1 //===- GenericCycleInfo.h - Info for Cycles in any IR ------*- C++ -*------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// \brief Find all cycles in a control-flow graph, including irreducible loops. 11 /// 12 /// See docs/CycleTerminology.rst for a formal definition of cycles. 13 /// 14 /// Briefly: 15 /// - A cycle is a generalization of a loop which can represent 16 /// irreducible control flow. 17 /// - Cycles identified in a program are implementation defined, 18 /// depending on the DFS traversal chosen. 19 /// - Cycles are well-nested, and form a forest with a parent-child 20 /// relationship. 21 /// - In any choice of DFS, every natural loop L is represented by a 22 /// unique cycle C which is a superset of L. 23 /// - In the absence of irreducible control flow, the cycles are 24 /// exactly the natural loops in the program. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #ifndef LLVM_ADT_GENERICCYCLEINFO_H 29 #define LLVM_ADT_GENERICCYCLEINFO_H 30 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/GenericSSAContext.h" 33 #include "llvm/ADT/GraphTraits.h" 34 #include "llvm/ADT/SetVector.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 namespace llvm { 39 40 template <typename ContextT> class GenericCycleInfo; 41 template <typename ContextT> class GenericCycleInfoCompute; 42 43 /// A possibly irreducible generalization of a \ref Loop. 44 template <typename ContextT> class GenericCycle { 45 public: 46 using BlockT = typename ContextT::BlockT; 47 using FunctionT = typename ContextT::FunctionT; 48 template <typename> friend class GenericCycleInfo; 49 template <typename> friend class GenericCycleInfoCompute; 50 51 private: 52 /// The parent cycle. Is null for the root "cycle". Top-level cycles point 53 /// at the root. 54 GenericCycle *ParentCycle = nullptr; 55 56 /// The entry block(s) of the cycle. The header is the only entry if 57 /// this is a loop. Is empty for the root "cycle", to avoid 58 /// unnecessary memory use. 59 SmallVector<BlockT *, 1> Entries; 60 61 /// Child cycles, if any. 62 std::vector<std::unique_ptr<GenericCycle>> Children; 63 64 /// Basic blocks that are contained in the cycle, including entry blocks, 65 /// and including blocks that are part of a child cycle. 66 using BlockSetVectorT = SetVector<BlockT *, SmallVector<BlockT *, 8>, 67 DenseSet<const BlockT *>, 8>; 68 BlockSetVectorT Blocks; 69 70 /// Depth of the cycle in the tree. The root "cycle" is at depth 0. 71 /// 72 /// \note Depths are not necessarily contiguous. However, child loops always 73 /// have strictly greater depth than their parents, and sibling loops 74 /// always have the same depth. 75 unsigned Depth = 0; 76 clear()77 void clear() { 78 Entries.clear(); 79 Children.clear(); 80 Blocks.clear(); 81 Depth = 0; 82 ParentCycle = nullptr; 83 } 84 appendEntry(BlockT * Block)85 void appendEntry(BlockT *Block) { Entries.push_back(Block); } appendBlock(BlockT * Block)86 void appendBlock(BlockT *Block) { Blocks.insert(Block); } 87 88 GenericCycle(const GenericCycle &) = delete; 89 GenericCycle &operator=(const GenericCycle &) = delete; 90 GenericCycle(GenericCycle &&Rhs) = delete; 91 GenericCycle &operator=(GenericCycle &&Rhs) = delete; 92 93 public: 94 GenericCycle() = default; 95 96 /// \brief Whether the cycle is a natural loop. isReducible()97 bool isReducible() const { return Entries.size() == 1; } 98 getHeader()99 BlockT *getHeader() const { return Entries[0]; } 100 getEntries()101 const SmallVectorImpl<BlockT *> & getEntries() const { 102 return Entries; 103 } 104 105 /// \brief Return whether \p Block is an entry block of the cycle. isEntry(const BlockT * Block)106 bool isEntry(const BlockT *Block) const { 107 return is_contained(Entries, Block); 108 } 109 110 /// \brief Return whether \p Block is contained in the cycle. contains(const BlockT * Block)111 bool contains(const BlockT *Block) const { return Blocks.contains(Block); } 112 113 /// \brief Returns true iff this cycle contains \p C. 114 /// 115 /// Note: Non-strict containment check, i.e. returns true if C is the 116 /// same cycle. 117 bool contains(const GenericCycle *C) const; 118 getParentCycle()119 const GenericCycle *getParentCycle() const { return ParentCycle; } getParentCycle()120 GenericCycle *getParentCycle() { return ParentCycle; } getDepth()121 unsigned getDepth() const { return Depth; } 122 123 /// Return all of the successor blocks of this cycle. 124 /// 125 /// These are the blocks _outside of the current cycle_ which are 126 /// branched to. 127 void getExitBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const; 128 129 /// Return all blocks of this cycle that have successor outside of this cycle. 130 /// These blocks have cycle exit branch. 131 void getExitingBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const; 132 133 /// Return the preheader block for this cycle. Pre-header is well-defined for 134 /// reducible cycle in docs/LoopTerminology.rst as: the only one entering 135 /// block and its only edge is to the entry block. Return null for irreducible 136 /// cycles. 137 BlockT *getCyclePreheader() const; 138 139 /// If the cycle has exactly one entry with exactly one predecessor, return 140 /// it, otherwise return nullptr. 141 BlockT *getCyclePredecessor() const; 142 143 /// Iteration over child cycles. 144 //@{ 145 using const_child_iterator_base = 146 typename std::vector<std::unique_ptr<GenericCycle>>::const_iterator; 147 struct const_child_iterator 148 : iterator_adaptor_base<const_child_iterator, const_child_iterator_base> { 149 using Base = 150 iterator_adaptor_base<const_child_iterator, const_child_iterator_base>; 151 152 const_child_iterator() = default; const_child_iteratorconst_child_iterator153 explicit const_child_iterator(const_child_iterator_base I) : Base(I) {} 154 wrappedconst_child_iterator155 const const_child_iterator_base &wrapped() { return Base::wrapped(); } 156 GenericCycle *operator*() const { return Base::I->get(); } 157 }; 158 child_begin()159 const_child_iterator child_begin() const { 160 return const_child_iterator{Children.begin()}; 161 } child_end()162 const_child_iterator child_end() const { 163 return const_child_iterator{Children.end()}; 164 } getNumChildren()165 size_t getNumChildren() const { return Children.size(); } children()166 iterator_range<const_child_iterator> children() const { 167 return llvm::make_range(const_child_iterator{Children.begin()}, 168 const_child_iterator{Children.end()}); 169 } 170 //@} 171 172 /// Iteration over blocks in the cycle (including entry blocks). 173 //@{ 174 using const_block_iterator = typename BlockSetVectorT::const_iterator; 175 block_begin()176 const_block_iterator block_begin() const { 177 return const_block_iterator{Blocks.begin()}; 178 } block_end()179 const_block_iterator block_end() const { 180 return const_block_iterator{Blocks.end()}; 181 } getNumBlocks()182 size_t getNumBlocks() const { return Blocks.size(); } blocks()183 iterator_range<const_block_iterator> blocks() const { 184 return llvm::make_range(block_begin(), block_end()); 185 } 186 //@} 187 188 /// Iteration over entry blocks. 189 //@{ 190 using const_entry_iterator = 191 typename SmallVectorImpl<BlockT *>::const_iterator; 192 getNumEntries()193 size_t getNumEntries() const { return Entries.size(); } entries()194 iterator_range<const_entry_iterator> entries() const { 195 return llvm::make_range(Entries.begin(), Entries.end()); 196 } 197 //@} 198 printEntries(const ContextT & Ctx)199 Printable printEntries(const ContextT &Ctx) const { 200 return Printable([this, &Ctx](raw_ostream &Out) { 201 bool First = true; 202 for (auto *Entry : Entries) { 203 if (!First) 204 Out << ' '; 205 First = false; 206 Out << Ctx.print(Entry); 207 } 208 }); 209 } 210 print(const ContextT & Ctx)211 Printable print(const ContextT &Ctx) const { 212 return Printable([this, &Ctx](raw_ostream &Out) { 213 Out << "depth=" << Depth << ": entries(" << printEntries(Ctx) << ')'; 214 215 for (auto *Block : Blocks) { 216 if (isEntry(Block)) 217 continue; 218 219 Out << ' ' << Ctx.print(Block); 220 } 221 }); 222 } 223 }; 224 225 /// \brief Cycle information for a function. 226 template <typename ContextT> class GenericCycleInfo { 227 public: 228 using BlockT = typename ContextT::BlockT; 229 using CycleT = GenericCycle<ContextT>; 230 using FunctionT = typename ContextT::FunctionT; 231 template <typename> friend class GenericCycle; 232 template <typename> friend class GenericCycleInfoCompute; 233 234 private: 235 ContextT Context; 236 237 /// Map basic blocks to their inner-most containing cycle. 238 DenseMap<BlockT *, CycleT *> BlockMap; 239 240 /// Map basic blocks to their top level containing cycle. 241 DenseMap<BlockT *, CycleT *> BlockMapTopLevel; 242 243 /// Top-level cycles discovered by any DFS. 244 /// 245 /// Note: The implementation treats the nullptr as the parent of 246 /// every top-level cycle. See \ref contains for an example. 247 std::vector<std::unique_ptr<CycleT>> TopLevelCycles; 248 249 /// Move \p Child to \p NewParent by manipulating Children vectors. 250 /// 251 /// Note: This is an incomplete operation that does not update the depth of 252 /// the subtree. 253 void moveTopLevelCycleToNewParent(CycleT *NewParent, CycleT *Child); 254 255 /// Assumes that \p Cycle is the innermost cycle containing \p Block. 256 /// \p Block will be appended to \p Cycle and all of its parent cycles. 257 /// \p Block will be added to BlockMap with \p Cycle and 258 /// BlockMapTopLevel with \p Cycle's top level parent cycle. 259 void addBlockToCycle(BlockT *Block, CycleT *Cycle); 260 261 public: 262 GenericCycleInfo() = default; 263 GenericCycleInfo(GenericCycleInfo &&) = default; 264 GenericCycleInfo &operator=(GenericCycleInfo &&) = default; 265 266 void clear(); 267 void compute(FunctionT &F); 268 void splitCriticalEdge(BlockT *Pred, BlockT *Succ, BlockT *New); 269 getFunction()270 const FunctionT *getFunction() const { return Context.getFunction(); } getSSAContext()271 const ContextT &getSSAContext() const { return Context; } 272 273 CycleT *getCycle(const BlockT *Block) const; 274 CycleT *getSmallestCommonCycle(CycleT *A, CycleT *B) const; 275 unsigned getCycleDepth(const BlockT *Block) const; 276 CycleT *getTopLevelParentCycle(BlockT *Block); 277 278 /// Methods for debug and self-test. 279 //@{ 280 #ifndef NDEBUG 281 bool validateTree() const; 282 #endif 283 void print(raw_ostream &Out) const; dump()284 void dump() const { print(dbgs()); } print(const CycleT * Cycle)285 Printable print(const CycleT *Cycle) { return Cycle->print(Context); } 286 //@} 287 288 /// Iteration over top-level cycles. 289 //@{ 290 using const_toplevel_iterator_base = 291 typename std::vector<std::unique_ptr<CycleT>>::const_iterator; 292 struct const_toplevel_iterator 293 : iterator_adaptor_base<const_toplevel_iterator, 294 const_toplevel_iterator_base> { 295 using Base = iterator_adaptor_base<const_toplevel_iterator, 296 const_toplevel_iterator_base>; 297 298 const_toplevel_iterator() = default; const_toplevel_iteratorconst_toplevel_iterator299 explicit const_toplevel_iterator(const_toplevel_iterator_base I) 300 : Base(I) {} 301 wrappedconst_toplevel_iterator302 const const_toplevel_iterator_base &wrapped() { return Base::wrapped(); } 303 CycleT *operator*() const { return Base::I->get(); } 304 }; 305 toplevel_begin()306 const_toplevel_iterator toplevel_begin() const { 307 return const_toplevel_iterator{TopLevelCycles.begin()}; 308 } toplevel_end()309 const_toplevel_iterator toplevel_end() const { 310 return const_toplevel_iterator{TopLevelCycles.end()}; 311 } 312 toplevel_cycles()313 iterator_range<const_toplevel_iterator> toplevel_cycles() const { 314 return llvm::make_range(const_toplevel_iterator{TopLevelCycles.begin()}, 315 const_toplevel_iterator{TopLevelCycles.end()}); 316 } 317 //@} 318 }; 319 320 /// \brief GraphTraits for iterating over a sub-tree of the CycleT tree. 321 template <typename CycleRefT, typename ChildIteratorT> struct CycleGraphTraits { 322 using NodeRef = CycleRefT; 323 324 using nodes_iterator = ChildIteratorT; 325 using ChildIteratorType = nodes_iterator; 326 getEntryNodeCycleGraphTraits327 static NodeRef getEntryNode(NodeRef Graph) { return Graph; } 328 child_beginCycleGraphTraits329 static ChildIteratorType child_begin(NodeRef Ref) { 330 return Ref->child_begin(); 331 } child_endCycleGraphTraits332 static ChildIteratorType child_end(NodeRef Ref) { return Ref->child_end(); } 333 334 // Not implemented: 335 // static nodes_iterator nodes_begin(GraphType *G) 336 // static nodes_iterator nodes_end (GraphType *G) 337 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 338 339 // typedef EdgeRef - Type of Edge token in the graph, which should 340 // be cheap to copy. 341 // typedef ChildEdgeIteratorType - Type used to iterate over children edges in 342 // graph, dereference to a EdgeRef. 343 344 // static ChildEdgeIteratorType child_edge_begin(NodeRef) 345 // static ChildEdgeIteratorType child_edge_end(NodeRef) 346 // Return iterators that point to the beginning and ending of the 347 // edge list for the given callgraph node. 348 // 349 // static NodeRef edge_dest(EdgeRef) 350 // Return the destination node of an edge. 351 // static unsigned size (GraphType *G) 352 // Return total number of nodes in the graph 353 }; 354 355 template <typename BlockT> 356 struct GraphTraits<const GenericCycle<BlockT> *> 357 : CycleGraphTraits<const GenericCycle<BlockT> *, 358 typename GenericCycle<BlockT>::const_child_iterator> {}; 359 template <typename BlockT> 360 struct GraphTraits<GenericCycle<BlockT> *> 361 : CycleGraphTraits<GenericCycle<BlockT> *, 362 typename GenericCycle<BlockT>::const_child_iterator> {}; 363 364 } // namespace llvm 365 366 #endif // LLVM_ADT_GENERICCYCLEINFO_H 367