xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/GenericCycleInfo.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- GenericCycleInfo.h - Info for Cycles in any IR ------*- C++ -*------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// \brief Find all cycles in a control-flow graph, including irreducible loops.
11 ///
12 /// See docs/CycleTerminology.rst for a formal definition of cycles.
13 ///
14 /// Briefly:
15 /// - A cycle is a generalization of a loop which can represent
16 ///   irreducible control flow.
17 /// - Cycles identified in a program are implementation defined,
18 ///   depending on the DFS traversal chosen.
19 /// - Cycles are well-nested, and form a forest with a parent-child
20 ///   relationship.
21 /// - In any choice of DFS, every natural loop L is represented by a
22 ///   unique cycle C which is a superset of L.
23 /// - In the absence of irreducible control flow, the cycles are
24 ///   exactly the natural loops in the program.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_ADT_GENERICCYCLEINFO_H
29 #define LLVM_ADT_GENERICCYCLEINFO_H
30 
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/GenericSSAContext.h"
33 #include "llvm/ADT/GraphTraits.h"
34 #include "llvm/ADT/SetVector.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 namespace llvm {
39 
40 template <typename ContextT> class GenericCycleInfo;
41 template <typename ContextT> class GenericCycleInfoCompute;
42 
43 /// A possibly irreducible generalization of a \ref Loop.
44 template <typename ContextT> class GenericCycle {
45 public:
46   using BlockT = typename ContextT::BlockT;
47   using FunctionT = typename ContextT::FunctionT;
48   template <typename> friend class GenericCycleInfo;
49   template <typename> friend class GenericCycleInfoCompute;
50 
51 private:
52   /// The parent cycle. Is null for the root "cycle". Top-level cycles point
53   /// at the root.
54   GenericCycle *ParentCycle = nullptr;
55 
56   /// The entry block(s) of the cycle. The header is the only entry if
57   /// this is a loop. Is empty for the root "cycle", to avoid
58   /// unnecessary memory use.
59   SmallVector<BlockT *, 1> Entries;
60 
61   /// Child cycles, if any.
62   std::vector<std::unique_ptr<GenericCycle>> Children;
63 
64   /// Basic blocks that are contained in the cycle, including entry blocks,
65   /// and including blocks that are part of a child cycle.
66   using BlockSetVectorT = SetVector<BlockT *, SmallVector<BlockT *, 8>,
67                                     DenseSet<const BlockT *>, 8>;
68   BlockSetVectorT Blocks;
69 
70   /// Depth of the cycle in the tree. The root "cycle" is at depth 0.
71   ///
72   /// \note Depths are not necessarily contiguous. However, child loops always
73   ///       have strictly greater depth than their parents, and sibling loops
74   ///       always have the same depth.
75   unsigned Depth = 0;
76 
clear()77   void clear() {
78     Entries.clear();
79     Children.clear();
80     Blocks.clear();
81     Depth = 0;
82     ParentCycle = nullptr;
83   }
84 
appendEntry(BlockT * Block)85   void appendEntry(BlockT *Block) { Entries.push_back(Block); }
appendBlock(BlockT * Block)86   void appendBlock(BlockT *Block) { Blocks.insert(Block); }
87 
88   GenericCycle(const GenericCycle &) = delete;
89   GenericCycle &operator=(const GenericCycle &) = delete;
90   GenericCycle(GenericCycle &&Rhs) = delete;
91   GenericCycle &operator=(GenericCycle &&Rhs) = delete;
92 
93 public:
94   GenericCycle() = default;
95 
96   /// \brief Whether the cycle is a natural loop.
isReducible()97   bool isReducible() const { return Entries.size() == 1; }
98 
getHeader()99   BlockT *getHeader() const { return Entries[0]; }
100 
getEntries()101   const SmallVectorImpl<BlockT *> & getEntries() const {
102     return Entries;
103   }
104 
105   /// \brief Return whether \p Block is an entry block of the cycle.
isEntry(const BlockT * Block)106   bool isEntry(const BlockT *Block) const {
107     return is_contained(Entries, Block);
108   }
109 
110   /// \brief Return whether \p Block is contained in the cycle.
contains(const BlockT * Block)111   bool contains(const BlockT *Block) const { return Blocks.contains(Block); }
112 
113   /// \brief Returns true iff this cycle contains \p C.
114   ///
115   /// Note: Non-strict containment check, i.e. returns true if C is the
116   /// same cycle.
117   bool contains(const GenericCycle *C) const;
118 
getParentCycle()119   const GenericCycle *getParentCycle() const { return ParentCycle; }
getParentCycle()120   GenericCycle *getParentCycle() { return ParentCycle; }
getDepth()121   unsigned getDepth() const { return Depth; }
122 
123   /// Return all of the successor blocks of this cycle.
124   ///
125   /// These are the blocks _outside of the current cycle_ which are
126   /// branched to.
127   void getExitBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const;
128 
129   /// Return all blocks of this cycle that have successor outside of this cycle.
130   /// These blocks have cycle exit branch.
131   void getExitingBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const;
132 
133   /// Return the preheader block for this cycle. Pre-header is well-defined for
134   /// reducible cycle in docs/LoopTerminology.rst as: the only one entering
135   /// block and its only edge is to the entry block. Return null for irreducible
136   /// cycles.
137   BlockT *getCyclePreheader() const;
138 
139   /// If the cycle has exactly one entry with exactly one predecessor, return
140   /// it, otherwise return nullptr.
141   BlockT *getCyclePredecessor() const;
142 
143   /// Iteration over child cycles.
144   //@{
145   using const_child_iterator_base =
146       typename std::vector<std::unique_ptr<GenericCycle>>::const_iterator;
147   struct const_child_iterator
148       : iterator_adaptor_base<const_child_iterator, const_child_iterator_base> {
149     using Base =
150         iterator_adaptor_base<const_child_iterator, const_child_iterator_base>;
151 
152     const_child_iterator() = default;
const_child_iteratorconst_child_iterator153     explicit const_child_iterator(const_child_iterator_base I) : Base(I) {}
154 
wrappedconst_child_iterator155     const const_child_iterator_base &wrapped() { return Base::wrapped(); }
156     GenericCycle *operator*() const { return Base::I->get(); }
157   };
158 
child_begin()159   const_child_iterator child_begin() const {
160     return const_child_iterator{Children.begin()};
161   }
child_end()162   const_child_iterator child_end() const {
163     return const_child_iterator{Children.end()};
164   }
getNumChildren()165   size_t getNumChildren() const { return Children.size(); }
children()166   iterator_range<const_child_iterator> children() const {
167     return llvm::make_range(const_child_iterator{Children.begin()},
168                             const_child_iterator{Children.end()});
169   }
170   //@}
171 
172   /// Iteration over blocks in the cycle (including entry blocks).
173   //@{
174   using const_block_iterator = typename BlockSetVectorT::const_iterator;
175 
block_begin()176   const_block_iterator block_begin() const {
177     return const_block_iterator{Blocks.begin()};
178   }
block_end()179   const_block_iterator block_end() const {
180     return const_block_iterator{Blocks.end()};
181   }
getNumBlocks()182   size_t getNumBlocks() const { return Blocks.size(); }
blocks()183   iterator_range<const_block_iterator> blocks() const {
184     return llvm::make_range(block_begin(), block_end());
185   }
186   //@}
187 
188   /// Iteration over entry blocks.
189   //@{
190   using const_entry_iterator =
191       typename SmallVectorImpl<BlockT *>::const_iterator;
192 
getNumEntries()193   size_t getNumEntries() const { return Entries.size(); }
entries()194   iterator_range<const_entry_iterator> entries() const {
195     return llvm::make_range(Entries.begin(), Entries.end());
196   }
197   //@}
198 
printEntries(const ContextT & Ctx)199   Printable printEntries(const ContextT &Ctx) const {
200     return Printable([this, &Ctx](raw_ostream &Out) {
201       bool First = true;
202       for (auto *Entry : Entries) {
203         if (!First)
204           Out << ' ';
205         First = false;
206         Out << Ctx.print(Entry);
207       }
208     });
209   }
210 
print(const ContextT & Ctx)211   Printable print(const ContextT &Ctx) const {
212     return Printable([this, &Ctx](raw_ostream &Out) {
213       Out << "depth=" << Depth << ": entries(" << printEntries(Ctx) << ')';
214 
215       for (auto *Block : Blocks) {
216         if (isEntry(Block))
217           continue;
218 
219         Out << ' ' << Ctx.print(Block);
220       }
221     });
222   }
223 };
224 
225 /// \brief Cycle information for a function.
226 template <typename ContextT> class GenericCycleInfo {
227 public:
228   using BlockT = typename ContextT::BlockT;
229   using CycleT = GenericCycle<ContextT>;
230   using FunctionT = typename ContextT::FunctionT;
231   template <typename> friend class GenericCycle;
232   template <typename> friend class GenericCycleInfoCompute;
233 
234 private:
235   ContextT Context;
236 
237   /// Map basic blocks to their inner-most containing cycle.
238   DenseMap<BlockT *, CycleT *> BlockMap;
239 
240   /// Map basic blocks to their top level containing cycle.
241   DenseMap<BlockT *, CycleT *> BlockMapTopLevel;
242 
243   /// Top-level cycles discovered by any DFS.
244   ///
245   /// Note: The implementation treats the nullptr as the parent of
246   /// every top-level cycle. See \ref contains for an example.
247   std::vector<std::unique_ptr<CycleT>> TopLevelCycles;
248 
249   /// Move \p Child to \p NewParent by manipulating Children vectors.
250   ///
251   /// Note: This is an incomplete operation that does not update the depth of
252   /// the subtree.
253   void moveTopLevelCycleToNewParent(CycleT *NewParent, CycleT *Child);
254 
255   /// Assumes that \p Cycle is the innermost cycle containing \p Block.
256   /// \p Block will be appended to \p Cycle and all of its parent cycles.
257   /// \p Block will be added to BlockMap with \p Cycle and
258   /// BlockMapTopLevel with \p Cycle's top level parent cycle.
259   void addBlockToCycle(BlockT *Block, CycleT *Cycle);
260 
261 public:
262   GenericCycleInfo() = default;
263   GenericCycleInfo(GenericCycleInfo &&) = default;
264   GenericCycleInfo &operator=(GenericCycleInfo &&) = default;
265 
266   void clear();
267   void compute(FunctionT &F);
268   void splitCriticalEdge(BlockT *Pred, BlockT *Succ, BlockT *New);
269 
getFunction()270   const FunctionT *getFunction() const { return Context.getFunction(); }
getSSAContext()271   const ContextT &getSSAContext() const { return Context; }
272 
273   CycleT *getCycle(const BlockT *Block) const;
274   CycleT *getSmallestCommonCycle(CycleT *A, CycleT *B) const;
275   unsigned getCycleDepth(const BlockT *Block) const;
276   CycleT *getTopLevelParentCycle(BlockT *Block);
277 
278   /// Methods for debug and self-test.
279   //@{
280 #ifndef NDEBUG
281   bool validateTree() const;
282 #endif
283   void print(raw_ostream &Out) const;
dump()284   void dump() const { print(dbgs()); }
print(const CycleT * Cycle)285   Printable print(const CycleT *Cycle) { return Cycle->print(Context); }
286   //@}
287 
288   /// Iteration over top-level cycles.
289   //@{
290   using const_toplevel_iterator_base =
291       typename std::vector<std::unique_ptr<CycleT>>::const_iterator;
292   struct const_toplevel_iterator
293       : iterator_adaptor_base<const_toplevel_iterator,
294                               const_toplevel_iterator_base> {
295     using Base = iterator_adaptor_base<const_toplevel_iterator,
296                                        const_toplevel_iterator_base>;
297 
298     const_toplevel_iterator() = default;
const_toplevel_iteratorconst_toplevel_iterator299     explicit const_toplevel_iterator(const_toplevel_iterator_base I)
300         : Base(I) {}
301 
wrappedconst_toplevel_iterator302     const const_toplevel_iterator_base &wrapped() { return Base::wrapped(); }
303     CycleT *operator*() const { return Base::I->get(); }
304   };
305 
toplevel_begin()306   const_toplevel_iterator toplevel_begin() const {
307     return const_toplevel_iterator{TopLevelCycles.begin()};
308   }
toplevel_end()309   const_toplevel_iterator toplevel_end() const {
310     return const_toplevel_iterator{TopLevelCycles.end()};
311   }
312 
toplevel_cycles()313   iterator_range<const_toplevel_iterator> toplevel_cycles() const {
314     return llvm::make_range(const_toplevel_iterator{TopLevelCycles.begin()},
315                             const_toplevel_iterator{TopLevelCycles.end()});
316   }
317   //@}
318 };
319 
320 /// \brief GraphTraits for iterating over a sub-tree of the CycleT tree.
321 template <typename CycleRefT, typename ChildIteratorT> struct CycleGraphTraits {
322   using NodeRef = CycleRefT;
323 
324   using nodes_iterator = ChildIteratorT;
325   using ChildIteratorType = nodes_iterator;
326 
getEntryNodeCycleGraphTraits327   static NodeRef getEntryNode(NodeRef Graph) { return Graph; }
328 
child_beginCycleGraphTraits329   static ChildIteratorType child_begin(NodeRef Ref) {
330     return Ref->child_begin();
331   }
child_endCycleGraphTraits332   static ChildIteratorType child_end(NodeRef Ref) { return Ref->child_end(); }
333 
334   // Not implemented:
335   // static nodes_iterator nodes_begin(GraphType *G)
336   // static nodes_iterator nodes_end  (GraphType *G)
337   //    nodes_iterator/begin/end - Allow iteration over all nodes in the graph
338 
339   // typedef EdgeRef           - Type of Edge token in the graph, which should
340   //                             be cheap to copy.
341   // typedef ChildEdgeIteratorType - Type used to iterate over children edges in
342   //                             graph, dereference to a EdgeRef.
343 
344   // static ChildEdgeIteratorType child_edge_begin(NodeRef)
345   // static ChildEdgeIteratorType child_edge_end(NodeRef)
346   //     Return iterators that point to the beginning and ending of the
347   //     edge list for the given callgraph node.
348   //
349   // static NodeRef edge_dest(EdgeRef)
350   //     Return the destination node of an edge.
351   // static unsigned       size       (GraphType *G)
352   //    Return total number of nodes in the graph
353 };
354 
355 template <typename BlockT>
356 struct GraphTraits<const GenericCycle<BlockT> *>
357     : CycleGraphTraits<const GenericCycle<BlockT> *,
358                        typename GenericCycle<BlockT>::const_child_iterator> {};
359 template <typename BlockT>
360 struct GraphTraits<GenericCycle<BlockT> *>
361     : CycleGraphTraits<GenericCycle<BlockT> *,
362                        typename GenericCycle<BlockT>::const_child_iterator> {};
363 
364 } // namespace llvm
365 
366 #endif // LLVM_ADT_GENERICCYCLEINFO_H
367