1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993, 1995
5 * The Regents of the University of California.
6 * Copyright (c) 2007-2009 Robert N. M. Watson
7 * Copyright (c) 2010-2011 Juniper Networks, Inc.
8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Robert N. M. Watson under
12 * contract to Juniper Networks, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105
106 #include <netipsec/ipsec_support.h>
107
108 #include <security/mac/mac_framework.h>
109
110 #define INPCBLBGROUP_SIZMIN 8
111 #define INPCBLBGROUP_SIZMAX 256
112
113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */
114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */
115
116 /*
117 * These configure the range of local port addresses assigned to
118 * "unspecified" outgoing connections/packets/whatever.
119 */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */
126
127 /*
128 * Reserved ports accessible only to root. There are significant
129 * security considerations that must be accounted for when changing these,
130 * but the security benefits can be great. Please be careful.
131 */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137
138 #ifdef INET
139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 struct in_addr faddr, u_int fport_arg,
141 struct in_addr laddr, u_int lport_arg,
142 int lookupflags, uint8_t numa_domain, int fib);
143
144 #define RANGECHK(var, min, max) \
145 if ((var) < (min)) { (var) = (min); } \
146 else if ((var) > (max)) { (var) = (max); }
147
148 static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 int error;
152
153 error = sysctl_handle_int(oidp, arg1, arg2, req);
154 if (error == 0) {
155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 }
162 return (error);
163 }
164
165 #undef RANGECHK
166
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169 "IP Ports");
170
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174 "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178 "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182 "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186 "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190 "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194 "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 &VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 CTLFLAG_VNET | CTLFLAG_RW,
202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212 "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214 &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216 &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218 &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220 &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222 &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224
225 #endif /* INET */
226
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
in_pcbhashseed_init(void)229 in_pcbhashseed_init(void)
230 {
231
232 V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235 in_pcbhashseed_init, NULL);
236
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define V_connect_inaddr_wild VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242 "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244
245 static void in_pcbremhash(struct inpcb *);
246
247 /*
248 * in_pcb.c: manage the Protocol Control Blocks.
249 *
250 * NOTE: It is assumed that most of these functions will be called with
251 * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252 * functions often modify hash chains or addresses in pcbs.
253 */
254
255 static struct inpcblbgroup *
in_pcblbgroup_alloc(struct ucred * cred,u_char vflag,uint16_t port,const union in_dependaddr * addr,int size,uint8_t numa_domain,int fib)256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port,
257 const union in_dependaddr *addr, int size, uint8_t numa_domain, int fib)
258 {
259 struct inpcblbgroup *grp;
260 size_t bytes;
261
262 bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
263 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
264 if (grp == NULL)
265 return (NULL);
266 LIST_INIT(&grp->il_pending);
267 grp->il_cred = crhold(cred);
268 grp->il_vflag = vflag;
269 grp->il_lport = port;
270 grp->il_numa_domain = numa_domain;
271 grp->il_fibnum = fib;
272 grp->il_dependladdr = *addr;
273 grp->il_inpsiz = size;
274 return (grp);
275 }
276
277 static void
in_pcblbgroup_free_deferred(epoch_context_t ctx)278 in_pcblbgroup_free_deferred(epoch_context_t ctx)
279 {
280 struct inpcblbgroup *grp;
281
282 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
283 crfree(grp->il_cred);
284 free(grp, M_PCB);
285 }
286
287 static void
in_pcblbgroup_free(struct inpcblbgroup * grp)288 in_pcblbgroup_free(struct inpcblbgroup *grp)
289 {
290 KASSERT(LIST_EMPTY(&grp->il_pending),
291 ("local group %p still has pending inps", grp));
292
293 CK_LIST_REMOVE(grp, il_list);
294 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
295 }
296
297 static struct inpcblbgroup *
in_pcblbgroup_find(struct inpcb * inp)298 in_pcblbgroup_find(struct inpcb *inp)
299 {
300 struct inpcbinfo *pcbinfo;
301 struct inpcblbgroup *grp;
302 struct inpcblbgrouphead *hdr;
303
304 INP_LOCK_ASSERT(inp);
305
306 pcbinfo = inp->inp_pcbinfo;
307 INP_HASH_LOCK_ASSERT(pcbinfo);
308
309 hdr = &pcbinfo->ipi_lbgrouphashbase[
310 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
311 CK_LIST_FOREACH(grp, hdr, il_list) {
312 struct inpcb *inp1;
313
314 for (unsigned int i = 0; i < grp->il_inpcnt; i++) {
315 if (inp == grp->il_inp[i])
316 goto found;
317 }
318 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
319 if (inp == inp1)
320 goto found;
321 }
322 }
323 found:
324 return (grp);
325 }
326
327 static void
in_pcblbgroup_insert(struct inpcblbgroup * grp,struct inpcb * inp)328 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp)
329 {
330 KASSERT(grp->il_inpcnt < grp->il_inpsiz,
331 ("invalid local group size %d and count %d", grp->il_inpsiz,
332 grp->il_inpcnt));
333 INP_WLOCK_ASSERT(inp);
334
335 if (inp->inp_socket->so_proto->pr_listen != pr_listen_notsupp &&
336 !SOLISTENING(inp->inp_socket)) {
337 /*
338 * If this is a TCP socket, it should not be visible to lbgroup
339 * lookups until listen() has been called.
340 */
341 LIST_INSERT_HEAD(&grp->il_pending, inp, inp_lbgroup_list);
342 grp->il_pendcnt++;
343 } else {
344 grp->il_inp[grp->il_inpcnt] = inp;
345
346 /*
347 * Synchronize with in_pcblookup_lbgroup(): make sure that we
348 * don't expose a null slot to the lookup path.
349 */
350 atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1);
351 }
352
353 inp->inp_flags |= INP_INLBGROUP;
354 }
355
356 static struct inpcblbgroup *
in_pcblbgroup_resize(struct inpcblbgrouphead * hdr,struct inpcblbgroup * old_grp,int size)357 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
358 struct inpcblbgroup *old_grp, int size)
359 {
360 struct inpcblbgroup *grp;
361 int i;
362
363 grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag,
364 old_grp->il_lport, &old_grp->il_dependladdr, size,
365 old_grp->il_numa_domain, old_grp->il_fibnum);
366 if (grp == NULL)
367 return (NULL);
368
369 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
370 ("invalid new local group size %d and old local group count %d",
371 grp->il_inpsiz, old_grp->il_inpcnt));
372
373 for (i = 0; i < old_grp->il_inpcnt; ++i)
374 grp->il_inp[i] = old_grp->il_inp[i];
375 grp->il_inpcnt = old_grp->il_inpcnt;
376 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
377 LIST_SWAP(&old_grp->il_pending, &grp->il_pending, inpcb,
378 inp_lbgroup_list);
379 grp->il_pendcnt = old_grp->il_pendcnt;
380 old_grp->il_pendcnt = 0;
381 in_pcblbgroup_free(old_grp);
382 return (grp);
383 }
384
385 /*
386 * Add PCB to load balance group for SO_REUSEPORT_LB option.
387 */
388 static int
in_pcbinslbgrouphash(struct inpcb * inp,uint8_t numa_domain)389 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
390 {
391 const static struct timeval interval = { 60, 0 };
392 static struct timeval lastprint;
393 struct inpcbinfo *pcbinfo;
394 struct inpcblbgrouphead *hdr;
395 struct inpcblbgroup *grp;
396 uint32_t idx;
397 int fib;
398
399 pcbinfo = inp->inp_pcbinfo;
400
401 INP_WLOCK_ASSERT(inp);
402 INP_HASH_WLOCK_ASSERT(pcbinfo);
403
404 fib = (inp->inp_flags & INP_BOUNDFIB) != 0 ?
405 inp->inp_inc.inc_fibnum : RT_ALL_FIBS;
406
407 #ifdef INET6
408 /*
409 * Don't allow IPv4 mapped INET6 wild socket.
410 */
411 if ((inp->inp_vflag & INP_IPV4) &&
412 inp->inp_laddr.s_addr == INADDR_ANY &&
413 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
414 return (0);
415 }
416 #endif
417
418 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
419 hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
420 CK_LIST_FOREACH(grp, hdr, il_list) {
421 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
422 grp->il_vflag == inp->inp_vflag &&
423 grp->il_lport == inp->inp_lport &&
424 grp->il_numa_domain == numa_domain &&
425 grp->il_fibnum == fib &&
426 memcmp(&grp->il_dependladdr,
427 &inp->inp_inc.inc_ie.ie_dependladdr,
428 sizeof(grp->il_dependladdr)) == 0) {
429 break;
430 }
431 }
432 if (grp == NULL) {
433 /* Create new load balance group. */
434 grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag,
435 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
436 INPCBLBGROUP_SIZMIN, numa_domain, fib);
437 if (grp == NULL)
438 return (ENOMEM);
439 in_pcblbgroup_insert(grp, inp);
440 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
441 } else if (grp->il_inpcnt + grp->il_pendcnt == grp->il_inpsiz) {
442 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
443 if (ratecheck(&lastprint, &interval))
444 printf("lb group port %d, limit reached\n",
445 ntohs(grp->il_lport));
446 return (0);
447 }
448
449 /* Expand this local group. */
450 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
451 if (grp == NULL)
452 return (ENOMEM);
453 in_pcblbgroup_insert(grp, inp);
454 } else {
455 in_pcblbgroup_insert(grp, inp);
456 }
457 return (0);
458 }
459
460 /*
461 * Remove PCB from load balance group.
462 */
463 static void
in_pcbremlbgrouphash(struct inpcb * inp)464 in_pcbremlbgrouphash(struct inpcb *inp)
465 {
466 struct inpcbinfo *pcbinfo;
467 struct inpcblbgrouphead *hdr;
468 struct inpcblbgroup *grp;
469 struct inpcb *inp1;
470 int i;
471
472 pcbinfo = inp->inp_pcbinfo;
473
474 INP_WLOCK_ASSERT(inp);
475 MPASS(inp->inp_flags & INP_INLBGROUP);
476 INP_HASH_WLOCK_ASSERT(pcbinfo);
477
478 hdr = &pcbinfo->ipi_lbgrouphashbase[
479 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
480 CK_LIST_FOREACH(grp, hdr, il_list) {
481 for (i = 0; i < grp->il_inpcnt; ++i) {
482 if (grp->il_inp[i] != inp)
483 continue;
484
485 if (grp->il_inpcnt == 1 &&
486 LIST_EMPTY(&grp->il_pending)) {
487 /* We are the last, free this local group. */
488 in_pcblbgroup_free(grp);
489 } else {
490 grp->il_inp[i] =
491 grp->il_inp[grp->il_inpcnt - 1];
492
493 /*
494 * Synchronize with in_pcblookup_lbgroup().
495 */
496 atomic_store_rel_int(&grp->il_inpcnt,
497 grp->il_inpcnt - 1);
498 }
499 inp->inp_flags &= ~INP_INLBGROUP;
500 return;
501 }
502 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
503 if (inp == inp1) {
504 LIST_REMOVE(inp, inp_lbgroup_list);
505 grp->il_pendcnt--;
506 inp->inp_flags &= ~INP_INLBGROUP;
507 return;
508 }
509 }
510 }
511 __assert_unreachable();
512 }
513
514 int
in_pcblbgroup_numa(struct inpcb * inp,int arg)515 in_pcblbgroup_numa(struct inpcb *inp, int arg)
516 {
517 struct inpcbinfo *pcbinfo;
518 int error;
519 uint8_t numa_domain;
520
521 switch (arg) {
522 case TCP_REUSPORT_LB_NUMA_NODOM:
523 numa_domain = M_NODOM;
524 break;
525 case TCP_REUSPORT_LB_NUMA_CURDOM:
526 numa_domain = PCPU_GET(domain);
527 break;
528 default:
529 if (arg < 0 || arg >= vm_ndomains)
530 return (EINVAL);
531 numa_domain = arg;
532 }
533
534 pcbinfo = inp->inp_pcbinfo;
535 INP_WLOCK_ASSERT(inp);
536 INP_HASH_WLOCK(pcbinfo);
537 if (in_pcblbgroup_find(inp) != NULL) {
538 /* Remove it from the old group. */
539 in_pcbremlbgrouphash(inp);
540 /* Add it to the new group based on numa domain. */
541 in_pcbinslbgrouphash(inp, numa_domain);
542 error = 0;
543 } else {
544 error = ENOENT;
545 }
546 INP_HASH_WUNLOCK(pcbinfo);
547 return (error);
548 }
549
550 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
551 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
552
553 /*
554 * Initialize an inpcbinfo - a per-VNET instance of connections db.
555 */
556 void
in_pcbinfo_init(struct inpcbinfo * pcbinfo,struct inpcbstorage * pcbstor,u_int hash_nelements,u_int porthash_nelements)557 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
558 u_int hash_nelements, u_int porthash_nelements)
559 {
560
561 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
562 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
563 NULL, MTX_DEF);
564 #ifdef VIMAGE
565 pcbinfo->ipi_vnet = curvnet;
566 #endif
567 CK_LIST_INIT(&pcbinfo->ipi_listhead);
568 pcbinfo->ipi_count = 0;
569 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
570 &pcbinfo->ipi_hashmask);
571 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
572 &pcbinfo->ipi_hashmask);
573 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
574 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
575 &pcbinfo->ipi_porthashmask);
576 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
577 &pcbinfo->ipi_lbgrouphashmask);
578 pcbinfo->ipi_zone = pcbstor->ips_zone;
579 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
580 }
581
582 /*
583 * Destroy an inpcbinfo.
584 */
585 void
in_pcbinfo_destroy(struct inpcbinfo * pcbinfo)586 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
587 {
588
589 KASSERT(pcbinfo->ipi_count == 0,
590 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
591
592 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
593 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
594 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
595 pcbinfo->ipi_porthashmask);
596 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
597 pcbinfo->ipi_lbgrouphashmask);
598 mtx_destroy(&pcbinfo->ipi_hash_lock);
599 mtx_destroy(&pcbinfo->ipi_lock);
600 }
601
602 /*
603 * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
604 */
605 static void inpcb_fini(void *, int);
606 void
in_pcbstorage_init(void * arg)607 in_pcbstorage_init(void *arg)
608 {
609 struct inpcbstorage *pcbstor = arg;
610
611 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
612 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
613 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
614 }
615
616 /*
617 * Destroy a pcbstorage - used by unloadable protocols.
618 */
619 void
in_pcbstorage_destroy(void * arg)620 in_pcbstorage_destroy(void *arg)
621 {
622 struct inpcbstorage *pcbstor = arg;
623
624 uma_zdestroy(pcbstor->ips_zone);
625 }
626
627 /*
628 * Allocate a PCB and associate it with the socket.
629 * On success return with the PCB locked.
630 */
631 int
in_pcballoc(struct socket * so,struct inpcbinfo * pcbinfo)632 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
633 {
634 struct inpcb *inp;
635 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
636 int error;
637 #endif
638
639 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
640 if (inp == NULL)
641 return (ENOBUFS);
642 bzero(&inp->inp_start_zero, inp_zero_size);
643 #ifdef NUMA
644 inp->inp_numa_domain = M_NODOM;
645 #endif
646 inp->inp_pcbinfo = pcbinfo;
647 inp->inp_socket = so;
648 inp->inp_cred = crhold(so->so_cred);
649 inp->inp_inc.inc_fibnum = so->so_fibnum;
650 #ifdef MAC
651 error = mac_inpcb_init(inp, M_NOWAIT);
652 if (error != 0)
653 goto out;
654 mac_inpcb_create(so, inp);
655 #endif
656 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
657 error = ipsec_init_pcbpolicy(inp);
658 if (error != 0) {
659 #ifdef MAC
660 mac_inpcb_destroy(inp);
661 #endif
662 goto out;
663 }
664 #endif /*IPSEC*/
665 #ifdef INET6
666 if (INP_SOCKAF(so) == AF_INET6) {
667 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
668 if (V_ip6_v6only)
669 inp->inp_flags |= IN6P_IPV6_V6ONLY;
670 #ifdef INET
671 else
672 inp->inp_vflag |= INP_IPV4;
673 #endif
674 if (V_ip6_auto_flowlabel)
675 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
676 inp->in6p_hops = -1; /* use kernel default */
677 }
678 #endif
679 #if defined(INET) && defined(INET6)
680 else
681 #endif
682 #ifdef INET
683 inp->inp_vflag |= INP_IPV4;
684 #endif
685 inp->inp_smr = SMR_SEQ_INVALID;
686
687 /*
688 * Routes in inpcb's can cache L2 as well; they are guaranteed
689 * to be cleaned up.
690 */
691 inp->inp_route.ro_flags = RT_LLE_CACHE;
692 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */
693 INP_WLOCK(inp);
694 INP_INFO_WLOCK(pcbinfo);
695 pcbinfo->ipi_count++;
696 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
697 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
698 INP_INFO_WUNLOCK(pcbinfo);
699 so->so_pcb = inp;
700
701 return (0);
702
703 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
704 out:
705 crfree(inp->inp_cred);
706 #ifdef INVARIANTS
707 inp->inp_cred = NULL;
708 #endif
709 uma_zfree_smr(pcbinfo->ipi_zone, inp);
710 return (error);
711 #endif
712 }
713
714 #ifdef INET
715 int
in_pcbbind(struct inpcb * inp,struct sockaddr_in * sin,int flags,struct ucred * cred)716 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, int flags,
717 struct ucred *cred)
718 {
719 int anonport, error;
720
721 KASSERT(sin == NULL || sin->sin_family == AF_INET,
722 ("%s: invalid address family for %p", __func__, sin));
723 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
724 ("%s: invalid address length for %p", __func__, sin));
725 INP_WLOCK_ASSERT(inp);
726 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
727
728 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
729 return (EINVAL);
730 anonport = sin == NULL || sin->sin_port == 0;
731 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
732 &inp->inp_lport, flags, cred);
733 if (error)
734 return (error);
735 if (__predict_false((error = in_pcbinshash(inp)) != 0)) {
736 MPASS(inp->inp_socket->so_options & SO_REUSEPORT_LB);
737 inp->inp_laddr.s_addr = INADDR_ANY;
738 inp->inp_lport = 0;
739 inp->inp_flags &= ~INP_BOUNDFIB;
740 return (error);
741 }
742 if (anonport)
743 inp->inp_flags |= INP_ANONPORT;
744 return (0);
745 }
746 #endif
747
748 #if defined(INET) || defined(INET6)
749 /*
750 * Assign a local port like in_pcb_lport(), but also used with connect()
751 * and a foreign address and port. If fsa is non-NULL, choose a local port
752 * that is unused with those, otherwise one that is completely unused.
753 * lsa can be NULL for IPv6.
754 */
755 int
in_pcb_lport_dest(const struct inpcb * inp,struct sockaddr * lsa,u_short * lportp,struct sockaddr * fsa,u_short fport,struct ucred * cred,int lookupflags)756 in_pcb_lport_dest(const struct inpcb *inp, struct sockaddr *lsa,
757 u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred,
758 int lookupflags)
759 {
760 struct inpcbinfo *pcbinfo;
761 struct inpcb *tmpinp;
762 unsigned short *lastport;
763 int count, error;
764 u_short aux, first, last, lport;
765 #ifdef INET
766 struct in_addr laddr, faddr;
767 #endif
768 #ifdef INET6
769 struct in6_addr *laddr6, *faddr6;
770 #endif
771
772 pcbinfo = inp->inp_pcbinfo;
773
774 /*
775 * Because no actual state changes occur here, a global write lock on
776 * the pcbinfo isn't required.
777 */
778 INP_LOCK_ASSERT(inp);
779 INP_HASH_LOCK_ASSERT(pcbinfo);
780
781 if (inp->inp_flags & INP_HIGHPORT) {
782 first = V_ipport_hifirstauto; /* sysctl */
783 last = V_ipport_hilastauto;
784 lastport = &pcbinfo->ipi_lasthi;
785 } else if (inp->inp_flags & INP_LOWPORT) {
786 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
787 if (error)
788 return (error);
789 first = V_ipport_lowfirstauto; /* 1023 */
790 last = V_ipport_lowlastauto; /* 600 */
791 lastport = &pcbinfo->ipi_lastlow;
792 } else {
793 first = V_ipport_firstauto; /* sysctl */
794 last = V_ipport_lastauto;
795 lastport = &pcbinfo->ipi_lastport;
796 }
797
798 /*
799 * Instead of having two loops further down counting up or down
800 * make sure that first is always <= last and go with only one
801 * code path implementing all logic.
802 */
803 if (first > last) {
804 aux = first;
805 first = last;
806 last = aux;
807 }
808
809 #ifdef INET
810 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */
811 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
812 if (lsa != NULL)
813 laddr = ((struct sockaddr_in *)lsa)->sin_addr;
814 if (fsa != NULL)
815 faddr = ((struct sockaddr_in *)fsa)->sin_addr;
816 }
817 #endif
818 #ifdef INET6
819 laddr6 = NULL;
820 if ((inp->inp_vflag & INP_IPV6) != 0) {
821 if (lsa != NULL)
822 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
823 if (fsa != NULL)
824 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
825 }
826 #endif
827
828 tmpinp = NULL;
829
830 if (V_ipport_randomized)
831 *lastport = first + (arc4random() % (last - first));
832
833 count = last - first;
834
835 do {
836 if (count-- < 0) /* completely used? */
837 return (EADDRNOTAVAIL);
838 ++*lastport;
839 if (*lastport < first || *lastport > last)
840 *lastport = first;
841 lport = htons(*lastport);
842
843 if (fsa != NULL) {
844 #ifdef INET
845 if (lsa->sa_family == AF_INET) {
846 tmpinp = in_pcblookup_hash_locked(pcbinfo,
847 faddr, fport, laddr, lport, lookupflags,
848 M_NODOM, RT_ALL_FIBS);
849 }
850 #endif
851 #ifdef INET6
852 if (lsa->sa_family == AF_INET6) {
853 tmpinp = in6_pcblookup_hash_locked(pcbinfo,
854 faddr6, fport, laddr6, lport, lookupflags,
855 M_NODOM, RT_ALL_FIBS);
856 }
857 #endif
858 } else {
859 #ifdef INET6
860 if ((inp->inp_vflag & INP_IPV6) != 0) {
861 tmpinp = in6_pcblookup_local(pcbinfo,
862 &inp->in6p_laddr, lport, RT_ALL_FIBS,
863 lookupflags, cred);
864 #ifdef INET
865 if (tmpinp == NULL &&
866 (inp->inp_vflag & INP_IPV4))
867 tmpinp = in_pcblookup_local(pcbinfo,
868 laddr, lport, RT_ALL_FIBS,
869 lookupflags, cred);
870 #endif
871 }
872 #endif
873 #if defined(INET) && defined(INET6)
874 else
875 #endif
876 #ifdef INET
877 tmpinp = in_pcblookup_local(pcbinfo, laddr,
878 lport, RT_ALL_FIBS, lookupflags, cred);
879 #endif
880 }
881 } while (tmpinp != NULL);
882
883 *lportp = lport;
884
885 return (0);
886 }
887
888 /*
889 * Select a local port (number) to use.
890 */
891 int
in_pcb_lport(struct inpcb * inp,struct in_addr * laddrp,u_short * lportp,struct ucred * cred,int lookupflags)892 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
893 struct ucred *cred, int lookupflags)
894 {
895 struct sockaddr_in laddr;
896
897 if (laddrp) {
898 bzero(&laddr, sizeof(laddr));
899 laddr.sin_family = AF_INET;
900 laddr.sin_addr = *laddrp;
901 }
902 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
903 NULL, lportp, NULL, 0, cred, lookupflags));
904 }
905 #endif /* INET || INET6 */
906
907 #ifdef INET
908 /*
909 * Determine whether the inpcb can be bound to the specified address/port tuple.
910 */
911 static int
in_pcbbind_avail(struct inpcb * inp,const struct in_addr laddr,const u_short lport,const int fib,int sooptions,int lookupflags,struct ucred * cred)912 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr,
913 const u_short lport, const int fib, int sooptions, int lookupflags,
914 struct ucred *cred)
915 {
916 int reuseport, reuseport_lb;
917
918 INP_LOCK_ASSERT(inp);
919 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
920
921 reuseport = (sooptions & SO_REUSEPORT);
922 reuseport_lb = (sooptions & SO_REUSEPORT_LB);
923
924 if (IN_MULTICAST(ntohl(laddr.s_addr))) {
925 /*
926 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
927 * allow complete duplication of binding if
928 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
929 * and a multicast address is bound on both
930 * new and duplicated sockets.
931 */
932 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0)
933 reuseport = SO_REUSEADDR | SO_REUSEPORT;
934 /*
935 * XXX: How to deal with SO_REUSEPORT_LB here?
936 * Treat same as SO_REUSEPORT for now.
937 */
938 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0)
939 reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB;
940 } else if (!in_nullhost(laddr)) {
941 struct sockaddr_in sin;
942
943 memset(&sin, 0, sizeof(sin));
944 sin.sin_family = AF_INET;
945 sin.sin_len = sizeof(sin);
946 sin.sin_addr = laddr;
947
948 /*
949 * Is the address a local IP address?
950 * If INP_BINDANY is set, then the socket may be bound
951 * to any endpoint address, local or not.
952 */
953 if ((inp->inp_flags & INP_BINDANY) == 0 &&
954 ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0)
955 return (EADDRNOTAVAIL);
956 }
957
958 if (lport != 0) {
959 struct inpcb *t;
960
961 if (ntohs(lport) <= V_ipport_reservedhigh &&
962 ntohs(lport) >= V_ipport_reservedlow &&
963 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
964 return (EACCES);
965
966 if (!IN_MULTICAST(ntohl(laddr.s_addr)) &&
967 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
968 /*
969 * If a socket owned by a different user is already
970 * bound to this port, fail. In particular, SO_REUSE*
971 * can only be used to share a port among sockets owned
972 * by the same user.
973 *
974 * However, we can share a port with a connected socket
975 * which has a unique 4-tuple.
976 */
977 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
978 RT_ALL_FIBS, INPLOOKUP_WILDCARD, cred);
979 if (t != NULL &&
980 (inp->inp_socket->so_type != SOCK_STREAM ||
981 in_nullhost(t->inp_faddr)) &&
982 (inp->inp_cred->cr_uid != t->inp_cred->cr_uid))
983 return (EADDRINUSE);
984 }
985 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, fib,
986 lookupflags, cred);
987 if (t != NULL && ((reuseport | reuseport_lb) &
988 t->inp_socket->so_options) == 0) {
989 #ifdef INET6
990 if (!in_nullhost(laddr) ||
991 !in_nullhost(t->inp_laddr) ||
992 (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
993 (t->inp_vflag & INP_IPV6PROTO) == 0)
994 #endif
995 return (EADDRINUSE);
996 }
997 }
998 return (0);
999 }
1000
1001 /*
1002 * Set up a bind operation on a PCB, performing port allocation
1003 * as required, but do not actually modify the PCB. Callers can
1004 * either complete the bind by setting inp_laddr/inp_lport and
1005 * calling in_pcbinshash(), or they can just use the resulting
1006 * port and address to authorise the sending of a once-off packet.
1007 *
1008 * On error, the values of *laddrp and *lportp are not changed.
1009 */
1010 int
in_pcbbind_setup(struct inpcb * inp,struct sockaddr_in * sin,in_addr_t * laddrp,u_short * lportp,int flags,struct ucred * cred)1011 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
1012 u_short *lportp, int flags, struct ucred *cred)
1013 {
1014 struct socket *so = inp->inp_socket;
1015 struct in_addr laddr;
1016 u_short lport = 0;
1017 int error, fib, lookupflags, sooptions;
1018
1019 /*
1020 * No state changes, so read locks are sufficient here.
1021 */
1022 INP_LOCK_ASSERT(inp);
1023 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1024
1025 laddr.s_addr = *laddrp;
1026 if (sin != NULL && laddr.s_addr != INADDR_ANY)
1027 return (EINVAL);
1028
1029 lookupflags = 0;
1030 sooptions = atomic_load_int(&so->so_options);
1031 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0)
1032 lookupflags = INPLOOKUP_WILDCARD;
1033 if (sin == NULL) {
1034 if ((error = prison_local_ip4(cred, &laddr)) != 0)
1035 return (error);
1036 } else {
1037 KASSERT(sin->sin_family == AF_INET,
1038 ("%s: invalid family for address %p", __func__, sin));
1039 KASSERT(sin->sin_len == sizeof(*sin),
1040 ("%s: invalid length for address %p", __func__, sin));
1041
1042 error = prison_local_ip4(cred, &sin->sin_addr);
1043 if (error)
1044 return (error);
1045 if (sin->sin_port != *lportp) {
1046 /* Don't allow the port to change. */
1047 if (*lportp != 0)
1048 return (EINVAL);
1049 lport = sin->sin_port;
1050 }
1051 laddr = sin->sin_addr;
1052
1053 fib = (flags & INPBIND_FIB) != 0 ? inp->inp_inc.inc_fibnum :
1054 RT_ALL_FIBS;
1055
1056 /* See if this address/port combo is available. */
1057 error = in_pcbbind_avail(inp, laddr, lport, fib, sooptions,
1058 lookupflags, cred);
1059 if (error != 0)
1060 return (error);
1061 }
1062 if (*lportp != 0)
1063 lport = *lportp;
1064 if (lport == 0) {
1065 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1066 if (error != 0)
1067 return (error);
1068 }
1069 *laddrp = laddr.s_addr;
1070 *lportp = lport;
1071 if ((flags & INPBIND_FIB) != 0)
1072 inp->inp_flags |= INP_BOUNDFIB;
1073 return (0);
1074 }
1075
1076 /*
1077 * Connect from a socket to a specified address.
1078 * Both address and port must be specified in argument sin.
1079 * If don't have a local address for this socket yet,
1080 * then pick one.
1081 */
1082 int
in_pcbconnect(struct inpcb * inp,struct sockaddr_in * sin,struct ucred * cred)1083 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
1084 {
1085 struct in_addr laddr, faddr;
1086 u_short lport;
1087 int error;
1088 bool anonport;
1089
1090 INP_WLOCK_ASSERT(inp);
1091 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1092 KASSERT(in_nullhost(inp->inp_faddr),
1093 ("%s: inp is already connected", __func__));
1094 KASSERT(sin->sin_family == AF_INET,
1095 ("%s: invalid address family for %p", __func__, sin));
1096 KASSERT(sin->sin_len == sizeof(*sin),
1097 ("%s: invalid address length for %p", __func__, sin));
1098
1099 if (sin->sin_port == 0)
1100 return (EADDRNOTAVAIL);
1101
1102 anonport = (inp->inp_lport == 0);
1103
1104 if (__predict_false(in_broadcast(sin->sin_addr))) {
1105 if (!V_connect_inaddr_wild || CK_STAILQ_EMPTY(&V_in_ifaddrhead))
1106 return (ENETUNREACH);
1107 /*
1108 * If the destination address is INADDR_ANY, use the primary
1109 * local address. If the supplied address is INADDR_BROADCAST,
1110 * and the primary interface supports broadcast, choose the
1111 * broadcast address for that interface.
1112 */
1113 if (in_nullhost(sin->sin_addr)) {
1114 faddr =
1115 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1116 if ((error = prison_get_ip4(cred, &faddr)) != 0)
1117 return (error);
1118 } else if (sin->sin_addr.s_addr == INADDR_BROADCAST &&
1119 CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags
1120 & IFF_BROADCAST) {
1121 faddr = satosin(&CK_STAILQ_FIRST(
1122 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1123 } else
1124 faddr = sin->sin_addr;
1125 } else
1126 faddr = sin->sin_addr;
1127
1128 if (in_nullhost(inp->inp_laddr)) {
1129 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1130 if (error)
1131 return (error);
1132 } else
1133 laddr = inp->inp_laddr;
1134
1135 if (anonport) {
1136 struct sockaddr_in lsin = {
1137 .sin_family = AF_INET,
1138 .sin_addr = laddr,
1139 };
1140 struct sockaddr_in fsin = {
1141 .sin_family = AF_INET,
1142 .sin_addr = faddr,
1143 };
1144
1145 error = in_pcb_lport_dest(inp, (struct sockaddr *)&lsin,
1146 &lport, (struct sockaddr *)&fsin, sin->sin_port, cred,
1147 INPLOOKUP_WILDCARD);
1148 if (error)
1149 return (error);
1150 } else if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1151 sin->sin_port, laddr, inp->inp_lport, 0, M_NODOM, RT_ALL_FIBS) !=
1152 NULL)
1153 return (EADDRINUSE);
1154 else
1155 lport = inp->inp_lport;
1156
1157 MPASS(!in_nullhost(inp->inp_laddr) || inp->inp_lport != 0 ||
1158 !(inp->inp_flags & INP_INHASHLIST));
1159
1160 inp->inp_faddr = faddr;
1161 inp->inp_fport = sin->sin_port;
1162 inp->inp_laddr = laddr;
1163 inp->inp_lport = lport;
1164
1165 if ((inp->inp_flags & INP_INHASHLIST) == 0) {
1166 error = in_pcbinshash(inp);
1167 MPASS(error == 0);
1168 } else
1169 in_pcbrehash(inp);
1170 #ifdef ROUTE_MPATH
1171 if (CALC_FLOWID_OUTBOUND) {
1172 uint32_t hash_val, hash_type;
1173
1174 hash_val = fib4_calc_software_hash(inp->inp_laddr,
1175 inp->inp_faddr, 0, sin->sin_port,
1176 inp->inp_socket->so_proto->pr_protocol, &hash_type);
1177
1178 inp->inp_flowid = hash_val;
1179 inp->inp_flowtype = hash_type;
1180 }
1181 #endif
1182 if (anonport)
1183 inp->inp_flags |= INP_ANONPORT;
1184 return (0);
1185 }
1186
1187 /*
1188 * Do proper source address selection on an unbound socket in case
1189 * of connect. Take jails into account as well.
1190 */
1191 int
in_pcbladdr(const struct inpcb * inp,struct in_addr * faddr,struct in_addr * laddr,struct ucred * cred)1192 in_pcbladdr(const struct inpcb *inp, struct in_addr *faddr,
1193 struct in_addr *laddr, struct ucred *cred)
1194 {
1195 struct ifaddr *ifa;
1196 struct sockaddr *sa;
1197 struct sockaddr_in *sin, dst;
1198 struct nhop_object *nh;
1199 int error;
1200
1201 NET_EPOCH_ASSERT();
1202 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1203
1204 /*
1205 * Bypass source address selection and use the primary jail IP
1206 * if requested.
1207 */
1208 if (!prison_saddrsel_ip4(cred, laddr))
1209 return (0);
1210
1211 /*
1212 * If the destination address is multicast and an outgoing
1213 * interface has been set as a multicast option, prefer the
1214 * address of that interface as our source address.
1215 */
1216 if (IN_MULTICAST(ntohl(faddr->s_addr)) && inp->inp_moptions != NULL &&
1217 inp->inp_moptions->imo_multicast_ifp != NULL) {
1218 struct ifnet *ifp = inp->inp_moptions->imo_multicast_ifp;
1219 struct in_ifaddr *ia;
1220
1221 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1222 if (ia->ia_ifp == ifp &&
1223 prison_check_ip4(cred, &ia->ia_addr.sin_addr) == 0)
1224 break;
1225 }
1226 if (ia == NULL)
1227 return (EADDRNOTAVAIL);
1228 *laddr = ia->ia_addr.sin_addr;
1229 return (0);
1230 }
1231
1232 error = 0;
1233
1234 nh = NULL;
1235 bzero(&dst, sizeof(dst));
1236 sin = &dst;
1237 sin->sin_family = AF_INET;
1238 sin->sin_len = sizeof(struct sockaddr_in);
1239 sin->sin_addr.s_addr = faddr->s_addr;
1240
1241 /*
1242 * If route is known our src addr is taken from the i/f,
1243 * else punt.
1244 *
1245 * Find out route to destination.
1246 */
1247 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1248 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1249 0, NHR_NONE, 0);
1250
1251 /*
1252 * If we found a route, use the address corresponding to
1253 * the outgoing interface.
1254 *
1255 * Otherwise assume faddr is reachable on a directly connected
1256 * network and try to find a corresponding interface to take
1257 * the source address from.
1258 */
1259 if (nh == NULL || nh->nh_ifp == NULL) {
1260 struct in_ifaddr *ia;
1261 struct ifnet *ifp;
1262
1263 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1264 inp->inp_socket->so_fibnum));
1265 if (ia == NULL) {
1266 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1267 inp->inp_socket->so_fibnum));
1268 }
1269 if (ia == NULL) {
1270 error = ENETUNREACH;
1271 goto done;
1272 }
1273
1274 if (!prison_flag(cred, PR_IP4)) {
1275 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1276 goto done;
1277 }
1278
1279 ifp = ia->ia_ifp;
1280 ia = NULL;
1281 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1282 sa = ifa->ifa_addr;
1283 if (sa->sa_family != AF_INET)
1284 continue;
1285 sin = (struct sockaddr_in *)sa;
1286 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1287 ia = (struct in_ifaddr *)ifa;
1288 break;
1289 }
1290 }
1291 if (ia != NULL) {
1292 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1293 goto done;
1294 }
1295
1296 /* 3. As a last resort return the 'default' jail address. */
1297 error = prison_get_ip4(cred, laddr);
1298 goto done;
1299 }
1300
1301 /*
1302 * If the outgoing interface on the route found is not
1303 * a loopback interface, use the address from that interface.
1304 * In case of jails do those three steps:
1305 * 1. check if the interface address belongs to the jail. If so use it.
1306 * 2. check if we have any address on the outgoing interface
1307 * belonging to this jail. If so use it.
1308 * 3. as a last resort return the 'default' jail address.
1309 */
1310 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1311 struct in_ifaddr *ia;
1312 struct ifnet *ifp;
1313
1314 /* If not jailed, use the default returned. */
1315 if (!prison_flag(cred, PR_IP4)) {
1316 ia = (struct in_ifaddr *)nh->nh_ifa;
1317 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1318 goto done;
1319 }
1320
1321 /* Jailed. */
1322 /* 1. Check if the iface address belongs to the jail. */
1323 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1324 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1325 ia = (struct in_ifaddr *)nh->nh_ifa;
1326 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1327 goto done;
1328 }
1329
1330 /*
1331 * 2. Check if we have any address on the outgoing interface
1332 * belonging to this jail.
1333 */
1334 ia = NULL;
1335 ifp = nh->nh_ifp;
1336 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1337 sa = ifa->ifa_addr;
1338 if (sa->sa_family != AF_INET)
1339 continue;
1340 sin = (struct sockaddr_in *)sa;
1341 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1342 ia = (struct in_ifaddr *)ifa;
1343 break;
1344 }
1345 }
1346 if (ia != NULL) {
1347 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1348 goto done;
1349 }
1350
1351 /* 3. As a last resort return the 'default' jail address. */
1352 error = prison_get_ip4(cred, laddr);
1353 goto done;
1354 }
1355
1356 /*
1357 * The outgoing interface is marked with 'loopback net', so a route
1358 * to ourselves is here.
1359 * Try to find the interface of the destination address and then
1360 * take the address from there. That interface is not necessarily
1361 * a loopback interface.
1362 * In case of jails, check that it is an address of the jail
1363 * and if we cannot find, fall back to the 'default' jail address.
1364 */
1365 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1366 struct in_ifaddr *ia;
1367
1368 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1369 inp->inp_socket->so_fibnum));
1370 if (ia == NULL)
1371 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1372 inp->inp_socket->so_fibnum));
1373 if (ia == NULL)
1374 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1375
1376 if (!prison_flag(cred, PR_IP4)) {
1377 if (ia == NULL) {
1378 error = ENETUNREACH;
1379 goto done;
1380 }
1381 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1382 goto done;
1383 }
1384
1385 /* Jailed. */
1386 if (ia != NULL) {
1387 struct ifnet *ifp;
1388
1389 ifp = ia->ia_ifp;
1390 ia = NULL;
1391 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1392 sa = ifa->ifa_addr;
1393 if (sa->sa_family != AF_INET)
1394 continue;
1395 sin = (struct sockaddr_in *)sa;
1396 if (prison_check_ip4(cred,
1397 &sin->sin_addr) == 0) {
1398 ia = (struct in_ifaddr *)ifa;
1399 break;
1400 }
1401 }
1402 if (ia != NULL) {
1403 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1404 goto done;
1405 }
1406 }
1407
1408 /* 3. As a last resort return the 'default' jail address. */
1409 error = prison_get_ip4(cred, laddr);
1410 goto done;
1411 }
1412
1413 done:
1414 if (error == 0 && laddr->s_addr == INADDR_ANY)
1415 return (EHOSTUNREACH);
1416 return (error);
1417 }
1418
1419 void
in_pcbdisconnect(struct inpcb * inp)1420 in_pcbdisconnect(struct inpcb *inp)
1421 {
1422
1423 INP_WLOCK_ASSERT(inp);
1424 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1425 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1426 ("%s: inp %p was already disconnected", __func__, inp));
1427
1428 in_pcbremhash_locked(inp);
1429
1430 /* See the comment in in_pcbinshash(). */
1431 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1432 inp->inp_laddr.s_addr = INADDR_ANY;
1433 inp->inp_faddr.s_addr = INADDR_ANY;
1434 inp->inp_fport = 0;
1435 }
1436 #endif /* INET */
1437
1438 void
in_pcblisten(struct inpcb * inp)1439 in_pcblisten(struct inpcb *inp)
1440 {
1441 struct inpcblbgroup *grp;
1442
1443 INP_WLOCK_ASSERT(inp);
1444
1445 if ((inp->inp_flags & INP_INLBGROUP) != 0) {
1446 struct inpcbinfo *pcbinfo;
1447
1448 pcbinfo = inp->inp_pcbinfo;
1449 INP_HASH_WLOCK(pcbinfo);
1450 grp = in_pcblbgroup_find(inp);
1451 LIST_REMOVE(inp, inp_lbgroup_list);
1452 grp->il_pendcnt--;
1453 in_pcblbgroup_insert(grp, inp);
1454 INP_HASH_WUNLOCK(pcbinfo);
1455 }
1456 }
1457
1458 /*
1459 * inpcb hash lookups are protected by SMR section.
1460 *
1461 * Once desired pcb has been found, switching from SMR section to a pcb
1462 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1463 * here because SMR is a critical section.
1464 * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1465 */
1466 void
inp_lock(struct inpcb * inp,const inp_lookup_t lock)1467 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1468 {
1469
1470 lock == INPLOOKUP_RLOCKPCB ?
1471 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1472 }
1473
1474 void
inp_unlock(struct inpcb * inp,const inp_lookup_t lock)1475 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1476 {
1477
1478 lock == INPLOOKUP_RLOCKPCB ?
1479 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1480 }
1481
1482 int
inp_trylock(struct inpcb * inp,const inp_lookup_t lock)1483 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1484 {
1485
1486 return (lock == INPLOOKUP_RLOCKPCB ?
1487 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1488 }
1489
1490 static inline bool
_inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock,const int ignflags)1491 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1492 {
1493
1494 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1495 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1496
1497 if (__predict_true(inp_trylock(inp, lock))) {
1498 if (__predict_false(inp->inp_flags & ignflags)) {
1499 smr_exit(inp->inp_pcbinfo->ipi_smr);
1500 inp_unlock(inp, lock);
1501 return (false);
1502 }
1503 smr_exit(inp->inp_pcbinfo->ipi_smr);
1504 return (true);
1505 }
1506
1507 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1508 smr_exit(inp->inp_pcbinfo->ipi_smr);
1509 inp_lock(inp, lock);
1510 if (__predict_false(in_pcbrele(inp, lock)))
1511 return (false);
1512 /*
1513 * inp acquired through refcount & lock for sure didn't went
1514 * through uma_zfree(). However, it may have already went
1515 * through in_pcbfree() and has another reference, that
1516 * prevented its release by our in_pcbrele().
1517 */
1518 if (__predict_false(inp->inp_flags & ignflags)) {
1519 inp_unlock(inp, lock);
1520 return (false);
1521 }
1522 return (true);
1523 } else {
1524 smr_exit(inp->inp_pcbinfo->ipi_smr);
1525 return (false);
1526 }
1527 }
1528
1529 bool
inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock)1530 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1531 {
1532
1533 /*
1534 * in_pcblookup() family of functions ignore not only freed entries,
1535 * that may be found due to lockless access to the hash, but dropped
1536 * entries, too.
1537 */
1538 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1539 }
1540
1541 /*
1542 * inp_next() - inpcb hash/list traversal iterator
1543 *
1544 * Requires initialized struct inpcb_iterator for context.
1545 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1546 *
1547 * - Iterator can have either write-lock or read-lock semantics, that can not
1548 * be changed later.
1549 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1550 * a single hash slot. Note: only rip_input() does the latter.
1551 * - Iterator may have optional bool matching function. The matching function
1552 * will be executed for each inpcb in the SMR context, so it can not acquire
1553 * locks and can safely access only immutable fields of inpcb.
1554 *
1555 * A fresh initialized iterator has NULL inpcb in its context and that
1556 * means that inp_next() call would return the very first inpcb on the list
1557 * locked with desired semantic. In all following calls the context pointer
1558 * shall hold the current inpcb pointer. The KPI user is not supposed to
1559 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL
1560 * and write NULL to its context. After end of traversal an iterator can be
1561 * reused.
1562 *
1563 * List traversals have the following features/constraints:
1564 * - New entries won't be seen, as they are always added to the head of a list.
1565 * - Removed entries won't stop traversal as long as they are not added to
1566 * a different list. This is violated by in_pcbrehash().
1567 */
1568 #define II_LIST_FIRST(ipi, hash) \
1569 (((hash) == INP_ALL_LIST) ? \
1570 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \
1571 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1572 #define II_LIST_NEXT(inp, hash) \
1573 (((hash) == INP_ALL_LIST) ? \
1574 CK_LIST_NEXT((inp), inp_list) : \
1575 CK_LIST_NEXT((inp), inp_hash_exact))
1576 #define II_LOCK_ASSERT(inp, lock) \
1577 rw_assert(&(inp)->inp_lock, \
1578 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED )
1579 struct inpcb *
inp_next(struct inpcb_iterator * ii)1580 inp_next(struct inpcb_iterator *ii)
1581 {
1582 const struct inpcbinfo *ipi = ii->ipi;
1583 inp_match_t *match = ii->match;
1584 void *ctx = ii->ctx;
1585 inp_lookup_t lock = ii->lock;
1586 int hash = ii->hash;
1587 struct inpcb *inp;
1588
1589 if (ii->inp == NULL) { /* First call. */
1590 smr_enter(ipi->ipi_smr);
1591 /* This is unrolled CK_LIST_FOREACH(). */
1592 for (inp = II_LIST_FIRST(ipi, hash);
1593 inp != NULL;
1594 inp = II_LIST_NEXT(inp, hash)) {
1595 if (match != NULL && (match)(inp, ctx) == false)
1596 continue;
1597 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1598 break;
1599 else {
1600 smr_enter(ipi->ipi_smr);
1601 MPASS(inp != II_LIST_FIRST(ipi, hash));
1602 inp = II_LIST_FIRST(ipi, hash);
1603 if (inp == NULL)
1604 break;
1605 }
1606 }
1607
1608 if (inp == NULL)
1609 smr_exit(ipi->ipi_smr);
1610 else
1611 ii->inp = inp;
1612
1613 return (inp);
1614 }
1615
1616 /* Not a first call. */
1617 smr_enter(ipi->ipi_smr);
1618 restart:
1619 inp = ii->inp;
1620 II_LOCK_ASSERT(inp, lock);
1621 next:
1622 inp = II_LIST_NEXT(inp, hash);
1623 if (inp == NULL) {
1624 smr_exit(ipi->ipi_smr);
1625 goto found;
1626 }
1627
1628 if (match != NULL && (match)(inp, ctx) == false)
1629 goto next;
1630
1631 if (__predict_true(inp_trylock(inp, lock))) {
1632 if (__predict_false(inp->inp_flags & INP_FREED)) {
1633 /*
1634 * Entries are never inserted in middle of a list, thus
1635 * as long as we are in SMR, we can continue traversal.
1636 * Jump to 'restart' should yield in the same result,
1637 * but could produce unnecessary looping. Could this
1638 * looping be unbound?
1639 */
1640 inp_unlock(inp, lock);
1641 goto next;
1642 } else {
1643 smr_exit(ipi->ipi_smr);
1644 goto found;
1645 }
1646 }
1647
1648 /*
1649 * Can't obtain lock immediately, thus going hard. Once we exit the
1650 * SMR section we can no longer jump to 'next', and our only stable
1651 * anchoring point is ii->inp, which we keep locked for this case, so
1652 * we jump to 'restart'.
1653 */
1654 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1655 smr_exit(ipi->ipi_smr);
1656 inp_lock(inp, lock);
1657 if (__predict_false(in_pcbrele(inp, lock))) {
1658 smr_enter(ipi->ipi_smr);
1659 goto restart;
1660 }
1661 /*
1662 * See comment in inp_smr_lock().
1663 */
1664 if (__predict_false(inp->inp_flags & INP_FREED)) {
1665 inp_unlock(inp, lock);
1666 smr_enter(ipi->ipi_smr);
1667 goto restart;
1668 }
1669 } else
1670 goto next;
1671
1672 found:
1673 inp_unlock(ii->inp, lock);
1674 ii->inp = inp;
1675
1676 return (ii->inp);
1677 }
1678
1679 /*
1680 * in_pcbref() bumps the reference count on an inpcb in order to maintain
1681 * stability of an inpcb pointer despite the inpcb lock being released or
1682 * SMR section exited.
1683 *
1684 * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1685 */
1686 void
in_pcbref(struct inpcb * inp)1687 in_pcbref(struct inpcb *inp)
1688 {
1689 u_int old __diagused;
1690
1691 old = refcount_acquire(&inp->inp_refcount);
1692 KASSERT(old > 0, ("%s: refcount 0", __func__));
1693 }
1694
1695 /*
1696 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1697 * freeing the pcb, if the reference was very last.
1698 */
1699 bool
in_pcbrele_rlocked(struct inpcb * inp)1700 in_pcbrele_rlocked(struct inpcb *inp)
1701 {
1702
1703 INP_RLOCK_ASSERT(inp);
1704
1705 if (!refcount_release(&inp->inp_refcount))
1706 return (false);
1707
1708 MPASS(inp->inp_flags & INP_FREED);
1709 MPASS(inp->inp_socket == NULL);
1710 crfree(inp->inp_cred);
1711 #ifdef INVARIANTS
1712 inp->inp_cred = NULL;
1713 #endif
1714 INP_RUNLOCK(inp);
1715 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1716 return (true);
1717 }
1718
1719 bool
in_pcbrele_wlocked(struct inpcb * inp)1720 in_pcbrele_wlocked(struct inpcb *inp)
1721 {
1722
1723 INP_WLOCK_ASSERT(inp);
1724
1725 if (!refcount_release(&inp->inp_refcount))
1726 return (false);
1727
1728 MPASS(inp->inp_flags & INP_FREED);
1729 MPASS(inp->inp_socket == NULL);
1730 crfree(inp->inp_cred);
1731 #ifdef INVARIANTS
1732 inp->inp_cred = NULL;
1733 #endif
1734 INP_WUNLOCK(inp);
1735 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1736 return (true);
1737 }
1738
1739 bool
in_pcbrele(struct inpcb * inp,const inp_lookup_t lock)1740 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1741 {
1742
1743 return (lock == INPLOOKUP_RLOCKPCB ?
1744 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1745 }
1746
1747 /*
1748 * Unconditionally schedule an inpcb to be freed by decrementing its
1749 * reference count, which should occur only after the inpcb has been detached
1750 * from its socket. If another thread holds a temporary reference (acquired
1751 * using in_pcbref()) then the free is deferred until that reference is
1752 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1753 * Almost all work, including removal from global lists, is done in this
1754 * context, where the pcbinfo lock is held.
1755 */
1756 void
in_pcbfree(struct inpcb * inp)1757 in_pcbfree(struct inpcb *inp)
1758 {
1759 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1760 #ifdef INET
1761 struct ip_moptions *imo;
1762 #endif
1763 #ifdef INET6
1764 struct ip6_moptions *im6o;
1765 #endif
1766
1767 INP_WLOCK_ASSERT(inp);
1768 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1769 KASSERT((inp->inp_flags & INP_FREED) == 0,
1770 ("%s: called twice for pcb %p", __func__, inp));
1771
1772 /*
1773 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1774 * from the hash without acquiring inpcb lock, they rely on the hash
1775 * lock, thus in_pcbremhash() should be the first action.
1776 */
1777 if (inp->inp_flags & INP_INHASHLIST)
1778 in_pcbremhash(inp);
1779 INP_INFO_WLOCK(pcbinfo);
1780 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1781 pcbinfo->ipi_count--;
1782 CK_LIST_REMOVE(inp, inp_list);
1783 INP_INFO_WUNLOCK(pcbinfo);
1784
1785 #ifdef RATELIMIT
1786 if (inp->inp_snd_tag != NULL)
1787 in_pcbdetach_txrtlmt(inp);
1788 #endif
1789 inp->inp_flags |= INP_FREED;
1790 inp->inp_socket->so_pcb = NULL;
1791 inp->inp_socket = NULL;
1792
1793 RO_INVALIDATE_CACHE(&inp->inp_route);
1794 #ifdef MAC
1795 mac_inpcb_destroy(inp);
1796 #endif
1797 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1798 if (inp->inp_sp != NULL)
1799 ipsec_delete_pcbpolicy(inp);
1800 #endif
1801 #ifdef INET
1802 if (inp->inp_options)
1803 (void)m_free(inp->inp_options);
1804 DEBUG_POISON_POINTER(inp->inp_options);
1805 imo = inp->inp_moptions;
1806 DEBUG_POISON_POINTER(inp->inp_moptions);
1807 #endif
1808 #ifdef INET6
1809 if (inp->inp_vflag & INP_IPV6PROTO) {
1810 ip6_freepcbopts(inp->in6p_outputopts);
1811 DEBUG_POISON_POINTER(inp->in6p_outputopts);
1812 im6o = inp->in6p_moptions;
1813 DEBUG_POISON_POINTER(inp->in6p_moptions);
1814 } else
1815 im6o = NULL;
1816 #endif
1817
1818 if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1819 INP_WUNLOCK(inp);
1820 }
1821 #ifdef INET6
1822 ip6_freemoptions(im6o);
1823 #endif
1824 #ifdef INET
1825 inp_freemoptions(imo);
1826 #endif
1827 }
1828
1829 /*
1830 * Different protocols initialize their inpcbs differently - giving
1831 * different name to the lock. But they all are disposed the same.
1832 */
1833 static void
inpcb_fini(void * mem,int size)1834 inpcb_fini(void *mem, int size)
1835 {
1836 struct inpcb *inp = mem;
1837
1838 INP_LOCK_DESTROY(inp);
1839 }
1840
1841 /*
1842 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1843 * port reservation, and preventing it from being returned by inpcb lookups.
1844 *
1845 * It is used by TCP to mark an inpcb as unused and avoid future packet
1846 * delivery or event notification when a socket remains open but TCP has
1847 * closed. This might occur as a result of a shutdown()-initiated TCP close
1848 * or a RST on the wire, and allows the port binding to be reused while still
1849 * maintaining the invariant that so_pcb always points to a valid inpcb until
1850 * in_pcbdetach().
1851 *
1852 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1853 * in_pcbpurgeif0()?
1854 */
1855 void
in_pcbdrop(struct inpcb * inp)1856 in_pcbdrop(struct inpcb *inp)
1857 {
1858
1859 INP_WLOCK_ASSERT(inp);
1860
1861 inp->inp_flags |= INP_DROPPED;
1862 if (inp->inp_flags & INP_INHASHLIST)
1863 in_pcbremhash(inp);
1864 }
1865
1866 #ifdef INET
1867 /*
1868 * Common routines to return the socket addresses associated with inpcbs.
1869 */
1870 int
in_getsockaddr(struct socket * so,struct sockaddr * sa)1871 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1872 {
1873 struct inpcb *inp;
1874
1875 inp = sotoinpcb(so);
1876 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1877
1878 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1879 .sin_len = sizeof(struct sockaddr_in),
1880 .sin_family = AF_INET,
1881 .sin_port = inp->inp_lport,
1882 .sin_addr = inp->inp_laddr,
1883 };
1884
1885 return (0);
1886 }
1887
1888 int
in_getpeeraddr(struct socket * so,struct sockaddr * sa)1889 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1890 {
1891 struct inpcb *inp;
1892
1893 inp = sotoinpcb(so);
1894 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1895
1896 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1897 .sin_len = sizeof(struct sockaddr_in),
1898 .sin_family = AF_INET,
1899 .sin_port = inp->inp_fport,
1900 .sin_addr = inp->inp_faddr,
1901 };
1902
1903 return (0);
1904 }
1905
1906 static bool
inp_v4_multi_match(const struct inpcb * inp,void * v __unused)1907 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1908 {
1909
1910 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1911 return (true);
1912 else
1913 return (false);
1914 }
1915
1916 void
in_pcbpurgeif0(struct inpcbinfo * pcbinfo,struct ifnet * ifp)1917 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1918 {
1919 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1920 inp_v4_multi_match, NULL);
1921 struct inpcb *inp;
1922 struct in_multi *inm;
1923 struct in_mfilter *imf;
1924 struct ip_moptions *imo;
1925
1926 IN_MULTI_LOCK_ASSERT();
1927
1928 while ((inp = inp_next(&inpi)) != NULL) {
1929 INP_WLOCK_ASSERT(inp);
1930
1931 imo = inp->inp_moptions;
1932 /*
1933 * Unselect the outgoing interface if it is being
1934 * detached.
1935 */
1936 if (imo->imo_multicast_ifp == ifp)
1937 imo->imo_multicast_ifp = NULL;
1938
1939 /*
1940 * Drop multicast group membership if we joined
1941 * through the interface being detached.
1942 *
1943 * XXX This can all be deferred to an epoch_call
1944 */
1945 restart:
1946 IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1947 if ((inm = imf->imf_inm) == NULL)
1948 continue;
1949 if (inm->inm_ifp != ifp)
1950 continue;
1951 ip_mfilter_remove(&imo->imo_head, imf);
1952 in_leavegroup_locked(inm, NULL);
1953 ip_mfilter_free(imf);
1954 goto restart;
1955 }
1956 }
1957 }
1958
1959 /*
1960 * Lookup a PCB based on the local address and port. Caller must hold the
1961 * hash lock. No inpcb locks or references are acquired.
1962 */
1963 #define INP_LOOKUP_MAPPED_PCB_COST 3
1964 struct inpcb *
in_pcblookup_local(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib,int lookupflags,struct ucred * cred)1965 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1966 u_short lport, int fib, int lookupflags, struct ucred *cred)
1967 {
1968 struct inpcb *inp;
1969 #ifdef INET6
1970 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1971 #else
1972 int matchwild = 3;
1973 #endif
1974 int wildcard;
1975
1976 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1977 ("%s: invalid lookup flags %d", __func__, lookupflags));
1978 KASSERT(fib == RT_ALL_FIBS || (fib >= 0 && fib < V_rt_numfibs),
1979 ("%s: invalid fib %d", __func__, fib));
1980
1981 INP_HASH_LOCK_ASSERT(pcbinfo);
1982
1983 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1984 struct inpcbhead *head;
1985 /*
1986 * Look for an unconnected (wildcard foreign addr) PCB that
1987 * matches the local address and port we're looking for.
1988 */
1989 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1990 pcbinfo->ipi_hashmask)];
1991 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1992 #ifdef INET6
1993 /* XXX inp locking */
1994 if ((inp->inp_vflag & INP_IPV4) == 0)
1995 continue;
1996 #endif
1997 if (inp->inp_faddr.s_addr == INADDR_ANY &&
1998 inp->inp_laddr.s_addr == laddr.s_addr &&
1999 inp->inp_lport == lport && (fib == RT_ALL_FIBS ||
2000 inp->inp_inc.inc_fibnum == fib)) {
2001 /*
2002 * Found?
2003 */
2004 if (prison_equal_ip4(cred->cr_prison,
2005 inp->inp_cred->cr_prison))
2006 return (inp);
2007 }
2008 }
2009 /*
2010 * Not found.
2011 */
2012 return (NULL);
2013 } else {
2014 struct inpcbhead *porthash;
2015 struct inpcb *match = NULL;
2016
2017 /*
2018 * Port is in use by one or more PCBs. Look for best
2019 * fit.
2020 */
2021 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2022 pcbinfo->ipi_porthashmask)];
2023 CK_LIST_FOREACH(inp, porthash, inp_portlist) {
2024 if (inp->inp_lport != lport)
2025 continue;
2026 if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2027 cred->cr_prison))
2028 continue;
2029 if (fib != RT_ALL_FIBS &&
2030 inp->inp_inc.inc_fibnum != fib)
2031 continue;
2032 wildcard = 0;
2033 #ifdef INET6
2034 /* XXX inp locking */
2035 if ((inp->inp_vflag & INP_IPV4) == 0)
2036 continue;
2037 /*
2038 * We never select the PCB that has INP_IPV6 flag and
2039 * is bound to :: if we have another PCB which is bound
2040 * to 0.0.0.0. If a PCB has the INP_IPV6 flag, then we
2041 * set its cost higher than IPv4 only PCBs.
2042 *
2043 * Note that the case only happens when a socket is
2044 * bound to ::, under the condition that the use of the
2045 * mapped address is allowed.
2046 */
2047 if ((inp->inp_vflag & INP_IPV6) != 0)
2048 wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2049 #endif
2050 if (inp->inp_faddr.s_addr != INADDR_ANY)
2051 wildcard++;
2052 if (inp->inp_laddr.s_addr != INADDR_ANY) {
2053 if (laddr.s_addr == INADDR_ANY)
2054 wildcard++;
2055 else if (inp->inp_laddr.s_addr != laddr.s_addr)
2056 continue;
2057 } else {
2058 if (laddr.s_addr != INADDR_ANY)
2059 wildcard++;
2060 }
2061 if (wildcard < matchwild) {
2062 match = inp;
2063 matchwild = wildcard;
2064 if (matchwild == 0)
2065 break;
2066 }
2067 }
2068 return (match);
2069 }
2070 }
2071 #undef INP_LOOKUP_MAPPED_PCB_COST
2072
2073 static bool
in_pcblookup_lb_match(const struct inpcblbgroup * grp,int domain,int fib)2074 in_pcblookup_lb_match(const struct inpcblbgroup *grp, int domain, int fib)
2075 {
2076 return ((domain == M_NODOM || domain == grp->il_numa_domain) &&
2077 (fib == RT_ALL_FIBS || fib == grp->il_fibnum));
2078 }
2079
2080 static struct inpcb *
in_pcblookup_lbgroup(const struct inpcbinfo * pcbinfo,const struct in_addr * faddr,uint16_t fport,const struct in_addr * laddr,uint16_t lport,int domain,int fib)2081 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2082 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2083 uint16_t lport, int domain, int fib)
2084 {
2085 const struct inpcblbgrouphead *hdr;
2086 struct inpcblbgroup *grp;
2087 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2088 struct inpcb *inp;
2089 u_int count;
2090
2091 INP_HASH_LOCK_ASSERT(pcbinfo);
2092 NET_EPOCH_ASSERT();
2093
2094 hdr = &pcbinfo->ipi_lbgrouphashbase[
2095 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2096
2097 /*
2098 * Search for an LB group match based on the following criteria:
2099 * - prefer jailed groups to non-jailed groups
2100 * - prefer exact source address matches to wildcard matches
2101 * - prefer groups bound to the specified NUMA domain
2102 */
2103 jail_exact = jail_wild = local_exact = local_wild = NULL;
2104 CK_LIST_FOREACH(grp, hdr, il_list) {
2105 bool injail;
2106
2107 #ifdef INET6
2108 if (!(grp->il_vflag & INP_IPV4))
2109 continue;
2110 #endif
2111 if (grp->il_lport != lport)
2112 continue;
2113
2114 injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2115 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2116 laddr) != 0)
2117 continue;
2118
2119 if (grp->il_laddr.s_addr == laddr->s_addr) {
2120 if (injail) {
2121 jail_exact = grp;
2122 if (in_pcblookup_lb_match(grp, domain, fib))
2123 /* This is a perfect match. */
2124 goto out;
2125 } else if (local_exact == NULL ||
2126 in_pcblookup_lb_match(grp, domain, fib)) {
2127 local_exact = grp;
2128 }
2129 } else if (grp->il_laddr.s_addr == INADDR_ANY) {
2130 if (injail) {
2131 if (jail_wild == NULL ||
2132 in_pcblookup_lb_match(grp, domain, fib))
2133 jail_wild = grp;
2134 } else if (local_wild == NULL ||
2135 in_pcblookup_lb_match(grp, domain, fib)) {
2136 local_wild = grp;
2137 }
2138 }
2139 }
2140
2141 if (jail_exact != NULL)
2142 grp = jail_exact;
2143 else if (jail_wild != NULL)
2144 grp = jail_wild;
2145 else if (local_exact != NULL)
2146 grp = local_exact;
2147 else
2148 grp = local_wild;
2149 if (grp == NULL)
2150 return (NULL);
2151
2152 out:
2153 /*
2154 * Synchronize with in_pcblbgroup_insert().
2155 */
2156 count = atomic_load_acq_int(&grp->il_inpcnt);
2157 if (count == 0)
2158 return (NULL);
2159 inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count];
2160 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
2161 return (inp);
2162 }
2163
2164 static bool
in_pcblookup_exact_match(const struct inpcb * inp,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2165 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2166 u_short fport, struct in_addr laddr, u_short lport)
2167 {
2168 #ifdef INET6
2169 /* XXX inp locking */
2170 if ((inp->inp_vflag & INP_IPV4) == 0)
2171 return (false);
2172 #endif
2173 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2174 inp->inp_laddr.s_addr == laddr.s_addr &&
2175 inp->inp_fport == fport &&
2176 inp->inp_lport == lport)
2177 return (true);
2178 return (false);
2179 }
2180
2181 static struct inpcb *
in_pcblookup_hash_exact(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2182 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2183 u_short fport, struct in_addr laddr, u_short lport)
2184 {
2185 struct inpcbhead *head;
2186 struct inpcb *inp;
2187
2188 INP_HASH_LOCK_ASSERT(pcbinfo);
2189
2190 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2191 pcbinfo->ipi_hashmask)];
2192 CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2193 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2194 return (inp);
2195 }
2196 return (NULL);
2197 }
2198
2199 typedef enum {
2200 INPLOOKUP_MATCH_NONE = 0,
2201 INPLOOKUP_MATCH_WILD = 1,
2202 INPLOOKUP_MATCH_LADDR = 2,
2203 } inp_lookup_match_t;
2204
2205 static inp_lookup_match_t
in_pcblookup_wild_match(const struct inpcb * inp,struct in_addr laddr,u_short lport,int fib)2206 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2207 u_short lport, int fib)
2208 {
2209 #ifdef INET6
2210 /* XXX inp locking */
2211 if ((inp->inp_vflag & INP_IPV4) == 0)
2212 return (INPLOOKUP_MATCH_NONE);
2213 #endif
2214 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2215 return (INPLOOKUP_MATCH_NONE);
2216 if (fib != RT_ALL_FIBS && inp->inp_inc.inc_fibnum != fib)
2217 return (INPLOOKUP_MATCH_NONE);
2218 if (inp->inp_laddr.s_addr == INADDR_ANY)
2219 return (INPLOOKUP_MATCH_WILD);
2220 if (inp->inp_laddr.s_addr == laddr.s_addr)
2221 return (INPLOOKUP_MATCH_LADDR);
2222 return (INPLOOKUP_MATCH_NONE);
2223 }
2224
2225 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1)
2226
2227 static struct inpcb *
in_pcblookup_hash_wild_smr(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib,const inp_lookup_t lockflags)2228 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2229 u_short lport, int fib, const inp_lookup_t lockflags)
2230 {
2231 struct inpcbhead *head;
2232 struct inpcb *inp;
2233
2234 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2235 ("%s: not in SMR read section", __func__));
2236
2237 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2238 pcbinfo->ipi_hashmask)];
2239 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2240 inp_lookup_match_t match;
2241
2242 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2243 if (match == INPLOOKUP_MATCH_NONE)
2244 continue;
2245
2246 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2247 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2248 if (match != INPLOOKUP_MATCH_NONE &&
2249 prison_check_ip4_locked(inp->inp_cred->cr_prison,
2250 &laddr) == 0)
2251 return (inp);
2252 inp_unlock(inp, lockflags);
2253 }
2254
2255 /*
2256 * The matching socket disappeared out from under us. Fall back
2257 * to a serialized lookup.
2258 */
2259 return (INP_LOOKUP_AGAIN);
2260 }
2261 return (NULL);
2262 }
2263
2264 static struct inpcb *
in_pcblookup_hash_wild_locked(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib)2265 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2266 u_short lport, int fib)
2267 {
2268 struct inpcbhead *head;
2269 struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2270 #ifdef INET6
2271 struct inpcb *local_wild_mapped;
2272 #endif
2273
2274 INP_HASH_LOCK_ASSERT(pcbinfo);
2275
2276 /*
2277 * Order of socket selection - we always prefer jails.
2278 * 1. jailed, non-wild.
2279 * 2. jailed, wild.
2280 * 3. non-jailed, non-wild.
2281 * 4. non-jailed, wild.
2282 */
2283 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2284 pcbinfo->ipi_hashmask)];
2285 local_wild = local_exact = jail_wild = NULL;
2286 #ifdef INET6
2287 local_wild_mapped = NULL;
2288 #endif
2289 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2290 inp_lookup_match_t match;
2291 bool injail;
2292
2293 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2294 if (match == INPLOOKUP_MATCH_NONE)
2295 continue;
2296
2297 injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2298 if (injail) {
2299 if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2300 &laddr) != 0)
2301 continue;
2302 } else {
2303 if (local_exact != NULL)
2304 continue;
2305 }
2306
2307 if (match == INPLOOKUP_MATCH_LADDR) {
2308 if (injail)
2309 return (inp);
2310 local_exact = inp;
2311 } else {
2312 #ifdef INET6
2313 /* XXX inp locking, NULL check */
2314 if (inp->inp_vflag & INP_IPV6PROTO)
2315 local_wild_mapped = inp;
2316 else
2317 #endif
2318 if (injail)
2319 jail_wild = inp;
2320 else
2321 local_wild = inp;
2322 }
2323 }
2324 if (jail_wild != NULL)
2325 return (jail_wild);
2326 if (local_exact != NULL)
2327 return (local_exact);
2328 if (local_wild != NULL)
2329 return (local_wild);
2330 #ifdef INET6
2331 if (local_wild_mapped != NULL)
2332 return (local_wild_mapped);
2333 #endif
2334 return (NULL);
2335 }
2336
2337 /*
2338 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes
2339 * that the caller has either locked the hash list, which usually happens
2340 * for bind(2) operations, or is in SMR section, which happens when sorting
2341 * out incoming packets.
2342 */
2343 static struct inpcb *
in_pcblookup_hash_locked(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain,int fib)2344 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2345 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2346 uint8_t numa_domain, int fib)
2347 {
2348 struct inpcb *inp;
2349 const u_short fport = fport_arg, lport = lport_arg;
2350
2351 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD | INPLOOKUP_FIB)) == 0,
2352 ("%s: invalid lookup flags %d", __func__, lookupflags));
2353 KASSERT(faddr.s_addr != INADDR_ANY,
2354 ("%s: invalid foreign address", __func__));
2355 KASSERT(laddr.s_addr != INADDR_ANY,
2356 ("%s: invalid local address", __func__));
2357 INP_HASH_WLOCK_ASSERT(pcbinfo);
2358
2359 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2360 if (inp != NULL)
2361 return (inp);
2362
2363 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2364 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2365 &laddr, lport, numa_domain, fib);
2366 if (inp == NULL) {
2367 inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr,
2368 lport, fib);
2369 }
2370 }
2371
2372 return (inp);
2373 }
2374
2375 static struct inpcb *
in_pcblookup_hash(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,uint8_t numa_domain,int fib)2376 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2377 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2378 uint8_t numa_domain, int fib)
2379 {
2380 struct inpcb *inp;
2381 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2382
2383 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2384 ("%s: LOCKPCB not set", __func__));
2385
2386 INP_HASH_WLOCK(pcbinfo);
2387 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2388 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain, fib);
2389 if (inp != NULL && !inp_trylock(inp, lockflags)) {
2390 in_pcbref(inp);
2391 INP_HASH_WUNLOCK(pcbinfo);
2392 inp_lock(inp, lockflags);
2393 if (in_pcbrele(inp, lockflags))
2394 /* XXX-MJ or retry until we get a negative match? */
2395 inp = NULL;
2396 } else {
2397 INP_HASH_WUNLOCK(pcbinfo);
2398 }
2399 return (inp);
2400 }
2401
2402 static struct inpcb *
in_pcblookup_hash_smr(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain,int fib)2403 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2404 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2405 uint8_t numa_domain, int fib)
2406 {
2407 struct inpcb *inp;
2408 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2409 const u_short fport = fport_arg, lport = lport_arg;
2410
2411 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2412 ("%s: invalid lookup flags %d", __func__, lookupflags));
2413 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2414 ("%s: LOCKPCB not set", __func__));
2415
2416 smr_enter(pcbinfo->ipi_smr);
2417 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2418 if (inp != NULL) {
2419 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2420 /*
2421 * Revalidate the 4-tuple, the socket could have been
2422 * disconnected.
2423 */
2424 if (__predict_true(in_pcblookup_exact_match(inp,
2425 faddr, fport, laddr, lport)))
2426 return (inp);
2427 inp_unlock(inp, lockflags);
2428 }
2429
2430 /*
2431 * We failed to lock the inpcb, or its connection state changed
2432 * out from under us. Fall back to a precise search.
2433 */
2434 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2435 lookupflags, numa_domain, fib));
2436 }
2437
2438 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2439 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2440 &laddr, lport, numa_domain, fib);
2441 if (inp != NULL) {
2442 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2443 if (__predict_true(in_pcblookup_wild_match(inp,
2444 laddr, lport, fib) != INPLOOKUP_MATCH_NONE))
2445 return (inp);
2446 inp_unlock(inp, lockflags);
2447 }
2448 inp = INP_LOOKUP_AGAIN;
2449 } else {
2450 inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport,
2451 fib, lockflags);
2452 }
2453 if (inp == INP_LOOKUP_AGAIN) {
2454 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2455 lport, lookupflags, numa_domain, fib));
2456 }
2457 }
2458
2459 if (inp == NULL)
2460 smr_exit(pcbinfo->ipi_smr);
2461
2462 return (inp);
2463 }
2464
2465 /*
2466 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2467 * from which a pre-calculated hash value may be extracted.
2468 */
2469 struct inpcb *
in_pcblookup(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp)2470 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2471 struct in_addr laddr, u_int lport, int lookupflags,
2472 struct ifnet *ifp)
2473 {
2474 int fib;
2475
2476 fib = (lookupflags & INPLOOKUP_FIB) ? if_getfib(ifp) : RT_ALL_FIBS;
2477 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2478 lookupflags, M_NODOM, fib));
2479 }
2480
2481 struct inpcb *
in_pcblookup_mbuf(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp __unused,struct mbuf * m)2482 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2483 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2484 struct ifnet *ifp __unused, struct mbuf *m)
2485 {
2486 int fib;
2487
2488 M_ASSERTPKTHDR(m);
2489 fib = (lookupflags & INPLOOKUP_FIB) ? M_GETFIB(m) : RT_ALL_FIBS;
2490 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2491 lookupflags, m->m_pkthdr.numa_domain, fib));
2492 }
2493 #endif /* INET */
2494
2495 static bool
in_pcbjailed(const struct inpcb * inp,unsigned int flag)2496 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2497 {
2498 return (prison_flag(inp->inp_cred, flag) != 0);
2499 }
2500
2501 /*
2502 * Insert the PCB into a hash chain using ordering rules which ensure that
2503 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2504 *
2505 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2506 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs
2507 * always appear last no matter whether they are jailed.
2508 */
2509 static void
_in_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2510 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2511 {
2512 struct inpcb *last;
2513 bool bound, injail;
2514
2515 INP_LOCK_ASSERT(inp);
2516 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2517
2518 last = NULL;
2519 bound = inp->inp_laddr.s_addr != INADDR_ANY;
2520 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2521 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2522 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2523 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2524 return;
2525 }
2526 }
2527 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2528 return;
2529 }
2530
2531 injail = in_pcbjailed(inp, PR_IP4);
2532 if (!injail) {
2533 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2534 if (!in_pcbjailed(last, PR_IP4))
2535 break;
2536 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2537 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2538 return;
2539 }
2540 }
2541 } else if (!CK_LIST_EMPTY(pcbhash) &&
2542 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2543 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2544 return;
2545 }
2546 if (!bound) {
2547 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2548 if (last->inp_laddr.s_addr == INADDR_ANY)
2549 break;
2550 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2551 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2552 return;
2553 }
2554 }
2555 }
2556 if (last == NULL)
2557 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2558 else
2559 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2560 }
2561
2562 #ifdef INET6
2563 /*
2564 * See the comment above _in_pcbinshash_wild().
2565 */
2566 static void
_in6_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2567 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2568 {
2569 struct inpcb *last;
2570 bool bound, injail;
2571
2572 INP_LOCK_ASSERT(inp);
2573 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2574
2575 last = NULL;
2576 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2577 injail = in_pcbjailed(inp, PR_IP6);
2578 if (!injail) {
2579 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2580 if (!in_pcbjailed(last, PR_IP6))
2581 break;
2582 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2583 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2584 return;
2585 }
2586 }
2587 } else if (!CK_LIST_EMPTY(pcbhash) &&
2588 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2589 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2590 return;
2591 }
2592 if (!bound) {
2593 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2594 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2595 break;
2596 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2597 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2598 return;
2599 }
2600 }
2601 }
2602 if (last == NULL)
2603 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2604 else
2605 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2606 }
2607 #endif
2608
2609 /*
2610 * Insert PCB onto various hash lists.
2611 *
2612 * With normal sockets this function shall not fail, so it could return void.
2613 * But for SO_REUSEPORT_LB it may need to allocate memory with locks held,
2614 * that's the only condition when it can fail.
2615 */
2616 int
in_pcbinshash(struct inpcb * inp)2617 in_pcbinshash(struct inpcb *inp)
2618 {
2619 struct inpcbhead *pcbhash, *pcbporthash;
2620 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2621 uint32_t hash;
2622 bool connected;
2623
2624 INP_WLOCK_ASSERT(inp);
2625 INP_HASH_WLOCK_ASSERT(pcbinfo);
2626 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2627 ("in_pcbinshash: INP_INHASHLIST"));
2628
2629 #ifdef INET6
2630 if (inp->inp_vflag & INP_IPV6) {
2631 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2632 inp->inp_fport, pcbinfo->ipi_hashmask);
2633 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2634 } else
2635 #endif
2636 {
2637 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2638 inp->inp_fport, pcbinfo->ipi_hashmask);
2639 connected = !in_nullhost(inp->inp_faddr);
2640 }
2641
2642 if (connected)
2643 pcbhash = &pcbinfo->ipi_hash_exact[hash];
2644 else
2645 pcbhash = &pcbinfo->ipi_hash_wild[hash];
2646
2647 pcbporthash = &pcbinfo->ipi_porthashbase[
2648 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2649
2650 /*
2651 * Add entry to load balance group.
2652 * Only do this if SO_REUSEPORT_LB is set.
2653 */
2654 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2655 int error = in_pcbinslbgrouphash(inp, M_NODOM);
2656 if (error != 0)
2657 return (error);
2658 }
2659
2660 /*
2661 * The PCB may have been disconnected in the past. Before we can safely
2662 * make it visible in the hash table, we must wait for all readers which
2663 * may be traversing this PCB to finish.
2664 */
2665 if (inp->inp_smr != SMR_SEQ_INVALID) {
2666 smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2667 inp->inp_smr = SMR_SEQ_INVALID;
2668 }
2669
2670 if (connected)
2671 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2672 else {
2673 #ifdef INET6
2674 if ((inp->inp_vflag & INP_IPV6) != 0)
2675 _in6_pcbinshash_wild(pcbhash, inp);
2676 else
2677 #endif
2678 _in_pcbinshash_wild(pcbhash, inp);
2679 }
2680 CK_LIST_INSERT_HEAD(pcbporthash, inp, inp_portlist);
2681 inp->inp_flags |= INP_INHASHLIST;
2682
2683 return (0);
2684 }
2685
2686 void
in_pcbremhash_locked(struct inpcb * inp)2687 in_pcbremhash_locked(struct inpcb *inp)
2688 {
2689
2690 INP_WLOCK_ASSERT(inp);
2691 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2692 MPASS(inp->inp_flags & INP_INHASHLIST);
2693
2694 if ((inp->inp_flags & INP_INLBGROUP) != 0)
2695 in_pcbremlbgrouphash(inp);
2696 #ifdef INET6
2697 if (inp->inp_vflag & INP_IPV6) {
2698 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2699 CK_LIST_REMOVE(inp, inp_hash_wild);
2700 else
2701 CK_LIST_REMOVE(inp, inp_hash_exact);
2702 } else
2703 #endif
2704 {
2705 if (in_nullhost(inp->inp_faddr))
2706 CK_LIST_REMOVE(inp, inp_hash_wild);
2707 else
2708 CK_LIST_REMOVE(inp, inp_hash_exact);
2709 }
2710 CK_LIST_REMOVE(inp, inp_portlist);
2711 inp->inp_flags &= ~INP_INHASHLIST;
2712 }
2713
2714 static void
in_pcbremhash(struct inpcb * inp)2715 in_pcbremhash(struct inpcb *inp)
2716 {
2717 INP_HASH_WLOCK(inp->inp_pcbinfo);
2718 in_pcbremhash_locked(inp);
2719 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2720 }
2721
2722 /*
2723 * Move PCB to the proper hash bucket when { faddr, fport } have been
2724 * changed. NOTE: This does not handle the case of the lport changing (the
2725 * hashed port list would have to be updated as well), so the lport must
2726 * not change after in_pcbinshash() has been called.
2727 */
2728 void
in_pcbrehash(struct inpcb * inp)2729 in_pcbrehash(struct inpcb *inp)
2730 {
2731 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2732 struct inpcbhead *head;
2733 uint32_t hash;
2734 bool connected;
2735
2736 INP_WLOCK_ASSERT(inp);
2737 INP_HASH_WLOCK_ASSERT(pcbinfo);
2738 KASSERT(inp->inp_flags & INP_INHASHLIST,
2739 ("%s: !INP_INHASHLIST", __func__));
2740 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2741 ("%s: inp was disconnected", __func__));
2742
2743 #ifdef INET6
2744 if (inp->inp_vflag & INP_IPV6) {
2745 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2746 inp->inp_fport, pcbinfo->ipi_hashmask);
2747 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2748 } else
2749 #endif
2750 {
2751 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2752 inp->inp_fport, pcbinfo->ipi_hashmask);
2753 connected = !in_nullhost(inp->inp_faddr);
2754 }
2755
2756 /*
2757 * When rehashing, the caller must ensure that either the new or the old
2758 * foreign address was unspecified.
2759 */
2760 if (connected)
2761 CK_LIST_REMOVE(inp, inp_hash_wild);
2762 else
2763 CK_LIST_REMOVE(inp, inp_hash_exact);
2764
2765 if (connected) {
2766 head = &pcbinfo->ipi_hash_exact[hash];
2767 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2768 } else {
2769 head = &pcbinfo->ipi_hash_wild[hash];
2770 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2771 }
2772 }
2773
2774 /*
2775 * Check for alternatives when higher level complains
2776 * about service problems. For now, invalidate cached
2777 * routing information. If the route was created dynamically
2778 * (by a redirect), time to try a default gateway again.
2779 */
2780 void
in_losing(struct inpcb * inp)2781 in_losing(struct inpcb *inp)
2782 {
2783
2784 RO_INVALIDATE_CACHE(&inp->inp_route);
2785 return;
2786 }
2787
2788 /*
2789 * A set label operation has occurred at the socket layer, propagate the
2790 * label change into the in_pcb for the socket.
2791 */
2792 void
in_pcbsosetlabel(struct socket * so)2793 in_pcbsosetlabel(struct socket *so)
2794 {
2795 #ifdef MAC
2796 struct inpcb *inp;
2797
2798 inp = sotoinpcb(so);
2799 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2800
2801 INP_WLOCK(inp);
2802 SOCK_LOCK(so);
2803 mac_inpcb_sosetlabel(so, inp);
2804 SOCK_UNLOCK(so);
2805 INP_WUNLOCK(inp);
2806 #endif
2807 }
2808
2809 void
inp_wlock(struct inpcb * inp)2810 inp_wlock(struct inpcb *inp)
2811 {
2812
2813 INP_WLOCK(inp);
2814 }
2815
2816 void
inp_wunlock(struct inpcb * inp)2817 inp_wunlock(struct inpcb *inp)
2818 {
2819
2820 INP_WUNLOCK(inp);
2821 }
2822
2823 void
inp_rlock(struct inpcb * inp)2824 inp_rlock(struct inpcb *inp)
2825 {
2826
2827 INP_RLOCK(inp);
2828 }
2829
2830 void
inp_runlock(struct inpcb * inp)2831 inp_runlock(struct inpcb *inp)
2832 {
2833
2834 INP_RUNLOCK(inp);
2835 }
2836
2837 #ifdef INVARIANT_SUPPORT
2838 void
inp_lock_assert(struct inpcb * inp)2839 inp_lock_assert(struct inpcb *inp)
2840 {
2841
2842 INP_WLOCK_ASSERT(inp);
2843 }
2844
2845 void
inp_unlock_assert(struct inpcb * inp)2846 inp_unlock_assert(struct inpcb *inp)
2847 {
2848
2849 INP_UNLOCK_ASSERT(inp);
2850 }
2851 #endif
2852
2853 void
inp_apply_all(struct inpcbinfo * pcbinfo,void (* func)(struct inpcb *,void *),void * arg)2854 inp_apply_all(struct inpcbinfo *pcbinfo,
2855 void (*func)(struct inpcb *, void *), void *arg)
2856 {
2857 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2858 INPLOOKUP_WLOCKPCB);
2859 struct inpcb *inp;
2860
2861 while ((inp = inp_next(&inpi)) != NULL)
2862 func(inp, arg);
2863 }
2864
2865 struct socket *
inp_inpcbtosocket(struct inpcb * inp)2866 inp_inpcbtosocket(struct inpcb *inp)
2867 {
2868
2869 INP_WLOCK_ASSERT(inp);
2870 return (inp->inp_socket);
2871 }
2872
2873 void
inp_4tuple_get(struct inpcb * inp,uint32_t * laddr,uint16_t * lp,uint32_t * faddr,uint16_t * fp)2874 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2875 uint32_t *faddr, uint16_t *fp)
2876 {
2877
2878 INP_LOCK_ASSERT(inp);
2879 *laddr = inp->inp_laddr.s_addr;
2880 *faddr = inp->inp_faddr.s_addr;
2881 *lp = inp->inp_lport;
2882 *fp = inp->inp_fport;
2883 }
2884
2885 /*
2886 * Create an external-format (``xinpcb'') structure using the information in
2887 * the kernel-format in_pcb structure pointed to by inp. This is done to
2888 * reduce the spew of irrelevant information over this interface, to isolate
2889 * user code from changes in the kernel structure, and potentially to provide
2890 * information-hiding if we decide that some of this information should be
2891 * hidden from users.
2892 */
2893 void
in_pcbtoxinpcb(const struct inpcb * inp,struct xinpcb * xi)2894 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2895 {
2896
2897 bzero(xi, sizeof(*xi));
2898 xi->xi_len = sizeof(struct xinpcb);
2899 if (inp->inp_socket)
2900 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2901 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2902 xi->inp_gencnt = inp->inp_gencnt;
2903 xi->inp_flow = inp->inp_flow;
2904 xi->inp_flowid = inp->inp_flowid;
2905 xi->inp_flowtype = inp->inp_flowtype;
2906 xi->inp_flags = inp->inp_flags;
2907 xi->inp_flags2 = inp->inp_flags2;
2908 xi->in6p_cksum = inp->in6p_cksum;
2909 xi->in6p_hops = inp->in6p_hops;
2910 xi->inp_ip_tos = inp->inp_ip_tos;
2911 xi->inp_vflag = inp->inp_vflag;
2912 xi->inp_ip_ttl = inp->inp_ip_ttl;
2913 xi->inp_ip_p = inp->inp_ip_p;
2914 xi->inp_ip_minttl = inp->inp_ip_minttl;
2915 }
2916
2917 int
sysctl_setsockopt(SYSCTL_HANDLER_ARGS,struct inpcbinfo * pcbinfo,int (* ctloutput_set)(struct inpcb *,struct sockopt *))2918 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2919 int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2920 {
2921 struct sockopt sopt;
2922 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2923 INPLOOKUP_WLOCKPCB);
2924 struct inpcb *inp;
2925 struct sockopt_parameters *params;
2926 struct socket *so;
2927 int error;
2928 char buf[1024];
2929
2930 if (req->oldptr != NULL || req->oldlen != 0)
2931 return (EINVAL);
2932 if (req->newptr == NULL)
2933 return (EPERM);
2934 if (req->newlen > sizeof(buf))
2935 return (ENOMEM);
2936 error = SYSCTL_IN(req, buf, req->newlen);
2937 if (error != 0)
2938 return (error);
2939 if (req->newlen < sizeof(struct sockopt_parameters))
2940 return (EINVAL);
2941 params = (struct sockopt_parameters *)buf;
2942 sopt.sopt_level = params->sop_level;
2943 sopt.sopt_name = params->sop_optname;
2944 sopt.sopt_dir = SOPT_SET;
2945 sopt.sopt_val = params->sop_optval;
2946 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2947 sopt.sopt_td = NULL;
2948 #ifdef INET6
2949 if (params->sop_inc.inc_flags & INC_ISIPV6) {
2950 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr))
2951 params->sop_inc.inc6_laddr.s6_addr16[1] =
2952 htons(params->sop_inc.inc6_zoneid & 0xffff);
2953 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr))
2954 params->sop_inc.inc6_faddr.s6_addr16[1] =
2955 htons(params->sop_inc.inc6_zoneid & 0xffff);
2956 }
2957 #endif
2958 if (params->sop_inc.inc_lport != htons(0) &&
2959 params->sop_inc.inc_fport != htons(0)) {
2960 #ifdef INET6
2961 if (params->sop_inc.inc_flags & INC_ISIPV6)
2962 inpi.hash = INP6_PCBHASH(
2963 ¶ms->sop_inc.inc6_faddr,
2964 params->sop_inc.inc_lport,
2965 params->sop_inc.inc_fport,
2966 pcbinfo->ipi_hashmask);
2967 else
2968 #endif
2969 inpi.hash = INP_PCBHASH(
2970 ¶ms->sop_inc.inc_faddr,
2971 params->sop_inc.inc_lport,
2972 params->sop_inc.inc_fport,
2973 pcbinfo->ipi_hashmask);
2974 }
2975 while ((inp = inp_next(&inpi)) != NULL)
2976 if (inp->inp_gencnt == params->sop_id) {
2977 if (inp->inp_flags & INP_DROPPED) {
2978 INP_WUNLOCK(inp);
2979 return (ECONNRESET);
2980 }
2981 so = inp->inp_socket;
2982 KASSERT(so != NULL, ("inp_socket == NULL"));
2983 soref(so);
2984 if (params->sop_level == SOL_SOCKET) {
2985 INP_WUNLOCK(inp);
2986 error = sosetopt(so, &sopt);
2987 } else
2988 error = (*ctloutput_set)(inp, &sopt);
2989 sorele(so);
2990 break;
2991 }
2992 if (inp == NULL)
2993 error = ESRCH;
2994 return (error);
2995 }
2996
2997 #ifdef DDB
2998 static void
db_print_indent(int indent)2999 db_print_indent(int indent)
3000 {
3001 int i;
3002
3003 for (i = 0; i < indent; i++)
3004 db_printf(" ");
3005 }
3006
3007 static void
db_print_inconninfo(struct in_conninfo * inc,const char * name,int indent)3008 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3009 {
3010 char faddr_str[48], laddr_str[48];
3011
3012 db_print_indent(indent);
3013 db_printf("%s at %p\n", name, inc);
3014
3015 indent += 2;
3016
3017 #ifdef INET6
3018 if (inc->inc_flags & INC_ISIPV6) {
3019 /* IPv6. */
3020 ip6_sprintf(laddr_str, &inc->inc6_laddr);
3021 ip6_sprintf(faddr_str, &inc->inc6_faddr);
3022 } else
3023 #endif
3024 {
3025 /* IPv4. */
3026 inet_ntoa_r(inc->inc_laddr, laddr_str);
3027 inet_ntoa_r(inc->inc_faddr, faddr_str);
3028 }
3029 db_print_indent(indent);
3030 db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
3031 ntohs(inc->inc_lport));
3032 db_print_indent(indent);
3033 db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
3034 ntohs(inc->inc_fport));
3035 }
3036
3037 static void
db_print_inpflags(int inp_flags)3038 db_print_inpflags(int inp_flags)
3039 {
3040 int comma;
3041
3042 comma = 0;
3043 if (inp_flags & INP_RECVOPTS) {
3044 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3045 comma = 1;
3046 }
3047 if (inp_flags & INP_RECVRETOPTS) {
3048 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3049 comma = 1;
3050 }
3051 if (inp_flags & INP_RECVDSTADDR) {
3052 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3053 comma = 1;
3054 }
3055 if (inp_flags & INP_ORIGDSTADDR) {
3056 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3057 comma = 1;
3058 }
3059 if (inp_flags & INP_HDRINCL) {
3060 db_printf("%sINP_HDRINCL", comma ? ", " : "");
3061 comma = 1;
3062 }
3063 if (inp_flags & INP_HIGHPORT) {
3064 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3065 comma = 1;
3066 }
3067 if (inp_flags & INP_LOWPORT) {
3068 db_printf("%sINP_LOWPORT", comma ? ", " : "");
3069 comma = 1;
3070 }
3071 if (inp_flags & INP_ANONPORT) {
3072 db_printf("%sINP_ANONPORT", comma ? ", " : "");
3073 comma = 1;
3074 }
3075 if (inp_flags & INP_RECVIF) {
3076 db_printf("%sINP_RECVIF", comma ? ", " : "");
3077 comma = 1;
3078 }
3079 if (inp_flags & INP_MTUDISC) {
3080 db_printf("%sINP_MTUDISC", comma ? ", " : "");
3081 comma = 1;
3082 }
3083 if (inp_flags & INP_RECVTTL) {
3084 db_printf("%sINP_RECVTTL", comma ? ", " : "");
3085 comma = 1;
3086 }
3087 if (inp_flags & INP_DONTFRAG) {
3088 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3089 comma = 1;
3090 }
3091 if (inp_flags & INP_RECVTOS) {
3092 db_printf("%sINP_RECVTOS", comma ? ", " : "");
3093 comma = 1;
3094 }
3095 if (inp_flags & IN6P_IPV6_V6ONLY) {
3096 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3097 comma = 1;
3098 }
3099 if (inp_flags & IN6P_PKTINFO) {
3100 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3101 comma = 1;
3102 }
3103 if (inp_flags & IN6P_HOPLIMIT) {
3104 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3105 comma = 1;
3106 }
3107 if (inp_flags & IN6P_HOPOPTS) {
3108 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3109 comma = 1;
3110 }
3111 if (inp_flags & IN6P_DSTOPTS) {
3112 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3113 comma = 1;
3114 }
3115 if (inp_flags & IN6P_RTHDR) {
3116 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3117 comma = 1;
3118 }
3119 if (inp_flags & IN6P_RTHDRDSTOPTS) {
3120 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3121 comma = 1;
3122 }
3123 if (inp_flags & IN6P_TCLASS) {
3124 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3125 comma = 1;
3126 }
3127 if (inp_flags & IN6P_AUTOFLOWLABEL) {
3128 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3129 comma = 1;
3130 }
3131 if (inp_flags & INP_ONESBCAST) {
3132 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3133 comma = 1;
3134 }
3135 if (inp_flags & INP_DROPPED) {
3136 db_printf("%sINP_DROPPED", comma ? ", " : "");
3137 comma = 1;
3138 }
3139 if (inp_flags & INP_SOCKREF) {
3140 db_printf("%sINP_SOCKREF", comma ? ", " : "");
3141 comma = 1;
3142 }
3143 if (inp_flags & IN6P_RFC2292) {
3144 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3145 comma = 1;
3146 }
3147 if (inp_flags & IN6P_MTU) {
3148 db_printf("IN6P_MTU%s", comma ? ", " : "");
3149 comma = 1;
3150 }
3151 }
3152
3153 static void
db_print_inpvflag(u_char inp_vflag)3154 db_print_inpvflag(u_char inp_vflag)
3155 {
3156 int comma;
3157
3158 comma = 0;
3159 if (inp_vflag & INP_IPV4) {
3160 db_printf("%sINP_IPV4", comma ? ", " : "");
3161 comma = 1;
3162 }
3163 if (inp_vflag & INP_IPV6) {
3164 db_printf("%sINP_IPV6", comma ? ", " : "");
3165 comma = 1;
3166 }
3167 if (inp_vflag & INP_IPV6PROTO) {
3168 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3169 comma = 1;
3170 }
3171 }
3172
3173 static void
db_print_inpcb(struct inpcb * inp,const char * name,int indent)3174 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3175 {
3176
3177 db_print_indent(indent);
3178 db_printf("%s at %p\n", name, inp);
3179
3180 indent += 2;
3181
3182 db_print_indent(indent);
3183 db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3184
3185 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3186
3187 db_print_indent(indent);
3188 db_printf("inp_label: %p inp_flags: 0x%x (",
3189 inp->inp_label, inp->inp_flags);
3190 db_print_inpflags(inp->inp_flags);
3191 db_printf(")\n");
3192
3193 db_print_indent(indent);
3194 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
3195 inp->inp_vflag);
3196 db_print_inpvflag(inp->inp_vflag);
3197 db_printf(")\n");
3198
3199 db_print_indent(indent);
3200 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
3201 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3202
3203 db_print_indent(indent);
3204 #ifdef INET6
3205 if (inp->inp_vflag & INP_IPV6) {
3206 db_printf("in6p_options: %p in6p_outputopts: %p "
3207 "in6p_moptions: %p\n", inp->in6p_options,
3208 inp->in6p_outputopts, inp->in6p_moptions);
3209 db_printf("in6p_icmp6filt: %p in6p_cksum %d "
3210 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3211 inp->in6p_hops);
3212 } else
3213 #endif
3214 {
3215 db_printf("inp_ip_tos: %d inp_ip_options: %p "
3216 "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3217 inp->inp_options, inp->inp_moptions);
3218 }
3219
3220 db_print_indent(indent);
3221 db_printf("inp_gencnt: %ju\n", (uintmax_t)inp->inp_gencnt);
3222 }
3223
DB_SHOW_COMMAND(inpcb,db_show_inpcb)3224 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3225 {
3226 struct inpcb *inp;
3227
3228 if (!have_addr) {
3229 db_printf("usage: show inpcb <addr>\n");
3230 return;
3231 }
3232 inp = (struct inpcb *)addr;
3233
3234 db_print_inpcb(inp, "inpcb", 0);
3235 }
3236 #endif /* DDB */
3237
3238 #ifdef RATELIMIT
3239 /*
3240 * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3241 * if any.
3242 */
3243 int
in_pcbmodify_txrtlmt(struct inpcb * inp,uint32_t max_pacing_rate)3244 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3245 {
3246 union if_snd_tag_modify_params params = {
3247 .rate_limit.max_rate = max_pacing_rate,
3248 .rate_limit.flags = M_NOWAIT,
3249 };
3250 struct m_snd_tag *mst;
3251 int error;
3252
3253 mst = inp->inp_snd_tag;
3254 if (mst == NULL)
3255 return (EINVAL);
3256
3257 if (mst->sw->snd_tag_modify == NULL) {
3258 error = EOPNOTSUPP;
3259 } else {
3260 error = mst->sw->snd_tag_modify(mst, ¶ms);
3261 }
3262 return (error);
3263 }
3264
3265 /*
3266 * Query existing TX rate limit based on the existing
3267 * "inp->inp_snd_tag", if any.
3268 */
3269 int
in_pcbquery_txrtlmt(struct inpcb * inp,uint32_t * p_max_pacing_rate)3270 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3271 {
3272 union if_snd_tag_query_params params = { };
3273 struct m_snd_tag *mst;
3274 int error;
3275
3276 mst = inp->inp_snd_tag;
3277 if (mst == NULL)
3278 return (EINVAL);
3279
3280 if (mst->sw->snd_tag_query == NULL) {
3281 error = EOPNOTSUPP;
3282 } else {
3283 error = mst->sw->snd_tag_query(mst, ¶ms);
3284 if (error == 0 && p_max_pacing_rate != NULL)
3285 *p_max_pacing_rate = params.rate_limit.max_rate;
3286 }
3287 return (error);
3288 }
3289
3290 /*
3291 * Query existing TX queue level based on the existing
3292 * "inp->inp_snd_tag", if any.
3293 */
3294 int
in_pcbquery_txrlevel(struct inpcb * inp,uint32_t * p_txqueue_level)3295 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3296 {
3297 union if_snd_tag_query_params params = { };
3298 struct m_snd_tag *mst;
3299 int error;
3300
3301 mst = inp->inp_snd_tag;
3302 if (mst == NULL)
3303 return (EINVAL);
3304
3305 if (mst->sw->snd_tag_query == NULL)
3306 return (EOPNOTSUPP);
3307
3308 error = mst->sw->snd_tag_query(mst, ¶ms);
3309 if (error == 0 && p_txqueue_level != NULL)
3310 *p_txqueue_level = params.rate_limit.queue_level;
3311 return (error);
3312 }
3313
3314 /*
3315 * Allocate a new TX rate limit send tag from the network interface
3316 * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3317 */
3318 int
in_pcbattach_txrtlmt(struct inpcb * inp,struct ifnet * ifp,uint32_t flowtype,uint32_t flowid,uint32_t max_pacing_rate,struct m_snd_tag ** st)3319 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3320 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3321
3322 {
3323 union if_snd_tag_alloc_params params = {
3324 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3325 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3326 .rate_limit.hdr.flowid = flowid,
3327 .rate_limit.hdr.flowtype = flowtype,
3328 .rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3329 .rate_limit.max_rate = max_pacing_rate,
3330 .rate_limit.flags = M_NOWAIT,
3331 };
3332 int error;
3333
3334 INP_WLOCK_ASSERT(inp);
3335
3336 /*
3337 * If there is already a send tag, or the INP is being torn
3338 * down, allocating a new send tag is not allowed. Else send
3339 * tags may leak.
3340 */
3341 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3342 return (EINVAL);
3343
3344 error = m_snd_tag_alloc(ifp, ¶ms, st);
3345 #ifdef INET
3346 if (error == 0) {
3347 counter_u64_add(rate_limit_set_ok, 1);
3348 counter_u64_add(rate_limit_active, 1);
3349 } else if (error != EOPNOTSUPP)
3350 counter_u64_add(rate_limit_alloc_fail, 1);
3351 #endif
3352 return (error);
3353 }
3354
3355 void
in_pcbdetach_tag(struct m_snd_tag * mst)3356 in_pcbdetach_tag(struct m_snd_tag *mst)
3357 {
3358
3359 m_snd_tag_rele(mst);
3360 #ifdef INET
3361 counter_u64_add(rate_limit_active, -1);
3362 #endif
3363 }
3364
3365 /*
3366 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3367 * if any:
3368 */
3369 void
in_pcbdetach_txrtlmt(struct inpcb * inp)3370 in_pcbdetach_txrtlmt(struct inpcb *inp)
3371 {
3372 struct m_snd_tag *mst;
3373
3374 INP_WLOCK_ASSERT(inp);
3375
3376 mst = inp->inp_snd_tag;
3377 inp->inp_snd_tag = NULL;
3378
3379 if (mst == NULL)
3380 return;
3381
3382 m_snd_tag_rele(mst);
3383 #ifdef INET
3384 counter_u64_add(rate_limit_active, -1);
3385 #endif
3386 }
3387
3388 int
in_pcboutput_txrtlmt_locked(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb,uint32_t max_pacing_rate)3389 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3390 {
3391 int error;
3392
3393 /*
3394 * If the existing send tag is for the wrong interface due to
3395 * a route change, first drop the existing tag. Set the
3396 * CHANGED flag so that we will keep trying to allocate a new
3397 * tag if we fail to allocate one this time.
3398 */
3399 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3400 in_pcbdetach_txrtlmt(inp);
3401 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3402 }
3403
3404 /*
3405 * NOTE: When attaching to a network interface a reference is
3406 * made to ensure the network interface doesn't go away until
3407 * all ratelimit connections are gone. The network interface
3408 * pointers compared below represent valid network interfaces,
3409 * except when comparing towards NULL.
3410 */
3411 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3412 error = 0;
3413 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3414 if (inp->inp_snd_tag != NULL)
3415 in_pcbdetach_txrtlmt(inp);
3416 error = 0;
3417 } else if (inp->inp_snd_tag == NULL) {
3418 /*
3419 * In order to utilize packet pacing with RSS, we need
3420 * to wait until there is a valid RSS hash before we
3421 * can proceed:
3422 */
3423 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3424 error = EAGAIN;
3425 } else {
3426 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3427 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3428 }
3429 } else {
3430 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3431 }
3432 if (error == 0 || error == EOPNOTSUPP)
3433 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3434
3435 return (error);
3436 }
3437
3438 /*
3439 * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3440 * is set in the fast path and will attach/detach/modify the TX rate
3441 * limit send tag based on the socket's so_max_pacing_rate value.
3442 */
3443 void
in_pcboutput_txrtlmt(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb)3444 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3445 {
3446 struct socket *socket;
3447 uint32_t max_pacing_rate;
3448 bool did_upgrade;
3449
3450 if (inp == NULL)
3451 return;
3452
3453 socket = inp->inp_socket;
3454 if (socket == NULL)
3455 return;
3456
3457 if (!INP_WLOCKED(inp)) {
3458 /*
3459 * NOTE: If the write locking fails, we need to bail
3460 * out and use the non-ratelimited ring for the
3461 * transmit until there is a new chance to get the
3462 * write lock.
3463 */
3464 if (!INP_TRY_UPGRADE(inp))
3465 return;
3466 did_upgrade = 1;
3467 } else {
3468 did_upgrade = 0;
3469 }
3470
3471 /*
3472 * NOTE: The so_max_pacing_rate value is read unlocked,
3473 * because atomic updates are not required since the variable
3474 * is checked at every mbuf we send. It is assumed that the
3475 * variable read itself will be atomic.
3476 */
3477 max_pacing_rate = socket->so_max_pacing_rate;
3478
3479 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3480
3481 if (did_upgrade)
3482 INP_DOWNGRADE(inp);
3483 }
3484
3485 /*
3486 * Track route changes for TX rate limiting.
3487 */
3488 void
in_pcboutput_eagain(struct inpcb * inp)3489 in_pcboutput_eagain(struct inpcb *inp)
3490 {
3491 bool did_upgrade;
3492
3493 if (inp == NULL)
3494 return;
3495
3496 if (inp->inp_snd_tag == NULL)
3497 return;
3498
3499 if (!INP_WLOCKED(inp)) {
3500 /*
3501 * NOTE: If the write locking fails, we need to bail
3502 * out and use the non-ratelimited ring for the
3503 * transmit until there is a new chance to get the
3504 * write lock.
3505 */
3506 if (!INP_TRY_UPGRADE(inp))
3507 return;
3508 did_upgrade = 1;
3509 } else {
3510 did_upgrade = 0;
3511 }
3512
3513 /* detach rate limiting */
3514 in_pcbdetach_txrtlmt(inp);
3515
3516 /* make sure new mbuf send tag allocation is made */
3517 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3518
3519 if (did_upgrade)
3520 INP_DOWNGRADE(inp);
3521 }
3522
3523 #ifdef INET
3524 static void
rl_init(void * st)3525 rl_init(void *st)
3526 {
3527 rate_limit_new = counter_u64_alloc(M_WAITOK);
3528 rate_limit_chg = counter_u64_alloc(M_WAITOK);
3529 rate_limit_active = counter_u64_alloc(M_WAITOK);
3530 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3531 rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3532 }
3533
3534 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3535 #endif
3536 #endif /* RATELIMIT */
3537