xref: /freebsd/sys/compat/linux/linux_misc.c (revision dbac191956f9b51069617b09fd0a24ca0e7bfc12)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * Copyright (c) 1994-1995 Søren Schmidt
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer
13  *    in this position and unchanged.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/fcntl.h>
34 #include <sys/jail.h>
35 #include <sys/imgact.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/msgbuf.h>
39 #include <sys/mqueue.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/procctl.h>
45 #include <sys/reboot.h>
46 #include <sys/random.h>
47 #include <sys/resourcevar.h>
48 #include <sys/rtprio.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/stat.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/sysctl.h>
54 #include <sys/sysent.h>
55 #include <sys/sysproto.h>
56 #include <sys/time.h>
57 #include <sys/unistd.h>
58 #include <sys/vmmeter.h>
59 #include <sys/vnode.h>
60 
61 #include <security/audit/audit.h>
62 #include <security/mac/mac_framework.h>
63 
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 #include <vm/swap_pager.h>
67 
68 #ifdef COMPAT_LINUX32
69 #include <machine/../linux32/linux.h>
70 #include <machine/../linux32/linux32_proto.h>
71 #else
72 #include <machine/../linux/linux.h>
73 #include <machine/../linux/linux_proto.h>
74 #endif
75 
76 #include <compat/linux/linux_common.h>
77 #include <compat/linux/linux_dtrace.h>
78 #include <compat/linux/linux_file.h>
79 #include <compat/linux/linux_mib.h>
80 #include <compat/linux/linux_mmap.h>
81 #include <compat/linux/linux_signal.h>
82 #include <compat/linux/linux_time.h>
83 #include <compat/linux/linux_util.h>
84 #include <compat/linux/linux_emul.h>
85 #include <compat/linux/linux_misc.h>
86 
87 int stclohz;				/* Statistics clock frequency */
88 
89 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
90 	RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
91 	RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
92 	RLIMIT_MEMLOCK, RLIMIT_AS
93 };
94 
95 struct l_sysinfo {
96 	l_long		uptime;		/* Seconds since boot */
97 	l_ulong		loads[3];	/* 1, 5, and 15 minute load averages */
98 #define LINUX_SYSINFO_LOADS_SCALE 65536
99 	l_ulong		totalram;	/* Total usable main memory size */
100 	l_ulong		freeram;	/* Available memory size */
101 	l_ulong		sharedram;	/* Amount of shared memory */
102 	l_ulong		bufferram;	/* Memory used by buffers */
103 	l_ulong		totalswap;	/* Total swap space size */
104 	l_ulong		freeswap;	/* swap space still available */
105 	l_ushort	procs;		/* Number of current processes */
106 	l_ushort	pads;
107 	l_ulong		totalhigh;
108 	l_ulong		freehigh;
109 	l_uint		mem_unit;
110 	char		_f[20-2*sizeof(l_long)-sizeof(l_int)];	/* padding */
111 };
112 
113 struct l_pselect6arg {
114 	l_uintptr_t	ss;
115 	l_size_t	ss_len;
116 };
117 
118 static int	linux_utimensat_lts_to_ts(struct l_timespec *,
119 			struct timespec *);
120 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
121 static int	linux_utimensat_lts64_to_ts(struct l_timespec64 *,
122 			struct timespec *);
123 #endif
124 static int	linux_common_utimensat(struct thread *, int,
125 			const char *, struct timespec *, int);
126 static int	linux_common_pselect6(struct thread *, l_int,
127 			l_fd_set *, l_fd_set *, l_fd_set *,
128 			struct timespec *, l_uintptr_t *);
129 static int	linux_common_ppoll(struct thread *, struct pollfd *,
130 			uint32_t, struct timespec *, l_sigset_t *,
131 			l_size_t);
132 static int	linux_pollin(struct thread *, struct pollfd *,
133 			struct pollfd *, u_int);
134 static int	linux_pollout(struct thread *, struct pollfd *,
135 			struct pollfd *, u_int);
136 
137 int
linux_sysinfo(struct thread * td,struct linux_sysinfo_args * args)138 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
139 {
140 	struct l_sysinfo sysinfo;
141 	int i, j;
142 	struct timespec ts;
143 
144 	bzero(&sysinfo, sizeof(sysinfo));
145 	getnanouptime(&ts);
146 	if (ts.tv_nsec != 0)
147 		ts.tv_sec++;
148 	sysinfo.uptime = ts.tv_sec;
149 
150 	/* Use the information from the mib to get our load averages */
151 	for (i = 0; i < 3; i++)
152 		sysinfo.loads[i] = averunnable.ldavg[i] *
153 		    LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
154 
155 	sysinfo.totalram = physmem * PAGE_SIZE;
156 	sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
157 
158 	/*
159 	 * sharedram counts pages allocated to named, swap-backed objects such
160 	 * as shared memory segments and tmpfs files.  There is no cheap way to
161 	 * compute this, so just leave the field unpopulated.  Linux itself only
162 	 * started setting this field in the 3.x timeframe.
163 	 */
164 	sysinfo.sharedram = 0;
165 	sysinfo.bufferram = 0;
166 
167 	swap_pager_status(&i, &j);
168 	sysinfo.totalswap = i * PAGE_SIZE;
169 	sysinfo.freeswap = (i - j) * PAGE_SIZE;
170 
171 	sysinfo.procs = nprocs;
172 
173 	/*
174 	 * Platforms supported by the emulation layer do not have a notion of
175 	 * high memory.
176 	 */
177 	sysinfo.totalhigh = 0;
178 	sysinfo.freehigh = 0;
179 
180 	sysinfo.mem_unit = 1;
181 
182 	return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
183 }
184 
185 #ifdef LINUX_LEGACY_SYSCALLS
186 int
linux_alarm(struct thread * td,struct linux_alarm_args * args)187 linux_alarm(struct thread *td, struct linux_alarm_args *args)
188 {
189 	struct itimerval it, old_it;
190 	u_int secs;
191 	int error __diagused;
192 
193 	secs = args->secs;
194 	/*
195 	 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
196 	 * to match kern_setitimer()'s limit to avoid error from it.
197 	 *
198 	 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
199 	 * platforms.
200 	 */
201 	if (secs > INT32_MAX / 2)
202 		secs = INT32_MAX / 2;
203 
204 	it.it_value.tv_sec = secs;
205 	it.it_value.tv_usec = 0;
206 	timevalclear(&it.it_interval);
207 	error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
208 	KASSERT(error == 0, ("kern_setitimer returns %d", error));
209 
210 	if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
211 	    old_it.it_value.tv_usec >= 500000)
212 		old_it.it_value.tv_sec++;
213 	td->td_retval[0] = old_it.it_value.tv_sec;
214 	return (0);
215 }
216 #endif
217 
218 int
linux_brk(struct thread * td,struct linux_brk_args * args)219 linux_brk(struct thread *td, struct linux_brk_args *args)
220 {
221 	struct vmspace *vm = td->td_proc->p_vmspace;
222 	uintptr_t new, old;
223 
224 	old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
225 	new = (uintptr_t)args->dsend;
226 	if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
227 		td->td_retval[0] = (register_t)new;
228 	else
229 		td->td_retval[0] = (register_t)old;
230 
231 	return (0);
232 }
233 
234 #ifdef LINUX_LEGACY_SYSCALLS
235 int
linux_select(struct thread * td,struct linux_select_args * args)236 linux_select(struct thread *td, struct linux_select_args *args)
237 {
238 	l_timeval ltv;
239 	struct timeval tv0, tv1, utv, *tvp;
240 	int error;
241 
242 	/*
243 	 * Store current time for computation of the amount of
244 	 * time left.
245 	 */
246 	if (args->timeout) {
247 		if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
248 			goto select_out;
249 		utv.tv_sec = ltv.tv_sec;
250 		utv.tv_usec = ltv.tv_usec;
251 
252 		if (itimerfix(&utv)) {
253 			/*
254 			 * The timeval was invalid.  Convert it to something
255 			 * valid that will act as it does under Linux.
256 			 */
257 			utv.tv_sec += utv.tv_usec / 1000000;
258 			utv.tv_usec %= 1000000;
259 			if (utv.tv_usec < 0) {
260 				utv.tv_sec -= 1;
261 				utv.tv_usec += 1000000;
262 			}
263 			if (utv.tv_sec < 0)
264 				timevalclear(&utv);
265 		}
266 		microtime(&tv0);
267 		tvp = &utv;
268 	} else
269 		tvp = NULL;
270 
271 	error = kern_select(td, args->nfds, args->readfds, args->writefds,
272 	    args->exceptfds, tvp, LINUX_NFDBITS);
273 	if (error)
274 		goto select_out;
275 
276 	if (args->timeout) {
277 		if (td->td_retval[0]) {
278 			/*
279 			 * Compute how much time was left of the timeout,
280 			 * by subtracting the current time and the time
281 			 * before we started the call, and subtracting
282 			 * that result from the user-supplied value.
283 			 */
284 			microtime(&tv1);
285 			timevalsub(&tv1, &tv0);
286 			timevalsub(&utv, &tv1);
287 			if (utv.tv_sec < 0)
288 				timevalclear(&utv);
289 		} else
290 			timevalclear(&utv);
291 		ltv.tv_sec = utv.tv_sec;
292 		ltv.tv_usec = utv.tv_usec;
293 		if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
294 			goto select_out;
295 	}
296 
297 select_out:
298 	return (error);
299 }
300 #endif
301 
302 int
linux_mremap(struct thread * td,struct linux_mremap_args * args)303 linux_mremap(struct thread *td, struct linux_mremap_args *args)
304 {
305 	uintptr_t addr;
306 	size_t len;
307 	int error = 0;
308 
309 	if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
310 		td->td_retval[0] = 0;
311 		return (EINVAL);
312 	}
313 
314 	/*
315 	 * Check for the page alignment.
316 	 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
317 	 */
318 	if (args->addr & PAGE_MASK) {
319 		td->td_retval[0] = 0;
320 		return (EINVAL);
321 	}
322 
323 	args->new_len = round_page(args->new_len);
324 	args->old_len = round_page(args->old_len);
325 
326 	if (args->new_len > args->old_len) {
327 		td->td_retval[0] = 0;
328 		return (ENOMEM);
329 	}
330 
331 	if (args->new_len < args->old_len) {
332 		addr = args->addr + args->new_len;
333 		len = args->old_len - args->new_len;
334 		error = kern_munmap(td, addr, len);
335 	}
336 
337 	td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
338 	return (error);
339 }
340 
341 #define LINUX_MS_ASYNC       0x0001
342 #define LINUX_MS_INVALIDATE  0x0002
343 #define LINUX_MS_SYNC        0x0004
344 
345 int
linux_msync(struct thread * td,struct linux_msync_args * args)346 linux_msync(struct thread *td, struct linux_msync_args *args)
347 {
348 
349 	return (kern_msync(td, args->addr, args->len,
350 	    args->fl & ~LINUX_MS_SYNC));
351 }
352 
353 int
linux_mprotect(struct thread * td,struct linux_mprotect_args * uap)354 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
355 {
356 
357 	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len,
358 	    uap->prot));
359 }
360 
361 int
linux_madvise(struct thread * td,struct linux_madvise_args * uap)362 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
363 {
364 
365 	return (linux_madvise_common(td, PTROUT(uap->addr), uap->len,
366 	    uap->behav));
367 }
368 
369 int
linux_mmap2(struct thread * td,struct linux_mmap2_args * uap)370 linux_mmap2(struct thread *td, struct linux_mmap2_args *uap)
371 {
372 #if defined(LINUX_ARCHWANT_MMAP2PGOFF)
373 	/*
374 	 * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is
375 	 * implemented with mmap2 syscall and the offset is represented in
376 	 * multiples of page size.
377 	 */
378 	return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
379 	    uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE));
380 #else
381 	return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
382 	    uap->flags, uap->fd, uap->pgoff));
383 #endif
384 }
385 
386 #ifdef LINUX_LEGACY_SYSCALLS
387 int
linux_time(struct thread * td,struct linux_time_args * args)388 linux_time(struct thread *td, struct linux_time_args *args)
389 {
390 	struct timeval tv;
391 	l_time_t tm;
392 	int error;
393 
394 	microtime(&tv);
395 	tm = tv.tv_sec;
396 	if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
397 		return (error);
398 	td->td_retval[0] = tm;
399 	return (0);
400 }
401 #endif
402 
403 struct l_times_argv {
404 	l_clock_t	tms_utime;
405 	l_clock_t	tms_stime;
406 	l_clock_t	tms_cutime;
407 	l_clock_t	tms_cstime;
408 };
409 
410 /*
411  * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
412  * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
413  * auxiliary vector entry.
414  */
415 #define	CLK_TCK		100
416 
417 #define	CONVOTCK(r)	(r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
418 #define	CONVNTCK(r)	(r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
419 
420 #define	CONVTCK(r)	(linux_kernver(td) >= LINUX_KERNVER(2,4,0) ?	\
421 			    CONVNTCK(r) : CONVOTCK(r))
422 
423 int
linux_times(struct thread * td,struct linux_times_args * args)424 linux_times(struct thread *td, struct linux_times_args *args)
425 {
426 	struct timeval tv, utime, stime, cutime, cstime;
427 	struct l_times_argv tms;
428 	struct proc *p;
429 	int error;
430 
431 	if (args->buf != NULL) {
432 		p = td->td_proc;
433 		PROC_LOCK(p);
434 		PROC_STATLOCK(p);
435 		calcru(p, &utime, &stime);
436 		PROC_STATUNLOCK(p);
437 		calccru(p, &cutime, &cstime);
438 		PROC_UNLOCK(p);
439 
440 		tms.tms_utime = CONVTCK(utime);
441 		tms.tms_stime = CONVTCK(stime);
442 
443 		tms.tms_cutime = CONVTCK(cutime);
444 		tms.tms_cstime = CONVTCK(cstime);
445 
446 		if ((error = copyout(&tms, args->buf, sizeof(tms))))
447 			return (error);
448 	}
449 
450 	microuptime(&tv);
451 	td->td_retval[0] = (int)CONVTCK(tv);
452 	return (0);
453 }
454 
455 int
linux_newuname(struct thread * td,struct linux_newuname_args * args)456 linux_newuname(struct thread *td, struct linux_newuname_args *args)
457 {
458 	struct l_new_utsname utsname;
459 	char osname[LINUX_MAX_UTSNAME];
460 	char osrelease[LINUX_MAX_UTSNAME];
461 	char *p;
462 
463 	linux_get_osname(td, osname);
464 	linux_get_osrelease(td, osrelease);
465 
466 	bzero(&utsname, sizeof(utsname));
467 	strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
468 	getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
469 	getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
470 	strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
471 	strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
472 	for (p = utsname.version; *p != '\0'; ++p)
473 		if (*p == '\n') {
474 			*p = '\0';
475 			break;
476 		}
477 #if defined(__amd64__)
478 	/*
479 	 * On amd64, Linux uname(2) needs to return "x86_64"
480 	 * for both 64-bit and 32-bit applications.  On 32-bit,
481 	 * the string returned by getauxval(AT_PLATFORM) needs
482 	 * to remain "i686", though.
483 	 */
484 #if defined(COMPAT_LINUX32)
485 	if (linux32_emulate_i386)
486 		strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
487 	else
488 #endif
489 	strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
490 #elif defined(__aarch64__)
491 	strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
492 #elif defined(__i386__)
493 	strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
494 #endif
495 
496 	return (copyout(&utsname, args->buf, sizeof(utsname)));
497 }
498 
499 struct l_utimbuf {
500 	l_time_t l_actime;
501 	l_time_t l_modtime;
502 };
503 
504 #ifdef LINUX_LEGACY_SYSCALLS
505 int
linux_utime(struct thread * td,struct linux_utime_args * args)506 linux_utime(struct thread *td, struct linux_utime_args *args)
507 {
508 	struct timeval tv[2], *tvp;
509 	struct l_utimbuf lut;
510 	int error;
511 
512 	if (args->times) {
513 		if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
514 			return (error);
515 		tv[0].tv_sec = lut.l_actime;
516 		tv[0].tv_usec = 0;
517 		tv[1].tv_sec = lut.l_modtime;
518 		tv[1].tv_usec = 0;
519 		tvp = tv;
520 	} else
521 		tvp = NULL;
522 
523 	return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
524 	    tvp, UIO_SYSSPACE));
525 }
526 #endif
527 
528 #ifdef LINUX_LEGACY_SYSCALLS
529 int
linux_utimes(struct thread * td,struct linux_utimes_args * args)530 linux_utimes(struct thread *td, struct linux_utimes_args *args)
531 {
532 	l_timeval ltv[2];
533 	struct timeval tv[2], *tvp = NULL;
534 	int error;
535 
536 	if (args->tptr != NULL) {
537 		if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
538 			return (error);
539 		tv[0].tv_sec = ltv[0].tv_sec;
540 		tv[0].tv_usec = ltv[0].tv_usec;
541 		tv[1].tv_sec = ltv[1].tv_sec;
542 		tv[1].tv_usec = ltv[1].tv_usec;
543 		tvp = tv;
544 	}
545 
546 	return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
547 	    tvp, UIO_SYSSPACE));
548 }
549 #endif
550 
551 static int
linux_utimensat_lts_to_ts(struct l_timespec * l_times,struct timespec * times)552 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
553 {
554 
555 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
556 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
557 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
558 		return (EINVAL);
559 
560 	times->tv_sec = l_times->tv_sec;
561 	switch (l_times->tv_nsec)
562 	{
563 	case LINUX_UTIME_OMIT:
564 		times->tv_nsec = UTIME_OMIT;
565 		break;
566 	case LINUX_UTIME_NOW:
567 		times->tv_nsec = UTIME_NOW;
568 		break;
569 	default:
570 		times->tv_nsec = l_times->tv_nsec;
571 	}
572 
573 	return (0);
574 }
575 
576 static int
linux_common_utimensat(struct thread * td,int ldfd,const char * pathname,struct timespec * timesp,int lflags)577 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
578     struct timespec *timesp, int lflags)
579 {
580 	int dfd, flags = 0;
581 
582 	dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
583 
584 	if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
585 		return (EINVAL);
586 
587 	if (timesp != NULL) {
588 		/* This breaks POSIX, but is what the Linux kernel does
589 		 * _on purpose_ (documented in the man page for utimensat(2)),
590 		 * so we must follow that behaviour. */
591 		if (timesp[0].tv_nsec == UTIME_OMIT &&
592 		    timesp[1].tv_nsec == UTIME_OMIT)
593 			return (0);
594 	}
595 
596 	if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
597 		flags |= AT_SYMLINK_NOFOLLOW;
598 	if (lflags & LINUX_AT_EMPTY_PATH)
599 		flags |= AT_EMPTY_PATH;
600 
601 	if (pathname != NULL)
602 		return (kern_utimensat(td, dfd, pathname,
603 		    UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
604 
605 	if (lflags != 0)
606 		return (EINVAL);
607 
608 	return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE));
609 }
610 
611 int
linux_utimensat(struct thread * td,struct linux_utimensat_args * args)612 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
613 {
614 	struct l_timespec l_times[2];
615 	struct timespec times[2], *timesp;
616 	int error;
617 
618 	if (args->times != NULL) {
619 		error = copyin(args->times, l_times, sizeof(l_times));
620 		if (error != 0)
621 			return (error);
622 
623 		error = linux_utimensat_lts_to_ts(&l_times[0], &times[0]);
624 		if (error != 0)
625 			return (error);
626 		error = linux_utimensat_lts_to_ts(&l_times[1], &times[1]);
627 		if (error != 0)
628 			return (error);
629 		timesp = times;
630 	} else
631 		timesp = NULL;
632 
633 	return (linux_common_utimensat(td, args->dfd, args->pathname,
634 	    timesp, args->flags));
635 }
636 
637 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
638 static int
linux_utimensat_lts64_to_ts(struct l_timespec64 * l_times,struct timespec * times)639 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
640 {
641 
642 	/* Zero out the padding in compat mode. */
643 	l_times->tv_nsec &= 0xFFFFFFFFUL;
644 
645 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
646 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
647 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
648 		return (EINVAL);
649 
650 	times->tv_sec = l_times->tv_sec;
651 	switch (l_times->tv_nsec)
652 	{
653 	case LINUX_UTIME_OMIT:
654 		times->tv_nsec = UTIME_OMIT;
655 		break;
656 	case LINUX_UTIME_NOW:
657 		times->tv_nsec = UTIME_NOW;
658 		break;
659 	default:
660 		times->tv_nsec = l_times->tv_nsec;
661 	}
662 
663 	return (0);
664 }
665 
666 int
linux_utimensat_time64(struct thread * td,struct linux_utimensat_time64_args * args)667 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
668 {
669 	struct l_timespec64 l_times[2];
670 	struct timespec times[2], *timesp;
671 	int error;
672 
673 	if (args->times64 != NULL) {
674 		error = copyin(args->times64, l_times, sizeof(l_times));
675 		if (error != 0)
676 			return (error);
677 
678 		error = linux_utimensat_lts64_to_ts(&l_times[0], &times[0]);
679 		if (error != 0)
680 			return (error);
681 		error = linux_utimensat_lts64_to_ts(&l_times[1], &times[1]);
682 		if (error != 0)
683 			return (error);
684 		timesp = times;
685 	} else
686 		timesp = NULL;
687 
688 	return (linux_common_utimensat(td, args->dfd, args->pathname,
689 	    timesp, args->flags));
690 }
691 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
692 
693 #ifdef LINUX_LEGACY_SYSCALLS
694 int
linux_futimesat(struct thread * td,struct linux_futimesat_args * args)695 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
696 {
697 	l_timeval ltv[2];
698 	struct timeval tv[2], *tvp = NULL;
699 	int error, dfd;
700 
701 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
702 
703 	if (args->utimes != NULL) {
704 		if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
705 			return (error);
706 		tv[0].tv_sec = ltv[0].tv_sec;
707 		tv[0].tv_usec = ltv[0].tv_usec;
708 		tv[1].tv_sec = ltv[1].tv_sec;
709 		tv[1].tv_usec = ltv[1].tv_usec;
710 		tvp = tv;
711 	}
712 
713 	return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
714 	    tvp, UIO_SYSSPACE));
715 }
716 #endif
717 
718 static int
linux_common_wait(struct thread * td,idtype_t idtype,int id,int * statusp,int options,void * rup,l_siginfo_t * infop)719 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
720     int options, void *rup, l_siginfo_t *infop)
721 {
722 	l_siginfo_t lsi;
723 	siginfo_t siginfo;
724 	struct __wrusage wru;
725 	int error, status, tmpstat, sig;
726 
727 	error = kern_wait6(td, idtype, id, &status, options,
728 	    rup != NULL ? &wru : NULL, &siginfo);
729 
730 	if (error == 0 && statusp) {
731 		tmpstat = status & 0xffff;
732 		if (WIFSIGNALED(tmpstat)) {
733 			tmpstat = (tmpstat & 0xffffff80) |
734 			    bsd_to_linux_signal(WTERMSIG(tmpstat));
735 		} else if (WIFSTOPPED(tmpstat)) {
736 			tmpstat = (tmpstat & 0xffff00ff) |
737 			    (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
738 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
739 			if (WSTOPSIG(status) == SIGTRAP) {
740 				tmpstat = linux_ptrace_status(td,
741 				    siginfo.si_pid, tmpstat);
742 			}
743 #endif
744 		} else if (WIFCONTINUED(tmpstat)) {
745 			tmpstat = 0xffff;
746 		}
747 		error = copyout(&tmpstat, statusp, sizeof(int));
748 	}
749 	if (error == 0 && rup != NULL)
750 		error = linux_copyout_rusage(&wru.wru_self, rup);
751 	if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
752 		sig = bsd_to_linux_signal(siginfo.si_signo);
753 		siginfo_to_lsiginfo(&siginfo, &lsi, sig);
754 		error = copyout(&lsi, infop, sizeof(lsi));
755 	}
756 
757 	return (error);
758 }
759 
760 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
761 int
linux_waitpid(struct thread * td,struct linux_waitpid_args * args)762 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
763 {
764 	struct linux_wait4_args wait4_args = {
765 		.pid = args->pid,
766 		.status = args->status,
767 		.options = args->options,
768 		.rusage = NULL,
769 	};
770 
771 	return (linux_wait4(td, &wait4_args));
772 }
773 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
774 
775 int
linux_wait4(struct thread * td,struct linux_wait4_args * args)776 linux_wait4(struct thread *td, struct linux_wait4_args *args)
777 {
778 	struct proc *p;
779 	int options, id, idtype;
780 
781 	if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
782 	    LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
783 		return (EINVAL);
784 
785 	/* -INT_MIN is not defined. */
786 	if (args->pid == INT_MIN)
787 		return (ESRCH);
788 
789 	options = 0;
790 	linux_to_bsd_waitopts(args->options, &options);
791 
792 	/*
793 	 * For backward compatibility we implicitly add flags WEXITED
794 	 * and WTRAPPED here.
795 	 */
796 	options |= WEXITED | WTRAPPED;
797 
798 	if (args->pid == WAIT_ANY) {
799 		idtype = P_ALL;
800 		id = 0;
801 	} else if (args->pid < 0) {
802 		idtype = P_PGID;
803 		id = (id_t)-args->pid;
804 	} else if (args->pid == 0) {
805 		idtype = P_PGID;
806 		p = td->td_proc;
807 		PROC_LOCK(p);
808 		id = p->p_pgid;
809 		PROC_UNLOCK(p);
810 	} else {
811 		idtype = P_PID;
812 		id = (id_t)args->pid;
813 	}
814 
815 	return (linux_common_wait(td, idtype, id, args->status, options,
816 	    args->rusage, NULL));
817 }
818 
819 int
linux_waitid(struct thread * td,struct linux_waitid_args * args)820 linux_waitid(struct thread *td, struct linux_waitid_args *args)
821 {
822 	idtype_t idtype;
823 	int error, options;
824 	struct proc *p;
825 	pid_t id;
826 
827 	if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
828 	    LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
829 		return (EINVAL);
830 
831 	options = 0;
832 	linux_to_bsd_waitopts(args->options, &options);
833 
834 	id = args->id;
835 	switch (args->idtype) {
836 	case LINUX_P_ALL:
837 		idtype = P_ALL;
838 		break;
839 	case LINUX_P_PID:
840 		if (args->id <= 0)
841 			return (EINVAL);
842 		idtype = P_PID;
843 		break;
844 	case LINUX_P_PGID:
845 		if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) {
846 			p = td->td_proc;
847 			PROC_LOCK(p);
848 			id = p->p_pgid;
849 			PROC_UNLOCK(p);
850 		} else if (args->id <= 0)
851 			return (EINVAL);
852 		idtype = P_PGID;
853 		break;
854 	case LINUX_P_PIDFD:
855 		LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
856 		return (ENOSYS);
857 	default:
858 		return (EINVAL);
859 	}
860 
861 	error = linux_common_wait(td, idtype, id, NULL, options,
862 	    args->rusage, args->info);
863 	td->td_retval[0] = 0;
864 
865 	return (error);
866 }
867 
868 #ifdef LINUX_LEGACY_SYSCALLS
869 int
linux_mknod(struct thread * td,struct linux_mknod_args * args)870 linux_mknod(struct thread *td, struct linux_mknod_args *args)
871 {
872 	int error;
873 
874 	switch (args->mode & S_IFMT) {
875 	case S_IFIFO:
876 	case S_IFSOCK:
877 		error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE,
878 		    args->mode);
879 		break;
880 
881 	case S_IFCHR:
882 	case S_IFBLK:
883 		error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE,
884 		    args->mode, linux_decode_dev(args->dev));
885 		break;
886 
887 	case S_IFDIR:
888 		error = EPERM;
889 		break;
890 
891 	case 0:
892 		args->mode |= S_IFREG;
893 		/* FALLTHROUGH */
894 	case S_IFREG:
895 		error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE,
896 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
897 		if (error == 0)
898 			kern_close(td, td->td_retval[0]);
899 		break;
900 
901 	default:
902 		error = EINVAL;
903 		break;
904 	}
905 	return (error);
906 }
907 #endif
908 
909 int
linux_mknodat(struct thread * td,struct linux_mknodat_args * args)910 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
911 {
912 	int error, dfd;
913 
914 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
915 
916 	switch (args->mode & S_IFMT) {
917 	case S_IFIFO:
918 	case S_IFSOCK:
919 		error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE,
920 		    args->mode);
921 		break;
922 
923 	case S_IFCHR:
924 	case S_IFBLK:
925 		error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE,
926 		    args->mode, linux_decode_dev(args->dev));
927 		break;
928 
929 	case S_IFDIR:
930 		error = EPERM;
931 		break;
932 
933 	case 0:
934 		args->mode |= S_IFREG;
935 		/* FALLTHROUGH */
936 	case S_IFREG:
937 		error = kern_openat(td, dfd, args->filename, UIO_USERSPACE,
938 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
939 		if (error == 0)
940 			kern_close(td, td->td_retval[0]);
941 		break;
942 
943 	default:
944 		error = EINVAL;
945 		break;
946 	}
947 	return (error);
948 }
949 
950 /*
951  * UGH! This is just about the dumbest idea I've ever heard!!
952  */
953 int
linux_personality(struct thread * td,struct linux_personality_args * args)954 linux_personality(struct thread *td, struct linux_personality_args *args)
955 {
956 	struct linux_pemuldata *pem;
957 	struct proc *p = td->td_proc;
958 	uint32_t old;
959 
960 	PROC_LOCK(p);
961 	pem = pem_find(p);
962 	old = pem->persona;
963 	if (args->per != 0xffffffff)
964 		pem->persona = args->per;
965 	PROC_UNLOCK(p);
966 
967 	td->td_retval[0] = old;
968 	return (0);
969 }
970 
971 struct l_itimerval {
972 	l_timeval it_interval;
973 	l_timeval it_value;
974 };
975 
976 #define	B2L_ITIMERVAL(bip, lip)						\
977 	(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec;		\
978 	(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec;	\
979 	(bip)->it_value.tv_sec = (lip)->it_value.tv_sec;		\
980 	(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
981 
982 int
linux_setitimer(struct thread * td,struct linux_setitimer_args * uap)983 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
984 {
985 	int error;
986 	struct l_itimerval ls;
987 	struct itimerval aitv, oitv;
988 
989 	if (uap->itv == NULL) {
990 		uap->itv = uap->oitv;
991 		return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
992 	}
993 
994 	error = copyin(uap->itv, &ls, sizeof(ls));
995 	if (error != 0)
996 		return (error);
997 	B2L_ITIMERVAL(&aitv, &ls);
998 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
999 	if (error != 0 || uap->oitv == NULL)
1000 		return (error);
1001 	B2L_ITIMERVAL(&ls, &oitv);
1002 
1003 	return (copyout(&ls, uap->oitv, sizeof(ls)));
1004 }
1005 
1006 int
linux_getitimer(struct thread * td,struct linux_getitimer_args * uap)1007 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1008 {
1009 	int error;
1010 	struct l_itimerval ls;
1011 	struct itimerval aitv;
1012 
1013 	error = kern_getitimer(td, uap->which, &aitv);
1014 	if (error != 0)
1015 		return (error);
1016 	B2L_ITIMERVAL(&ls, &aitv);
1017 	return (copyout(&ls, uap->itv, sizeof(ls)));
1018 }
1019 
1020 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1021 int
linux_nice(struct thread * td,struct linux_nice_args * args)1022 linux_nice(struct thread *td, struct linux_nice_args *args)
1023 {
1024 
1025 	return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1026 }
1027 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1028 
1029 int
linux_setgroups(struct thread * td,struct linux_setgroups_args * args)1030 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1031 {
1032 	const int ngrp = args->gidsetsize;
1033 	struct ucred *newcred, *oldcred;
1034 	l_gid_t *linux_gidset;
1035 	int error;
1036 	struct proc *p;
1037 
1038 	if (ngrp < 0 || ngrp > ngroups_max)
1039 		return (EINVAL);
1040 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1041 	error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1042 	if (error)
1043 		goto out;
1044 
1045 	newcred = crget();
1046 	crextend(newcred, ngrp);
1047 	p = td->td_proc;
1048 	PROC_LOCK(p);
1049 	oldcred = crcopysafe(p, newcred);
1050 
1051 	if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1052 		PROC_UNLOCK(p);
1053 		crfree(newcred);
1054 		goto out;
1055 	}
1056 
1057 	newcred->cr_ngroups = ngrp;
1058 	for (int i = 0; i < ngrp; i++)
1059 		newcred->cr_groups[i] = linux_gidset[i];
1060 	newcred->cr_flags |= CRED_FLAG_GROUPSET;
1061 
1062 	setsugid(p);
1063 	proc_set_cred(p, newcred);
1064 	PROC_UNLOCK(p);
1065 	crfree(oldcred);
1066 	error = 0;
1067 out:
1068 	free(linux_gidset, M_LINUX);
1069 	return (error);
1070 }
1071 
1072 int
linux_getgroups(struct thread * td,struct linux_getgroups_args * args)1073 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1074 {
1075 	const struct ucred *const cred = td->td_ucred;
1076 	l_gid_t *linux_gidset;
1077 	int ngrp, error;
1078 
1079 	ngrp = args->gidsetsize;
1080 
1081 	if (ngrp == 0) {
1082 		td->td_retval[0] = cred->cr_ngroups;
1083 		return (0);
1084 	}
1085 	if (ngrp < cred->cr_ngroups)
1086 		return (EINVAL);
1087 
1088 	ngrp = cred->cr_ngroups;
1089 
1090 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1091 	for (int i = 0; i < ngrp; ++i)
1092 		linux_gidset[i] = cred->cr_groups[i];
1093 
1094 	error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1095 	free(linux_gidset, M_LINUX);
1096 
1097 	if (error != 0)
1098 		return (error);
1099 
1100 	td->td_retval[0] = ngrp;
1101 	return (0);
1102 }
1103 
1104 static bool
linux_get_dummy_limit(struct thread * td,l_uint resource,struct rlimit * rlim)1105 linux_get_dummy_limit(struct thread *td, l_uint resource, struct rlimit *rlim)
1106 {
1107 	ssize_t size;
1108 	int res, error;
1109 
1110 	if (linux_dummy_rlimits == 0)
1111 		return (false);
1112 
1113 	switch (resource) {
1114 	case LINUX_RLIMIT_LOCKS:
1115 	case LINUX_RLIMIT_RTTIME:
1116 		rlim->rlim_cur = LINUX_RLIM_INFINITY;
1117 		rlim->rlim_max = LINUX_RLIM_INFINITY;
1118 		return (true);
1119 	case LINUX_RLIMIT_NICE:
1120 	case LINUX_RLIMIT_RTPRIO:
1121 		rlim->rlim_cur = 0;
1122 		rlim->rlim_max = 0;
1123 		return (true);
1124 	case LINUX_RLIMIT_SIGPENDING:
1125 		error = kernel_sysctlbyname(td,
1126 		    "kern.sigqueue.max_pending_per_proc",
1127 		    &res, &size, 0, 0, 0, 0);
1128 		if (error != 0)
1129 			return (false);
1130 		rlim->rlim_cur = res;
1131 		rlim->rlim_max = res;
1132 		return (true);
1133 	case LINUX_RLIMIT_MSGQUEUE:
1134 		error = kernel_sysctlbyname(td,
1135 		    "kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0);
1136 		if (error != 0)
1137 			return (false);
1138 		rlim->rlim_cur = res;
1139 		rlim->rlim_max = res;
1140 		return (true);
1141 	default:
1142 		return (false);
1143 	}
1144 }
1145 
1146 int
linux_setrlimit(struct thread * td,struct linux_setrlimit_args * args)1147 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1148 {
1149 	struct rlimit bsd_rlim;
1150 	struct l_rlimit rlim;
1151 	u_int which;
1152 	int error;
1153 
1154 	if (args->resource >= LINUX_RLIM_NLIMITS)
1155 		return (EINVAL);
1156 
1157 	which = linux_to_bsd_resource[args->resource];
1158 	if (which == -1)
1159 		return (EINVAL);
1160 
1161 	error = copyin(args->rlim, &rlim, sizeof(rlim));
1162 	if (error)
1163 		return (error);
1164 
1165 	bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1166 	bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1167 	return (kern_setrlimit(td, which, &bsd_rlim));
1168 }
1169 
1170 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1171 int
linux_old_getrlimit(struct thread * td,struct linux_old_getrlimit_args * args)1172 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1173 {
1174 	struct l_rlimit rlim;
1175 	struct rlimit bsd_rlim;
1176 	u_int which;
1177 
1178 	if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1179 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1180 		rlim.rlim_max = bsd_rlim.rlim_max;
1181 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1182 	}
1183 
1184 	if (args->resource >= LINUX_RLIM_NLIMITS)
1185 		return (EINVAL);
1186 
1187 	which = linux_to_bsd_resource[args->resource];
1188 	if (which == -1)
1189 		return (EINVAL);
1190 
1191 	lim_rlimit(td, which, &bsd_rlim);
1192 
1193 #ifdef COMPAT_LINUX32
1194 	rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1195 	if (rlim.rlim_cur == UINT_MAX)
1196 		rlim.rlim_cur = INT_MAX;
1197 	rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1198 	if (rlim.rlim_max == UINT_MAX)
1199 		rlim.rlim_max = INT_MAX;
1200 #else
1201 	rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1202 	if (rlim.rlim_cur == ULONG_MAX)
1203 		rlim.rlim_cur = LONG_MAX;
1204 	rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1205 	if (rlim.rlim_max == ULONG_MAX)
1206 		rlim.rlim_max = LONG_MAX;
1207 #endif
1208 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1209 }
1210 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1211 
1212 int
linux_getrlimit(struct thread * td,struct linux_getrlimit_args * args)1213 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1214 {
1215 	struct l_rlimit rlim;
1216 	struct rlimit bsd_rlim;
1217 	u_int which;
1218 
1219 	if (linux_get_dummy_limit(td, args->resource, &bsd_rlim)) {
1220 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1221 		rlim.rlim_max = bsd_rlim.rlim_max;
1222 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1223 	}
1224 
1225 	if (args->resource >= LINUX_RLIM_NLIMITS)
1226 		return (EINVAL);
1227 
1228 	which = linux_to_bsd_resource[args->resource];
1229 	if (which == -1)
1230 		return (EINVAL);
1231 
1232 	lim_rlimit(td, which, &bsd_rlim);
1233 
1234 	rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1235 	rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1236 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1237 }
1238 
1239 int
linux_sched_setscheduler(struct thread * td,struct linux_sched_setscheduler_args * args)1240 linux_sched_setscheduler(struct thread *td,
1241     struct linux_sched_setscheduler_args *args)
1242 {
1243 	struct sched_param sched_param;
1244 	struct thread *tdt;
1245 	int error, policy;
1246 
1247 	switch (args->policy) {
1248 	case LINUX_SCHED_OTHER:
1249 		policy = SCHED_OTHER;
1250 		break;
1251 	case LINUX_SCHED_FIFO:
1252 		policy = SCHED_FIFO;
1253 		break;
1254 	case LINUX_SCHED_RR:
1255 		policy = SCHED_RR;
1256 		break;
1257 	default:
1258 		return (EINVAL);
1259 	}
1260 
1261 	error = copyin(args->param, &sched_param, sizeof(sched_param));
1262 	if (error)
1263 		return (error);
1264 
1265 	if (linux_map_sched_prio) {
1266 		switch (policy) {
1267 		case SCHED_OTHER:
1268 			if (sched_param.sched_priority != 0)
1269 				return (EINVAL);
1270 
1271 			sched_param.sched_priority =
1272 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1273 			break;
1274 		case SCHED_FIFO:
1275 		case SCHED_RR:
1276 			if (sched_param.sched_priority < 1 ||
1277 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1278 				return (EINVAL);
1279 
1280 			/*
1281 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1282 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1283 			 */
1284 			sched_param.sched_priority =
1285 			    (sched_param.sched_priority - 1) *
1286 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1287 			    (LINUX_MAX_RT_PRIO - 1);
1288 			break;
1289 		}
1290 	}
1291 
1292 	tdt = linux_tdfind(td, args->pid, -1);
1293 	if (tdt == NULL)
1294 		return (ESRCH);
1295 
1296 	error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1297 	PROC_UNLOCK(tdt->td_proc);
1298 	return (error);
1299 }
1300 
1301 int
linux_sched_getscheduler(struct thread * td,struct linux_sched_getscheduler_args * args)1302 linux_sched_getscheduler(struct thread *td,
1303     struct linux_sched_getscheduler_args *args)
1304 {
1305 	struct thread *tdt;
1306 	int error, policy;
1307 
1308 	tdt = linux_tdfind(td, args->pid, -1);
1309 	if (tdt == NULL)
1310 		return (ESRCH);
1311 
1312 	error = kern_sched_getscheduler(td, tdt, &policy);
1313 	PROC_UNLOCK(tdt->td_proc);
1314 
1315 	switch (policy) {
1316 	case SCHED_OTHER:
1317 		td->td_retval[0] = LINUX_SCHED_OTHER;
1318 		break;
1319 	case SCHED_FIFO:
1320 		td->td_retval[0] = LINUX_SCHED_FIFO;
1321 		break;
1322 	case SCHED_RR:
1323 		td->td_retval[0] = LINUX_SCHED_RR;
1324 		break;
1325 	}
1326 	return (error);
1327 }
1328 
1329 int
linux_sched_get_priority_max(struct thread * td,struct linux_sched_get_priority_max_args * args)1330 linux_sched_get_priority_max(struct thread *td,
1331     struct linux_sched_get_priority_max_args *args)
1332 {
1333 	struct sched_get_priority_max_args bsd;
1334 
1335 	if (linux_map_sched_prio) {
1336 		switch (args->policy) {
1337 		case LINUX_SCHED_OTHER:
1338 			td->td_retval[0] = 0;
1339 			return (0);
1340 		case LINUX_SCHED_FIFO:
1341 		case LINUX_SCHED_RR:
1342 			td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1343 			return (0);
1344 		default:
1345 			return (EINVAL);
1346 		}
1347 	}
1348 
1349 	switch (args->policy) {
1350 	case LINUX_SCHED_OTHER:
1351 		bsd.policy = SCHED_OTHER;
1352 		break;
1353 	case LINUX_SCHED_FIFO:
1354 		bsd.policy = SCHED_FIFO;
1355 		break;
1356 	case LINUX_SCHED_RR:
1357 		bsd.policy = SCHED_RR;
1358 		break;
1359 	default:
1360 		return (EINVAL);
1361 	}
1362 	return (sys_sched_get_priority_max(td, &bsd));
1363 }
1364 
1365 int
linux_sched_get_priority_min(struct thread * td,struct linux_sched_get_priority_min_args * args)1366 linux_sched_get_priority_min(struct thread *td,
1367     struct linux_sched_get_priority_min_args *args)
1368 {
1369 	struct sched_get_priority_min_args bsd;
1370 
1371 	if (linux_map_sched_prio) {
1372 		switch (args->policy) {
1373 		case LINUX_SCHED_OTHER:
1374 			td->td_retval[0] = 0;
1375 			return (0);
1376 		case LINUX_SCHED_FIFO:
1377 		case LINUX_SCHED_RR:
1378 			td->td_retval[0] = 1;
1379 			return (0);
1380 		default:
1381 			return (EINVAL);
1382 		}
1383 	}
1384 
1385 	switch (args->policy) {
1386 	case LINUX_SCHED_OTHER:
1387 		bsd.policy = SCHED_OTHER;
1388 		break;
1389 	case LINUX_SCHED_FIFO:
1390 		bsd.policy = SCHED_FIFO;
1391 		break;
1392 	case LINUX_SCHED_RR:
1393 		bsd.policy = SCHED_RR;
1394 		break;
1395 	default:
1396 		return (EINVAL);
1397 	}
1398 	return (sys_sched_get_priority_min(td, &bsd));
1399 }
1400 
1401 #define REBOOT_CAD_ON	0x89abcdef
1402 #define REBOOT_CAD_OFF	0
1403 #define REBOOT_HALT	0xcdef0123
1404 #define REBOOT_RESTART	0x01234567
1405 #define REBOOT_RESTART2	0xA1B2C3D4
1406 #define REBOOT_POWEROFF	0x4321FEDC
1407 #define REBOOT_MAGIC1	0xfee1dead
1408 #define REBOOT_MAGIC2	0x28121969
1409 #define REBOOT_MAGIC2A	0x05121996
1410 #define REBOOT_MAGIC2B	0x16041998
1411 
1412 int
linux_reboot(struct thread * td,struct linux_reboot_args * args)1413 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1414 {
1415 	struct reboot_args bsd_args;
1416 
1417 	if (args->magic1 != REBOOT_MAGIC1)
1418 		return (EINVAL);
1419 
1420 	switch (args->magic2) {
1421 	case REBOOT_MAGIC2:
1422 	case REBOOT_MAGIC2A:
1423 	case REBOOT_MAGIC2B:
1424 		break;
1425 	default:
1426 		return (EINVAL);
1427 	}
1428 
1429 	switch (args->cmd) {
1430 	case REBOOT_CAD_ON:
1431 	case REBOOT_CAD_OFF:
1432 		return (priv_check(td, PRIV_REBOOT));
1433 	case REBOOT_HALT:
1434 		bsd_args.opt = RB_HALT;
1435 		break;
1436 	case REBOOT_RESTART:
1437 	case REBOOT_RESTART2:
1438 		bsd_args.opt = 0;
1439 		break;
1440 	case REBOOT_POWEROFF:
1441 		bsd_args.opt = RB_POWEROFF;
1442 		break;
1443 	default:
1444 		return (EINVAL);
1445 	}
1446 	return (sys_reboot(td, &bsd_args));
1447 }
1448 
1449 int
linux_getpid(struct thread * td,struct linux_getpid_args * args)1450 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1451 {
1452 
1453 	td->td_retval[0] = td->td_proc->p_pid;
1454 
1455 	return (0);
1456 }
1457 
1458 int
linux_gettid(struct thread * td,struct linux_gettid_args * args)1459 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1460 {
1461 	struct linux_emuldata *em;
1462 
1463 	em = em_find(td);
1464 	KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1465 
1466 	td->td_retval[0] = em->em_tid;
1467 
1468 	return (0);
1469 }
1470 
1471 int
linux_getppid(struct thread * td,struct linux_getppid_args * args)1472 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1473 {
1474 
1475 	td->td_retval[0] = kern_getppid(td);
1476 	return (0);
1477 }
1478 
1479 int
linux_getgid(struct thread * td,struct linux_getgid_args * args)1480 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1481 {
1482 
1483 	td->td_retval[0] = td->td_ucred->cr_rgid;
1484 	return (0);
1485 }
1486 
1487 int
linux_getuid(struct thread * td,struct linux_getuid_args * args)1488 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1489 {
1490 
1491 	td->td_retval[0] = td->td_ucred->cr_ruid;
1492 	return (0);
1493 }
1494 
1495 int
linux_getsid(struct thread * td,struct linux_getsid_args * args)1496 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1497 {
1498 
1499 	return (kern_getsid(td, args->pid));
1500 }
1501 
1502 int
linux_getpriority(struct thread * td,struct linux_getpriority_args * args)1503 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1504 {
1505 	int error;
1506 
1507 	error = kern_getpriority(td, args->which, args->who);
1508 	td->td_retval[0] = 20 - td->td_retval[0];
1509 	return (error);
1510 }
1511 
1512 int
linux_sethostname(struct thread * td,struct linux_sethostname_args * args)1513 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1514 {
1515 	int name[2];
1516 
1517 	name[0] = CTL_KERN;
1518 	name[1] = KERN_HOSTNAME;
1519 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1520 	    args->len, 0, 0));
1521 }
1522 
1523 int
linux_setdomainname(struct thread * td,struct linux_setdomainname_args * args)1524 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1525 {
1526 	int name[2];
1527 
1528 	name[0] = CTL_KERN;
1529 	name[1] = KERN_NISDOMAINNAME;
1530 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1531 	    args->len, 0, 0));
1532 }
1533 
1534 int
linux_exit_group(struct thread * td,struct linux_exit_group_args * args)1535 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1536 {
1537 
1538 	LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1539 	    args->error_code);
1540 
1541 	/*
1542 	 * XXX: we should send a signal to the parent if
1543 	 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1544 	 * as it doesnt occur often.
1545 	 */
1546 	exit1(td, args->error_code, 0);
1547 		/* NOTREACHED */
1548 }
1549 
1550 #define _LINUX_CAPABILITY_VERSION_1  0x19980330
1551 #define _LINUX_CAPABILITY_VERSION_2  0x20071026
1552 #define _LINUX_CAPABILITY_VERSION_3  0x20080522
1553 
1554 struct l_user_cap_header {
1555 	l_int	version;
1556 	l_int	pid;
1557 };
1558 
1559 struct l_user_cap_data {
1560 	l_int	effective;
1561 	l_int	permitted;
1562 	l_int	inheritable;
1563 };
1564 
1565 int
linux_capget(struct thread * td,struct linux_capget_args * uap)1566 linux_capget(struct thread *td, struct linux_capget_args *uap)
1567 {
1568 	struct l_user_cap_header luch;
1569 	struct l_user_cap_data lucd[2];
1570 	int error, u32s;
1571 
1572 	if (uap->hdrp == NULL)
1573 		return (EFAULT);
1574 
1575 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1576 	if (error != 0)
1577 		return (error);
1578 
1579 	switch (luch.version) {
1580 	case _LINUX_CAPABILITY_VERSION_1:
1581 		u32s = 1;
1582 		break;
1583 	case _LINUX_CAPABILITY_VERSION_2:
1584 	case _LINUX_CAPABILITY_VERSION_3:
1585 		u32s = 2;
1586 		break;
1587 	default:
1588 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1589 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1590 		if (error)
1591 			return (error);
1592 		return (EINVAL);
1593 	}
1594 
1595 	if (luch.pid)
1596 		return (EPERM);
1597 
1598 	if (uap->datap) {
1599 		/*
1600 		 * The current implementation doesn't support setting
1601 		 * a capability (it's essentially a stub) so indicate
1602 		 * that no capabilities are currently set or available
1603 		 * to request.
1604 		 */
1605 		memset(&lucd, 0, u32s * sizeof(lucd[0]));
1606 		error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1607 	}
1608 
1609 	return (error);
1610 }
1611 
1612 int
linux_capset(struct thread * td,struct linux_capset_args * uap)1613 linux_capset(struct thread *td, struct linux_capset_args *uap)
1614 {
1615 	struct l_user_cap_header luch;
1616 	struct l_user_cap_data lucd[2];
1617 	int error, i, u32s;
1618 
1619 	if (uap->hdrp == NULL || uap->datap == NULL)
1620 		return (EFAULT);
1621 
1622 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1623 	if (error != 0)
1624 		return (error);
1625 
1626 	switch (luch.version) {
1627 	case _LINUX_CAPABILITY_VERSION_1:
1628 		u32s = 1;
1629 		break;
1630 	case _LINUX_CAPABILITY_VERSION_2:
1631 	case _LINUX_CAPABILITY_VERSION_3:
1632 		u32s = 2;
1633 		break;
1634 	default:
1635 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1636 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1637 		if (error)
1638 			return (error);
1639 		return (EINVAL);
1640 	}
1641 
1642 	if (luch.pid)
1643 		return (EPERM);
1644 
1645 	error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1646 	if (error != 0)
1647 		return (error);
1648 
1649 	/* We currently don't support setting any capabilities. */
1650 	for (i = 0; i < u32s; i++) {
1651 		if (lucd[i].effective || lucd[i].permitted ||
1652 		    lucd[i].inheritable) {
1653 			linux_msg(td,
1654 			    "capset[%d] effective=0x%x, permitted=0x%x, "
1655 			    "inheritable=0x%x is not implemented", i,
1656 			    (int)lucd[i].effective, (int)lucd[i].permitted,
1657 			    (int)lucd[i].inheritable);
1658 			return (EPERM);
1659 		}
1660 	}
1661 
1662 	return (0);
1663 }
1664 
1665 int
linux_prctl(struct thread * td,struct linux_prctl_args * args)1666 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1667 {
1668 	int error = 0, max_size, arg;
1669 	struct proc *p = td->td_proc;
1670 	char comm[LINUX_MAX_COMM_LEN];
1671 	int pdeath_signal, trace_state;
1672 
1673 	switch (args->option) {
1674 	case LINUX_PR_SET_PDEATHSIG:
1675 		if (!LINUX_SIG_VALID(args->arg2))
1676 			return (EINVAL);
1677 		pdeath_signal = linux_to_bsd_signal(args->arg2);
1678 		return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1679 		    &pdeath_signal));
1680 	case LINUX_PR_GET_PDEATHSIG:
1681 		error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1682 		    &pdeath_signal);
1683 		if (error != 0)
1684 			return (error);
1685 		pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1686 		return (copyout(&pdeath_signal,
1687 		    (void *)(register_t)args->arg2,
1688 		    sizeof(pdeath_signal)));
1689 	/*
1690 	 * In Linux, this flag controls if set[gu]id processes can coredump.
1691 	 * There are additional semantics imposed on processes that cannot
1692 	 * coredump:
1693 	 * - Such processes can not be ptraced.
1694 	 * - There are some semantics around ownership of process-related files
1695 	 *   in the /proc namespace.
1696 	 *
1697 	 * In FreeBSD, we can (and by default, do) disable setuid coredump
1698 	 * system-wide with 'sugid_coredump.'  We control tracability on a
1699 	 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
1700 	 * By happy coincidence, P2_NOTRACE also prevents coredumping.  So the
1701 	 * procctl is roughly analogous to Linux's DUMPABLE.
1702 	 *
1703 	 * So, proxy these knobs to the corresponding PROC_TRACE setting.
1704 	 */
1705 	case LINUX_PR_GET_DUMPABLE:
1706 		error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
1707 		    &trace_state);
1708 		if (error != 0)
1709 			return (error);
1710 		td->td_retval[0] = (trace_state != -1);
1711 		return (0);
1712 	case LINUX_PR_SET_DUMPABLE:
1713 		/*
1714 		 * It is only valid for userspace to set one of these two
1715 		 * flags, and only one at a time.
1716 		 */
1717 		switch (args->arg2) {
1718 		case LINUX_SUID_DUMP_DISABLE:
1719 			trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
1720 			break;
1721 		case LINUX_SUID_DUMP_USER:
1722 			trace_state = PROC_TRACE_CTL_ENABLE;
1723 			break;
1724 		default:
1725 			return (EINVAL);
1726 		}
1727 		return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
1728 		    &trace_state));
1729 	case LINUX_PR_GET_KEEPCAPS:
1730 		/*
1731 		 * Indicate that we always clear the effective and
1732 		 * permitted capability sets when the user id becomes
1733 		 * non-zero (actually the capability sets are simply
1734 		 * always zero in the current implementation).
1735 		 */
1736 		td->td_retval[0] = 0;
1737 		break;
1738 	case LINUX_PR_SET_KEEPCAPS:
1739 		/*
1740 		 * Ignore requests to keep the effective and permitted
1741 		 * capability sets when the user id becomes non-zero.
1742 		 */
1743 		break;
1744 	case LINUX_PR_SET_NAME:
1745 		/*
1746 		 * To be on the safe side we need to make sure to not
1747 		 * overflow the size a Linux program expects. We already
1748 		 * do this here in the copyin, so that we don't need to
1749 		 * check on copyout.
1750 		 */
1751 		max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1752 		error = copyinstr((void *)(register_t)args->arg2, comm,
1753 		    max_size, NULL);
1754 
1755 		/* Linux silently truncates the name if it is too long. */
1756 		if (error == ENAMETOOLONG) {
1757 			/*
1758 			 * XXX: copyinstr() isn't documented to populate the
1759 			 * array completely, so do a copyin() to be on the
1760 			 * safe side. This should be changed in case
1761 			 * copyinstr() is changed to guarantee this.
1762 			 */
1763 			error = copyin((void *)(register_t)args->arg2, comm,
1764 			    max_size - 1);
1765 			comm[max_size - 1] = '\0';
1766 		}
1767 		if (error)
1768 			return (error);
1769 
1770 		PROC_LOCK(p);
1771 		strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1772 		PROC_UNLOCK(p);
1773 		break;
1774 	case LINUX_PR_GET_NAME:
1775 		PROC_LOCK(p);
1776 		strlcpy(comm, p->p_comm, sizeof(comm));
1777 		PROC_UNLOCK(p);
1778 		error = copyout(comm, (void *)(register_t)args->arg2,
1779 		    strlen(comm) + 1);
1780 		break;
1781 	case LINUX_PR_GET_SECCOMP:
1782 	case LINUX_PR_SET_SECCOMP:
1783 		/*
1784 		 * Same as returned by Linux without CONFIG_SECCOMP enabled.
1785 		 */
1786 		error = EINVAL;
1787 		break;
1788 	case LINUX_PR_CAPBSET_READ:
1789 #if 0
1790 		/*
1791 		 * This makes too much noise with Ubuntu Focal.
1792 		 */
1793 		linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
1794 		    (int)args->arg2);
1795 #endif
1796 		error = EINVAL;
1797 		break;
1798 	case LINUX_PR_SET_CHILD_SUBREAPER:
1799 		if (args->arg2 == 0) {
1800 			return (kern_procctl(td, P_PID, 0, PROC_REAP_RELEASE,
1801 			    NULL));
1802 		}
1803 
1804 		return (kern_procctl(td, P_PID, 0, PROC_REAP_ACQUIRE,
1805 		    NULL));
1806 	case LINUX_PR_SET_NO_NEW_PRIVS:
1807 		arg = args->arg2 == 1 ?
1808 		    PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
1809 		error = kern_procctl(td, P_PID, p->p_pid,
1810 		    PROC_NO_NEW_PRIVS_CTL, &arg);
1811 		break;
1812 	case LINUX_PR_SET_PTRACER:
1813 		linux_msg(td, "unsupported prctl PR_SET_PTRACER");
1814 		error = EINVAL;
1815 		break;
1816 	default:
1817 		linux_msg(td, "unsupported prctl option %d", args->option);
1818 		error = EINVAL;
1819 		break;
1820 	}
1821 
1822 	return (error);
1823 }
1824 
1825 int
linux_sched_setparam(struct thread * td,struct linux_sched_setparam_args * uap)1826 linux_sched_setparam(struct thread *td,
1827     struct linux_sched_setparam_args *uap)
1828 {
1829 	struct sched_param sched_param;
1830 	struct thread *tdt;
1831 	int error, policy;
1832 
1833 	error = copyin(uap->param, &sched_param, sizeof(sched_param));
1834 	if (error)
1835 		return (error);
1836 
1837 	tdt = linux_tdfind(td, uap->pid, -1);
1838 	if (tdt == NULL)
1839 		return (ESRCH);
1840 
1841 	if (linux_map_sched_prio) {
1842 		error = kern_sched_getscheduler(td, tdt, &policy);
1843 		if (error)
1844 			goto out;
1845 
1846 		switch (policy) {
1847 		case SCHED_OTHER:
1848 			if (sched_param.sched_priority != 0) {
1849 				error = EINVAL;
1850 				goto out;
1851 			}
1852 			sched_param.sched_priority =
1853 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1854 			break;
1855 		case SCHED_FIFO:
1856 		case SCHED_RR:
1857 			if (sched_param.sched_priority < 1 ||
1858 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
1859 				error = EINVAL;
1860 				goto out;
1861 			}
1862 			/*
1863 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1864 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1865 			 */
1866 			sched_param.sched_priority =
1867 			    (sched_param.sched_priority - 1) *
1868 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1869 			    (LINUX_MAX_RT_PRIO - 1);
1870 			break;
1871 		}
1872 	}
1873 
1874 	error = kern_sched_setparam(td, tdt, &sched_param);
1875 out:	PROC_UNLOCK(tdt->td_proc);
1876 	return (error);
1877 }
1878 
1879 int
linux_sched_getparam(struct thread * td,struct linux_sched_getparam_args * uap)1880 linux_sched_getparam(struct thread *td,
1881     struct linux_sched_getparam_args *uap)
1882 {
1883 	struct sched_param sched_param;
1884 	struct thread *tdt;
1885 	int error, policy;
1886 
1887 	tdt = linux_tdfind(td, uap->pid, -1);
1888 	if (tdt == NULL)
1889 		return (ESRCH);
1890 
1891 	error = kern_sched_getparam(td, tdt, &sched_param);
1892 	if (error) {
1893 		PROC_UNLOCK(tdt->td_proc);
1894 		return (error);
1895 	}
1896 
1897 	if (linux_map_sched_prio) {
1898 		error = kern_sched_getscheduler(td, tdt, &policy);
1899 		PROC_UNLOCK(tdt->td_proc);
1900 		if (error)
1901 			return (error);
1902 
1903 		switch (policy) {
1904 		case SCHED_OTHER:
1905 			sched_param.sched_priority = 0;
1906 			break;
1907 		case SCHED_FIFO:
1908 		case SCHED_RR:
1909 			/*
1910 			 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
1911 			 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
1912 			 */
1913 			sched_param.sched_priority =
1914 			    (sched_param.sched_priority *
1915 			    (LINUX_MAX_RT_PRIO - 1) +
1916 			    (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
1917 			    (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
1918 			break;
1919 		}
1920 	} else
1921 		PROC_UNLOCK(tdt->td_proc);
1922 
1923 	error = copyout(&sched_param, uap->param, sizeof(sched_param));
1924 	return (error);
1925 }
1926 
1927 /*
1928  * Get affinity of a process.
1929  */
1930 int
linux_sched_getaffinity(struct thread * td,struct linux_sched_getaffinity_args * args)1931 linux_sched_getaffinity(struct thread *td,
1932     struct linux_sched_getaffinity_args *args)
1933 {
1934 	struct thread *tdt;
1935 	cpuset_t *mask;
1936 	size_t size;
1937 	int error;
1938 	id_t tid;
1939 
1940 	tdt = linux_tdfind(td, args->pid, -1);
1941 	if (tdt == NULL)
1942 		return (ESRCH);
1943 	tid = tdt->td_tid;
1944 	PROC_UNLOCK(tdt->td_proc);
1945 
1946 	mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
1947 	size = min(args->len, sizeof(cpuset_t));
1948 	error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1949 	    tid, size, mask);
1950 	if (error == ERANGE)
1951 		error = EINVAL;
1952  	if (error == 0)
1953 		error = copyout(mask, args->user_mask_ptr, size);
1954 	if (error == 0)
1955 		td->td_retval[0] = size;
1956 	free(mask, M_LINUX);
1957 	return (error);
1958 }
1959 
1960 /*
1961  *  Set affinity of a process.
1962  */
1963 int
linux_sched_setaffinity(struct thread * td,struct linux_sched_setaffinity_args * args)1964 linux_sched_setaffinity(struct thread *td,
1965     struct linux_sched_setaffinity_args *args)
1966 {
1967 	struct thread *tdt;
1968 	cpuset_t *mask;
1969 	int cpu, error;
1970 	size_t len;
1971 	id_t tid;
1972 
1973 	tdt = linux_tdfind(td, args->pid, -1);
1974 	if (tdt == NULL)
1975 		return (ESRCH);
1976 	tid = tdt->td_tid;
1977 	PROC_UNLOCK(tdt->td_proc);
1978 
1979 	len = min(args->len, sizeof(cpuset_t));
1980 	mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);
1981 	error = copyin(args->user_mask_ptr, mask, len);
1982 	if (error != 0)
1983 		goto out;
1984 	/* Linux ignore high bits */
1985 	CPU_FOREACH_ISSET(cpu, mask)
1986 		if (cpu > mp_maxid)
1987 			CPU_CLR(cpu, mask);
1988 
1989 	error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1990 	    tid, mask);
1991 	if (error == EDEADLK)
1992 		error = EINVAL;
1993 out:
1994 	free(mask, M_TEMP);
1995 	return (error);
1996 }
1997 
1998 struct linux_rlimit64 {
1999 	uint64_t	rlim_cur;
2000 	uint64_t	rlim_max;
2001 };
2002 
2003 int
linux_prlimit64(struct thread * td,struct linux_prlimit64_args * args)2004 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2005 {
2006 	struct rlimit rlim, nrlim;
2007 	struct linux_rlimit64 lrlim;
2008 	struct proc *p;
2009 	u_int which;
2010 	int flags;
2011 	int error;
2012 
2013 	if (args->new == NULL && args->old != NULL) {
2014 		if (linux_get_dummy_limit(td, args->resource, &rlim)) {
2015 			lrlim.rlim_cur = rlim.rlim_cur;
2016 			lrlim.rlim_max = rlim.rlim_max;
2017 			return (copyout(&lrlim, args->old, sizeof(lrlim)));
2018 		}
2019 	}
2020 
2021 	if (args->resource >= LINUX_RLIM_NLIMITS)
2022 		return (EINVAL);
2023 
2024 	which = linux_to_bsd_resource[args->resource];
2025 	if (which == -1)
2026 		return (EINVAL);
2027 
2028 	if (args->new != NULL) {
2029 		/*
2030 		 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2031 		 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2032 		 * as INFINITY so we do not need a conversion even.
2033 		 */
2034 		error = copyin(args->new, &nrlim, sizeof(nrlim));
2035 		if (error != 0)
2036 			return (error);
2037 	}
2038 
2039 	flags = PGET_HOLD | PGET_NOTWEXIT;
2040 	if (args->new != NULL)
2041 		flags |= PGET_CANDEBUG;
2042 	else
2043 		flags |= PGET_CANSEE;
2044 	if (args->pid == 0) {
2045 		p = td->td_proc;
2046 		PHOLD(p);
2047 	} else {
2048 		error = pget(args->pid, flags, &p);
2049 		if (error != 0)
2050 			return (error);
2051 	}
2052 	if (args->old != NULL) {
2053 		PROC_LOCK(p);
2054 		lim_rlimit_proc(p, which, &rlim);
2055 		PROC_UNLOCK(p);
2056 		if (rlim.rlim_cur == RLIM_INFINITY)
2057 			lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2058 		else
2059 			lrlim.rlim_cur = rlim.rlim_cur;
2060 		if (rlim.rlim_max == RLIM_INFINITY)
2061 			lrlim.rlim_max = LINUX_RLIM_INFINITY;
2062 		else
2063 			lrlim.rlim_max = rlim.rlim_max;
2064 		error = copyout(&lrlim, args->old, sizeof(lrlim));
2065 		if (error != 0)
2066 			goto out;
2067 	}
2068 
2069 	if (args->new != NULL)
2070 		error = kern_proc_setrlimit(td, p, which, &nrlim);
2071 
2072  out:
2073 	PRELE(p);
2074 	return (error);
2075 }
2076 
2077 int
linux_pselect6(struct thread * td,struct linux_pselect6_args * args)2078 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2079 {
2080 	struct timespec ts, *tsp;
2081 	int error;
2082 
2083 	if (args->tsp != NULL) {
2084 		error = linux_get_timespec(&ts, args->tsp);
2085 		if (error != 0)
2086 			return (error);
2087 		tsp = &ts;
2088 	} else
2089 		tsp = NULL;
2090 
2091 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2092 	    args->writefds, args->exceptfds, tsp, args->sig);
2093 
2094 	if (args->tsp != NULL)
2095 		linux_put_timespec(&ts, args->tsp);
2096 	return (error);
2097 }
2098 
2099 static int
linux_common_pselect6(struct thread * td,l_int nfds,l_fd_set * readfds,l_fd_set * writefds,l_fd_set * exceptfds,struct timespec * tsp,l_uintptr_t * sig)2100 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2101     l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2102     l_uintptr_t *sig)
2103 {
2104 	struct timeval utv, tv0, tv1, *tvp;
2105 	struct l_pselect6arg lpse6;
2106 	sigset_t *ssp;
2107 	sigset_t ss;
2108 	int error;
2109 
2110 	ssp = NULL;
2111 	if (sig != NULL) {
2112 		error = copyin(sig, &lpse6, sizeof(lpse6));
2113 		if (error != 0)
2114 			return (error);
2115 		error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
2116 		    lpse6.ss_len, &ss, &ssp);
2117 		if (error != 0)
2118 		    return (error);
2119 	} else
2120 		ssp = NULL;
2121 
2122 	/*
2123 	 * Currently glibc changes nanosecond number to microsecond.
2124 	 * This mean losing precision but for now it is hardly seen.
2125 	 */
2126 	if (tsp != NULL) {
2127 		TIMESPEC_TO_TIMEVAL(&utv, tsp);
2128 		if (itimerfix(&utv))
2129 			return (EINVAL);
2130 
2131 		microtime(&tv0);
2132 		tvp = &utv;
2133 	} else
2134 		tvp = NULL;
2135 
2136 	error = kern_pselect(td, nfds, readfds, writefds,
2137 	    exceptfds, tvp, ssp, LINUX_NFDBITS);
2138 
2139 	if (tsp != NULL) {
2140 		/*
2141 		 * Compute how much time was left of the timeout,
2142 		 * by subtracting the current time and the time
2143 		 * before we started the call, and subtracting
2144 		 * that result from the user-supplied value.
2145 		 */
2146 		microtime(&tv1);
2147 		timevalsub(&tv1, &tv0);
2148 		timevalsub(&utv, &tv1);
2149 		if (utv.tv_sec < 0)
2150 			timevalclear(&utv);
2151 		TIMEVAL_TO_TIMESPEC(&utv, tsp);
2152 	}
2153 	return (error);
2154 }
2155 
2156 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2157 int
linux_pselect6_time64(struct thread * td,struct linux_pselect6_time64_args * args)2158 linux_pselect6_time64(struct thread *td,
2159     struct linux_pselect6_time64_args *args)
2160 {
2161 	struct timespec ts, *tsp;
2162 	int error;
2163 
2164 	if (args->tsp != NULL) {
2165 		error = linux_get_timespec64(&ts, args->tsp);
2166 		if (error != 0)
2167 			return (error);
2168 		tsp = &ts;
2169 	} else
2170 		tsp = NULL;
2171 
2172 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2173 	    args->writefds, args->exceptfds, tsp, args->sig);
2174 
2175 	if (args->tsp != NULL)
2176 		linux_put_timespec64(&ts, args->tsp);
2177 	return (error);
2178 }
2179 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2180 
2181 int
linux_ppoll(struct thread * td,struct linux_ppoll_args * args)2182 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2183 {
2184 	struct timespec uts, *tsp;
2185 	int error;
2186 
2187 	if (args->tsp != NULL) {
2188 		error = linux_get_timespec(&uts, args->tsp);
2189 		if (error != 0)
2190 			return (error);
2191 		tsp = &uts;
2192 	} else
2193 		tsp = NULL;
2194 
2195 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2196 	    args->sset, args->ssize);
2197 	if (error == 0 && args->tsp != NULL)
2198 		error = linux_put_timespec(&uts, args->tsp);
2199 	return (error);
2200 }
2201 
2202 static int
linux_common_ppoll(struct thread * td,struct pollfd * fds,uint32_t nfds,struct timespec * tsp,l_sigset_t * sset,l_size_t ssize)2203 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2204     struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2205 {
2206 	struct timespec ts0, ts1;
2207 	struct pollfd stackfds[32];
2208 	struct pollfd *kfds;
2209  	sigset_t *ssp;
2210  	sigset_t ss;
2211  	int error;
2212 
2213 	if (kern_poll_maxfds(nfds))
2214 		return (EINVAL);
2215 	if (sset != NULL) {
2216 		error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
2217 		if (error != 0)
2218 		    return (error);
2219 	} else
2220 		ssp = NULL;
2221 	if (tsp != NULL)
2222 		nanotime(&ts0);
2223 
2224 	if (nfds > nitems(stackfds))
2225 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2226 	else
2227 		kfds = stackfds;
2228 	error = linux_pollin(td, kfds, fds, nfds);
2229 	if (error != 0)
2230 		goto out;
2231 
2232 	error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2233 	if (error == 0)
2234 		error = linux_pollout(td, kfds, fds, nfds);
2235 
2236 	if (error == 0 && tsp != NULL) {
2237 		if (td->td_retval[0]) {
2238 			nanotime(&ts1);
2239 			timespecsub(&ts1, &ts0, &ts1);
2240 			timespecsub(tsp, &ts1, tsp);
2241 			if (tsp->tv_sec < 0)
2242 				timespecclear(tsp);
2243 		} else
2244 			timespecclear(tsp);
2245 	}
2246 
2247 out:
2248 	if (nfds > nitems(stackfds))
2249 		free(kfds, M_TEMP);
2250 	return (error);
2251 }
2252 
2253 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2254 int
linux_ppoll_time64(struct thread * td,struct linux_ppoll_time64_args * args)2255 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2256 {
2257 	struct timespec uts, *tsp;
2258 	int error;
2259 
2260 	if (args->tsp != NULL) {
2261 		error = linux_get_timespec64(&uts, args->tsp);
2262 		if (error != 0)
2263 			return (error);
2264 		tsp = &uts;
2265 	} else
2266  		tsp = NULL;
2267 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2268 	    args->sset, args->ssize);
2269 	if (error == 0 && args->tsp != NULL)
2270 		error = linux_put_timespec64(&uts, args->tsp);
2271 	return (error);
2272 }
2273 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2274 
2275 static int
linux_pollin(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2276 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2277 {
2278 	int error;
2279 	u_int i;
2280 
2281 	error = copyin(ufds, fds, nfd * sizeof(*fds));
2282 	if (error != 0)
2283 		return (error);
2284 
2285 	for (i = 0; i < nfd; i++) {
2286 		if (fds->events != 0)
2287 			linux_to_bsd_poll_events(td, fds->fd,
2288 			    fds->events, &fds->events);
2289 		fds++;
2290 	}
2291 	return (0);
2292 }
2293 
2294 static int
linux_pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2295 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2296 {
2297 	int error = 0;
2298 	u_int i, n = 0;
2299 
2300 	for (i = 0; i < nfd; i++) {
2301 		if (fds->revents != 0) {
2302 			bsd_to_linux_poll_events(fds->revents,
2303 			    &fds->revents);
2304 			n++;
2305 		}
2306 		error = copyout(&fds->revents, &ufds->revents,
2307 		    sizeof(ufds->revents));
2308 		if (error)
2309 			return (error);
2310 		fds++;
2311 		ufds++;
2312 	}
2313 	td->td_retval[0] = n;
2314 	return (0);
2315 }
2316 
2317 static int
linux_sched_rr_get_interval_common(struct thread * td,pid_t pid,struct timespec * ts)2318 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
2319     struct timespec *ts)
2320 {
2321 	struct thread *tdt;
2322 	int error;
2323 
2324 	/*
2325 	 * According to man in case the invalid pid specified
2326 	 * EINVAL should be returned.
2327 	 */
2328 	if (pid < 0)
2329 		return (EINVAL);
2330 
2331 	tdt = linux_tdfind(td, pid, -1);
2332 	if (tdt == NULL)
2333 		return (ESRCH);
2334 
2335 	error = kern_sched_rr_get_interval_td(td, tdt, ts);
2336 	PROC_UNLOCK(tdt->td_proc);
2337 	return (error);
2338 }
2339 
2340 int
linux_sched_rr_get_interval(struct thread * td,struct linux_sched_rr_get_interval_args * uap)2341 linux_sched_rr_get_interval(struct thread *td,
2342     struct linux_sched_rr_get_interval_args *uap)
2343 {
2344 	struct timespec ts;
2345 	int error;
2346 
2347 	error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2348 	if (error != 0)
2349 		return (error);
2350 	return (linux_put_timespec(&ts, uap->interval));
2351 }
2352 
2353 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2354 int
linux_sched_rr_get_interval_time64(struct thread * td,struct linux_sched_rr_get_interval_time64_args * uap)2355 linux_sched_rr_get_interval_time64(struct thread *td,
2356     struct linux_sched_rr_get_interval_time64_args *uap)
2357 {
2358 	struct timespec ts;
2359 	int error;
2360 
2361 	error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2362 	if (error != 0)
2363 		return (error);
2364 	return (linux_put_timespec64(&ts, uap->interval));
2365 }
2366 #endif
2367 
2368 /*
2369  * In case when the Linux thread is the initial thread in
2370  * the thread group thread id is equal to the process id.
2371  * Glibc depends on this magic (assert in pthread_getattr_np.c).
2372  */
2373 struct thread *
linux_tdfind(struct thread * td,lwpid_t tid,pid_t pid)2374 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2375 {
2376 	struct linux_emuldata *em;
2377 	struct thread *tdt;
2378 	struct proc *p;
2379 
2380 	tdt = NULL;
2381 	if (tid == 0 || tid == td->td_tid) {
2382 		if (pid != -1 && td->td_proc->p_pid != pid)
2383 			return (NULL);
2384 		PROC_LOCK(td->td_proc);
2385 		return (td);
2386 	} else if (tid > PID_MAX)
2387 		return (tdfind(tid, pid));
2388 
2389 	/*
2390 	 * Initial thread where the tid equal to the pid.
2391 	 */
2392 	p = pfind(tid);
2393 	if (p != NULL) {
2394 		if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
2395 		    (pid != -1 && tid != pid)) {
2396 			/*
2397 			 * p is not a Linuxulator process.
2398 			 */
2399 			PROC_UNLOCK(p);
2400 			return (NULL);
2401 		}
2402 		FOREACH_THREAD_IN_PROC(p, tdt) {
2403 			em = em_find(tdt);
2404 			if (tid == em->em_tid)
2405 				return (tdt);
2406 		}
2407 		PROC_UNLOCK(p);
2408 	}
2409 	return (NULL);
2410 }
2411 
2412 void
linux_to_bsd_waitopts(int options,int * bsdopts)2413 linux_to_bsd_waitopts(int options, int *bsdopts)
2414 {
2415 
2416 	if (options & LINUX_WNOHANG)
2417 		*bsdopts |= WNOHANG;
2418 	if (options & LINUX_WUNTRACED)
2419 		*bsdopts |= WUNTRACED;
2420 	if (options & LINUX_WEXITED)
2421 		*bsdopts |= WEXITED;
2422 	if (options & LINUX_WCONTINUED)
2423 		*bsdopts |= WCONTINUED;
2424 	if (options & LINUX_WNOWAIT)
2425 		*bsdopts |= WNOWAIT;
2426 
2427 	if (options & __WCLONE)
2428 		*bsdopts |= WLINUXCLONE;
2429 }
2430 
2431 int
linux_getrandom(struct thread * td,struct linux_getrandom_args * args)2432 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2433 {
2434 	struct uio uio;
2435 	struct iovec iov;
2436 	int error;
2437 
2438 	if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2439 		return (EINVAL);
2440 	if (args->count > INT_MAX)
2441 		args->count = INT_MAX;
2442 
2443 	iov.iov_base = args->buf;
2444 	iov.iov_len = args->count;
2445 
2446 	uio.uio_iov = &iov;
2447 	uio.uio_iovcnt = 1;
2448 	uio.uio_resid = iov.iov_len;
2449 	uio.uio_segflg = UIO_USERSPACE;
2450 	uio.uio_rw = UIO_READ;
2451 	uio.uio_td = td;
2452 
2453 	error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2454 	if (error == 0)
2455 		td->td_retval[0] = args->count - uio.uio_resid;
2456 	return (error);
2457 }
2458 
2459 int
linux_mincore(struct thread * td,struct linux_mincore_args * args)2460 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2461 {
2462 
2463 	/* Needs to be page-aligned */
2464 	if (args->start & PAGE_MASK)
2465 		return (EINVAL);
2466 	return (kern_mincore(td, args->start, args->len, args->vec));
2467 }
2468 
2469 #define	SYSLOG_TAG	"<6>"
2470 
2471 int
linux_syslog(struct thread * td,struct linux_syslog_args * args)2472 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2473 {
2474 	char buf[128], *src, *dst;
2475 	u_int seq;
2476 	int buflen, error;
2477 
2478 	if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2479 		linux_msg(td, "syslog unsupported type 0x%x", args->type);
2480 		return (EINVAL);
2481 	}
2482 
2483 	if (args->len < 6) {
2484 		td->td_retval[0] = 0;
2485 		return (0);
2486 	}
2487 
2488 	error = priv_check(td, PRIV_MSGBUF);
2489 	if (error)
2490 		return (error);
2491 
2492 	mtx_lock(&msgbuf_lock);
2493 	msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2494 	mtx_unlock(&msgbuf_lock);
2495 
2496 	dst = args->buf;
2497 	error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2498 	/* The -1 is to skip the trailing '\0'. */
2499 	dst += sizeof(SYSLOG_TAG) - 1;
2500 
2501 	while (error == 0) {
2502 		mtx_lock(&msgbuf_lock);
2503 		buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2504 		mtx_unlock(&msgbuf_lock);
2505 
2506 		if (buflen == 0)
2507 			break;
2508 
2509 		for (src = buf; src < buf + buflen && error == 0; src++) {
2510 			if (*src == '\0')
2511 				continue;
2512 
2513 			if (dst >= args->buf + args->len)
2514 				goto out;
2515 
2516 			error = copyout(src, dst, 1);
2517 			dst++;
2518 
2519 			if (*src == '\n' && *(src + 1) != '<' &&
2520 			    dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2521 				error = copyout(&SYSLOG_TAG,
2522 				    dst, sizeof(SYSLOG_TAG));
2523 				dst += sizeof(SYSLOG_TAG) - 1;
2524 			}
2525 		}
2526 	}
2527 out:
2528 	td->td_retval[0] = dst - args->buf;
2529 	return (error);
2530 }
2531 
2532 int
linux_getcpu(struct thread * td,struct linux_getcpu_args * args)2533 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2534 {
2535 	int cpu, error, node;
2536 
2537 	cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2538 	error = 0;
2539 	node = cpuid_to_pcpu[cpu]->pc_domain;
2540 
2541 	if (args->cpu != NULL)
2542 		error = copyout(&cpu, args->cpu, sizeof(l_int));
2543 	if (args->node != NULL)
2544 		error = copyout(&node, args->node, sizeof(l_int));
2545 	return (error);
2546 }
2547 
2548 #if defined(__i386__) || defined(__amd64__)
2549 int
linux_poll(struct thread * td,struct linux_poll_args * args)2550 linux_poll(struct thread *td, struct linux_poll_args *args)
2551 {
2552 	struct timespec ts, *tsp;
2553 
2554 	if (args->timeout != INFTIM) {
2555 		if (args->timeout < 0)
2556 			return (EINVAL);
2557 		ts.tv_sec = args->timeout / 1000;
2558 		ts.tv_nsec = (args->timeout % 1000) * 1000000;
2559 		tsp = &ts;
2560 	} else
2561 		tsp = NULL;
2562 
2563 	return (linux_common_ppoll(td, args->fds, args->nfds,
2564 	    tsp, NULL, 0));
2565 }
2566 #endif /* __i386__ || __amd64__ */
2567 
2568 int
linux_seccomp(struct thread * td,struct linux_seccomp_args * args)2569 linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2570 {
2571 
2572 	switch (args->op) {
2573 	case LINUX_SECCOMP_GET_ACTION_AVAIL:
2574 		return (EOPNOTSUPP);
2575 	default:
2576 		/*
2577 		 * Ignore unknown operations, just like Linux kernel built
2578 		 * without CONFIG_SECCOMP.
2579 		 */
2580 		return (EINVAL);
2581 	}
2582 }
2583 
2584 /*
2585  * Custom version of exec_copyin_args(), to copy out argument and environment
2586  * strings from the old process address space into the temporary string buffer.
2587  * Based on freebsd32_exec_copyin_args.
2588  */
2589 static int
linux_exec_copyin_args(struct image_args * args,const char * fname,l_uintptr_t * argv,l_uintptr_t * envv)2590 linux_exec_copyin_args(struct image_args *args, const char *fname,
2591     l_uintptr_t *argv, l_uintptr_t *envv)
2592 {
2593 	char *argp, *envp;
2594 	l_uintptr_t *ptr, arg;
2595 	int error;
2596 
2597 	bzero(args, sizeof(*args));
2598 	if (argv == NULL)
2599 		return (EFAULT);
2600 
2601 	/*
2602 	 * Allocate demand-paged memory for the file name, argument, and
2603 	 * environment strings.
2604 	 */
2605 	error = exec_alloc_args(args);
2606 	if (error != 0)
2607 		return (error);
2608 
2609 	/*
2610 	 * Copy the file name.
2611 	 */
2612 	error = exec_args_add_fname(args, fname, UIO_USERSPACE);
2613 	if (error != 0)
2614 		goto err_exit;
2615 
2616 	/*
2617 	 * extract arguments first
2618 	 */
2619 	ptr = argv;
2620 	for (;;) {
2621 		error = copyin(ptr++, &arg, sizeof(arg));
2622 		if (error)
2623 			goto err_exit;
2624 		if (arg == 0)
2625 			break;
2626 		argp = PTRIN(arg);
2627 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
2628 		if (error != 0)
2629 			goto err_exit;
2630 	}
2631 
2632 	/*
2633 	 * This comment is from Linux do_execveat_common:
2634 	 * When argv is empty, add an empty string ("") as argv[0] to
2635 	 * ensure confused userspace programs that start processing
2636 	 * from argv[1] won't end up walking envp.
2637 	 */
2638 	if (args->argc == 0 &&
2639 	    (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0))
2640 		goto err_exit;
2641 
2642 	/*
2643 	 * extract environment strings
2644 	 */
2645 	if (envv) {
2646 		ptr = envv;
2647 		for (;;) {
2648 			error = copyin(ptr++, &arg, sizeof(arg));
2649 			if (error)
2650 				goto err_exit;
2651 			if (arg == 0)
2652 				break;
2653 			envp = PTRIN(arg);
2654 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
2655 			if (error != 0)
2656 				goto err_exit;
2657 		}
2658 	}
2659 
2660 	return (0);
2661 
2662 err_exit:
2663 	exec_free_args(args);
2664 	return (error);
2665 }
2666 
2667 int
linux_execve(struct thread * td,struct linux_execve_args * args)2668 linux_execve(struct thread *td, struct linux_execve_args *args)
2669 {
2670 	struct image_args eargs;
2671 	int error;
2672 
2673 	LINUX_CTR(execve);
2674 
2675 	error = linux_exec_copyin_args(&eargs, args->path, args->argp,
2676 	    args->envp);
2677 	if (error == 0)
2678 		error = linux_common_execve(td, &eargs);
2679 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
2680 	return (error);
2681 }
2682 
2683 static void
linux_up_rtprio_if(struct thread * td1,struct rtprio * rtp)2684 linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp)
2685 {
2686 	struct rtprio rtp2;
2687 
2688 	pri_to_rtp(td1, &rtp2);
2689 	if (rtp2.type <  rtp->type ||
2690 	    (rtp2.type == rtp->type &&
2691 	    rtp2.prio < rtp->prio)) {
2692 		rtp->type = rtp2.type;
2693 		rtp->prio = rtp2.prio;
2694 	}
2695 }
2696 
2697 #define	LINUX_PRIO_DIVIDER	RTP_PRIO_MAX / LINUX_IOPRIO_MAX
2698 
2699 static int
linux_rtprio2ioprio(struct rtprio * rtp)2700 linux_rtprio2ioprio(struct rtprio *rtp)
2701 {
2702 	int ioprio, prio;
2703 
2704 	switch (rtp->type) {
2705 	case RTP_PRIO_IDLE:
2706 		prio = RTP_PRIO_MIN;
2707 		ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio);
2708 		break;
2709 	case RTP_PRIO_NORMAL:
2710 		prio = rtp->prio / LINUX_PRIO_DIVIDER;
2711 		ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio);
2712 		break;
2713 	case RTP_PRIO_REALTIME:
2714 		prio = rtp->prio / LINUX_PRIO_DIVIDER;
2715 		ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio);
2716 		break;
2717 	default:
2718 		prio = RTP_PRIO_MIN;
2719 		ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio);
2720 		break;
2721 	}
2722 	return (ioprio);
2723 }
2724 
2725 static int
linux_ioprio2rtprio(int ioprio,struct rtprio * rtp)2726 linux_ioprio2rtprio(int ioprio, struct rtprio *rtp)
2727 {
2728 
2729 	switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) {
2730 	case LINUX_IOPRIO_CLASS_IDLE:
2731 		rtp->prio = RTP_PRIO_MIN;
2732 		rtp->type = RTP_PRIO_IDLE;
2733 		break;
2734 	case LINUX_IOPRIO_CLASS_BE:
2735 		rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2736 		rtp->type = RTP_PRIO_NORMAL;
2737 		break;
2738 	case LINUX_IOPRIO_CLASS_RT:
2739 		rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2740 		rtp->type = RTP_PRIO_REALTIME;
2741 		break;
2742 	default:
2743 		return (EINVAL);
2744 	}
2745 	return (0);
2746 }
2747 #undef LINUX_PRIO_DIVIDER
2748 
2749 int
linux_ioprio_get(struct thread * td,struct linux_ioprio_get_args * args)2750 linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args)
2751 {
2752 	struct thread *td1;
2753 	struct rtprio rtp;
2754 	struct pgrp *pg;
2755 	struct proc *p;
2756 	int error, found;
2757 
2758 	p = NULL;
2759 	td1 = NULL;
2760 	error = 0;
2761 	found = 0;
2762 	rtp.type = RTP_PRIO_IDLE;
2763 	rtp.prio = RTP_PRIO_MAX;
2764 	switch (args->which) {
2765 	case LINUX_IOPRIO_WHO_PROCESS:
2766 		if (args->who == 0) {
2767 			td1 = td;
2768 			p = td1->td_proc;
2769 			PROC_LOCK(p);
2770 		} else if (args->who > PID_MAX) {
2771 			td1 = linux_tdfind(td, args->who, -1);
2772 			if (td1 != NULL)
2773 				p = td1->td_proc;
2774 		} else
2775 			p = pfind(args->who);
2776 		if (p == NULL)
2777 			return (ESRCH);
2778 		if ((error = p_cansee(td, p))) {
2779 			PROC_UNLOCK(p);
2780 			break;
2781 		}
2782 		if (td1 != NULL) {
2783 			pri_to_rtp(td1, &rtp);
2784 		} else {
2785 			FOREACH_THREAD_IN_PROC(p, td1) {
2786 				linux_up_rtprio_if(td1, &rtp);
2787 			}
2788 		}
2789 		found++;
2790 		PROC_UNLOCK(p);
2791 		break;
2792 	case LINUX_IOPRIO_WHO_PGRP:
2793 		sx_slock(&proctree_lock);
2794 		if (args->who == 0) {
2795 			pg = td->td_proc->p_pgrp;
2796 			PGRP_LOCK(pg);
2797 		} else {
2798 			pg = pgfind(args->who);
2799 			if (pg == NULL) {
2800 				sx_sunlock(&proctree_lock);
2801 				error = ESRCH;
2802 				break;
2803 			}
2804 		}
2805 		sx_sunlock(&proctree_lock);
2806 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2807 			PROC_LOCK(p);
2808 			if (p->p_state == PRS_NORMAL &&
2809 			    p_cansee(td, p) == 0) {
2810 				FOREACH_THREAD_IN_PROC(p, td1) {
2811 					linux_up_rtprio_if(td1, &rtp);
2812 					found++;
2813 				}
2814 			}
2815 			PROC_UNLOCK(p);
2816 		}
2817 		PGRP_UNLOCK(pg);
2818 		break;
2819 	case LINUX_IOPRIO_WHO_USER:
2820 		if (args->who == 0)
2821 			args->who = td->td_ucred->cr_uid;
2822 		sx_slock(&allproc_lock);
2823 		FOREACH_PROC_IN_SYSTEM(p) {
2824 			PROC_LOCK(p);
2825 			if (p->p_state == PRS_NORMAL &&
2826 			    p->p_ucred->cr_uid == args->who &&
2827 			    p_cansee(td, p) == 0) {
2828 				FOREACH_THREAD_IN_PROC(p, td1) {
2829 					linux_up_rtprio_if(td1, &rtp);
2830 					found++;
2831 				}
2832 			}
2833 			PROC_UNLOCK(p);
2834 		}
2835 		sx_sunlock(&allproc_lock);
2836 		break;
2837 	default:
2838 		error = EINVAL;
2839 		break;
2840 	}
2841 	if (error == 0) {
2842 		if (found != 0)
2843 			td->td_retval[0] = linux_rtprio2ioprio(&rtp);
2844 		else
2845 			error = ESRCH;
2846 	}
2847 	return (error);
2848 }
2849 
2850 int
linux_ioprio_set(struct thread * td,struct linux_ioprio_set_args * args)2851 linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args)
2852 {
2853 	struct thread *td1;
2854 	struct rtprio rtp;
2855 	struct pgrp *pg;
2856 	struct proc *p;
2857 	int error;
2858 
2859 	if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0)
2860 		return (error);
2861 	/* Attempts to set high priorities (REALTIME) require su privileges. */
2862 	if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
2863 	    (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
2864 		return (error);
2865 
2866 	p = NULL;
2867 	td1 = NULL;
2868 	switch (args->which) {
2869 	case LINUX_IOPRIO_WHO_PROCESS:
2870 		if (args->who == 0) {
2871 			td1 = td;
2872 			p = td1->td_proc;
2873 			PROC_LOCK(p);
2874 		} else if (args->who > PID_MAX) {
2875 			td1 = linux_tdfind(td, args->who, -1);
2876 			if (td1 != NULL)
2877 				p = td1->td_proc;
2878 		} else
2879 			p = pfind(args->who);
2880 		if (p == NULL)
2881 			return (ESRCH);
2882 		if ((error = p_cansched(td, p))) {
2883 			PROC_UNLOCK(p);
2884 			break;
2885 		}
2886 		if (td1 != NULL) {
2887 			error = rtp_to_pri(&rtp, td1);
2888 		} else {
2889 			FOREACH_THREAD_IN_PROC(p, td1) {
2890 				if ((error = rtp_to_pri(&rtp, td1)) != 0)
2891 					break;
2892 			}
2893 		}
2894 		PROC_UNLOCK(p);
2895 		break;
2896 	case LINUX_IOPRIO_WHO_PGRP:
2897 		sx_slock(&proctree_lock);
2898 		if (args->who == 0) {
2899 			pg = td->td_proc->p_pgrp;
2900 			PGRP_LOCK(pg);
2901 		} else {
2902 			pg = pgfind(args->who);
2903 			if (pg == NULL) {
2904 				sx_sunlock(&proctree_lock);
2905 				error = ESRCH;
2906 				break;
2907 			}
2908 		}
2909 		sx_sunlock(&proctree_lock);
2910 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2911 			PROC_LOCK(p);
2912 			if (p->p_state == PRS_NORMAL &&
2913 			    p_cansched(td, p) == 0) {
2914 				FOREACH_THREAD_IN_PROC(p, td1) {
2915 					if ((error = rtp_to_pri(&rtp, td1)) != 0)
2916 						break;
2917 				}
2918 			}
2919 			PROC_UNLOCK(p);
2920 			if (error != 0)
2921 				break;
2922 		}
2923 		PGRP_UNLOCK(pg);
2924 		break;
2925 	case LINUX_IOPRIO_WHO_USER:
2926 		if (args->who == 0)
2927 			args->who = td->td_ucred->cr_uid;
2928 		sx_slock(&allproc_lock);
2929 		FOREACH_PROC_IN_SYSTEM(p) {
2930 			PROC_LOCK(p);
2931 			if (p->p_state == PRS_NORMAL &&
2932 			    p->p_ucred->cr_uid == args->who &&
2933 			    p_cansched(td, p) == 0) {
2934 				FOREACH_THREAD_IN_PROC(p, td1) {
2935 					if ((error = rtp_to_pri(&rtp, td1)) != 0)
2936 						break;
2937 				}
2938 			}
2939 			PROC_UNLOCK(p);
2940 			if (error != 0)
2941 				break;
2942 		}
2943 		sx_sunlock(&allproc_lock);
2944 		break;
2945 	default:
2946 		error = EINVAL;
2947 		break;
2948 	}
2949 	return (error);
2950 }
2951 
2952 /* The only flag is O_NONBLOCK */
2953 #define B2L_MQ_FLAGS(bflags)	((bflags) != 0 ? LINUX_O_NONBLOCK : 0)
2954 #define L2B_MQ_FLAGS(lflags)	((lflags) != 0 ? O_NONBLOCK : 0)
2955 
2956 int
linux_mq_open(struct thread * td,struct linux_mq_open_args * args)2957 linux_mq_open(struct thread *td, struct linux_mq_open_args *args)
2958 {
2959 	struct mq_attr attr;
2960 	int error, flags;
2961 
2962 	flags = linux_common_openflags(args->oflag);
2963 	if ((flags & O_ACCMODE) == O_ACCMODE || (flags & O_EXEC) != 0)
2964 		return (EINVAL);
2965 	flags = FFLAGS(flags);
2966 	if ((flags & O_CREAT) != 0 && args->attr != NULL) {
2967 		error = copyin(args->attr, &attr, sizeof(attr));
2968 		if (error != 0)
2969 			return (error);
2970 		attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
2971 	}
2972 
2973 	return (kern_kmq_open(td, args->name, flags, args->mode,
2974 	    args->attr != NULL ? &attr : NULL));
2975 }
2976 
2977 int
linux_mq_unlink(struct thread * td,struct linux_mq_unlink_args * args)2978 linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args)
2979 {
2980 	struct kmq_unlink_args bsd_args = {
2981 		.path = PTRIN(args->name)
2982 	};
2983 
2984 	return (sys_kmq_unlink(td, &bsd_args));
2985 }
2986 
2987 int
linux_mq_timedsend(struct thread * td,struct linux_mq_timedsend_args * args)2988 linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args)
2989 {
2990 	struct timespec ts, *abs_timeout;
2991 	int error;
2992 
2993 	if (args->abs_timeout == NULL)
2994 		abs_timeout = NULL;
2995 	else {
2996 		error = linux_get_timespec(&ts, args->abs_timeout);
2997 		if (error != 0)
2998 			return (error);
2999 		abs_timeout = &ts;
3000 	}
3001 
3002 	return (kern_kmq_timedsend(td, args->mqd, PTRIN(args->msg_ptr),
3003 		args->msg_len, args->msg_prio, abs_timeout));
3004 }
3005 
3006 int
linux_mq_timedreceive(struct thread * td,struct linux_mq_timedreceive_args * args)3007 linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args)
3008 {
3009 	struct timespec ts, *abs_timeout;
3010 	int error;
3011 
3012 	if (args->abs_timeout == NULL)
3013 		abs_timeout = NULL;
3014 	else {
3015 		error = linux_get_timespec(&ts, args->abs_timeout);
3016 		if (error != 0)
3017 			return (error);
3018 		abs_timeout = &ts;
3019 	}
3020 
3021 	return (kern_kmq_timedreceive(td, args->mqd, PTRIN(args->msg_ptr),
3022 		args->msg_len, args->msg_prio, abs_timeout));
3023 }
3024 
3025 int
linux_mq_notify(struct thread * td,struct linux_mq_notify_args * args)3026 linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args)
3027 {
3028 	struct sigevent ev, *evp;
3029 	struct l_sigevent l_ev;
3030 	int error;
3031 
3032 	if (args->sevp == NULL)
3033 		evp = NULL;
3034 	else {
3035 		error = copyin(args->sevp, &l_ev, sizeof(l_ev));
3036 		if (error != 0)
3037 			return (error);
3038 		error = linux_convert_l_sigevent(&l_ev, &ev);
3039 		if (error != 0)
3040 			return (error);
3041 		evp = &ev;
3042 	}
3043 
3044 	return (kern_kmq_notify(td, args->mqd, evp));
3045 }
3046 
3047 int
linux_mq_getsetattr(struct thread * td,struct linux_mq_getsetattr_args * args)3048 linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args)
3049 {
3050 	struct mq_attr attr, oattr;
3051 	int error;
3052 
3053 	if (args->attr != NULL) {
3054 		error = copyin(args->attr, &attr, sizeof(attr));
3055 		if (error != 0)
3056 			return (error);
3057 		attr.mq_flags = L2B_MQ_FLAGS(attr.mq_flags);
3058 	}
3059 
3060 	error = kern_kmq_setattr(td, args->mqd, args->attr != NULL ? &attr : NULL,
3061 	    &oattr);
3062 	if (error == 0 && args->oattr != NULL) {
3063 		oattr.mq_flags = B2L_MQ_FLAGS(oattr.mq_flags);
3064 		bzero(oattr.__reserved, sizeof(oattr.__reserved));
3065 		error = copyout(&oattr, args->oattr, sizeof(oattr));
3066 	}
3067 
3068 	return (error);
3069 }
3070 
3071 int
linux_kcmp(struct thread * td,struct linux_kcmp_args * args)3072 linux_kcmp(struct thread *td, struct linux_kcmp_args *args)
3073 {
3074 	int type;
3075 
3076 	switch (args->type) {
3077 	case LINUX_KCMP_FILE:
3078 		type = KCMP_FILE;
3079 		break;
3080 	case LINUX_KCMP_FILES:
3081 		type = KCMP_FILES;
3082 		break;
3083 	case LINUX_KCMP_SIGHAND:
3084 		type = KCMP_SIGHAND;
3085 		break;
3086 	case LINUX_KCMP_VM:
3087 		type = KCMP_VM;
3088 		break;
3089 	default:
3090 		return (EINVAL);
3091 	}
3092 
3093 	return (kern_kcmp(td, args->pid1, args->pid2, type, args->idx1,
3094 	    args->idx));
3095 }
3096 
3097 MODULE_DEPEND(linux, mqueuefs, 1, 1, 1);
3098