1 /* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2005 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Julio M. Merino Vidal, developed as part of Google's Summer of Code
11 * 2005 program.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Efficient memory file system supporting functions.
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/dirent.h>
42 #include <sys/fnv_hash.h>
43 #include <sys/lock.h>
44 #include <sys/limits.h>
45 #include <sys/mount.h>
46 #include <sys/namei.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/random.h>
50 #include <sys/refcount.h>
51 #include <sys/rwlock.h>
52 #include <sys/smr.h>
53 #include <sys/stat.h>
54 #include <sys/sysctl.h>
55 #include <sys/user.h>
56 #include <sys/vnode.h>
57 #include <sys/vmmeter.h>
58
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_object.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_pager.h>
65 #include <vm/vm_extern.h>
66 #include <vm/swap_pager.h>
67 #include <vm/uma.h>
68
69 #include <fs/tmpfs/tmpfs.h>
70 #include <fs/tmpfs/tmpfs_fifoops.h>
71 #include <fs/tmpfs/tmpfs_vnops.h>
72
73 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
74 "tmpfs file system");
75
76 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED;
77 static long tmpfs_pages_avail_init;
78 static int tmpfs_mem_percent = TMPFS_MEM_PERCENT;
79 static void tmpfs_set_reserve_from_percent(void);
80
81 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure");
82 static uma_zone_t tmpfs_node_pool;
83 VFS_SMR_DECLARE;
84
85 int tmpfs_pager_type = -1;
86
87 static vm_object_t
tmpfs_pager_alloc(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t offset,struct ucred * cred)88 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
89 vm_ooffset_t offset, struct ucred *cred)
90 {
91 vm_object_t object;
92
93 MPASS(handle == NULL);
94 MPASS(offset == 0);
95 object = vm_object_allocate_dyn(tmpfs_pager_type, size,
96 OBJ_COLORED | OBJ_SWAP);
97 if (!swap_pager_init_object(object, NULL, NULL, size, 0)) {
98 vm_object_deallocate(object);
99 object = NULL;
100 }
101 return (object);
102 }
103
104 /*
105 * Make sure tmpfs vnodes with writable mappings can be found on the lazy list.
106 *
107 * This allows for periodic mtime updates while only scanning vnodes which are
108 * plausibly dirty, see tmpfs_update_mtime_lazy.
109 */
110 static void
tmpfs_pager_writecount_recalc(vm_object_t object,vm_offset_t old,vm_offset_t new)111 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old,
112 vm_offset_t new)
113 {
114 struct vnode *vp;
115
116 VM_OBJECT_ASSERT_WLOCKED(object);
117
118 vp = VM_TO_TMPFS_VP(object);
119
120 /*
121 * Forced unmount?
122 */
123 if (vp == NULL || vp->v_object == NULL) {
124 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
125 ("object %p with OBJ_TMPFS_VREF but without vnode",
126 object));
127 VM_OBJECT_WUNLOCK(object);
128 return;
129 }
130
131 if (old == 0) {
132 VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
133 ("object without writable mappings has a reference"));
134 VNPASS(vp->v_usecount > 0, vp);
135 } else {
136 VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp,
137 ("object with writable mappings does not "
138 "have a reference"));
139 }
140
141 if (old == new) {
142 VM_OBJECT_WUNLOCK(object);
143 return;
144 }
145
146 if (new == 0) {
147 vm_object_clear_flag(object, OBJ_TMPFS_VREF);
148 VM_OBJECT_WUNLOCK(object);
149 vrele(vp);
150 } else {
151 if ((object->flags & OBJ_TMPFS_VREF) == 0) {
152 vref(vp);
153 vlazy(vp);
154 vm_object_set_flag(object, OBJ_TMPFS_VREF);
155 }
156 VM_OBJECT_WUNLOCK(object);
157 }
158 }
159
160 static void
tmpfs_pager_update_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)161 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start,
162 vm_offset_t end)
163 {
164 vm_offset_t new, old;
165
166 VM_OBJECT_WLOCK(object);
167 KASSERT((object->flags & OBJ_ANON) == 0,
168 ("%s: object %p with OBJ_ANON", __func__, object));
169 old = object->un_pager.swp.writemappings;
170 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
171 new = object->un_pager.swp.writemappings;
172 tmpfs_pager_writecount_recalc(object, old, new);
173 VM_OBJECT_ASSERT_UNLOCKED(object);
174 }
175
176 static void
tmpfs_pager_release_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)177 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start,
178 vm_offset_t end)
179 {
180 vm_offset_t new, old;
181
182 VM_OBJECT_WLOCK(object);
183 KASSERT((object->flags & OBJ_ANON) == 0,
184 ("%s: object %p with OBJ_ANON", __func__, object));
185 old = object->un_pager.swp.writemappings;
186 KASSERT(old >= (vm_ooffset_t)end - start,
187 ("tmpfs obj %p writecount %jx dec %jx", object, (uintmax_t)old,
188 (uintmax_t)((vm_ooffset_t)end - start)));
189 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
190 new = object->un_pager.swp.writemappings;
191 tmpfs_pager_writecount_recalc(object, old, new);
192 VM_OBJECT_ASSERT_UNLOCKED(object);
193 }
194
195 static void
tmpfs_pager_getvp(vm_object_t object,struct vnode ** vpp,bool * vp_heldp)196 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
197 {
198 struct vnode *vp;
199
200 /*
201 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type
202 * type. In this case there is no v_writecount to adjust.
203 */
204 if (vp_heldp != NULL)
205 VM_OBJECT_RLOCK(object);
206 else
207 VM_OBJECT_ASSERT_LOCKED(object);
208 if ((object->flags & OBJ_TMPFS) != 0) {
209 vp = VM_TO_TMPFS_VP(object);
210 if (vp != NULL) {
211 *vpp = vp;
212 if (vp_heldp != NULL) {
213 vhold(vp);
214 *vp_heldp = true;
215 }
216 }
217 }
218 if (vp_heldp != NULL)
219 VM_OBJECT_RUNLOCK(object);
220 }
221
222 static void
tmpfs_pager_freespace(vm_object_t obj,vm_pindex_t start,vm_size_t size)223 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
224 {
225 struct tmpfs_node *node;
226 struct tmpfs_mount *tm;
227 vm_size_t c;
228
229 swap_pager_freespace(obj, start, size, &c);
230 if ((obj->flags & OBJ_TMPFS) == 0 || c == 0)
231 return;
232
233 node = obj->un_pager.swp.swp_priv;
234 MPASS(node->tn_type == VREG);
235 tm = node->tn_reg.tn_tmp;
236
237 KASSERT(tm->tm_pages_used >= c,
238 ("tmpfs tm %p pages %jd free %jd", tm,
239 (uintmax_t)tm->tm_pages_used, (uintmax_t)c));
240 atomic_add_long(&tm->tm_pages_used, -c);
241 KASSERT(node->tn_reg.tn_pages >= c,
242 ("tmpfs node %p pages %jd free %jd", node,
243 (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c));
244 node->tn_reg.tn_pages -= c;
245 }
246
247 static void
tmpfs_page_inserted(vm_object_t obj,vm_page_t m)248 tmpfs_page_inserted(vm_object_t obj, vm_page_t m)
249 {
250 struct tmpfs_node *node;
251 struct tmpfs_mount *tm;
252
253 if ((obj->flags & OBJ_TMPFS) == 0)
254 return;
255
256 node = obj->un_pager.swp.swp_priv;
257 MPASS(node->tn_type == VREG);
258 tm = node->tn_reg.tn_tmp;
259
260 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
261 atomic_add_long(&tm->tm_pages_used, 1);
262 node->tn_reg.tn_pages += 1;
263 }
264 }
265
266 static void
tmpfs_page_removed(vm_object_t obj,vm_page_t m)267 tmpfs_page_removed(vm_object_t obj, vm_page_t m)
268 {
269 struct tmpfs_node *node;
270 struct tmpfs_mount *tm;
271
272 if ((obj->flags & OBJ_TMPFS) == 0)
273 return;
274
275 node = obj->un_pager.swp.swp_priv;
276 MPASS(node->tn_type == VREG);
277 tm = node->tn_reg.tn_tmp;
278
279 if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
280 KASSERT(tm->tm_pages_used >= 1,
281 ("tmpfs tm %p pages %jd free 1", tm,
282 (uintmax_t)tm->tm_pages_used));
283 atomic_add_long(&tm->tm_pages_used, -1);
284 KASSERT(node->tn_reg.tn_pages >= 1,
285 ("tmpfs node %p pages %jd free 1", node,
286 (uintmax_t)node->tn_reg.tn_pages));
287 node->tn_reg.tn_pages -= 1;
288 }
289 }
290
291 static boolean_t
tmpfs_can_alloc_page(vm_object_t obj,vm_pindex_t pindex)292 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex)
293 {
294 struct tmpfs_mount *tm;
295
296 tm = VM_TO_TMPFS_MP(obj);
297 if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) ||
298 tm->tm_pages_max == 0)
299 return (true);
300 if (tm->tm_pages_max == ULONG_MAX)
301 return (tmpfs_mem_avail() >= 1);
302 return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used));
303 }
304
305 struct pagerops tmpfs_pager_ops = {
306 .pgo_kvme_type = KVME_TYPE_VNODE,
307 .pgo_alloc = tmpfs_pager_alloc,
308 .pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
309 .pgo_update_writecount = tmpfs_pager_update_writecount,
310 .pgo_release_writecount = tmpfs_pager_release_writecount,
311 .pgo_mightbedirty = vm_object_mightbedirty_,
312 .pgo_getvp = tmpfs_pager_getvp,
313 .pgo_freespace = tmpfs_pager_freespace,
314 .pgo_page_inserted = tmpfs_page_inserted,
315 .pgo_page_removed = tmpfs_page_removed,
316 .pgo_can_alloc_page = tmpfs_can_alloc_page,
317 };
318
319 static int
tmpfs_node_ctor(void * mem,int size,void * arg,int flags)320 tmpfs_node_ctor(void *mem, int size, void *arg, int flags)
321 {
322 struct tmpfs_node *node;
323
324 node = mem;
325 node->tn_gen++;
326 node->tn_size = 0;
327 node->tn_status = 0;
328 node->tn_accessed = false;
329 node->tn_flags = 0;
330 node->tn_links = 0;
331 node->tn_vnode = NULL;
332 node->tn_vpstate = 0;
333 return (0);
334 }
335
336 static void
tmpfs_node_dtor(void * mem,int size,void * arg)337 tmpfs_node_dtor(void *mem, int size, void *arg)
338 {
339 struct tmpfs_node *node;
340
341 node = mem;
342 node->tn_type = VNON;
343 }
344
345 static int
tmpfs_node_init(void * mem,int size,int flags)346 tmpfs_node_init(void *mem, int size, int flags)
347 {
348 struct tmpfs_node *node;
349
350 node = mem;
351 node->tn_id = 0;
352 mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF | MTX_NEW);
353 node->tn_gen = arc4random();
354 return (0);
355 }
356
357 static void
tmpfs_node_fini(void * mem,int size)358 tmpfs_node_fini(void *mem, int size)
359 {
360 struct tmpfs_node *node;
361
362 node = mem;
363 mtx_destroy(&node->tn_interlock);
364 }
365
366 int
tmpfs_subr_init(void)367 tmpfs_subr_init(void)
368 {
369 tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops,
370 OBJT_SWAP);
371 if (tmpfs_pager_type == -1)
372 return (EINVAL);
373 tmpfs_node_pool = uma_zcreate("TMPFS node",
374 sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor,
375 tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0);
376 VFS_SMR_ZONE_SET(tmpfs_node_pool);
377
378 tmpfs_pages_avail_init = tmpfs_mem_avail();
379 tmpfs_set_reserve_from_percent();
380 return (0);
381 }
382
383 void
tmpfs_subr_uninit(void)384 tmpfs_subr_uninit(void)
385 {
386 if (tmpfs_pager_type != -1)
387 vm_pager_free_dyn_type(tmpfs_pager_type);
388 tmpfs_pager_type = -1;
389 uma_zdestroy(tmpfs_node_pool);
390 }
391
392 static int
sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)393 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)
394 {
395 int error;
396 long pages, bytes;
397
398 pages = *(long *)arg1;
399 bytes = pages * PAGE_SIZE;
400
401 error = sysctl_handle_long(oidp, &bytes, 0, req);
402 if (error || !req->newptr)
403 return (error);
404
405 pages = bytes / PAGE_SIZE;
406 if (pages < TMPFS_PAGES_MINRESERVED)
407 return (EINVAL);
408
409 *(long *)arg1 = pages;
410 return (0);
411 }
412
413 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved,
414 CTLTYPE_LONG | CTLFLAG_MPSAFE | CTLFLAG_RW, &tmpfs_pages_reserved, 0,
415 sysctl_mem_reserved, "L",
416 "Amount of available memory and swap below which tmpfs growth stops");
417
418 static int
sysctl_mem_percent(SYSCTL_HANDLER_ARGS)419 sysctl_mem_percent(SYSCTL_HANDLER_ARGS)
420 {
421 int error, percent;
422
423 percent = *(int *)arg1;
424 error = sysctl_handle_int(oidp, &percent, 0, req);
425 if (error || !req->newptr)
426 return (error);
427
428 if ((unsigned) percent > 100)
429 return (EINVAL);
430
431 *(int *)arg1 = percent;
432 tmpfs_set_reserve_from_percent();
433 return (0);
434 }
435
436 static void
tmpfs_set_reserve_from_percent(void)437 tmpfs_set_reserve_from_percent(void)
438 {
439 size_t reserved;
440
441 reserved = tmpfs_pages_avail_init * (100 - tmpfs_mem_percent) / 100;
442 tmpfs_pages_reserved = max(reserved, TMPFS_PAGES_MINRESERVED);
443 }
444
445 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_percent,
446 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &tmpfs_mem_percent, 0,
447 sysctl_mem_percent, "I",
448 "Percent of available memory that can be used if no size limit");
449
450 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a,
451 struct tmpfs_dirent *b);
452 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
453
454 size_t
tmpfs_mem_avail(void)455 tmpfs_mem_avail(void)
456 {
457 size_t avail;
458 long reserved;
459
460 avail = swap_pager_avail + vm_free_count();
461 reserved = atomic_load_long(&tmpfs_pages_reserved);
462 if (__predict_false(avail < reserved))
463 return (0);
464 return (avail - reserved);
465 }
466
467 size_t
tmpfs_pages_used(struct tmpfs_mount * tmp)468 tmpfs_pages_used(struct tmpfs_mount *tmp)
469 {
470 const size_t node_size = sizeof(struct tmpfs_node) +
471 sizeof(struct tmpfs_dirent);
472 size_t meta_pages;
473
474 meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size,
475 PAGE_SIZE);
476 return (meta_pages + tmp->tm_pages_used);
477 }
478
479 bool
tmpfs_pages_check_avail(struct tmpfs_mount * tmp,size_t req_pages)480 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages)
481 {
482 if (tmpfs_mem_avail() < req_pages)
483 return (false);
484
485 if (tmp->tm_pages_max != ULONG_MAX &&
486 tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp))
487 return (false);
488
489 return (true);
490 }
491
492 static int
tmpfs_partial_page_invalidate(vm_object_t object,vm_pindex_t idx,int base,int end,boolean_t ignerr)493 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
494 int end, boolean_t ignerr)
495 {
496 vm_page_t m;
497 int rv, error;
498
499 VM_OBJECT_ASSERT_WLOCKED(object);
500 KASSERT(base >= 0, ("%s: base %d", __func__, base));
501 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
502 end));
503 error = 0;
504
505 retry:
506 m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
507 if (m != NULL) {
508 MPASS(vm_page_all_valid(m));
509 } else if (vm_pager_has_page(object, idx, NULL, NULL)) {
510 m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL |
511 VM_ALLOC_WAITFAIL);
512 if (m == NULL)
513 goto retry;
514 vm_object_pip_add(object, 1);
515 VM_OBJECT_WUNLOCK(object);
516 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
517 VM_OBJECT_WLOCK(object);
518 vm_object_pip_wakeup(object);
519 if (rv == VM_PAGER_OK) {
520 /*
521 * Since the page was not resident, and therefore not
522 * recently accessed, immediately enqueue it for
523 * asynchronous laundering. The current operation is
524 * not regarded as an access.
525 */
526 vm_page_launder(m);
527 } else {
528 vm_page_free(m);
529 m = NULL;
530 if (!ignerr)
531 error = EIO;
532 }
533 }
534 if (m != NULL) {
535 pmap_zero_page_area(m, base, end - base);
536 vm_page_set_dirty(m);
537 vm_page_xunbusy(m);
538 }
539
540 return (error);
541 }
542
543 void
tmpfs_ref_node(struct tmpfs_node * node)544 tmpfs_ref_node(struct tmpfs_node *node)
545 {
546 #ifdef INVARIANTS
547 u_int old;
548
549 old =
550 #endif
551 refcount_acquire(&node->tn_refcount);
552 #ifdef INVARIANTS
553 KASSERT(old > 0, ("node %p zero refcount", node));
554 #endif
555 }
556
557 /*
558 * Allocates a new node of type 'type' inside the 'tmp' mount point, with
559 * its owner set to 'uid', its group to 'gid' and its mode set to 'mode',
560 * using the credentials of the process 'p'.
561 *
562 * If the node type is set to 'VDIR', then the parent parameter must point
563 * to the parent directory of the node being created. It may only be NULL
564 * while allocating the root node.
565 *
566 * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter
567 * specifies the device the node represents.
568 *
569 * If the node type is set to 'VLNK', then the parameter target specifies
570 * the file name of the target file for the symbolic link that is being
571 * created.
572 *
573 * Note that new nodes are retrieved from the available list if it has
574 * items or, if it is empty, from the node pool as long as there is enough
575 * space to create them.
576 *
577 * Returns zero on success or an appropriate error code on failure.
578 */
579 int
tmpfs_alloc_node(struct mount * mp,struct tmpfs_mount * tmp,__enum_uint8 (vtype)type,uid_t uid,gid_t gid,mode_t mode,struct tmpfs_node * parent,const char * target,dev_t rdev,struct tmpfs_node ** node)580 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, __enum_uint8(vtype) type,
581 uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent,
582 const char *target, dev_t rdev, struct tmpfs_node **node)
583 {
584 struct tmpfs_node *nnode;
585 char *symlink;
586 char symlink_smr;
587
588 /* If the root directory of the 'tmp' file system is not yet
589 * allocated, this must be the request to do it. */
590 MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR));
591
592 MPASS((type == VLNK) ^ (target == NULL));
593 MPASS((type == VBLK || type == VCHR) ^ (rdev == VNOVAL));
594
595 if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max)
596 return (ENOSPC);
597 if (!tmpfs_pages_check_avail(tmp, 1))
598 return (ENOSPC);
599
600 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
601 /*
602 * When a new tmpfs node is created for fully
603 * constructed mount point, there must be a parent
604 * node, which vnode is locked exclusively. As
605 * consequence, if the unmount is executing in
606 * parallel, vflush() cannot reclaim the parent vnode.
607 * Due to this, the check for MNTK_UNMOUNT flag is not
608 * racy: if we did not see MNTK_UNMOUNT flag, then tmp
609 * cannot be destroyed until node construction is
610 * finished and the parent vnode unlocked.
611 *
612 * Tmpfs does not need to instantiate new nodes during
613 * unmount.
614 */
615 return (EBUSY);
616 }
617 if ((mp->mnt_kern_flag & MNT_RDONLY) != 0)
618 return (EROFS);
619
620 nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK);
621
622 /* Generic initialization. */
623 nnode->tn_type = type;
624 vfs_timestamp(&nnode->tn_atime);
625 nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime =
626 nnode->tn_atime;
627 nnode->tn_uid = uid;
628 nnode->tn_gid = gid;
629 nnode->tn_mode = mode;
630 nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr);
631 nnode->tn_refcount = 1;
632 LIST_INIT(&nnode->tn_extattrs);
633
634 /* Type-specific initialization. */
635 switch (nnode->tn_type) {
636 case VBLK:
637 case VCHR:
638 nnode->tn_rdev = rdev;
639 break;
640
641 case VDIR:
642 RB_INIT(&nnode->tn_dir.tn_dirhead);
643 LIST_INIT(&nnode->tn_dir.tn_dupindex);
644 MPASS(parent != nnode);
645 MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL));
646 nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent;
647 nnode->tn_dir.tn_readdir_lastn = 0;
648 nnode->tn_dir.tn_readdir_lastp = NULL;
649 nnode->tn_dir.tn_wht_size = 0;
650 nnode->tn_links++;
651 TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent);
652 nnode->tn_dir.tn_parent->tn_links++;
653 TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent);
654 break;
655
656 case VFIFO:
657 /* FALLTHROUGH */
658 case VSOCK:
659 break;
660
661 case VLNK:
662 MPASS(strlen(target) < MAXPATHLEN);
663 nnode->tn_size = strlen(target);
664
665 symlink = NULL;
666 if (!tmp->tm_nonc) {
667 symlink = cache_symlink_alloc(nnode->tn_size + 1,
668 M_WAITOK);
669 symlink_smr = true;
670 }
671 if (symlink == NULL) {
672 symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME,
673 M_WAITOK);
674 symlink_smr = false;
675 }
676 memcpy(symlink, target, nnode->tn_size + 1);
677
678 /*
679 * Allow safe symlink resolving for lockless lookup.
680 * tmpfs_fplookup_symlink references this comment.
681 *
682 * 1. nnode is not yet visible to the world
683 * 2. both tn_link_target and tn_link_smr get populated
684 * 3. release fence publishes their content
685 * 4. tn_link_target content is immutable until node
686 * destruction, where the pointer gets set to NULL
687 * 5. tn_link_smr is never changed once set
688 *
689 * As a result it is sufficient to issue load consume
690 * on the node pointer to also get the above content
691 * in a stable manner. Worst case tn_link_smr flag
692 * may be set to true despite being stale, while the
693 * target buffer is already cleared out.
694 */
695 atomic_store_ptr(&nnode->tn_link_target, symlink);
696 atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr);
697 atomic_thread_fence_rel();
698 break;
699
700 case VREG:
701 nnode->tn_reg.tn_aobj =
702 vm_pager_allocate(tmpfs_pager_type, NULL, 0,
703 VM_PROT_DEFAULT, 0,
704 NULL /* XXXKIB - tmpfs needs swap reservation */);
705 nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode;
706 vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS);
707 nnode->tn_reg.tn_tmp = tmp;
708 nnode->tn_reg.tn_pages = 0;
709 break;
710
711 default:
712 panic("tmpfs_alloc_node: type %p %d", nnode,
713 (int)nnode->tn_type);
714 }
715
716 TMPFS_LOCK(tmp);
717 LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries);
718 nnode->tn_attached = true;
719 tmp->tm_nodes_inuse++;
720 tmp->tm_refcount++;
721 TMPFS_UNLOCK(tmp);
722
723 *node = nnode;
724 return (0);
725 }
726
727 /*
728 * Destroys the node pointed to by node from the file system 'tmp'.
729 * If the node references a directory, no entries are allowed.
730 */
731 void
tmpfs_free_node(struct tmpfs_mount * tmp,struct tmpfs_node * node)732 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node)
733 {
734 if (refcount_release_if_not_last(&node->tn_refcount))
735 return;
736
737 TMPFS_LOCK(tmp);
738 TMPFS_NODE_LOCK(node);
739 if (!tmpfs_free_node_locked(tmp, node, false)) {
740 TMPFS_NODE_UNLOCK(node);
741 TMPFS_UNLOCK(tmp);
742 }
743 }
744
745 bool
tmpfs_free_node_locked(struct tmpfs_mount * tmp,struct tmpfs_node * node,bool detach)746 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node,
747 bool detach)
748 {
749 struct tmpfs_extattr *ea;
750 vm_object_t uobj;
751 char *symlink;
752 bool last;
753
754 TMPFS_MP_ASSERT_LOCKED(tmp);
755 TMPFS_NODE_ASSERT_LOCKED(node);
756
757 last = refcount_release(&node->tn_refcount);
758 if (node->tn_attached && (detach || last)) {
759 MPASS(tmp->tm_nodes_inuse > 0);
760 tmp->tm_nodes_inuse--;
761 LIST_REMOVE(node, tn_entries);
762 node->tn_attached = false;
763 }
764 if (!last)
765 return (false);
766
767 TMPFS_NODE_UNLOCK(node);
768
769 #ifdef INVARIANTS
770 MPASS(node->tn_vnode == NULL);
771 MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0);
772
773 /*
774 * Make sure this is a node type we can deal with. Everything
775 * is explicitly enumerated without the 'default' clause so
776 * the compiler can throw an error in case a new type is
777 * added.
778 */
779 switch (node->tn_type) {
780 case VBLK:
781 case VCHR:
782 case VDIR:
783 case VFIFO:
784 case VSOCK:
785 case VLNK:
786 case VREG:
787 break;
788 case VNON:
789 case VBAD:
790 case VMARKER:
791 panic("%s: bad type %d for node %p", __func__,
792 (int)node->tn_type, node);
793 }
794 #endif
795
796 while ((ea = LIST_FIRST(&node->tn_extattrs)) != NULL) {
797 LIST_REMOVE(ea, ea_extattrs);
798 tmpfs_extattr_free(ea);
799 }
800
801 switch (node->tn_type) {
802 case VREG:
803 uobj = node->tn_reg.tn_aobj;
804 node->tn_reg.tn_aobj = NULL;
805 if (uobj != NULL) {
806 VM_OBJECT_WLOCK(uobj);
807 KASSERT((uobj->flags & OBJ_TMPFS) != 0,
808 ("tmpfs node %p uobj %p not tmpfs", node, uobj));
809 vm_object_clear_flag(uobj, OBJ_TMPFS);
810 KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages,
811 ("tmpfs tmp %p node %p pages %jd free %jd", tmp,
812 node, (uintmax_t)tmp->tm_pages_used,
813 (uintmax_t)node->tn_reg.tn_pages));
814 atomic_add_long(&tmp->tm_pages_used,
815 -node->tn_reg.tn_pages);
816 VM_OBJECT_WUNLOCK(uobj);
817 }
818 tmpfs_free_tmp(tmp);
819
820 /*
821 * vm_object_deallocate() must not be called while
822 * owning tm_allnode_lock, because deallocate might
823 * sleep. Call it after tmpfs_free_tmp() does the
824 * unlock.
825 */
826 if (uobj != NULL)
827 vm_object_deallocate(uobj);
828
829 break;
830 case VLNK:
831 tmpfs_free_tmp(tmp);
832
833 symlink = node->tn_link_target;
834 atomic_store_ptr(&node->tn_link_target, NULL);
835 if (atomic_load_char(&node->tn_link_smr)) {
836 cache_symlink_free(symlink, node->tn_size + 1);
837 } else {
838 free(symlink, M_TMPFSNAME);
839 }
840 break;
841 default:
842 tmpfs_free_tmp(tmp);
843 break;
844 }
845
846 uma_zfree_smr(tmpfs_node_pool, node);
847 return (true);
848 }
849
850 static __inline uint32_t
tmpfs_dirent_hash(const char * name,u_int len)851 tmpfs_dirent_hash(const char *name, u_int len)
852 {
853 uint32_t hash;
854
855 hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK;
856 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP
857 hash &= 0xf;
858 #endif
859 if (hash < TMPFS_DIRCOOKIE_MIN)
860 hash += TMPFS_DIRCOOKIE_MIN;
861
862 return (hash);
863 }
864
865 static __inline off_t
tmpfs_dirent_cookie(struct tmpfs_dirent * de)866 tmpfs_dirent_cookie(struct tmpfs_dirent *de)
867 {
868 if (de == NULL)
869 return (TMPFS_DIRCOOKIE_EOF);
870
871 MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN);
872
873 return (de->td_cookie);
874 }
875
876 static __inline boolean_t
tmpfs_dirent_dup(struct tmpfs_dirent * de)877 tmpfs_dirent_dup(struct tmpfs_dirent *de)
878 {
879 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0);
880 }
881
882 static __inline boolean_t
tmpfs_dirent_duphead(struct tmpfs_dirent * de)883 tmpfs_dirent_duphead(struct tmpfs_dirent *de)
884 {
885 return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0);
886 }
887
888 void
tmpfs_dirent_init(struct tmpfs_dirent * de,const char * name,u_int namelen)889 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen)
890 {
891 de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen);
892 memcpy(de->ud.td_name, name, namelen);
893 de->td_namelen = namelen;
894 }
895
896 /*
897 * Allocates a new directory entry for the node node with a name of name.
898 * The new directory entry is returned in *de.
899 *
900 * The link count of node is increased by one to reflect the new object
901 * referencing it.
902 *
903 * Returns zero on success or an appropriate error code on failure.
904 */
905 int
tmpfs_alloc_dirent(struct tmpfs_mount * tmp,struct tmpfs_node * node,const char * name,u_int len,struct tmpfs_dirent ** de)906 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node,
907 const char *name, u_int len, struct tmpfs_dirent **de)
908 {
909 struct tmpfs_dirent *nde;
910
911 nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK);
912 nde->td_node = node;
913 if (name != NULL) {
914 nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK);
915 tmpfs_dirent_init(nde, name, len);
916 } else
917 nde->td_namelen = 0;
918 if (node != NULL)
919 node->tn_links++;
920
921 *de = nde;
922
923 return (0);
924 }
925
926 /*
927 * Frees a directory entry. It is the caller's responsibility to destroy
928 * the node referenced by it if needed.
929 *
930 * The link count of node is decreased by one to reflect the removal of an
931 * object that referenced it. This only happens if 'node_exists' is true;
932 * otherwise the function will not access the node referred to by the
933 * directory entry, as it may already have been released from the outside.
934 */
935 void
tmpfs_free_dirent(struct tmpfs_mount * tmp,struct tmpfs_dirent * de)936 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de)
937 {
938 struct tmpfs_node *node;
939
940 node = de->td_node;
941 if (node != NULL) {
942 MPASS(node->tn_links > 0);
943 node->tn_links--;
944 }
945 if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL)
946 free(de->ud.td_name, M_TMPFSNAME);
947 free(de, M_TMPFSDIR);
948 }
949
950 void
tmpfs_destroy_vobject(struct vnode * vp,vm_object_t obj)951 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj)
952 {
953 bool want_vrele;
954
955 ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject");
956 if (vp->v_type != VREG || obj == NULL)
957 return;
958
959 VM_OBJECT_WLOCK(obj);
960 VI_LOCK(vp);
961 vp->v_object = NULL;
962
963 /*
964 * May be going through forced unmount.
965 */
966 want_vrele = false;
967 if ((obj->flags & OBJ_TMPFS_VREF) != 0) {
968 vm_object_clear_flag(obj, OBJ_TMPFS_VREF);
969 want_vrele = true;
970 }
971
972 if (vp->v_writecount < 0)
973 vp->v_writecount = 0;
974 VI_UNLOCK(vp);
975 VM_OBJECT_WUNLOCK(obj);
976 if (want_vrele) {
977 vrele(vp);
978 }
979 }
980
981 /*
982 * Allocates a new vnode for the node node or returns a new reference to
983 * an existing one if the node had already a vnode referencing it. The
984 * resulting locked vnode is returned in *vpp.
985 *
986 * Returns zero on success or an appropriate error code on failure.
987 */
988 int
tmpfs_alloc_vp(struct mount * mp,struct tmpfs_node * node,int lkflag,struct vnode ** vpp)989 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag,
990 struct vnode **vpp)
991 {
992 struct vnode *vp;
993 enum vgetstate vs;
994 struct tmpfs_mount *tm;
995 vm_object_t object;
996 int error;
997
998 error = 0;
999 tm = VFS_TO_TMPFS(mp);
1000 TMPFS_NODE_LOCK(node);
1001 tmpfs_ref_node(node);
1002 loop:
1003 TMPFS_NODE_ASSERT_LOCKED(node);
1004 if ((vp = node->tn_vnode) != NULL) {
1005 MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0);
1006 if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) ||
1007 (VN_IS_DOOMED(vp) &&
1008 (lkflag & LK_NOWAIT) != 0)) {
1009 TMPFS_NODE_UNLOCK(node);
1010 error = ENOENT;
1011 vp = NULL;
1012 goto out;
1013 }
1014 if (VN_IS_DOOMED(vp)) {
1015 node->tn_vpstate |= TMPFS_VNODE_WRECLAIM;
1016 while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) {
1017 msleep(&node->tn_vnode, TMPFS_NODE_MTX(node),
1018 0, "tmpfsE", 0);
1019 }
1020 goto loop;
1021 }
1022 vs = vget_prep(vp);
1023 TMPFS_NODE_UNLOCK(node);
1024 error = vget_finish(vp, lkflag, vs);
1025 if (error == ENOENT) {
1026 TMPFS_NODE_LOCK(node);
1027 goto loop;
1028 }
1029 if (error != 0) {
1030 vp = NULL;
1031 goto out;
1032 }
1033
1034 /*
1035 * Make sure the vnode is still there after
1036 * getting the interlock to avoid racing a free.
1037 */
1038 if (node->tn_vnode != vp) {
1039 vput(vp);
1040 TMPFS_NODE_LOCK(node);
1041 goto loop;
1042 }
1043
1044 goto out;
1045 }
1046
1047 if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) ||
1048 (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) {
1049 TMPFS_NODE_UNLOCK(node);
1050 error = ENOENT;
1051 vp = NULL;
1052 goto out;
1053 }
1054
1055 /*
1056 * otherwise lock the vp list while we call getnewvnode
1057 * since that can block.
1058 */
1059 if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) {
1060 node->tn_vpstate |= TMPFS_VNODE_WANT;
1061 error = msleep((caddr_t) &node->tn_vpstate,
1062 TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0);
1063 if (error != 0)
1064 goto out;
1065 goto loop;
1066 } else
1067 node->tn_vpstate |= TMPFS_VNODE_ALLOCATING;
1068
1069 TMPFS_NODE_UNLOCK(node);
1070
1071 /* Get a new vnode and associate it with our node. */
1072 error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ?
1073 &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp);
1074 if (error != 0)
1075 goto unlock;
1076 MPASS(vp != NULL);
1077
1078 /* lkflag is ignored, the lock is exclusive */
1079 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1080
1081 vp->v_data = node;
1082 vp->v_type = node->tn_type;
1083
1084 /* Type-specific initialization. */
1085 switch (node->tn_type) {
1086 case VBLK:
1087 /* FALLTHROUGH */
1088 case VCHR:
1089 /* FALLTHROUGH */
1090 case VLNK:
1091 /* FALLTHROUGH */
1092 case VSOCK:
1093 break;
1094 case VFIFO:
1095 vp->v_op = &tmpfs_fifoop_entries;
1096 break;
1097 case VREG:
1098 object = node->tn_reg.tn_aobj;
1099 VM_OBJECT_WLOCK(object);
1100 KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
1101 ("%s: object %p with OBJ_TMPFS_VREF but without vnode",
1102 __func__, object));
1103 VI_LOCK(vp);
1104 KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs"));
1105 vp->v_object = object;
1106 vn_irflag_set_locked(vp, (tm->tm_pgread ? VIRF_PGREAD : 0) |
1107 VIRF_TEXT_REF);
1108 VI_UNLOCK(vp);
1109 VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
1110 ("leaked OBJ_TMPFS_VREF"));
1111 if (object->un_pager.swp.writemappings > 0) {
1112 vrefact(vp);
1113 vlazy(vp);
1114 vm_object_set_flag(object, OBJ_TMPFS_VREF);
1115 }
1116 VM_OBJECT_WUNLOCK(object);
1117 break;
1118 case VDIR:
1119 MPASS(node->tn_dir.tn_parent != NULL);
1120 if (node->tn_dir.tn_parent == node)
1121 vp->v_vflag |= VV_ROOT;
1122 break;
1123
1124 default:
1125 panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type);
1126 }
1127 if (vp->v_type != VFIFO)
1128 VN_LOCK_ASHARE(vp);
1129
1130 error = insmntque1(vp, mp);
1131 if (error != 0) {
1132 /* Need to clear v_object for insmntque failure. */
1133 tmpfs_destroy_vobject(vp, vp->v_object);
1134 vp->v_object = NULL;
1135 vp->v_data = NULL;
1136 vp->v_op = &dead_vnodeops;
1137 vgone(vp);
1138 vput(vp);
1139 vp = NULL;
1140 } else {
1141 vn_set_state(vp, VSTATE_CONSTRUCTED);
1142 }
1143
1144 unlock:
1145 TMPFS_NODE_LOCK(node);
1146
1147 MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING);
1148 node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING;
1149 node->tn_vnode = vp;
1150
1151 if (node->tn_vpstate & TMPFS_VNODE_WANT) {
1152 node->tn_vpstate &= ~TMPFS_VNODE_WANT;
1153 TMPFS_NODE_UNLOCK(node);
1154 wakeup((caddr_t) &node->tn_vpstate);
1155 } else
1156 TMPFS_NODE_UNLOCK(node);
1157
1158 out:
1159 if (error == 0) {
1160 *vpp = vp;
1161
1162 #ifdef INVARIANTS
1163 MPASS(*vpp != NULL);
1164 ASSERT_VOP_LOCKED(*vpp, __func__);
1165 TMPFS_NODE_LOCK(node);
1166 MPASS(*vpp == node->tn_vnode);
1167 TMPFS_NODE_UNLOCK(node);
1168 #endif
1169 }
1170 tmpfs_free_node(tm, node);
1171
1172 return (error);
1173 }
1174
1175 /*
1176 * Destroys the association between the vnode vp and the node it
1177 * references.
1178 */
1179 void
tmpfs_free_vp(struct vnode * vp)1180 tmpfs_free_vp(struct vnode *vp)
1181 {
1182 struct tmpfs_node *node;
1183
1184 node = VP_TO_TMPFS_NODE(vp);
1185
1186 TMPFS_NODE_ASSERT_LOCKED(node);
1187 node->tn_vnode = NULL;
1188 if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0)
1189 wakeup(&node->tn_vnode);
1190 node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM;
1191 vp->v_data = NULL;
1192 }
1193
1194 /*
1195 * Allocates a new file of type 'type' and adds it to the parent directory
1196 * 'dvp'; this addition is done using the component name given in 'cnp'.
1197 * The ownership of the new file is automatically assigned based on the
1198 * credentials of the caller (through 'cnp'), the group is set based on
1199 * the parent directory and the mode is determined from the 'vap' argument.
1200 * If successful, *vpp holds a vnode to the newly created file and zero
1201 * is returned. Otherwise *vpp is NULL and the function returns an
1202 * appropriate error code.
1203 */
1204 int
tmpfs_alloc_file(struct vnode * dvp,struct vnode ** vpp,struct vattr * vap,struct componentname * cnp,const char * target)1205 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
1206 struct componentname *cnp, const char *target)
1207 {
1208 int error;
1209 struct tmpfs_dirent *de;
1210 struct tmpfs_mount *tmp;
1211 struct tmpfs_node *dnode;
1212 struct tmpfs_node *node;
1213 struct tmpfs_node *parent;
1214
1215 ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file");
1216
1217 tmp = VFS_TO_TMPFS(dvp->v_mount);
1218 dnode = VP_TO_TMPFS_DIR(dvp);
1219 *vpp = NULL;
1220
1221 /* If the entry we are creating is a directory, we cannot overflow
1222 * the number of links of its parent, because it will get a new
1223 * link. */
1224 if (vap->va_type == VDIR) {
1225 /* Ensure that we do not overflow the maximum number of links
1226 * imposed by the system. */
1227 MPASS(dnode->tn_links <= TMPFS_LINK_MAX);
1228 if (dnode->tn_links == TMPFS_LINK_MAX) {
1229 return (EMLINK);
1230 }
1231
1232 parent = dnode;
1233 MPASS(parent != NULL);
1234 } else
1235 parent = NULL;
1236
1237 /* Allocate a node that represents the new file. */
1238 error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type,
1239 cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent,
1240 target, vap->va_rdev, &node);
1241 if (error != 0)
1242 return (error);
1243
1244 /* Allocate a directory entry that points to the new file. */
1245 error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen,
1246 &de);
1247 if (error != 0) {
1248 tmpfs_free_node(tmp, node);
1249 return (error);
1250 }
1251
1252 /* Allocate a vnode for the new file. */
1253 error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp);
1254 if (error != 0) {
1255 tmpfs_free_dirent(tmp, de);
1256 tmpfs_free_node(tmp, node);
1257 return (error);
1258 }
1259
1260 /* Now that all required items are allocated, we can proceed to
1261 * insert the new node into the directory, an operation that
1262 * cannot fail. */
1263 if (cnp->cn_flags & ISWHITEOUT)
1264 tmpfs_dir_whiteout_remove(dvp, cnp);
1265 tmpfs_dir_attach(dvp, de);
1266 return (0);
1267 }
1268
1269 struct tmpfs_dirent *
tmpfs_dir_first(struct tmpfs_node * dnode,struct tmpfs_dir_cursor * dc)1270 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1271 {
1272 struct tmpfs_dirent *de;
1273
1274 de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead);
1275 dc->tdc_tree = de;
1276 if (de != NULL && tmpfs_dirent_duphead(de))
1277 de = LIST_FIRST(&de->ud.td_duphead);
1278 dc->tdc_current = de;
1279
1280 return (dc->tdc_current);
1281 }
1282
1283 struct tmpfs_dirent *
tmpfs_dir_next(struct tmpfs_node * dnode,struct tmpfs_dir_cursor * dc)1284 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1285 {
1286 struct tmpfs_dirent *de;
1287
1288 MPASS(dc->tdc_tree != NULL);
1289 if (tmpfs_dirent_dup(dc->tdc_current)) {
1290 dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries);
1291 if (dc->tdc_current != NULL)
1292 return (dc->tdc_current);
1293 }
1294 dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir,
1295 &dnode->tn_dir.tn_dirhead, dc->tdc_tree);
1296 if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) {
1297 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1298 MPASS(dc->tdc_current != NULL);
1299 }
1300
1301 return (dc->tdc_current);
1302 }
1303
1304 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */
1305 static struct tmpfs_dirent *
tmpfs_dir_xlookup_hash(struct tmpfs_node * dnode,uint32_t hash)1306 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash)
1307 {
1308 struct tmpfs_dirent *de, dekey;
1309
1310 dekey.td_hash = hash;
1311 de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey);
1312 return (de);
1313 }
1314
1315 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */
1316 static struct tmpfs_dirent *
tmpfs_dir_lookup_cookie(struct tmpfs_node * node,off_t cookie,struct tmpfs_dir_cursor * dc)1317 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie,
1318 struct tmpfs_dir_cursor *dc)
1319 {
1320 struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead;
1321 struct tmpfs_dirent *de, dekey;
1322
1323 MPASS(cookie >= TMPFS_DIRCOOKIE_MIN);
1324
1325 if (cookie == node->tn_dir.tn_readdir_lastn &&
1326 (de = node->tn_dir.tn_readdir_lastp) != NULL) {
1327 /* Protect against possible race, tn_readdir_last[pn]
1328 * may be updated with only shared vnode lock held. */
1329 if (cookie == tmpfs_dirent_cookie(de))
1330 goto out;
1331 }
1332
1333 if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) {
1334 LIST_FOREACH(de, &node->tn_dir.tn_dupindex,
1335 uh.td_dup.index_entries) {
1336 MPASS(tmpfs_dirent_dup(de));
1337 if (de->td_cookie == cookie)
1338 goto out;
1339 /* dupindex list is sorted. */
1340 if (de->td_cookie < cookie) {
1341 de = NULL;
1342 goto out;
1343 }
1344 }
1345 MPASS(de == NULL);
1346 goto out;
1347 }
1348
1349 if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) {
1350 de = NULL;
1351 } else {
1352 dekey.td_hash = cookie;
1353 /* Recover if direntry for cookie was removed */
1354 de = RB_NFIND(tmpfs_dir, dirhead, &dekey);
1355 }
1356 dc->tdc_tree = de;
1357 dc->tdc_current = de;
1358 if (de != NULL && tmpfs_dirent_duphead(de)) {
1359 dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1360 MPASS(dc->tdc_current != NULL);
1361 }
1362 return (dc->tdc_current);
1363
1364 out:
1365 dc->tdc_tree = de;
1366 dc->tdc_current = de;
1367 if (de != NULL && tmpfs_dirent_dup(de))
1368 dc->tdc_tree = tmpfs_dir_xlookup_hash(node,
1369 de->td_hash);
1370 return (dc->tdc_current);
1371 }
1372
1373 /*
1374 * Looks for a directory entry in the directory represented by node.
1375 * 'cnp' describes the name of the entry to look for. Note that the .
1376 * and .. components are not allowed as they do not physically exist
1377 * within directories.
1378 *
1379 * Returns a pointer to the entry when found, otherwise NULL.
1380 */
1381 struct tmpfs_dirent *
tmpfs_dir_lookup(struct tmpfs_node * node,struct tmpfs_node * f,struct componentname * cnp)1382 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f,
1383 struct componentname *cnp)
1384 {
1385 struct tmpfs_dir_duphead *duphead;
1386 struct tmpfs_dirent *de;
1387 uint32_t hash;
1388
1389 MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.'));
1390 MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' &&
1391 cnp->cn_nameptr[1] == '.')));
1392 TMPFS_VALIDATE_DIR(node);
1393
1394 hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen);
1395 de = tmpfs_dir_xlookup_hash(node, hash);
1396 if (de != NULL && tmpfs_dirent_duphead(de)) {
1397 duphead = &de->ud.td_duphead;
1398 LIST_FOREACH(de, duphead, uh.td_dup.entries) {
1399 if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1400 cnp->cn_namelen))
1401 break;
1402 }
1403 } else if (de != NULL) {
1404 if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1405 cnp->cn_namelen))
1406 de = NULL;
1407 }
1408 if (de != NULL && f != NULL && de->td_node != f)
1409 de = NULL;
1410
1411 return (de);
1412 }
1413
1414 /*
1415 * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex
1416 * list, allocate new cookie value.
1417 */
1418 static void
tmpfs_dir_attach_dup(struct tmpfs_node * dnode,struct tmpfs_dir_duphead * duphead,struct tmpfs_dirent * nde)1419 tmpfs_dir_attach_dup(struct tmpfs_node *dnode,
1420 struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde)
1421 {
1422 struct tmpfs_dir_duphead *dupindex;
1423 struct tmpfs_dirent *de, *pde;
1424
1425 dupindex = &dnode->tn_dir.tn_dupindex;
1426 de = LIST_FIRST(dupindex);
1427 if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) {
1428 if (de == NULL)
1429 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1430 else
1431 nde->td_cookie = de->td_cookie + 1;
1432 MPASS(tmpfs_dirent_dup(nde));
1433 LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries);
1434 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1435 return;
1436 }
1437
1438 /*
1439 * Cookie numbers are near exhaustion. Scan dupindex list for unused
1440 * numbers. dupindex list is sorted in descending order. Keep it so
1441 * after inserting nde.
1442 */
1443 while (1) {
1444 pde = de;
1445 de = LIST_NEXT(de, uh.td_dup.index_entries);
1446 if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) {
1447 /*
1448 * Last element of the index doesn't have minimal cookie
1449 * value, use it.
1450 */
1451 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1452 LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries);
1453 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1454 return;
1455 } else if (de == NULL) {
1456 /*
1457 * We are so lucky have 2^30 hash duplicates in single
1458 * directory :) Return largest possible cookie value.
1459 * It should be fine except possible issues with
1460 * VOP_READDIR restart.
1461 */
1462 nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX;
1463 LIST_INSERT_HEAD(dupindex, nde,
1464 uh.td_dup.index_entries);
1465 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1466 return;
1467 }
1468 if (de->td_cookie + 1 == pde->td_cookie ||
1469 de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX)
1470 continue; /* No hole or invalid cookie. */
1471 nde->td_cookie = de->td_cookie + 1;
1472 MPASS(tmpfs_dirent_dup(nde));
1473 MPASS(pde->td_cookie > nde->td_cookie);
1474 MPASS(nde->td_cookie > de->td_cookie);
1475 LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries);
1476 LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1477 return;
1478 }
1479 }
1480
1481 /*
1482 * Attaches the directory entry de to the directory represented by vp.
1483 * Note that this does not change the link count of the node pointed by
1484 * the directory entry, as this is done by tmpfs_alloc_dirent.
1485 */
1486 void
tmpfs_dir_attach(struct vnode * vp,struct tmpfs_dirent * de)1487 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de)
1488 {
1489 struct tmpfs_node *dnode;
1490 struct tmpfs_dirent *xde, *nde;
1491
1492 ASSERT_VOP_ELOCKED(vp, __func__);
1493 MPASS(de->td_namelen > 0);
1494 MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN);
1495 MPASS(de->td_cookie == de->td_hash);
1496
1497 dnode = VP_TO_TMPFS_DIR(vp);
1498 dnode->tn_dir.tn_readdir_lastn = 0;
1499 dnode->tn_dir.tn_readdir_lastp = NULL;
1500
1501 MPASS(!tmpfs_dirent_dup(de));
1502 xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1503 if (xde != NULL && tmpfs_dirent_duphead(xde))
1504 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1505 else if (xde != NULL) {
1506 /*
1507 * Allocate new duphead. Swap xde with duphead to avoid
1508 * adding/removing elements with the same hash.
1509 */
1510 MPASS(!tmpfs_dirent_dup(xde));
1511 tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0,
1512 &nde);
1513 /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */
1514 memcpy(nde, xde, sizeof(*xde));
1515 xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD;
1516 LIST_INIT(&xde->ud.td_duphead);
1517 xde->td_namelen = 0;
1518 xde->td_node = NULL;
1519 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde);
1520 tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1521 }
1522 dnode->tn_size += sizeof(struct tmpfs_dirent);
1523 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1524 dnode->tn_accessed = true;
1525 tmpfs_update(vp);
1526 }
1527
1528 /*
1529 * Detaches the directory entry de from the directory represented by vp.
1530 * Note that this does not change the link count of the node pointed by
1531 * the directory entry, as this is done by tmpfs_free_dirent.
1532 */
1533 void
tmpfs_dir_detach(struct vnode * vp,struct tmpfs_dirent * de)1534 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de)
1535 {
1536 struct tmpfs_mount *tmp;
1537 struct tmpfs_dir *head;
1538 struct tmpfs_node *dnode;
1539 struct tmpfs_dirent *xde;
1540
1541 ASSERT_VOP_ELOCKED(vp, __func__);
1542
1543 dnode = VP_TO_TMPFS_DIR(vp);
1544 head = &dnode->tn_dir.tn_dirhead;
1545 dnode->tn_dir.tn_readdir_lastn = 0;
1546 dnode->tn_dir.tn_readdir_lastp = NULL;
1547
1548 if (tmpfs_dirent_dup(de)) {
1549 /* Remove duphead if de was last entry. */
1550 if (LIST_NEXT(de, uh.td_dup.entries) == NULL) {
1551 xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash);
1552 MPASS(tmpfs_dirent_duphead(xde));
1553 } else
1554 xde = NULL;
1555 LIST_REMOVE(de, uh.td_dup.entries);
1556 LIST_REMOVE(de, uh.td_dup.index_entries);
1557 if (xde != NULL) {
1558 if (LIST_EMPTY(&xde->ud.td_duphead)) {
1559 RB_REMOVE(tmpfs_dir, head, xde);
1560 tmp = VFS_TO_TMPFS(vp->v_mount);
1561 MPASS(xde->td_node == NULL);
1562 tmpfs_free_dirent(tmp, xde);
1563 }
1564 }
1565 de->td_cookie = de->td_hash;
1566 } else
1567 RB_REMOVE(tmpfs_dir, head, de);
1568
1569 dnode->tn_size -= sizeof(struct tmpfs_dirent);
1570 dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1571 dnode->tn_accessed = true;
1572 tmpfs_update(vp);
1573 }
1574
1575 void
tmpfs_dir_destroy(struct tmpfs_mount * tmp,struct tmpfs_node * dnode)1576 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode)
1577 {
1578 struct tmpfs_dirent *de, *dde, *nde;
1579
1580 RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) {
1581 RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1582 /* Node may already be destroyed. */
1583 de->td_node = NULL;
1584 if (tmpfs_dirent_duphead(de)) {
1585 while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) {
1586 LIST_REMOVE(dde, uh.td_dup.entries);
1587 dde->td_node = NULL;
1588 tmpfs_free_dirent(tmp, dde);
1589 }
1590 }
1591 tmpfs_free_dirent(tmp, de);
1592 }
1593 }
1594
1595 /*
1596 * Helper function for tmpfs_readdir. Creates a '.' entry for the given
1597 * directory and returns it in the uio space. The function returns 0
1598 * on success, -1 if there was not enough space in the uio structure to
1599 * hold the directory entry or an appropriate error code if another
1600 * error happens.
1601 */
1602 static int
tmpfs_dir_getdotdent(struct tmpfs_mount * tm,struct tmpfs_node * node,struct uio * uio)1603 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1604 struct uio *uio)
1605 {
1606 int error;
1607 struct dirent dent;
1608
1609 TMPFS_VALIDATE_DIR(node);
1610 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT);
1611
1612 dent.d_fileno = node->tn_id;
1613 dent.d_off = TMPFS_DIRCOOKIE_DOTDOT;
1614 dent.d_type = DT_DIR;
1615 dent.d_namlen = 1;
1616 dent.d_name[0] = '.';
1617 dent.d_reclen = GENERIC_DIRSIZ(&dent);
1618 dirent_terminate(&dent);
1619
1620 if (dent.d_reclen > uio->uio_resid)
1621 error = EJUSTRETURN;
1622 else
1623 error = uiomove(&dent, dent.d_reclen, uio);
1624
1625 tmpfs_set_accessed(tm, node);
1626
1627 return (error);
1628 }
1629
1630 /*
1631 * Helper function for tmpfs_readdir. Creates a '..' entry for the given
1632 * directory and returns it in the uio space. The function returns 0
1633 * on success, -1 if there was not enough space in the uio structure to
1634 * hold the directory entry or an appropriate error code if another
1635 * error happens.
1636 */
1637 static int
tmpfs_dir_getdotdotdent(struct tmpfs_mount * tm,struct tmpfs_node * node,struct uio * uio,off_t next)1638 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1639 struct uio *uio, off_t next)
1640 {
1641 struct tmpfs_node *parent;
1642 struct dirent dent;
1643 int error;
1644
1645 TMPFS_VALIDATE_DIR(node);
1646 MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT);
1647
1648 /*
1649 * Return ENOENT if the current node is already removed.
1650 */
1651 TMPFS_ASSERT_LOCKED(node);
1652 parent = node->tn_dir.tn_parent;
1653 if (parent == NULL)
1654 return (ENOENT);
1655
1656 dent.d_fileno = parent->tn_id;
1657 dent.d_off = next;
1658 dent.d_type = DT_DIR;
1659 dent.d_namlen = 2;
1660 dent.d_name[0] = '.';
1661 dent.d_name[1] = '.';
1662 dent.d_reclen = GENERIC_DIRSIZ(&dent);
1663 dirent_terminate(&dent);
1664
1665 if (dent.d_reclen > uio->uio_resid)
1666 error = EJUSTRETURN;
1667 else
1668 error = uiomove(&dent, dent.d_reclen, uio);
1669
1670 tmpfs_set_accessed(tm, node);
1671
1672 return (error);
1673 }
1674
1675 /*
1676 * Helper function for tmpfs_readdir. Returns as much directory entries
1677 * as can fit in the uio space. The read starts at uio->uio_offset.
1678 * The function returns 0 on success, -1 if there was not enough space
1679 * in the uio structure to hold the directory entry or an appropriate
1680 * error code if another error happens.
1681 */
1682 int
tmpfs_dir_getdents(struct tmpfs_mount * tm,struct tmpfs_node * node,struct uio * uio,int maxcookies,uint64_t * cookies,int * ncookies)1683 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node,
1684 struct uio *uio, int maxcookies, uint64_t *cookies, int *ncookies)
1685 {
1686 struct tmpfs_dir_cursor dc;
1687 struct tmpfs_dirent *de, *nde;
1688 off_t off;
1689 int error;
1690
1691 TMPFS_VALIDATE_DIR(node);
1692
1693 off = 0;
1694
1695 /*
1696 * Lookup the node from the current offset. The starting offset of
1697 * 0 will lookup both '.' and '..', and then the first real entry,
1698 * or EOF if there are none. Then find all entries for the dir that
1699 * fit into the buffer. Once no more entries are found (de == NULL),
1700 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next
1701 * call to return 0.
1702 */
1703 switch (uio->uio_offset) {
1704 case TMPFS_DIRCOOKIE_DOT:
1705 error = tmpfs_dir_getdotdent(tm, node, uio);
1706 if (error != 0)
1707 return (error);
1708 uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT;
1709 if (cookies != NULL)
1710 cookies[(*ncookies)++] = off;
1711 /* FALLTHROUGH */
1712 case TMPFS_DIRCOOKIE_DOTDOT:
1713 de = tmpfs_dir_first(node, &dc);
1714 off = tmpfs_dirent_cookie(de);
1715 error = tmpfs_dir_getdotdotdent(tm, node, uio, off);
1716 if (error != 0)
1717 return (error);
1718 uio->uio_offset = off;
1719 if (cookies != NULL)
1720 cookies[(*ncookies)++] = off;
1721 /* EOF. */
1722 if (de == NULL)
1723 return (0);
1724 break;
1725 case TMPFS_DIRCOOKIE_EOF:
1726 return (0);
1727 default:
1728 de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc);
1729 if (de == NULL)
1730 return (EINVAL);
1731 if (cookies != NULL)
1732 off = tmpfs_dirent_cookie(de);
1733 }
1734
1735 /*
1736 * Read as much entries as possible; i.e., until we reach the end of the
1737 * directory or we exhaust uio space.
1738 */
1739 do {
1740 struct dirent d;
1741
1742 /*
1743 * Create a dirent structure representing the current tmpfs_node
1744 * and fill it.
1745 */
1746 if (de->td_node == NULL) {
1747 d.d_fileno = 1;
1748 d.d_type = DT_WHT;
1749 } else {
1750 d.d_fileno = de->td_node->tn_id;
1751 switch (de->td_node->tn_type) {
1752 case VBLK:
1753 d.d_type = DT_BLK;
1754 break;
1755
1756 case VCHR:
1757 d.d_type = DT_CHR;
1758 break;
1759
1760 case VDIR:
1761 d.d_type = DT_DIR;
1762 break;
1763
1764 case VFIFO:
1765 d.d_type = DT_FIFO;
1766 break;
1767
1768 case VLNK:
1769 d.d_type = DT_LNK;
1770 break;
1771
1772 case VREG:
1773 d.d_type = DT_REG;
1774 break;
1775
1776 case VSOCK:
1777 d.d_type = DT_SOCK;
1778 break;
1779
1780 default:
1781 panic("tmpfs_dir_getdents: type %p %d",
1782 de->td_node, (int)de->td_node->tn_type);
1783 }
1784 }
1785 d.d_namlen = de->td_namelen;
1786 MPASS(de->td_namelen < sizeof(d.d_name));
1787 (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen);
1788 d.d_reclen = GENERIC_DIRSIZ(&d);
1789
1790 /*
1791 * Stop reading if the directory entry we are treating is bigger
1792 * than the amount of data that can be returned.
1793 */
1794 if (d.d_reclen > uio->uio_resid) {
1795 error = EJUSTRETURN;
1796 break;
1797 }
1798
1799 nde = tmpfs_dir_next(node, &dc);
1800 d.d_off = tmpfs_dirent_cookie(nde);
1801 dirent_terminate(&d);
1802
1803 /*
1804 * Copy the new dirent structure into the output buffer and
1805 * advance pointers.
1806 */
1807 error = uiomove(&d, d.d_reclen, uio);
1808 if (error == 0) {
1809 de = nde;
1810 if (cookies != NULL) {
1811 off = tmpfs_dirent_cookie(de);
1812 MPASS(*ncookies < maxcookies);
1813 cookies[(*ncookies)++] = off;
1814 }
1815 }
1816 } while (error == 0 && uio->uio_resid > 0 && de != NULL);
1817
1818 /* Skip setting off when using cookies as it is already done above. */
1819 if (cookies == NULL)
1820 off = tmpfs_dirent_cookie(de);
1821
1822 /* Update the offset and cache. */
1823 uio->uio_offset = off;
1824 node->tn_dir.tn_readdir_lastn = off;
1825 node->tn_dir.tn_readdir_lastp = de;
1826
1827 tmpfs_set_accessed(tm, node);
1828 return (error);
1829 }
1830
1831 int
tmpfs_dir_whiteout_add(struct vnode * dvp,struct componentname * cnp)1832 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp)
1833 {
1834 struct tmpfs_dirent *de;
1835 struct tmpfs_node *dnode;
1836 int error;
1837
1838 error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL,
1839 cnp->cn_nameptr, cnp->cn_namelen, &de);
1840 if (error != 0)
1841 return (error);
1842 dnode = VP_TO_TMPFS_DIR(dvp);
1843 tmpfs_dir_attach(dvp, de);
1844 dnode->tn_dir.tn_wht_size += sizeof(*de);
1845 return (0);
1846 }
1847
1848 void
tmpfs_dir_whiteout_remove(struct vnode * dvp,struct componentname * cnp)1849 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp)
1850 {
1851 struct tmpfs_dirent *de;
1852 struct tmpfs_node *dnode;
1853
1854 dnode = VP_TO_TMPFS_DIR(dvp);
1855 de = tmpfs_dir_lookup(dnode, NULL, cnp);
1856 MPASS(de != NULL && de->td_node == NULL);
1857 MPASS(dnode->tn_dir.tn_wht_size >= sizeof(*de));
1858 dnode->tn_dir.tn_wht_size -= sizeof(*de);
1859 tmpfs_dir_detach(dvp, de);
1860 tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
1861 }
1862
1863 /*
1864 * Frees any dirents still associated with the directory represented
1865 * by dvp in preparation for the removal of the directory. This is
1866 * required when removing a directory which contains only whiteout
1867 * entries.
1868 */
1869 void
tmpfs_dir_clear_whiteouts(struct vnode * dvp)1870 tmpfs_dir_clear_whiteouts(struct vnode *dvp)
1871 {
1872 struct tmpfs_dir_cursor dc;
1873 struct tmpfs_dirent *de;
1874 struct tmpfs_node *dnode;
1875
1876 dnode = VP_TO_TMPFS_DIR(dvp);
1877
1878 while ((de = tmpfs_dir_first(dnode, &dc)) != NULL) {
1879 KASSERT(de->td_node == NULL, ("%s: non-whiteout dirent %p",
1880 __func__, de));
1881 dnode->tn_dir.tn_wht_size -= sizeof(*de);
1882 tmpfs_dir_detach(dvp, de);
1883 tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
1884 }
1885 MPASS(dnode->tn_size == 0);
1886 MPASS(dnode->tn_dir.tn_wht_size == 0);
1887 }
1888
1889 /*
1890 * Resizes the aobj associated with the regular file pointed to by 'vp' to the
1891 * size 'newsize'. 'vp' must point to a vnode that represents a regular file.
1892 * 'newsize' must be positive.
1893 *
1894 * Returns zero on success or an appropriate error code on failure.
1895 */
1896 int
tmpfs_reg_resize(struct vnode * vp,off_t newsize,boolean_t ignerr)1897 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr)
1898 {
1899 struct tmpfs_node *node;
1900 vm_object_t uobj;
1901 vm_pindex_t idx, newpages, oldpages;
1902 off_t oldsize;
1903 int base, error;
1904
1905 MPASS(vp->v_type == VREG);
1906 MPASS(newsize >= 0);
1907
1908 node = VP_TO_TMPFS_NODE(vp);
1909 uobj = node->tn_reg.tn_aobj;
1910
1911 /*
1912 * Convert the old and new sizes to the number of pages needed to
1913 * store them. It may happen that we do not need to do anything
1914 * because the last allocated page can accommodate the change on
1915 * its own.
1916 */
1917 oldsize = node->tn_size;
1918 oldpages = OFF_TO_IDX(oldsize + PAGE_MASK);
1919 MPASS(oldpages == uobj->size);
1920 newpages = OFF_TO_IDX(newsize + PAGE_MASK);
1921
1922 if (__predict_true(newpages == oldpages && newsize >= oldsize)) {
1923 node->tn_size = newsize;
1924 return (0);
1925 }
1926
1927 VM_OBJECT_WLOCK(uobj);
1928 if (newsize < oldsize) {
1929 /*
1930 * Zero the truncated part of the last page.
1931 */
1932 base = newsize & PAGE_MASK;
1933 if (base != 0) {
1934 idx = OFF_TO_IDX(newsize);
1935 error = tmpfs_partial_page_invalidate(uobj, idx, base,
1936 PAGE_SIZE, ignerr);
1937 if (error != 0) {
1938 VM_OBJECT_WUNLOCK(uobj);
1939 return (error);
1940 }
1941 }
1942
1943 /*
1944 * Release any swap space and free any whole pages.
1945 */
1946 if (newpages < oldpages)
1947 vm_object_page_remove(uobj, newpages, 0, 0);
1948 }
1949 uobj->size = newpages;
1950 VM_OBJECT_WUNLOCK(uobj);
1951
1952 node->tn_size = newsize;
1953 return (0);
1954 }
1955
1956 /*
1957 * Punch hole in the aobj associated with the regular file pointed to by 'vp'.
1958 * Requests completely beyond the end-of-file are converted to no-op.
1959 *
1960 * Returns 0 on success or error code from tmpfs_partial_page_invalidate() on
1961 * failure.
1962 */
1963 int
tmpfs_reg_punch_hole(struct vnode * vp,off_t * offset,off_t * length)1964 tmpfs_reg_punch_hole(struct vnode *vp, off_t *offset, off_t *length)
1965 {
1966 struct tmpfs_node *node;
1967 vm_object_t object;
1968 vm_pindex_t pistart, pi, piend;
1969 int startofs, endofs, end;
1970 off_t off, len;
1971 int error;
1972
1973 KASSERT(*length <= OFF_MAX - *offset, ("%s: offset + length overflows",
1974 __func__));
1975 node = VP_TO_TMPFS_NODE(vp);
1976 KASSERT(node->tn_type == VREG, ("%s: node is not regular file",
1977 __func__));
1978 object = node->tn_reg.tn_aobj;
1979 off = *offset;
1980 len = omin(node->tn_size - off, *length);
1981 startofs = off & PAGE_MASK;
1982 endofs = (off + len) & PAGE_MASK;
1983 pistart = OFF_TO_IDX(off);
1984 piend = OFF_TO_IDX(off + len);
1985 pi = OFF_TO_IDX((vm_ooffset_t)off + PAGE_MASK);
1986 error = 0;
1987
1988 /* Handle the case when offset is on or beyond file size. */
1989 if (len <= 0) {
1990 *length = 0;
1991 return (0);
1992 }
1993
1994 VM_OBJECT_WLOCK(object);
1995
1996 /*
1997 * If there is a partial page at the beginning of the hole-punching
1998 * request, fill the partial page with zeroes.
1999 */
2000 if (startofs != 0) {
2001 end = pistart != piend ? PAGE_SIZE : endofs;
2002 error = tmpfs_partial_page_invalidate(object, pistart, startofs,
2003 end, FALSE);
2004 if (error != 0)
2005 goto out;
2006 off += end - startofs;
2007 len -= end - startofs;
2008 }
2009
2010 /*
2011 * Toss away the full pages in the affected area.
2012 */
2013 if (pi < piend) {
2014 vm_object_page_remove(object, pi, piend, 0);
2015 off += IDX_TO_OFF(piend - pi);
2016 len -= IDX_TO_OFF(piend - pi);
2017 }
2018
2019 /*
2020 * If there is a partial page at the end of the hole-punching request,
2021 * fill the partial page with zeroes.
2022 */
2023 if (endofs != 0 && pistart != piend) {
2024 error = tmpfs_partial_page_invalidate(object, piend, 0, endofs,
2025 FALSE);
2026 if (error != 0)
2027 goto out;
2028 off += endofs;
2029 len -= endofs;
2030 }
2031
2032 out:
2033 VM_OBJECT_WUNLOCK(object);
2034 *offset = off;
2035 *length = len;
2036 return (error);
2037 }
2038
2039 void
tmpfs_check_mtime(struct vnode * vp)2040 tmpfs_check_mtime(struct vnode *vp)
2041 {
2042 struct tmpfs_node *node;
2043 struct vm_object *obj;
2044
2045 ASSERT_VOP_ELOCKED(vp, "check_mtime");
2046 if (vp->v_type != VREG)
2047 return;
2048 obj = vp->v_object;
2049 KASSERT(obj->type == tmpfs_pager_type &&
2050 (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) ==
2051 (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj"));
2052 /* unlocked read */
2053 if (obj->generation != obj->cleangeneration) {
2054 VM_OBJECT_WLOCK(obj);
2055 if (obj->generation != obj->cleangeneration) {
2056 obj->cleangeneration = obj->generation;
2057 node = VP_TO_TMPFS_NODE(vp);
2058 node->tn_status |= TMPFS_NODE_MODIFIED |
2059 TMPFS_NODE_CHANGED;
2060 }
2061 VM_OBJECT_WUNLOCK(obj);
2062 }
2063 }
2064
2065 /*
2066 * Change flags of the given vnode.
2067 * Caller should execute tmpfs_update on vp after a successful execution.
2068 * The vnode must be locked on entry and remain locked on exit.
2069 */
2070 int
tmpfs_chflags(struct vnode * vp,u_long flags,struct ucred * cred,struct thread * td)2071 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred,
2072 struct thread *td)
2073 {
2074 int error;
2075 struct tmpfs_node *node;
2076
2077 ASSERT_VOP_ELOCKED(vp, "chflags");
2078
2079 node = VP_TO_TMPFS_NODE(vp);
2080
2081 if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK |
2082 UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP |
2083 UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE |
2084 UF_SPARSE | UF_SYSTEM)) != 0)
2085 return (EOPNOTSUPP);
2086
2087 /* Disallow this operation if the file system is mounted read-only. */
2088 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2089 return (EROFS);
2090
2091 /*
2092 * Callers may only modify the file flags on objects they
2093 * have VADMIN rights for.
2094 */
2095 if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2096 return (error);
2097 /*
2098 * Unprivileged processes are not permitted to unset system
2099 * flags, or modify flags if any system flags are set.
2100 */
2101 if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) {
2102 if (node->tn_flags &
2103 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
2104 error = securelevel_gt(cred, 0);
2105 if (error)
2106 return (error);
2107 }
2108 } else {
2109 if (node->tn_flags &
2110 (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) ||
2111 ((flags ^ node->tn_flags) & SF_SETTABLE))
2112 return (EPERM);
2113 }
2114 node->tn_flags = flags;
2115 node->tn_status |= TMPFS_NODE_CHANGED;
2116
2117 ASSERT_VOP_ELOCKED(vp, "chflags2");
2118
2119 return (0);
2120 }
2121
2122 /*
2123 * Change access mode on the given vnode.
2124 * Caller should execute tmpfs_update on vp after a successful execution.
2125 * The vnode must be locked on entry and remain locked on exit.
2126 */
2127 int
tmpfs_chmod(struct vnode * vp,mode_t mode,struct ucred * cred,struct thread * td)2128 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred,
2129 struct thread *td)
2130 {
2131 int error;
2132 struct tmpfs_node *node;
2133 mode_t newmode;
2134
2135 ASSERT_VOP_ELOCKED(vp, "chmod");
2136 ASSERT_VOP_IN_SEQC(vp);
2137
2138 node = VP_TO_TMPFS_NODE(vp);
2139
2140 /* Disallow this operation if the file system is mounted read-only. */
2141 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2142 return (EROFS);
2143
2144 /* Immutable or append-only files cannot be modified, either. */
2145 if (node->tn_flags & (IMMUTABLE | APPEND))
2146 return (EPERM);
2147
2148 /*
2149 * To modify the permissions on a file, must possess VADMIN
2150 * for that file.
2151 */
2152 if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2153 return (error);
2154
2155 /*
2156 * Privileged processes may set the sticky bit on non-directories,
2157 * as well as set the setgid bit on a file with a group that the
2158 * process is not a member of.
2159 */
2160 if (vp->v_type != VDIR && (mode & S_ISTXT)) {
2161 if (priv_check_cred(cred, PRIV_VFS_STICKYFILE))
2162 return (EFTYPE);
2163 }
2164 if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) {
2165 error = priv_check_cred(cred, PRIV_VFS_SETGID);
2166 if (error)
2167 return (error);
2168 }
2169
2170 newmode = node->tn_mode & ~ALLPERMS;
2171 newmode |= mode & ALLPERMS;
2172 atomic_store_short(&node->tn_mode, newmode);
2173
2174 node->tn_status |= TMPFS_NODE_CHANGED;
2175
2176 ASSERT_VOP_ELOCKED(vp, "chmod2");
2177
2178 return (0);
2179 }
2180
2181 /*
2182 * Change ownership of the given vnode. At least one of uid or gid must
2183 * be different than VNOVAL. If one is set to that value, the attribute
2184 * is unchanged.
2185 * Caller should execute tmpfs_update on vp after a successful execution.
2186 * The vnode must be locked on entry and remain locked on exit.
2187 */
2188 int
tmpfs_chown(struct vnode * vp,uid_t uid,gid_t gid,struct ucred * cred,struct thread * td)2189 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred,
2190 struct thread *td)
2191 {
2192 int error;
2193 struct tmpfs_node *node;
2194 uid_t ouid;
2195 gid_t ogid;
2196 mode_t newmode;
2197
2198 ASSERT_VOP_ELOCKED(vp, "chown");
2199 ASSERT_VOP_IN_SEQC(vp);
2200
2201 node = VP_TO_TMPFS_NODE(vp);
2202
2203 /* Assign default values if they are unknown. */
2204 MPASS(uid != VNOVAL || gid != VNOVAL);
2205 if (uid == VNOVAL)
2206 uid = node->tn_uid;
2207 if (gid == VNOVAL)
2208 gid = node->tn_gid;
2209 MPASS(uid != VNOVAL && gid != VNOVAL);
2210
2211 /* Disallow this operation if the file system is mounted read-only. */
2212 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2213 return (EROFS);
2214
2215 /* Immutable or append-only files cannot be modified, either. */
2216 if (node->tn_flags & (IMMUTABLE | APPEND))
2217 return (EPERM);
2218
2219 /*
2220 * To modify the ownership of a file, must possess VADMIN for that
2221 * file.
2222 */
2223 if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2224 return (error);
2225
2226 /*
2227 * To change the owner of a file, or change the group of a file to a
2228 * group of which we are not a member, the caller must have
2229 * privilege.
2230 */
2231 if ((uid != node->tn_uid ||
2232 (gid != node->tn_gid && !groupmember(gid, cred))) &&
2233 (error = priv_check_cred(cred, PRIV_VFS_CHOWN)))
2234 return (error);
2235
2236 ogid = node->tn_gid;
2237 ouid = node->tn_uid;
2238
2239 node->tn_uid = uid;
2240 node->tn_gid = gid;
2241
2242 node->tn_status |= TMPFS_NODE_CHANGED;
2243
2244 if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 &&
2245 (ouid != uid || ogid != gid)) {
2246 if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) {
2247 newmode = node->tn_mode & ~(S_ISUID | S_ISGID);
2248 atomic_store_short(&node->tn_mode, newmode);
2249 }
2250 }
2251
2252 ASSERT_VOP_ELOCKED(vp, "chown2");
2253
2254 return (0);
2255 }
2256
2257 /*
2258 * Change size of the given vnode.
2259 * Caller should execute tmpfs_update on vp after a successful execution.
2260 * The vnode must be locked on entry and remain locked on exit.
2261 */
2262 int
tmpfs_chsize(struct vnode * vp,u_quad_t size,struct ucred * cred,struct thread * td)2263 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred,
2264 struct thread *td)
2265 {
2266 int error;
2267 struct tmpfs_node *node;
2268
2269 ASSERT_VOP_ELOCKED(vp, "chsize");
2270
2271 node = VP_TO_TMPFS_NODE(vp);
2272
2273 /* Decide whether this is a valid operation based on the file type. */
2274 error = 0;
2275 switch (vp->v_type) {
2276 case VDIR:
2277 return (EISDIR);
2278
2279 case VREG:
2280 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2281 return (EROFS);
2282 break;
2283
2284 case VBLK:
2285 /* FALLTHROUGH */
2286 case VCHR:
2287 /* FALLTHROUGH */
2288 case VFIFO:
2289 /*
2290 * Allow modifications of special files even if in the file
2291 * system is mounted read-only (we are not modifying the
2292 * files themselves, but the objects they represent).
2293 */
2294 return (0);
2295
2296 default:
2297 /* Anything else is unsupported. */
2298 return (EOPNOTSUPP);
2299 }
2300
2301 /* Immutable or append-only files cannot be modified, either. */
2302 if (node->tn_flags & (IMMUTABLE | APPEND))
2303 return (EPERM);
2304
2305 error = vn_rlimit_trunc(size, td);
2306 if (error != 0)
2307 return (error);
2308
2309 error = tmpfs_truncate(vp, size);
2310 /*
2311 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents
2312 * for us, as will update tn_status; no need to do that here.
2313 */
2314
2315 ASSERT_VOP_ELOCKED(vp, "chsize2");
2316
2317 return (error);
2318 }
2319
2320 /*
2321 * Change access and modification times of the given vnode.
2322 * Caller should execute tmpfs_update on vp after a successful execution.
2323 * The vnode must be locked on entry and remain locked on exit.
2324 */
2325 int
tmpfs_chtimes(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2326 tmpfs_chtimes(struct vnode *vp, struct vattr *vap,
2327 struct ucred *cred, struct thread *td)
2328 {
2329 int error;
2330 struct tmpfs_node *node;
2331
2332 ASSERT_VOP_ELOCKED(vp, "chtimes");
2333
2334 node = VP_TO_TMPFS_NODE(vp);
2335
2336 /* Disallow this operation if the file system is mounted read-only. */
2337 if (vp->v_mount->mnt_flag & MNT_RDONLY)
2338 return (EROFS);
2339
2340 /* Immutable or append-only files cannot be modified, either. */
2341 if (node->tn_flags & (IMMUTABLE | APPEND))
2342 return (EPERM);
2343
2344 error = vn_utimes_perm(vp, vap, cred, td);
2345 if (error != 0)
2346 return (error);
2347
2348 if (vap->va_atime.tv_sec != VNOVAL)
2349 node->tn_accessed = true;
2350 if (vap->va_mtime.tv_sec != VNOVAL)
2351 node->tn_status |= TMPFS_NODE_MODIFIED;
2352 if (vap->va_birthtime.tv_sec != VNOVAL)
2353 node->tn_status |= TMPFS_NODE_MODIFIED;
2354 tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime);
2355 if (vap->va_birthtime.tv_sec != VNOVAL)
2356 node->tn_birthtime = vap->va_birthtime;
2357 ASSERT_VOP_ELOCKED(vp, "chtimes2");
2358
2359 return (0);
2360 }
2361
2362 void
tmpfs_set_status(struct tmpfs_mount * tm,struct tmpfs_node * node,int status)2363 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status)
2364 {
2365
2366 if ((node->tn_status & status) == status || tm->tm_ronly)
2367 return;
2368 TMPFS_NODE_LOCK(node);
2369 node->tn_status |= status;
2370 TMPFS_NODE_UNLOCK(node);
2371 }
2372
2373 void
tmpfs_set_accessed(struct tmpfs_mount * tm,struct tmpfs_node * node)2374 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node)
2375 {
2376 if (node->tn_accessed || tm->tm_ronly)
2377 return;
2378 atomic_store_8(&node->tn_accessed, true);
2379 }
2380
2381 /* Sync timestamps */
2382 void
tmpfs_itimes(struct vnode * vp,const struct timespec * acc,const struct timespec * mod)2383 tmpfs_itimes(struct vnode *vp, const struct timespec *acc,
2384 const struct timespec *mod)
2385 {
2386 struct tmpfs_node *node;
2387 struct timespec now;
2388
2389 ASSERT_VOP_LOCKED(vp, "tmpfs_itimes");
2390 node = VP_TO_TMPFS_NODE(vp);
2391
2392 if (!node->tn_accessed &&
2393 (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0)
2394 return;
2395
2396 vfs_timestamp(&now);
2397 TMPFS_NODE_LOCK(node);
2398 if (node->tn_accessed) {
2399 if (acc == NULL)
2400 acc = &now;
2401 node->tn_atime = *acc;
2402 }
2403 if (node->tn_status & TMPFS_NODE_MODIFIED) {
2404 if (mod == NULL)
2405 mod = &now;
2406 node->tn_mtime = *mod;
2407 }
2408 if (node->tn_status & TMPFS_NODE_CHANGED)
2409 node->tn_ctime = now;
2410 node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED);
2411 node->tn_accessed = false;
2412 TMPFS_NODE_UNLOCK(node);
2413
2414 /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */
2415 random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME);
2416 }
2417
2418 int
tmpfs_truncate(struct vnode * vp,off_t length)2419 tmpfs_truncate(struct vnode *vp, off_t length)
2420 {
2421 struct tmpfs_node *node;
2422 int error;
2423
2424 if (length < 0)
2425 return (EINVAL);
2426 if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize)
2427 return (EFBIG);
2428
2429 node = VP_TO_TMPFS_NODE(vp);
2430 error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length,
2431 FALSE);
2432 if (error == 0)
2433 node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
2434 tmpfs_update(vp);
2435
2436 return (error);
2437 }
2438
2439 static __inline int
tmpfs_dirtree_cmp(struct tmpfs_dirent * a,struct tmpfs_dirent * b)2440 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b)
2441 {
2442 if (a->td_hash > b->td_hash)
2443 return (1);
2444 else if (a->td_hash < b->td_hash)
2445 return (-1);
2446 return (0);
2447 }
2448
2449 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
2450