1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/types.h>
27 #include <sys/conf.h>
28 #include <sys/kmem.h>
29 #include <sys/open.h>
30 #include <sys/ddi.h>
31 #include <sys/sunddi.h>
32
33 #include <sys/todm5819.h>
34 #include <sys/modctl.h>
35 #include <sys/stat.h>
36 #include <sys/clock.h>
37 #include <sys/reboot.h>
38 #include <sys/machsystm.h>
39 #include <sys/poll.h>
40 #include <sys/pbio.h>
41
42 static timestruc_t todm5819_get(void);
43 static void todm5819_set(timestruc_t);
44 static uint_t todm5819_set_watchdog_timer(uint_t);
45 static uint_t todm5819_clear_watchdog_timer(void);
46 static void todm5819_set_power_alarm(timestruc_t);
47 static void todm5819_clear_power_alarm(void);
48 static uint64_t todm5819_get_cpufrequency(void);
49
50 extern uint64_t find_cpufrequency(volatile uint8_t *);
51
52 /*
53 * External variables
54 */
55 extern int watchdog_enable;
56 extern int watchdog_available;
57 extern int boothowto;
58
59 /*
60 * Global variables
61 */
62 int m5819_debug_flags;
63
64 static todinfo_t rtc_to_tod(struct rtc_t *);
65 static uint_t read_rtc(struct rtc_t *);
66 static void write_rtc_time(struct rtc_t *);
67 static void write_rtc_alarm(struct rtc_t *);
68
69
70 static struct modlmisc modlmisc = {
71 &mod_miscops, "tod module for ALI M5819",
72 };
73
74 static struct modlinkage modlinkage = {
75 MODREV_1, &modlmisc, NULL
76 };
77
78
79 int
_init(void)80 _init(void)
81 {
82 if (strcmp(tod_module_name, "todm5819") == 0 ||
83 strcmp(tod_module_name, "m5819") == 0) {
84 RTC_PUT8(RTC_B, (RTC_DM | RTC_HM));
85
86 tod_ops.tod_get = todm5819_get;
87 tod_ops.tod_set = todm5819_set;
88 tod_ops.tod_set_watchdog_timer = todm5819_set_watchdog_timer;
89 tod_ops.tod_clear_watchdog_timer =
90 todm5819_clear_watchdog_timer;
91 tod_ops.tod_set_power_alarm = todm5819_set_power_alarm;
92 tod_ops.tod_clear_power_alarm = todm5819_clear_power_alarm;
93 tod_ops.tod_get_cpufrequency = todm5819_get_cpufrequency;
94
95 /*
96 * check if hardware watchdog timer is available and user
97 * enabled it.
98 */
99 if (watchdog_enable) {
100 if (!watchdog_available) {
101 cmn_err(CE_WARN, "m5819: Hardware watchdog "
102 "unavailable");
103 } else if (boothowto & RB_DEBUG) {
104 cmn_err(CE_WARN, "m5819: Hardware watchdog "
105 "disabled [debugger]");
106 }
107 }
108 }
109
110 return (mod_install(&modlinkage));
111 }
112
113 int
_fini(void)114 _fini(void)
115 {
116 if (strcmp(tod_module_name, "m5819") == 0 ||
117 strcmp(tod_module_name, "todm5819") == 0) {
118 return (EBUSY);
119 } else {
120 return (mod_remove(&modlinkage));
121 }
122 }
123
124 /*
125 * The loadable-module _info(9E) entry point
126 */
127 int
_info(struct modinfo * modinfop)128 _info(struct modinfo *modinfop)
129 {
130 return (mod_info(&modlinkage, modinfop));
131 }
132
133
134 /*
135 * Read the current time from the clock chip and convert to UNIX form.
136 * Assumes that the year in the clock chip is valid.
137 * Must be called with tod_lock held.
138 */
139 static timestruc_t
todm5819_get(void)140 todm5819_get(void)
141 {
142 int i;
143 timestruc_t ts;
144 struct rtc_t rtc;
145
146 ASSERT(MUTEX_HELD(&tod_lock));
147
148 /*
149 * Read from the tod, and if it isnt accessible wait
150 * before retrying.
151 */
152 for (i = 0; i < TODM5819_UIP_RETRY_THRESH; i++) {
153 if (read_rtc(&rtc))
154 break;
155 drv_usecwait(TODM5819_UIP_WAIT_USEC);
156 }
157 if (i == TODM5819_UIP_RETRY_THRESH) {
158 /*
159 * We couldn't read from the TOD.
160 */
161 tod_status_set(TOD_GET_FAILED);
162 return (hrestime);
163 }
164
165 DPRINTF("todm5819_get: century=%d year=%d dom=%d hrs=%d\n",
166 rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
167
168 /* read was successful so ensure failure flag is clear */
169 tod_status_clear(TOD_GET_FAILED);
170
171 ts.tv_sec = tod_to_utc(rtc_to_tod(&rtc));
172 ts.tv_nsec = 0;
173 return (ts);
174 }
175
176 static todinfo_t
rtc_to_tod(struct rtc_t * rtc)177 rtc_to_tod(struct rtc_t *rtc)
178 {
179 todinfo_t tod;
180
181 /*
182 * tod_year is base 1900 so this code needs to adjust the true
183 * year retrieved from the rtc's century and year fields.
184 */
185 tod.tod_year = rtc->rtc_year + (rtc->rtc_century * 100) - 1900;
186 tod.tod_month = rtc->rtc_mon;
187 tod.tod_day = rtc->rtc_dom;
188 tod.tod_dow = rtc->rtc_dow;
189 tod.tod_hour = rtc->rtc_hrs;
190 tod.tod_min = rtc->rtc_min;
191 tod.tod_sec = rtc->rtc_sec;
192
193 return (tod);
194 }
195
196 uint_t
read_rtc(struct rtc_t * rtc)197 read_rtc(struct rtc_t *rtc)
198 {
199 int s;
200 uint_t rtc_readable = 0;
201
202 s = splhi();
203 /*
204 * If UIP bit is not set we have at least 274us
205 * to read the values. Otherwise we have up to
206 * 336us to wait before we can read it
207 */
208 if (!(RTC_GET8(RTC_A) & RTC_UIP)) {
209 rtc_readable = 1;
210
211 rtc->rtc_sec = RTC_GET8(RTC_SEC);
212 rtc->rtc_asec = RTC_GET8(RTC_ASEC);
213 rtc->rtc_min = RTC_GET8(RTC_MIN);
214 rtc->rtc_amin = RTC_GET8(RTC_AMIN);
215
216 rtc->rtc_hrs = RTC_GET8(RTC_HRS);
217 rtc->rtc_ahrs = RTC_GET8(RTC_AHRS);
218 rtc->rtc_dow = RTC_GET8(RTC_DOW);
219 rtc->rtc_dom = RTC_GET8(RTC_DOM);
220 rtc->rtc_adom = RTC_GET8(RTC_D) & 0x3f;
221
222 rtc->rtc_mon = RTC_GET8(RTC_MON);
223 rtc->rtc_year = RTC_GET8(RTC_YEAR);
224 rtc->rtc_century = RTC_GET8(RTC_CENTURY);
225 rtc->rtc_amon = 0;
226
227 /* Clear wakeup data */
228 rtc->apc_wdwr = 0;
229 rtc->apc_wdmr = 0;
230 rtc->apc_wmr = 0;
231 rtc->apc_wyr = 0;
232 rtc->apc_wcr = 0;
233 }
234 splx(s);
235 return (rtc_readable);
236 }
237
238 /*
239 * Write the specified time into the clock chip.
240 * Must be called with tod_lock held.
241 */
242 static void
todm5819_set(timestruc_t ts)243 todm5819_set(timestruc_t ts)
244 {
245 struct rtc_t rtc;
246 todinfo_t tod = utc_to_tod(ts.tv_sec);
247 int year;
248
249 ASSERT(MUTEX_HELD(&tod_lock));
250
251 /* tod_year is base 1900 so this code needs to adjust */
252 year = 1900 + tod.tod_year;
253 rtc.rtc_year = year % 100;
254 rtc.rtc_century = year / 100;
255 rtc.rtc_mon = (uint8_t)tod.tod_month;
256 rtc.rtc_dom = (uint8_t)tod.tod_day;
257 rtc.rtc_dow = (uint8_t)tod.tod_dow;
258 rtc.rtc_hrs = (uint8_t)tod.tod_hour;
259 rtc.rtc_min = (uint8_t)tod.tod_min;
260 rtc.rtc_sec = (uint8_t)tod.tod_sec;
261 DPRINTF("todm5819_set: century=%d year=%d dom=%d hrs=%d\n",
262 rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
263
264 write_rtc_time(&rtc);
265 }
266
267 void
write_rtc_time(struct rtc_t * rtc)268 write_rtc_time(struct rtc_t *rtc)
269 {
270 uint8_t regb;
271 int i;
272
273 /*
274 * Freeze
275 */
276 regb = RTC_GET8(RTC_B);
277 RTC_PUT8(RTC_B, (regb | RTC_SET));
278
279 /*
280 * If an update is in progress wait for the UIP flag to clear.
281 * If we write whilst UIP is still set there is a slight but real
282 * possibility of corrupting the RTC date and time registers.
283 *
284 * The expected wait is one internal cycle of the chip. We could
285 * simply spin but this may hang a CPU if we were to have a broken
286 * RTC chip where UIP is stuck, so we use a retry loop instead.
287 * No critical section is needed here as the UIP flag will not be
288 * re-asserted until we clear RTC_SET.
289 */
290 for (i = 0; i < TODM5819_UIP_RETRY_THRESH; i++) {
291 if (!(RTC_GET8(RTC_A) & RTC_UIP)) {
292 break;
293 }
294 drv_usecwait(TODM5819_UIP_WAIT_USEC);
295 }
296 if (i < TODM5819_UIP_RETRY_THRESH) {
297 RTC_PUT8(RTC_SEC, (rtc->rtc_sec));
298 RTC_PUT8(RTC_ASEC, (rtc->rtc_asec));
299 RTC_PUT8(RTC_MIN, (rtc->rtc_min));
300 RTC_PUT8(RTC_AMIN, (rtc->rtc_amin));
301
302 RTC_PUT8(RTC_HRS, (rtc->rtc_hrs));
303 RTC_PUT8(RTC_AHRS, (rtc->rtc_ahrs));
304 RTC_PUT8(RTC_DOW, (rtc->rtc_dow));
305 RTC_PUT8(RTC_DOM, (rtc->rtc_dom));
306
307 RTC_PUT8(RTC_MON, (rtc->rtc_mon));
308 RTC_PUT8(RTC_YEAR, (rtc->rtc_year));
309 RTC_PUT8(RTC_CENTURY, (rtc->rtc_century));
310 } else {
311 cmn_err(CE_WARN, "todm5819: Could not write the RTC\n");
312 }
313
314 /*
315 * Unfreeze
316 */
317 RTC_PUT8(RTC_B, regb);
318 }
319
320
321 void
write_rtc_alarm(struct rtc_t * rtc)322 write_rtc_alarm(struct rtc_t *rtc)
323 {
324 RTC_PUT8(RTC_ASEC, (rtc->rtc_asec));
325 RTC_PUT8(RTC_AMIN, (rtc->rtc_amin));
326 RTC_PUT8(RTC_AHRS, (rtc->rtc_ahrs));
327 RTC_PUT8(RTC_D, (rtc->rtc_adom));
328 }
329
330 /*
331 * program the rtc registers for alarm to go off at the specified time
332 */
333 static void
todm5819_set_power_alarm(timestruc_t ts)334 todm5819_set_power_alarm(timestruc_t ts)
335 {
336 todinfo_t tod;
337 uint8_t regb;
338 struct rtc_t rtc;
339
340 ASSERT(MUTEX_HELD(&tod_lock));
341 tod = utc_to_tod(ts.tv_sec);
342
343 /*
344 * disable alarms
345 */
346 regb = RTC_GET8(RTC_B);
347 RTC_PUT8(RTC_B, (regb & ~RTC_AIE));
348
349
350 rtc.rtc_asec = (uint8_t)tod.tod_sec;
351 rtc.rtc_amin = (uint8_t)tod.tod_min;
352 rtc.rtc_ahrs = (uint8_t)tod.tod_hour;
353 rtc.rtc_adom = (uint8_t)tod.tod_day;
354
355 write_rtc_alarm(&rtc);
356 /*
357 * Enable alarm.
358 */
359 RTC_PUT8(RTC_B, (regb | RTC_AIE));
360 }
361
362 /*
363 * clear alarm interrupt
364 */
365 static void
todm5819_clear_power_alarm(void)366 todm5819_clear_power_alarm(void)
367 {
368 uint8_t regb;
369 ASSERT(MUTEX_HELD(&tod_lock));
370
371 regb = RTC_GET8(RTC_B);
372 RTC_PUT8(RTC_B, (regb & ~RTC_AIE));
373 }
374
375 /*
376 * Determine the cpu frequency by watching the TOD chip rollover twice.
377 * Cpu clock rate is determined by computing the ticks added (in tick register)
378 * during one second interval on TOD.
379 */
380 uint64_t
todm5819_get_cpufrequency(void)381 todm5819_get_cpufrequency(void)
382 {
383 ASSERT(MUTEX_HELD(&tod_lock));
384 M5819_ADDR_REG = RTC_SEC;
385 return (find_cpufrequency(v_rtc_data_reg));
386 }
387
388
389 /*ARGSUSED*/
390 static uint_t
todm5819_set_watchdog_timer(uint_t timeoutval)391 todm5819_set_watchdog_timer(uint_t timeoutval)
392 {
393 ASSERT(MUTEX_HELD(&tod_lock));
394 return (0);
395 }
396
397 static uint_t
todm5819_clear_watchdog_timer(void)398 todm5819_clear_watchdog_timer(void)
399 {
400 ASSERT(MUTEX_HELD(&tod_lock));
401 return (0);
402 }
403