xref: /illumos-gate/usr/src/uts/common/fs/tmpfs/tmp_vfsops.c (revision 4763305e3243687c189d755d737d52205b2614ed)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2015 Joyent, Inc.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/time.h>
31 #include <sys/pathname.h>
32 #include <sys/vfs.h>
33 #include <sys/vfs_opreg.h>
34 #include <sys/vnode.h>
35 #include <sys/stat.h>
36 #include <sys/uio.h>
37 #include <sys/stat.h>
38 #include <sys/errno.h>
39 #include <sys/cmn_err.h>
40 #include <sys/cred.h>
41 #include <sys/statvfs.h>
42 #include <sys/mount.h>
43 #include <sys/debug.h>
44 #include <sys/systm.h>
45 #include <sys/mntent.h>
46 #include <fs/fs_subr.h>
47 #include <vm/page.h>
48 #include <vm/anon.h>
49 #include <sys/model.h>
50 #include <sys/policy.h>
51 
52 #include <sys/fs/swapnode.h>
53 #include <sys/fs/tmp.h>
54 #include <sys/fs/tmpnode.h>
55 
56 static int tmpfsfstype;
57 
58 /*
59  * tmpfs vfs operations.
60  */
61 static int tmpfsinit(int, char *);
62 static int tmp_mount(struct vfs *, struct vnode *,
63 	struct mounta *, struct cred *);
64 static int tmp_unmount(struct vfs *, int, struct cred *);
65 static int tmp_root(struct vfs *, struct vnode **);
66 static int tmp_statvfs(struct vfs *, struct statvfs64 *);
67 static int tmp_vget(struct vfs *, struct vnode **, struct fid *);
68 
69 /*
70  * Loadable module wrapper
71  */
72 #include <sys/modctl.h>
73 
74 static mntopts_t tmpfs_proto_opttbl;
75 
76 static vfsdef_t vfw = {
77 	VFSDEF_VERSION,
78 	"tmpfs",
79 	tmpfsinit,
80 	VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_ZMOUNT,
81 	&tmpfs_proto_opttbl
82 };
83 
84 /*
85  * in-kernel mnttab options
86  */
87 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
88 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
89 
90 static mntopt_t tmpfs_options[] = {
91 	/* Option name		Cancel Opt	Arg	Flags		Data */
92 	{ MNTOPT_XATTR,		xattr_cancel,	NULL,	MO_DEFAULT,	NULL},
93 	{ MNTOPT_NOXATTR,	noxattr_cancel,	NULL,	0,		NULL},
94 	{ "size",		NULL,		"0",	MO_HASVALUE,	NULL},
95 	{ "mode",		NULL,		NULL,	MO_HASVALUE,	NULL}
96 };
97 
98 
99 static mntopts_t tmpfs_proto_opttbl = {
100 	sizeof (tmpfs_options) / sizeof (mntopt_t),
101 	tmpfs_options
102 };
103 
104 /*
105  * Module linkage information
106  */
107 static struct modlfs modlfs = {
108 	&mod_fsops, "filesystem for tmpfs", &vfw
109 };
110 
111 static struct modlinkage modlinkage = {
112 	MODREV_1, &modlfs, NULL
113 };
114 
115 int
_init()116 _init()
117 {
118 	return (mod_install(&modlinkage));
119 }
120 
121 int
_fini()122 _fini()
123 {
124 	int error;
125 
126 	error = mod_remove(&modlinkage);
127 	if (error)
128 		return (error);
129 	/*
130 	 * Tear down the operations vectors
131 	 */
132 	(void) vfs_freevfsops_by_type(tmpfsfstype);
133 	vn_freevnodeops(tmp_vnodeops);
134 	return (0);
135 }
136 
137 int
_info(struct modinfo * modinfop)138 _info(struct modinfo *modinfop)
139 {
140 	return (mod_info(&modlinkage, modinfop));
141 }
142 
143 /*
144  * The following are patchable variables limiting the amount of system
145  * resources tmpfs can use.
146  *
147  * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory
148  * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries)
149  * It is not determined by setting a hard limit but rather as a percentage of
150  * physical memory which is determined when tmpfs is first used in the system.
151  *
152  * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for
153  * the rest of the system.  In other words, if the amount of free swap space
154  * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs
155  * anon allocations will fail.
156  *
157  * There is also a per mount limit on the amount of swap space
158  * (tmount.tm_anonmax) settable via a mount option.
159  */
160 size_t tmpfs_maxkmem = 0;
161 size_t tmpfs_minfree = 0;
162 size_t tmp_kmemspace;		/* bytes of kernel heap used by all tmpfs */
163 
164 static major_t tmpfs_major;
165 static minor_t tmpfs_minor;
166 static kmutex_t	tmpfs_minor_lock;
167 
168 /*
169  * initialize global tmpfs locks and such
170  * called when loading tmpfs module
171  */
172 static int
tmpfsinit(int fstype,char * name)173 tmpfsinit(int fstype, char *name)
174 {
175 	static const fs_operation_def_t tmp_vfsops_template[] = {
176 		VFSNAME_MOUNT,		{ .vfs_mount = tmp_mount },
177 		VFSNAME_UNMOUNT,	{ .vfs_unmount = tmp_unmount },
178 		VFSNAME_ROOT,		{ .vfs_root = tmp_root },
179 		VFSNAME_STATVFS,	{ .vfs_statvfs = tmp_statvfs },
180 		VFSNAME_VGET,		{ .vfs_vget = tmp_vget },
181 		VFSNAME_SYNCFS,		{ .vfs_syncfs = fs_syncfs_nop },
182 		NULL,			NULL
183 	};
184 	int error;
185 	extern  void    tmpfs_hash_init();
186 
187 	tmpfs_hash_init();
188 	tmpfsfstype = fstype;
189 	ASSERT(tmpfsfstype != 0);
190 
191 	error = vfs_setfsops(fstype, tmp_vfsops_template, NULL);
192 	if (error != 0) {
193 		cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template");
194 		return (error);
195 	}
196 
197 	error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops);
198 	if (error != 0) {
199 		(void) vfs_freevfsops_by_type(fstype);
200 		cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template");
201 		return (error);
202 	}
203 
204 	/*
205 	 * tmpfs_minfree doesn't need to be some function of configured
206 	 * swap space since it really is an absolute limit of swap space
207 	 * which still allows other processes to execute.
208 	 */
209 	if (tmpfs_minfree == 0) {
210 		/*
211 		 * Set if not patched
212 		 */
213 		tmpfs_minfree = btopr(TMPMINFREE);
214 	}
215 
216 	/*
217 	 * The maximum amount of space tmpfs can allocate is
218 	 * TMPMAXPROCKMEM percent of kernel memory
219 	 */
220 	if (tmpfs_maxkmem == 0)
221 		tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM);
222 
223 	if ((tmpfs_major = getudev()) == (major_t)-1) {
224 		cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number.");
225 		tmpfs_major = 0;
226 	}
227 	mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL);
228 	return (0);
229 }
230 
231 static int
tmp_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)232 tmp_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
233 {
234 	struct tmount *tm = NULL;
235 	struct tmpnode *tp;
236 	struct pathname dpn;
237 	int error;
238 	pgcnt_t anonmax;
239 	struct vattr rattr;
240 	int got_attrs;
241 	boolean_t mode_arg = B_FALSE;
242 	mode_t root_mode = 0777;
243 	char *argstr;
244 
245 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
246 		return (error);
247 
248 	if (mvp->v_type != VDIR)
249 		return (ENOTDIR);
250 
251 	mutex_enter(&mvp->v_lock);
252 	if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 &&
253 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
254 		mutex_exit(&mvp->v_lock);
255 		return (EBUSY);
256 	}
257 	mutex_exit(&mvp->v_lock);
258 
259 	/*
260 	 * Having the resource be anything but "swap" doesn't make sense.
261 	 */
262 	vfs_setresource(vfsp, "swap", 0);
263 
264 	/*
265 	 * now look for options we understand...
266 	 */
267 
268 	/* tmpfs doesn't support read-only mounts */
269 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
270 		error = EINVAL;
271 		goto out;
272 	}
273 
274 	/*
275 	 * tm_anonmax is set according to the mount arguments
276 	 * if any.  Otherwise, it is set to a maximum value.
277 	 */
278 	if (vfs_optionisset(vfsp, "size", &argstr)) {
279 		if ((error = tmp_convnum(argstr, &anonmax)) != 0)
280 			goto out;
281 	} else {
282 		anonmax = ULONG_MAX;
283 	}
284 
285 	/*
286 	 * The "mode" mount argument allows the operator to override the
287 	 * permissions of the root of the tmpfs mount.
288 	 */
289 	if (vfs_optionisset(vfsp, "mode", &argstr)) {
290 		if ((error = tmp_convmode(argstr, &root_mode)) != 0) {
291 			goto out;
292 		}
293 		mode_arg = B_TRUE;
294 	}
295 
296 	if (error = pn_get(uap->dir,
297 	    (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn))
298 		goto out;
299 
300 	if (uap->flags & MS_REMOUNT) {
301 		tm = (struct tmount *)VFSTOTM(vfsp);
302 
303 		/*
304 		 * If we change the size so its less than what is currently
305 		 * being used, we allow that. The file system will simply be
306 		 * full until enough files have been removed to get below the
307 		 * new max.
308 		 */
309 		mutex_enter(&tm->tm_contents);
310 		tm->tm_anonmax = anonmax;
311 		mutex_exit(&tm->tm_contents);
312 		goto out;
313 	}
314 
315 	if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) {
316 		pn_free(&dpn);
317 		error = ENOMEM;
318 		goto out;
319 	}
320 
321 	/*
322 	 * find an available minor device number for this mount
323 	 */
324 	mutex_enter(&tmpfs_minor_lock);
325 	do {
326 		tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32;
327 		tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor);
328 	} while (vfs_devismounted(tm->tm_dev));
329 	mutex_exit(&tmpfs_minor_lock);
330 
331 	/*
332 	 * Set but don't bother entering the mutex
333 	 * (tmount not on mount list yet)
334 	 */
335 	mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL);
336 	mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL);
337 
338 	tm->tm_vfsp = vfsp;
339 	tm->tm_anonmax = anonmax;
340 
341 	vfsp->vfs_data = (caddr_t)tm;
342 	vfsp->vfs_fstype = tmpfsfstype;
343 	vfsp->vfs_dev = tm->tm_dev;
344 	vfsp->vfs_bsize = PAGESIZE;
345 	vfsp->vfs_flag |= VFS_NOTRUNC;
346 	vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype);
347 	tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE);
348 	(void) strcpy(tm->tm_mntpath, dpn.pn_path);
349 
350 	/*
351 	 * allocate and initialize root tmpnode structure
352 	 */
353 	bzero(&rattr, sizeof (struct vattr));
354 	rattr.va_mode = (mode_t)(S_IFDIR | root_mode);
355 	rattr.va_type = VDIR;
356 	rattr.va_rdev = 0;
357 	tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE);
358 	tmpnode_init(tm, tp, &rattr, cr);
359 
360 	/*
361 	 * Get the mode, uid, and gid from the underlying mount point.
362 	 */
363 	rattr.va_mask = AT_MODE|AT_UID|AT_GID;	/* Hint to getattr */
364 	got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL);
365 
366 	rw_enter(&tp->tn_rwlock, RW_WRITER);
367 	TNTOV(tp)->v_flag |= VROOT;
368 
369 	/*
370 	 * If the getattr succeeded, use its results.  Otherwise allow
371 	 * the previously set hardwired defaults to prevail.
372 	 */
373 	if (got_attrs == 0) {
374 		if (!mode_arg) {
375 			/*
376 			 * Only use the underlying mount point for the
377 			 * mode if the "mode" mount argument was not
378 			 * provided.
379 			 */
380 			tp->tn_mode = rattr.va_mode;
381 		}
382 		tp->tn_uid = rattr.va_uid;
383 		tp->tn_gid = rattr.va_gid;
384 	}
385 
386 	/*
387 	 * initialize linked list of tmpnodes so that the back pointer of
388 	 * the root tmpnode always points to the last one on the list
389 	 * and the forward pointer of the last node is null
390 	 */
391 	tp->tn_back = tp;
392 	tp->tn_forw = NULL;
393 	tp->tn_nlink = 0;
394 	tm->tm_rootnode = tp;
395 
396 	tdirinit(tp, tp);
397 
398 	rw_exit(&tp->tn_rwlock);
399 
400 	pn_free(&dpn);
401 	error = 0;
402 
403 out:
404 	if (error == 0)
405 		vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
406 
407 	return (error);
408 }
409 
410 static int
tmp_unmount(struct vfs * vfsp,int flag,struct cred * cr)411 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr)
412 {
413 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
414 	struct tmpnode *tnp, *cancel;
415 	struct vnode	*vp;
416 	int error;
417 
418 	if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0)
419 		return (error);
420 
421 	/*
422 	 * forced unmount is not supported by this file system
423 	 * and thus, ENOTSUP, is being returned.
424 	 */
425 	if (flag & MS_FORCE)
426 		return (ENOTSUP);
427 
428 	mutex_enter(&tm->tm_contents);
429 
430 	/*
431 	 * If there are no open files, only the root node should have
432 	 * a reference count.
433 	 * With tm_contents held, nothing can be added or removed.
434 	 * There may be some dirty pages.  To prevent fsflush from
435 	 * disrupting the unmount, put a hold on each node while scanning.
436 	 * If we find a previously referenced node, undo the holds we have
437 	 * placed and fail EBUSY.
438 	 */
439 	tnp = tm->tm_rootnode;
440 	if (TNTOV(tnp)->v_count > 1) {
441 		mutex_exit(&tm->tm_contents);
442 		return (EBUSY);
443 	}
444 
445 	for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) {
446 		if ((vp = TNTOV(tnp))->v_count > 0) {
447 			cancel = tm->tm_rootnode->tn_forw;
448 			while (cancel != tnp) {
449 				vp = TNTOV(cancel);
450 				ASSERT(vp->v_count > 0);
451 				VN_RELE(vp);
452 				cancel = cancel->tn_forw;
453 			}
454 			mutex_exit(&tm->tm_contents);
455 			return (EBUSY);
456 		}
457 		VN_HOLD(vp);
458 	}
459 
460 	/*
461 	 * We can drop the mutex now because no one can find this mount
462 	 */
463 	mutex_exit(&tm->tm_contents);
464 
465 	/*
466 	 * Free all kmemalloc'd and anonalloc'd memory associated with
467 	 * this filesystem.  To do this, we go through the file list twice,
468 	 * once to remove all the directory entries, and then to remove
469 	 * all the files.  We do this because there is useful code in
470 	 * tmpnode_free which assumes that the directory entry has been
471 	 * removed before the file.
472 	 */
473 	/*
474 	 * Remove all directory entries
475 	 */
476 	for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) {
477 		rw_enter(&tnp->tn_rwlock, RW_WRITER);
478 		if (tnp->tn_type == VDIR)
479 			tdirtrunc(tnp);
480 		if (tnp->tn_vnode->v_flag & V_XATTRDIR) {
481 			/*
482 			 * Account for implicit attrdir reference.
483 			 */
484 			ASSERT(tnp->tn_nlink > 0);
485 			DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock);
486 		}
487 		rw_exit(&tnp->tn_rwlock);
488 	}
489 
490 	ASSERT(tm->tm_rootnode);
491 
492 	/*
493 	 * All links are gone, v_count is keeping nodes in place.
494 	 * VN_RELE should make the node disappear, unless somebody
495 	 * is holding pages against it.  Nap and retry until it disappears.
496 	 *
497 	 * We re-acquire the lock to prevent others who have a HOLD on
498 	 * a tmpnode via its pages or anon slots from blowing it away
499 	 * (in tmp_inactive) while we're trying to get to it here. Once
500 	 * we have a HOLD on it we know it'll stick around.
501 	 *
502 	 */
503 	mutex_enter(&tm->tm_contents);
504 	/*
505 	 * Remove all the files (except the rootnode) backwards.
506 	 */
507 	while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) {
508 		mutex_exit(&tm->tm_contents);
509 		/*
510 		 * Inhibit tmp_inactive from touching attribute directory
511 		 * as all nodes will be released here.
512 		 * Note we handled the link count in pass 2 above.
513 		 */
514 		rw_enter(&tnp->tn_rwlock, RW_WRITER);
515 		tnp->tn_xattrdp = NULL;
516 		rw_exit(&tnp->tn_rwlock);
517 		vp = TNTOV(tnp);
518 		VN_RELE(vp);
519 		mutex_enter(&tm->tm_contents);
520 		/*
521 		 * It's still there after the RELE. Someone else like pageout
522 		 * has a hold on it so wait a bit and then try again - we know
523 		 * they'll give it up soon.
524 		 */
525 		if (tnp == tm->tm_rootnode->tn_back) {
526 			VN_HOLD(vp);
527 			mutex_exit(&tm->tm_contents);
528 			delay(hz / 4);
529 			mutex_enter(&tm->tm_contents);
530 		}
531 	}
532 	mutex_exit(&tm->tm_contents);
533 
534 	tm->tm_rootnode->tn_xattrdp = NULL;
535 	VN_RELE(TNTOV(tm->tm_rootnode));
536 
537 	ASSERT(tm->tm_mntpath);
538 
539 	tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1);
540 
541 	ASSERT(tm->tm_anonmem == 0);
542 
543 	mutex_destroy(&tm->tm_contents);
544 	mutex_destroy(&tm->tm_renamelck);
545 	tmp_memfree(tm, sizeof (struct tmount));
546 
547 	return (0);
548 }
549 
550 /*
551  * return root tmpnode for given vnode
552  */
553 static int
tmp_root(struct vfs * vfsp,struct vnode ** vpp)554 tmp_root(struct vfs *vfsp, struct vnode **vpp)
555 {
556 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
557 	struct tmpnode *tp = tm->tm_rootnode;
558 	struct vnode *vp;
559 
560 	ASSERT(tp);
561 
562 	vp = TNTOV(tp);
563 	VN_HOLD(vp);
564 	*vpp = vp;
565 	return (0);
566 }
567 
568 static int
tmp_statvfs(struct vfs * vfsp,struct statvfs64 * sbp)569 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp)
570 {
571 	struct tmount	*tm = (struct tmount *)VFSTOTM(vfsp);
572 	ulong_t	blocks;
573 	dev32_t d32;
574 	zoneid_t eff_zid;
575 	struct zone *zp;
576 
577 	/*
578 	 * The file system may have been mounted by the global zone on
579 	 * behalf of the non-global zone.  In that case, the tmount zone_id
580 	 * will be the global zone.  We still want to show the swap cap inside
581 	 * the zone in this case, even though the file system was mounted by
582 	 * the global zone.
583 	 */
584 	if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID)
585 		zp = curproc->p_zone;
586 	else
587 		zp = tm->tm_vfsp->vfs_zone;
588 
589 	if (zp == NULL)
590 		eff_zid = GLOBAL_ZONEUNIQID;
591 	else
592 		eff_zid = zp->zone_id;
593 
594 	sbp->f_bsize = PAGESIZE;
595 	sbp->f_frsize = PAGESIZE;
596 
597 	/*
598 	 * Find the amount of available physical and memory swap
599 	 */
600 	mutex_enter(&anoninfo_lock);
601 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
602 	blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP;
603 	mutex_exit(&anoninfo_lock);
604 
605 	/*
606 	 * If tm_anonmax for this mount is less than the available swap space
607 	 * (minus the amount tmpfs can't use), use that instead
608 	 */
609 	if (blocks > tmpfs_minfree)
610 		sbp->f_bfree = MIN(blocks - tmpfs_minfree,
611 		    tm->tm_anonmax - tm->tm_anonmem);
612 	else
613 		sbp->f_bfree = 0;
614 
615 	sbp->f_bavail = sbp->f_bfree;
616 
617 	/*
618 	 * Total number of blocks is what's available plus what's been used
619 	 */
620 	sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem);
621 
622 	if (eff_zid != GLOBAL_ZONEUNIQID &&
623 	    zp->zone_max_swap_ctl != UINT64_MAX) {
624 		/*
625 		 * If the fs is used by a non-global zone with a swap cap,
626 		 * then report the capped size.
627 		 */
628 		rctl_qty_t cap, used;
629 		pgcnt_t pgcap, pgused;
630 
631 		mutex_enter(&zp->zone_mem_lock);
632 		cap = zp->zone_max_swap_ctl;
633 		used = zp->zone_max_swap;
634 		mutex_exit(&zp->zone_mem_lock);
635 
636 		pgcap = btop(cap);
637 		pgused = btop(used);
638 
639 		sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree);
640 		sbp->f_bavail = sbp->f_bfree;
641 		sbp->f_blocks = MIN(pgcap, sbp->f_blocks);
642 	}
643 
644 	/*
645 	 * The maximum number of files available is approximately the number
646 	 * of tmpnodes we can allocate from the remaining kernel memory
647 	 * available to tmpfs.  This is fairly inaccurate since it doesn't
648 	 * take into account the names stored in the directory entries.
649 	 */
650 	if (tmpfs_maxkmem > tmp_kmemspace)
651 		sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) /
652 		    (sizeof (struct tmpnode) + sizeof (struct tdirent));
653 	else
654 		sbp->f_ffree = 0;
655 
656 	sbp->f_files = tmpfs_maxkmem /
657 	    (sizeof (struct tmpnode) + sizeof (struct tdirent));
658 	sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree);
659 	(void) cmpldev(&d32, vfsp->vfs_dev);
660 	sbp->f_fsid = d32;
661 	(void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name);
662 	(void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr));
663 	/*
664 	 * ensure null termination
665 	 */
666 	sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0';
667 	sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
668 	sbp->f_namemax = MAXNAMELEN - 1;
669 	return (0);
670 }
671 
672 static int
tmp_vget(struct vfs * vfsp,struct vnode ** vpp,struct fid * fidp)673 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
674 {
675 	struct tfid *tfid;
676 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
677 	struct tmpnode *tp = NULL;
678 
679 	tfid = (struct tfid *)fidp;
680 	*vpp = NULL;
681 
682 	mutex_enter(&tm->tm_contents);
683 	for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) {
684 		mutex_enter(&tp->tn_tlock);
685 		if (tp->tn_nodeid == tfid->tfid_ino) {
686 			/*
687 			 * If the gen numbers don't match we know the
688 			 * file won't be found since only one tmpnode
689 			 * can have this number at a time.
690 			 */
691 			if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) {
692 				mutex_exit(&tp->tn_tlock);
693 				mutex_exit(&tm->tm_contents);
694 				return (0);
695 			}
696 			*vpp = (struct vnode *)TNTOV(tp);
697 
698 			VN_HOLD(*vpp);
699 
700 			if ((tp->tn_mode & S_ISVTX) &&
701 			    !(tp->tn_mode & (S_IXUSR | S_IFDIR))) {
702 				mutex_enter(&(*vpp)->v_lock);
703 				(*vpp)->v_flag |= VISSWAP;
704 				mutex_exit(&(*vpp)->v_lock);
705 			}
706 			mutex_exit(&tp->tn_tlock);
707 			mutex_exit(&tm->tm_contents);
708 			return (0);
709 		}
710 		mutex_exit(&tp->tn_tlock);
711 	}
712 	mutex_exit(&tm->tm_contents);
713 	return (0);
714 }
715