1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "internal/cryptlib.h"
27 #include "ssl_local.h"
28 #include <openssl/ct.h>
29
30 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
31 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
32
33 SSL3_ENC_METHOD const TLSv1_enc_data = {
34 tls1_enc,
35 tls1_mac,
36 tls1_setup_key_block,
37 tls1_generate_master_secret,
38 tls1_change_cipher_state,
39 tls1_final_finish_mac,
40 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42 tls1_alert_code,
43 tls1_export_keying_material,
44 0,
45 ssl3_set_handshake_header,
46 tls_close_construct_packet,
47 ssl3_handshake_write
48 };
49
50 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51 tls1_enc,
52 tls1_mac,
53 tls1_setup_key_block,
54 tls1_generate_master_secret,
55 tls1_change_cipher_state,
56 tls1_final_finish_mac,
57 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
58 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
59 tls1_alert_code,
60 tls1_export_keying_material,
61 SSL_ENC_FLAG_EXPLICIT_IV,
62 ssl3_set_handshake_header,
63 tls_close_construct_packet,
64 ssl3_handshake_write
65 };
66
67 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
68 tls1_enc,
69 tls1_mac,
70 tls1_setup_key_block,
71 tls1_generate_master_secret,
72 tls1_change_cipher_state,
73 tls1_final_finish_mac,
74 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
75 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
76 tls1_alert_code,
77 tls1_export_keying_material,
78 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
79 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
80 ssl3_set_handshake_header,
81 tls_close_construct_packet,
82 ssl3_handshake_write
83 };
84
85 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
86 tls13_enc,
87 tls1_mac,
88 tls13_setup_key_block,
89 tls13_generate_master_secret,
90 tls13_change_cipher_state,
91 tls13_final_finish_mac,
92 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
93 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
94 tls13_alert_code,
95 tls13_export_keying_material,
96 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
97 ssl3_set_handshake_header,
98 tls_close_construct_packet,
99 ssl3_handshake_write
100 };
101
tls1_default_timeout(void)102 long tls1_default_timeout(void)
103 {
104 /*
105 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
106 * http, the cache would over fill
107 */
108 return (60 * 60 * 2);
109 }
110
tls1_new(SSL * s)111 int tls1_new(SSL *s)
112 {
113 if (!ssl3_new(s))
114 return 0;
115 if (!s->method->ssl_clear(s))
116 return 0;
117
118 return 1;
119 }
120
tls1_free(SSL * s)121 void tls1_free(SSL *s)
122 {
123 OPENSSL_free(s->ext.session_ticket);
124 ssl3_free(s);
125 }
126
tls1_clear(SSL * s)127 int tls1_clear(SSL *s)
128 {
129 if (!ssl3_clear(s))
130 return 0;
131
132 if (s->method->version == TLS_ANY_VERSION)
133 s->version = TLS_MAX_VERSION_INTERNAL;
134 else
135 s->version = s->method->version;
136
137 return 1;
138 }
139
140 /* Legacy NID to group_id mapping. Only works for groups we know about */
141 static struct {
142 int nid;
143 uint16_t group_id;
144 } nid_to_group[] = {
145 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
146 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
147 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
148 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
149 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
150 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
151 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
152 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
153 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
154 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
155 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
156 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
157 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
158 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
159 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
160 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
161 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
162 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
163 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
164 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
165 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
166 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
167 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
168 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
169 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
170 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
171 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
172 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
173 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
174 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
175 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
176 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
177 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
178 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
179 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
180 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
181 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
182 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
183 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
184 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
185 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
186 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
187 };
188
189 static const unsigned char ecformats_default[] = {
190 TLSEXT_ECPOINTFORMAT_uncompressed,
191 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
192 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
193 };
194
195 /* The default curves */
196 static const uint16_t supported_groups_default[] = {
197 29, /* X25519 (29) */
198 23, /* secp256r1 (23) */
199 30, /* X448 (30) */
200 25, /* secp521r1 (25) */
201 24, /* secp384r1 (24) */
202 34, /* GC256A (34) */
203 35, /* GC256B (35) */
204 36, /* GC256C (36) */
205 37, /* GC256D (37) */
206 38, /* GC512A (38) */
207 39, /* GC512B (39) */
208 40, /* GC512C (40) */
209 0x100, /* ffdhe2048 (0x100) */
210 0x101, /* ffdhe3072 (0x101) */
211 0x102, /* ffdhe4096 (0x102) */
212 0x103, /* ffdhe6144 (0x103) */
213 0x104, /* ffdhe8192 (0x104) */
214 };
215
216 static const uint16_t suiteb_curves[] = {
217 TLSEXT_curve_P_256,
218 TLSEXT_curve_P_384
219 };
220
221 struct provider_group_data_st {
222 SSL_CTX *ctx;
223 OSSL_PROVIDER *provider;
224 };
225
226 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
227 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[],void * data)228 static int add_provider_groups(const OSSL_PARAM params[], void *data)
229 {
230 struct provider_group_data_st *pgd = data;
231 SSL_CTX *ctx = pgd->ctx;
232 OSSL_PROVIDER *provider = pgd->provider;
233 const OSSL_PARAM *p;
234 TLS_GROUP_INFO *ginf = NULL;
235 EVP_KEYMGMT *keymgmt;
236 unsigned int gid;
237 unsigned int is_kem = 0;
238 int ret = 0;
239
240 if (ctx->group_list_max_len == ctx->group_list_len) {
241 TLS_GROUP_INFO *tmp = NULL;
242
243 if (ctx->group_list_max_len == 0)
244 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
245 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
246 else
247 tmp = OPENSSL_realloc(ctx->group_list,
248 (ctx->group_list_max_len
249 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
250 * sizeof(TLS_GROUP_INFO));
251 if (tmp == NULL) {
252 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
253 return 0;
254 }
255 ctx->group_list = tmp;
256 memset(tmp + ctx->group_list_max_len,
257 0,
258 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
259 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
260 }
261
262 ginf = &ctx->group_list[ctx->group_list_len];
263
264 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
265 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
266 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
267 goto err;
268 }
269 ginf->tlsname = OPENSSL_strdup(p->data);
270 if (ginf->tlsname == NULL) {
271 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
272 goto err;
273 }
274
275 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
276 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
277 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
278 goto err;
279 }
280 ginf->realname = OPENSSL_strdup(p->data);
281 if (ginf->realname == NULL) {
282 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
283 goto err;
284 }
285
286 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289 goto err;
290 }
291 ginf->group_id = (uint16_t)gid;
292
293 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296 goto err;
297 }
298 ginf->algorithm = OPENSSL_strdup(p->data);
299 if (ginf->algorithm == NULL) {
300 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
301 goto err;
302 }
303
304 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
305 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
306 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
307 goto err;
308 }
309
310 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
311 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
312 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
313 goto err;
314 }
315 ginf->is_kem = 1 & is_kem;
316
317 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
318 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
319 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
320 goto err;
321 }
322
323 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
324 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
325 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
326 goto err;
327 }
328
329 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
330 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
331 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
332 goto err;
333 }
334
335 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
336 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
337 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
338 goto err;
339 }
340 /*
341 * Now check that the algorithm is actually usable for our property query
342 * string. Regardless of the result we still return success because we have
343 * successfully processed this group, even though we may decide not to use
344 * it.
345 */
346 ret = 1;
347 ERR_set_mark();
348 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
349 if (keymgmt != NULL) {
350 /*
351 * We have successfully fetched the algorithm - however if the provider
352 * doesn't match this one then we ignore it.
353 *
354 * Note: We're cheating a little here. Technically if the same algorithm
355 * is available from more than one provider then it is undefined which
356 * implementation you will get back. Theoretically this could be
357 * different every time...we assume here that you'll always get the
358 * same one back if you repeat the exact same fetch. Is this a reasonable
359 * assumption to make (in which case perhaps we should document this
360 * behaviour)?
361 */
362 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
363 /* We have a match - so we will use this group */
364 ctx->group_list_len++;
365 ginf = NULL;
366 }
367 EVP_KEYMGMT_free(keymgmt);
368 }
369 ERR_pop_to_mark();
370 err:
371 if (ginf != NULL) {
372 OPENSSL_free(ginf->tlsname);
373 OPENSSL_free(ginf->realname);
374 OPENSSL_free(ginf->algorithm);
375 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
376 }
377 return ret;
378 }
379
discover_provider_groups(OSSL_PROVIDER * provider,void * vctx)380 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
381 {
382 struct provider_group_data_st pgd;
383
384 pgd.ctx = vctx;
385 pgd.provider = provider;
386 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
387 add_provider_groups, &pgd);
388 }
389
ssl_load_groups(SSL_CTX * ctx)390 int ssl_load_groups(SSL_CTX *ctx)
391 {
392 size_t i, j, num_deflt_grps = 0;
393 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
394
395 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
396 return 0;
397
398 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
399 for (j = 0; j < ctx->group_list_len; j++) {
400 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
401 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
402 break;
403 }
404 }
405 }
406
407 if (num_deflt_grps == 0)
408 return 1;
409
410 ctx->ext.supported_groups_default
411 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
412
413 if (ctx->ext.supported_groups_default == NULL) {
414 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
415 return 0;
416 }
417
418 memcpy(ctx->ext.supported_groups_default,
419 tmp_supp_groups,
420 num_deflt_grps * sizeof(tmp_supp_groups[0]));
421 ctx->ext.supported_groups_default_len = num_deflt_grps;
422
423 return 1;
424 }
425
tls1_group_name2id(SSL_CTX * ctx,const char * name)426 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
427 {
428 size_t i;
429
430 for (i = 0; i < ctx->group_list_len; i++) {
431 if (strcmp(ctx->group_list[i].tlsname, name) == 0
432 || strcmp(ctx->group_list[i].realname, name) == 0)
433 return ctx->group_list[i].group_id;
434 }
435
436 return 0;
437 }
438
tls1_group_id_lookup(SSL_CTX * ctx,uint16_t group_id)439 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
440 {
441 size_t i;
442
443 for (i = 0; i < ctx->group_list_len; i++) {
444 if (ctx->group_list[i].group_id == group_id)
445 return &ctx->group_list[i];
446 }
447
448 return NULL;
449 }
450
tls1_group_id2nid(uint16_t group_id,int include_unknown)451 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
452 {
453 size_t i;
454
455 if (group_id == 0)
456 return NID_undef;
457
458 /*
459 * Return well known Group NIDs - for backwards compatibility. This won't
460 * work for groups we don't know about.
461 */
462 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
463 {
464 if (nid_to_group[i].group_id == group_id)
465 return nid_to_group[i].nid;
466 }
467 if (!include_unknown)
468 return NID_undef;
469 return TLSEXT_nid_unknown | (int)group_id;
470 }
471
tls1_nid2group_id(int nid)472 uint16_t tls1_nid2group_id(int nid)
473 {
474 size_t i;
475
476 /*
477 * Return well known Group ids - for backwards compatibility. This won't
478 * work for groups we don't know about.
479 */
480 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
481 {
482 if (nid_to_group[i].nid == nid)
483 return nid_to_group[i].group_id;
484 }
485
486 return 0;
487 }
488
489 /*
490 * Set *pgroups to the supported groups list and *pgroupslen to
491 * the number of groups supported.
492 */
tls1_get_supported_groups(SSL * s,const uint16_t ** pgroups,size_t * pgroupslen)493 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
494 size_t *pgroupslen)
495 {
496 /* For Suite B mode only include P-256, P-384 */
497 switch (tls1_suiteb(s)) {
498 case SSL_CERT_FLAG_SUITEB_128_LOS:
499 *pgroups = suiteb_curves;
500 *pgroupslen = OSSL_NELEM(suiteb_curves);
501 break;
502
503 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
504 *pgroups = suiteb_curves;
505 *pgroupslen = 1;
506 break;
507
508 case SSL_CERT_FLAG_SUITEB_192_LOS:
509 *pgroups = suiteb_curves + 1;
510 *pgroupslen = 1;
511 break;
512
513 default:
514 if (s->ext.supportedgroups == NULL) {
515 *pgroups = s->ctx->ext.supported_groups_default;
516 *pgroupslen = s->ctx->ext.supported_groups_default_len;
517 } else {
518 *pgroups = s->ext.supportedgroups;
519 *pgroupslen = s->ext.supportedgroups_len;
520 }
521 break;
522 }
523 }
524
tls_valid_group(SSL * s,uint16_t group_id,int minversion,int maxversion,int isec,int * okfortls13)525 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
526 int isec, int *okfortls13)
527 {
528 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
529 int ret;
530
531 if (okfortls13 != NULL)
532 *okfortls13 = 0;
533
534 if (ginfo == NULL)
535 return 0;
536
537 if (SSL_IS_DTLS(s)) {
538 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
539 return 0;
540 if (ginfo->maxdtls == 0)
541 ret = 1;
542 else
543 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
544 if (ginfo->mindtls > 0)
545 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
546 } else {
547 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
548 return 0;
549 if (ginfo->maxtls == 0)
550 ret = 1;
551 else
552 ret = (minversion <= ginfo->maxtls);
553 if (ginfo->mintls > 0)
554 ret &= (maxversion >= ginfo->mintls);
555 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
556 *okfortls13 = (ginfo->maxtls == 0)
557 || (ginfo->maxtls >= TLS1_3_VERSION);
558 }
559 ret &= !isec
560 || strcmp(ginfo->algorithm, "EC") == 0
561 || strcmp(ginfo->algorithm, "X25519") == 0
562 || strcmp(ginfo->algorithm, "X448") == 0;
563
564 return ret;
565 }
566
567 /* See if group is allowed by security callback */
tls_group_allowed(SSL * s,uint16_t group,int op)568 int tls_group_allowed(SSL *s, uint16_t group, int op)
569 {
570 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
571 unsigned char gtmp[2];
572
573 if (ginfo == NULL)
574 return 0;
575
576 gtmp[0] = group >> 8;
577 gtmp[1] = group & 0xff;
578 return ssl_security(s, op, ginfo->secbits,
579 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
580 }
581
582 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)583 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
584 {
585 size_t i;
586 for (i = 0; i < listlen; i++)
587 if (list[i] == id)
588 return 1;
589 return 0;
590 }
591
592 /*-
593 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
594 * if there is no match.
595 * For nmatch == -1, return number of matches
596 * For nmatch == -2, return the id of the group to use for
597 * a tmp key, or 0 if there is no match.
598 */
tls1_shared_group(SSL * s,int nmatch)599 uint16_t tls1_shared_group(SSL *s, int nmatch)
600 {
601 const uint16_t *pref, *supp;
602 size_t num_pref, num_supp, i;
603 int k;
604 SSL_CTX *ctx = s->ctx;
605
606 /* Can't do anything on client side */
607 if (s->server == 0)
608 return 0;
609 if (nmatch == -2) {
610 if (tls1_suiteb(s)) {
611 /*
612 * For Suite B ciphersuite determines curve: we already know
613 * these are acceptable due to previous checks.
614 */
615 unsigned long cid = s->s3.tmp.new_cipher->id;
616
617 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
618 return TLSEXT_curve_P_256;
619 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
620 return TLSEXT_curve_P_384;
621 /* Should never happen */
622 return 0;
623 }
624 /* If not Suite B just return first preference shared curve */
625 nmatch = 0;
626 }
627 /*
628 * If server preference set, our groups are the preference order
629 * otherwise peer decides.
630 */
631 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
632 tls1_get_supported_groups(s, &pref, &num_pref);
633 tls1_get_peer_groups(s, &supp, &num_supp);
634 } else {
635 tls1_get_peer_groups(s, &pref, &num_pref);
636 tls1_get_supported_groups(s, &supp, &num_supp);
637 }
638
639 for (k = 0, i = 0; i < num_pref; i++) {
640 uint16_t id = pref[i];
641 const TLS_GROUP_INFO *inf;
642
643 if (!tls1_in_list(id, supp, num_supp)
644 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
645 continue;
646 inf = tls1_group_id_lookup(ctx, id);
647 if (!ossl_assert(inf != NULL))
648 return 0;
649 if (SSL_IS_DTLS(s)) {
650 if (inf->maxdtls == -1)
651 continue;
652 if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
653 || (inf->maxdtls != 0
654 && DTLS_VERSION_GT(s->version, inf->maxdtls)))
655 continue;
656 } else {
657 if (inf->maxtls == -1)
658 continue;
659 if ((inf->mintls != 0 && s->version < inf->mintls)
660 || (inf->maxtls != 0 && s->version > inf->maxtls))
661 continue;
662 }
663
664 if (nmatch == k)
665 return id;
666 k++;
667 }
668 if (nmatch == -1)
669 return k;
670 /* Out of range (nmatch > k). */
671 return 0;
672 }
673
tls1_set_groups(uint16_t ** pext,size_t * pextlen,int * groups,size_t ngroups)674 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
675 int *groups, size_t ngroups)
676 {
677 uint16_t *glist;
678 size_t i;
679 /*
680 * Bitmap of groups included to detect duplicates: two variables are added
681 * to detect duplicates as some values are more than 32.
682 */
683 unsigned long *dup_list = NULL;
684 unsigned long dup_list_egrp = 0;
685 unsigned long dup_list_dhgrp = 0;
686
687 if (ngroups == 0) {
688 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
689 return 0;
690 }
691 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
692 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
693 return 0;
694 }
695 for (i = 0; i < ngroups; i++) {
696 unsigned long idmask;
697 uint16_t id;
698 id = tls1_nid2group_id(groups[i]);
699 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
700 goto err;
701 idmask = 1L << (id & 0x00FF);
702 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
703 if (!id || ((*dup_list) & idmask))
704 goto err;
705 *dup_list |= idmask;
706 glist[i] = id;
707 }
708 OPENSSL_free(*pext);
709 *pext = glist;
710 *pextlen = ngroups;
711 return 1;
712 err:
713 OPENSSL_free(glist);
714 return 0;
715 }
716
717 # define GROUPLIST_INCREMENT 40
718 # define GROUP_NAME_BUFFER_LENGTH 64
719 typedef struct {
720 SSL_CTX *ctx;
721 size_t gidcnt;
722 size_t gidmax;
723 uint16_t *gid_arr;
724 } gid_cb_st;
725
gid_cb(const char * elem,int len,void * arg)726 static int gid_cb(const char *elem, int len, void *arg)
727 {
728 gid_cb_st *garg = arg;
729 size_t i;
730 uint16_t gid = 0;
731 char etmp[GROUP_NAME_BUFFER_LENGTH];
732
733 if (elem == NULL)
734 return 0;
735 if (garg->gidcnt == garg->gidmax) {
736 uint16_t *tmp =
737 OPENSSL_realloc(garg->gid_arr,
738 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
739 if (tmp == NULL)
740 return 0;
741 garg->gidmax += GROUPLIST_INCREMENT;
742 garg->gid_arr = tmp;
743 }
744 if (len > (int)(sizeof(etmp) - 1))
745 return 0;
746 memcpy(etmp, elem, len);
747 etmp[len] = 0;
748
749 gid = tls1_group_name2id(garg->ctx, etmp);
750 if (gid == 0) {
751 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
752 "group '%s' cannot be set", etmp);
753 return 0;
754 }
755 for (i = 0; i < garg->gidcnt; i++)
756 if (garg->gid_arr[i] == gid)
757 return 0;
758 garg->gid_arr[garg->gidcnt++] = gid;
759 return 1;
760 }
761
762 /* Set groups based on a colon separated list */
tls1_set_groups_list(SSL_CTX * ctx,uint16_t ** pext,size_t * pextlen,const char * str)763 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
764 const char *str)
765 {
766 gid_cb_st gcb;
767 uint16_t *tmparr;
768 int ret = 0;
769
770 gcb.gidcnt = 0;
771 gcb.gidmax = GROUPLIST_INCREMENT;
772 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
773 if (gcb.gid_arr == NULL)
774 return 0;
775 gcb.ctx = ctx;
776 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
777 goto end;
778 if (pext == NULL) {
779 ret = 1;
780 goto end;
781 }
782
783 /*
784 * gid_cb ensurse there are no duplicates so we can just go ahead and set
785 * the result
786 */
787 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
788 if (tmparr == NULL)
789 goto end;
790 OPENSSL_free(*pext);
791 *pext = tmparr;
792 *pextlen = gcb.gidcnt;
793 ret = 1;
794 end:
795 OPENSSL_free(gcb.gid_arr);
796 return ret;
797 }
798
799 /* Check a group id matches preferences */
tls1_check_group_id(SSL * s,uint16_t group_id,int check_own_groups)800 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
801 {
802 const uint16_t *groups;
803 size_t groups_len;
804
805 if (group_id == 0)
806 return 0;
807
808 /* Check for Suite B compliance */
809 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
810 unsigned long cid = s->s3.tmp.new_cipher->id;
811
812 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
813 if (group_id != TLSEXT_curve_P_256)
814 return 0;
815 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
816 if (group_id != TLSEXT_curve_P_384)
817 return 0;
818 } else {
819 /* Should never happen */
820 return 0;
821 }
822 }
823
824 if (check_own_groups) {
825 /* Check group is one of our preferences */
826 tls1_get_supported_groups(s, &groups, &groups_len);
827 if (!tls1_in_list(group_id, groups, groups_len))
828 return 0;
829 }
830
831 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
832 return 0;
833
834 /* For clients, nothing more to check */
835 if (!s->server)
836 return 1;
837
838 /* Check group is one of peers preferences */
839 tls1_get_peer_groups(s, &groups, &groups_len);
840
841 /*
842 * RFC 4492 does not require the supported elliptic curves extension
843 * so if it is not sent we can just choose any curve.
844 * It is invalid to send an empty list in the supported groups
845 * extension, so groups_len == 0 always means no extension.
846 */
847 if (groups_len == 0)
848 return 1;
849 return tls1_in_list(group_id, groups, groups_len);
850 }
851
tls1_get_formatlist(SSL * s,const unsigned char ** pformats,size_t * num_formats)852 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
853 size_t *num_formats)
854 {
855 /*
856 * If we have a custom point format list use it otherwise use default
857 */
858 if (s->ext.ecpointformats) {
859 *pformats = s->ext.ecpointformats;
860 *num_formats = s->ext.ecpointformats_len;
861 } else {
862 *pformats = ecformats_default;
863 /* For Suite B we don't support char2 fields */
864 if (tls1_suiteb(s))
865 *num_formats = sizeof(ecformats_default) - 1;
866 else
867 *num_formats = sizeof(ecformats_default);
868 }
869 }
870
871 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL * s,EVP_PKEY * pkey)872 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
873 {
874 unsigned char comp_id;
875 size_t i;
876 int point_conv;
877
878 /* If not an EC key nothing to check */
879 if (!EVP_PKEY_is_a(pkey, "EC"))
880 return 1;
881
882
883 /* Get required compression id */
884 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
885 if (point_conv == 0)
886 return 0;
887 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
888 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
889 } else if (SSL_IS_TLS13(s)) {
890 /*
891 * ec_point_formats extension is not used in TLSv1.3 so we ignore
892 * this check.
893 */
894 return 1;
895 } else {
896 int field_type = EVP_PKEY_get_field_type(pkey);
897
898 if (field_type == NID_X9_62_prime_field)
899 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
900 else if (field_type == NID_X9_62_characteristic_two_field)
901 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
902 else
903 return 0;
904 }
905 /*
906 * If point formats extension present check it, otherwise everything is
907 * supported (see RFC4492).
908 */
909 if (s->ext.peer_ecpointformats == NULL)
910 return 1;
911
912 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
913 if (s->ext.peer_ecpointformats[i] == comp_id)
914 return 1;
915 }
916 return 0;
917 }
918
919 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)920 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
921 {
922 int curve_nid = ssl_get_EC_curve_nid(pkey);
923
924 if (curve_nid == NID_undef)
925 return 0;
926 return tls1_nid2group_id(curve_nid);
927 }
928
929 /*
930 * Check cert parameters compatible with extensions: currently just checks EC
931 * certificates have compatible curves and compression.
932 */
tls1_check_cert_param(SSL * s,X509 * x,int check_ee_md)933 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
934 {
935 uint16_t group_id;
936 EVP_PKEY *pkey;
937 pkey = X509_get0_pubkey(x);
938 if (pkey == NULL)
939 return 0;
940 /* If not EC nothing to do */
941 if (!EVP_PKEY_is_a(pkey, "EC"))
942 return 1;
943 /* Check compression */
944 if (!tls1_check_pkey_comp(s, pkey))
945 return 0;
946 group_id = tls1_get_group_id(pkey);
947 /*
948 * For a server we allow the certificate to not be in our list of supported
949 * groups.
950 */
951 if (!tls1_check_group_id(s, group_id, !s->server))
952 return 0;
953 /*
954 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
955 * SHA384+P-384.
956 */
957 if (check_ee_md && tls1_suiteb(s)) {
958 int check_md;
959 size_t i;
960
961 /* Check to see we have necessary signing algorithm */
962 if (group_id == TLSEXT_curve_P_256)
963 check_md = NID_ecdsa_with_SHA256;
964 else if (group_id == TLSEXT_curve_P_384)
965 check_md = NID_ecdsa_with_SHA384;
966 else
967 return 0; /* Should never happen */
968 for (i = 0; i < s->shared_sigalgslen; i++) {
969 if (check_md == s->shared_sigalgs[i]->sigandhash)
970 return 1;;
971 }
972 return 0;
973 }
974 return 1;
975 }
976
977 /*
978 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
979 * @s: SSL connection
980 * @cid: Cipher ID we're considering using
981 *
982 * Checks that the kECDHE cipher suite we're considering using
983 * is compatible with the client extensions.
984 *
985 * Returns 0 when the cipher can't be used or 1 when it can.
986 */
tls1_check_ec_tmp_key(SSL * s,unsigned long cid)987 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
988 {
989 /* If not Suite B just need a shared group */
990 if (!tls1_suiteb(s))
991 return tls1_shared_group(s, 0) != 0;
992 /*
993 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
994 * curves permitted.
995 */
996 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
997 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
998 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
999 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
1000
1001 return 0;
1002 }
1003
1004 /* Default sigalg schemes */
1005 static const uint16_t tls12_sigalgs[] = {
1006 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1007 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1008 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1009 TLSEXT_SIGALG_ed25519,
1010 TLSEXT_SIGALG_ed448,
1011
1012 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1013 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1014 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1015 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1016 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1017 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1018
1019 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1020 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1021 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1022
1023 TLSEXT_SIGALG_ecdsa_sha224,
1024 TLSEXT_SIGALG_ecdsa_sha1,
1025
1026 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1027 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1028
1029 TLSEXT_SIGALG_dsa_sha224,
1030 TLSEXT_SIGALG_dsa_sha1,
1031
1032 TLSEXT_SIGALG_dsa_sha256,
1033 TLSEXT_SIGALG_dsa_sha384,
1034 TLSEXT_SIGALG_dsa_sha512,
1035
1036 #ifndef OPENSSL_NO_GOST
1037 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1038 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1039 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1040 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1041 TLSEXT_SIGALG_gostr34102001_gostr3411,
1042 #endif
1043 };
1044
1045
1046 static const uint16_t suiteb_sigalgs[] = {
1047 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1048 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1049 };
1050
1051 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1052 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1053 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1054 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1055 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1056 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1057 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1058 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1059 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1060 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1061 {"ed25519", TLSEXT_SIGALG_ed25519,
1062 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1063 NID_undef, NID_undef, 1},
1064 {"ed448", TLSEXT_SIGALG_ed448,
1065 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1066 NID_undef, NID_undef, 1},
1067 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1068 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1069 NID_ecdsa_with_SHA224, NID_undef, 1},
1070 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1071 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1072 NID_ecdsa_with_SHA1, NID_undef, 1},
1073 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1074 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1075 NID_undef, NID_undef, 1},
1076 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1077 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1078 NID_undef, NID_undef, 1},
1079 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1080 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1081 NID_undef, NID_undef, 1},
1082 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1083 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1084 NID_undef, NID_undef, 1},
1085 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1086 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1087 NID_undef, NID_undef, 1},
1088 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1089 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1090 NID_undef, NID_undef, 1},
1091 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1092 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1093 NID_sha256WithRSAEncryption, NID_undef, 1},
1094 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1095 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1096 NID_sha384WithRSAEncryption, NID_undef, 1},
1097 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1098 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1099 NID_sha512WithRSAEncryption, NID_undef, 1},
1100 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1101 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1102 NID_sha224WithRSAEncryption, NID_undef, 1},
1103 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1104 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1105 NID_sha1WithRSAEncryption, NID_undef, 1},
1106 {NULL, TLSEXT_SIGALG_dsa_sha256,
1107 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1108 NID_dsa_with_SHA256, NID_undef, 1},
1109 {NULL, TLSEXT_SIGALG_dsa_sha384,
1110 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1111 NID_undef, NID_undef, 1},
1112 {NULL, TLSEXT_SIGALG_dsa_sha512,
1113 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1114 NID_undef, NID_undef, 1},
1115 {NULL, TLSEXT_SIGALG_dsa_sha224,
1116 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1117 NID_undef, NID_undef, 1},
1118 {NULL, TLSEXT_SIGALG_dsa_sha1,
1119 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1120 NID_dsaWithSHA1, NID_undef, 1},
1121 #ifndef OPENSSL_NO_GOST
1122 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1123 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1124 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1125 NID_undef, NID_undef, 1},
1126 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1127 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1128 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1129 NID_undef, NID_undef, 1},
1130 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1131 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1132 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1133 NID_undef, NID_undef, 1},
1134 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1135 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1136 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1137 NID_undef, NID_undef, 1},
1138 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1139 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1140 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1141 NID_undef, NID_undef, 1}
1142 #endif
1143 };
1144 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1145 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1146 "rsa_pkcs1_md5_sha1", 0,
1147 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1148 EVP_PKEY_RSA, SSL_PKEY_RSA,
1149 NID_undef, NID_undef, 1
1150 };
1151
1152 /*
1153 * Default signature algorithm values used if signature algorithms not present.
1154 * From RFC5246. Note: order must match certificate index order.
1155 */
1156 static const uint16_t tls_default_sigalg[] = {
1157 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1158 0, /* SSL_PKEY_RSA_PSS_SIGN */
1159 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1160 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1161 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1162 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1163 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1164 0, /* SSL_PKEY_ED25519 */
1165 0, /* SSL_PKEY_ED448 */
1166 };
1167
ssl_setup_sig_algs(SSL_CTX * ctx)1168 int ssl_setup_sig_algs(SSL_CTX *ctx)
1169 {
1170 size_t i;
1171 const SIGALG_LOOKUP *lu;
1172 SIGALG_LOOKUP *cache
1173 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1174 EVP_PKEY *tmpkey = EVP_PKEY_new();
1175 int ret = 0;
1176
1177 if (cache == NULL || tmpkey == NULL)
1178 goto err;
1179
1180 ERR_set_mark();
1181 for (i = 0, lu = sigalg_lookup_tbl;
1182 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1183 EVP_PKEY_CTX *pctx;
1184
1185 cache[i] = *lu;
1186
1187 /*
1188 * Check hash is available.
1189 * This test is not perfect. A provider could have support
1190 * for a signature scheme, but not a particular hash. However the hash
1191 * could be available from some other loaded provider. In that case it
1192 * could be that the signature is available, and the hash is available
1193 * independently - but not as a combination. We ignore this for now.
1194 */
1195 if (lu->hash != NID_undef
1196 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1197 cache[i].enabled = 0;
1198 continue;
1199 }
1200
1201 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1202 cache[i].enabled = 0;
1203 continue;
1204 }
1205 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1206 /* If unable to create pctx we assume the sig algorithm is unavailable */
1207 if (pctx == NULL)
1208 cache[i].enabled = 0;
1209 EVP_PKEY_CTX_free(pctx);
1210 }
1211 ERR_pop_to_mark();
1212 ctx->sigalg_lookup_cache = cache;
1213 cache = NULL;
1214
1215 ret = 1;
1216 err:
1217 OPENSSL_free(cache);
1218 EVP_PKEY_free(tmpkey);
1219 return ret;
1220 }
1221
1222 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL * s,uint16_t sigalg)1223 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1224 {
1225 size_t i;
1226 const SIGALG_LOOKUP *lu;
1227
1228 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1229 /* cache should have the same number of elements as sigalg_lookup_tbl */
1230 i < OSSL_NELEM(sigalg_lookup_tbl);
1231 lu++, i++) {
1232 if (lu->sigalg == sigalg) {
1233 if (!lu->enabled)
1234 return NULL;
1235 return lu;
1236 }
1237 }
1238 return NULL;
1239 }
1240 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX * ctx,const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)1241 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1242 {
1243 const EVP_MD *md;
1244 if (lu == NULL)
1245 return 0;
1246 /* lu->hash == NID_undef means no associated digest */
1247 if (lu->hash == NID_undef) {
1248 md = NULL;
1249 } else {
1250 md = ssl_md(ctx, lu->hash_idx);
1251 if (md == NULL)
1252 return 0;
1253 }
1254 if (pmd)
1255 *pmd = md;
1256 return 1;
1257 }
1258
1259 /*
1260 * Check if key is large enough to generate RSA-PSS signature.
1261 *
1262 * The key must greater than or equal to 2 * hash length + 2.
1263 * SHA512 has a hash length of 64 bytes, which is incompatible
1264 * with a 128 byte (1024 bit) key.
1265 */
1266 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX * ctx,const EVP_PKEY * pkey,const SIGALG_LOOKUP * lu)1267 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1268 const SIGALG_LOOKUP *lu)
1269 {
1270 const EVP_MD *md;
1271
1272 if (pkey == NULL)
1273 return 0;
1274 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1275 return 0;
1276 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1277 return 0;
1278 return 1;
1279 }
1280
1281 /*
1282 * Returns a signature algorithm when the peer did not send a list of supported
1283 * signature algorithms. The signature algorithm is fixed for the certificate
1284 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1285 * certificate type from |s| will be used.
1286 * Returns the signature algorithm to use, or NULL on error.
1287 */
tls1_get_legacy_sigalg(const SSL * s,int idx)1288 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1289 {
1290 if (idx == -1) {
1291 if (s->server) {
1292 size_t i;
1293
1294 /* Work out index corresponding to ciphersuite */
1295 for (i = 0; i < SSL_PKEY_NUM; i++) {
1296 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1297
1298 if (clu == NULL)
1299 continue;
1300 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1301 idx = i;
1302 break;
1303 }
1304 }
1305
1306 /*
1307 * Some GOST ciphersuites allow more than one signature algorithms
1308 * */
1309 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1310 int real_idx;
1311
1312 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1313 real_idx--) {
1314 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1315 idx = real_idx;
1316 break;
1317 }
1318 }
1319 }
1320 /*
1321 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1322 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1323 */
1324 else if (idx == SSL_PKEY_GOST12_256) {
1325 int real_idx;
1326
1327 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1328 real_idx--) {
1329 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1330 idx = real_idx;
1331 break;
1332 }
1333 }
1334 }
1335 } else {
1336 idx = s->cert->key - s->cert->pkeys;
1337 }
1338 }
1339 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1340 return NULL;
1341 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1342 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1343
1344 if (lu == NULL)
1345 return NULL;
1346 if (!tls1_lookup_md(s->ctx, lu, NULL))
1347 return NULL;
1348 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1349 return NULL;
1350 return lu;
1351 }
1352 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1353 return NULL;
1354 return &legacy_rsa_sigalg;
1355 }
1356 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL * s,const EVP_PKEY * pkey)1357 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1358 {
1359 size_t idx;
1360 const SIGALG_LOOKUP *lu;
1361
1362 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1363 return 0;
1364 lu = tls1_get_legacy_sigalg(s, idx);
1365 if (lu == NULL)
1366 return 0;
1367 s->s3.tmp.peer_sigalg = lu;
1368 return 1;
1369 }
1370
tls12_get_psigalgs(SSL * s,int sent,const uint16_t ** psigs)1371 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1372 {
1373 /*
1374 * If Suite B mode use Suite B sigalgs only, ignore any other
1375 * preferences.
1376 */
1377 switch (tls1_suiteb(s)) {
1378 case SSL_CERT_FLAG_SUITEB_128_LOS:
1379 *psigs = suiteb_sigalgs;
1380 return OSSL_NELEM(suiteb_sigalgs);
1381
1382 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1383 *psigs = suiteb_sigalgs;
1384 return 1;
1385
1386 case SSL_CERT_FLAG_SUITEB_192_LOS:
1387 *psigs = suiteb_sigalgs + 1;
1388 return 1;
1389 }
1390 /*
1391 * We use client_sigalgs (if not NULL) if we're a server
1392 * and sending a certificate request or if we're a client and
1393 * determining which shared algorithm to use.
1394 */
1395 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1396 *psigs = s->cert->client_sigalgs;
1397 return s->cert->client_sigalgslen;
1398 } else if (s->cert->conf_sigalgs) {
1399 *psigs = s->cert->conf_sigalgs;
1400 return s->cert->conf_sigalgslen;
1401 } else {
1402 *psigs = tls12_sigalgs;
1403 return OSSL_NELEM(tls12_sigalgs);
1404 }
1405 }
1406
1407 /*
1408 * Called by servers only. Checks that we have a sig alg that supports the
1409 * specified EC curve.
1410 */
tls_check_sigalg_curve(const SSL * s,int curve)1411 int tls_check_sigalg_curve(const SSL *s, int curve)
1412 {
1413 const uint16_t *sigs;
1414 size_t siglen, i;
1415
1416 if (s->cert->conf_sigalgs) {
1417 sigs = s->cert->conf_sigalgs;
1418 siglen = s->cert->conf_sigalgslen;
1419 } else {
1420 sigs = tls12_sigalgs;
1421 siglen = OSSL_NELEM(tls12_sigalgs);
1422 }
1423
1424 for (i = 0; i < siglen; i++) {
1425 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1426
1427 if (lu == NULL)
1428 continue;
1429 if (lu->sig == EVP_PKEY_EC
1430 && lu->curve != NID_undef
1431 && curve == lu->curve)
1432 return 1;
1433 }
1434
1435 return 0;
1436 }
1437
1438 /*
1439 * Return the number of security bits for the signature algorithm, or 0 on
1440 * error.
1441 */
sigalg_security_bits(SSL_CTX * ctx,const SIGALG_LOOKUP * lu)1442 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1443 {
1444 const EVP_MD *md = NULL;
1445 int secbits = 0;
1446
1447 if (!tls1_lookup_md(ctx, lu, &md))
1448 return 0;
1449 if (md != NULL)
1450 {
1451 int md_type = EVP_MD_get_type(md);
1452
1453 /* Security bits: half digest bits */
1454 secbits = EVP_MD_get_size(md) * 4;
1455 /*
1456 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1457 * they're no longer accepted at security level 1. The real values don't
1458 * really matter as long as they're lower than 80, which is our
1459 * security level 1.
1460 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1461 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1462 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1463 * puts a chosen-prefix attack for MD5 at 2^39.
1464 */
1465 if (md_type == NID_sha1)
1466 secbits = 64;
1467 else if (md_type == NID_md5_sha1)
1468 secbits = 67;
1469 else if (md_type == NID_md5)
1470 secbits = 39;
1471 } else {
1472 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1473 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1474 secbits = 128;
1475 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1476 secbits = 224;
1477 }
1478 return secbits;
1479 }
1480
1481 /*
1482 * Check signature algorithm is consistent with sent supported signature
1483 * algorithms and if so set relevant digest and signature scheme in
1484 * s.
1485 */
tls12_check_peer_sigalg(SSL * s,uint16_t sig,EVP_PKEY * pkey)1486 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1487 {
1488 const uint16_t *sent_sigs;
1489 const EVP_MD *md = NULL;
1490 char sigalgstr[2];
1491 size_t sent_sigslen, i, cidx;
1492 int pkeyid = -1;
1493 const SIGALG_LOOKUP *lu;
1494 int secbits = 0;
1495
1496 pkeyid = EVP_PKEY_get_id(pkey);
1497 /* Should never happen */
1498 if (pkeyid == -1)
1499 return -1;
1500 if (SSL_IS_TLS13(s)) {
1501 /* Disallow DSA for TLS 1.3 */
1502 if (pkeyid == EVP_PKEY_DSA) {
1503 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1504 return 0;
1505 }
1506 /* Only allow PSS for TLS 1.3 */
1507 if (pkeyid == EVP_PKEY_RSA)
1508 pkeyid = EVP_PKEY_RSA_PSS;
1509 }
1510 lu = tls1_lookup_sigalg(s, sig);
1511 /*
1512 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1513 * is consistent with signature: RSA keys can be used for RSA-PSS
1514 */
1515 if (lu == NULL
1516 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1517 || (pkeyid != lu->sig
1518 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1519 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1520 return 0;
1521 }
1522 /* Check the sigalg is consistent with the key OID */
1523 if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1524 || lu->sig_idx != (int)cidx) {
1525 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1526 return 0;
1527 }
1528
1529 if (pkeyid == EVP_PKEY_EC) {
1530
1531 /* Check point compression is permitted */
1532 if (!tls1_check_pkey_comp(s, pkey)) {
1533 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1534 SSL_R_ILLEGAL_POINT_COMPRESSION);
1535 return 0;
1536 }
1537
1538 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1539 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1540 int curve = ssl_get_EC_curve_nid(pkey);
1541
1542 if (lu->curve != NID_undef && curve != lu->curve) {
1543 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1544 return 0;
1545 }
1546 }
1547 if (!SSL_IS_TLS13(s)) {
1548 /* Check curve matches extensions */
1549 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1550 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1551 return 0;
1552 }
1553 if (tls1_suiteb(s)) {
1554 /* Check sigalg matches a permissible Suite B value */
1555 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1556 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1557 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1558 SSL_R_WRONG_SIGNATURE_TYPE);
1559 return 0;
1560 }
1561 }
1562 }
1563 } else if (tls1_suiteb(s)) {
1564 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1565 return 0;
1566 }
1567
1568 /* Check signature matches a type we sent */
1569 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1570 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1571 if (sig == *sent_sigs)
1572 break;
1573 }
1574 /* Allow fallback to SHA1 if not strict mode */
1575 if (i == sent_sigslen && (lu->hash != NID_sha1
1576 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1577 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1578 return 0;
1579 }
1580 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1581 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1582 return 0;
1583 }
1584 /*
1585 * Make sure security callback allows algorithm. For historical
1586 * reasons we have to pass the sigalg as a two byte char array.
1587 */
1588 sigalgstr[0] = (sig >> 8) & 0xff;
1589 sigalgstr[1] = sig & 0xff;
1590 secbits = sigalg_security_bits(s->ctx, lu);
1591 if (secbits == 0 ||
1592 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1593 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1594 (void *)sigalgstr)) {
1595 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1596 return 0;
1597 }
1598 /* Store the sigalg the peer uses */
1599 s->s3.tmp.peer_sigalg = lu;
1600 return 1;
1601 }
1602
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)1603 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1604 {
1605 if (s->s3.tmp.peer_sigalg == NULL)
1606 return 0;
1607 *pnid = s->s3.tmp.peer_sigalg->sig;
1608 return 1;
1609 }
1610
SSL_get_signature_type_nid(const SSL * s,int * pnid)1611 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1612 {
1613 if (s->s3.tmp.sigalg == NULL)
1614 return 0;
1615 *pnid = s->s3.tmp.sigalg->sig;
1616 return 1;
1617 }
1618
1619 /*
1620 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1621 * supported, doesn't appear in supported signature algorithms, isn't supported
1622 * by the enabled protocol versions or by the security level.
1623 *
1624 * This function should only be used for checking which ciphers are supported
1625 * by the client.
1626 *
1627 * Call ssl_cipher_disabled() to check that it's enabled or not.
1628 */
ssl_set_client_disabled(SSL * s)1629 int ssl_set_client_disabled(SSL *s)
1630 {
1631 s->s3.tmp.mask_a = 0;
1632 s->s3.tmp.mask_k = 0;
1633 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1634 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1635 &s->s3.tmp.max_ver, NULL) != 0)
1636 return 0;
1637 #ifndef OPENSSL_NO_PSK
1638 /* with PSK there must be client callback set */
1639 if (!s->psk_client_callback) {
1640 s->s3.tmp.mask_a |= SSL_aPSK;
1641 s->s3.tmp.mask_k |= SSL_PSK;
1642 }
1643 #endif /* OPENSSL_NO_PSK */
1644 #ifndef OPENSSL_NO_SRP
1645 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1646 s->s3.tmp.mask_a |= SSL_aSRP;
1647 s->s3.tmp.mask_k |= SSL_kSRP;
1648 }
1649 #endif
1650 return 1;
1651 }
1652
1653 /*
1654 * ssl_cipher_disabled - check that a cipher is disabled or not
1655 * @s: SSL connection that you want to use the cipher on
1656 * @c: cipher to check
1657 * @op: Security check that you want to do
1658 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1659 *
1660 * Returns 1 when it's disabled, 0 when enabled.
1661 */
ssl_cipher_disabled(const SSL * s,const SSL_CIPHER * c,int op,int ecdhe)1662 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1663 {
1664 if (c->algorithm_mkey & s->s3.tmp.mask_k
1665 || c->algorithm_auth & s->s3.tmp.mask_a)
1666 return 1;
1667 if (s->s3.tmp.max_ver == 0)
1668 return 1;
1669 if (!SSL_IS_DTLS(s)) {
1670 int min_tls = c->min_tls;
1671
1672 /*
1673 * For historical reasons we will allow ECHDE to be selected by a server
1674 * in SSLv3 if we are a client
1675 */
1676 if (min_tls == TLS1_VERSION && ecdhe
1677 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1678 min_tls = SSL3_VERSION;
1679
1680 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1681 return 1;
1682 }
1683 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1684 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1685 return 1;
1686
1687 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1688 }
1689
tls_use_ticket(SSL * s)1690 int tls_use_ticket(SSL *s)
1691 {
1692 if ((s->options & SSL_OP_NO_TICKET))
1693 return 0;
1694 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1695 }
1696
tls1_set_server_sigalgs(SSL * s)1697 int tls1_set_server_sigalgs(SSL *s)
1698 {
1699 size_t i;
1700
1701 /* Clear any shared signature algorithms */
1702 OPENSSL_free(s->shared_sigalgs);
1703 s->shared_sigalgs = NULL;
1704 s->shared_sigalgslen = 0;
1705 /* Clear certificate validity flags */
1706 for (i = 0; i < SSL_PKEY_NUM; i++)
1707 s->s3.tmp.valid_flags[i] = 0;
1708 /*
1709 * If peer sent no signature algorithms check to see if we support
1710 * the default algorithm for each certificate type
1711 */
1712 if (s->s3.tmp.peer_cert_sigalgs == NULL
1713 && s->s3.tmp.peer_sigalgs == NULL) {
1714 const uint16_t *sent_sigs;
1715 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1716
1717 for (i = 0; i < SSL_PKEY_NUM; i++) {
1718 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1719 size_t j;
1720
1721 if (lu == NULL)
1722 continue;
1723 /* Check default matches a type we sent */
1724 for (j = 0; j < sent_sigslen; j++) {
1725 if (lu->sigalg == sent_sigs[j]) {
1726 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1727 break;
1728 }
1729 }
1730 }
1731 return 1;
1732 }
1733
1734 if (!tls1_process_sigalgs(s)) {
1735 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1736 return 0;
1737 }
1738 if (s->shared_sigalgs != NULL)
1739 return 1;
1740
1741 /* Fatal error if no shared signature algorithms */
1742 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1743 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1744 return 0;
1745 }
1746
1747 /*-
1748 * Gets the ticket information supplied by the client if any.
1749 *
1750 * hello: The parsed ClientHello data
1751 * ret: (output) on return, if a ticket was decrypted, then this is set to
1752 * point to the resulting session.
1753 */
tls_get_ticket_from_client(SSL * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)1754 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1755 SSL_SESSION **ret)
1756 {
1757 size_t size;
1758 RAW_EXTENSION *ticketext;
1759
1760 *ret = NULL;
1761 s->ext.ticket_expected = 0;
1762
1763 /*
1764 * If tickets disabled or not supported by the protocol version
1765 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1766 * resumption.
1767 */
1768 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1769 return SSL_TICKET_NONE;
1770
1771 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1772 if (!ticketext->present)
1773 return SSL_TICKET_NONE;
1774
1775 size = PACKET_remaining(&ticketext->data);
1776
1777 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1778 hello->session_id, hello->session_id_len, ret);
1779 }
1780
1781 /*-
1782 * tls_decrypt_ticket attempts to decrypt a session ticket.
1783 *
1784 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1785 * expecting a pre-shared key ciphersuite, in which case we have no use for
1786 * session tickets and one will never be decrypted, nor will
1787 * s->ext.ticket_expected be set to 1.
1788 *
1789 * Side effects:
1790 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1791 * a new session ticket to the client because the client indicated support
1792 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1793 * a session ticket or we couldn't use the one it gave us, or if
1794 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1795 * Otherwise, s->ext.ticket_expected is set to 0.
1796 *
1797 * etick: points to the body of the session ticket extension.
1798 * eticklen: the length of the session tickets extension.
1799 * sess_id: points at the session ID.
1800 * sesslen: the length of the session ID.
1801 * psess: (output) on return, if a ticket was decrypted, then this is set to
1802 * point to the resulting session.
1803 */
tls_decrypt_ticket(SSL * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)1804 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1805 size_t eticklen, const unsigned char *sess_id,
1806 size_t sesslen, SSL_SESSION **psess)
1807 {
1808 SSL_SESSION *sess = NULL;
1809 unsigned char *sdec;
1810 const unsigned char *p;
1811 int slen, ivlen, renew_ticket = 0, declen;
1812 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1813 size_t mlen;
1814 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1815 SSL_HMAC *hctx = NULL;
1816 EVP_CIPHER_CTX *ctx = NULL;
1817 SSL_CTX *tctx = s->session_ctx;
1818
1819 if (eticklen == 0) {
1820 /*
1821 * The client will accept a ticket but doesn't currently have
1822 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1823 */
1824 ret = SSL_TICKET_EMPTY;
1825 goto end;
1826 }
1827 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1828 /*
1829 * Indicate that the ticket couldn't be decrypted rather than
1830 * generating the session from ticket now, trigger
1831 * abbreviated handshake based on external mechanism to
1832 * calculate the master secret later.
1833 */
1834 ret = SSL_TICKET_NO_DECRYPT;
1835 goto end;
1836 }
1837
1838 /* Need at least keyname + iv */
1839 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1840 ret = SSL_TICKET_NO_DECRYPT;
1841 goto end;
1842 }
1843
1844 /* Initialize session ticket encryption and HMAC contexts */
1845 hctx = ssl_hmac_new(tctx);
1846 if (hctx == NULL) {
1847 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1848 goto end;
1849 }
1850 ctx = EVP_CIPHER_CTX_new();
1851 if (ctx == NULL) {
1852 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1853 goto end;
1854 }
1855 #ifndef OPENSSL_NO_DEPRECATED_3_0
1856 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1857 #else
1858 if (tctx->ext.ticket_key_evp_cb != NULL)
1859 #endif
1860 {
1861 unsigned char *nctick = (unsigned char *)etick;
1862 int rv = 0;
1863
1864 if (tctx->ext.ticket_key_evp_cb != NULL)
1865 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1866 nctick + TLSEXT_KEYNAME_LENGTH,
1867 ctx,
1868 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1869 0);
1870 #ifndef OPENSSL_NO_DEPRECATED_3_0
1871 else if (tctx->ext.ticket_key_cb != NULL)
1872 /* if 0 is returned, write an empty ticket */
1873 rv = tctx->ext.ticket_key_cb(s, nctick,
1874 nctick + TLSEXT_KEYNAME_LENGTH,
1875 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1876 #endif
1877 if (rv < 0) {
1878 ret = SSL_TICKET_FATAL_ERR_OTHER;
1879 goto end;
1880 }
1881 if (rv == 0) {
1882 ret = SSL_TICKET_NO_DECRYPT;
1883 goto end;
1884 }
1885 if (rv == 2)
1886 renew_ticket = 1;
1887 } else {
1888 EVP_CIPHER *aes256cbc = NULL;
1889
1890 /* Check key name matches */
1891 if (memcmp(etick, tctx->ext.tick_key_name,
1892 TLSEXT_KEYNAME_LENGTH) != 0) {
1893 ret = SSL_TICKET_NO_DECRYPT;
1894 goto end;
1895 }
1896
1897 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1898 s->ctx->propq);
1899 if (aes256cbc == NULL
1900 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1901 sizeof(tctx->ext.secure->tick_hmac_key),
1902 "SHA256") <= 0
1903 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1904 tctx->ext.secure->tick_aes_key,
1905 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1906 EVP_CIPHER_free(aes256cbc);
1907 ret = SSL_TICKET_FATAL_ERR_OTHER;
1908 goto end;
1909 }
1910 EVP_CIPHER_free(aes256cbc);
1911 if (SSL_IS_TLS13(s))
1912 renew_ticket = 1;
1913 }
1914 /*
1915 * Attempt to process session ticket, first conduct sanity and integrity
1916 * checks on ticket.
1917 */
1918 mlen = ssl_hmac_size(hctx);
1919 if (mlen == 0) {
1920 ret = SSL_TICKET_FATAL_ERR_OTHER;
1921 goto end;
1922 }
1923
1924 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1925 if (ivlen < 0) {
1926 ret = SSL_TICKET_FATAL_ERR_OTHER;
1927 goto end;
1928 }
1929
1930 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1931 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1932 ret = SSL_TICKET_NO_DECRYPT;
1933 goto end;
1934 }
1935 eticklen -= mlen;
1936 /* Check HMAC of encrypted ticket */
1937 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1938 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1939 ret = SSL_TICKET_FATAL_ERR_OTHER;
1940 goto end;
1941 }
1942
1943 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1944 ret = SSL_TICKET_NO_DECRYPT;
1945 goto end;
1946 }
1947 /* Attempt to decrypt session data */
1948 /* Move p after IV to start of encrypted ticket, update length */
1949 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1950 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1951 sdec = OPENSSL_malloc(eticklen);
1952 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1953 (int)eticklen) <= 0) {
1954 OPENSSL_free(sdec);
1955 ret = SSL_TICKET_FATAL_ERR_OTHER;
1956 goto end;
1957 }
1958 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1959 OPENSSL_free(sdec);
1960 ret = SSL_TICKET_NO_DECRYPT;
1961 goto end;
1962 }
1963 slen += declen;
1964 p = sdec;
1965
1966 sess = d2i_SSL_SESSION(NULL, &p, slen);
1967 slen -= p - sdec;
1968 OPENSSL_free(sdec);
1969 if (sess) {
1970 /* Some additional consistency checks */
1971 if (slen != 0) {
1972 SSL_SESSION_free(sess);
1973 sess = NULL;
1974 ret = SSL_TICKET_NO_DECRYPT;
1975 goto end;
1976 }
1977 /*
1978 * The session ID, if non-empty, is used by some clients to detect
1979 * that the ticket has been accepted. So we copy it to the session
1980 * structure. If it is empty set length to zero as required by
1981 * standard.
1982 */
1983 if (sesslen) {
1984 memcpy(sess->session_id, sess_id, sesslen);
1985 sess->session_id_length = sesslen;
1986 }
1987 if (renew_ticket)
1988 ret = SSL_TICKET_SUCCESS_RENEW;
1989 else
1990 ret = SSL_TICKET_SUCCESS;
1991 goto end;
1992 }
1993 ERR_clear_error();
1994 /*
1995 * For session parse failure, indicate that we need to send a new ticket.
1996 */
1997 ret = SSL_TICKET_NO_DECRYPT;
1998
1999 end:
2000 EVP_CIPHER_CTX_free(ctx);
2001 ssl_hmac_free(hctx);
2002
2003 /*
2004 * If set, the decrypt_ticket_cb() is called unless a fatal error was
2005 * detected above. The callback is responsible for checking |ret| before it
2006 * performs any action
2007 */
2008 if (s->session_ctx->decrypt_ticket_cb != NULL
2009 && (ret == SSL_TICKET_EMPTY
2010 || ret == SSL_TICKET_NO_DECRYPT
2011 || ret == SSL_TICKET_SUCCESS
2012 || ret == SSL_TICKET_SUCCESS_RENEW)) {
2013 size_t keyname_len = eticklen;
2014 int retcb;
2015
2016 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2017 keyname_len = TLSEXT_KEYNAME_LENGTH;
2018 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
2019 ret,
2020 s->session_ctx->ticket_cb_data);
2021 switch (retcb) {
2022 case SSL_TICKET_RETURN_ABORT:
2023 ret = SSL_TICKET_FATAL_ERR_OTHER;
2024 break;
2025
2026 case SSL_TICKET_RETURN_IGNORE:
2027 ret = SSL_TICKET_NONE;
2028 SSL_SESSION_free(sess);
2029 sess = NULL;
2030 break;
2031
2032 case SSL_TICKET_RETURN_IGNORE_RENEW:
2033 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2034 ret = SSL_TICKET_NO_DECRYPT;
2035 /* else the value of |ret| will already do the right thing */
2036 SSL_SESSION_free(sess);
2037 sess = NULL;
2038 break;
2039
2040 case SSL_TICKET_RETURN_USE:
2041 case SSL_TICKET_RETURN_USE_RENEW:
2042 if (ret != SSL_TICKET_SUCCESS
2043 && ret != SSL_TICKET_SUCCESS_RENEW)
2044 ret = SSL_TICKET_FATAL_ERR_OTHER;
2045 else if (retcb == SSL_TICKET_RETURN_USE)
2046 ret = SSL_TICKET_SUCCESS;
2047 else
2048 ret = SSL_TICKET_SUCCESS_RENEW;
2049 break;
2050
2051 default:
2052 ret = SSL_TICKET_FATAL_ERR_OTHER;
2053 }
2054 }
2055
2056 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2057 switch (ret) {
2058 case SSL_TICKET_NO_DECRYPT:
2059 case SSL_TICKET_SUCCESS_RENEW:
2060 case SSL_TICKET_EMPTY:
2061 s->ext.ticket_expected = 1;
2062 }
2063 }
2064
2065 *psess = sess;
2066
2067 return ret;
2068 }
2069
2070 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL * s,int op,const SIGALG_LOOKUP * lu)2071 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2072 {
2073 unsigned char sigalgstr[2];
2074 int secbits;
2075
2076 if (lu == NULL || !lu->enabled)
2077 return 0;
2078 /* DSA is not allowed in TLS 1.3 */
2079 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2080 return 0;
2081 /*
2082 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2083 * spec
2084 */
2085 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2086 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2087 || lu->hash_idx == SSL_MD_MD5_IDX
2088 || lu->hash_idx == SSL_MD_SHA224_IDX))
2089 return 0;
2090
2091 /* See if public key algorithm allowed */
2092 if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2093 return 0;
2094
2095 if (lu->sig == NID_id_GostR3410_2012_256
2096 || lu->sig == NID_id_GostR3410_2012_512
2097 || lu->sig == NID_id_GostR3410_2001) {
2098 /* We never allow GOST sig algs on the server with TLSv1.3 */
2099 if (s->server && SSL_IS_TLS13(s))
2100 return 0;
2101 if (!s->server
2102 && s->method->version == TLS_ANY_VERSION
2103 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2104 int i, num;
2105 STACK_OF(SSL_CIPHER) *sk;
2106
2107 /*
2108 * We're a client that could negotiate TLSv1.3. We only allow GOST
2109 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2110 * ciphersuites enabled.
2111 */
2112
2113 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2114 return 0;
2115
2116 sk = SSL_get_ciphers(s);
2117 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2118 for (i = 0; i < num; i++) {
2119 const SSL_CIPHER *c;
2120
2121 c = sk_SSL_CIPHER_value(sk, i);
2122 /* Skip disabled ciphers */
2123 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2124 continue;
2125
2126 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2127 break;
2128 }
2129 if (i == num)
2130 return 0;
2131 }
2132 }
2133
2134 /* Finally see if security callback allows it */
2135 secbits = sigalg_security_bits(s->ctx, lu);
2136 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2137 sigalgstr[1] = lu->sigalg & 0xff;
2138 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2139 }
2140
2141 /*
2142 * Get a mask of disabled public key algorithms based on supported signature
2143 * algorithms. For example if no signature algorithm supports RSA then RSA is
2144 * disabled.
2145 */
2146
ssl_set_sig_mask(uint32_t * pmask_a,SSL * s,int op)2147 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2148 {
2149 const uint16_t *sigalgs;
2150 size_t i, sigalgslen;
2151 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2152 /*
2153 * Go through all signature algorithms seeing if we support any
2154 * in disabled_mask.
2155 */
2156 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2157 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2158 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2159 const SSL_CERT_LOOKUP *clu;
2160
2161 if (lu == NULL)
2162 continue;
2163
2164 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2165 if (clu == NULL)
2166 continue;
2167
2168 /* If algorithm is disabled see if we can enable it */
2169 if ((clu->amask & disabled_mask) != 0
2170 && tls12_sigalg_allowed(s, op, lu))
2171 disabled_mask &= ~clu->amask;
2172 }
2173 *pmask_a |= disabled_mask;
2174 }
2175
tls12_copy_sigalgs(SSL * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)2176 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2177 const uint16_t *psig, size_t psiglen)
2178 {
2179 size_t i;
2180 int rv = 0;
2181
2182 for (i = 0; i < psiglen; i++, psig++) {
2183 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2184
2185 if (lu == NULL
2186 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2187 continue;
2188 if (!WPACKET_put_bytes_u16(pkt, *psig))
2189 return 0;
2190 /*
2191 * If TLS 1.3 must have at least one valid TLS 1.3 message
2192 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2193 */
2194 if (rv == 0 && (!SSL_IS_TLS13(s)
2195 || (lu->sig != EVP_PKEY_RSA
2196 && lu->hash != NID_sha1
2197 && lu->hash != NID_sha224)))
2198 rv = 1;
2199 }
2200 if (rv == 0)
2201 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2202 return rv;
2203 }
2204
2205 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)2206 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2207 const uint16_t *pref, size_t preflen,
2208 const uint16_t *allow, size_t allowlen)
2209 {
2210 const uint16_t *ptmp, *atmp;
2211 size_t i, j, nmatch = 0;
2212 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2213 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2214
2215 /* Skip disabled hashes or signature algorithms */
2216 if (lu == NULL
2217 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2218 continue;
2219 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2220 if (*ptmp == *atmp) {
2221 nmatch++;
2222 if (shsig)
2223 *shsig++ = lu;
2224 break;
2225 }
2226 }
2227 }
2228 return nmatch;
2229 }
2230
2231 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL * s)2232 static int tls1_set_shared_sigalgs(SSL *s)
2233 {
2234 const uint16_t *pref, *allow, *conf;
2235 size_t preflen, allowlen, conflen;
2236 size_t nmatch;
2237 const SIGALG_LOOKUP **salgs = NULL;
2238 CERT *c = s->cert;
2239 unsigned int is_suiteb = tls1_suiteb(s);
2240
2241 OPENSSL_free(s->shared_sigalgs);
2242 s->shared_sigalgs = NULL;
2243 s->shared_sigalgslen = 0;
2244 /* If client use client signature algorithms if not NULL */
2245 if (!s->server && c->client_sigalgs && !is_suiteb) {
2246 conf = c->client_sigalgs;
2247 conflen = c->client_sigalgslen;
2248 } else if (c->conf_sigalgs && !is_suiteb) {
2249 conf = c->conf_sigalgs;
2250 conflen = c->conf_sigalgslen;
2251 } else
2252 conflen = tls12_get_psigalgs(s, 0, &conf);
2253 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2254 pref = conf;
2255 preflen = conflen;
2256 allow = s->s3.tmp.peer_sigalgs;
2257 allowlen = s->s3.tmp.peer_sigalgslen;
2258 } else {
2259 allow = conf;
2260 allowlen = conflen;
2261 pref = s->s3.tmp.peer_sigalgs;
2262 preflen = s->s3.tmp.peer_sigalgslen;
2263 }
2264 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2265 if (nmatch) {
2266 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2267 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2268 return 0;
2269 }
2270 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2271 } else {
2272 salgs = NULL;
2273 }
2274 s->shared_sigalgs = salgs;
2275 s->shared_sigalgslen = nmatch;
2276 return 1;
2277 }
2278
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)2279 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2280 {
2281 unsigned int stmp;
2282 size_t size, i;
2283 uint16_t *buf;
2284
2285 size = PACKET_remaining(pkt);
2286
2287 /* Invalid data length */
2288 if (size == 0 || (size & 1) != 0)
2289 return 0;
2290
2291 size >>= 1;
2292
2293 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2294 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2295 return 0;
2296 }
2297 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2298 buf[i] = stmp;
2299
2300 if (i != size) {
2301 OPENSSL_free(buf);
2302 return 0;
2303 }
2304
2305 OPENSSL_free(*pdest);
2306 *pdest = buf;
2307 *pdestlen = size;
2308
2309 return 1;
2310 }
2311
tls1_save_sigalgs(SSL * s,PACKET * pkt,int cert)2312 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2313 {
2314 /* Extension ignored for inappropriate versions */
2315 if (!SSL_USE_SIGALGS(s))
2316 return 1;
2317 /* Should never happen */
2318 if (s->cert == NULL)
2319 return 0;
2320
2321 if (cert)
2322 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2323 &s->s3.tmp.peer_cert_sigalgslen);
2324 else
2325 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2326 &s->s3.tmp.peer_sigalgslen);
2327
2328 }
2329
2330 /* Set preferred digest for each key type */
2331
tls1_process_sigalgs(SSL * s)2332 int tls1_process_sigalgs(SSL *s)
2333 {
2334 size_t i;
2335 uint32_t *pvalid = s->s3.tmp.valid_flags;
2336
2337 if (!tls1_set_shared_sigalgs(s))
2338 return 0;
2339
2340 for (i = 0; i < SSL_PKEY_NUM; i++)
2341 pvalid[i] = 0;
2342
2343 for (i = 0; i < s->shared_sigalgslen; i++) {
2344 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2345 int idx = sigptr->sig_idx;
2346
2347 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2348 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2349 continue;
2350 /* If not disabled indicate we can explicitly sign */
2351 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2352 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2353 }
2354 return 1;
2355 }
2356
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)2357 int SSL_get_sigalgs(SSL *s, int idx,
2358 int *psign, int *phash, int *psignhash,
2359 unsigned char *rsig, unsigned char *rhash)
2360 {
2361 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2362 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2363 if (psig == NULL || numsigalgs > INT_MAX)
2364 return 0;
2365 if (idx >= 0) {
2366 const SIGALG_LOOKUP *lu;
2367
2368 if (idx >= (int)numsigalgs)
2369 return 0;
2370 psig += idx;
2371 if (rhash != NULL)
2372 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2373 if (rsig != NULL)
2374 *rsig = (unsigned char)(*psig & 0xff);
2375 lu = tls1_lookup_sigalg(s, *psig);
2376 if (psign != NULL)
2377 *psign = lu != NULL ? lu->sig : NID_undef;
2378 if (phash != NULL)
2379 *phash = lu != NULL ? lu->hash : NID_undef;
2380 if (psignhash != NULL)
2381 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2382 }
2383 return (int)numsigalgs;
2384 }
2385
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)2386 int SSL_get_shared_sigalgs(SSL *s, int idx,
2387 int *psign, int *phash, int *psignhash,
2388 unsigned char *rsig, unsigned char *rhash)
2389 {
2390 const SIGALG_LOOKUP *shsigalgs;
2391 if (s->shared_sigalgs == NULL
2392 || idx < 0
2393 || idx >= (int)s->shared_sigalgslen
2394 || s->shared_sigalgslen > INT_MAX)
2395 return 0;
2396 shsigalgs = s->shared_sigalgs[idx];
2397 if (phash != NULL)
2398 *phash = shsigalgs->hash;
2399 if (psign != NULL)
2400 *psign = shsigalgs->sig;
2401 if (psignhash != NULL)
2402 *psignhash = shsigalgs->sigandhash;
2403 if (rsig != NULL)
2404 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2405 if (rhash != NULL)
2406 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2407 return (int)s->shared_sigalgslen;
2408 }
2409
2410 /* Maximum possible number of unique entries in sigalgs array */
2411 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2412
2413 typedef struct {
2414 size_t sigalgcnt;
2415 /* TLSEXT_SIGALG_XXX values */
2416 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2417 } sig_cb_st;
2418
get_sigorhash(int * psig,int * phash,const char * str)2419 static void get_sigorhash(int *psig, int *phash, const char *str)
2420 {
2421 if (strcmp(str, "RSA") == 0) {
2422 *psig = EVP_PKEY_RSA;
2423 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2424 *psig = EVP_PKEY_RSA_PSS;
2425 } else if (strcmp(str, "DSA") == 0) {
2426 *psig = EVP_PKEY_DSA;
2427 } else if (strcmp(str, "ECDSA") == 0) {
2428 *psig = EVP_PKEY_EC;
2429 } else {
2430 *phash = OBJ_sn2nid(str);
2431 if (*phash == NID_undef)
2432 *phash = OBJ_ln2nid(str);
2433 }
2434 }
2435 /* Maximum length of a signature algorithm string component */
2436 #define TLS_MAX_SIGSTRING_LEN 40
2437
sig_cb(const char * elem,int len,void * arg)2438 static int sig_cb(const char *elem, int len, void *arg)
2439 {
2440 sig_cb_st *sarg = arg;
2441 size_t i;
2442 const SIGALG_LOOKUP *s;
2443 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2444 int sig_alg = NID_undef, hash_alg = NID_undef;
2445 if (elem == NULL)
2446 return 0;
2447 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2448 return 0;
2449 if (len > (int)(sizeof(etmp) - 1))
2450 return 0;
2451 memcpy(etmp, elem, len);
2452 etmp[len] = 0;
2453 p = strchr(etmp, '+');
2454 /*
2455 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2456 * if there's no '+' in the provided name, look for the new-style combined
2457 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2458 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2459 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2460 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2461 * in the table.
2462 */
2463 if (p == NULL) {
2464 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2465 i++, s++) {
2466 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2467 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2468 break;
2469 }
2470 }
2471 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2472 return 0;
2473 } else {
2474 *p = 0;
2475 p++;
2476 if (*p == 0)
2477 return 0;
2478 get_sigorhash(&sig_alg, &hash_alg, etmp);
2479 get_sigorhash(&sig_alg, &hash_alg, p);
2480 if (sig_alg == NID_undef || hash_alg == NID_undef)
2481 return 0;
2482 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2483 i++, s++) {
2484 if (s->hash == hash_alg && s->sig == sig_alg) {
2485 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2486 break;
2487 }
2488 }
2489 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2490 return 0;
2491 }
2492
2493 /* Reject duplicates */
2494 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2495 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2496 sarg->sigalgcnt--;
2497 return 0;
2498 }
2499 }
2500 return 1;
2501 }
2502
2503 /*
2504 * Set supported signature algorithms based on a colon separated list of the
2505 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2506 */
tls1_set_sigalgs_list(CERT * c,const char * str,int client)2507 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2508 {
2509 sig_cb_st sig;
2510 sig.sigalgcnt = 0;
2511 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2512 return 0;
2513 if (c == NULL)
2514 return 1;
2515 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2516 }
2517
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)2518 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2519 int client)
2520 {
2521 uint16_t *sigalgs;
2522
2523 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2524 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2525 return 0;
2526 }
2527 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2528
2529 if (client) {
2530 OPENSSL_free(c->client_sigalgs);
2531 c->client_sigalgs = sigalgs;
2532 c->client_sigalgslen = salglen;
2533 } else {
2534 OPENSSL_free(c->conf_sigalgs);
2535 c->conf_sigalgs = sigalgs;
2536 c->conf_sigalgslen = salglen;
2537 }
2538
2539 return 1;
2540 }
2541
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)2542 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2543 {
2544 uint16_t *sigalgs, *sptr;
2545 size_t i;
2546
2547 if (salglen & 1)
2548 return 0;
2549 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2550 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2551 return 0;
2552 }
2553 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2554 size_t j;
2555 const SIGALG_LOOKUP *curr;
2556 int md_id = *psig_nids++;
2557 int sig_id = *psig_nids++;
2558
2559 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2560 j++, curr++) {
2561 if (curr->hash == md_id && curr->sig == sig_id) {
2562 *sptr++ = curr->sigalg;
2563 break;
2564 }
2565 }
2566
2567 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2568 goto err;
2569 }
2570
2571 if (client) {
2572 OPENSSL_free(c->client_sigalgs);
2573 c->client_sigalgs = sigalgs;
2574 c->client_sigalgslen = salglen / 2;
2575 } else {
2576 OPENSSL_free(c->conf_sigalgs);
2577 c->conf_sigalgs = sigalgs;
2578 c->conf_sigalgslen = salglen / 2;
2579 }
2580
2581 return 1;
2582
2583 err:
2584 OPENSSL_free(sigalgs);
2585 return 0;
2586 }
2587
tls1_check_sig_alg(SSL * s,X509 * x,int default_nid)2588 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2589 {
2590 int sig_nid, use_pc_sigalgs = 0;
2591 size_t i;
2592 const SIGALG_LOOKUP *sigalg;
2593 size_t sigalgslen;
2594 if (default_nid == -1)
2595 return 1;
2596 sig_nid = X509_get_signature_nid(x);
2597 if (default_nid)
2598 return sig_nid == default_nid ? 1 : 0;
2599
2600 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2601 /*
2602 * If we're in TLSv1.3 then we only get here if we're checking the
2603 * chain. If the peer has specified peer_cert_sigalgs then we use them
2604 * otherwise we default to normal sigalgs.
2605 */
2606 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2607 use_pc_sigalgs = 1;
2608 } else {
2609 sigalgslen = s->shared_sigalgslen;
2610 }
2611 for (i = 0; i < sigalgslen; i++) {
2612 sigalg = use_pc_sigalgs
2613 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2614 : s->shared_sigalgs[i];
2615 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2616 return 1;
2617 }
2618 return 0;
2619 }
2620
2621 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)2622 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2623 {
2624 const X509_NAME *nm;
2625 int i;
2626 nm = X509_get_issuer_name(x);
2627 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2628 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2629 return 1;
2630 }
2631 return 0;
2632 }
2633
2634 /*
2635 * Check certificate chain is consistent with TLS extensions and is usable by
2636 * server. This servers two purposes: it allows users to check chains before
2637 * passing them to the server and it allows the server to check chains before
2638 * attempting to use them.
2639 */
2640
2641 /* Flags which need to be set for a certificate when strict mode not set */
2642
2643 #define CERT_PKEY_VALID_FLAGS \
2644 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2645 /* Strict mode flags */
2646 #define CERT_PKEY_STRICT_FLAGS \
2647 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2648 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2649
tls1_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)2650 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2651 int idx)
2652 {
2653 int i;
2654 int rv = 0;
2655 int check_flags = 0, strict_mode;
2656 CERT_PKEY *cpk = NULL;
2657 CERT *c = s->cert;
2658 uint32_t *pvalid;
2659 unsigned int suiteb_flags = tls1_suiteb(s);
2660 /* idx == -1 means checking server chains */
2661 if (idx != -1) {
2662 /* idx == -2 means checking client certificate chains */
2663 if (idx == -2) {
2664 cpk = c->key;
2665 idx = (int)(cpk - c->pkeys);
2666 } else
2667 cpk = c->pkeys + idx;
2668 pvalid = s->s3.tmp.valid_flags + idx;
2669 x = cpk->x509;
2670 pk = cpk->privatekey;
2671 chain = cpk->chain;
2672 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2673 /* If no cert or key, forget it */
2674 if (!x || !pk)
2675 goto end;
2676 } else {
2677 size_t certidx;
2678
2679 if (!x || !pk)
2680 return 0;
2681
2682 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2683 return 0;
2684 idx = certidx;
2685 pvalid = s->s3.tmp.valid_flags + idx;
2686
2687 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2688 check_flags = CERT_PKEY_STRICT_FLAGS;
2689 else
2690 check_flags = CERT_PKEY_VALID_FLAGS;
2691 strict_mode = 1;
2692 }
2693
2694 if (suiteb_flags) {
2695 int ok;
2696 if (check_flags)
2697 check_flags |= CERT_PKEY_SUITEB;
2698 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2699 if (ok == X509_V_OK)
2700 rv |= CERT_PKEY_SUITEB;
2701 else if (!check_flags)
2702 goto end;
2703 }
2704
2705 /*
2706 * Check all signature algorithms are consistent with signature
2707 * algorithms extension if TLS 1.2 or later and strict mode.
2708 */
2709 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2710 int default_nid;
2711 int rsign = 0;
2712 if (s->s3.tmp.peer_cert_sigalgs != NULL
2713 || s->s3.tmp.peer_sigalgs != NULL) {
2714 default_nid = 0;
2715 /* If no sigalgs extension use defaults from RFC5246 */
2716 } else {
2717 switch (idx) {
2718 case SSL_PKEY_RSA:
2719 rsign = EVP_PKEY_RSA;
2720 default_nid = NID_sha1WithRSAEncryption;
2721 break;
2722
2723 case SSL_PKEY_DSA_SIGN:
2724 rsign = EVP_PKEY_DSA;
2725 default_nid = NID_dsaWithSHA1;
2726 break;
2727
2728 case SSL_PKEY_ECC:
2729 rsign = EVP_PKEY_EC;
2730 default_nid = NID_ecdsa_with_SHA1;
2731 break;
2732
2733 case SSL_PKEY_GOST01:
2734 rsign = NID_id_GostR3410_2001;
2735 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2736 break;
2737
2738 case SSL_PKEY_GOST12_256:
2739 rsign = NID_id_GostR3410_2012_256;
2740 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2741 break;
2742
2743 case SSL_PKEY_GOST12_512:
2744 rsign = NID_id_GostR3410_2012_512;
2745 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2746 break;
2747
2748 default:
2749 default_nid = -1;
2750 break;
2751 }
2752 }
2753 /*
2754 * If peer sent no signature algorithms extension and we have set
2755 * preferred signature algorithms check we support sha1.
2756 */
2757 if (default_nid > 0 && c->conf_sigalgs) {
2758 size_t j;
2759 const uint16_t *p = c->conf_sigalgs;
2760 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2761 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2762
2763 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2764 break;
2765 }
2766 if (j == c->conf_sigalgslen) {
2767 if (check_flags)
2768 goto skip_sigs;
2769 else
2770 goto end;
2771 }
2772 }
2773 /* Check signature algorithm of each cert in chain */
2774 if (SSL_IS_TLS13(s)) {
2775 /*
2776 * We only get here if the application has called SSL_check_chain(),
2777 * so check_flags is always set.
2778 */
2779 if (find_sig_alg(s, x, pk) != NULL)
2780 rv |= CERT_PKEY_EE_SIGNATURE;
2781 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2782 if (!check_flags)
2783 goto end;
2784 } else
2785 rv |= CERT_PKEY_EE_SIGNATURE;
2786 rv |= CERT_PKEY_CA_SIGNATURE;
2787 for (i = 0; i < sk_X509_num(chain); i++) {
2788 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2789 if (check_flags) {
2790 rv &= ~CERT_PKEY_CA_SIGNATURE;
2791 break;
2792 } else
2793 goto end;
2794 }
2795 }
2796 }
2797 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2798 else if (check_flags)
2799 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2800 skip_sigs:
2801 /* Check cert parameters are consistent */
2802 if (tls1_check_cert_param(s, x, 1))
2803 rv |= CERT_PKEY_EE_PARAM;
2804 else if (!check_flags)
2805 goto end;
2806 if (!s->server)
2807 rv |= CERT_PKEY_CA_PARAM;
2808 /* In strict mode check rest of chain too */
2809 else if (strict_mode) {
2810 rv |= CERT_PKEY_CA_PARAM;
2811 for (i = 0; i < sk_X509_num(chain); i++) {
2812 X509 *ca = sk_X509_value(chain, i);
2813 if (!tls1_check_cert_param(s, ca, 0)) {
2814 if (check_flags) {
2815 rv &= ~CERT_PKEY_CA_PARAM;
2816 break;
2817 } else
2818 goto end;
2819 }
2820 }
2821 }
2822 if (!s->server && strict_mode) {
2823 STACK_OF(X509_NAME) *ca_dn;
2824 int check_type = 0;
2825
2826 if (EVP_PKEY_is_a(pk, "RSA"))
2827 check_type = TLS_CT_RSA_SIGN;
2828 else if (EVP_PKEY_is_a(pk, "DSA"))
2829 check_type = TLS_CT_DSS_SIGN;
2830 else if (EVP_PKEY_is_a(pk, "EC"))
2831 check_type = TLS_CT_ECDSA_SIGN;
2832
2833 if (check_type) {
2834 const uint8_t *ctypes = s->s3.tmp.ctype;
2835 size_t j;
2836
2837 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2838 if (*ctypes == check_type) {
2839 rv |= CERT_PKEY_CERT_TYPE;
2840 break;
2841 }
2842 }
2843 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2844 goto end;
2845 } else {
2846 rv |= CERT_PKEY_CERT_TYPE;
2847 }
2848
2849 ca_dn = s->s3.tmp.peer_ca_names;
2850
2851 if (ca_dn == NULL
2852 || sk_X509_NAME_num(ca_dn) == 0
2853 || ssl_check_ca_name(ca_dn, x))
2854 rv |= CERT_PKEY_ISSUER_NAME;
2855 else
2856 for (i = 0; i < sk_X509_num(chain); i++) {
2857 X509 *xtmp = sk_X509_value(chain, i);
2858
2859 if (ssl_check_ca_name(ca_dn, xtmp)) {
2860 rv |= CERT_PKEY_ISSUER_NAME;
2861 break;
2862 }
2863 }
2864
2865 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2866 goto end;
2867 } else
2868 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2869
2870 if (!check_flags || (rv & check_flags) == check_flags)
2871 rv |= CERT_PKEY_VALID;
2872
2873 end:
2874
2875 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2876 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2877 else
2878 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2879
2880 /*
2881 * When checking a CERT_PKEY structure all flags are irrelevant if the
2882 * chain is invalid.
2883 */
2884 if (!check_flags) {
2885 if (rv & CERT_PKEY_VALID) {
2886 *pvalid = rv;
2887 } else {
2888 /* Preserve sign and explicit sign flag, clear rest */
2889 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2890 return 0;
2891 }
2892 }
2893 return rv;
2894 }
2895
2896 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL * s)2897 void tls1_set_cert_validity(SSL *s)
2898 {
2899 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2900 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2901 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2902 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2903 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2904 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2905 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2906 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2907 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2908 }
2909
2910 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)2911 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2912 {
2913 return tls1_check_chain(s, x, pk, chain, -1);
2914 }
2915
ssl_get_auto_dh(SSL * s)2916 EVP_PKEY *ssl_get_auto_dh(SSL *s)
2917 {
2918 EVP_PKEY *dhp = NULL;
2919 BIGNUM *p;
2920 int dh_secbits = 80, sec_level_bits;
2921 EVP_PKEY_CTX *pctx = NULL;
2922 OSSL_PARAM_BLD *tmpl = NULL;
2923 OSSL_PARAM *params = NULL;
2924
2925 if (s->cert->dh_tmp_auto != 2) {
2926 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2927 if (s->s3.tmp.new_cipher->strength_bits == 256)
2928 dh_secbits = 128;
2929 else
2930 dh_secbits = 80;
2931 } else {
2932 if (s->s3.tmp.cert == NULL)
2933 return NULL;
2934 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2935 }
2936 }
2937
2938 /* Do not pick a prime that is too weak for the current security level */
2939 sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2940 if (dh_secbits < sec_level_bits)
2941 dh_secbits = sec_level_bits;
2942
2943 if (dh_secbits >= 192)
2944 p = BN_get_rfc3526_prime_8192(NULL);
2945 else if (dh_secbits >= 152)
2946 p = BN_get_rfc3526_prime_4096(NULL);
2947 else if (dh_secbits >= 128)
2948 p = BN_get_rfc3526_prime_3072(NULL);
2949 else if (dh_secbits >= 112)
2950 p = BN_get_rfc3526_prime_2048(NULL);
2951 else
2952 p = BN_get_rfc2409_prime_1024(NULL);
2953 if (p == NULL)
2954 goto err;
2955
2956 pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2957 if (pctx == NULL
2958 || EVP_PKEY_fromdata_init(pctx) != 1)
2959 goto err;
2960
2961 tmpl = OSSL_PARAM_BLD_new();
2962 if (tmpl == NULL
2963 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2964 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2965 goto err;
2966
2967 params = OSSL_PARAM_BLD_to_param(tmpl);
2968 if (params == NULL
2969 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2970 goto err;
2971
2972 err:
2973 OSSL_PARAM_free(params);
2974 OSSL_PARAM_BLD_free(tmpl);
2975 EVP_PKEY_CTX_free(pctx);
2976 BN_free(p);
2977 return dhp;
2978 }
2979
ssl_security_cert_key(SSL * s,SSL_CTX * ctx,X509 * x,int op)2980 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2981 {
2982 int secbits = -1;
2983 EVP_PKEY *pkey = X509_get0_pubkey(x);
2984 if (pkey) {
2985 /*
2986 * If no parameters this will return -1 and fail using the default
2987 * security callback for any non-zero security level. This will
2988 * reject keys which omit parameters but this only affects DSA and
2989 * omission of parameters is never (?) done in practice.
2990 */
2991 secbits = EVP_PKEY_get_security_bits(pkey);
2992 }
2993 if (s)
2994 return ssl_security(s, op, secbits, 0, x);
2995 else
2996 return ssl_ctx_security(ctx, op, secbits, 0, x);
2997 }
2998
ssl_security_cert_sig(SSL * s,SSL_CTX * ctx,X509 * x,int op)2999 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
3000 {
3001 /* Lookup signature algorithm digest */
3002 int secbits, nid, pknid;
3003 /* Don't check signature if self signed */
3004 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3005 return 1;
3006 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3007 secbits = -1;
3008 /* If digest NID not defined use signature NID */
3009 if (nid == NID_undef)
3010 nid = pknid;
3011 if (s)
3012 return ssl_security(s, op, secbits, nid, x);
3013 else
3014 return ssl_ctx_security(ctx, op, secbits, nid, x);
3015 }
3016
ssl_security_cert(SSL * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)3017 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
3018 {
3019 if (vfy)
3020 vfy = SSL_SECOP_PEER;
3021 if (is_ee) {
3022 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3023 return SSL_R_EE_KEY_TOO_SMALL;
3024 } else {
3025 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3026 return SSL_R_CA_KEY_TOO_SMALL;
3027 }
3028 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3029 return SSL_R_CA_MD_TOO_WEAK;
3030 return 1;
3031 }
3032
3033 /*
3034 * Check security of a chain, if |sk| includes the end entity certificate then
3035 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3036 * one to the peer. Return values: 1 if ok otherwise error code to use
3037 */
3038
ssl_security_cert_chain(SSL * s,STACK_OF (X509)* sk,X509 * x,int vfy)3039 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3040 {
3041 int rv, start_idx, i;
3042 if (x == NULL) {
3043 x = sk_X509_value(sk, 0);
3044 if (x == NULL)
3045 return ERR_R_INTERNAL_ERROR;
3046 start_idx = 1;
3047 } else
3048 start_idx = 0;
3049
3050 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3051 if (rv != 1)
3052 return rv;
3053
3054 for (i = start_idx; i < sk_X509_num(sk); i++) {
3055 x = sk_X509_value(sk, i);
3056 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3057 if (rv != 1)
3058 return rv;
3059 }
3060 return 1;
3061 }
3062
3063 /*
3064 * For TLS 1.2 servers check if we have a certificate which can be used
3065 * with the signature algorithm "lu" and return index of certificate.
3066 */
3067
tls12_get_cert_sigalg_idx(const SSL * s,const SIGALG_LOOKUP * lu)3068 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3069 {
3070 int sig_idx = lu->sig_idx;
3071 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3072
3073 /* If not recognised or not supported by cipher mask it is not suitable */
3074 if (clu == NULL
3075 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3076 || (clu->nid == EVP_PKEY_RSA_PSS
3077 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3078 return -1;
3079
3080 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3081 }
3082
3083 /*
3084 * Checks the given cert against signature_algorithm_cert restrictions sent by
3085 * the peer (if any) as well as whether the hash from the sigalg is usable with
3086 * the key.
3087 * Returns true if the cert is usable and false otherwise.
3088 */
check_cert_usable(SSL * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)3089 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3090 EVP_PKEY *pkey)
3091 {
3092 const SIGALG_LOOKUP *lu;
3093 int mdnid, pknid, supported;
3094 size_t i;
3095 const char *mdname = NULL;
3096
3097 /*
3098 * If the given EVP_PKEY cannot support signing with this digest,
3099 * the answer is simply 'no'.
3100 */
3101 if (sig->hash != NID_undef)
3102 mdname = OBJ_nid2sn(sig->hash);
3103 supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3104 mdname,
3105 s->ctx->propq);
3106 if (supported <= 0)
3107 return 0;
3108
3109 /*
3110 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3111 * on the sigalg with which the certificate was signed (by its issuer).
3112 */
3113 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3114 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3115 return 0;
3116 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3117 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3118 if (lu == NULL)
3119 continue;
3120
3121 /*
3122 * This does not differentiate between the
3123 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3124 * have a chain here that lets us look at the key OID in the
3125 * signing certificate.
3126 */
3127 if (mdnid == lu->hash && pknid == lu->sig)
3128 return 1;
3129 }
3130 return 0;
3131 }
3132
3133 /*
3134 * Without signat_algorithms_cert, any certificate for which we have
3135 * a viable public key is permitted.
3136 */
3137 return 1;
3138 }
3139
3140 /*
3141 * Returns true if |s| has a usable certificate configured for use
3142 * with signature scheme |sig|.
3143 * "Usable" includes a check for presence as well as applying
3144 * the signature_algorithm_cert restrictions sent by the peer (if any).
3145 * Returns false if no usable certificate is found.
3146 */
has_usable_cert(SSL * s,const SIGALG_LOOKUP * sig,int idx)3147 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3148 {
3149 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3150 if (idx == -1)
3151 idx = sig->sig_idx;
3152 if (!ssl_has_cert(s, idx))
3153 return 0;
3154
3155 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3156 s->cert->pkeys[idx].privatekey);
3157 }
3158
3159 /*
3160 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3161 * specified signature scheme |sig|, or false otherwise.
3162 */
is_cert_usable(SSL * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)3163 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3164 EVP_PKEY *pkey)
3165 {
3166 size_t idx;
3167
3168 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3169 return 0;
3170
3171 /* Check the key is consistent with the sig alg */
3172 if ((int)idx != sig->sig_idx)
3173 return 0;
3174
3175 return check_cert_usable(s, sig, x, pkey);
3176 }
3177
3178 /*
3179 * Find a signature scheme that works with the supplied certificate |x| and key
3180 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3181 * available certs/keys to find one that works.
3182 */
find_sig_alg(SSL * s,X509 * x,EVP_PKEY * pkey)3183 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3184 {
3185 const SIGALG_LOOKUP *lu = NULL;
3186 size_t i;
3187 int curve = -1;
3188 EVP_PKEY *tmppkey;
3189
3190 /* Look for a shared sigalgs matching possible certificates */
3191 for (i = 0; i < s->shared_sigalgslen; i++) {
3192 lu = s->shared_sigalgs[i];
3193
3194 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3195 if (lu->hash == NID_sha1
3196 || lu->hash == NID_sha224
3197 || lu->sig == EVP_PKEY_DSA
3198 || lu->sig == EVP_PKEY_RSA)
3199 continue;
3200 /* Check that we have a cert, and signature_algorithms_cert */
3201 if (!tls1_lookup_md(s->ctx, lu, NULL))
3202 continue;
3203 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3204 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3205 continue;
3206
3207 tmppkey = (pkey != NULL) ? pkey
3208 : s->cert->pkeys[lu->sig_idx].privatekey;
3209
3210 if (lu->sig == EVP_PKEY_EC) {
3211 if (curve == -1)
3212 curve = ssl_get_EC_curve_nid(tmppkey);
3213 if (lu->curve != NID_undef && curve != lu->curve)
3214 continue;
3215 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3216 /* validate that key is large enough for the signature algorithm */
3217 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3218 continue;
3219 }
3220 break;
3221 }
3222
3223 if (i == s->shared_sigalgslen)
3224 return NULL;
3225
3226 return lu;
3227 }
3228
3229 /*
3230 * Choose an appropriate signature algorithm based on available certificates
3231 * Sets chosen certificate and signature algorithm.
3232 *
3233 * For servers if we fail to find a required certificate it is a fatal error,
3234 * an appropriate error code is set and a TLS alert is sent.
3235 *
3236 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3237 * a fatal error: we will either try another certificate or not present one
3238 * to the server. In this case no error is set.
3239 */
tls_choose_sigalg(SSL * s,int fatalerrs)3240 int tls_choose_sigalg(SSL *s, int fatalerrs)
3241 {
3242 const SIGALG_LOOKUP *lu = NULL;
3243 int sig_idx = -1;
3244
3245 s->s3.tmp.cert = NULL;
3246 s->s3.tmp.sigalg = NULL;
3247
3248 if (SSL_IS_TLS13(s)) {
3249 lu = find_sig_alg(s, NULL, NULL);
3250 if (lu == NULL) {
3251 if (!fatalerrs)
3252 return 1;
3253 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3254 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3255 return 0;
3256 }
3257 } else {
3258 /* If ciphersuite doesn't require a cert nothing to do */
3259 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3260 return 1;
3261 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3262 return 1;
3263
3264 if (SSL_USE_SIGALGS(s)) {
3265 size_t i;
3266 if (s->s3.tmp.peer_sigalgs != NULL) {
3267 int curve = -1;
3268
3269 /* For Suite B need to match signature algorithm to curve */
3270 if (tls1_suiteb(s))
3271 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3272 .privatekey);
3273
3274 /*
3275 * Find highest preference signature algorithm matching
3276 * cert type
3277 */
3278 for (i = 0; i < s->shared_sigalgslen; i++) {
3279 lu = s->shared_sigalgs[i];
3280
3281 if (s->server) {
3282 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3283 continue;
3284 } else {
3285 int cc_idx = s->cert->key - s->cert->pkeys;
3286
3287 sig_idx = lu->sig_idx;
3288 if (cc_idx != sig_idx)
3289 continue;
3290 }
3291 /* Check that we have a cert, and sig_algs_cert */
3292 if (!has_usable_cert(s, lu, sig_idx))
3293 continue;
3294 if (lu->sig == EVP_PKEY_RSA_PSS) {
3295 /* validate that key is large enough for the signature algorithm */
3296 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3297
3298 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3299 continue;
3300 }
3301 if (curve == -1 || lu->curve == curve)
3302 break;
3303 }
3304 #ifndef OPENSSL_NO_GOST
3305 /*
3306 * Some Windows-based implementations do not send GOST algorithms indication
3307 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3308 * we have to assume GOST support.
3309 */
3310 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3311 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3312 if (!fatalerrs)
3313 return 1;
3314 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3315 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3316 return 0;
3317 } else {
3318 i = 0;
3319 sig_idx = lu->sig_idx;
3320 }
3321 }
3322 #endif
3323 if (i == s->shared_sigalgslen) {
3324 if (!fatalerrs)
3325 return 1;
3326 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3327 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3328 return 0;
3329 }
3330 } else {
3331 /*
3332 * If we have no sigalg use defaults
3333 */
3334 const uint16_t *sent_sigs;
3335 size_t sent_sigslen;
3336
3337 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3338 if (!fatalerrs)
3339 return 1;
3340 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3341 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3342 return 0;
3343 }
3344
3345 /* Check signature matches a type we sent */
3346 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3347 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3348 if (lu->sigalg == *sent_sigs
3349 && has_usable_cert(s, lu, lu->sig_idx))
3350 break;
3351 }
3352 if (i == sent_sigslen) {
3353 if (!fatalerrs)
3354 return 1;
3355 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3356 SSL_R_WRONG_SIGNATURE_TYPE);
3357 return 0;
3358 }
3359 }
3360 } else {
3361 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3362 if (!fatalerrs)
3363 return 1;
3364 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3365 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3366 return 0;
3367 }
3368 }
3369 }
3370 if (sig_idx == -1)
3371 sig_idx = lu->sig_idx;
3372 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3373 s->cert->key = s->s3.tmp.cert;
3374 s->s3.tmp.sigalg = lu;
3375 return 1;
3376 }
3377
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)3378 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3379 {
3380 if (mode != TLSEXT_max_fragment_length_DISABLED
3381 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3382 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3383 return 0;
3384 }
3385
3386 ctx->ext.max_fragment_len_mode = mode;
3387 return 1;
3388 }
3389
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)3390 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3391 {
3392 if (mode != TLSEXT_max_fragment_length_DISABLED
3393 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3394 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3395 return 0;
3396 }
3397
3398 ssl->ext.max_fragment_len_mode = mode;
3399 return 1;
3400 }
3401
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)3402 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3403 {
3404 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3405 return TLSEXT_max_fragment_length_DISABLED;
3406 return session->ext.max_fragment_len_mode;
3407 }
3408
3409 /*
3410 * Helper functions for HMAC access with legacy support included.
3411 */
ssl_hmac_new(const SSL_CTX * ctx)3412 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3413 {
3414 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3415 EVP_MAC *mac = NULL;
3416
3417 if (ret == NULL)
3418 return NULL;
3419 #ifndef OPENSSL_NO_DEPRECATED_3_0
3420 if (ctx->ext.ticket_key_evp_cb == NULL
3421 && ctx->ext.ticket_key_cb != NULL) {
3422 if (!ssl_hmac_old_new(ret))
3423 goto err;
3424 return ret;
3425 }
3426 #endif
3427 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3428 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3429 goto err;
3430 EVP_MAC_free(mac);
3431 return ret;
3432 err:
3433 EVP_MAC_CTX_free(ret->ctx);
3434 EVP_MAC_free(mac);
3435 OPENSSL_free(ret);
3436 return NULL;
3437 }
3438
ssl_hmac_free(SSL_HMAC * ctx)3439 void ssl_hmac_free(SSL_HMAC *ctx)
3440 {
3441 if (ctx != NULL) {
3442 EVP_MAC_CTX_free(ctx->ctx);
3443 #ifndef OPENSSL_NO_DEPRECATED_3_0
3444 ssl_hmac_old_free(ctx);
3445 #endif
3446 OPENSSL_free(ctx);
3447 }
3448 }
3449
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC * ctx)3450 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3451 {
3452 return ctx->ctx;
3453 }
3454
ssl_hmac_init(SSL_HMAC * ctx,void * key,size_t len,char * md)3455 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3456 {
3457 OSSL_PARAM params[2], *p = params;
3458
3459 if (ctx->ctx != NULL) {
3460 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3461 *p = OSSL_PARAM_construct_end();
3462 if (EVP_MAC_init(ctx->ctx, key, len, params))
3463 return 1;
3464 }
3465 #ifndef OPENSSL_NO_DEPRECATED_3_0
3466 if (ctx->old_ctx != NULL)
3467 return ssl_hmac_old_init(ctx, key, len, md);
3468 #endif
3469 return 0;
3470 }
3471
ssl_hmac_update(SSL_HMAC * ctx,const unsigned char * data,size_t len)3472 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3473 {
3474 if (ctx->ctx != NULL)
3475 return EVP_MAC_update(ctx->ctx, data, len);
3476 #ifndef OPENSSL_NO_DEPRECATED_3_0
3477 if (ctx->old_ctx != NULL)
3478 return ssl_hmac_old_update(ctx, data, len);
3479 #endif
3480 return 0;
3481 }
3482
ssl_hmac_final(SSL_HMAC * ctx,unsigned char * md,size_t * len,size_t max_size)3483 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3484 size_t max_size)
3485 {
3486 if (ctx->ctx != NULL)
3487 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3488 #ifndef OPENSSL_NO_DEPRECATED_3_0
3489 if (ctx->old_ctx != NULL)
3490 return ssl_hmac_old_final(ctx, md, len);
3491 #endif
3492 return 0;
3493 }
3494
ssl_hmac_size(const SSL_HMAC * ctx)3495 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3496 {
3497 if (ctx->ctx != NULL)
3498 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3499 #ifndef OPENSSL_NO_DEPRECATED_3_0
3500 if (ctx->old_ctx != NULL)
3501 return ssl_hmac_old_size(ctx);
3502 #endif
3503 return 0;
3504 }
3505
ssl_get_EC_curve_nid(const EVP_PKEY * pkey)3506 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3507 {
3508 char gname[OSSL_MAX_NAME_SIZE];
3509
3510 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3511 return OBJ_txt2nid(gname);
3512
3513 return NID_undef;
3514 }
3515
tls13_set_encoded_pub_key(EVP_PKEY * pkey,const unsigned char * enckey,size_t enckeylen)3516 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3517 const unsigned char *enckey,
3518 size_t enckeylen)
3519 {
3520 if (EVP_PKEY_is_a(pkey, "DH")) {
3521 int bits = EVP_PKEY_get_bits(pkey);
3522
3523 if (bits <= 0 || enckeylen != (size_t)bits / 8)
3524 /* the encoded key must be padded to the length of the p */
3525 return 0;
3526 } else if (EVP_PKEY_is_a(pkey, "EC")) {
3527 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3528 || enckey[0] != 0x04)
3529 return 0;
3530 }
3531
3532 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3533 }
3534