1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 #include <linux/sched/task_stack.h>
14
15 #include "internals.h"
16
17 #define SPI_MEM_MAX_BUSWIDTH 8
18
19 /**
20 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21 * memory operation
22 * @ctlr: the SPI controller requesting this dma_map()
23 * @op: the memory operation containing the buffer to map
24 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25 * function
26 *
27 * Some controllers might want to do DMA on the data buffer embedded in @op.
28 * This helper prepares everything for you and provides a ready-to-use
29 * sg_table. This function is not intended to be called from spi drivers.
30 * Only SPI controller drivers should use it.
31 * Note that the caller must ensure the memory region pointed by
32 * op->data.buf.{in,out} is DMA-able before calling this function.
33 *
34 * Return: 0 in case of success, a negative error code otherwise.
35 */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 const struct spi_mem_op *op,
38 struct sg_table *sgt)
39 {
40 struct device *dmadev;
41
42 if (!op->data.nbytes)
43 return -EINVAL;
44
45 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 dmadev = ctlr->dma_tx->device->dev;
47 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 dmadev = ctlr->dma_rx->device->dev;
49 else
50 dmadev = ctlr->dev.parent;
51
52 if (!dmadev)
53 return -EINVAL;
54
55 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 op->data.dir == SPI_MEM_DATA_IN ?
57 DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60
61 /**
62 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63 * memory operation
64 * @ctlr: the SPI controller requesting this dma_unmap()
65 * @op: the memory operation containing the buffer to unmap
66 * @sgt: a pointer to an sg_table previously initialized by
67 * spi_controller_dma_map_mem_op_data()
68 *
69 * Some controllers might want to do DMA on the data buffer embedded in @op.
70 * This helper prepares things so that the CPU can access the
71 * op->data.buf.{in,out} buffer again.
72 *
73 * This function is not intended to be called from SPI drivers. Only SPI
74 * controller drivers should use it.
75 *
76 * This function should be called after the DMA operation has finished and is
77 * only valid if the previous spi_controller_dma_map_mem_op_data() call
78 * returned 0.
79 *
80 * Return: 0 in case of success, a negative error code otherwise.
81 */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 const struct spi_mem_op *op,
84 struct sg_table *sgt)
85 {
86 struct device *dmadev;
87
88 if (!op->data.nbytes)
89 return;
90
91 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 dmadev = ctlr->dma_tx->device->dev;
93 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 dmadev = ctlr->dma_rx->device->dev;
95 else
96 dmadev = ctlr->dev.parent;
97
98 spi_unmap_buf(ctlr, dmadev, sgt,
99 op->data.dir == SPI_MEM_DATA_IN ?
100 DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103
spi_check_buswidth_req(struct spi_mem * mem,u8 buswidth,bool tx)104 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
105 {
106 u32 mode = mem->spi->mode;
107
108 switch (buswidth) {
109 case 1:
110 return 0;
111
112 case 2:
113 if ((tx &&
114 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
115 (!tx &&
116 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
117 return 0;
118
119 break;
120
121 case 4:
122 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
123 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
124 return 0;
125
126 break;
127
128 case 8:
129 if ((tx && (mode & SPI_TX_OCTAL)) ||
130 (!tx && (mode & SPI_RX_OCTAL)))
131 return 0;
132
133 break;
134
135 default:
136 break;
137 }
138
139 return -ENOTSUPP;
140 }
141
spi_mem_check_buswidth(struct spi_mem * mem,const struct spi_mem_op * op)142 static bool spi_mem_check_buswidth(struct spi_mem *mem,
143 const struct spi_mem_op *op)
144 {
145 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
146 return false;
147
148 if (op->addr.nbytes &&
149 spi_check_buswidth_req(mem, op->addr.buswidth, true))
150 return false;
151
152 if (op->dummy.nbytes &&
153 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
154 return false;
155
156 if (op->data.dir != SPI_MEM_NO_DATA &&
157 spi_check_buswidth_req(mem, op->data.buswidth,
158 op->data.dir == SPI_MEM_DATA_OUT))
159 return false;
160
161 return true;
162 }
163
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)164 bool spi_mem_default_supports_op(struct spi_mem *mem,
165 const struct spi_mem_op *op)
166 {
167 struct spi_controller *ctlr = mem->spi->controller;
168 bool op_is_dtr =
169 op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
170
171 if (op_is_dtr) {
172 if (!spi_mem_controller_is_capable(ctlr, dtr))
173 return false;
174
175 if (op->data.swap16 && !spi_mem_controller_is_capable(ctlr, swap16))
176 return false;
177
178 if (op->cmd.nbytes != 2)
179 return false;
180 } else {
181 if (op->cmd.nbytes != 1)
182 return false;
183 }
184
185 if (op->data.ecc) {
186 if (!spi_mem_controller_is_capable(ctlr, ecc))
187 return false;
188 }
189
190 return spi_mem_check_buswidth(mem, op);
191 }
192 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
193
spi_mem_buswidth_is_valid(u8 buswidth)194 static bool spi_mem_buswidth_is_valid(u8 buswidth)
195 {
196 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
197 return false;
198
199 return true;
200 }
201
spi_mem_check_op(const struct spi_mem_op * op)202 static int spi_mem_check_op(const struct spi_mem_op *op)
203 {
204 if (!op->cmd.buswidth || !op->cmd.nbytes)
205 return -EINVAL;
206
207 if ((op->addr.nbytes && !op->addr.buswidth) ||
208 (op->dummy.nbytes && !op->dummy.buswidth) ||
209 (op->data.nbytes && !op->data.buswidth))
210 return -EINVAL;
211
212 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
213 !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
214 !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
215 !spi_mem_buswidth_is_valid(op->data.buswidth))
216 return -EINVAL;
217
218 /* Buffers must be DMA-able. */
219 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
220 object_is_on_stack(op->data.buf.in)))
221 return -EINVAL;
222
223 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
224 object_is_on_stack(op->data.buf.out)))
225 return -EINVAL;
226
227 return 0;
228 }
229
spi_mem_internal_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)230 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
231 const struct spi_mem_op *op)
232 {
233 struct spi_controller *ctlr = mem->spi->controller;
234
235 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
236 return ctlr->mem_ops->supports_op(mem, op);
237
238 return spi_mem_default_supports_op(mem, op);
239 }
240
241 /**
242 * spi_mem_supports_op() - Check if a memory device and the controller it is
243 * connected to support a specific memory operation
244 * @mem: the SPI memory
245 * @op: the memory operation to check
246 *
247 * Some controllers are only supporting Single or Dual IOs, others might only
248 * support specific opcodes, or it can even be that the controller and device
249 * both support Quad IOs but the hardware prevents you from using it because
250 * only 2 IO lines are connected.
251 *
252 * This function checks whether a specific operation is supported.
253 *
254 * Return: true if @op is supported, false otherwise.
255 */
spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)256 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
257 {
258 if (spi_mem_check_op(op))
259 return false;
260
261 return spi_mem_internal_supports_op(mem, op);
262 }
263 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
264
spi_mem_access_start(struct spi_mem * mem)265 static int spi_mem_access_start(struct spi_mem *mem)
266 {
267 struct spi_controller *ctlr = mem->spi->controller;
268
269 /*
270 * Flush the message queue before executing our SPI memory
271 * operation to prevent preemption of regular SPI transfers.
272 */
273 spi_flush_queue(ctlr);
274
275 if (ctlr->auto_runtime_pm) {
276 int ret;
277
278 ret = pm_runtime_resume_and_get(ctlr->dev.parent);
279 if (ret < 0) {
280 dev_err(&ctlr->dev, "Failed to power device: %d\n",
281 ret);
282 return ret;
283 }
284 }
285
286 mutex_lock(&ctlr->bus_lock_mutex);
287 mutex_lock(&ctlr->io_mutex);
288
289 return 0;
290 }
291
spi_mem_access_end(struct spi_mem * mem)292 static void spi_mem_access_end(struct spi_mem *mem)
293 {
294 struct spi_controller *ctlr = mem->spi->controller;
295
296 mutex_unlock(&ctlr->io_mutex);
297 mutex_unlock(&ctlr->bus_lock_mutex);
298
299 if (ctlr->auto_runtime_pm)
300 pm_runtime_put(ctlr->dev.parent);
301 }
302
spi_mem_add_op_stats(struct spi_statistics __percpu * pcpu_stats,const struct spi_mem_op * op,int exec_op_ret)303 static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
304 const struct spi_mem_op *op, int exec_op_ret)
305 {
306 struct spi_statistics *stats;
307 u64 len, l2len;
308
309 get_cpu();
310 stats = this_cpu_ptr(pcpu_stats);
311 u64_stats_update_begin(&stats->syncp);
312
313 /*
314 * We do not have the concept of messages or transfers. Let's consider
315 * that one operation is equivalent to one message and one transfer.
316 */
317 u64_stats_inc(&stats->messages);
318 u64_stats_inc(&stats->transfers);
319
320 /* Use the sum of all lengths as bytes count and histogram value. */
321 len = op->cmd.nbytes + op->addr.nbytes;
322 len += op->dummy.nbytes + op->data.nbytes;
323 u64_stats_add(&stats->bytes, len);
324 l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
325 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
326
327 /* Only account for data bytes as transferred bytes. */
328 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
329 u64_stats_add(&stats->bytes_tx, op->data.nbytes);
330 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
331 u64_stats_add(&stats->bytes_rx, op->data.nbytes);
332
333 /*
334 * A timeout is not an error, following the same behavior as
335 * spi_transfer_one_message().
336 */
337 if (exec_op_ret == -ETIMEDOUT)
338 u64_stats_inc(&stats->timedout);
339 else if (exec_op_ret)
340 u64_stats_inc(&stats->errors);
341
342 u64_stats_update_end(&stats->syncp);
343 put_cpu();
344 }
345
346 /**
347 * spi_mem_exec_op() - Execute a memory operation
348 * @mem: the SPI memory
349 * @op: the memory operation to execute
350 *
351 * Executes a memory operation.
352 *
353 * This function first checks that @op is supported and then tries to execute
354 * it.
355 *
356 * Return: 0 in case of success, a negative error code otherwise.
357 */
spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)358 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
359 {
360 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
361 struct spi_controller *ctlr = mem->spi->controller;
362 struct spi_transfer xfers[4] = { };
363 struct spi_message msg;
364 u8 *tmpbuf;
365 int ret;
366
367 ret = spi_mem_check_op(op);
368 if (ret)
369 return ret;
370
371 if (!spi_mem_internal_supports_op(mem, op))
372 return -EOPNOTSUPP;
373
374 if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
375 ret = spi_mem_access_start(mem);
376 if (ret)
377 return ret;
378
379 ret = ctlr->mem_ops->exec_op(mem, op);
380
381 spi_mem_access_end(mem);
382
383 /*
384 * Some controllers only optimize specific paths (typically the
385 * read path) and expect the core to use the regular SPI
386 * interface in other cases.
387 */
388 if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) {
389 spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
390 spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
391
392 return ret;
393 }
394 }
395
396 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
397
398 /*
399 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
400 * we're guaranteed that this buffer is DMA-able, as required by the
401 * SPI layer.
402 */
403 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
404 if (!tmpbuf)
405 return -ENOMEM;
406
407 spi_message_init(&msg);
408
409 tmpbuf[0] = op->cmd.opcode;
410 xfers[xferpos].tx_buf = tmpbuf;
411 xfers[xferpos].len = op->cmd.nbytes;
412 xfers[xferpos].tx_nbits = op->cmd.buswidth;
413 spi_message_add_tail(&xfers[xferpos], &msg);
414 xferpos++;
415 totalxferlen++;
416
417 if (op->addr.nbytes) {
418 int i;
419
420 for (i = 0; i < op->addr.nbytes; i++)
421 tmpbuf[i + 1] = op->addr.val >>
422 (8 * (op->addr.nbytes - i - 1));
423
424 xfers[xferpos].tx_buf = tmpbuf + 1;
425 xfers[xferpos].len = op->addr.nbytes;
426 xfers[xferpos].tx_nbits = op->addr.buswidth;
427 spi_message_add_tail(&xfers[xferpos], &msg);
428 xferpos++;
429 totalxferlen += op->addr.nbytes;
430 }
431
432 if (op->dummy.nbytes) {
433 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
434 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
435 xfers[xferpos].len = op->dummy.nbytes;
436 xfers[xferpos].tx_nbits = op->dummy.buswidth;
437 xfers[xferpos].dummy_data = 1;
438 spi_message_add_tail(&xfers[xferpos], &msg);
439 xferpos++;
440 totalxferlen += op->dummy.nbytes;
441 }
442
443 if (op->data.nbytes) {
444 if (op->data.dir == SPI_MEM_DATA_IN) {
445 xfers[xferpos].rx_buf = op->data.buf.in;
446 xfers[xferpos].rx_nbits = op->data.buswidth;
447 } else {
448 xfers[xferpos].tx_buf = op->data.buf.out;
449 xfers[xferpos].tx_nbits = op->data.buswidth;
450 }
451
452 xfers[xferpos].len = op->data.nbytes;
453 spi_message_add_tail(&xfers[xferpos], &msg);
454 xferpos++;
455 totalxferlen += op->data.nbytes;
456 }
457
458 ret = spi_sync(mem->spi, &msg);
459
460 kfree(tmpbuf);
461
462 if (ret)
463 return ret;
464
465 if (msg.actual_length != totalxferlen)
466 return -EIO;
467
468 return 0;
469 }
470 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
471
472 /**
473 * spi_mem_get_name() - Return the SPI mem device name to be used by the
474 * upper layer if necessary
475 * @mem: the SPI memory
476 *
477 * This function allows SPI mem users to retrieve the SPI mem device name.
478 * It is useful if the upper layer needs to expose a custom name for
479 * compatibility reasons.
480 *
481 * Return: a string containing the name of the memory device to be used
482 * by the SPI mem user
483 */
spi_mem_get_name(struct spi_mem * mem)484 const char *spi_mem_get_name(struct spi_mem *mem)
485 {
486 return mem->name;
487 }
488 EXPORT_SYMBOL_GPL(spi_mem_get_name);
489
490 /**
491 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
492 * match controller limitations
493 * @mem: the SPI memory
494 * @op: the operation to adjust
495 *
496 * Some controllers have FIFO limitations and must split a data transfer
497 * operation into multiple ones, others require a specific alignment for
498 * optimized accesses. This function allows SPI mem drivers to split a single
499 * operation into multiple sub-operations when required.
500 *
501 * Return: a negative error code if the controller can't properly adjust @op,
502 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
503 * can't be handled in a single step.
504 */
spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)505 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
506 {
507 struct spi_controller *ctlr = mem->spi->controller;
508 size_t len;
509
510 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
511 return ctlr->mem_ops->adjust_op_size(mem, op);
512
513 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
514 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
515
516 if (len > spi_max_transfer_size(mem->spi))
517 return -EINVAL;
518
519 op->data.nbytes = min3((size_t)op->data.nbytes,
520 spi_max_transfer_size(mem->spi),
521 spi_max_message_size(mem->spi) -
522 len);
523 if (!op->data.nbytes)
524 return -EINVAL;
525 }
526
527 return 0;
528 }
529 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
530
spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)531 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
532 u64 offs, size_t len, void *buf)
533 {
534 struct spi_mem_op op = desc->info.op_tmpl;
535 int ret;
536
537 op.addr.val = desc->info.offset + offs;
538 op.data.buf.in = buf;
539 op.data.nbytes = len;
540 ret = spi_mem_adjust_op_size(desc->mem, &op);
541 if (ret)
542 return ret;
543
544 ret = spi_mem_exec_op(desc->mem, &op);
545 if (ret)
546 return ret;
547
548 return op.data.nbytes;
549 }
550
spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)551 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
552 u64 offs, size_t len, const void *buf)
553 {
554 struct spi_mem_op op = desc->info.op_tmpl;
555 int ret;
556
557 op.addr.val = desc->info.offset + offs;
558 op.data.buf.out = buf;
559 op.data.nbytes = len;
560 ret = spi_mem_adjust_op_size(desc->mem, &op);
561 if (ret)
562 return ret;
563
564 ret = spi_mem_exec_op(desc->mem, &op);
565 if (ret)
566 return ret;
567
568 return op.data.nbytes;
569 }
570
571 /**
572 * spi_mem_dirmap_create() - Create a direct mapping descriptor
573 * @mem: SPI mem device this direct mapping should be created for
574 * @info: direct mapping information
575 *
576 * This function is creating a direct mapping descriptor which can then be used
577 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
578 * If the SPI controller driver does not support direct mapping, this function
579 * falls back to an implementation using spi_mem_exec_op(), so that the caller
580 * doesn't have to bother implementing a fallback on his own.
581 *
582 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
583 */
584 struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem * mem,const struct spi_mem_dirmap_info * info)585 spi_mem_dirmap_create(struct spi_mem *mem,
586 const struct spi_mem_dirmap_info *info)
587 {
588 struct spi_controller *ctlr = mem->spi->controller;
589 struct spi_mem_dirmap_desc *desc;
590 int ret = -ENOTSUPP;
591
592 /* Make sure the number of address cycles is between 1 and 8 bytes. */
593 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
594 return ERR_PTR(-EINVAL);
595
596 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
597 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
598 return ERR_PTR(-EINVAL);
599
600 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
601 if (!desc)
602 return ERR_PTR(-ENOMEM);
603
604 desc->mem = mem;
605 desc->info = *info;
606 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
607 ret = ctlr->mem_ops->dirmap_create(desc);
608
609 if (ret) {
610 desc->nodirmap = true;
611 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
612 ret = -EOPNOTSUPP;
613 else
614 ret = 0;
615 }
616
617 if (ret) {
618 kfree(desc);
619 return ERR_PTR(ret);
620 }
621
622 return desc;
623 }
624 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
625
626 /**
627 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
628 * @desc: the direct mapping descriptor to destroy
629 *
630 * This function destroys a direct mapping descriptor previously created by
631 * spi_mem_dirmap_create().
632 */
spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc * desc)633 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
634 {
635 struct spi_controller *ctlr = desc->mem->spi->controller;
636
637 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
638 ctlr->mem_ops->dirmap_destroy(desc);
639
640 kfree(desc);
641 }
642 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
643
devm_spi_mem_dirmap_release(struct device * dev,void * res)644 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
645 {
646 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
647
648 spi_mem_dirmap_destroy(desc);
649 }
650
651 /**
652 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
653 * it to a device
654 * @dev: device the dirmap desc will be attached to
655 * @mem: SPI mem device this direct mapping should be created for
656 * @info: direct mapping information
657 *
658 * devm_ variant of the spi_mem_dirmap_create() function. See
659 * spi_mem_dirmap_create() for more details.
660 *
661 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
662 */
663 struct spi_mem_dirmap_desc *
devm_spi_mem_dirmap_create(struct device * dev,struct spi_mem * mem,const struct spi_mem_dirmap_info * info)664 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
665 const struct spi_mem_dirmap_info *info)
666 {
667 struct spi_mem_dirmap_desc **ptr, *desc;
668
669 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
670 GFP_KERNEL);
671 if (!ptr)
672 return ERR_PTR(-ENOMEM);
673
674 desc = spi_mem_dirmap_create(mem, info);
675 if (IS_ERR(desc)) {
676 devres_free(ptr);
677 } else {
678 *ptr = desc;
679 devres_add(dev, ptr);
680 }
681
682 return desc;
683 }
684 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
685
devm_spi_mem_dirmap_match(struct device * dev,void * res,void * data)686 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
687 {
688 struct spi_mem_dirmap_desc **ptr = res;
689
690 if (WARN_ON(!ptr || !*ptr))
691 return 0;
692
693 return *ptr == data;
694 }
695
696 /**
697 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
698 * to a device
699 * @dev: device the dirmap desc is attached to
700 * @desc: the direct mapping descriptor to destroy
701 *
702 * devm_ variant of the spi_mem_dirmap_destroy() function. See
703 * spi_mem_dirmap_destroy() for more details.
704 */
devm_spi_mem_dirmap_destroy(struct device * dev,struct spi_mem_dirmap_desc * desc)705 void devm_spi_mem_dirmap_destroy(struct device *dev,
706 struct spi_mem_dirmap_desc *desc)
707 {
708 devres_release(dev, devm_spi_mem_dirmap_release,
709 devm_spi_mem_dirmap_match, desc);
710 }
711 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
712
713 /**
714 * spi_mem_dirmap_read() - Read data through a direct mapping
715 * @desc: direct mapping descriptor
716 * @offs: offset to start reading from. Note that this is not an absolute
717 * offset, but the offset within the direct mapping which already has
718 * its own offset
719 * @len: length in bytes
720 * @buf: destination buffer. This buffer must be DMA-able
721 *
722 * This function reads data from a memory device using a direct mapping
723 * previously instantiated with spi_mem_dirmap_create().
724 *
725 * Return: the amount of data read from the memory device or a negative error
726 * code. Note that the returned size might be smaller than @len, and the caller
727 * is responsible for calling spi_mem_dirmap_read() again when that happens.
728 */
spi_mem_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)729 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
730 u64 offs, size_t len, void *buf)
731 {
732 struct spi_controller *ctlr = desc->mem->spi->controller;
733 ssize_t ret;
734
735 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
736 return -EINVAL;
737
738 if (!len)
739 return 0;
740
741 if (desc->nodirmap) {
742 ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
743 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
744 ret = spi_mem_access_start(desc->mem);
745 if (ret)
746 return ret;
747
748 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
749
750 spi_mem_access_end(desc->mem);
751 } else {
752 ret = -ENOTSUPP;
753 }
754
755 return ret;
756 }
757 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
758
759 /**
760 * spi_mem_dirmap_write() - Write data through a direct mapping
761 * @desc: direct mapping descriptor
762 * @offs: offset to start writing from. Note that this is not an absolute
763 * offset, but the offset within the direct mapping which already has
764 * its own offset
765 * @len: length in bytes
766 * @buf: source buffer. This buffer must be DMA-able
767 *
768 * This function writes data to a memory device using a direct mapping
769 * previously instantiated with spi_mem_dirmap_create().
770 *
771 * Return: the amount of data written to the memory device or a negative error
772 * code. Note that the returned size might be smaller than @len, and the caller
773 * is responsible for calling spi_mem_dirmap_write() again when that happens.
774 */
spi_mem_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)775 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
776 u64 offs, size_t len, const void *buf)
777 {
778 struct spi_controller *ctlr = desc->mem->spi->controller;
779 ssize_t ret;
780
781 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
782 return -EINVAL;
783
784 if (!len)
785 return 0;
786
787 if (desc->nodirmap) {
788 ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
789 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
790 ret = spi_mem_access_start(desc->mem);
791 if (ret)
792 return ret;
793
794 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
795
796 spi_mem_access_end(desc->mem);
797 } else {
798 ret = -ENOTSUPP;
799 }
800
801 return ret;
802 }
803 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
804
to_spi_mem_drv(struct device_driver * drv)805 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
806 {
807 return container_of(drv, struct spi_mem_driver, spidrv.driver);
808 }
809
spi_mem_read_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 * status)810 static int spi_mem_read_status(struct spi_mem *mem,
811 const struct spi_mem_op *op,
812 u16 *status)
813 {
814 const u8 *bytes = (u8 *)op->data.buf.in;
815 int ret;
816
817 ret = spi_mem_exec_op(mem, op);
818 if (ret)
819 return ret;
820
821 if (op->data.nbytes > 1)
822 *status = ((u16)bytes[0] << 8) | bytes[1];
823 else
824 *status = bytes[0];
825
826 return 0;
827 }
828
829 /**
830 * spi_mem_poll_status() - Poll memory device status
831 * @mem: SPI memory device
832 * @op: the memory operation to execute
833 * @mask: status bitmask to ckeck
834 * @match: (status & mask) expected value
835 * @initial_delay_us: delay in us before starting to poll
836 * @polling_delay_us: time to sleep between reads in us
837 * @timeout_ms: timeout in milliseconds
838 *
839 * This function polls a status register and returns when
840 * (status & mask) == match or when the timeout has expired.
841 *
842 * Return: 0 in case of success, -ETIMEDOUT in case of error,
843 * -EOPNOTSUPP if not supported.
844 */
spi_mem_poll_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 mask,u16 match,unsigned long initial_delay_us,unsigned long polling_delay_us,u16 timeout_ms)845 int spi_mem_poll_status(struct spi_mem *mem,
846 const struct spi_mem_op *op,
847 u16 mask, u16 match,
848 unsigned long initial_delay_us,
849 unsigned long polling_delay_us,
850 u16 timeout_ms)
851 {
852 struct spi_controller *ctlr = mem->spi->controller;
853 int ret = -EOPNOTSUPP;
854 int read_status_ret;
855 u16 status;
856
857 if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
858 op->data.dir != SPI_MEM_DATA_IN)
859 return -EINVAL;
860
861 if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
862 ret = spi_mem_access_start(mem);
863 if (ret)
864 return ret;
865
866 ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
867 initial_delay_us, polling_delay_us,
868 timeout_ms);
869
870 spi_mem_access_end(mem);
871 }
872
873 if (ret == -EOPNOTSUPP) {
874 if (!spi_mem_supports_op(mem, op))
875 return ret;
876
877 if (initial_delay_us < 10)
878 udelay(initial_delay_us);
879 else
880 usleep_range((initial_delay_us >> 2) + 1,
881 initial_delay_us);
882
883 ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
884 (read_status_ret || ((status) & mask) == match),
885 polling_delay_us, timeout_ms * 1000, false, mem,
886 op, &status);
887 if (read_status_ret)
888 return read_status_ret;
889 }
890
891 return ret;
892 }
893 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
894
spi_mem_probe(struct spi_device * spi)895 static int spi_mem_probe(struct spi_device *spi)
896 {
897 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
898 struct spi_controller *ctlr = spi->controller;
899 struct spi_mem *mem;
900
901 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
902 if (!mem)
903 return -ENOMEM;
904
905 mem->spi = spi;
906
907 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
908 mem->name = ctlr->mem_ops->get_name(mem);
909 else
910 mem->name = dev_name(&spi->dev);
911
912 if (IS_ERR_OR_NULL(mem->name))
913 return PTR_ERR_OR_ZERO(mem->name);
914
915 spi_set_drvdata(spi, mem);
916
917 return memdrv->probe(mem);
918 }
919
spi_mem_remove(struct spi_device * spi)920 static void spi_mem_remove(struct spi_device *spi)
921 {
922 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
923 struct spi_mem *mem = spi_get_drvdata(spi);
924
925 if (memdrv->remove)
926 memdrv->remove(mem);
927 }
928
spi_mem_shutdown(struct spi_device * spi)929 static void spi_mem_shutdown(struct spi_device *spi)
930 {
931 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
932 struct spi_mem *mem = spi_get_drvdata(spi);
933
934 if (memdrv->shutdown)
935 memdrv->shutdown(mem);
936 }
937
938 /**
939 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
940 * @memdrv: the SPI memory driver to register
941 * @owner: the owner of this driver
942 *
943 * Registers a SPI memory driver.
944 *
945 * Return: 0 in case of success, a negative error core otherwise.
946 */
947
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)948 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
949 struct module *owner)
950 {
951 memdrv->spidrv.probe = spi_mem_probe;
952 memdrv->spidrv.remove = spi_mem_remove;
953 memdrv->spidrv.shutdown = spi_mem_shutdown;
954
955 return __spi_register_driver(owner, &memdrv->spidrv);
956 }
957 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
958
959 /**
960 * spi_mem_driver_unregister() - Unregister a SPI memory driver
961 * @memdrv: the SPI memory driver to unregister
962 *
963 * Unregisters a SPI memory driver.
964 */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)965 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
966 {
967 spi_unregister_driver(&memdrv->spidrv);
968 }
969 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
970