xref: /freebsd/libexec/rtld-elf/rtld.c (revision 28fd9bceba1d6dfd6c67f78878e6ff160f48d0b7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/ktrace.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "libmap.h"
62 #include "notes.h"
63 #include "rtld.h"
64 #include "rtld_libc.h"
65 #include "rtld_malloc.h"
66 #include "rtld_paths.h"
67 #include "rtld_printf.h"
68 #include "rtld_tls.h"
69 #include "rtld_utrace.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74 
75 /* Variables that cannot be static: */
76 extern struct r_debug r_debug; /* For GDB */
77 extern int _thread_autoinit_dummy_decl;
78 extern void (*__cleanup)(void);
79 
80 struct dlerror_save {
81 	int seen;
82 	char *msg;
83 };
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void dump_auxv(Elf_Auxinfo **aux_info);
104 static void errmsg_restore(struct dlerror_save *);
105 static struct dlerror_save *errmsg_save(void);
106 static void *fill_search_info(const char *, size_t, void *);
107 static char *find_library(const char *, const Obj_Entry *, int *);
108 static const char *gethints(bool);
109 static void hold_object(Obj_Entry *);
110 static void unhold_object(Obj_Entry *);
111 static void init_dag(Obj_Entry *);
112 static void init_marker(Obj_Entry *);
113 static void init_pagesizes(Elf_Auxinfo **aux_info);
114 static void init_rtld(caddr_t, Elf_Auxinfo **);
115 static void initlist_add_neededs(Needed_Entry *, Objlist *, Objlist *);
116 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *,
117     Objlist *);
118 static void initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail,
119     Objlist *list);
120 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
121 static void linkmap_add(Obj_Entry *);
122 static void linkmap_delete(Obj_Entry *);
123 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
124 static void unload_filtees(Obj_Entry *, RtldLockState *);
125 static int load_needed_objects(Obj_Entry *, int);
126 static int load_preload_objects(const char *, bool);
127 static int load_kpreload(const void *addr);
128 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
129 static void map_stacks_exec(RtldLockState *);
130 static int obj_disable_relro(Obj_Entry *);
131 static int obj_enforce_relro(Obj_Entry *);
132 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
133 static void objlist_call_init(Objlist *, RtldLockState *);
134 static void objlist_clear(Objlist *);
135 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
136 static void objlist_init(Objlist *);
137 static void objlist_push_head(Objlist *, Obj_Entry *);
138 static void objlist_push_tail(Objlist *, Obj_Entry *);
139 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
140 static void objlist_remove(Objlist *, Obj_Entry *);
141 static int open_binary_fd(const char *argv0, bool search_in_path,
142     const char **binpath_res);
143 static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
144     const char **argv0, bool *dir_ignore);
145 static int parse_integer(const char *);
146 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
147 static void print_usage(const char *argv0);
148 static void release_object(Obj_Entry *);
149 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
150     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
151 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
152     int flags, RtldLockState *lockstate);
153 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
154     RtldLockState *);
155 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
156 static int rtld_dirname(const char *, char *);
157 static int rtld_dirname_abs(const char *, char *);
158 static void *rtld_dlopen(const char *name, int fd, int mode);
159 static void rtld_exit(void);
160 static void rtld_nop_exit(void);
161 static char *search_library_path(const char *, const char *, const char *,
162     int *);
163 static char *search_library_pathfds(const char *, const char *, int *);
164 static const void **get_program_var_addr(const char *, RtldLockState *);
165 static void set_program_var(const char *, const void *);
166 static int symlook_default(SymLook *, const Obj_Entry *refobj);
167 static int symlook_global(SymLook *, DoneList *);
168 static void symlook_init_from_req(SymLook *, const SymLook *);
169 static int symlook_list(SymLook *, const Objlist *, DoneList *);
170 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
171 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
172 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
173 static void *tls_get_addr_slow(struct tcb *, int, size_t, bool) __noinline;
174 static void trace_loaded_objects(Obj_Entry *, bool);
175 static void unlink_object(Obj_Entry *);
176 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
177 static void unref_dag(Obj_Entry *);
178 static void ref_dag(Obj_Entry *);
179 static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
180     bool);
181 static char *origin_subst(Obj_Entry *, const char *);
182 static bool obj_resolve_origin(Obj_Entry *obj);
183 static void preinit_main(void);
184 static int rtld_verify_versions(const Objlist *);
185 static int rtld_verify_object_versions(Obj_Entry *);
186 static void object_add_name(Obj_Entry *, const char *);
187 static int object_match_name(const Obj_Entry *, const char *);
188 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
189 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
190     struct dl_phdr_info *phdr_info);
191 static uint32_t gnu_hash(const char *);
192 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
193     const unsigned long);
194 
195 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
196 void _r_debug_postinit(struct link_map *) __noinline __exported;
197 
198 int __sys_openat(int, const char *, int, ...);
199 
200 /*
201  * Data declarations.
202  */
203 struct r_debug r_debug __exported;  /* for GDB; */
204 static bool libmap_disable;	    /* Disable libmap */
205 static bool ld_loadfltr;	    /* Immediate filters processing */
206 static const char *libmap_override; /* Maps to use in addition to libmap.conf */
207 static bool trust;		    /* False for setuid and setgid programs */
208 static bool dangerous_ld_env;	    /* True if environment variables have been
209 				       used to affect the libraries loaded */
210 bool ld_bind_not;		    /* Disable PLT update */
211 static const char *ld_bind_now; /* Environment variable for immediate binding */
212 static const char *ld_debug;	/* Environment variable for debugging */
213 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
214 				       weak definition */
215 static const char *ld_library_path; /* Environment variable for search path */
216 static const char
217     *ld_library_dirs; /* Environment variable for library descriptors */
218 static const char *ld_preload;	   /* Environment variable for libraries to
219 				      load first */
220 static const char *ld_preload_fds; /* Environment variable for libraries
221 				    represented by descriptors */
222 static const char
223     *ld_elf_hints_path; /* Environment variable for alternative hints path */
224 static const char *ld_tracing;	    /* Called from ldd to print libs */
225 static const char *ld_utrace;	    /* Use utrace() to log events. */
226 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
227 static Obj_Entry *obj_main;	    /* The main program shared object */
228 static Obj_Entry obj_rtld;	    /* The dynamic linker shared object */
229 static unsigned int obj_count;	    /* Number of objects in obj_list */
230 static unsigned int obj_loads;	    /* Number of loads of objects (gen count) */
231 size_t ld_static_tls_extra =	    /* Static TLS extra space (bytes) */
232     RTLD_STATIC_TLS_EXTRA;
233 
234 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
235     STAILQ_HEAD_INITIALIZER(list_global);
236 static Objlist list_main = /* Objects loaded at program startup */
237     STAILQ_HEAD_INITIALIZER(list_main);
238 static Objlist list_fini = /* Objects needing fini() calls */
239     STAILQ_HEAD_INITIALIZER(list_fini);
240 
241 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
242 
243 #define GDB_STATE(s, m)      \
244 	r_debug.r_state = s; \
245 	r_debug_state(&r_debug, m);
246 
247 extern Elf_Dyn _DYNAMIC;
248 #pragma weak _DYNAMIC
249 
250 int dlclose(void *) __exported;
251 char *dlerror(void) __exported;
252 void *dlopen(const char *, int) __exported;
253 void *fdlopen(int, int) __exported;
254 void *dlsym(void *, const char *) __exported;
255 dlfunc_t dlfunc(void *, const char *) __exported;
256 void *dlvsym(void *, const char *, const char *) __exported;
257 int dladdr(const void *, Dl_info *) __exported;
258 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
259     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
260 int dlinfo(void *, int, void *) __exported;
261 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
262 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
263 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
264 int _rtld_get_stack_prot(void) __exported;
265 int _rtld_is_dlopened(void *) __exported;
266 void _rtld_error(const char *, ...) __exported;
267 const char *rtld_get_var(const char *name) __exported;
268 int rtld_set_var(const char *name, const char *val) __exported;
269 
270 /* Only here to fix -Wmissing-prototypes warnings */
271 int __getosreldate(void);
272 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
273 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
274 
275 int npagesizes;
276 static int osreldate;
277 size_t *pagesizes;
278 size_t page_size;
279 
280 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
281 static int max_stack_flags;
282 
283 /*
284  * Global declarations normally provided by crt1.  The dynamic linker is
285  * not built with crt1, so we have to provide them ourselves.
286  */
287 char *__progname;
288 char **environ;
289 
290 /*
291  * Used to pass argc, argv to init functions.
292  */
293 int main_argc;
294 char **main_argv;
295 
296 /*
297  * Globals to control TLS allocation.
298  */
299 size_t tls_last_offset;	 /* Static TLS offset of last module */
300 size_t tls_last_size;	 /* Static TLS size of last module */
301 size_t tls_static_space; /* Static TLS space allocated */
302 static size_t tls_static_max_align;
303 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
304 int tls_max_index = 1;		 /* Largest module index allocated */
305 
306 static bool ld_library_path_rpath = false;
307 bool ld_fast_sigblock = false;
308 
309 /*
310  * Globals for path names, and such
311  */
312 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
313 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
314 const char *ld_path_rtld = _PATH_RTLD;
315 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
316 const char *ld_env_prefix = LD_;
317 
318 static void (*rtld_exit_ptr)(void);
319 
320 /*
321  * Fill in a DoneList with an allocation large enough to hold all of
322  * the currently-loaded objects.  Keep this as a macro since it calls
323  * alloca and we want that to occur within the scope of the caller.
324  */
325 #define donelist_init(dlp)                                             \
326 	((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]),       \
327 	    assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
328 	    (dlp)->num_used = 0)
329 
330 #define LD_UTRACE(e, h, mb, ms, r, n)                      \
331 	do {                                               \
332 		if (ld_utrace != NULL)                     \
333 			ld_utrace_log(e, h, mb, ms, r, n); \
334 	} while (0)
335 
336 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)337 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
338     int refcnt, const char *name)
339 {
340 	struct utrace_rtld ut;
341 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
342 
343 	memset(&ut, 0, sizeof(ut));	/* clear holes */
344 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
345 	ut.event = event;
346 	ut.handle = handle;
347 	ut.mapbase = mapbase;
348 	ut.mapsize = mapsize;
349 	ut.refcnt = refcnt;
350 	if (name != NULL)
351 		strlcpy(ut.name, name, sizeof(ut.name));
352 	utrace(&ut, sizeof(ut));
353 }
354 
355 struct ld_env_var_desc {
356 	const char *const n;
357 	const char *val;
358 	const bool unsecure : 1;
359 	const bool can_update : 1;
360 	const bool debug : 1;
361 	bool owned : 1;
362 };
363 #define LD_ENV_DESC(var, unsec, ...) \
364 	[LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
365 
366 static struct ld_env_var_desc ld_env_vars[] = {
367 	LD_ENV_DESC(BIND_NOW, false),
368 	LD_ENV_DESC(PRELOAD, true),
369 	LD_ENV_DESC(LIBMAP, true),
370 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
371 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
372 	LD_ENV_DESC(LIBMAP_DISABLE, true),
373 	LD_ENV_DESC(BIND_NOT, true),
374 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
375 	LD_ENV_DESC(ELF_HINTS_PATH, true),
376 	LD_ENV_DESC(LOADFLTR, true),
377 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
378 	LD_ENV_DESC(PRELOAD_FDS, true),
379 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
380 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
381 	LD_ENV_DESC(UTRACE, false, .can_update = true),
382 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
383 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
384 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
385 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
386 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
387 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
388 	LD_ENV_DESC(SHOW_AUXV, false),
389 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
390 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
391 };
392 
393 const char *
ld_get_env_var(int idx)394 ld_get_env_var(int idx)
395 {
396 	return (ld_env_vars[idx].val);
397 }
398 
399 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)400 rtld_get_env_val(char **env, const char *name, size_t name_len)
401 {
402 	char **m, *n, *v;
403 
404 	for (m = env; *m != NULL; m++) {
405 		n = *m;
406 		v = strchr(n, '=');
407 		if (v == NULL) {
408 			/* corrupt environment? */
409 			continue;
410 		}
411 		if (v - n == (ptrdiff_t)name_len &&
412 		    strncmp(name, n, name_len) == 0)
413 			return (v + 1);
414 	}
415 	return (NULL);
416 }
417 
418 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)419 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
420 {
421 	struct ld_env_var_desc *lvd;
422 	size_t prefix_len, nlen;
423 	char **m, *n, *v;
424 	int i;
425 
426 	prefix_len = strlen(env_prefix);
427 	for (m = env; *m != NULL; m++) {
428 		n = *m;
429 		if (strncmp(env_prefix, n, prefix_len) != 0) {
430 			/* Not a rtld environment variable. */
431 			continue;
432 		}
433 		n += prefix_len;
434 		v = strchr(n, '=');
435 		if (v == NULL) {
436 			/* corrupt environment? */
437 			continue;
438 		}
439 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
440 			lvd = &ld_env_vars[i];
441 			if (lvd->val != NULL) {
442 				/* Saw higher-priority variable name already. */
443 				continue;
444 			}
445 			nlen = strlen(lvd->n);
446 			if (v - n == (ptrdiff_t)nlen &&
447 			    strncmp(lvd->n, n, nlen) == 0) {
448 				lvd->val = v + 1;
449 				break;
450 			}
451 		}
452 	}
453 }
454 
455 static void
rtld_init_env_vars(char ** env)456 rtld_init_env_vars(char **env)
457 {
458 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
459 }
460 
461 static void
set_ld_elf_hints_path(void)462 set_ld_elf_hints_path(void)
463 {
464 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
465 		ld_elf_hints_path = ld_elf_hints_default;
466 }
467 
468 uintptr_t
rtld_round_page(uintptr_t x)469 rtld_round_page(uintptr_t x)
470 {
471 	return (roundup2(x, page_size));
472 }
473 
474 uintptr_t
rtld_trunc_page(uintptr_t x)475 rtld_trunc_page(uintptr_t x)
476 {
477 	return (rounddown2(x, page_size));
478 }
479 
480 /*
481  * Main entry point for dynamic linking.  The first argument is the
482  * stack pointer.  The stack is expected to be laid out as described
483  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
484  * Specifically, the stack pointer points to a word containing
485  * ARGC.  Following that in the stack is a null-terminated sequence
486  * of pointers to argument strings.  Then comes a null-terminated
487  * sequence of pointers to environment strings.  Finally, there is a
488  * sequence of "auxiliary vector" entries.
489  *
490  * The second argument points to a place to store the dynamic linker's
491  * exit procedure pointer and the third to a place to store the main
492  * program's object.
493  *
494  * The return value is the main program's entry point.
495  */
496 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)497 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
498 {
499 	Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT], auxtmp;
500 	Objlist_Entry *entry;
501 	Obj_Entry *last_interposer, *obj, *preload_tail;
502 	const Elf_Phdr *phdr;
503 	Objlist initlist;
504 	RtldLockState lockstate;
505 	struct stat st;
506 	Elf_Addr *argcp;
507 	char **argv, **env, **envp, *kexecpath;
508 	const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
509 	struct ld_env_var_desc *lvd;
510 	caddr_t imgentry;
511 	char buf[MAXPATHLEN];
512 	int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
513 	size_t sz;
514 #ifdef __powerpc__
515 	int old_auxv_format = 1;
516 #endif
517 	bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
518 
519 	/*
520 	 * On entry, the dynamic linker itself has not been relocated yet.
521 	 * Be very careful not to reference any global data until after
522 	 * init_rtld has returned.  It is OK to reference file-scope statics
523 	 * and string constants, and to call static and global functions.
524 	 */
525 
526 	/* Find the auxiliary vector on the stack. */
527 	argcp = sp;
528 	argc = *sp++;
529 	argv = (char **)sp;
530 	sp += argc + 1; /* Skip over arguments and NULL terminator */
531 	env = (char **)sp;
532 	while (*sp++ != 0) /* Skip over environment, and NULL terminator */
533 		;
534 	aux = (Elf_Auxinfo *)sp;
535 
536 	/* Digest the auxiliary vector. */
537 	for (i = 0; i < AT_COUNT; i++)
538 		aux_info[i] = NULL;
539 	for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
540 		if (auxp->a_type < AT_COUNT)
541 			aux_info[auxp->a_type] = auxp;
542 #ifdef __powerpc__
543 		if (auxp->a_type == 23) /* AT_STACKPROT */
544 			old_auxv_format = 0;
545 #endif
546 	}
547 
548 #ifdef __powerpc__
549 	if (old_auxv_format) {
550 		/* Remap from old-style auxv numbers. */
551 		aux_info[23] = aux_info[21]; /* AT_STACKPROT */
552 		aux_info[21] = aux_info[19]; /* AT_PAGESIZESLEN */
553 		aux_info[19] = aux_info[17]; /* AT_NCPUS */
554 		aux_info[17] = aux_info[15]; /* AT_CANARYLEN */
555 		aux_info[15] = aux_info[13]; /* AT_EXECPATH */
556 		aux_info[13] = NULL;	     /* AT_GID */
557 
558 		aux_info[20] = aux_info[18]; /* AT_PAGESIZES */
559 		aux_info[18] = aux_info[16]; /* AT_OSRELDATE */
560 		aux_info[16] = aux_info[14]; /* AT_CANARY */
561 		aux_info[14] = NULL;	     /* AT_EGID */
562 	}
563 #endif
564 
565 	/* Initialize and relocate ourselves. */
566 	assert(aux_info[AT_BASE] != NULL);
567 	init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
568 
569 	dlerror_dflt_init();
570 
571 	__progname = obj_rtld.path;
572 	argv0 = argv[0] != NULL ? argv[0] : "(null)";
573 	environ = env;
574 	main_argc = argc;
575 	main_argv = argv;
576 
577 	if (aux_info[AT_BSDFLAGS] != NULL &&
578 	    (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
579 		ld_fast_sigblock = true;
580 
581 	trust = !issetugid();
582 	direct_exec = false;
583 
584 	md_abi_variant_hook(aux_info);
585 	rtld_init_env_vars(env);
586 
587 	fd = -1;
588 	if (aux_info[AT_EXECFD] != NULL) {
589 		fd = aux_info[AT_EXECFD]->a_un.a_val;
590 	} else {
591 		assert(aux_info[AT_PHDR] != NULL);
592 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
593 		if (phdr == obj_rtld.phdr) {
594 			if (!trust) {
595 				_rtld_error(
596 				    "Tainted process refusing to run binary %s",
597 				    argv0);
598 				rtld_die();
599 			}
600 			direct_exec = true;
601 
602 			dbg("opening main program in direct exec mode");
603 			if (argc >= 2) {
604 				rtld_argc = parse_args(argv, argc,
605 				    &search_in_path, &fd, &argv0, &dir_ignore);
606 				explicit_fd = (fd != -1);
607 				binpath = NULL;
608 				if (!explicit_fd)
609 					fd = open_binary_fd(argv0,
610 					    search_in_path, &binpath);
611 				if (fstat(fd, &st) == -1) {
612 					_rtld_error(
613 					    "Failed to fstat FD %d (%s): %s",
614 					    fd,
615 					    explicit_fd ?
616 						"user-provided descriptor" :
617 						argv0,
618 					    rtld_strerror(errno));
619 					rtld_die();
620 				}
621 
622 				/*
623 				 * Rough emulation of the permission checks done
624 				 * by execve(2), only Unix DACs are checked,
625 				 * ACLs are ignored.  Preserve the semantic of
626 				 * disabling owner to execute if owner x bit is
627 				 * cleared, even if others x bit is enabled.
628 				 * mmap(2) does not allow to mmap with PROT_EXEC
629 				 * if binary' file comes from noexec mount.  We
630 				 * cannot set a text reference on the binary.
631 				 */
632 				dir_enable = false;
633 				if (st.st_uid == geteuid()) {
634 					if ((st.st_mode & S_IXUSR) != 0)
635 						dir_enable = true;
636 				} else if (st.st_gid == getegid()) {
637 					if ((st.st_mode & S_IXGRP) != 0)
638 						dir_enable = true;
639 				} else if ((st.st_mode & S_IXOTH) != 0) {
640 					dir_enable = true;
641 				}
642 				if (!dir_enable && !dir_ignore) {
643 					_rtld_error(
644 				    "No execute permission for binary %s",
645 					    argv0);
646 					rtld_die();
647 				}
648 
649 				/*
650 				 * For direct exec mode, argv[0] is the
651 				 * interpreter name, we must remove it and shift
652 				 * arguments left before invoking binary main.
653 				 * Since stack layout places environment
654 				 * pointers and aux vectors right after the
655 				 * terminating NULL, we must shift environment
656 				 * and aux as well.
657 				 */
658 				main_argc = argc - rtld_argc;
659 				for (i = 0; i <= main_argc; i++)
660 					argv[i] = argv[i + rtld_argc];
661 				*argcp -= rtld_argc;
662 				environ = env = envp = argv + main_argc + 1;
663 				dbg("move env from %p to %p", envp + rtld_argc,
664 				    envp);
665 				do {
666 					*envp = *(envp + rtld_argc);
667 				} while (*envp++ != NULL);
668 				aux = auxp = (Elf_Auxinfo *)envp;
669 				auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
670 				dbg("move aux from %p to %p", auxpf, aux);
671 				/*
672 				 * XXXKIB insert place for AT_EXECPATH if not
673 				 * present
674 				 */
675 				for (;; auxp++, auxpf++) {
676 					/*
677 					 * NB: Use a temporary since *auxpf and
678 					 * *auxp overlap if rtld_argc is 1
679 					 */
680 					auxtmp = *auxpf;
681 					*auxp = auxtmp;
682 					if (auxp->a_type == AT_NULL)
683 						break;
684 				}
685 				/*
686 				 * Since the auxiliary vector has moved,
687 				 * redigest it.
688 				 */
689 				for (i = 0; i < AT_COUNT; i++)
690 					aux_info[i] = NULL;
691 				for (auxp = aux; auxp->a_type != AT_NULL;
692 				    auxp++) {
693 					if (auxp->a_type < AT_COUNT)
694 						aux_info[auxp->a_type] = auxp;
695 				}
696 
697 				/*
698 				 * Point AT_EXECPATH auxv and aux_info to the
699 				 * binary path.
700 				 */
701 				if (binpath == NULL) {
702 					aux_info[AT_EXECPATH] = NULL;
703 				} else {
704 					if (aux_info[AT_EXECPATH] == NULL) {
705 						aux_info[AT_EXECPATH] = xmalloc(
706 						    sizeof(Elf_Auxinfo));
707 						aux_info[AT_EXECPATH]->a_type =
708 						    AT_EXECPATH;
709 					}
710 					aux_info[AT_EXECPATH]->a_un.a_ptr =
711 					    __DECONST(void *, binpath);
712 				}
713 			} else {
714 				_rtld_error("No binary");
715 				rtld_die();
716 			}
717 		}
718 	}
719 
720 	ld_bind_now = ld_get_env_var(LD_BIND_NOW);
721 
722 	/*
723 	 * If the process is tainted, then we un-set the dangerous environment
724 	 * variables.  The process will be marked as tainted until setuid(2)
725 	 * is called.  If any child process calls setuid(2) we do not want any
726 	 * future processes to honor the potentially un-safe variables.
727 	 */
728 	if (!trust) {
729 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
730 			lvd = &ld_env_vars[i];
731 			if (lvd->unsecure)
732 				lvd->val = NULL;
733 		}
734 	}
735 
736 	ld_debug = ld_get_env_var(LD_DEBUG);
737 	if (ld_bind_now == NULL)
738 		ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
739 	ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
740 	libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
741 	libmap_override = ld_get_env_var(LD_LIBMAP);
742 	ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
743 	ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
744 	ld_preload = ld_get_env_var(LD_PRELOAD);
745 	ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
746 	ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
747 	ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
748 	library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
749 	if (library_path_rpath != NULL) {
750 		if (library_path_rpath[0] == 'y' ||
751 		    library_path_rpath[0] == 'Y' ||
752 		    library_path_rpath[0] == '1')
753 			ld_library_path_rpath = true;
754 		else
755 			ld_library_path_rpath = false;
756 	}
757 	static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
758 	if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
759 		sz = parse_integer(static_tls_extra);
760 		if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
761 			ld_static_tls_extra = sz;
762 	}
763 	dangerous_ld_env = libmap_disable || libmap_override != NULL ||
764 	    ld_library_path != NULL || ld_preload != NULL ||
765 	    ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
766 	    static_tls_extra != NULL;
767 	ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
768 	ld_utrace = ld_get_env_var(LD_UTRACE);
769 
770 	set_ld_elf_hints_path();
771 	if (ld_debug != NULL && *ld_debug != '\0')
772 		debug = 1;
773 	dbg("%s is initialized, base address = %p", __progname,
774 	    (caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
775 	dbg("RTLD dynamic = %p", obj_rtld.dynamic);
776 	dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
777 
778 	dbg("initializing thread locks");
779 	lockdflt_init();
780 
781 	/*
782 	 * Load the main program, or process its program header if it is
783 	 * already loaded.
784 	 */
785 	if (fd != -1) { /* Load the main program. */
786 		dbg("loading main program");
787 		obj_main = map_object(fd, argv0, NULL, true);
788 		close(fd);
789 		if (obj_main == NULL)
790 			rtld_die();
791 		max_stack_flags = obj_main->stack_flags;
792 	} else { /* Main program already loaded. */
793 		dbg("processing main program's program header");
794 		assert(aux_info[AT_PHDR] != NULL);
795 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
796 		assert(aux_info[AT_PHNUM] != NULL);
797 		phnum = aux_info[AT_PHNUM]->a_un.a_val;
798 		assert(aux_info[AT_PHENT] != NULL);
799 		assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
800 		assert(aux_info[AT_ENTRY] != NULL);
801 		imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
802 		if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
803 		    NULL)
804 			rtld_die();
805 	}
806 
807 	if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
808 		kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
809 		dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
810 		if (kexecpath[0] == '/')
811 			obj_main->path = kexecpath;
812 		else if (getcwd(buf, sizeof(buf)) == NULL ||
813 		    strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
814 		    strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
815 			obj_main->path = xstrdup(argv0);
816 		else
817 			obj_main->path = xstrdup(buf);
818 	} else {
819 		dbg("No AT_EXECPATH or direct exec");
820 		obj_main->path = xstrdup(argv0);
821 	}
822 	dbg("obj_main path %s", obj_main->path);
823 	obj_main->mainprog = true;
824 
825 	if (aux_info[AT_STACKPROT] != NULL &&
826 	    aux_info[AT_STACKPROT]->a_un.a_val != 0)
827 		stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
828 
829 #ifndef COMPAT_libcompat
830 	/*
831 	 * Get the actual dynamic linker pathname from the executable if
832 	 * possible.  (It should always be possible.)  That ensures that
833 	 * gdb will find the right dynamic linker even if a non-standard
834 	 * one is being used.
835 	 */
836 	if (obj_main->interp != NULL &&
837 	    strcmp(obj_main->interp, obj_rtld.path) != 0) {
838 		free(obj_rtld.path);
839 		obj_rtld.path = xstrdup(obj_main->interp);
840 		__progname = obj_rtld.path;
841 	}
842 #endif
843 
844 	if (!digest_dynamic(obj_main, 0))
845 		rtld_die();
846 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
847 	    obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
848 	    obj_main->dynsymcount);
849 
850 	linkmap_add(obj_main);
851 	linkmap_add(&obj_rtld);
852 
853 	/* Link the main program into the list of objects. */
854 	TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
855 	obj_count++;
856 	obj_loads++;
857 
858 	/* Initialize a fake symbol for resolving undefined weak references. */
859 	sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
860 	sym_zero.st_shndx = SHN_UNDEF;
861 	sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
862 
863 	if (!libmap_disable)
864 		libmap_disable = (bool)lm_init(libmap_override);
865 
866 	if (aux_info[AT_KPRELOAD] != NULL &&
867 	    aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
868 		dbg("loading kernel vdso");
869 		if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
870 			rtld_die();
871 	}
872 
873 	dbg("loading LD_PRELOAD_FDS libraries");
874 	if (load_preload_objects(ld_preload_fds, true) == -1)
875 		rtld_die();
876 
877 	dbg("loading LD_PRELOAD libraries");
878 	if (load_preload_objects(ld_preload, false) == -1)
879 		rtld_die();
880 	preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
881 
882 	dbg("loading needed objects");
883 	if (load_needed_objects(obj_main,
884 		ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
885 		rtld_die();
886 
887 	/* Make a list of all objects loaded at startup. */
888 	last_interposer = obj_main;
889 	TAILQ_FOREACH(obj, &obj_list, next) {
890 		if (obj->marker)
891 			continue;
892 		if (obj->z_interpose && obj != obj_main) {
893 			objlist_put_after(&list_main, last_interposer, obj);
894 			last_interposer = obj;
895 		} else {
896 			objlist_push_tail(&list_main, obj);
897 		}
898 		obj->refcount++;
899 	}
900 
901 	dbg("checking for required versions");
902 	if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
903 		rtld_die();
904 
905 	if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
906 		dump_auxv(aux_info);
907 
908 	if (ld_tracing) { /* We're done */
909 		trace_loaded_objects(obj_main, true);
910 		exit(0);
911 	}
912 
913 	if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
914 		dump_relocations(obj_main);
915 		exit(0);
916 	}
917 
918 	/*
919 	 * Processing tls relocations requires having the tls offsets
920 	 * initialized.  Prepare offsets before starting initial
921 	 * relocation processing.
922 	 */
923 	dbg("initializing initial thread local storage offsets");
924 	STAILQ_FOREACH(entry, &list_main, link) {
925 		/*
926 		 * Allocate all the initial objects out of the static TLS
927 		 * block even if they didn't ask for it.
928 		 */
929 		allocate_tls_offset(entry->obj);
930 	}
931 
932 	if (relocate_objects(obj_main,
933 		ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
934 		SYMLOOK_EARLY, NULL) == -1)
935 		rtld_die();
936 
937 	dbg("doing copy relocations");
938 	if (do_copy_relocations(obj_main) == -1)
939 		rtld_die();
940 
941 	if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
942 		dump_relocations(obj_main);
943 		exit(0);
944 	}
945 
946 	ifunc_init(aux_info);
947 
948 	/*
949 	 * Setup TLS for main thread.  This must be done after the
950 	 * relocations are processed, since tls initialization section
951 	 * might be the subject for relocations.
952 	 */
953 	dbg("initializing initial thread local storage");
954 	allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
955 
956 	dbg("initializing key program variables");
957 	set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
958 	set_program_var("environ", env);
959 	set_program_var("__elf_aux_vector", aux);
960 
961 	/* Make a list of init functions to call. */
962 	objlist_init(&initlist);
963 	initlist_for_loaded_obj(globallist_curr(TAILQ_FIRST(&obj_list)),
964 	    preload_tail, &initlist);
965 
966 	r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
967 
968 	map_stacks_exec(NULL);
969 
970 	if (!obj_main->crt_no_init) {
971 		/*
972 		 * Make sure we don't call the main program's init and fini
973 		 * functions for binaries linked with old crt1 which calls
974 		 * _init itself.
975 		 */
976 		obj_main->init = obj_main->fini = (Elf_Addr)NULL;
977 		obj_main->preinit_array = obj_main->init_array =
978 		    obj_main->fini_array = (Elf_Addr)NULL;
979 	}
980 
981 	if (direct_exec) {
982 		/* Set osrel for direct-execed binary */
983 		mib[0] = CTL_KERN;
984 		mib[1] = KERN_PROC;
985 		mib[2] = KERN_PROC_OSREL;
986 		mib[3] = getpid();
987 		osrel = obj_main->osrel;
988 		sz = sizeof(old_osrel);
989 		dbg("setting osrel to %d", osrel);
990 		(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
991 	}
992 
993 	wlock_acquire(rtld_bind_lock, &lockstate);
994 
995 	dbg("resolving ifuncs");
996 	if (initlist_objects_ifunc(&initlist,
997 		ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
998 		&lockstate) == -1)
999 		rtld_die();
1000 
1001 	rtld_exit_ptr = rtld_exit;
1002 	if (obj_main->crt_no_init)
1003 		preinit_main();
1004 	objlist_call_init(&initlist, &lockstate);
1005 	_r_debug_postinit(&obj_main->linkmap);
1006 	objlist_clear(&initlist);
1007 	dbg("loading filtees");
1008 	TAILQ_FOREACH(obj, &obj_list, next) {
1009 		if (obj->marker)
1010 			continue;
1011 		if (ld_loadfltr || obj->z_loadfltr)
1012 			load_filtees(obj, 0, &lockstate);
1013 	}
1014 
1015 	dbg("enforcing main obj relro");
1016 	if (obj_enforce_relro(obj_main) == -1)
1017 		rtld_die();
1018 
1019 	lock_release(rtld_bind_lock, &lockstate);
1020 
1021 	dbg("transferring control to program entry point = %p",
1022 	    obj_main->entry);
1023 
1024 	/* Return the exit procedure and the program entry point. */
1025 	*exit_proc = rtld_exit_ptr;
1026 	*objp = obj_main;
1027 	return ((func_ptr_type)obj_main->entry);
1028 }
1029 
1030 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1031 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1032 {
1033 	void *ptr;
1034 	Elf_Addr target;
1035 
1036 	ptr = (void *)make_function_pointer(def, obj);
1037 	target = call_ifunc_resolver(ptr);
1038 	return ((void *)target);
1039 }
1040 
1041 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1042 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1043 {
1044 	const Elf_Rel *rel;
1045 	const Elf_Sym *def;
1046 	const Obj_Entry *defobj;
1047 	Elf_Addr *where;
1048 	Elf_Addr target;
1049 	RtldLockState lockstate;
1050 
1051 relock:
1052 	rlock_acquire(rtld_bind_lock, &lockstate);
1053 	if (sigsetjmp(lockstate.env, 0) != 0)
1054 		lock_upgrade(rtld_bind_lock, &lockstate);
1055 	if (obj->pltrel)
1056 		rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1057 	else
1058 		rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1059 
1060 	where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1061 	def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1062 	    NULL, &lockstate);
1063 	if (def == NULL)
1064 		rtld_die();
1065 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
1066 		if (lockstate_wlocked(&lockstate)) {
1067 			lock_release(rtld_bind_lock, &lockstate);
1068 			goto relock;
1069 		}
1070 		target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1071 	} else {
1072 		target = (Elf_Addr)(defobj->relocbase + def->st_value);
1073 	}
1074 
1075 	dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1076 	    obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1077 	    defobj->path == NULL ? NULL : basename(defobj->path));
1078 
1079 	/*
1080 	 * Write the new contents for the jmpslot. Note that depending on
1081 	 * architecture, the value which we need to return back to the
1082 	 * lazy binding trampoline may or may not be the target
1083 	 * address. The value returned from reloc_jmpslot() is the value
1084 	 * that the trampoline needs.
1085 	 */
1086 	target = reloc_jmpslot(where, target, defobj, obj, rel);
1087 	lock_release(rtld_bind_lock, &lockstate);
1088 	return (target);
1089 }
1090 
1091 /*
1092  * Error reporting function.  Use it like printf.  If formats the message
1093  * into a buffer, and sets things up so that the next call to dlerror()
1094  * will return the message.
1095  */
1096 void
_rtld_error(const char * fmt,...)1097 _rtld_error(const char *fmt, ...)
1098 {
1099 	va_list ap;
1100 
1101 	va_start(ap, fmt);
1102 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1103 	    ap);
1104 	va_end(ap);
1105 	*lockinfo.dlerror_seen() = 0;
1106 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1107 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1108 }
1109 
1110 /*
1111  * Return a dynamically-allocated copy of the current error message, if any.
1112  */
1113 static struct dlerror_save *
errmsg_save(void)1114 errmsg_save(void)
1115 {
1116 	struct dlerror_save *res;
1117 
1118 	res = xmalloc(sizeof(*res));
1119 	res->seen = *lockinfo.dlerror_seen();
1120 	if (res->seen == 0)
1121 		res->msg = xstrdup(lockinfo.dlerror_loc());
1122 	return (res);
1123 }
1124 
1125 /*
1126  * Restore the current error message from a copy which was previously saved
1127  * by errmsg_save().  The copy is freed.
1128  */
1129 static void
errmsg_restore(struct dlerror_save * saved_msg)1130 errmsg_restore(struct dlerror_save *saved_msg)
1131 {
1132 	if (saved_msg == NULL || saved_msg->seen == 1) {
1133 		*lockinfo.dlerror_seen() = 1;
1134 	} else {
1135 		*lockinfo.dlerror_seen() = 0;
1136 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1137 		    lockinfo.dlerror_loc_sz);
1138 		free(saved_msg->msg);
1139 	}
1140 	free(saved_msg);
1141 }
1142 
1143 static const char *
basename(const char * name)1144 basename(const char *name)
1145 {
1146 	const char *p;
1147 
1148 	p = strrchr(name, '/');
1149 	return (p != NULL ? p + 1 : name);
1150 }
1151 
1152 static struct utsname uts;
1153 
1154 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1155 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1156     bool may_free)
1157 {
1158 	char *p, *p1, *res, *resp;
1159 	int subst_len, kw_len, subst_count, old_len, new_len;
1160 
1161 	kw_len = strlen(kw);
1162 
1163 	/*
1164 	 * First, count the number of the keyword occurrences, to
1165 	 * preallocate the final string.
1166 	 */
1167 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1168 		p1 = strstr(p, kw);
1169 		if (p1 == NULL)
1170 			break;
1171 	}
1172 
1173 	/*
1174 	 * If the keyword is not found, just return.
1175 	 *
1176 	 * Return non-substituted string if resolution failed.  We
1177 	 * cannot do anything more reasonable, the failure mode of the
1178 	 * caller is unresolved library anyway.
1179 	 */
1180 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1181 		return (may_free ? real : xstrdup(real));
1182 	if (obj != NULL)
1183 		subst = obj->origin_path;
1184 
1185 	/*
1186 	 * There is indeed something to substitute.  Calculate the
1187 	 * length of the resulting string, and allocate it.
1188 	 */
1189 	subst_len = strlen(subst);
1190 	old_len = strlen(real);
1191 	new_len = old_len + (subst_len - kw_len) * subst_count;
1192 	res = xmalloc(new_len + 1);
1193 
1194 	/*
1195 	 * Now, execute the substitution loop.
1196 	 */
1197 	for (p = real, resp = res, *resp = '\0';;) {
1198 		p1 = strstr(p, kw);
1199 		if (p1 != NULL) {
1200 			/* Copy the prefix before keyword. */
1201 			memcpy(resp, p, p1 - p);
1202 			resp += p1 - p;
1203 			/* Keyword replacement. */
1204 			memcpy(resp, subst, subst_len);
1205 			resp += subst_len;
1206 			*resp = '\0';
1207 			p = p1 + kw_len;
1208 		} else
1209 			break;
1210 	}
1211 
1212 	/* Copy to the end of string and finish. */
1213 	strcat(resp, p);
1214 	if (may_free)
1215 		free(real);
1216 	return (res);
1217 }
1218 
1219 static const struct {
1220 	const char *kw;
1221 	bool pass_obj;
1222 	const char *subst;
1223 } tokens[] = {
1224 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1225 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1226 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1227 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1228 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1229 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1230 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1231 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1232 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1233 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1234 };
1235 
1236 static char *
origin_subst(Obj_Entry * obj,const char * real)1237 origin_subst(Obj_Entry *obj, const char *real)
1238 {
1239 	char *res;
1240 	int i;
1241 
1242 	if (obj == NULL || !trust)
1243 		return (xstrdup(real));
1244 	if (uts.sysname[0] == '\0') {
1245 		if (uname(&uts) != 0) {
1246 			_rtld_error("utsname failed: %d", errno);
1247 			return (NULL);
1248 		}
1249 	}
1250 
1251 	/* __DECONST is safe here since without may_free real is unchanged */
1252 	res = __DECONST(char *, real);
1253 	for (i = 0; i < (int)nitems(tokens); i++) {
1254 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1255 		    tokens[i].kw, tokens[i].subst, i != 0);
1256 	}
1257 	return (res);
1258 }
1259 
1260 void
rtld_die(void)1261 rtld_die(void)
1262 {
1263 	const char *msg = dlerror();
1264 
1265 	if (msg == NULL)
1266 		msg = "Fatal error";
1267 	rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1268 	rtld_fdputstr(STDERR_FILENO, msg);
1269 	rtld_fdputchar(STDERR_FILENO, '\n');
1270 	_exit(1);
1271 }
1272 
1273 /*
1274  * Process a shared object's DYNAMIC section, and save the important
1275  * information in its Obj_Entry structure.
1276  */
1277 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1278 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1279     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1280 {
1281 	const Elf_Dyn *dynp;
1282 	Needed_Entry **needed_tail = &obj->needed;
1283 	Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1284 	Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1285 	const Elf_Hashelt *hashtab;
1286 	const Elf32_Word *hashval;
1287 	Elf32_Word bkt, nmaskwords;
1288 	int bloom_size32;
1289 	int plttype = DT_REL;
1290 
1291 	*dyn_rpath = NULL;
1292 	*dyn_soname = NULL;
1293 	*dyn_runpath = NULL;
1294 
1295 	obj->bind_now = false;
1296 	dynp = obj->dynamic;
1297 	if (dynp == NULL)
1298 		return;
1299 	for (; dynp->d_tag != DT_NULL; dynp++) {
1300 		switch (dynp->d_tag) {
1301 		case DT_REL:
1302 			obj->rel = (const Elf_Rel *)(obj->relocbase +
1303 			    dynp->d_un.d_ptr);
1304 			break;
1305 
1306 		case DT_RELSZ:
1307 			obj->relsize = dynp->d_un.d_val;
1308 			break;
1309 
1310 		case DT_RELENT:
1311 			assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1312 			break;
1313 
1314 		case DT_JMPREL:
1315 			obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1316 			    dynp->d_un.d_ptr);
1317 			break;
1318 
1319 		case DT_PLTRELSZ:
1320 			obj->pltrelsize = dynp->d_un.d_val;
1321 			break;
1322 
1323 		case DT_RELA:
1324 			obj->rela = (const Elf_Rela *)(obj->relocbase +
1325 			    dynp->d_un.d_ptr);
1326 			break;
1327 
1328 		case DT_RELASZ:
1329 			obj->relasize = dynp->d_un.d_val;
1330 			break;
1331 
1332 		case DT_RELAENT:
1333 			assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1334 			break;
1335 
1336 		case DT_RELR:
1337 			obj->relr = (const Elf_Relr *)(obj->relocbase +
1338 			    dynp->d_un.d_ptr);
1339 			break;
1340 
1341 		case DT_RELRSZ:
1342 			obj->relrsize = dynp->d_un.d_val;
1343 			break;
1344 
1345 		case DT_RELRENT:
1346 			assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1347 			break;
1348 
1349 		case DT_PLTREL:
1350 			plttype = dynp->d_un.d_val;
1351 			assert(
1352 			    dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1353 			break;
1354 
1355 		case DT_SYMTAB:
1356 			obj->symtab = (const Elf_Sym *)(obj->relocbase +
1357 			    dynp->d_un.d_ptr);
1358 			break;
1359 
1360 		case DT_SYMENT:
1361 			assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1362 			break;
1363 
1364 		case DT_STRTAB:
1365 			obj->strtab = (const char *)(obj->relocbase +
1366 			    dynp->d_un.d_ptr);
1367 			break;
1368 
1369 		case DT_STRSZ:
1370 			obj->strsize = dynp->d_un.d_val;
1371 			break;
1372 
1373 		case DT_VERNEED:
1374 			obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1375 			    dynp->d_un.d_val);
1376 			break;
1377 
1378 		case DT_VERNEEDNUM:
1379 			obj->verneednum = dynp->d_un.d_val;
1380 			break;
1381 
1382 		case DT_VERDEF:
1383 			obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1384 			    dynp->d_un.d_val);
1385 			break;
1386 
1387 		case DT_VERDEFNUM:
1388 			obj->verdefnum = dynp->d_un.d_val;
1389 			break;
1390 
1391 		case DT_VERSYM:
1392 			obj->versyms = (const Elf_Versym *)(obj->relocbase +
1393 			    dynp->d_un.d_val);
1394 			break;
1395 
1396 		case DT_HASH: {
1397 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1398 			    dynp->d_un.d_ptr);
1399 			obj->nbuckets = hashtab[0];
1400 			obj->nchains = hashtab[1];
1401 			obj->buckets = hashtab + 2;
1402 			obj->chains = obj->buckets + obj->nbuckets;
1403 			obj->valid_hash_sysv = obj->nbuckets > 0 &&
1404 			    obj->nchains > 0 && obj->buckets != NULL;
1405 		} break;
1406 
1407 		case DT_GNU_HASH: {
1408 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1409 			    dynp->d_un.d_ptr);
1410 			obj->nbuckets_gnu = hashtab[0];
1411 			obj->symndx_gnu = hashtab[1];
1412 			nmaskwords = hashtab[2];
1413 			bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1414 			obj->maskwords_bm_gnu = nmaskwords - 1;
1415 			obj->shift2_gnu = hashtab[3];
1416 			obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1417 			obj->buckets_gnu = hashtab + 4 + bloom_size32;
1418 			obj->chain_zero_gnu = obj->buckets_gnu +
1419 			    obj->nbuckets_gnu - obj->symndx_gnu;
1420 			/* Number of bitmask words is required to be power of 2
1421 			 */
1422 			obj->valid_hash_gnu = powerof2(nmaskwords) &&
1423 			    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1424 		} break;
1425 
1426 		case DT_NEEDED:
1427 			if (!obj->rtld) {
1428 				Needed_Entry *nep = NEW(Needed_Entry);
1429 				nep->name = dynp->d_un.d_val;
1430 				nep->obj = NULL;
1431 				nep->next = NULL;
1432 
1433 				*needed_tail = nep;
1434 				needed_tail = &nep->next;
1435 			}
1436 			break;
1437 
1438 		case DT_FILTER:
1439 			if (!obj->rtld) {
1440 				Needed_Entry *nep = NEW(Needed_Entry);
1441 				nep->name = dynp->d_un.d_val;
1442 				nep->obj = NULL;
1443 				nep->next = NULL;
1444 
1445 				*needed_filtees_tail = nep;
1446 				needed_filtees_tail = &nep->next;
1447 
1448 				if (obj->linkmap.l_refname == NULL)
1449 					obj->linkmap.l_refname =
1450 					    (char *)dynp->d_un.d_val;
1451 			}
1452 			break;
1453 
1454 		case DT_AUXILIARY:
1455 			if (!obj->rtld) {
1456 				Needed_Entry *nep = NEW(Needed_Entry);
1457 				nep->name = dynp->d_un.d_val;
1458 				nep->obj = NULL;
1459 				nep->next = NULL;
1460 
1461 				*needed_aux_filtees_tail = nep;
1462 				needed_aux_filtees_tail = &nep->next;
1463 			}
1464 			break;
1465 
1466 		case DT_PLTGOT:
1467 			obj->pltgot = (Elf_Addr *)(obj->relocbase +
1468 			    dynp->d_un.d_ptr);
1469 			break;
1470 
1471 		case DT_TEXTREL:
1472 			obj->textrel = true;
1473 			break;
1474 
1475 		case DT_SYMBOLIC:
1476 			obj->symbolic = true;
1477 			break;
1478 
1479 		case DT_RPATH:
1480 			/*
1481 			 * We have to wait until later to process this, because
1482 			 * we might not have gotten the address of the string
1483 			 * table yet.
1484 			 */
1485 			*dyn_rpath = dynp;
1486 			break;
1487 
1488 		case DT_SONAME:
1489 			*dyn_soname = dynp;
1490 			break;
1491 
1492 		case DT_RUNPATH:
1493 			*dyn_runpath = dynp;
1494 			break;
1495 
1496 		case DT_INIT:
1497 			obj->init = (Elf_Addr)(obj->relocbase +
1498 			    dynp->d_un.d_ptr);
1499 			break;
1500 
1501 		case DT_PREINIT_ARRAY:
1502 			obj->preinit_array = (Elf_Addr)(obj->relocbase +
1503 			    dynp->d_un.d_ptr);
1504 			break;
1505 
1506 		case DT_PREINIT_ARRAYSZ:
1507 			obj->preinit_array_num = dynp->d_un.d_val /
1508 			    sizeof(Elf_Addr);
1509 			break;
1510 
1511 		case DT_INIT_ARRAY:
1512 			obj->init_array = (Elf_Addr)(obj->relocbase +
1513 			    dynp->d_un.d_ptr);
1514 			break;
1515 
1516 		case DT_INIT_ARRAYSZ:
1517 			obj->init_array_num = dynp->d_un.d_val /
1518 			    sizeof(Elf_Addr);
1519 			break;
1520 
1521 		case DT_FINI:
1522 			obj->fini = (Elf_Addr)(obj->relocbase +
1523 			    dynp->d_un.d_ptr);
1524 			break;
1525 
1526 		case DT_FINI_ARRAY:
1527 			obj->fini_array = (Elf_Addr)(obj->relocbase +
1528 			    dynp->d_un.d_ptr);
1529 			break;
1530 
1531 		case DT_FINI_ARRAYSZ:
1532 			obj->fini_array_num = dynp->d_un.d_val /
1533 			    sizeof(Elf_Addr);
1534 			break;
1535 
1536 		case DT_DEBUG:
1537 			if (!early)
1538 				dbg("Filling in DT_DEBUG entry");
1539 			(__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1540 			    (Elf_Addr)&r_debug;
1541 			break;
1542 
1543 		case DT_FLAGS:
1544 			if (dynp->d_un.d_val & DF_ORIGIN)
1545 				obj->z_origin = true;
1546 			if (dynp->d_un.d_val & DF_SYMBOLIC)
1547 				obj->symbolic = true;
1548 			if (dynp->d_un.d_val & DF_TEXTREL)
1549 				obj->textrel = true;
1550 			if (dynp->d_un.d_val & DF_BIND_NOW)
1551 				obj->bind_now = true;
1552 			if (dynp->d_un.d_val & DF_STATIC_TLS)
1553 				obj->static_tls = true;
1554 			break;
1555 
1556 		case DT_FLAGS_1:
1557 			if (dynp->d_un.d_val & DF_1_NOOPEN)
1558 				obj->z_noopen = true;
1559 			if (dynp->d_un.d_val & DF_1_ORIGIN)
1560 				obj->z_origin = true;
1561 			if (dynp->d_un.d_val & DF_1_GLOBAL)
1562 				obj->z_global = true;
1563 			if (dynp->d_un.d_val & DF_1_BIND_NOW)
1564 				obj->bind_now = true;
1565 			if (dynp->d_un.d_val & DF_1_NODELETE)
1566 				obj->z_nodelete = true;
1567 			if (dynp->d_un.d_val & DF_1_LOADFLTR)
1568 				obj->z_loadfltr = true;
1569 			if (dynp->d_un.d_val & DF_1_INTERPOSE)
1570 				obj->z_interpose = true;
1571 			if (dynp->d_un.d_val & DF_1_NODEFLIB)
1572 				obj->z_nodeflib = true;
1573 			if (dynp->d_un.d_val & DF_1_PIE)
1574 				obj->z_pie = true;
1575 			if (dynp->d_un.d_val & DF_1_INITFIRST)
1576 				obj->z_initfirst = true;
1577 			break;
1578 
1579 		default:
1580 			if (arch_digest_dynamic(obj, dynp))
1581 				break;
1582 
1583 			if (!early) {
1584 				dbg("Ignoring d_tag %ld = %#lx",
1585 				    (long)dynp->d_tag, (long)dynp->d_tag);
1586 			}
1587 			break;
1588 		}
1589 	}
1590 
1591 	obj->traced = false;
1592 
1593 	if (plttype == DT_RELA) {
1594 		obj->pltrela = (const Elf_Rela *)obj->pltrel;
1595 		obj->pltrel = NULL;
1596 		obj->pltrelasize = obj->pltrelsize;
1597 		obj->pltrelsize = 0;
1598 	}
1599 
1600 	/* Determine size of dynsym table (equal to nchains of sysv hash) */
1601 	if (obj->valid_hash_sysv)
1602 		obj->dynsymcount = obj->nchains;
1603 	else if (obj->valid_hash_gnu) {
1604 		obj->dynsymcount = 0;
1605 		for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1606 			if (obj->buckets_gnu[bkt] == 0)
1607 				continue;
1608 			hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1609 			do
1610 				obj->dynsymcount++;
1611 			while ((*hashval++ & 1u) == 0);
1612 		}
1613 		obj->dynsymcount += obj->symndx_gnu;
1614 	}
1615 
1616 	if (obj->linkmap.l_refname != NULL)
1617 		obj->linkmap.l_refname = obj->strtab +
1618 		    (unsigned long)obj->linkmap.l_refname;
1619 }
1620 
1621 static bool
obj_resolve_origin(Obj_Entry * obj)1622 obj_resolve_origin(Obj_Entry *obj)
1623 {
1624 	if (obj->origin_path != NULL)
1625 		return (true);
1626 	obj->origin_path = xmalloc(PATH_MAX);
1627 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1628 }
1629 
1630 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1631 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1632     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1633 {
1634 	if (obj->z_origin && !obj_resolve_origin(obj))
1635 		return (false);
1636 
1637 	if (dyn_runpath != NULL) {
1638 		obj->runpath = (const char *)obj->strtab +
1639 		    dyn_runpath->d_un.d_val;
1640 		obj->runpath = origin_subst(obj, obj->runpath);
1641 	} else if (dyn_rpath != NULL) {
1642 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1643 		obj->rpath = origin_subst(obj, obj->rpath);
1644 	}
1645 	if (dyn_soname != NULL)
1646 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1647 	return (true);
1648 }
1649 
1650 static bool
digest_dynamic(Obj_Entry * obj,int early)1651 digest_dynamic(Obj_Entry *obj, int early)
1652 {
1653 	const Elf_Dyn *dyn_rpath;
1654 	const Elf_Dyn *dyn_soname;
1655 	const Elf_Dyn *dyn_runpath;
1656 
1657 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1658 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1659 }
1660 
1661 /*
1662  * Process a shared object's program header.  This is used only for the
1663  * main program, when the kernel has already loaded the main program
1664  * into memory before calling the dynamic linker.  It creates and
1665  * returns an Obj_Entry structure.
1666  */
1667 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1668 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1669 {
1670 	Obj_Entry *obj;
1671 	const Elf_Phdr *phlimit = phdr + phnum;
1672 	const Elf_Phdr *ph;
1673 	Elf_Addr note_start, note_end;
1674 	int nsegs = 0;
1675 
1676 	obj = obj_new();
1677 	for (ph = phdr; ph < phlimit; ph++) {
1678 		if (ph->p_type != PT_PHDR)
1679 			continue;
1680 
1681 		obj->phdr = phdr;
1682 		obj->phsize = ph->p_memsz;
1683 		obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1684 		break;
1685 	}
1686 
1687 	obj->stack_flags = PF_X | PF_R | PF_W;
1688 
1689 	for (ph = phdr; ph < phlimit; ph++) {
1690 		switch (ph->p_type) {
1691 		case PT_INTERP:
1692 			obj->interp = (const char *)(ph->p_vaddr +
1693 			    obj->relocbase);
1694 			break;
1695 
1696 		case PT_LOAD:
1697 			if (nsegs == 0) { /* First load segment */
1698 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1699 				obj->mapbase = obj->vaddrbase + obj->relocbase;
1700 			} else { /* Last load segment */
1701 				obj->mapsize = rtld_round_page(
1702 				    ph->p_vaddr + ph->p_memsz) -
1703 				    obj->vaddrbase;
1704 			}
1705 			nsegs++;
1706 			break;
1707 
1708 		case PT_DYNAMIC:
1709 			obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1710 			    obj->relocbase);
1711 			break;
1712 
1713 		case PT_TLS:
1714 			obj->tlsindex = 1;
1715 			obj->tlssize = ph->p_memsz;
1716 			obj->tlsalign = ph->p_align;
1717 			obj->tlsinitsize = ph->p_filesz;
1718 			obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1719 			obj->tlspoffset = ph->p_offset;
1720 			break;
1721 
1722 		case PT_GNU_STACK:
1723 			obj->stack_flags = ph->p_flags;
1724 			break;
1725 
1726 		case PT_NOTE:
1727 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1728 			note_end = note_start + ph->p_filesz;
1729 			digest_notes(obj, note_start, note_end);
1730 			break;
1731 		}
1732 	}
1733 	if (nsegs < 1) {
1734 		_rtld_error("%s: too few PT_LOAD segments", path);
1735 		return (NULL);
1736 	}
1737 
1738 	obj->entry = entry;
1739 	return (obj);
1740 }
1741 
1742 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1743 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1744 {
1745 	const Elf_Note *note;
1746 	const char *note_name;
1747 	uintptr_t p;
1748 
1749 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1750 	    note = (const Elf_Note *)((const char *)(note + 1) +
1751 		roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1752 		roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1753 		if (arch_digest_note(obj, note))
1754 			continue;
1755 
1756 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1757 		    note->n_descsz != sizeof(int32_t))
1758 			continue;
1759 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1760 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1761 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1762 			continue;
1763 		note_name = (const char *)(note + 1);
1764 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1765 			sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1766 			continue;
1767 		switch (note->n_type) {
1768 		case NT_FREEBSD_ABI_TAG:
1769 			/* FreeBSD osrel note */
1770 			p = (uintptr_t)(note + 1);
1771 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1772 			obj->osrel = *(const int32_t *)(p);
1773 			dbg("note osrel %d", obj->osrel);
1774 			break;
1775 		case NT_FREEBSD_FEATURE_CTL:
1776 			/* FreeBSD ABI feature control note */
1777 			p = (uintptr_t)(note + 1);
1778 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1779 			obj->fctl0 = *(const uint32_t *)(p);
1780 			dbg("note fctl0 %#x", obj->fctl0);
1781 			break;
1782 		case NT_FREEBSD_NOINIT_TAG:
1783 			/* FreeBSD 'crt does not call init' note */
1784 			obj->crt_no_init = true;
1785 			dbg("note crt_no_init");
1786 			break;
1787 		}
1788 	}
1789 }
1790 
1791 static Obj_Entry *
dlcheck(void * handle)1792 dlcheck(void *handle)
1793 {
1794 	Obj_Entry *obj;
1795 
1796 	TAILQ_FOREACH(obj, &obj_list, next) {
1797 		if (obj == (Obj_Entry *)handle)
1798 			break;
1799 	}
1800 
1801 	if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1802 		_rtld_error("Invalid shared object handle %p", handle);
1803 		return (NULL);
1804 	}
1805 	return (obj);
1806 }
1807 
1808 /*
1809  * If the given object is already in the donelist, return true.  Otherwise
1810  * add the object to the list and return false.
1811  */
1812 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1813 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1814 {
1815 	unsigned int i;
1816 
1817 	for (i = 0; i < dlp->num_used; i++)
1818 		if (dlp->objs[i] == obj)
1819 			return (true);
1820 	/*
1821 	 * Our donelist allocation should always be sufficient.  But if
1822 	 * our threads locking isn't working properly, more shared objects
1823 	 * could have been loaded since we allocated the list.  That should
1824 	 * never happen, but we'll handle it properly just in case it does.
1825 	 */
1826 	if (dlp->num_used < dlp->num_alloc)
1827 		dlp->objs[dlp->num_used++] = obj;
1828 	return (false);
1829 }
1830 
1831 /*
1832  * SysV hash function for symbol table lookup.  It is a slightly optimized
1833  * version of the hash specified by the System V ABI.
1834  */
1835 Elf32_Word
elf_hash(const char * name)1836 elf_hash(const char *name)
1837 {
1838 	const unsigned char *p = (const unsigned char *)name;
1839 	Elf32_Word h = 0;
1840 
1841 	while (*p != '\0') {
1842 		h = (h << 4) + *p++;
1843 		h ^= (h >> 24) & 0xf0;
1844 	}
1845 	return (h & 0x0fffffff);
1846 }
1847 
1848 /*
1849  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1850  * unsigned in case it's implemented with a wider type.
1851  */
1852 static uint32_t
gnu_hash(const char * s)1853 gnu_hash(const char *s)
1854 {
1855 	uint32_t h;
1856 	unsigned char c;
1857 
1858 	h = 5381;
1859 	for (c = *s; c != '\0'; c = *++s)
1860 		h = h * 33 + c;
1861 	return (h & 0xffffffff);
1862 }
1863 
1864 /*
1865  * Find the library with the given name, and return its full pathname.
1866  * The returned string is dynamically allocated.  Generates an error
1867  * message and returns NULL if the library cannot be found.
1868  *
1869  * If the second argument is non-NULL, then it refers to an already-
1870  * loaded shared object, whose library search path will be searched.
1871  *
1872  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1873  * descriptor (which is close-on-exec) will be passed out via the third
1874  * argument.
1875  *
1876  * The search order is:
1877  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1878  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1879  *   LD_LIBRARY_PATH
1880  *   DT_RUNPATH in the referencing file
1881  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1882  *	 from list)
1883  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1884  *
1885  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1886  */
1887 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1888 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1889 {
1890 	char *pathname, *refobj_path;
1891 	const char *name;
1892 	bool nodeflib, objgiven;
1893 
1894 	objgiven = refobj != NULL;
1895 
1896 	if (libmap_disable || !objgiven ||
1897 	    (name = lm_find(refobj->path, xname)) == NULL)
1898 		name = xname;
1899 
1900 	if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1901 		if (name[0] != '/' && !trust) {
1902 			_rtld_error(
1903 		    "Absolute pathname required for shared object \"%s\"",
1904 			    name);
1905 			return (NULL);
1906 		}
1907 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1908 		    __DECONST(char *, name)));
1909 	}
1910 
1911 	dbg(" Searching for \"%s\"", name);
1912 	refobj_path = objgiven ? refobj->path : NULL;
1913 
1914 	/*
1915 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1916 	 * back to pre-conforming behaviour if user requested so with
1917 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1918 	 * nodeflib.
1919 	 */
1920 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1921 		pathname = search_library_path(name, ld_library_path,
1922 		    refobj_path, fdp);
1923 		if (pathname != NULL)
1924 			return (pathname);
1925 		if (refobj != NULL) {
1926 			pathname = search_library_path(name, refobj->rpath,
1927 			    refobj_path, fdp);
1928 			if (pathname != NULL)
1929 				return (pathname);
1930 		}
1931 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1932 		if (pathname != NULL)
1933 			return (pathname);
1934 		pathname = search_library_path(name, gethints(false),
1935 		    refobj_path, fdp);
1936 		if (pathname != NULL)
1937 			return (pathname);
1938 		pathname = search_library_path(name, ld_standard_library_path,
1939 		    refobj_path, fdp);
1940 		if (pathname != NULL)
1941 			return (pathname);
1942 	} else {
1943 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1944 		if (objgiven) {
1945 			pathname = search_library_path(name, refobj->rpath,
1946 			    refobj->path, fdp);
1947 			if (pathname != NULL)
1948 				return (pathname);
1949 		}
1950 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1951 			pathname = search_library_path(name, obj_main->rpath,
1952 			    refobj_path, fdp);
1953 			if (pathname != NULL)
1954 				return (pathname);
1955 		}
1956 		pathname = search_library_path(name, ld_library_path,
1957 		    refobj_path, fdp);
1958 		if (pathname != NULL)
1959 			return (pathname);
1960 		if (objgiven) {
1961 			pathname = search_library_path(name, refobj->runpath,
1962 			    refobj_path, fdp);
1963 			if (pathname != NULL)
1964 				return (pathname);
1965 		}
1966 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1967 		if (pathname != NULL)
1968 			return (pathname);
1969 		pathname = search_library_path(name, gethints(nodeflib),
1970 		    refobj_path, fdp);
1971 		if (pathname != NULL)
1972 			return (pathname);
1973 		if (objgiven && !nodeflib) {
1974 			pathname = search_library_path(name,
1975 			    ld_standard_library_path, refobj_path, fdp);
1976 			if (pathname != NULL)
1977 				return (pathname);
1978 		}
1979 	}
1980 
1981 	if (objgiven && refobj->path != NULL) {
1982 		_rtld_error(
1983 	    "Shared object \"%s\" not found, required by \"%s\"",
1984 		    name, basename(refobj->path));
1985 	} else {
1986 		_rtld_error("Shared object \"%s\" not found", name);
1987 	}
1988 	return (NULL);
1989 }
1990 
1991 /*
1992  * Given a symbol number in a referencing object, find the corresponding
1993  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1994  * no definition was found.  Returns a pointer to the Obj_Entry of the
1995  * defining object via the reference parameter DEFOBJ_OUT.
1996  */
1997 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1998 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1999     const Obj_Entry **defobj_out, int flags, SymCache *cache,
2000     RtldLockState *lockstate)
2001 {
2002 	const Elf_Sym *ref;
2003 	const Elf_Sym *def;
2004 	const Obj_Entry *defobj;
2005 	const Ver_Entry *ve;
2006 	SymLook req;
2007 	const char *name;
2008 	int res;
2009 
2010 	/*
2011 	 * If we have already found this symbol, get the information from
2012 	 * the cache.
2013 	 */
2014 	if (symnum >= refobj->dynsymcount)
2015 		return (NULL); /* Bad object */
2016 	if (cache != NULL && cache[symnum].sym != NULL) {
2017 		*defobj_out = cache[symnum].obj;
2018 		return (cache[symnum].sym);
2019 	}
2020 
2021 	ref = refobj->symtab + symnum;
2022 	name = refobj->strtab + ref->st_name;
2023 	def = NULL;
2024 	defobj = NULL;
2025 	ve = NULL;
2026 
2027 	/*
2028 	 * We don't have to do a full scale lookup if the symbol is local.
2029 	 * We know it will bind to the instance in this load module; to
2030 	 * which we already have a pointer (ie ref). By not doing a lookup,
2031 	 * we not only improve performance, but it also avoids unresolvable
2032 	 * symbols when local symbols are not in the hash table. This has
2033 	 * been seen with the ia64 toolchain.
2034 	 */
2035 	if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2036 		if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2037 			_rtld_error("%s: Bogus symbol table entry %lu",
2038 			    refobj->path, symnum);
2039 		}
2040 		symlook_init(&req, name);
2041 		req.flags = flags;
2042 		ve = req.ventry = fetch_ventry(refobj, symnum);
2043 		req.lockstate = lockstate;
2044 		res = symlook_default(&req, refobj);
2045 		if (res == 0) {
2046 			def = req.sym_out;
2047 			defobj = req.defobj_out;
2048 		}
2049 	} else {
2050 		def = ref;
2051 		defobj = refobj;
2052 	}
2053 
2054 	/*
2055 	 * If we found no definition and the reference is weak, treat the
2056 	 * symbol as having the value zero.
2057 	 */
2058 	if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2059 		def = &sym_zero;
2060 		defobj = obj_main;
2061 	}
2062 
2063 	if (def != NULL) {
2064 		*defobj_out = defobj;
2065 		/*
2066 		 * Record the information in the cache to avoid subsequent
2067 		 * lookups.
2068 		 */
2069 		if (cache != NULL) {
2070 			cache[symnum].sym = def;
2071 			cache[symnum].obj = defobj;
2072 		}
2073 	} else {
2074 		if (refobj != &obj_rtld)
2075 			_rtld_error("%s: Undefined symbol \"%s%s%s\"",
2076 			    refobj->path, name, ve != NULL ? "@" : "",
2077 			    ve != NULL ? ve->name : "");
2078 	}
2079 	return (def);
2080 }
2081 
2082 /* Convert between native byte order and forced little resp. big endian. */
2083 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2084 
2085 /*
2086  * Return the search path from the ldconfig hints file, reading it if
2087  * necessary.  If nostdlib is true, then the default search paths are
2088  * not added to result.
2089  *
2090  * Returns NULL if there are problems with the hints file,
2091  * or if the search path there is empty.
2092  */
2093 static const char *
gethints(bool nostdlib)2094 gethints(bool nostdlib)
2095 {
2096 	static char *filtered_path;
2097 	static const char *hints;
2098 	static struct elfhints_hdr hdr;
2099 	struct fill_search_info_args sargs, hargs;
2100 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2101 	struct dl_serpath *SLPpath, *hintpath;
2102 	char *p;
2103 	struct stat hint_stat;
2104 	unsigned int SLPndx, hintndx, fndx, fcount;
2105 	int fd;
2106 	size_t flen;
2107 	uint32_t dl;
2108 	uint32_t magic;	     /* Magic number */
2109 	uint32_t version;    /* File version (1) */
2110 	uint32_t strtab;     /* Offset of string table in file */
2111 	uint32_t dirlist;    /* Offset of directory list in string table */
2112 	uint32_t dirlistlen; /* strlen(dirlist) */
2113 	bool is_le;	     /* Does the hints file use little endian */
2114 	bool skip;
2115 
2116 	/* First call, read the hints file */
2117 	if (hints == NULL) {
2118 		/* Keep from trying again in case the hints file is bad. */
2119 		hints = "";
2120 
2121 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2122 		    -1) {
2123 			dbg("failed to open hints file \"%s\"",
2124 			    ld_elf_hints_path);
2125 			return (NULL);
2126 		}
2127 
2128 		/*
2129 		 * Check of hdr.dirlistlen value against type limit
2130 		 * intends to pacify static analyzers.  Further
2131 		 * paranoia leads to checks that dirlist is fully
2132 		 * contained in the file range.
2133 		 */
2134 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2135 			dbg("failed to read %lu bytes from hints file \"%s\"",
2136 			    (u_long)sizeof hdr, ld_elf_hints_path);
2137 cleanup1:
2138 			close(fd);
2139 			hdr.dirlistlen = 0;
2140 			return (NULL);
2141 		}
2142 		dbg("host byte-order: %s-endian",
2143 		    le32toh(1) == 1 ? "little" : "big");
2144 		dbg("hints file byte-order: %s-endian",
2145 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2146 		is_le = /*htole32(1) == 1 || */ hdr.magic ==
2147 		    htole32(ELFHINTS_MAGIC);
2148 		magic = COND_SWAP(hdr.magic);
2149 		version = COND_SWAP(hdr.version);
2150 		strtab = COND_SWAP(hdr.strtab);
2151 		dirlist = COND_SWAP(hdr.dirlist);
2152 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2153 		if (magic != ELFHINTS_MAGIC) {
2154 			dbg("invalid magic number %#08x (expected: %#08x)",
2155 			    magic, ELFHINTS_MAGIC);
2156 			goto cleanup1;
2157 		}
2158 		if (version != 1) {
2159 			dbg("hints file version %d (expected: 1)", version);
2160 			goto cleanup1;
2161 		}
2162 		if (dirlistlen > UINT_MAX / 2) {
2163 			dbg("directory list is to long: %d > %d", dirlistlen,
2164 			    UINT_MAX / 2);
2165 			goto cleanup1;
2166 		}
2167 		if (fstat(fd, &hint_stat) == -1) {
2168 			dbg("failed to find length of hints file \"%s\"",
2169 			    ld_elf_hints_path);
2170 			goto cleanup1;
2171 		}
2172 		dl = strtab;
2173 		if (dl + dirlist < dl) {
2174 			dbg("invalid string table position %d", dl);
2175 			goto cleanup1;
2176 		}
2177 		dl += dirlist;
2178 		if (dl + dirlistlen < dl) {
2179 			dbg("invalid directory list offset %d", dirlist);
2180 			goto cleanup1;
2181 		}
2182 		dl += dirlistlen;
2183 		if (dl > hint_stat.st_size) {
2184 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2185 			    ld_elf_hints_path, dl,
2186 			    (uintmax_t)hint_stat.st_size);
2187 			goto cleanup1;
2188 		}
2189 		p = xmalloc(dirlistlen + 1);
2190 		if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2191 		    (ssize_t)dirlistlen + 1 || p[dirlistlen] != '\0') {
2192 			free(p);
2193 			dbg(
2194 	    "failed to read %d bytes starting at %d from hints file \"%s\"",
2195 			    dirlistlen + 1, strtab + dirlist,
2196 			    ld_elf_hints_path);
2197 			goto cleanup1;
2198 		}
2199 		hints = p;
2200 		close(fd);
2201 	}
2202 
2203 	/*
2204 	 * If caller agreed to receive list which includes the default
2205 	 * paths, we are done. Otherwise, if we still did not
2206 	 * calculated filtered result, do it now.
2207 	 */
2208 	if (!nostdlib)
2209 		return (hints[0] != '\0' ? hints : NULL);
2210 	if (filtered_path != NULL)
2211 		goto filt_ret;
2212 
2213 	/*
2214 	 * Obtain the list of all configured search paths, and the
2215 	 * list of the default paths.
2216 	 *
2217 	 * First estimate the size of the results.
2218 	 */
2219 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2220 	smeta.dls_cnt = 0;
2221 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2222 	hmeta.dls_cnt = 0;
2223 
2224 	sargs.request = RTLD_DI_SERINFOSIZE;
2225 	sargs.serinfo = &smeta;
2226 	hargs.request = RTLD_DI_SERINFOSIZE;
2227 	hargs.serinfo = &hmeta;
2228 
2229 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2230 	    &sargs);
2231 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2232 
2233 	SLPinfo = xmalloc(smeta.dls_size);
2234 	hintinfo = xmalloc(hmeta.dls_size);
2235 
2236 	/*
2237 	 * Next fetch both sets of paths.
2238 	 */
2239 	sargs.request = RTLD_DI_SERINFO;
2240 	sargs.serinfo = SLPinfo;
2241 	sargs.serpath = &SLPinfo->dls_serpath[0];
2242 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2243 
2244 	hargs.request = RTLD_DI_SERINFO;
2245 	hargs.serinfo = hintinfo;
2246 	hargs.serpath = &hintinfo->dls_serpath[0];
2247 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2248 
2249 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2250 	    &sargs);
2251 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2252 
2253 	/*
2254 	 * Now calculate the difference between two sets, by excluding
2255 	 * standard paths from the full set.
2256 	 */
2257 	fndx = 0;
2258 	fcount = 0;
2259 	filtered_path = xmalloc(dirlistlen + 1);
2260 	hintpath = &hintinfo->dls_serpath[0];
2261 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2262 		skip = false;
2263 		SLPpath = &SLPinfo->dls_serpath[0];
2264 		/*
2265 		 * Check each standard path against current.
2266 		 */
2267 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2268 			/* matched, skip the path */
2269 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2270 				skip = true;
2271 				break;
2272 			}
2273 		}
2274 		if (skip)
2275 			continue;
2276 		/*
2277 		 * Not matched against any standard path, add the path
2278 		 * to result. Separate consequtive paths with ':'.
2279 		 */
2280 		if (fcount > 0) {
2281 			filtered_path[fndx] = ':';
2282 			fndx++;
2283 		}
2284 		fcount++;
2285 		flen = strlen(hintpath->dls_name);
2286 		strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2287 		fndx += flen;
2288 	}
2289 	filtered_path[fndx] = '\0';
2290 
2291 	free(SLPinfo);
2292 	free(hintinfo);
2293 
2294 filt_ret:
2295 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2296 }
2297 
2298 static void
init_dag(Obj_Entry * root)2299 init_dag(Obj_Entry *root)
2300 {
2301 	const Needed_Entry *needed;
2302 	const Objlist_Entry *elm;
2303 	DoneList donelist;
2304 
2305 	if (root->dag_inited)
2306 		return;
2307 	donelist_init(&donelist);
2308 
2309 	/* Root object belongs to own DAG. */
2310 	objlist_push_tail(&root->dldags, root);
2311 	objlist_push_tail(&root->dagmembers, root);
2312 	donelist_check(&donelist, root);
2313 
2314 	/*
2315 	 * Add dependencies of root object to DAG in breadth order
2316 	 * by exploiting the fact that each new object get added
2317 	 * to the tail of the dagmembers list.
2318 	 */
2319 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2320 		for (needed = elm->obj->needed; needed != NULL;
2321 		    needed = needed->next) {
2322 			if (needed->obj == NULL ||
2323 			    donelist_check(&donelist, needed->obj))
2324 				continue;
2325 			objlist_push_tail(&needed->obj->dldags, root);
2326 			objlist_push_tail(&root->dagmembers, needed->obj);
2327 		}
2328 	}
2329 	root->dag_inited = true;
2330 }
2331 
2332 static void
init_marker(Obj_Entry * marker)2333 init_marker(Obj_Entry *marker)
2334 {
2335 	bzero(marker, sizeof(*marker));
2336 	marker->marker = true;
2337 }
2338 
2339 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2340 globallist_curr(const Obj_Entry *obj)
2341 {
2342 	for (;;) {
2343 		if (obj == NULL)
2344 			return (NULL);
2345 		if (!obj->marker)
2346 			return (__DECONST(Obj_Entry *, obj));
2347 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2348 	}
2349 }
2350 
2351 Obj_Entry *
globallist_next(const Obj_Entry * obj)2352 globallist_next(const Obj_Entry *obj)
2353 {
2354 	for (;;) {
2355 		obj = TAILQ_NEXT(obj, next);
2356 		if (obj == NULL)
2357 			return (NULL);
2358 		if (!obj->marker)
2359 			return (__DECONST(Obj_Entry *, obj));
2360 	}
2361 }
2362 
2363 /* Prevent the object from being unmapped while the bind lock is dropped. */
2364 static void
hold_object(Obj_Entry * obj)2365 hold_object(Obj_Entry *obj)
2366 {
2367 	obj->holdcount++;
2368 }
2369 
2370 static void
unhold_object(Obj_Entry * obj)2371 unhold_object(Obj_Entry *obj)
2372 {
2373 	assert(obj->holdcount > 0);
2374 	if (--obj->holdcount == 0 && obj->unholdfree)
2375 		release_object(obj);
2376 }
2377 
2378 static void
process_z(Obj_Entry * root)2379 process_z(Obj_Entry *root)
2380 {
2381 	const Objlist_Entry *elm;
2382 	Obj_Entry *obj;
2383 
2384 	/*
2385 	 * Walk over object DAG and process every dependent object
2386 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2387 	 * to grow their own DAG.
2388 	 *
2389 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2390 	 * symlook_global() to work.
2391 	 *
2392 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2393 	 */
2394 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2395 		obj = elm->obj;
2396 		if (obj == NULL)
2397 			continue;
2398 		if (obj->z_nodelete && !obj->ref_nodel) {
2399 			dbg("obj %s -z nodelete", obj->path);
2400 			init_dag(obj);
2401 			ref_dag(obj);
2402 			obj->ref_nodel = true;
2403 		}
2404 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2405 			dbg("obj %s -z global", obj->path);
2406 			objlist_push_tail(&list_global, obj);
2407 			init_dag(obj);
2408 		}
2409 	}
2410 }
2411 
2412 static void
parse_rtld_phdr(Obj_Entry * obj)2413 parse_rtld_phdr(Obj_Entry *obj)
2414 {
2415 	const Elf_Phdr *ph;
2416 	Elf_Addr note_start, note_end;
2417 
2418 	obj->stack_flags = PF_X | PF_R | PF_W;
2419 	for (ph = obj->phdr;
2420 	    (const char *)ph < (const char *)obj->phdr + obj->phsize; ph++) {
2421 		switch (ph->p_type) {
2422 		case PT_GNU_STACK:
2423 			obj->stack_flags = ph->p_flags;
2424 			break;
2425 		case PT_NOTE:
2426 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2427 			note_end = note_start + ph->p_filesz;
2428 			digest_notes(obj, note_start, note_end);
2429 			break;
2430 		}
2431 	}
2432 }
2433 
2434 /*
2435  * Initialize the dynamic linker.  The argument is the address at which
2436  * the dynamic linker has been mapped into memory.  The primary task of
2437  * this function is to relocate the dynamic linker.
2438  */
2439 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2440 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2441 {
2442 	Obj_Entry objtmp; /* Temporary rtld object */
2443 	const Elf_Ehdr *ehdr;
2444 	const Elf_Dyn *dyn_rpath;
2445 	const Elf_Dyn *dyn_soname;
2446 	const Elf_Dyn *dyn_runpath;
2447 
2448 	/*
2449 	 * Conjure up an Obj_Entry structure for the dynamic linker.
2450 	 *
2451 	 * The "path" member can't be initialized yet because string constants
2452 	 * cannot yet be accessed. Below we will set it correctly.
2453 	 */
2454 	memset(&objtmp, 0, sizeof(objtmp));
2455 	objtmp.path = NULL;
2456 	objtmp.rtld = true;
2457 	objtmp.mapbase = mapbase;
2458 #ifdef PIC
2459 	objtmp.relocbase = mapbase;
2460 #endif
2461 
2462 	objtmp.dynamic = rtld_dynamic(&objtmp);
2463 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2464 	assert(objtmp.needed == NULL);
2465 	assert(!objtmp.textrel);
2466 	/*
2467 	 * Temporarily put the dynamic linker entry into the object list, so
2468 	 * that symbols can be found.
2469 	 */
2470 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2471 
2472 	ehdr = (Elf_Ehdr *)mapbase;
2473 	objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2474 	objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2475 
2476 	/* Initialize the object list. */
2477 	TAILQ_INIT(&obj_list);
2478 
2479 	/* Now that non-local variables can be accesses, copy out obj_rtld. */
2480 	memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2481 
2482 	/* The page size is required by the dynamic memory allocator. */
2483 	init_pagesizes(aux_info);
2484 
2485 	if (aux_info[AT_OSRELDATE] != NULL)
2486 		osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2487 
2488 	digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2489 
2490 	/* Replace the path with a dynamically allocated copy. */
2491 	obj_rtld.path = xstrdup(ld_path_rtld);
2492 
2493 	parse_rtld_phdr(&obj_rtld);
2494 	if (obj_enforce_relro(&obj_rtld) == -1)
2495 		rtld_die();
2496 
2497 	r_debug.r_version = R_DEBUG_VERSION;
2498 	r_debug.r_brk = r_debug_state;
2499 	r_debug.r_state = RT_CONSISTENT;
2500 	r_debug.r_ldbase = obj_rtld.relocbase;
2501 }
2502 
2503 /*
2504  * Retrieve the array of supported page sizes.  The kernel provides the page
2505  * sizes in increasing order.
2506  */
2507 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2508 init_pagesizes(Elf_Auxinfo **aux_info)
2509 {
2510 	static size_t psa[MAXPAGESIZES];
2511 	int mib[2];
2512 	size_t len, size;
2513 
2514 	if (aux_info[AT_PAGESIZES] != NULL &&
2515 	    aux_info[AT_PAGESIZESLEN] != NULL) {
2516 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2517 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2518 	} else {
2519 		len = 2;
2520 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2521 			size = sizeof(psa);
2522 		else {
2523 			/* As a fallback, retrieve the base page size. */
2524 			size = sizeof(psa[0]);
2525 			if (aux_info[AT_PAGESZ] != NULL) {
2526 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2527 				goto psa_filled;
2528 			} else {
2529 				mib[0] = CTL_HW;
2530 				mib[1] = HW_PAGESIZE;
2531 				len = 2;
2532 			}
2533 		}
2534 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2535 			_rtld_error("sysctl for hw.pagesize(s) failed");
2536 			rtld_die();
2537 		}
2538 	psa_filled:
2539 		pagesizes = psa;
2540 	}
2541 	npagesizes = size / sizeof(pagesizes[0]);
2542 	/* Discard any invalid entries at the end of the array. */
2543 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2544 		npagesizes--;
2545 
2546 	page_size = pagesizes[0];
2547 }
2548 
2549 /*
2550  * Add the init functions from a needed object list (and its recursive
2551  * needed objects) to "list".  This is not used directly; it is a helper
2552  * function for initlist_add_objects().  The write lock must be held
2553  * when this function is called.
2554  */
2555 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list,Objlist * iflist)2556 initlist_add_neededs(Needed_Entry *needed, Objlist *list, Objlist *iflist)
2557 {
2558 	/* Recursively process the successor needed objects. */
2559 	if (needed->next != NULL)
2560 		initlist_add_neededs(needed->next, list, iflist);
2561 
2562 	/* Process the current needed object. */
2563 	if (needed->obj != NULL)
2564 		initlist_add_objects(needed->obj, needed->obj, list, iflist);
2565 }
2566 
2567 /*
2568  * Scan all of the DAGs rooted in the range of objects from "obj" to
2569  * "tail" and add their init functions to "list".  This recurses over
2570  * the DAGs and ensure the proper init ordering such that each object's
2571  * needed libraries are initialized before the object itself.  At the
2572  * same time, this function adds the objects to the global finalization
2573  * list "list_fini" in the opposite order.  The write lock must be
2574  * held when this function is called.
2575  */
2576 static void
initlist_for_loaded_obj(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2577 initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2578 {
2579 	Objlist iflist;		/* initfirst objs and their needed */
2580 	Objlist_Entry *tmp;
2581 
2582 	objlist_init(&iflist);
2583 	initlist_add_objects(obj, tail, list, &iflist);
2584 
2585 	STAILQ_FOREACH(tmp, &iflist, link) {
2586 		Obj_Entry *tobj = tmp->obj;
2587 
2588 		if ((tobj->fini != (Elf_Addr)NULL ||
2589 		    tobj->fini_array != (Elf_Addr)NULL) &&
2590 		    !tobj->on_fini_list) {
2591 			objlist_push_tail(&list_fini, tobj);
2592 			tobj->on_fini_list = true;
2593 		}
2594 	}
2595 
2596 	/*
2597 	 * This might result in the same object appearing more
2598 	 * than once on the init list.  objlist_call_init()
2599 	 * uses obj->init_scanned to avoid dup calls.
2600 	 */
2601 	STAILQ_REVERSE(&iflist, Struct_Objlist_Entry, link);
2602 	STAILQ_FOREACH(tmp, &iflist, link)
2603 		objlist_push_head(list, tmp->obj);
2604 
2605 	objlist_clear(&iflist);
2606 }
2607 
2608 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list,Objlist * iflist)2609 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list,
2610     Objlist *iflist)
2611 {
2612 	Obj_Entry *nobj;
2613 
2614 	if (obj->init_done)
2615 		return;
2616 
2617 	if (obj->z_initfirst || list == NULL) {
2618 		/*
2619 		 * Ignore obj->init_scanned.  The object might indeed
2620 		 * already be on the init list, but due to being
2621 		 * needed by an initfirst object, we must put it at
2622 		 * the head of the init list.  obj->init_done protects
2623 		 * against double-initialization.
2624 		 */
2625 		if (obj->needed != NULL)
2626 			initlist_add_neededs(obj->needed, NULL, iflist);
2627 		if (obj->needed_filtees != NULL)
2628 			initlist_add_neededs(obj->needed_filtees, NULL,
2629 			    iflist);
2630 		if (obj->needed_aux_filtees != NULL)
2631 			initlist_add_neededs(obj->needed_aux_filtees,
2632 			    NULL, iflist);
2633 		objlist_push_tail(iflist, obj);
2634 	} else {
2635 		if (obj->init_scanned)
2636 			return;
2637 		obj->init_scanned = true;
2638 
2639 		/* Recursively process the successor objects. */
2640 		nobj = globallist_next(obj);
2641 		if (nobj != NULL && obj != tail)
2642 			initlist_add_objects(nobj, tail, list, iflist);
2643 
2644 		/* Recursively process the needed objects. */
2645 		if (obj->needed != NULL)
2646 			initlist_add_neededs(obj->needed, list, iflist);
2647 		if (obj->needed_filtees != NULL)
2648 			initlist_add_neededs(obj->needed_filtees, list,
2649 			    iflist);
2650 		if (obj->needed_aux_filtees != NULL)
2651 			initlist_add_neededs(obj->needed_aux_filtees, list,
2652 			    iflist);
2653 
2654 		/* Add the object to the init list. */
2655 		objlist_push_tail(list, obj);
2656 
2657 		/*
2658 		 * Add the object to the global fini list in the
2659 		 * reverse order.
2660 		 */
2661 		if ((obj->fini != (Elf_Addr)NULL ||
2662 		    obj->fini_array != (Elf_Addr)NULL) &&
2663 		    !obj->on_fini_list) {
2664 			objlist_push_head(&list_fini, obj);
2665 			obj->on_fini_list = true;
2666 		}
2667 	}
2668 }
2669 
2670 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2671 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2672 {
2673 	Needed_Entry *needed, *needed1;
2674 
2675 	for (needed = n; needed != NULL; needed = needed->next) {
2676 		if (needed->obj != NULL) {
2677 			dlclose_locked(needed->obj, lockstate);
2678 			needed->obj = NULL;
2679 		}
2680 	}
2681 	for (needed = n; needed != NULL; needed = needed1) {
2682 		needed1 = needed->next;
2683 		free(needed);
2684 	}
2685 }
2686 
2687 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2688 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2689 {
2690 	free_needed_filtees(obj->needed_filtees, lockstate);
2691 	obj->needed_filtees = NULL;
2692 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2693 	obj->needed_aux_filtees = NULL;
2694 	obj->filtees_loaded = false;
2695 }
2696 
2697 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2698 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2699     RtldLockState *lockstate)
2700 {
2701 	for (; needed != NULL; needed = needed->next) {
2702 		needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2703 		    flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW :
2704 		    RTLD_LAZY) | RTLD_LOCAL, lockstate);
2705 	}
2706 }
2707 
2708 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2709 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2710 {
2711 	if (obj->filtees_loaded || obj->filtees_loading)
2712 		return;
2713 	lock_restart_for_upgrade(lockstate);
2714 	obj->filtees_loading = true;
2715 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2716 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2717 	obj->filtees_loaded = true;
2718 	obj->filtees_loading = false;
2719 }
2720 
2721 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2722 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2723 {
2724 	Obj_Entry *obj1;
2725 
2726 	for (; needed != NULL; needed = needed->next) {
2727 		obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2728 		    obj, flags & ~RTLD_LO_NOLOAD);
2729 		if (obj1 == NULL && !ld_tracing &&
2730 		    (flags & RTLD_LO_FILTEES) == 0)
2731 			return (-1);
2732 	}
2733 	return (0);
2734 }
2735 
2736 /*
2737  * Given a shared object, traverse its list of needed objects, and load
2738  * each of them.  Returns 0 on success.  Generates an error message and
2739  * returns -1 on failure.
2740  */
2741 static int
load_needed_objects(Obj_Entry * first,int flags)2742 load_needed_objects(Obj_Entry *first, int flags)
2743 {
2744 	Obj_Entry *obj;
2745 
2746 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2747 		if (obj->marker)
2748 			continue;
2749 		if (process_needed(obj, obj->needed, flags) == -1)
2750 			return (-1);
2751 	}
2752 	return (0);
2753 }
2754 
2755 static int
load_preload_objects(const char * penv,bool isfd)2756 load_preload_objects(const char *penv, bool isfd)
2757 {
2758 	Obj_Entry *obj;
2759 	const char *name;
2760 	size_t len;
2761 	char savech, *p, *psave;
2762 	int fd;
2763 	static const char delim[] = " \t:;";
2764 
2765 	if (penv == NULL)
2766 		return (0);
2767 
2768 	p = psave = xstrdup(penv);
2769 	p += strspn(p, delim);
2770 	while (*p != '\0') {
2771 		len = strcspn(p, delim);
2772 
2773 		savech = p[len];
2774 		p[len] = '\0';
2775 		if (isfd) {
2776 			name = NULL;
2777 			fd = parse_integer(p);
2778 			if (fd == -1) {
2779 				free(psave);
2780 				return (-1);
2781 			}
2782 		} else {
2783 			name = p;
2784 			fd = -1;
2785 		}
2786 
2787 		obj = load_object(name, fd, NULL, 0);
2788 		if (obj == NULL) {
2789 			free(psave);
2790 			return (-1); /* XXX - cleanup */
2791 		}
2792 		obj->z_interpose = true;
2793 		p[len] = savech;
2794 		p += len;
2795 		p += strspn(p, delim);
2796 	}
2797 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2798 
2799 	free(psave);
2800 	return (0);
2801 }
2802 
2803 static const char *
printable_path(const char * path)2804 printable_path(const char *path)
2805 {
2806 	return (path == NULL ? "<unknown>" : path);
2807 }
2808 
2809 /*
2810  * Load a shared object into memory, if it is not already loaded.  The
2811  * object may be specified by name or by user-supplied file descriptor
2812  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2813  * duplicate is.
2814  *
2815  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2816  * on failure.
2817  */
2818 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2819 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2820 {
2821 	Obj_Entry *obj;
2822 	int fd;
2823 	struct stat sb;
2824 	char *path;
2825 
2826 	fd = -1;
2827 	if (name != NULL) {
2828 		TAILQ_FOREACH(obj, &obj_list, next) {
2829 			if (obj->marker || obj->doomed)
2830 				continue;
2831 			if (object_match_name(obj, name))
2832 				return (obj);
2833 		}
2834 
2835 		path = find_library(name, refobj, &fd);
2836 		if (path == NULL)
2837 			return (NULL);
2838 	} else
2839 		path = NULL;
2840 
2841 	if (fd >= 0) {
2842 		/*
2843 		 * search_library_pathfds() opens a fresh file descriptor for
2844 		 * the library, so there is no need to dup().
2845 		 */
2846 	} else if (fd_u == -1) {
2847 		/*
2848 		 * If we didn't find a match by pathname, or the name is not
2849 		 * supplied, open the file and check again by device and inode.
2850 		 * This avoids false mismatches caused by multiple links or ".."
2851 		 * in pathnames.
2852 		 *
2853 		 * To avoid a race, we open the file and use fstat() rather than
2854 		 * using stat().
2855 		 */
2856 		if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2857 			_rtld_error("Cannot open \"%s\"", path);
2858 			free(path);
2859 			return (NULL);
2860 		}
2861 	} else {
2862 		fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2863 		if (fd == -1) {
2864 			_rtld_error("Cannot dup fd");
2865 			free(path);
2866 			return (NULL);
2867 		}
2868 	}
2869 	if (fstat(fd, &sb) == -1) {
2870 		_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2871 		close(fd);
2872 		free(path);
2873 		return (NULL);
2874 	}
2875 	TAILQ_FOREACH(obj, &obj_list, next) {
2876 		if (obj->marker || obj->doomed)
2877 			continue;
2878 		if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2879 			break;
2880 	}
2881 	if (obj != NULL) {
2882 		if (name != NULL)
2883 			object_add_name(obj, name);
2884 		free(path);
2885 		close(fd);
2886 		return (obj);
2887 	}
2888 	if (flags & RTLD_LO_NOLOAD) {
2889 		free(path);
2890 		close(fd);
2891 		return (NULL);
2892 	}
2893 
2894 	/* First use of this object, so we must map it in */
2895 	obj = do_load_object(fd, name, path, &sb, flags);
2896 	if (obj == NULL)
2897 		free(path);
2898 	close(fd);
2899 
2900 	return (obj);
2901 }
2902 
2903 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2904 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2905     int flags)
2906 {
2907 	Obj_Entry *obj;
2908 	struct statfs fs;
2909 
2910 	/*
2911 	 * First, make sure that environment variables haven't been
2912 	 * used to circumvent the noexec flag on a filesystem.
2913 	 * We ignore fstatfs(2) failures, since fd might reference
2914 	 * not a file, e.g. shmfd.
2915 	 */
2916 	if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2917 	    (fs.f_flags & MNT_NOEXEC) != 0) {
2918 		_rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2919 		return (NULL);
2920 	}
2921 
2922 	dbg("loading \"%s\"", printable_path(path));
2923 	obj = map_object(fd, printable_path(path), sbp, false);
2924 	if (obj == NULL)
2925 		return (NULL);
2926 
2927 	/*
2928 	 * If DT_SONAME is present in the object, digest_dynamic2 already
2929 	 * added it to the object names.
2930 	 */
2931 	if (name != NULL)
2932 		object_add_name(obj, name);
2933 	obj->path = path;
2934 	if (!digest_dynamic(obj, 0))
2935 		goto errp;
2936 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2937 	    obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2938 	if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2939 		dbg("refusing to load PIE executable \"%s\"", obj->path);
2940 		_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2941 		goto errp;
2942 	}
2943 	if (obj->z_noopen &&
2944 	    (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2945 		dbg("refusing to load non-loadable \"%s\"", obj->path);
2946 		_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2947 		goto errp;
2948 	}
2949 
2950 	obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2951 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2952 	obj_count++;
2953 	obj_loads++;
2954 	linkmap_add(obj); /* for GDB & dlinfo() */
2955 	max_stack_flags |= obj->stack_flags;
2956 
2957 	dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2958 	    obj->path);
2959 	if (obj->textrel)
2960 		dbg("  WARNING: %s has impure text", obj->path);
2961 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2962 	    obj->path);
2963 
2964 	return (obj);
2965 
2966 errp:
2967 	munmap(obj->mapbase, obj->mapsize);
2968 	obj_free(obj);
2969 	return (NULL);
2970 }
2971 
2972 static int
load_kpreload(const void * addr)2973 load_kpreload(const void *addr)
2974 {
2975 	Obj_Entry *obj;
2976 	const Elf_Ehdr *ehdr;
2977 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2978 	static const char kname[] = "[vdso]";
2979 
2980 	ehdr = addr;
2981 	if (!check_elf_headers(ehdr, "kpreload"))
2982 		return (-1);
2983 	obj = obj_new();
2984 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2985 	obj->phdr = phdr;
2986 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2987 	phlimit = phdr + ehdr->e_phnum;
2988 	seg0 = segn = NULL;
2989 
2990 	for (; phdr < phlimit; phdr++) {
2991 		switch (phdr->p_type) {
2992 		case PT_DYNAMIC:
2993 			phdyn = phdr;
2994 			break;
2995 		case PT_GNU_STACK:
2996 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2997 			obj->stack_flags = phdr->p_flags;
2998 			break;
2999 		case PT_LOAD:
3000 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
3001 				seg0 = phdr;
3002 			if (segn == NULL ||
3003 			    segn->p_vaddr + segn->p_memsz <
3004 				phdr->p_vaddr + phdr->p_memsz)
3005 				segn = phdr;
3006 			break;
3007 		}
3008 	}
3009 
3010 	obj->mapbase = __DECONST(caddr_t, addr);
3011 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
3012 	obj->vaddrbase = 0;
3013 	obj->relocbase = obj->mapbase;
3014 
3015 	object_add_name(obj, kname);
3016 	obj->path = xstrdup(kname);
3017 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
3018 
3019 	if (!digest_dynamic(obj, 0)) {
3020 		obj_free(obj);
3021 		return (-1);
3022 	}
3023 
3024 	/*
3025 	 * We assume that kernel-preloaded object does not need
3026 	 * relocation.  It is currently written into read-only page,
3027 	 * handling relocations would mean we need to allocate at
3028 	 * least one additional page per AS.
3029 	 */
3030 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
3031 	    obj->path, obj->mapbase, obj->phdr, seg0,
3032 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
3033 
3034 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
3035 	obj_count++;
3036 	obj_loads++;
3037 	linkmap_add(obj); /* for GDB & dlinfo() */
3038 	max_stack_flags |= obj->stack_flags;
3039 
3040 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
3041 	return (0);
3042 }
3043 
3044 Obj_Entry *
obj_from_addr(const void * addr)3045 obj_from_addr(const void *addr)
3046 {
3047 	Obj_Entry *obj;
3048 
3049 	TAILQ_FOREACH(obj, &obj_list, next) {
3050 		if (obj->marker)
3051 			continue;
3052 		if (addr < (void *)obj->mapbase)
3053 			continue;
3054 		if (addr < (void *)(obj->mapbase + obj->mapsize))
3055 			return obj;
3056 	}
3057 	return (NULL);
3058 }
3059 
3060 static void
preinit_main(void)3061 preinit_main(void)
3062 {
3063 	Elf_Addr *preinit_addr;
3064 	int index;
3065 
3066 	preinit_addr = (Elf_Addr *)obj_main->preinit_array;
3067 	if (preinit_addr == NULL)
3068 		return;
3069 
3070 	for (index = 0; index < obj_main->preinit_array_num; index++) {
3071 		if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
3072 			dbg("calling preinit function for %s at %p",
3073 			    obj_main->path, (void *)preinit_addr[index]);
3074 			LD_UTRACE(UTRACE_INIT_CALL, obj_main,
3075 			    (void *)preinit_addr[index], 0, 0, obj_main->path);
3076 			call_init_pointer(obj_main, preinit_addr[index]);
3077 		}
3078 	}
3079 }
3080 
3081 /*
3082  * Call the finalization functions for each of the objects in "list"
3083  * belonging to the DAG of "root" and referenced once. If NULL "root"
3084  * is specified, every finalization function will be called regardless
3085  * of the reference count and the list elements won't be freed. All of
3086  * the objects are expected to have non-NULL fini functions.
3087  */
3088 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3089 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3090 {
3091 	Objlist_Entry *elm;
3092 	struct dlerror_save *saved_msg;
3093 	Elf_Addr *fini_addr;
3094 	int index;
3095 
3096 	assert(root == NULL || root->refcount == 1);
3097 
3098 	if (root != NULL)
3099 		root->doomed = true;
3100 
3101 	/*
3102 	 * Preserve the current error message since a fini function might
3103 	 * call into the dynamic linker and overwrite it.
3104 	 */
3105 	saved_msg = errmsg_save();
3106 	do {
3107 		STAILQ_FOREACH(elm, list, link) {
3108 			if (root != NULL &&
3109 			    (elm->obj->refcount != 1 ||
3110 				objlist_find(&root->dagmembers, elm->obj) ==
3111 				    NULL))
3112 				continue;
3113 			/* Remove object from fini list to prevent recursive
3114 			 * invocation. */
3115 			STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3116 			/* Ensure that new references cannot be acquired. */
3117 			elm->obj->doomed = true;
3118 
3119 			hold_object(elm->obj);
3120 			lock_release(rtld_bind_lock, lockstate);
3121 			/*
3122 			 * It is legal to have both DT_FINI and DT_FINI_ARRAY
3123 			 * defined. When this happens, DT_FINI_ARRAY is
3124 			 * processed first.
3125 			 */
3126 			fini_addr = (Elf_Addr *)elm->obj->fini_array;
3127 			if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3128 				for (index = elm->obj->fini_array_num - 1;
3129 				    index >= 0; index--) {
3130 					if (fini_addr[index] != 0 &&
3131 					    fini_addr[index] != 1) {
3132 				dbg("calling fini function for %s at %p",
3133 						    elm->obj->path,
3134 						    (void *)fini_addr[index]);
3135 						LD_UTRACE(UTRACE_FINI_CALL,
3136 						    elm->obj,
3137 						    (void *)fini_addr[index], 0,
3138 						    0, elm->obj->path);
3139 						call_initfini_pointer(elm->obj,
3140 						    fini_addr[index]);
3141 					}
3142 				}
3143 			}
3144 			if (elm->obj->fini != (Elf_Addr)NULL) {
3145 				dbg("calling fini function for %s at %p",
3146 				    elm->obj->path, (void *)elm->obj->fini);
3147 				LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3148 				    (void *)elm->obj->fini, 0, 0,
3149 				    elm->obj->path);
3150 				call_initfini_pointer(elm->obj, elm->obj->fini);
3151 			}
3152 			wlock_acquire(rtld_bind_lock, lockstate);
3153 			unhold_object(elm->obj);
3154 			/* No need to free anything if process is going down. */
3155 			if (root != NULL)
3156 				free(elm);
3157 			/*
3158 			 * We must restart the list traversal after every fini
3159 			 * call because a dlclose() call from the fini function
3160 			 * or from another thread might have modified the
3161 			 * reference counts.
3162 			 */
3163 			break;
3164 		}
3165 	} while (elm != NULL);
3166 	errmsg_restore(saved_msg);
3167 }
3168 
3169 /*
3170  * Call the initialization functions for each of the objects in
3171  * "list".  All of the objects are expected to have non-NULL init
3172  * functions.
3173  */
3174 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3175 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3176 {
3177 	Objlist_Entry *elm;
3178 	Obj_Entry *obj;
3179 	struct dlerror_save *saved_msg;
3180 	Elf_Addr *init_addr;
3181 	void (*reg)(void (*)(void));
3182 	int index;
3183 
3184 	/*
3185 	 * Clean init_scanned flag so that objects can be rechecked and
3186 	 * possibly initialized earlier if any of vectors called below
3187 	 * cause the change by using dlopen.
3188 	 */
3189 	TAILQ_FOREACH(obj, &obj_list, next) {
3190 		if (obj->marker)
3191 			continue;
3192 		obj->init_scanned = false;
3193 	}
3194 
3195 	/*
3196 	 * Preserve the current error message since an init function might
3197 	 * call into the dynamic linker and overwrite it.
3198 	 */
3199 	saved_msg = errmsg_save();
3200 	STAILQ_FOREACH(elm, list, link) {
3201 		if (elm->obj->init_done) /* Initialized early. */
3202 			continue;
3203 		/*
3204 		 * Race: other thread might try to use this object before
3205 		 * current one completes the initialization. Not much can be
3206 		 * done here without better locking.
3207 		 */
3208 		elm->obj->init_done = true;
3209 		hold_object(elm->obj);
3210 		reg = NULL;
3211 		if (elm->obj == obj_main && obj_main->crt_no_init) {
3212 			reg = (void (*)(void (*)(void)))
3213 			    get_program_var_addr("__libc_atexit", lockstate);
3214 		}
3215 		lock_release(rtld_bind_lock, lockstate);
3216 		if (reg != NULL) {
3217 			reg(rtld_exit);
3218 			rtld_exit_ptr = rtld_nop_exit;
3219 		}
3220 
3221 		/*
3222 		 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3223 		 * When this happens, DT_INIT is processed first.
3224 		 */
3225 		if (elm->obj->init != (Elf_Addr)NULL) {
3226 			dbg("calling init function for %s at %p",
3227 			    elm->obj->path, (void *)elm->obj->init);
3228 			LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3229 			    (void *)elm->obj->init, 0, 0, elm->obj->path);
3230 			call_init_pointer(elm->obj, elm->obj->init);
3231 		}
3232 		init_addr = (Elf_Addr *)elm->obj->init_array;
3233 		if (init_addr != NULL) {
3234 			for (index = 0; index < elm->obj->init_array_num;
3235 			    index++) {
3236 				if (init_addr[index] != 0 &&
3237 				    init_addr[index] != 1) {
3238 				dbg("calling init function for %s at %p",
3239 					    elm->obj->path,
3240 					    (void *)init_addr[index]);
3241 					LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3242 					    (void *)init_addr[index], 0, 0,
3243 					    elm->obj->path);
3244 					call_init_pointer(elm->obj,
3245 					    init_addr[index]);
3246 				}
3247 			}
3248 		}
3249 		wlock_acquire(rtld_bind_lock, lockstate);
3250 		unhold_object(elm->obj);
3251 	}
3252 	errmsg_restore(saved_msg);
3253 }
3254 
3255 static void
objlist_clear(Objlist * list)3256 objlist_clear(Objlist *list)
3257 {
3258 	Objlist_Entry *elm;
3259 
3260 	while (!STAILQ_EMPTY(list)) {
3261 		elm = STAILQ_FIRST(list);
3262 		STAILQ_REMOVE_HEAD(list, link);
3263 		free(elm);
3264 	}
3265 }
3266 
3267 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3268 objlist_find(Objlist *list, const Obj_Entry *obj)
3269 {
3270 	Objlist_Entry *elm;
3271 
3272 	STAILQ_FOREACH(elm, list, link)
3273 		if (elm->obj == obj)
3274 			return elm;
3275 	return (NULL);
3276 }
3277 
3278 static void
objlist_init(Objlist * list)3279 objlist_init(Objlist *list)
3280 {
3281 	STAILQ_INIT(list);
3282 }
3283 
3284 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3285 objlist_push_head(Objlist *list, Obj_Entry *obj)
3286 {
3287 	Objlist_Entry *elm;
3288 
3289 	elm = NEW(Objlist_Entry);
3290 	elm->obj = obj;
3291 	STAILQ_INSERT_HEAD(list, elm, link);
3292 }
3293 
3294 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3295 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3296 {
3297 	Objlist_Entry *elm;
3298 
3299 	elm = NEW(Objlist_Entry);
3300 	elm->obj = obj;
3301 	STAILQ_INSERT_TAIL(list, elm, link);
3302 }
3303 
3304 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3305 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3306 {
3307 	Objlist_Entry *elm, *listelm;
3308 
3309 	STAILQ_FOREACH(listelm, list, link) {
3310 		if (listelm->obj == listobj)
3311 			break;
3312 	}
3313 	elm = NEW(Objlist_Entry);
3314 	elm->obj = obj;
3315 	if (listelm != NULL)
3316 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3317 	else
3318 		STAILQ_INSERT_TAIL(list, elm, link);
3319 }
3320 
3321 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3322 objlist_remove(Objlist *list, Obj_Entry *obj)
3323 {
3324 	Objlist_Entry *elm;
3325 
3326 	if ((elm = objlist_find(list, obj)) != NULL) {
3327 		STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3328 		free(elm);
3329 	}
3330 }
3331 
3332 /*
3333  * Relocate dag rooted in the specified object.
3334  * Returns 0 on success, or -1 on failure.
3335  */
3336 
3337 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3338 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3339     int flags, RtldLockState *lockstate)
3340 {
3341 	Objlist_Entry *elm;
3342 	int error;
3343 
3344 	error = 0;
3345 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3346 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3347 		    lockstate);
3348 		if (error == -1)
3349 			break;
3350 	}
3351 	return (error);
3352 }
3353 
3354 /*
3355  * Prepare for, or clean after, relocating an object marked with
3356  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3357  * segments are remapped read-write.  After relocations are done, the
3358  * segment's permissions are returned back to the modes specified in
3359  * the phdrs.  If any relocation happened, or always for wired
3360  * program, COW is triggered.
3361  */
3362 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3363 reloc_textrel_prot(Obj_Entry *obj, bool before)
3364 {
3365 	const Elf_Phdr *ph;
3366 	void *base;
3367 	size_t l, sz;
3368 	int prot;
3369 
3370 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) {
3371 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3372 			continue;
3373 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3374 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3375 		    rtld_trunc_page(ph->p_vaddr);
3376 		prot = before ? (PROT_READ | PROT_WRITE) :
3377 		    convert_prot(ph->p_flags);
3378 		if (mprotect(base, sz, prot) == -1) {
3379 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3380 			    obj->path, before ? "en" : "dis",
3381 			    rtld_strerror(errno));
3382 			return (-1);
3383 		}
3384 	}
3385 	return (0);
3386 }
3387 
3388 /* Process RELR relative relocations. */
3389 static void
reloc_relr(Obj_Entry * obj)3390 reloc_relr(Obj_Entry *obj)
3391 {
3392 	const Elf_Relr *relr, *relrlim;
3393 	Elf_Addr *where;
3394 
3395 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3396 	for (relr = obj->relr; relr < relrlim; relr++) {
3397 		Elf_Relr entry = *relr;
3398 
3399 		if ((entry & 1) == 0) {
3400 			where = (Elf_Addr *)(obj->relocbase + entry);
3401 			*where++ += (Elf_Addr)obj->relocbase;
3402 		} else {
3403 			for (long i = 0; (entry >>= 1) != 0; i++)
3404 				if ((entry & 1) != 0)
3405 					where[i] += (Elf_Addr)obj->relocbase;
3406 			where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3407 		}
3408 	}
3409 }
3410 
3411 /*
3412  * Relocate single object.
3413  * Returns 0 on success, or -1 on failure.
3414  */
3415 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3416 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3417     RtldLockState *lockstate)
3418 {
3419 	if (obj->relocated)
3420 		return (0);
3421 	obj->relocated = true;
3422 	if (obj != rtldobj)
3423 		dbg("relocating \"%s\"", obj->path);
3424 
3425 	if (obj->symtab == NULL || obj->strtab == NULL ||
3426 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3427 		dbg("object %s has no run-time symbol table", obj->path);
3428 
3429 	/* There are relocations to the write-protected text segment. */
3430 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3431 		return (-1);
3432 
3433 	/* Process the non-PLT non-IFUNC relocations. */
3434 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3435 		return (-1);
3436 	reloc_relr(obj);
3437 
3438 	/* Re-protected the text segment. */
3439 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3440 		return (-1);
3441 
3442 	/* Set the special PLT or GOT entries. */
3443 	init_pltgot(obj);
3444 
3445 	/* Process the PLT relocations. */
3446 	if (reloc_plt(obj, flags, lockstate) == -1)
3447 		return (-1);
3448 	/* Relocate the jump slots if we are doing immediate binding. */
3449 	if ((obj->bind_now || bind_now) &&
3450 	    reloc_jmpslots(obj, flags, lockstate) == -1)
3451 		return (-1);
3452 
3453 	if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3454 		return (-1);
3455 
3456 	/*
3457 	 * Set up the magic number and version in the Obj_Entry.  These
3458 	 * were checked in the crt1.o from the original ElfKit, so we
3459 	 * set them for backward compatibility.
3460 	 */
3461 	obj->magic = RTLD_MAGIC;
3462 	obj->version = RTLD_VERSION;
3463 
3464 	return (0);
3465 }
3466 
3467 /*
3468  * Relocate newly-loaded shared objects.  The argument is a pointer to
3469  * the Obj_Entry for the first such object.  All objects from the first
3470  * to the end of the list of objects are relocated.  Returns 0 on success,
3471  * or -1 on failure.
3472  */
3473 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3474 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3475     RtldLockState *lockstate)
3476 {
3477 	Obj_Entry *obj;
3478 	int error;
3479 
3480 	for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3481 		if (obj->marker)
3482 			continue;
3483 		error = relocate_object(obj, bind_now, rtldobj, flags,
3484 		    lockstate);
3485 		if (error == -1)
3486 			break;
3487 	}
3488 	return (error);
3489 }
3490 
3491 /*
3492  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3493  * referencing STT_GNU_IFUNC symbols is postponed till the other
3494  * relocations are done.  The indirect functions specified as
3495  * ifunc are allowed to call other symbols, so we need to have
3496  * objects relocated before asking for resolution from indirects.
3497  *
3498  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3499  * instead of the usual lazy handling of PLT slots.  It is
3500  * consistent with how GNU does it.
3501  */
3502 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3503 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3504     RtldLockState *lockstate)
3505 {
3506 	if (obj->ifuncs_resolved)
3507 		return (0);
3508 	obj->ifuncs_resolved = true;
3509 	if (!obj->irelative && !obj->irelative_nonplt &&
3510 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3511 	    !obj->non_plt_gnu_ifunc)
3512 		return (0);
3513 	if (obj_disable_relro(obj) == -1 ||
3514 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3515 	    (obj->irelative_nonplt &&
3516 	    reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3517 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3518 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3519 	    (obj->non_plt_gnu_ifunc &&
3520 	    reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3521 	    lockstate) == -1) ||
3522 	    obj_enforce_relro(obj) == -1)
3523 		return (-1);
3524 	return (0);
3525 }
3526 
3527 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3528 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3529     RtldLockState *lockstate)
3530 {
3531 	Objlist_Entry *elm;
3532 	Obj_Entry *obj;
3533 
3534 	STAILQ_FOREACH(elm, list, link) {
3535 		obj = elm->obj;
3536 		if (obj->marker)
3537 			continue;
3538 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3539 			return (-1);
3540 	}
3541 	return (0);
3542 }
3543 
3544 /*
3545  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3546  * before the process exits.
3547  */
3548 static void
rtld_exit(void)3549 rtld_exit(void)
3550 {
3551 	RtldLockState lockstate;
3552 
3553 	wlock_acquire(rtld_bind_lock, &lockstate);
3554 	dbg("rtld_exit()");
3555 	objlist_call_fini(&list_fini, NULL, &lockstate);
3556 	/* No need to remove the items from the list, since we are exiting. */
3557 	if (!libmap_disable)
3558 		lm_fini();
3559 	lock_release(rtld_bind_lock, &lockstate);
3560 }
3561 
3562 static void
rtld_nop_exit(void)3563 rtld_nop_exit(void)
3564 {
3565 }
3566 
3567 /*
3568  * Iterate over a search path, translate each element, and invoke the
3569  * callback on the result.
3570  */
3571 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3572 path_enumerate(const char *path, path_enum_proc callback,
3573     const char *refobj_path, void *arg)
3574 {
3575 	const char *trans;
3576 	if (path == NULL)
3577 		return (NULL);
3578 
3579 	path += strspn(path, ":;");
3580 	while (*path != '\0') {
3581 		size_t len;
3582 		char *res;
3583 
3584 		len = strcspn(path, ":;");
3585 		trans = lm_findn(refobj_path, path, len);
3586 		if (trans)
3587 			res = callback(trans, strlen(trans), arg);
3588 		else
3589 			res = callback(path, len, arg);
3590 
3591 		if (res != NULL)
3592 			return (res);
3593 
3594 		path += len;
3595 		path += strspn(path, ":;");
3596 	}
3597 
3598 	return (NULL);
3599 }
3600 
3601 struct try_library_args {
3602 	const char *name;
3603 	size_t namelen;
3604 	char *buffer;
3605 	size_t buflen;
3606 	int fd;
3607 };
3608 
3609 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3610 try_library_path(const char *dir, size_t dirlen, void *param)
3611 {
3612 	struct try_library_args *arg;
3613 	int fd;
3614 
3615 	arg = param;
3616 	if (*dir == '/' || trust) {
3617 		char *pathname;
3618 
3619 		if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3620 			return (NULL);
3621 
3622 		pathname = arg->buffer;
3623 		strncpy(pathname, dir, dirlen);
3624 		pathname[dirlen] = '/';
3625 		strcpy(pathname + dirlen + 1, arg->name);
3626 
3627 		dbg("  Trying \"%s\"", pathname);
3628 		fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3629 		if (fd >= 0) {
3630 			dbg("  Opened \"%s\", fd %d", pathname, fd);
3631 			pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3632 			strcpy(pathname, arg->buffer);
3633 			arg->fd = fd;
3634 			return (pathname);
3635 		} else {
3636 			dbg("  Failed to open \"%s\": %s", pathname,
3637 			    rtld_strerror(errno));
3638 		}
3639 	}
3640 	return (NULL);
3641 }
3642 
3643 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3644 search_library_path(const char *name, const char *path, const char *refobj_path,
3645     int *fdp)
3646 {
3647 	char *p;
3648 	struct try_library_args arg;
3649 
3650 	if (path == NULL)
3651 		return (NULL);
3652 
3653 	arg.name = name;
3654 	arg.namelen = strlen(name);
3655 	arg.buffer = xmalloc(PATH_MAX);
3656 	arg.buflen = PATH_MAX;
3657 	arg.fd = -1;
3658 
3659 	p = path_enumerate(path, try_library_path, refobj_path, &arg);
3660 	*fdp = arg.fd;
3661 
3662 	free(arg.buffer);
3663 
3664 	return (p);
3665 }
3666 
3667 /*
3668  * Finds the library with the given name using the directory descriptors
3669  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3670  *
3671  * Returns a freshly-opened close-on-exec file descriptor for the library,
3672  * or -1 if the library cannot be found.
3673  */
3674 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3675 search_library_pathfds(const char *name, const char *path, int *fdp)
3676 {
3677 	char *envcopy, *fdstr, *found, *last_token;
3678 	size_t len;
3679 	int dirfd, fd;
3680 
3681 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3682 
3683 	/* Don't load from user-specified libdirs into setuid binaries. */
3684 	if (!trust)
3685 		return (NULL);
3686 
3687 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3688 	if (path == NULL)
3689 		return (NULL);
3690 
3691 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3692 	if (name[0] == '/') {
3693 		dbg("Absolute path (%s) passed to %s", name, __func__);
3694 		return (NULL);
3695 	}
3696 
3697 	/*
3698 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3699 	 * copy of the path, as strtok_r rewrites separator tokens
3700 	 * with '\0'.
3701 	 */
3702 	found = NULL;
3703 	envcopy = xstrdup(path);
3704 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3705 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3706 		dirfd = parse_integer(fdstr);
3707 		if (dirfd < 0) {
3708 			_rtld_error("failed to parse directory FD: '%s'",
3709 			    fdstr);
3710 			break;
3711 		}
3712 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3713 		if (fd >= 0) {
3714 			*fdp = fd;
3715 			len = strlen(fdstr) + strlen(name) + 3;
3716 			found = xmalloc(len);
3717 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3718 			    0) {
3719 				_rtld_error("error generating '%d/%s'", dirfd,
3720 				    name);
3721 				rtld_die();
3722 			}
3723 			dbg("open('%s') => %d", found, fd);
3724 			break;
3725 		}
3726 	}
3727 	free(envcopy);
3728 
3729 	return (found);
3730 }
3731 
3732 int
dlclose(void * handle)3733 dlclose(void *handle)
3734 {
3735 	RtldLockState lockstate;
3736 	int error;
3737 
3738 	wlock_acquire(rtld_bind_lock, &lockstate);
3739 	error = dlclose_locked(handle, &lockstate);
3740 	lock_release(rtld_bind_lock, &lockstate);
3741 	return (error);
3742 }
3743 
3744 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3745 dlclose_locked(void *handle, RtldLockState *lockstate)
3746 {
3747 	Obj_Entry *root;
3748 
3749 	root = dlcheck(handle);
3750 	if (root == NULL)
3751 		return (-1);
3752 	LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3753 	    root->path);
3754 
3755 	/* Unreference the object and its dependencies. */
3756 	root->dl_refcount--;
3757 
3758 	if (root->refcount == 1) {
3759 		/*
3760 		 * The object will be no longer referenced, so we must unload
3761 		 * it. First, call the fini functions.
3762 		 */
3763 		objlist_call_fini(&list_fini, root, lockstate);
3764 
3765 		unref_dag(root);
3766 
3767 		/* Finish cleaning up the newly-unreferenced objects. */
3768 		GDB_STATE(RT_DELETE, &root->linkmap);
3769 		unload_object(root, lockstate);
3770 		GDB_STATE(RT_CONSISTENT, NULL);
3771 	} else
3772 		unref_dag(root);
3773 
3774 	LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3775 	return (0);
3776 }
3777 
3778 char *
dlerror(void)3779 dlerror(void)
3780 {
3781 	if (*(lockinfo.dlerror_seen()) != 0)
3782 		return (NULL);
3783 	*lockinfo.dlerror_seen() = 1;
3784 	return (lockinfo.dlerror_loc());
3785 }
3786 
3787 /*
3788  * This function is deprecated and has no effect.
3789  */
3790 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3791 dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3792     void (*_rlock_acquire)(void *lock) __unused,
3793     void (*_wlock_acquire)(void *lock) __unused,
3794     void (*_lock_release)(void *lock) __unused,
3795     void (*_lock_destroy)(void *lock) __unused,
3796     void (*context_destroy)(void *context))
3797 {
3798 	static void *cur_context;
3799 	static void (*cur_context_destroy)(void *);
3800 
3801 	/* Just destroy the context from the previous call, if necessary. */
3802 	if (cur_context_destroy != NULL)
3803 		cur_context_destroy(cur_context);
3804 	cur_context = context;
3805 	cur_context_destroy = context_destroy;
3806 }
3807 
3808 void *
dlopen(const char * name,int mode)3809 dlopen(const char *name, int mode)
3810 {
3811 	return (rtld_dlopen(name, -1, mode));
3812 }
3813 
3814 void *
fdlopen(int fd,int mode)3815 fdlopen(int fd, int mode)
3816 {
3817 	return (rtld_dlopen(NULL, fd, mode));
3818 }
3819 
3820 static void *
rtld_dlopen(const char * name,int fd,int mode)3821 rtld_dlopen(const char *name, int fd, int mode)
3822 {
3823 	RtldLockState lockstate;
3824 	int lo_flags;
3825 
3826 	LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3827 	ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3828 	if (ld_tracing != NULL) {
3829 		rlock_acquire(rtld_bind_lock, &lockstate);
3830 		if (sigsetjmp(lockstate.env, 0) != 0)
3831 			lock_upgrade(rtld_bind_lock, &lockstate);
3832 		environ = __DECONST(char **,
3833 		    *get_program_var_addr("environ", &lockstate));
3834 		lock_release(rtld_bind_lock, &lockstate);
3835 	}
3836 	lo_flags = RTLD_LO_DLOPEN;
3837 	if (mode & RTLD_NODELETE)
3838 		lo_flags |= RTLD_LO_NODELETE;
3839 	if (mode & RTLD_NOLOAD)
3840 		lo_flags |= RTLD_LO_NOLOAD;
3841 	if (mode & RTLD_DEEPBIND)
3842 		lo_flags |= RTLD_LO_DEEPBIND;
3843 	if (ld_tracing != NULL)
3844 		lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3845 
3846 	return (dlopen_object(name, fd, obj_main, lo_flags,
3847 	    mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3848 }
3849 
3850 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3851 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3852 {
3853 	obj->dl_refcount--;
3854 	unref_dag(obj);
3855 	if (obj->refcount == 0)
3856 		unload_object(obj, lockstate);
3857 }
3858 
3859 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3860 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3861     int mode, RtldLockState *lockstate)
3862 {
3863 	Obj_Entry *obj;
3864 	Objlist initlist;
3865 	RtldLockState mlockstate;
3866 	int result;
3867 
3868 	dbg(
3869     "dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3870 	    name != NULL ? name : "<null>", fd,
3871 	    refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3872 	objlist_init(&initlist);
3873 
3874 	if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3875 		wlock_acquire(rtld_bind_lock, &mlockstate);
3876 		lockstate = &mlockstate;
3877 	}
3878 	GDB_STATE(RT_ADD, NULL);
3879 
3880 	obj = NULL;
3881 	if (name == NULL && fd == -1) {
3882 		obj = obj_main;
3883 		obj->refcount++;
3884 	} else {
3885 		obj = load_object(name, fd, refobj, lo_flags);
3886 	}
3887 
3888 	if (obj != NULL) {
3889 		obj->dl_refcount++;
3890 		if ((mode & RTLD_GLOBAL) != 0 &&
3891 		    objlist_find(&list_global, obj) == NULL)
3892 			objlist_push_tail(&list_global, obj);
3893 
3894 		if (!obj->init_done) {
3895 			/* We loaded something new and have to init something.
3896 			 */
3897 			if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3898 				obj->deepbind = true;
3899 			result = 0;
3900 			if ((lo_flags & (RTLD_LO_EARLY |
3901 			    RTLD_LO_IGNSTLS)) == 0 &&
3902 			    obj->static_tls && !allocate_tls_offset(obj)) {
3903 				_rtld_error(
3904 		    "%s: No space available for static Thread Local Storage",
3905 				    obj->path);
3906 				result = -1;
3907 			}
3908 			if (result != -1)
3909 				result = load_needed_objects(obj,
3910 				    lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3911 				    RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3912 			init_dag(obj);
3913 			ref_dag(obj);
3914 			if (result != -1)
3915 				result = rtld_verify_versions(&obj->dagmembers);
3916 			if (result != -1 && ld_tracing)
3917 				goto trace;
3918 			if (result == -1 || relocate_object_dag(obj,
3919 			    (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3920 			    (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3921 			    lockstate) == -1) {
3922 				dlopen_cleanup(obj, lockstate);
3923 				obj = NULL;
3924 			} else if ((lo_flags & RTLD_LO_EARLY) != 0) {
3925 				/*
3926 				 * Do not call the init functions for early
3927 				 * loaded filtees.  The image is still not
3928 				 * initialized enough for them to work.
3929 				 *
3930 				 * Our object is found by the global object list
3931 				 * and will be ordered among all init calls done
3932 				 * right before transferring control to main.
3933 				 */
3934 			} else {
3935 				/* Make list of init functions to call. */
3936 				initlist_for_loaded_obj(obj, obj, &initlist);
3937 			}
3938 			/*
3939 			 * Process all no_delete or global objects here, given
3940 			 * them own DAGs to prevent their dependencies from
3941 			 * being unloaded.  This has to be done after we have
3942 			 * loaded all of the dependencies, so that we do not
3943 			 * miss any.
3944 			 */
3945 			if (obj != NULL)
3946 				process_z(obj);
3947 		} else {
3948 			/*
3949 			 * Bump the reference counts for objects on this DAG. If
3950 			 * this is the first dlopen() call for the object that
3951 			 * was already loaded as a dependency, initialize the
3952 			 * dag starting at it.
3953 			 */
3954 			init_dag(obj);
3955 			ref_dag(obj);
3956 
3957 			if ((lo_flags & RTLD_LO_TRACE) != 0)
3958 				goto trace;
3959 		}
3960 		if (obj != NULL &&
3961 		    ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
3962 		    !obj->ref_nodel) {
3963 			dbg("obj %s nodelete", obj->path);
3964 			ref_dag(obj);
3965 			obj->z_nodelete = obj->ref_nodel = true;
3966 		}
3967 	}
3968 
3969 	LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3970 	    name);
3971 	GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
3972 
3973 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
3974 		map_stacks_exec(lockstate);
3975 		if (obj != NULL)
3976 			distribute_static_tls(&initlist, lockstate);
3977 	}
3978 
3979 	if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) ==
3980 	    RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3981 	    lockstate) == -1) {
3982 		objlist_clear(&initlist);
3983 		dlopen_cleanup(obj, lockstate);
3984 		if (lockstate == &mlockstate)
3985 			lock_release(rtld_bind_lock, lockstate);
3986 		return (NULL);
3987 	}
3988 
3989 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
3990 		/* Call the init functions. */
3991 		objlist_call_init(&initlist, lockstate);
3992 	}
3993 	objlist_clear(&initlist);
3994 	if (lockstate == &mlockstate)
3995 		lock_release(rtld_bind_lock, lockstate);
3996 	return (obj);
3997 trace:
3998 	trace_loaded_objects(obj, false);
3999 	if (lockstate == &mlockstate)
4000 		lock_release(rtld_bind_lock, lockstate);
4001 	exit(0);
4002 }
4003 
4004 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)4005 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
4006     int flags)
4007 {
4008 	DoneList donelist;
4009 	const Obj_Entry *obj, *defobj;
4010 	const Elf_Sym *def;
4011 	SymLook req;
4012 	RtldLockState lockstate;
4013 	tls_index ti;
4014 	void *sym;
4015 	int res;
4016 
4017 	def = NULL;
4018 	defobj = NULL;
4019 	symlook_init(&req, name);
4020 	req.ventry = ve;
4021 	req.flags = flags | SYMLOOK_IN_PLT;
4022 	req.lockstate = &lockstate;
4023 
4024 	LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
4025 	rlock_acquire(rtld_bind_lock, &lockstate);
4026 	if (sigsetjmp(lockstate.env, 0) != 0)
4027 		lock_upgrade(rtld_bind_lock, &lockstate);
4028 	if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
4029 	    handle == RTLD_SELF) {
4030 		if ((obj = obj_from_addr(retaddr)) == NULL) {
4031 			_rtld_error("Cannot determine caller's shared object");
4032 			lock_release(rtld_bind_lock, &lockstate);
4033 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4034 			return (NULL);
4035 		}
4036 		if (handle == NULL) { /* Just the caller's shared object. */
4037 			res = symlook_obj(&req, obj);
4038 			if (res == 0) {
4039 				def = req.sym_out;
4040 				defobj = req.defobj_out;
4041 			}
4042 		} else if (handle == RTLD_NEXT || /* Objects after caller's */
4043 		    handle == RTLD_SELF) {	  /* ... caller included */
4044 			if (handle == RTLD_NEXT)
4045 				obj = globallist_next(obj);
4046 			for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4047 				if (obj->marker)
4048 					continue;
4049 				res = symlook_obj(&req, obj);
4050 				if (res == 0) {
4051 					if (def == NULL ||
4052 					    (ld_dynamic_weak &&
4053 						ELF_ST_BIND(
4054 						    req.sym_out->st_info) !=
4055 						    STB_WEAK)) {
4056 						def = req.sym_out;
4057 						defobj = req.defobj_out;
4058 						if (!ld_dynamic_weak ||
4059 						    ELF_ST_BIND(def->st_info) !=
4060 							STB_WEAK)
4061 							break;
4062 					}
4063 				}
4064 			}
4065 			/*
4066 			 * Search the dynamic linker itself, and possibly
4067 			 * resolve the symbol from there.  This is how the
4068 			 * application links to dynamic linker services such as
4069 			 * dlopen. Note that we ignore ld_dynamic_weak == false
4070 			 * case, always overriding weak symbols by rtld
4071 			 * definitions.
4072 			 */
4073 			if (def == NULL ||
4074 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4075 				res = symlook_obj(&req, &obj_rtld);
4076 				if (res == 0) {
4077 					def = req.sym_out;
4078 					defobj = req.defobj_out;
4079 				}
4080 			}
4081 		} else {
4082 			assert(handle == RTLD_DEFAULT);
4083 			res = symlook_default(&req, obj);
4084 			if (res == 0) {
4085 				defobj = req.defobj_out;
4086 				def = req.sym_out;
4087 			}
4088 		}
4089 	} else {
4090 		if ((obj = dlcheck(handle)) == NULL) {
4091 			lock_release(rtld_bind_lock, &lockstate);
4092 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4093 			return (NULL);
4094 		}
4095 
4096 		donelist_init(&donelist);
4097 		if (obj->mainprog) {
4098 			/* Handle obtained by dlopen(NULL, ...) implies global
4099 			 * scope. */
4100 			res = symlook_global(&req, &donelist);
4101 			if (res == 0) {
4102 				def = req.sym_out;
4103 				defobj = req.defobj_out;
4104 			}
4105 			/*
4106 			 * Search the dynamic linker itself, and possibly
4107 			 * resolve the symbol from there.  This is how the
4108 			 * application links to dynamic linker services such as
4109 			 * dlopen.
4110 			 */
4111 			if (def == NULL ||
4112 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4113 				res = symlook_obj(&req, &obj_rtld);
4114 				if (res == 0) {
4115 					def = req.sym_out;
4116 					defobj = req.defobj_out;
4117 				}
4118 			}
4119 		} else {
4120 			/* Search the whole DAG rooted at the given object. */
4121 			res = symlook_list(&req, &obj->dagmembers, &donelist);
4122 			if (res == 0) {
4123 				def = req.sym_out;
4124 				defobj = req.defobj_out;
4125 			}
4126 		}
4127 	}
4128 
4129 	if (def != NULL) {
4130 		lock_release(rtld_bind_lock, &lockstate);
4131 
4132 		/*
4133 		 * The value required by the caller is derived from the value
4134 		 * of the symbol. this is simply the relocated value of the
4135 		 * symbol.
4136 		 */
4137 		if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4138 			sym = make_function_pointer(def, defobj);
4139 		else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4140 			sym = rtld_resolve_ifunc(defobj, def);
4141 		else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4142 			ti.ti_module = defobj->tlsindex;
4143 			ti.ti_offset = def->st_value - TLS_DTV_OFFSET;
4144 			sym = __tls_get_addr(&ti);
4145 		} else
4146 			sym = defobj->relocbase + def->st_value;
4147 		LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4148 		return (sym);
4149 	}
4150 
4151 	_rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4152 	    ve != NULL ? ve->name : "");
4153 	lock_release(rtld_bind_lock, &lockstate);
4154 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4155 	return (NULL);
4156 }
4157 
4158 void *
dlsym(void * handle,const char * name)4159 dlsym(void *handle, const char *name)
4160 {
4161 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4162 	    SYMLOOK_DLSYM));
4163 }
4164 
4165 dlfunc_t
dlfunc(void * handle,const char * name)4166 dlfunc(void *handle, const char *name)
4167 {
4168 	union {
4169 		void *d;
4170 		dlfunc_t f;
4171 	} rv;
4172 
4173 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4174 	    SYMLOOK_DLSYM);
4175 	return (rv.f);
4176 }
4177 
4178 void *
dlvsym(void * handle,const char * name,const char * version)4179 dlvsym(void *handle, const char *name, const char *version)
4180 {
4181 	Ver_Entry ventry;
4182 
4183 	ventry.name = version;
4184 	ventry.file = NULL;
4185 	ventry.hash = elf_hash(version);
4186 	ventry.flags = 0;
4187 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4188 	    SYMLOOK_DLSYM));
4189 }
4190 
4191 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4192 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4193 {
4194 	const Obj_Entry *obj;
4195 	RtldLockState lockstate;
4196 
4197 	rlock_acquire(rtld_bind_lock, &lockstate);
4198 	obj = obj_from_addr(addr);
4199 	if (obj == NULL) {
4200 		_rtld_error("No shared object contains address");
4201 		lock_release(rtld_bind_lock, &lockstate);
4202 		return (0);
4203 	}
4204 	rtld_fill_dl_phdr_info(obj, phdr_info);
4205 	lock_release(rtld_bind_lock, &lockstate);
4206 	return (1);
4207 }
4208 
4209 int
dladdr(const void * addr,Dl_info * info)4210 dladdr(const void *addr, Dl_info *info)
4211 {
4212 	const Obj_Entry *obj;
4213 	const Elf_Sym *def;
4214 	void *symbol_addr;
4215 	unsigned long symoffset;
4216 	RtldLockState lockstate;
4217 
4218 	rlock_acquire(rtld_bind_lock, &lockstate);
4219 	obj = obj_from_addr(addr);
4220 	if (obj == NULL) {
4221 		_rtld_error("No shared object contains address");
4222 		lock_release(rtld_bind_lock, &lockstate);
4223 		return (0);
4224 	}
4225 	info->dli_fname = obj->path;
4226 	info->dli_fbase = obj->mapbase;
4227 	info->dli_saddr = (void *)0;
4228 	info->dli_sname = NULL;
4229 
4230 	/*
4231 	 * Walk the symbol list looking for the symbol whose address is
4232 	 * closest to the address sent in.
4233 	 */
4234 	for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4235 		def = obj->symtab + symoffset;
4236 
4237 		/*
4238 		 * For skip the symbol if st_shndx is either SHN_UNDEF or
4239 		 * SHN_COMMON.
4240 		 */
4241 		if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4242 			continue;
4243 
4244 		/*
4245 		 * If the symbol is greater than the specified address, or if it
4246 		 * is further away from addr than the current nearest symbol,
4247 		 * then reject it.
4248 		 */
4249 		symbol_addr = obj->relocbase + def->st_value;
4250 		if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4251 			continue;
4252 
4253 		/* Update our idea of the nearest symbol. */
4254 		info->dli_sname = obj->strtab + def->st_name;
4255 		info->dli_saddr = symbol_addr;
4256 
4257 		/* Exact match? */
4258 		if (info->dli_saddr == addr)
4259 			break;
4260 	}
4261 	lock_release(rtld_bind_lock, &lockstate);
4262 	return (1);
4263 }
4264 
4265 int
dlinfo(void * handle,int request,void * p)4266 dlinfo(void *handle, int request, void *p)
4267 {
4268 	const Obj_Entry *obj;
4269 	RtldLockState lockstate;
4270 	int error;
4271 
4272 	rlock_acquire(rtld_bind_lock, &lockstate);
4273 
4274 	if (handle == NULL || handle == RTLD_SELF) {
4275 		void *retaddr;
4276 
4277 		retaddr = __builtin_return_address(0); /* __GNUC__ only */
4278 		if ((obj = obj_from_addr(retaddr)) == NULL)
4279 			_rtld_error("Cannot determine caller's shared object");
4280 	} else
4281 		obj = dlcheck(handle);
4282 
4283 	if (obj == NULL) {
4284 		lock_release(rtld_bind_lock, &lockstate);
4285 		return (-1);
4286 	}
4287 
4288 	error = 0;
4289 	switch (request) {
4290 	case RTLD_DI_LINKMAP:
4291 		*((struct link_map const **)p) = &obj->linkmap;
4292 		break;
4293 	case RTLD_DI_ORIGIN:
4294 		error = rtld_dirname(obj->path, p);
4295 		break;
4296 
4297 	case RTLD_DI_SERINFOSIZE:
4298 	case RTLD_DI_SERINFO:
4299 		error = do_search_info(obj, request, (struct dl_serinfo *)p);
4300 		break;
4301 
4302 	default:
4303 		_rtld_error("Invalid request %d passed to dlinfo()", request);
4304 		error = -1;
4305 	}
4306 
4307 	lock_release(rtld_bind_lock, &lockstate);
4308 
4309 	return (error);
4310 }
4311 
4312 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4313 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4314 {
4315 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4316 	phdr_info->dlpi_name = obj->path;
4317 	phdr_info->dlpi_phdr = obj->phdr;
4318 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4319 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4320 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(_tcb_get(),
4321 	    obj->tlsindex, 0, true);
4322 	phdr_info->dlpi_adds = obj_loads;
4323 	phdr_info->dlpi_subs = obj_loads - obj_count;
4324 }
4325 
4326 /*
4327  * It's completely UB to actually use this, so extreme caution is advised.  It's
4328  * probably not what you want.
4329  */
4330 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4331 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4332 {
4333 	struct dl_phdr_info phdr_info;
4334 	Obj_Entry *obj;
4335 	int error;
4336 
4337 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4338 	    obj = globallist_next(obj)) {
4339 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4340 		error = callback(&phdr_info, sizeof(phdr_info), param);
4341 		if (error != 0)
4342 			return (error);
4343 	}
4344 
4345 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4346 	return (callback(&phdr_info, sizeof(phdr_info), param));
4347 }
4348 
4349 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4350 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4351 {
4352 	struct dl_phdr_info phdr_info;
4353 	Obj_Entry *obj, marker;
4354 	RtldLockState bind_lockstate, phdr_lockstate;
4355 	int error;
4356 
4357 	init_marker(&marker);
4358 	error = 0;
4359 
4360 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4361 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4362 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4363 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4364 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4365 		hold_object(obj);
4366 		lock_release(rtld_bind_lock, &bind_lockstate);
4367 
4368 		error = callback(&phdr_info, sizeof phdr_info, param);
4369 
4370 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4371 		unhold_object(obj);
4372 		obj = globallist_next(&marker);
4373 		TAILQ_REMOVE(&obj_list, &marker, next);
4374 		if (error != 0) {
4375 			lock_release(rtld_bind_lock, &bind_lockstate);
4376 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4377 			return (error);
4378 		}
4379 	}
4380 
4381 	if (error == 0) {
4382 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4383 		lock_release(rtld_bind_lock, &bind_lockstate);
4384 		error = callback(&phdr_info, sizeof(phdr_info), param);
4385 	}
4386 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4387 	return (error);
4388 }
4389 
4390 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4391 fill_search_info(const char *dir, size_t dirlen, void *param)
4392 {
4393 	struct fill_search_info_args *arg;
4394 
4395 	arg = param;
4396 
4397 	if (arg->request == RTLD_DI_SERINFOSIZE) {
4398 		arg->serinfo->dls_cnt++;
4399 		arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4400 		    1;
4401 	} else {
4402 		struct dl_serpath *s_entry;
4403 
4404 		s_entry = arg->serpath;
4405 		s_entry->dls_name = arg->strspace;
4406 		s_entry->dls_flags = arg->flags;
4407 
4408 		strncpy(arg->strspace, dir, dirlen);
4409 		arg->strspace[dirlen] = '\0';
4410 
4411 		arg->strspace += dirlen + 1;
4412 		arg->serpath++;
4413 	}
4414 
4415 	return (NULL);
4416 }
4417 
4418 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4419 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4420 {
4421 	struct dl_serinfo _info;
4422 	struct fill_search_info_args args;
4423 
4424 	args.request = RTLD_DI_SERINFOSIZE;
4425 	args.serinfo = &_info;
4426 
4427 	_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4428 	_info.dls_cnt = 0;
4429 
4430 	path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4431 	path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4432 	path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4433 	path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4434 	    &args);
4435 	if (!obj->z_nodeflib)
4436 		path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4437 		    &args);
4438 
4439 	if (request == RTLD_DI_SERINFOSIZE) {
4440 		info->dls_size = _info.dls_size;
4441 		info->dls_cnt = _info.dls_cnt;
4442 		return (0);
4443 	}
4444 
4445 	if (info->dls_cnt != _info.dls_cnt ||
4446 	    info->dls_size != _info.dls_size) {
4447 		_rtld_error(
4448 		    "Uninitialized Dl_serinfo struct passed to dlinfo()");
4449 		return (-1);
4450 	}
4451 
4452 	args.request = RTLD_DI_SERINFO;
4453 	args.serinfo = info;
4454 	args.serpath = &info->dls_serpath[0];
4455 	args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4456 
4457 	args.flags = LA_SER_RUNPATH;
4458 	if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4459 		return (-1);
4460 
4461 	args.flags = LA_SER_LIBPATH;
4462 	if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4463 	    NULL)
4464 		return (-1);
4465 
4466 	args.flags = LA_SER_RUNPATH;
4467 	if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4468 		return (-1);
4469 
4470 	args.flags = LA_SER_CONFIG;
4471 	if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4472 		&args) != NULL)
4473 		return (-1);
4474 
4475 	args.flags = LA_SER_DEFAULT;
4476 	if (!obj->z_nodeflib &&
4477 	    path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4478 		&args) != NULL)
4479 		return (-1);
4480 	return (0);
4481 }
4482 
4483 static int
rtld_dirname(const char * path,char * bname)4484 rtld_dirname(const char *path, char *bname)
4485 {
4486 	const char *endp;
4487 
4488 	/* Empty or NULL string gets treated as "." */
4489 	if (path == NULL || *path == '\0') {
4490 		bname[0] = '.';
4491 		bname[1] = '\0';
4492 		return (0);
4493 	}
4494 
4495 	/* Strip trailing slashes */
4496 	endp = path + strlen(path) - 1;
4497 	while (endp > path && *endp == '/')
4498 		endp--;
4499 
4500 	/* Find the start of the dir */
4501 	while (endp > path && *endp != '/')
4502 		endp--;
4503 
4504 	/* Either the dir is "/" or there are no slashes */
4505 	if (endp == path) {
4506 		bname[0] = *endp == '/' ? '/' : '.';
4507 		bname[1] = '\0';
4508 		return (0);
4509 	} else {
4510 		do {
4511 			endp--;
4512 		} while (endp > path && *endp == '/');
4513 	}
4514 
4515 	if (endp - path + 2 > PATH_MAX) {
4516 		_rtld_error("Filename is too long: %s", path);
4517 		return (-1);
4518 	}
4519 
4520 	strncpy(bname, path, endp - path + 1);
4521 	bname[endp - path + 1] = '\0';
4522 	return (0);
4523 }
4524 
4525 static int
rtld_dirname_abs(const char * path,char * base)4526 rtld_dirname_abs(const char *path, char *base)
4527 {
4528 	char *last;
4529 
4530 	if (realpath(path, base) == NULL) {
4531 		_rtld_error("realpath \"%s\" failed (%s)", path,
4532 		    rtld_strerror(errno));
4533 		return (-1);
4534 	}
4535 	dbg("%s -> %s", path, base);
4536 	last = strrchr(base, '/');
4537 	if (last == NULL) {
4538 		_rtld_error("non-abs result from realpath \"%s\"", path);
4539 		return (-1);
4540 	}
4541 	if (last != base)
4542 		*last = '\0';
4543 	return (0);
4544 }
4545 
4546 static void
linkmap_add(Obj_Entry * obj)4547 linkmap_add(Obj_Entry *obj)
4548 {
4549 	struct link_map *l, *prev;
4550 
4551 	l = &obj->linkmap;
4552 	l->l_name = obj->path;
4553 	l->l_base = obj->mapbase;
4554 	l->l_ld = obj->dynamic;
4555 	l->l_addr = obj->relocbase;
4556 
4557 	if (r_debug.r_map == NULL) {
4558 		r_debug.r_map = l;
4559 		return;
4560 	}
4561 
4562 	/*
4563 	 * Scan to the end of the list, but not past the entry for the
4564 	 * dynamic linker, which we want to keep at the very end.
4565 	 */
4566 	for (prev = r_debug.r_map;
4567 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4568 	    prev = prev->l_next)
4569 		;
4570 
4571 	/* Link in the new entry. */
4572 	l->l_prev = prev;
4573 	l->l_next = prev->l_next;
4574 	if (l->l_next != NULL)
4575 		l->l_next->l_prev = l;
4576 	prev->l_next = l;
4577 }
4578 
4579 static void
linkmap_delete(Obj_Entry * obj)4580 linkmap_delete(Obj_Entry *obj)
4581 {
4582 	struct link_map *l;
4583 
4584 	l = &obj->linkmap;
4585 	if (l->l_prev == NULL) {
4586 		if ((r_debug.r_map = l->l_next) != NULL)
4587 			l->l_next->l_prev = NULL;
4588 		return;
4589 	}
4590 
4591 	if ((l->l_prev->l_next = l->l_next) != NULL)
4592 		l->l_next->l_prev = l->l_prev;
4593 }
4594 
4595 /*
4596  * Function for the debugger to set a breakpoint on to gain control.
4597  *
4598  * The two parameters allow the debugger to easily find and determine
4599  * what the runtime loader is doing and to whom it is doing it.
4600  *
4601  * When the loadhook trap is hit (r_debug_state, set at program
4602  * initialization), the arguments can be found on the stack:
4603  *
4604  *  +8   struct link_map *m
4605  *  +4   struct r_debug  *rd
4606  *  +0   RetAddr
4607  */
4608 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4609 r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4610 {
4611 	/*
4612 	 * The following is a hack to force the compiler to emit calls to
4613 	 * this function, even when optimizing.  If the function is empty,
4614 	 * the compiler is not obliged to emit any code for calls to it,
4615 	 * even when marked __noinline.  However, gdb depends on those
4616 	 * calls being made.
4617 	 */
4618 	__compiler_membar();
4619 }
4620 
4621 /*
4622  * A function called after init routines have completed. This can be used to
4623  * break before a program's entry routine is called, and can be used when
4624  * main is not available in the symbol table.
4625  */
4626 void
_r_debug_postinit(struct link_map * m __unused)4627 _r_debug_postinit(struct link_map *m __unused)
4628 {
4629 	/* See r_debug_state(). */
4630 	__compiler_membar();
4631 }
4632 
4633 static void
release_object(Obj_Entry * obj)4634 release_object(Obj_Entry *obj)
4635 {
4636 	if (obj->holdcount > 0) {
4637 		obj->unholdfree = true;
4638 		return;
4639 	}
4640 	munmap(obj->mapbase, obj->mapsize);
4641 	linkmap_delete(obj);
4642 	obj_free(obj);
4643 }
4644 
4645 /*
4646  * Get address of the pointer variable in the main program.
4647  * Prefer non-weak symbol over the weak one.
4648  */
4649 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4650 get_program_var_addr(const char *name, RtldLockState *lockstate)
4651 {
4652 	SymLook req;
4653 	DoneList donelist;
4654 
4655 	symlook_init(&req, name);
4656 	req.lockstate = lockstate;
4657 	donelist_init(&donelist);
4658 	if (symlook_global(&req, &donelist) != 0)
4659 		return (NULL);
4660 	if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4661 		return ((const void **)make_function_pointer(req.sym_out,
4662 		    req.defobj_out));
4663 	else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4664 		return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4665 		    req.sym_out));
4666 	else
4667 		return ((const void **)(req.defobj_out->relocbase +
4668 		    req.sym_out->st_value));
4669 }
4670 
4671 /*
4672  * Set a pointer variable in the main program to the given value.  This
4673  * is used to set key variables such as "environ" before any of the
4674  * init functions are called.
4675  */
4676 static void
set_program_var(const char * name,const void * value)4677 set_program_var(const char *name, const void *value)
4678 {
4679 	const void **addr;
4680 
4681 	if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4682 		dbg("\"%s\": *%p <-- %p", name, addr, value);
4683 		*addr = value;
4684 	}
4685 }
4686 
4687 /*
4688  * Search the global objects, including dependencies and main object,
4689  * for the given symbol.
4690  */
4691 static int
symlook_global(SymLook * req,DoneList * donelist)4692 symlook_global(SymLook *req, DoneList *donelist)
4693 {
4694 	SymLook req1;
4695 	const Objlist_Entry *elm;
4696 	int res;
4697 
4698 	symlook_init_from_req(&req1, req);
4699 
4700 	/* Search all objects loaded at program start up. */
4701 	if (req->defobj_out == NULL || (ld_dynamic_weak &&
4702 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4703 		res = symlook_list(&req1, &list_main, donelist);
4704 		if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4705 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4706 			req->sym_out = req1.sym_out;
4707 			req->defobj_out = req1.defobj_out;
4708 			assert(req->defobj_out != NULL);
4709 		}
4710 	}
4711 
4712 	/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4713 	STAILQ_FOREACH(elm, &list_global, link) {
4714 		if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4715 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4716 			break;
4717 		res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4718 		if (res == 0 && (req->defobj_out == NULL ||
4719 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4720 			req->sym_out = req1.sym_out;
4721 			req->defobj_out = req1.defobj_out;
4722 			assert(req->defobj_out != NULL);
4723 		}
4724 	}
4725 
4726 	return (req->sym_out != NULL ? 0 : ESRCH);
4727 }
4728 
4729 /*
4730  * Given a symbol name in a referencing object, find the corresponding
4731  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4732  * no definition was found.  Returns a pointer to the Obj_Entry of the
4733  * defining object via the reference parameter DEFOBJ_OUT.
4734  */
4735 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4736 symlook_default(SymLook *req, const Obj_Entry *refobj)
4737 {
4738 	DoneList donelist;
4739 	const Objlist_Entry *elm;
4740 	SymLook req1;
4741 	int res;
4742 
4743 	donelist_init(&donelist);
4744 	symlook_init_from_req(&req1, req);
4745 
4746 	/*
4747 	 * Look first in the referencing object if linked symbolically,
4748 	 * and similarly handle protected symbols.
4749 	 */
4750 	res = symlook_obj(&req1, refobj);
4751 	if (res == 0 && (refobj->symbolic ||
4752 	    ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED ||
4753 	    refobj->deepbind)) {
4754 		req->sym_out = req1.sym_out;
4755 		req->defobj_out = req1.defobj_out;
4756 		assert(req->defobj_out != NULL);
4757 	}
4758 	if (refobj->symbolic || req->defobj_out != NULL || refobj->deepbind)
4759 		donelist_check(&donelist, refobj);
4760 
4761 	if (!refobj->deepbind)
4762 		symlook_global(req, &donelist);
4763 
4764 	/* Search all dlopened DAGs containing the referencing object. */
4765 	STAILQ_FOREACH(elm, &refobj->dldags, link) {
4766 		if (req->sym_out != NULL && (!ld_dynamic_weak ||
4767 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4768 			break;
4769 		res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4770 		if (res == 0 && (req->sym_out == NULL ||
4771 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4772 			req->sym_out = req1.sym_out;
4773 			req->defobj_out = req1.defobj_out;
4774 			assert(req->defobj_out != NULL);
4775 		}
4776 	}
4777 
4778 	if (refobj->deepbind)
4779 		symlook_global(req, &donelist);
4780 
4781 	/*
4782 	 * Search the dynamic linker itself, and possibly resolve the
4783 	 * symbol from there.  This is how the application links to
4784 	 * dynamic linker services such as dlopen.
4785 	 */
4786 	if (req->sym_out == NULL ||
4787 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4788 		res = symlook_obj(&req1, &obj_rtld);
4789 		if (res == 0) {
4790 			req->sym_out = req1.sym_out;
4791 			req->defobj_out = req1.defobj_out;
4792 			assert(req->defobj_out != NULL);
4793 		}
4794 	}
4795 
4796 	return (req->sym_out != NULL ? 0 : ESRCH);
4797 }
4798 
4799 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4800 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4801 {
4802 	const Elf_Sym *def;
4803 	const Obj_Entry *defobj;
4804 	const Objlist_Entry *elm;
4805 	SymLook req1;
4806 	int res;
4807 
4808 	def = NULL;
4809 	defobj = NULL;
4810 	STAILQ_FOREACH(elm, objlist, link) {
4811 		if (donelist_check(dlp, elm->obj))
4812 			continue;
4813 		symlook_init_from_req(&req1, req);
4814 		if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4815 			if (def == NULL || (ld_dynamic_weak &&
4816 			    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4817 				def = req1.sym_out;
4818 				defobj = req1.defobj_out;
4819 				if (!ld_dynamic_weak ||
4820 				    ELF_ST_BIND(def->st_info) != STB_WEAK)
4821 					break;
4822 			}
4823 		}
4824 	}
4825 	if (def != NULL) {
4826 		req->sym_out = def;
4827 		req->defobj_out = defobj;
4828 		return (0);
4829 	}
4830 	return (ESRCH);
4831 }
4832 
4833 /*
4834  * Search the chain of DAGS cointed to by the given Needed_Entry
4835  * for a symbol of the given name.  Each DAG is scanned completely
4836  * before advancing to the next one.  Returns a pointer to the symbol,
4837  * or NULL if no definition was found.
4838  */
4839 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4840 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4841 {
4842 	const Elf_Sym *def;
4843 	const Needed_Entry *n;
4844 	const Obj_Entry *defobj;
4845 	SymLook req1;
4846 	int res;
4847 
4848 	def = NULL;
4849 	defobj = NULL;
4850 	symlook_init_from_req(&req1, req);
4851 	for (n = needed; n != NULL; n = n->next) {
4852 		if (n->obj == NULL || (res = symlook_list(&req1,
4853 		    &n->obj->dagmembers, dlp)) != 0)
4854 			continue;
4855 		if (def == NULL || (ld_dynamic_weak &&
4856 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4857 			def = req1.sym_out;
4858 			defobj = req1.defobj_out;
4859 			if (!ld_dynamic_weak ||
4860 			    ELF_ST_BIND(def->st_info) != STB_WEAK)
4861 				break;
4862 		}
4863 	}
4864 	if (def != NULL) {
4865 		req->sym_out = def;
4866 		req->defobj_out = defobj;
4867 		return (0);
4868 	}
4869 	return (ESRCH);
4870 }
4871 
4872 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4873 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4874     Needed_Entry *needed)
4875 {
4876 	DoneList donelist;
4877 	int flags;
4878 
4879 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4880 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4881 	donelist_init(&donelist);
4882 	symlook_init_from_req(req1, req);
4883 	return (symlook_needed(req1, needed, &donelist));
4884 }
4885 
4886 /*
4887  * Search the symbol table of a single shared object for a symbol of
4888  * the given name and version, if requested.  Returns a pointer to the
4889  * symbol, or NULL if no definition was found.  If the object is
4890  * filter, return filtered symbol from filtee.
4891  *
4892  * The symbol's hash value is passed in for efficiency reasons; that
4893  * eliminates many recomputations of the hash value.
4894  */
4895 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4896 symlook_obj(SymLook *req, const Obj_Entry *obj)
4897 {
4898 	SymLook req1;
4899 	int res, mres;
4900 
4901 	/*
4902 	 * If there is at least one valid hash at this point, we prefer to
4903 	 * use the faster GNU version if available.
4904 	 */
4905 	if (obj->valid_hash_gnu)
4906 		mres = symlook_obj1_gnu(req, obj);
4907 	else if (obj->valid_hash_sysv)
4908 		mres = symlook_obj1_sysv(req, obj);
4909 	else
4910 		return (EINVAL);
4911 
4912 	if (mres == 0) {
4913 		if (obj->needed_filtees != NULL) {
4914 			res = symlook_obj_load_filtees(req, &req1, obj,
4915 			    obj->needed_filtees);
4916 			if (res == 0) {
4917 				req->sym_out = req1.sym_out;
4918 				req->defobj_out = req1.defobj_out;
4919 			}
4920 			return (res);
4921 		}
4922 		if (obj->needed_aux_filtees != NULL) {
4923 			res = symlook_obj_load_filtees(req, &req1, obj,
4924 			    obj->needed_aux_filtees);
4925 			if (res == 0) {
4926 				req->sym_out = req1.sym_out;
4927 				req->defobj_out = req1.defobj_out;
4928 				return (res);
4929 			}
4930 		}
4931 	}
4932 	return (mres);
4933 }
4934 
4935 /* Symbol match routine common to both hash functions */
4936 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4937 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4938     const unsigned long symnum)
4939 {
4940 	Elf_Versym verndx;
4941 	const Elf_Sym *symp;
4942 	const char *strp;
4943 
4944 	symp = obj->symtab + symnum;
4945 	strp = obj->strtab + symp->st_name;
4946 
4947 	switch (ELF_ST_TYPE(symp->st_info)) {
4948 	case STT_FUNC:
4949 	case STT_NOTYPE:
4950 	case STT_OBJECT:
4951 	case STT_COMMON:
4952 	case STT_GNU_IFUNC:
4953 		if (symp->st_value == 0)
4954 			return (false);
4955 		/* fallthrough */
4956 	case STT_TLS:
4957 		if (symp->st_shndx != SHN_UNDEF)
4958 			break;
4959 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4960 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4961 			break;
4962 		/* fallthrough */
4963 	default:
4964 		return (false);
4965 	}
4966 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4967 		return (false);
4968 
4969 	if (req->ventry == NULL) {
4970 		if (obj->versyms != NULL) {
4971 			verndx = VER_NDX(obj->versyms[symnum]);
4972 			if (verndx > obj->vernum) {
4973 				_rtld_error(
4974 				    "%s: symbol %s references wrong version %d",
4975 				    obj->path, obj->strtab + symnum, verndx);
4976 				return (false);
4977 			}
4978 			/*
4979 			 * If we are not called from dlsym (i.e. this
4980 			 * is a normal relocation from unversioned
4981 			 * binary), accept the symbol immediately if
4982 			 * it happens to have first version after this
4983 			 * shared object became versioned.  Otherwise,
4984 			 * if symbol is versioned and not hidden,
4985 			 * remember it. If it is the only symbol with
4986 			 * this name exported by the shared object, it
4987 			 * will be returned as a match by the calling
4988 			 * function. If symbol is global (verndx < 2)
4989 			 * accept it unconditionally.
4990 			 */
4991 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4992 			    verndx == VER_NDX_GIVEN) {
4993 				result->sym_out = symp;
4994 				return (true);
4995 			} else if (verndx >= VER_NDX_GIVEN) {
4996 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
4997 				    0) {
4998 					if (result->vsymp == NULL)
4999 						result->vsymp = symp;
5000 					result->vcount++;
5001 				}
5002 				return (false);
5003 			}
5004 		}
5005 		result->sym_out = symp;
5006 		return (true);
5007 	}
5008 	if (obj->versyms == NULL) {
5009 		if (object_match_name(obj, req->ventry->name)) {
5010 			_rtld_error(
5011 		    "%s: object %s should provide version %s for symbol %s",
5012 			    obj_rtld.path, obj->path, req->ventry->name,
5013 			    obj->strtab + symnum);
5014 			return (false);
5015 		}
5016 	} else {
5017 		verndx = VER_NDX(obj->versyms[symnum]);
5018 		if (verndx > obj->vernum) {
5019 			_rtld_error("%s: symbol %s references wrong version %d",
5020 			    obj->path, obj->strtab + symnum, verndx);
5021 			return (false);
5022 		}
5023 		if (obj->vertab[verndx].hash != req->ventry->hash ||
5024 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
5025 			/*
5026 			 * Version does not match. Look if this is a
5027 			 * global symbol and if it is not hidden. If
5028 			 * global symbol (verndx < 2) is available,
5029 			 * use it. Do not return symbol if we are
5030 			 * called by dlvsym, because dlvsym looks for
5031 			 * a specific version and default one is not
5032 			 * what dlvsym wants.
5033 			 */
5034 			if ((req->flags & SYMLOOK_DLSYM) ||
5035 			    (verndx >= VER_NDX_GIVEN) ||
5036 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
5037 				return (false);
5038 		}
5039 	}
5040 	result->sym_out = symp;
5041 	return (true);
5042 }
5043 
5044 /*
5045  * Search for symbol using SysV hash function.
5046  * obj->buckets is known not to be NULL at this point; the test for this was
5047  * performed with the obj->valid_hash_sysv assignment.
5048  */
5049 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)5050 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
5051 {
5052 	unsigned long symnum;
5053 	Sym_Match_Result matchres;
5054 
5055 	matchres.sym_out = NULL;
5056 	matchres.vsymp = NULL;
5057 	matchres.vcount = 0;
5058 
5059 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
5060 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
5061 		if (symnum >= obj->nchains)
5062 			return (ESRCH); /* Bad object */
5063 
5064 		if (matched_symbol(req, obj, &matchres, symnum)) {
5065 			req->sym_out = matchres.sym_out;
5066 			req->defobj_out = obj;
5067 			return (0);
5068 		}
5069 	}
5070 	if (matchres.vcount == 1) {
5071 		req->sym_out = matchres.vsymp;
5072 		req->defobj_out = obj;
5073 		return (0);
5074 	}
5075 	return (ESRCH);
5076 }
5077 
5078 /* Search for symbol using GNU hash function */
5079 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)5080 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5081 {
5082 	Elf_Addr bloom_word;
5083 	const Elf32_Word *hashval;
5084 	Elf32_Word bucket;
5085 	Sym_Match_Result matchres;
5086 	unsigned int h1, h2;
5087 	unsigned long symnum;
5088 
5089 	matchres.sym_out = NULL;
5090 	matchres.vsymp = NULL;
5091 	matchres.vcount = 0;
5092 
5093 	/* Pick right bitmask word from Bloom filter array */
5094 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5095 	    obj->maskwords_bm_gnu];
5096 
5097 	/* Calculate modulus word size of gnu hash and its derivative */
5098 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5099 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5100 
5101 	/* Filter out the "definitely not in set" queries */
5102 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5103 		return (ESRCH);
5104 
5105 	/* Locate hash chain and corresponding value element*/
5106 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5107 	if (bucket == 0)
5108 		return (ESRCH);
5109 	hashval = &obj->chain_zero_gnu[bucket];
5110 	do {
5111 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5112 			symnum = hashval - obj->chain_zero_gnu;
5113 			if (matched_symbol(req, obj, &matchres, symnum)) {
5114 				req->sym_out = matchres.sym_out;
5115 				req->defobj_out = obj;
5116 				return (0);
5117 			}
5118 		}
5119 	} while ((*hashval++ & 1) == 0);
5120 	if (matchres.vcount == 1) {
5121 		req->sym_out = matchres.vsymp;
5122 		req->defobj_out = obj;
5123 		return (0);
5124 	}
5125 	return (ESRCH);
5126 }
5127 
5128 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)5129 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5130 {
5131 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5132 	if (*main_local == NULL)
5133 		*main_local = "";
5134 
5135 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5136 	if (*fmt1 == NULL)
5137 		*fmt1 = "\t%o => %p (%x)\n";
5138 
5139 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5140 	if (*fmt2 == NULL)
5141 		*fmt2 = "\t%o (%x)\n";
5142 }
5143 
5144 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5145 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5146     const char *main_local, const char *fmt1, const char *fmt2)
5147 {
5148 	const char *fmt;
5149 	int c;
5150 
5151 	if (fmt1 == NULL)
5152 		fmt = fmt2;
5153 	else
5154 		/* XXX bogus */
5155 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5156 
5157 	while ((c = *fmt++) != '\0') {
5158 		switch (c) {
5159 		default:
5160 			rtld_putchar(c);
5161 			continue;
5162 		case '\\':
5163 			switch (c = *fmt) {
5164 			case '\0':
5165 				continue;
5166 			case 'n':
5167 				rtld_putchar('\n');
5168 				break;
5169 			case 't':
5170 				rtld_putchar('\t');
5171 				break;
5172 			}
5173 			break;
5174 		case '%':
5175 			switch (c = *fmt) {
5176 			case '\0':
5177 				continue;
5178 			case '%':
5179 			default:
5180 				rtld_putchar(c);
5181 				break;
5182 			case 'A':
5183 				rtld_putstr(main_local);
5184 				break;
5185 			case 'a':
5186 				rtld_putstr(obj_main->path);
5187 				break;
5188 			case 'o':
5189 				rtld_putstr(name);
5190 				break;
5191 			case 'p':
5192 				rtld_putstr(path);
5193 				break;
5194 			case 'x':
5195 				rtld_printf("%p",
5196 				    obj != NULL ? obj->mapbase : NULL);
5197 				break;
5198 			}
5199 			break;
5200 		}
5201 		++fmt;
5202 	}
5203 }
5204 
5205 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5206 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5207 {
5208 	const char *fmt1, *fmt2, *main_local;
5209 	const char *name, *path;
5210 	bool first_spurious, list_containers;
5211 
5212 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5213 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5214 
5215 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5216 		Needed_Entry *needed;
5217 
5218 		if (obj->marker)
5219 			continue;
5220 		if (list_containers && obj->needed != NULL)
5221 			rtld_printf("%s:\n", obj->path);
5222 		for (needed = obj->needed; needed; needed = needed->next) {
5223 			if (needed->obj != NULL) {
5224 				if (needed->obj->traced && !list_containers)
5225 					continue;
5226 				needed->obj->traced = true;
5227 				path = needed->obj->path;
5228 			} else
5229 				path = "not found";
5230 
5231 			name = obj->strtab + needed->name;
5232 			trace_print_obj(needed->obj, name, path, main_local,
5233 			    fmt1, fmt2);
5234 		}
5235 	}
5236 
5237 	if (show_preload) {
5238 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5239 			fmt2 = "\t%p (%x)\n";
5240 		first_spurious = true;
5241 
5242 		TAILQ_FOREACH(obj, &obj_list, next) {
5243 			if (obj->marker || obj == obj_main || obj->traced)
5244 				continue;
5245 
5246 			if (list_containers && first_spurious) {
5247 				rtld_printf("[preloaded]\n");
5248 				first_spurious = false;
5249 			}
5250 
5251 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5252 			name = fname == NULL ? "<unknown>" : fname->name;
5253 			trace_print_obj(obj, name, obj->path, main_local, NULL,
5254 			    fmt2);
5255 		}
5256 	}
5257 }
5258 
5259 /*
5260  * Unload a dlopened object and its dependencies from memory and from
5261  * our data structures.  It is assumed that the DAG rooted in the
5262  * object has already been unreferenced, and that the object has a
5263  * reference count of 0.
5264  */
5265 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5266 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5267 {
5268 	Obj_Entry marker, *obj, *next;
5269 
5270 	assert(root->refcount == 0);
5271 
5272 	/*
5273 	 * Pass over the DAG removing unreferenced objects from
5274 	 * appropriate lists.
5275 	 */
5276 	unlink_object(root);
5277 
5278 	/* Unmap all objects that are no longer referenced. */
5279 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5280 		next = TAILQ_NEXT(obj, next);
5281 		if (obj->marker || obj->refcount != 0)
5282 			continue;
5283 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5284 		    0, obj->path);
5285 		dbg("unloading \"%s\"", obj->path);
5286 		/*
5287 		 * Unlink the object now to prevent new references from
5288 		 * being acquired while the bind lock is dropped in
5289 		 * recursive dlclose() invocations.
5290 		 */
5291 		TAILQ_REMOVE(&obj_list, obj, next);
5292 		obj_count--;
5293 
5294 		if (obj->filtees_loaded) {
5295 			if (next != NULL) {
5296 				init_marker(&marker);
5297 				TAILQ_INSERT_BEFORE(next, &marker, next);
5298 				unload_filtees(obj, lockstate);
5299 				next = TAILQ_NEXT(&marker, next);
5300 				TAILQ_REMOVE(&obj_list, &marker, next);
5301 			} else
5302 				unload_filtees(obj, lockstate);
5303 		}
5304 		release_object(obj);
5305 	}
5306 }
5307 
5308 static void
unlink_object(Obj_Entry * root)5309 unlink_object(Obj_Entry *root)
5310 {
5311 	Objlist_Entry *elm;
5312 
5313 	if (root->refcount == 0) {
5314 		/* Remove the object from the RTLD_GLOBAL list. */
5315 		objlist_remove(&list_global, root);
5316 
5317 		/* Remove the object from all objects' DAG lists. */
5318 		STAILQ_FOREACH(elm, &root->dagmembers, link) {
5319 			objlist_remove(&elm->obj->dldags, root);
5320 			if (elm->obj != root)
5321 				unlink_object(elm->obj);
5322 		}
5323 	}
5324 }
5325 
5326 static void
ref_dag(Obj_Entry * root)5327 ref_dag(Obj_Entry *root)
5328 {
5329 	Objlist_Entry *elm;
5330 
5331 	assert(root->dag_inited);
5332 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5333 		elm->obj->refcount++;
5334 }
5335 
5336 static void
unref_dag(Obj_Entry * root)5337 unref_dag(Obj_Entry *root)
5338 {
5339 	Objlist_Entry *elm;
5340 
5341 	assert(root->dag_inited);
5342 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5343 		elm->obj->refcount--;
5344 }
5345 
5346 /*
5347  * Common code for MD __tls_get_addr().
5348  */
5349 static void *
tls_get_addr_slow(struct tcb * tcb,int index,size_t offset,bool locked)5350 tls_get_addr_slow(struct tcb *tcb, int index, size_t offset, bool locked)
5351 {
5352 	struct dtv *newdtv, *dtv;
5353 	RtldLockState lockstate;
5354 	int to_copy;
5355 
5356 	dtv = tcb->tcb_dtv;
5357 	/* Check dtv generation in case new modules have arrived */
5358 	if (dtv->dtv_gen != tls_dtv_generation) {
5359 		if (!locked)
5360 			wlock_acquire(rtld_bind_lock, &lockstate);
5361 		newdtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5362 		    sizeof(struct dtv_slot));
5363 		to_copy = dtv->dtv_size;
5364 		if (to_copy > tls_max_index)
5365 			to_copy = tls_max_index;
5366 		memcpy(newdtv->dtv_slots, dtv->dtv_slots, to_copy *
5367 		    sizeof(struct dtv_slot));
5368 		newdtv->dtv_gen = tls_dtv_generation;
5369 		newdtv->dtv_size = tls_max_index;
5370 		free(dtv);
5371 		if (!locked)
5372 			lock_release(rtld_bind_lock, &lockstate);
5373 		dtv = tcb->tcb_dtv = newdtv;
5374 	}
5375 
5376 	/* Dynamically allocate module TLS if necessary */
5377 	if (dtv->dtv_slots[index - 1].dtvs_tls == 0) {
5378 		/* Signal safe, wlock will block out signals. */
5379 		if (!locked)
5380 			wlock_acquire(rtld_bind_lock, &lockstate);
5381 		if (!dtv->dtv_slots[index - 1].dtvs_tls)
5382 			dtv->dtv_slots[index - 1].dtvs_tls =
5383 			    allocate_module_tls(tcb, index);
5384 		if (!locked)
5385 			lock_release(rtld_bind_lock, &lockstate);
5386 	}
5387 	return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5388 }
5389 
5390 void *
tls_get_addr_common(struct tcb * tcb,int index,size_t offset)5391 tls_get_addr_common(struct tcb *tcb, int index, size_t offset)
5392 {
5393 	struct dtv *dtv;
5394 
5395 	dtv = tcb->tcb_dtv;
5396 	/* Check dtv generation in case new modules have arrived */
5397 	if (__predict_true(dtv->dtv_gen == tls_dtv_generation &&
5398 	    dtv->dtv_slots[index - 1].dtvs_tls != 0))
5399 		return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5400 	return (tls_get_addr_slow(tcb, index, offset, false));
5401 }
5402 
5403 #ifdef TLS_VARIANT_I
5404 
5405 /*
5406  * Return pointer to allocated TLS block
5407  */
5408 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5409 get_tls_block_ptr(void *tcb, size_t tcbsize)
5410 {
5411 	size_t extra_size, post_size, pre_size, tls_block_size;
5412 	size_t tls_init_align;
5413 
5414 	tls_init_align = MAX(obj_main->tlsalign, 1);
5415 
5416 	/* Compute fragments sizes. */
5417 	extra_size = tcbsize - TLS_TCB_SIZE;
5418 	post_size = calculate_tls_post_size(tls_init_align);
5419 	tls_block_size = tcbsize + post_size;
5420 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5421 
5422 	return ((char *)tcb - pre_size - extra_size);
5423 }
5424 
5425 /*
5426  * Allocate Static TLS using the Variant I method.
5427  *
5428  * For details on the layout, see lib/libc/gen/tls.c.
5429  *
5430  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5431  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5432  *     offsets, whereas libc's tls_static_space is just the executable's static
5433  *     TLS segment.
5434  *
5435  * NB: This differs from NetBSD's ld.elf_so, where TLS offsets are relative to
5436  *     the end of the TCB.
5437  */
5438 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5439 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5440 {
5441 	Obj_Entry *obj;
5442 	char *tls_block;
5443 	struct dtv *dtv;
5444 	struct tcb *tcb;
5445 	char *addr;
5446 	size_t i;
5447 	size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5448 	size_t tls_init_align, tls_init_offset;
5449 
5450 	if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5451 		return (oldtcb);
5452 
5453 	assert(tcbsize >= TLS_TCB_SIZE);
5454 	maxalign = MAX(tcbalign, tls_static_max_align);
5455 	tls_init_align = MAX(obj_main->tlsalign, 1);
5456 
5457 	/* Compute fragments sizes. */
5458 	extra_size = tcbsize - TLS_TCB_SIZE;
5459 	post_size = calculate_tls_post_size(tls_init_align);
5460 	tls_block_size = tcbsize + post_size;
5461 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5462 	tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5463 	    post_size;
5464 
5465 	/* Allocate whole TLS block */
5466 	tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5467 	tcb = (struct tcb *)(tls_block + pre_size + extra_size);
5468 
5469 	if (oldtcb != NULL) {
5470 		memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5471 		    tls_static_space);
5472 		free(get_tls_block_ptr(oldtcb, tcbsize));
5473 
5474 		/* Adjust the DTV. */
5475 		dtv = tcb->tcb_dtv;
5476 		for (i = 0; i < dtv->dtv_size; i++) {
5477 			if ((uintptr_t)dtv->dtv_slots[i].dtvs_tls >=
5478 			    (uintptr_t)oldtcb &&
5479 			    (uintptr_t)dtv->dtv_slots[i].dtvs_tls <
5480 			    (uintptr_t)oldtcb + tls_static_space) {
5481 				dtv->dtv_slots[i].dtvs_tls = (char *)tcb +
5482 				    (dtv->dtv_slots[i].dtvs_tls -
5483 				    (char *)oldtcb);
5484 			}
5485 		}
5486 	} else {
5487 		dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5488 		    sizeof(struct dtv_slot));
5489 		tcb->tcb_dtv = dtv;
5490 		dtv->dtv_gen = tls_dtv_generation;
5491 		dtv->dtv_size = tls_max_index;
5492 
5493 		for (obj = globallist_curr(objs); obj != NULL;
5494 		    obj = globallist_next(obj)) {
5495 			if (obj->tlsoffset == 0)
5496 				continue;
5497 			tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5498 			addr = (char *)tcb + obj->tlsoffset;
5499 			if (tls_init_offset > 0)
5500 				memset(addr, 0, tls_init_offset);
5501 			if (obj->tlsinitsize > 0) {
5502 				memcpy(addr + tls_init_offset, obj->tlsinit,
5503 				    obj->tlsinitsize);
5504 			}
5505 			if (obj->tlssize > obj->tlsinitsize) {
5506 				memset(addr + tls_init_offset +
5507 				    obj->tlsinitsize,
5508 				    0,
5509 				    obj->tlssize - obj->tlsinitsize -
5510 					tls_init_offset);
5511 			}
5512 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5513 		}
5514 	}
5515 
5516 	return (tcb);
5517 }
5518 
5519 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5520 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5521 {
5522 	struct dtv *dtv;
5523 	uintptr_t tlsstart, tlsend;
5524 	size_t post_size;
5525 	size_t i, tls_init_align __unused;
5526 
5527 	assert(tcbsize >= TLS_TCB_SIZE);
5528 	tls_init_align = MAX(obj_main->tlsalign, 1);
5529 
5530 	/* Compute fragments sizes. */
5531 	post_size = calculate_tls_post_size(tls_init_align);
5532 
5533 	tlsstart = (uintptr_t)tcb + TLS_TCB_SIZE + post_size;
5534 	tlsend = (uintptr_t)tcb + tls_static_space;
5535 
5536 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5537 	for (i = 0; i < dtv->dtv_size; i++) {
5538 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5539 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5540 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls >= tlsend)) {
5541 			free(dtv->dtv_slots[i].dtvs_tls);
5542 		}
5543 	}
5544 	free(dtv);
5545 	free(get_tls_block_ptr(tcb, tcbsize));
5546 }
5547 
5548 #endif /* TLS_VARIANT_I */
5549 
5550 #ifdef TLS_VARIANT_II
5551 
5552 /*
5553  * Allocate Static TLS using the Variant II method.
5554  */
5555 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5556 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5557 {
5558 	Obj_Entry *obj;
5559 	size_t size, ralign;
5560 	char *tls_block;
5561 	struct dtv *dtv, *olddtv;
5562 	struct tcb *tcb;
5563 	char *addr;
5564 	size_t i;
5565 
5566 	ralign = tcbalign;
5567 	if (tls_static_max_align > ralign)
5568 		ralign = tls_static_max_align;
5569 	size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5570 
5571 	assert(tcbsize >= 2 * sizeof(uintptr_t));
5572 	tls_block = xmalloc_aligned(size, ralign, 0 /* XXX */);
5573 	dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5574 	    sizeof(struct dtv_slot));
5575 
5576 	tcb = (struct tcb *)(tls_block + roundup(tls_static_space, ralign));
5577 	tcb->tcb_self = tcb;
5578 	tcb->tcb_dtv = dtv;
5579 
5580 	dtv->dtv_gen = tls_dtv_generation;
5581 	dtv->dtv_size = tls_max_index;
5582 
5583 	if (oldtcb != NULL) {
5584 		/*
5585 		 * Copy the static TLS block over whole.
5586 		 */
5587 		memcpy((char *)tcb - tls_static_space,
5588 		    (const char *)oldtcb - tls_static_space,
5589 		    tls_static_space);
5590 
5591 		/*
5592 		 * If any dynamic TLS blocks have been created tls_get_addr(),
5593 		 * move them over.
5594 		 */
5595 		olddtv = ((struct tcb *)oldtcb)->tcb_dtv;
5596 		for (i = 0; i < olddtv->dtv_size; i++) {
5597 			if ((uintptr_t)olddtv->dtv_slots[i].dtvs_tls <
5598 			    (uintptr_t)oldtcb - size ||
5599 			    (uintptr_t)olddtv->dtv_slots[i].dtvs_tls >
5600 			    (uintptr_t)oldtcb) {
5601 				dtv->dtv_slots[i].dtvs_tls =
5602 				    olddtv->dtv_slots[i].dtvs_tls;
5603 				olddtv->dtv_slots[i].dtvs_tls = NULL;
5604 			}
5605 		}
5606 
5607 		/*
5608 		 * We assume that this block was the one we created with
5609 		 * allocate_initial_tls().
5610 		 */
5611 		free_tls(oldtcb, 2 * sizeof(uintptr_t), sizeof(uintptr_t));
5612 	} else {
5613 		for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5614 			if (obj->marker || obj->tlsoffset == 0)
5615 				continue;
5616 			addr = (char *)tcb - obj->tlsoffset;
5617 			memset(addr + obj->tlsinitsize, 0, obj->tlssize -
5618 			    obj->tlsinitsize);
5619 			if (obj->tlsinit) {
5620 				memcpy(addr, obj->tlsinit, obj->tlsinitsize);
5621 				obj->static_tls_copied = true;
5622 			}
5623 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5624 		}
5625 	}
5626 
5627 	return (tcb);
5628 }
5629 
5630 void
free_tls(void * tcb,size_t tcbsize __unused,size_t tcbalign)5631 free_tls(void *tcb, size_t tcbsize __unused, size_t tcbalign)
5632 {
5633 	struct dtv *dtv;
5634 	size_t size, ralign;
5635 	size_t i;
5636 	uintptr_t tlsstart, tlsend;
5637 
5638 	/*
5639 	 * Figure out the size of the initial TLS block so that we can
5640 	 * find stuff which ___tls_get_addr() allocated dynamically.
5641 	 */
5642 	ralign = tcbalign;
5643 	if (tls_static_max_align > ralign)
5644 		ralign = tls_static_max_align;
5645 	size = roundup(tls_static_space, ralign);
5646 
5647 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5648 	tlsend = (uintptr_t)tcb;
5649 	tlsstart = tlsend - size;
5650 	for (i = 0; i < dtv->dtv_size; i++) {
5651 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5652 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5653 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls > tlsend)) {
5654 			free(dtv->dtv_slots[i].dtvs_tls);
5655 		}
5656 	}
5657 
5658 	free((void *)tlsstart);
5659 	free(dtv);
5660 }
5661 
5662 #endif /* TLS_VARIANT_II */
5663 
5664 /*
5665  * Allocate TLS block for module with given index.
5666  */
5667 void *
allocate_module_tls(struct tcb * tcb,int index)5668 allocate_module_tls(struct tcb *tcb, int index)
5669 {
5670 	Obj_Entry *obj;
5671 	char *p;
5672 
5673 	TAILQ_FOREACH(obj, &obj_list, next) {
5674 		if (obj->marker)
5675 			continue;
5676 		if (obj->tlsindex == index)
5677 			break;
5678 	}
5679 	if (obj == NULL) {
5680 		_rtld_error("Can't find module with TLS index %d", index);
5681 		rtld_die();
5682 	}
5683 
5684 	if (obj->tls_static) {
5685 #ifdef TLS_VARIANT_I
5686 		p = (char *)tcb + obj->tlsoffset;
5687 #else
5688 		p = (char *)tcb - obj->tlsoffset;
5689 #endif
5690 		return (p);
5691 	}
5692 
5693 	obj->tls_dynamic = true;
5694 
5695 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5696 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5697 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5698 	return (p);
5699 }
5700 
5701 bool
allocate_tls_offset(Obj_Entry * obj)5702 allocate_tls_offset(Obj_Entry *obj)
5703 {
5704 	size_t off;
5705 
5706 	if (obj->tls_dynamic)
5707 		return (false);
5708 
5709 	if (obj->tls_static)
5710 		return (true);
5711 
5712 	if (obj->tlssize == 0) {
5713 		obj->tls_static = true;
5714 		return (true);
5715 	}
5716 
5717 	if (tls_last_offset == 0)
5718 		off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5719 		    obj->tlspoffset);
5720 	else
5721 		off = calculate_tls_offset(tls_last_offset, tls_last_size,
5722 		    obj->tlssize, obj->tlsalign, obj->tlspoffset);
5723 
5724 	obj->tlsoffset = off;
5725 #ifdef TLS_VARIANT_I
5726 	off += obj->tlssize;
5727 #endif
5728 
5729 	/*
5730 	 * If we have already fixed the size of the static TLS block, we
5731 	 * must stay within that size. When allocating the static TLS, we
5732 	 * leave a small amount of space spare to be used for dynamically
5733 	 * loading modules which use static TLS.
5734 	 */
5735 	if (tls_static_space != 0) {
5736 		if (off > tls_static_space)
5737 			return (false);
5738 	} else if (obj->tlsalign > tls_static_max_align) {
5739 		tls_static_max_align = obj->tlsalign;
5740 	}
5741 
5742 	tls_last_offset = off;
5743 	tls_last_size = obj->tlssize;
5744 	obj->tls_static = true;
5745 
5746 	return (true);
5747 }
5748 
5749 void
free_tls_offset(Obj_Entry * obj)5750 free_tls_offset(Obj_Entry *obj)
5751 {
5752 	/*
5753 	 * If we were the last thing to allocate out of the static TLS
5754 	 * block, we give our space back to the 'allocator'. This is a
5755 	 * simplistic workaround to allow libGL.so.1 to be loaded and
5756 	 * unloaded multiple times.
5757 	 */
5758 	size_t off = obj->tlsoffset;
5759 
5760 #ifdef TLS_VARIANT_I
5761 	off += obj->tlssize;
5762 #endif
5763 	if (off == tls_last_offset) {
5764 		tls_last_offset -= obj->tlssize;
5765 		tls_last_size = 0;
5766 	}
5767 }
5768 
5769 void *
_rtld_allocate_tls(void * oldtcb,size_t tcbsize,size_t tcbalign)5770 _rtld_allocate_tls(void *oldtcb, size_t tcbsize, size_t tcbalign)
5771 {
5772 	void *ret;
5773 	RtldLockState lockstate;
5774 
5775 	wlock_acquire(rtld_bind_lock, &lockstate);
5776 	ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtcb,
5777 	    tcbsize, tcbalign);
5778 	lock_release(rtld_bind_lock, &lockstate);
5779 	return (ret);
5780 }
5781 
5782 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5783 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5784 {
5785 	RtldLockState lockstate;
5786 
5787 	wlock_acquire(rtld_bind_lock, &lockstate);
5788 	free_tls(tcb, tcbsize, tcbalign);
5789 	lock_release(rtld_bind_lock, &lockstate);
5790 }
5791 
5792 static void
object_add_name(Obj_Entry * obj,const char * name)5793 object_add_name(Obj_Entry *obj, const char *name)
5794 {
5795 	Name_Entry *entry;
5796 	size_t len;
5797 
5798 	len = strlen(name);
5799 	entry = malloc(sizeof(Name_Entry) + len);
5800 
5801 	if (entry != NULL) {
5802 		strcpy(entry->name, name);
5803 		STAILQ_INSERT_TAIL(&obj->names, entry, link);
5804 	}
5805 }
5806 
5807 static int
object_match_name(const Obj_Entry * obj,const char * name)5808 object_match_name(const Obj_Entry *obj, const char *name)
5809 {
5810 	Name_Entry *entry;
5811 
5812 	STAILQ_FOREACH(entry, &obj->names, link) {
5813 		if (strcmp(name, entry->name) == 0)
5814 			return (1);
5815 	}
5816 	return (0);
5817 }
5818 
5819 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5820 locate_dependency(const Obj_Entry *obj, const char *name)
5821 {
5822 	const Objlist_Entry *entry;
5823 	const Needed_Entry *needed;
5824 
5825 	STAILQ_FOREACH(entry, &list_main, link) {
5826 		if (object_match_name(entry->obj, name))
5827 			return (entry->obj);
5828 	}
5829 
5830 	for (needed = obj->needed; needed != NULL; needed = needed->next) {
5831 		if (strcmp(obj->strtab + needed->name, name) == 0 ||
5832 		    (needed->obj != NULL && object_match_name(needed->obj,
5833 		    name))) {
5834 			/*
5835 			 * If there is DT_NEEDED for the name we are looking
5836 			 * for, we are all set.  Note that object might not be
5837 			 * found if dependency was not loaded yet, so the
5838 			 * function can return NULL here.  This is expected and
5839 			 * handled properly by the caller.
5840 			 */
5841 			return (needed->obj);
5842 		}
5843 	}
5844 	_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5845 	    obj->path, name);
5846 	rtld_die();
5847 }
5848 
5849 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5850 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5851     const Elf_Vernaux *vna)
5852 {
5853 	const Elf_Verdef *vd;
5854 	const char *vername;
5855 
5856 	vername = refobj->strtab + vna->vna_name;
5857 	vd = depobj->verdef;
5858 	if (vd == NULL) {
5859 		_rtld_error("%s: version %s required by %s not defined",
5860 		    depobj->path, vername, refobj->path);
5861 		return (-1);
5862 	}
5863 	for (;;) {
5864 		if (vd->vd_version != VER_DEF_CURRENT) {
5865 			_rtld_error(
5866 			    "%s: Unsupported version %d of Elf_Verdef entry",
5867 			    depobj->path, vd->vd_version);
5868 			return (-1);
5869 		}
5870 		if (vna->vna_hash == vd->vd_hash) {
5871 			const Elf_Verdaux *aux =
5872 			    (const Elf_Verdaux *)((const char *)vd +
5873 				vd->vd_aux);
5874 			if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5875 			    0)
5876 				return (0);
5877 		}
5878 		if (vd->vd_next == 0)
5879 			break;
5880 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5881 	}
5882 	if (vna->vna_flags & VER_FLG_WEAK)
5883 		return (0);
5884 	_rtld_error("%s: version %s required by %s not found", depobj->path,
5885 	    vername, refobj->path);
5886 	return (-1);
5887 }
5888 
5889 static int
rtld_verify_object_versions(Obj_Entry * obj)5890 rtld_verify_object_versions(Obj_Entry *obj)
5891 {
5892 	const Elf_Verneed *vn;
5893 	const Elf_Verdef *vd;
5894 	const Elf_Verdaux *vda;
5895 	const Elf_Vernaux *vna;
5896 	const Obj_Entry *depobj;
5897 	int maxvernum, vernum;
5898 
5899 	if (obj->ver_checked)
5900 		return (0);
5901 	obj->ver_checked = true;
5902 
5903 	maxvernum = 0;
5904 	/*
5905 	 * Walk over defined and required version records and figure out
5906 	 * max index used by any of them. Do very basic sanity checking
5907 	 * while there.
5908 	 */
5909 	vn = obj->verneed;
5910 	while (vn != NULL) {
5911 		if (vn->vn_version != VER_NEED_CURRENT) {
5912 			_rtld_error(
5913 			    "%s: Unsupported version %d of Elf_Verneed entry",
5914 			    obj->path, vn->vn_version);
5915 			return (-1);
5916 		}
5917 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5918 		for (;;) {
5919 			vernum = VER_NEED_IDX(vna->vna_other);
5920 			if (vernum > maxvernum)
5921 				maxvernum = vernum;
5922 			if (vna->vna_next == 0)
5923 				break;
5924 			vna = (const Elf_Vernaux *)((const char *)vna +
5925 			    vna->vna_next);
5926 		}
5927 		if (vn->vn_next == 0)
5928 			break;
5929 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5930 	}
5931 
5932 	vd = obj->verdef;
5933 	while (vd != NULL) {
5934 		if (vd->vd_version != VER_DEF_CURRENT) {
5935 			_rtld_error(
5936 			    "%s: Unsupported version %d of Elf_Verdef entry",
5937 			    obj->path, vd->vd_version);
5938 			return (-1);
5939 		}
5940 		vernum = VER_DEF_IDX(vd->vd_ndx);
5941 		if (vernum > maxvernum)
5942 			maxvernum = vernum;
5943 		if (vd->vd_next == 0)
5944 			break;
5945 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5946 	}
5947 
5948 	if (maxvernum == 0)
5949 		return (0);
5950 
5951 	/*
5952 	 * Store version information in array indexable by version index.
5953 	 * Verify that object version requirements are satisfied along the
5954 	 * way.
5955 	 */
5956 	obj->vernum = maxvernum + 1;
5957 	obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5958 
5959 	vd = obj->verdef;
5960 	while (vd != NULL) {
5961 		if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5962 			vernum = VER_DEF_IDX(vd->vd_ndx);
5963 			assert(vernum <= maxvernum);
5964 			vda = (const Elf_Verdaux *)((const char *)vd +
5965 			    vd->vd_aux);
5966 			obj->vertab[vernum].hash = vd->vd_hash;
5967 			obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5968 			obj->vertab[vernum].file = NULL;
5969 			obj->vertab[vernum].flags = 0;
5970 		}
5971 		if (vd->vd_next == 0)
5972 			break;
5973 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5974 	}
5975 
5976 	vn = obj->verneed;
5977 	while (vn != NULL) {
5978 		depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5979 		if (depobj == NULL)
5980 			return (-1);
5981 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5982 		for (;;) {
5983 			if (check_object_provided_version(obj, depobj, vna))
5984 				return (-1);
5985 			vernum = VER_NEED_IDX(vna->vna_other);
5986 			assert(vernum <= maxvernum);
5987 			obj->vertab[vernum].hash = vna->vna_hash;
5988 			obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5989 			obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5990 			obj->vertab[vernum].flags = (vna->vna_other &
5991 			    VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
5992 			if (vna->vna_next == 0)
5993 				break;
5994 			vna = (const Elf_Vernaux *)((const char *)vna +
5995 			    vna->vna_next);
5996 		}
5997 		if (vn->vn_next == 0)
5998 			break;
5999 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6000 	}
6001 	return (0);
6002 }
6003 
6004 static int
rtld_verify_versions(const Objlist * objlist)6005 rtld_verify_versions(const Objlist *objlist)
6006 {
6007 	Objlist_Entry *entry;
6008 	int rc;
6009 
6010 	rc = 0;
6011 	STAILQ_FOREACH(entry, objlist, link) {
6012 		/*
6013 		 * Skip dummy objects or objects that have their version
6014 		 * requirements already checked.
6015 		 */
6016 		if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
6017 			continue;
6018 		if (rtld_verify_object_versions(entry->obj) == -1) {
6019 			rc = -1;
6020 			if (ld_tracing == NULL)
6021 				break;
6022 		}
6023 	}
6024 	if (rc == 0 || ld_tracing != NULL)
6025 		rc = rtld_verify_object_versions(&obj_rtld);
6026 	return (rc);
6027 }
6028 
6029 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)6030 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
6031 {
6032 	Elf_Versym vernum;
6033 
6034 	if (obj->vertab) {
6035 		vernum = VER_NDX(obj->versyms[symnum]);
6036 		if (vernum >= obj->vernum) {
6037 			_rtld_error("%s: symbol %s has wrong verneed value %d",
6038 			    obj->path, obj->strtab + symnum, vernum);
6039 		} else if (obj->vertab[vernum].hash != 0) {
6040 			return (&obj->vertab[vernum]);
6041 		}
6042 	}
6043 	return (NULL);
6044 }
6045 
6046 int
_rtld_get_stack_prot(void)6047 _rtld_get_stack_prot(void)
6048 {
6049 	return (stack_prot);
6050 }
6051 
6052 int
_rtld_is_dlopened(void * arg)6053 _rtld_is_dlopened(void *arg)
6054 {
6055 	Obj_Entry *obj;
6056 	RtldLockState lockstate;
6057 	int res;
6058 
6059 	rlock_acquire(rtld_bind_lock, &lockstate);
6060 	obj = dlcheck(arg);
6061 	if (obj == NULL)
6062 		obj = obj_from_addr(arg);
6063 	if (obj == NULL) {
6064 		_rtld_error("No shared object contains address");
6065 		lock_release(rtld_bind_lock, &lockstate);
6066 		return (-1);
6067 	}
6068 	res = obj->dlopened ? 1 : 0;
6069 	lock_release(rtld_bind_lock, &lockstate);
6070 	return (res);
6071 }
6072 
6073 static int
obj_remap_relro(Obj_Entry * obj,int prot)6074 obj_remap_relro(Obj_Entry *obj, int prot)
6075 {
6076 	const Elf_Phdr *ph;
6077 	caddr_t relro_page;
6078 	size_t relro_size;
6079 
6080 	for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
6081 	    obj->phsize; ph++) {
6082 		if (ph->p_type != PT_GNU_RELRO)
6083 			continue;
6084 		relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
6085 		relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
6086 		    rtld_trunc_page(ph->p_vaddr);
6087 		if (mprotect(relro_page, relro_size, prot) == -1) {
6088 			_rtld_error(
6089 			    "%s: Cannot set relro protection to %#x: %s",
6090 			    obj->path, prot, rtld_strerror(errno));
6091 			return (-1);
6092 		}
6093 		break;
6094 	}
6095 	return (0);
6096 }
6097 
6098 static int
obj_disable_relro(Obj_Entry * obj)6099 obj_disable_relro(Obj_Entry *obj)
6100 {
6101 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6102 }
6103 
6104 static int
obj_enforce_relro(Obj_Entry * obj)6105 obj_enforce_relro(Obj_Entry *obj)
6106 {
6107 	return (obj_remap_relro(obj, PROT_READ));
6108 }
6109 
6110 static void
map_stacks_exec(RtldLockState * lockstate)6111 map_stacks_exec(RtldLockState *lockstate)
6112 {
6113 	void (*thr_map_stacks_exec)(void);
6114 
6115 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6116 		return;
6117 	thr_map_stacks_exec = (void (*)(void))(
6118 	    uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6119 	    lockstate);
6120 	if (thr_map_stacks_exec != NULL) {
6121 		stack_prot |= PROT_EXEC;
6122 		thr_map_stacks_exec();
6123 	}
6124 }
6125 
6126 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)6127 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
6128 {
6129 	Objlist_Entry *elm;
6130 	Obj_Entry *obj;
6131 	void (*distrib)(size_t, void *, size_t, size_t);
6132 
6133 	distrib = (void (*)(size_t, void *, size_t, size_t))(
6134 	    uintptr_t)get_program_var_addr("__pthread_distribute_static_tls",
6135 	    lockstate);
6136 	if (distrib == NULL)
6137 		return;
6138 	STAILQ_FOREACH(elm, list, link) {
6139 		obj = elm->obj;
6140 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6141 			continue;
6142 		lock_release(rtld_bind_lock, lockstate);
6143 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
6144 		    obj->tlssize);
6145 		wlock_acquire(rtld_bind_lock, lockstate);
6146 		obj->static_tls_copied = true;
6147 	}
6148 }
6149 
6150 void
symlook_init(SymLook * dst,const char * name)6151 symlook_init(SymLook *dst, const char *name)
6152 {
6153 	bzero(dst, sizeof(*dst));
6154 	dst->name = name;
6155 	dst->hash = elf_hash(name);
6156 	dst->hash_gnu = gnu_hash(name);
6157 }
6158 
6159 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)6160 symlook_init_from_req(SymLook *dst, const SymLook *src)
6161 {
6162 	dst->name = src->name;
6163 	dst->hash = src->hash;
6164 	dst->hash_gnu = src->hash_gnu;
6165 	dst->ventry = src->ventry;
6166 	dst->flags = src->flags;
6167 	dst->defobj_out = NULL;
6168 	dst->sym_out = NULL;
6169 	dst->lockstate = src->lockstate;
6170 }
6171 
6172 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)6173 open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6174 {
6175 	char *binpath, *pathenv, *pe, *res1;
6176 	const char *res;
6177 	int fd;
6178 
6179 	binpath = NULL;
6180 	res = NULL;
6181 	if (search_in_path && strchr(argv0, '/') == NULL) {
6182 		binpath = xmalloc(PATH_MAX);
6183 		pathenv = getenv("PATH");
6184 		if (pathenv == NULL) {
6185 			_rtld_error("-p and no PATH environment variable");
6186 			rtld_die();
6187 		}
6188 		pathenv = strdup(pathenv);
6189 		if (pathenv == NULL) {
6190 			_rtld_error("Cannot allocate memory");
6191 			rtld_die();
6192 		}
6193 		fd = -1;
6194 		errno = ENOENT;
6195 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6196 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6197 				continue;
6198 			if (binpath[0] != '\0' &&
6199 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6200 				continue;
6201 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6202 				continue;
6203 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6204 			if (fd != -1 || errno != ENOENT) {
6205 				res = binpath;
6206 				break;
6207 			}
6208 		}
6209 		free(pathenv);
6210 	} else {
6211 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6212 		res = argv0;
6213 	}
6214 
6215 	if (fd == -1) {
6216 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6217 		rtld_die();
6218 	}
6219 	if (res != NULL && res[0] != '/') {
6220 		res1 = xmalloc(PATH_MAX);
6221 		if (realpath(res, res1) != NULL) {
6222 			if (res != argv0)
6223 				free(__DECONST(char *, res));
6224 			res = res1;
6225 		} else {
6226 			free(res1);
6227 		}
6228 	}
6229 	*binpath_res = res;
6230 	return (fd);
6231 }
6232 
6233 /*
6234  * Parse a set of command-line arguments.
6235  */
6236 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6237 parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6238     const char **argv0, bool *dir_ignore)
6239 {
6240 	const char *arg;
6241 	char machine[64];
6242 	size_t sz;
6243 	int arglen, fd, i, j, mib[2];
6244 	char opt;
6245 	bool seen_b, seen_f;
6246 
6247 	dbg("Parsing command-line arguments");
6248 	*use_pathp = false;
6249 	*fdp = -1;
6250 	*dir_ignore = false;
6251 	seen_b = seen_f = false;
6252 
6253 	for (i = 1; i < argc; i++) {
6254 		arg = argv[i];
6255 		dbg("argv[%d]: '%s'", i, arg);
6256 
6257 		/*
6258 		 * rtld arguments end with an explicit "--" or with the first
6259 		 * non-prefixed argument.
6260 		 */
6261 		if (strcmp(arg, "--") == 0) {
6262 			i++;
6263 			break;
6264 		}
6265 		if (arg[0] != '-')
6266 			break;
6267 
6268 		/*
6269 		 * All other arguments are single-character options that can
6270 		 * be combined, so we need to search through `arg` for them.
6271 		 */
6272 		arglen = strlen(arg);
6273 		for (j = 1; j < arglen; j++) {
6274 			opt = arg[j];
6275 			if (opt == 'h') {
6276 				print_usage(argv[0]);
6277 				_exit(0);
6278 			} else if (opt == 'b') {
6279 				if (seen_f) {
6280 					_rtld_error("Both -b and -f specified");
6281 					rtld_die();
6282 				}
6283 				if (j != arglen - 1) {
6284 					_rtld_error("Invalid options: %s", arg);
6285 					rtld_die();
6286 				}
6287 				i++;
6288 				*argv0 = argv[i];
6289 				seen_b = true;
6290 				break;
6291 			} else if (opt == 'd') {
6292 				*dir_ignore = true;
6293 			} else if (opt == 'f') {
6294 				if (seen_b) {
6295 					_rtld_error("Both -b and -f specified");
6296 					rtld_die();
6297 				}
6298 
6299 				/*
6300 				 * -f XX can be used to specify a
6301 				 * descriptor for the binary named at
6302 				 * the command line (i.e., the later
6303 				 * argument will specify the process
6304 				 * name but the descriptor is what
6305 				 * will actually be executed).
6306 				 *
6307 				 * -f must be the last option in the
6308 				 * group, e.g., -abcf <fd>.
6309 				 */
6310 				if (j != arglen - 1) {
6311 					_rtld_error("Invalid options: %s", arg);
6312 					rtld_die();
6313 				}
6314 				i++;
6315 				fd = parse_integer(argv[i]);
6316 				if (fd == -1) {
6317 					_rtld_error(
6318 					    "Invalid file descriptor: '%s'",
6319 					    argv[i]);
6320 					rtld_die();
6321 				}
6322 				*fdp = fd;
6323 				seen_f = true;
6324 				break;
6325 			} else if (opt == 'o') {
6326 				struct ld_env_var_desc *l;
6327 				char *n, *v;
6328 				u_int ll;
6329 
6330 				if (j != arglen - 1) {
6331 					_rtld_error("Invalid options: %s", arg);
6332 					rtld_die();
6333 				}
6334 				i++;
6335 				n = argv[i];
6336 				v = strchr(n, '=');
6337 				if (v == NULL) {
6338 					_rtld_error("No '=' in -o parameter");
6339 					rtld_die();
6340 				}
6341 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6342 					l = &ld_env_vars[ll];
6343 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6344 					    strncmp(n, l->n, v - n) == 0) {
6345 						l->val = v + 1;
6346 						break;
6347 					}
6348 				}
6349 				if (ll == nitems(ld_env_vars)) {
6350 					_rtld_error("Unknown LD_ option %s", n);
6351 					rtld_die();
6352 				}
6353 			} else if (opt == 'p') {
6354 				*use_pathp = true;
6355 			} else if (opt == 'u') {
6356 				u_int ll;
6357 
6358 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6359 					ld_env_vars[ll].val = NULL;
6360 			} else if (opt == 'v') {
6361 				machine[0] = '\0';
6362 				mib[0] = CTL_HW;
6363 				mib[1] = HW_MACHINE;
6364 				sz = sizeof(machine);
6365 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6366 				ld_elf_hints_path = ld_get_env_var(
6367 				    LD_ELF_HINTS_PATH);
6368 				set_ld_elf_hints_path();
6369 				rtld_printf(
6370 				    "FreeBSD ld-elf.so.1 %s\n"
6371 				    "FreeBSD_version %d\n"
6372 				    "Default lib path %s\n"
6373 				    "Hints lib path %s\n"
6374 				    "Env prefix %s\n"
6375 				    "Default hint file %s\n"
6376 				    "Hint file %s\n"
6377 				    "libmap file %s\n"
6378 				    "Optional static TLS size %zd bytes\n",
6379 				    machine, __FreeBSD_version,
6380 				    ld_standard_library_path, gethints(false),
6381 				    ld_env_prefix, ld_elf_hints_default,
6382 				    ld_elf_hints_path, ld_path_libmap_conf,
6383 				    ld_static_tls_extra);
6384 				_exit(0);
6385 			} else {
6386 				_rtld_error("Invalid argument: '%s'", arg);
6387 				print_usage(argv[0]);
6388 				rtld_die();
6389 			}
6390 		}
6391 	}
6392 
6393 	if (!seen_b)
6394 		*argv0 = argv[i];
6395 	return (i);
6396 }
6397 
6398 /*
6399  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6400  */
6401 static int
parse_integer(const char * str)6402 parse_integer(const char *str)
6403 {
6404 	static const int RADIX = 10; /* XXXJA: possibly support hex? */
6405 	const char *orig;
6406 	int n;
6407 	char c;
6408 
6409 	orig = str;
6410 	n = 0;
6411 	for (c = *str; c != '\0'; c = *++str) {
6412 		if (c < '0' || c > '9')
6413 			return (-1);
6414 
6415 		n *= RADIX;
6416 		n += c - '0';
6417 	}
6418 
6419 	/* Make sure we actually parsed something. */
6420 	if (str == orig)
6421 		return (-1);
6422 	return (n);
6423 }
6424 
6425 static void
print_usage(const char * argv0)6426 print_usage(const char *argv0)
6427 {
6428 	rtld_printf(
6429 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6430 	    "\n"
6431 	    "Options:\n"
6432 	    "  -h        Display this help message\n"
6433 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6434 	    "  -d        Ignore lack of exec permissions for the binary\n"
6435 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6436 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6437 	    "  -p        Search in PATH for named binary\n"
6438 	    "  -u        Ignore LD_ environment variables\n"
6439 	    "  -v        Display identification information\n"
6440 	    "  --        End of RTLD options\n"
6441 	    "  <binary>  Name of process to execute\n"
6442 	    "  <args>    Arguments to the executed process\n",
6443 	    argv0);
6444 }
6445 
6446 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6447 static const struct auxfmt {
6448 	const char *name;
6449 	const char *fmt;
6450 } auxfmts[] = {
6451 	AUXFMT(AT_NULL, NULL),
6452 	AUXFMT(AT_IGNORE, NULL),
6453 	AUXFMT(AT_EXECFD, "%ld"),
6454 	AUXFMT(AT_PHDR, "%p"),
6455 	AUXFMT(AT_PHENT, "%lu"),
6456 	AUXFMT(AT_PHNUM, "%lu"),
6457 	AUXFMT(AT_PAGESZ, "%lu"),
6458 	AUXFMT(AT_BASE, "%#lx"),
6459 	AUXFMT(AT_FLAGS, "%#lx"),
6460 	AUXFMT(AT_ENTRY, "%p"),
6461 	AUXFMT(AT_NOTELF, NULL),
6462 	AUXFMT(AT_UID, "%ld"),
6463 	AUXFMT(AT_EUID, "%ld"),
6464 	AUXFMT(AT_GID, "%ld"),
6465 	AUXFMT(AT_EGID, "%ld"),
6466 	AUXFMT(AT_EXECPATH, "%s"),
6467 	AUXFMT(AT_CANARY, "%p"),
6468 	AUXFMT(AT_CANARYLEN, "%lu"),
6469 	AUXFMT(AT_OSRELDATE, "%lu"),
6470 	AUXFMT(AT_NCPUS, "%lu"),
6471 	AUXFMT(AT_PAGESIZES, "%p"),
6472 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6473 	AUXFMT(AT_TIMEKEEP, "%p"),
6474 	AUXFMT(AT_STACKPROT, "%#lx"),
6475 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6476 	AUXFMT(AT_HWCAP, "%#lx"),
6477 	AUXFMT(AT_HWCAP2, "%#lx"),
6478 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6479 	AUXFMT(AT_ARGC, "%lu"),
6480 	AUXFMT(AT_ARGV, "%p"),
6481 	AUXFMT(AT_ENVC, "%p"),
6482 	AUXFMT(AT_ENVV, "%p"),
6483 	AUXFMT(AT_PS_STRINGS, "%p"),
6484 	AUXFMT(AT_FXRNG, "%p"),
6485 	AUXFMT(AT_KPRELOAD, "%p"),
6486 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6487 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6488 	/* AT_CHERI_STATS */
6489 	AUXFMT(AT_HWCAP3, "%#lx"),
6490 	AUXFMT(AT_HWCAP4, "%#lx"),
6491 
6492 };
6493 
6494 static bool
is_ptr_fmt(const char * fmt)6495 is_ptr_fmt(const char *fmt)
6496 {
6497 	char last;
6498 
6499 	last = fmt[strlen(fmt) - 1];
6500 	return (last == 'p' || last == 's');
6501 }
6502 
6503 static void
dump_auxv(Elf_Auxinfo ** aux_info)6504 dump_auxv(Elf_Auxinfo **aux_info)
6505 {
6506 	Elf_Auxinfo *auxp;
6507 	const struct auxfmt *fmt;
6508 	int i;
6509 
6510 	for (i = 0; i < AT_COUNT; i++) {
6511 		auxp = aux_info[i];
6512 		if (auxp == NULL)
6513 			continue;
6514 		fmt = &auxfmts[i];
6515 		if (fmt->fmt == NULL)
6516 			continue;
6517 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6518 		if (is_ptr_fmt(fmt->fmt)) {
6519 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6520 			    auxp->a_un.a_ptr);
6521 		} else {
6522 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6523 			    auxp->a_un.a_val);
6524 		}
6525 		rtld_fdprintf(STDOUT_FILENO, "\n");
6526 	}
6527 }
6528 
6529 const char *
rtld_get_var(const char * name)6530 rtld_get_var(const char *name)
6531 {
6532 	const struct ld_env_var_desc *lvd;
6533 	u_int i;
6534 
6535 	for (i = 0; i < nitems(ld_env_vars); i++) {
6536 		lvd = &ld_env_vars[i];
6537 		if (strcmp(lvd->n, name) == 0)
6538 			return (lvd->val);
6539 	}
6540 	return (NULL);
6541 }
6542 
6543 int
rtld_set_var(const char * name,const char * val)6544 rtld_set_var(const char *name, const char *val)
6545 {
6546 	struct ld_env_var_desc *lvd;
6547 	u_int i;
6548 
6549 	for (i = 0; i < nitems(ld_env_vars); i++) {
6550 		lvd = &ld_env_vars[i];
6551 		if (strcmp(lvd->n, name) != 0)
6552 			continue;
6553 		if (!lvd->can_update || (lvd->unsecure && !trust))
6554 			return (EPERM);
6555 		if (lvd->owned)
6556 			free(__DECONST(char *, lvd->val));
6557 		if (val != NULL)
6558 			lvd->val = xstrdup(val);
6559 		else
6560 			lvd->val = NULL;
6561 		lvd->owned = true;
6562 		if (lvd->debug)
6563 			debug = lvd->val != NULL && *lvd->val != '\0';
6564 		return (0);
6565 	}
6566 	return (ENOENT);
6567 }
6568 
6569 /*
6570  * Overrides for libc_pic-provided functions.
6571  */
6572 
6573 int
__getosreldate(void)6574 __getosreldate(void)
6575 {
6576 	size_t len;
6577 	int oid[2];
6578 	int error, osrel;
6579 
6580 	if (osreldate != 0)
6581 		return (osreldate);
6582 
6583 	oid[0] = CTL_KERN;
6584 	oid[1] = KERN_OSRELDATE;
6585 	osrel = 0;
6586 	len = sizeof(osrel);
6587 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6588 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6589 		osreldate = osrel;
6590 	return (osreldate);
6591 }
6592 const char *
rtld_strerror(int errnum)6593 rtld_strerror(int errnum)
6594 {
6595 	if (errnum < 0 || errnum >= sys_nerr)
6596 		return ("Unknown error");
6597 	return (sys_errlist[errnum]);
6598 }
6599 
6600 char *
getenv(const char * name)6601 getenv(const char *name)
6602 {
6603 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6604 	    strlen(name))));
6605 }
6606 
6607 /* malloc */
6608 void *
malloc(size_t nbytes)6609 malloc(size_t nbytes)
6610 {
6611 	return (__crt_malloc(nbytes));
6612 }
6613 
6614 void *
calloc(size_t num,size_t size)6615 calloc(size_t num, size_t size)
6616 {
6617 	return (__crt_calloc(num, size));
6618 }
6619 
6620 void
free(void * cp)6621 free(void *cp)
6622 {
6623 	__crt_free(cp);
6624 }
6625 
6626 void *
realloc(void * cp,size_t nbytes)6627 realloc(void *cp, size_t nbytes)
6628 {
6629 	return (__crt_realloc(cp, nbytes));
6630 }
6631 
6632 extern int _rtld_version__FreeBSD_version __exported;
6633 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6634 
6635 extern char _rtld_version_laddr_offset __exported;
6636 char _rtld_version_laddr_offset;
6637 
6638 extern char _rtld_version_dlpi_tls_data __exported;
6639 char _rtld_version_dlpi_tls_data;
6640