validate child name lengths */
1746 if (delta > 0) {
1747 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1748 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1749 if (error != 0) {
1750 dsl_dir_rele(newparent, FTAG);
1751 dsl_dir_rele(dd, FTAG);
1752 return (error);
1753 }
1754 }
1755
1756 if (dmu_tx_is_syncing(tx)) {
1757 if (spa_feature_is_active(dp->dp_spa,
1758 SPA_FEATURE_FS_SS_LIMIT)) {
1759 /*
1760 * Although this is the check function and we don't
1761 * normally make on-disk changes in check functions,
1762 * we need to do that here.
1763 *
1764 * Ensure this portion of the tree's counts have been
1765 * initialized in case the new parent has limits set.
1766 */
1767 dsl_dir_init_fs_ss_count(dd, tx);
1768 }
1769 }
1770
1771 if (newparent != dd->dd_parent) {
1772 /* is there enough space? */
1773 uint64_t myspace =
1774 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1775 dsl_dir_phys(dd)->dd_reserved);
1776 objset_t *os = dd->dd_pool->dp_meta_objset;
1777 uint64_t fs_cnt = 0;
1778 uint64_t ss_cnt = 0;
1779
1780 if (dsl_dir_is_zapified(dd)) {
1781 int err;
1782
1783 err = zap_lookup(os, dd->dd_object,
1784 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1785 &fs_cnt);
1786 if (err != ENOENT && err != 0) {
1787 dsl_dir_rele(newparent, FTAG);
1788 dsl_dir_rele(dd, FTAG);
1789 return (err);
1790 }
1791
1792 /*
1793 * have to add 1 for the filesystem itself that we're
1794 * moving
1795 */
1796 fs_cnt++;
1797
1798 err = zap_lookup(os, dd->dd_object,
1799 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1800 &ss_cnt);
1801 if (err != ENOENT && err != 0) {
1802 dsl_dir_rele(newparent, FTAG);
1803 dsl_dir_rele(dd, FTAG);
1804 return (err);
1805 }
1806 }
1807
1808 /* no rename into our descendant */
1809 if (closest_common_ancestor(dd, newparent) == dd) {
1810 dsl_dir_rele(newparent, FTAG);
1811 dsl_dir_rele(dd, FTAG);
1812 return (SET_ERROR(EINVAL));
1813 }
1814
1815 error = dsl_dir_transfer_possible(dd->dd_parent,
1816 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1817 if (error != 0) {
1818 dsl_dir_rele(newparent, FTAG);
1819 dsl_dir_rele(dd, FTAG);
1820 return (error);
1821 }
1822 }
1823
1824 dsl_dir_rele(newparent, FTAG);
1825 dsl_dir_rele(dd, FTAG);
1826 return (0);
1827 }
1828
1829 static void
dsl_dir_rename_sync(void * arg,dmu_tx_t * tx)1830 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1831 {
1832 dsl_dir_rename_arg_t *ddra = arg;
1833 dsl_pool_t *dp = dmu_tx_pool(tx);
1834 dsl_dir_t *dd, *newparent;
1835 const char *mynewname;
1836 int error;
1837 objset_t *mos = dp->dp_meta_objset;
1838
1839 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1840 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1841 &mynewname));
1842
1843 /* Log this before we change the name. */
1844 spa_history_log_internal_dd(dd, "rename", tx,
1845 "-> %s", ddra->ddra_newname);
1846
1847 if (newparent != dd->dd_parent) {
1848 objset_t *os = dd->dd_pool->dp_meta_objset;
1849 uint64_t fs_cnt = 0;
1850 uint64_t ss_cnt = 0;
1851
1852 /*
1853 * We already made sure the dd counts were initialized in the
1854 * check function.
1855 */
1856 if (spa_feature_is_active(dp->dp_spa,
1857 SPA_FEATURE_FS_SS_LIMIT)) {
1858 VERIFY0(zap_lookup(os, dd->dd_object,
1859 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1860 &fs_cnt));
1861 /* add 1 for the filesystem itself that we're moving */
1862 fs_cnt++;
1863
1864 VERIFY0(zap_lookup(os, dd->dd_object,
1865 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1866 &ss_cnt));
1867 }
1868
1869 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1870 DD_FIELD_FILESYSTEM_COUNT, tx);
1871 dsl_fs_ss_count_adjust(newparent, fs_cnt,
1872 DD_FIELD_FILESYSTEM_COUNT, tx);
1873
1874 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1875 DD_FIELD_SNAPSHOT_COUNT, tx);
1876 dsl_fs_ss_count_adjust(newparent, ss_cnt,
1877 DD_FIELD_SNAPSHOT_COUNT, tx);
1878
1879 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1880 -dsl_dir_phys(dd)->dd_used_bytes,
1881 -dsl_dir_phys(dd)->dd_compressed_bytes,
1882 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1883 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1884 dsl_dir_phys(dd)->dd_used_bytes,
1885 dsl_dir_phys(dd)->dd_compressed_bytes,
1886 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1887
1888 if (dsl_dir_phys(dd)->dd_reserved >
1889 dsl_dir_phys(dd)->dd_used_bytes) {
1890 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1891 dsl_dir_phys(dd)->dd_used_bytes;
1892
1893 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1894 -unused_rsrv, 0, 0, tx);
1895 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1896 unused_rsrv, 0, 0, tx);
1897 }
1898 }
1899
1900 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1901
1902 /* remove from old parent zapobj */
1903 error = zap_remove(mos,
1904 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1905 dd->dd_myname, tx);
1906 ASSERT0(error);
1907
1908 (void) strcpy(dd->dd_myname, mynewname);
1909 dsl_dir_rele(dd->dd_parent, dd);
1910 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1911 VERIFY0(dsl_dir_hold_obj(dp,
1912 newparent->dd_object, NULL, dd, &dd->dd_parent));
1913
1914 /* add to new parent zapobj */
1915 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1916 dd->dd_myname, 8, 1, &dd->dd_object, tx));
1917
1918 dsl_prop_notify_all(dd);
1919
1920 dsl_dir_rele(newparent, FTAG);
1921 dsl_dir_rele(dd, FTAG);
1922 }
1923
1924 int
dsl_dir_rename(const char * oldname,const char * newname)1925 dsl_dir_rename(const char *oldname, const char *newname)
1926 {
1927 dsl_dir_rename_arg_t ddra;
1928
1929 ddra.ddra_oldname = oldname;
1930 ddra.ddra_newname = newname;
1931 ddra.ddra_cred = CRED();
1932
1933 return (dsl_sync_task(oldname,
1934 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1935 3, ZFS_SPACE_CHECK_RESERVED));
1936 }
1937
1938 int
dsl_dir_transfer_possible(dsl_dir_t * sdd,dsl_dir_t * tdd,uint64_t fs_cnt,uint64_t ss_cnt,uint64_t space,cred_t * cr)1939 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1940 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1941 {
1942 dsl_dir_t *ancestor;
1943 int64_t adelta;
1944 uint64_t avail;
1945 int err;
1946
1947 ancestor = closest_common_ancestor(sdd, tdd);
1948 adelta = would_change(sdd, -space, ancestor);
1949 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1950 if (avail < space)
1951 return (SET_ERROR(ENOSPC));
1952
1953 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1954 ancestor, cr);
1955 if (err != 0)
1956 return (err);
1957 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1958 ancestor, cr);
1959 if (err != 0)
1960 return (err);
1961
1962 return (0);
1963 }
1964
1965 timestruc_t
dsl_dir_snap_cmtime(dsl_dir_t * dd)1966 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1967 {
1968 timestruc_t t;
1969
1970 mutex_enter(&dd->dd_lock);
1971 t = dd->dd_snap_cmtime;
1972 mutex_exit(&dd->dd_lock);
1973
1974 return (t);
1975 }
1976
1977 void
dsl_dir_snap_cmtime_update(dsl_dir_t * dd)1978 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1979 {
1980 timestruc_t t;
1981
1982 gethrestime(&t);
1983 mutex_enter(&dd->dd_lock);
1984 dd->dd_snap_cmtime = t;
1985 mutex_exit(&dd->dd_lock);
1986 }
1987
1988 void
dsl_dir_zapify(dsl_dir_t * dd,dmu_tx_t * tx)1989 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1990 {
1991 objset_t *mos = dd->dd_pool->dp_meta_objset;
1992 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1993 }
1994
1995 boolean_t
dsl_dir_is_zapified(dsl_dir_t * dd)1996 dsl_dir_is_zapified(dsl_dir_t *dd)
1997 {
1998 dmu_object_info_t doi;
1999
2000 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2001 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2002 }
2003