xref: /freebsd/sys/powerpc/booke/pmap.c (revision 61c1368f22f955fa16003daa7db29d8bdd24d4cc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 #include "opt_ddb.h"
78 #include "opt_kstack_pages.h"
79 
80 #include <sys/param.h>
81 #include <sys/conf.h>
82 #include <sys/malloc.h>
83 #include <sys/ktr.h>
84 #include <sys/proc.h>
85 #include <sys/user.h>
86 #include <sys/queue.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/kerneldump.h>
90 #include <sys/linker.h>
91 #include <sys/msgbuf.h>
92 #include <sys/lock.h>
93 #include <sys/mutex.h>
94 #include <sys/rwlock.h>
95 #include <sys/sched.h>
96 #include <sys/smp.h>
97 #include <sys/vmmeter.h>
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_phys.h>
109 #include <vm/vm_pagequeue.h>
110 #include <vm/vm_radix.h>
111 #include <vm/vm_dumpset.h>
112 #include <vm/uma.h>
113 
114 #include <machine/_inttypes.h>
115 #include <machine/cpu.h>
116 #include <machine/pcb.h>
117 #include <machine/platform.h>
118 
119 #include <machine/tlb.h>
120 #include <machine/spr.h>
121 #include <machine/md_var.h>
122 #include <machine/mmuvar.h>
123 #include <machine/pmap.h>
124 #include <machine/pte.h>
125 
126 #include <ddb/ddb.h>
127 
128 #define	SPARSE_MAPDEV
129 
130 /* Use power-of-two mappings in mmu_booke_mapdev(), to save entries. */
131 #define	POW2_MAPPINGS
132 
133 #ifdef  DEBUG
134 #define debugf(fmt, args...) printf(fmt, ##args)
135 #define	__debug_used
136 #else
137 #define debugf(fmt, args...)
138 #define	__debug_used	__unused
139 #endif
140 
141 #ifdef __powerpc64__
142 #define	PRI0ptrX	"016lx"
143 #else
144 #define	PRI0ptrX	"08x"
145 #endif
146 
147 #define TODO			panic("%s: not implemented", __func__);
148 
149 extern unsigned char _etext[];
150 extern unsigned char _end[];
151 
152 extern uint32_t *bootinfo;
153 
154 vm_paddr_t kernload;
155 vm_offset_t kernstart;
156 vm_size_t kernsize;
157 
158 /* Message buffer and tables. */
159 static vm_offset_t data_start;
160 static vm_size_t data_end;
161 
162 /* Phys/avail memory regions. */
163 static struct mem_region *availmem_regions;
164 static int availmem_regions_sz;
165 static struct mem_region *physmem_regions;
166 static int physmem_regions_sz;
167 
168 #ifndef __powerpc64__
169 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
170 static vm_offset_t zero_page_va;
171 static struct mtx zero_page_mutex;
172 
173 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
174 static vm_offset_t copy_page_src_va;
175 static vm_offset_t copy_page_dst_va;
176 static struct mtx copy_page_mutex;
177 #endif
178 
179 static struct mtx tlbivax_mutex;
180 
181 /**************************************************************************/
182 /* PMAP */
183 /**************************************************************************/
184 
185 static int mmu_booke_enter_locked(pmap_t, vm_offset_t, vm_page_t,
186     vm_prot_t, u_int flags, int8_t psind);
187 
188 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
189 static uma_zone_t ptbl_root_zone;
190 
191 /*
192  * If user pmap is processed with mmu_booke_remove and the resident count
193  * drops to 0, there are no more pages to remove, so we need not continue.
194  */
195 #define PMAP_REMOVE_DONE(pmap) \
196 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
197 
198 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
199 extern int elf32_nxstack;
200 #endif
201 
202 /**************************************************************************/
203 /* TLB and TID handling */
204 /**************************************************************************/
205 
206 /* Translation ID busy table */
207 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
208 
209 /*
210  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
211  * core revisions and should be read from h/w registers during early config.
212  */
213 uint32_t tlb0_entries;
214 uint32_t tlb0_ways;
215 uint32_t tlb0_entries_per_way;
216 uint32_t tlb1_entries;
217 
218 #define TLB0_ENTRIES		(tlb0_entries)
219 #define TLB0_WAYS		(tlb0_ways)
220 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
221 
222 #define TLB1_ENTRIES (tlb1_entries)
223 
224 static tlbtid_t tid_alloc(struct pmap *);
225 
226 #ifdef DDB
227 #ifdef __powerpc64__
228 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
229 #else
230 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
231 #endif
232 #endif
233 
234 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
235 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
236 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
237 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
238 
239 static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma);
240 
241 static vm_size_t tsize2size(unsigned int);
242 static unsigned int size2tsize(vm_size_t);
243 
244 static void set_mas4_defaults(void);
245 
246 static inline void tlb0_flush_entry(vm_offset_t);
247 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
248 
249 /**************************************************************************/
250 /* Page table management */
251 /**************************************************************************/
252 
253 static struct rwlock_padalign pvh_global_lock;
254 
255 /* Data for the pv entry allocation mechanism */
256 static uma_zone_t pvzone;
257 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
258 
259 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
260 
261 #ifndef PMAP_SHPGPERPROC
262 #define PMAP_SHPGPERPROC	200
263 #endif
264 
265 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
266 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, bool);
267 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
268 static pte_t *pte_find(pmap_t, vm_offset_t);
269 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
270 
271 static pv_entry_t pv_alloc(void);
272 static void pv_free(pv_entry_t);
273 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
274 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
275 
276 static void booke_pmap_init_qpages(void);
277 
278 static inline void tlb_miss_lock(void);
279 static inline void tlb_miss_unlock(void);
280 
281 #ifdef SMP
282 extern tlb_entry_t __boot_tlb1[];
283 void pmap_bootstrap_ap(volatile uint32_t *);
284 #endif
285 
286 /*
287  * Kernel MMU interface
288  */
289 static void		mmu_booke_clear_modify(vm_page_t);
290 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t,
291     vm_size_t, vm_offset_t);
292 static void		mmu_booke_copy_page(vm_page_t, vm_page_t);
293 static void		mmu_booke_copy_pages(vm_page_t *,
294     vm_offset_t, vm_page_t *, vm_offset_t, int);
295 static int		mmu_booke_enter(pmap_t, vm_offset_t, vm_page_t,
296     vm_prot_t, u_int flags, int8_t psind);
297 static void		mmu_booke_enter_object(pmap_t, vm_offset_t, vm_offset_t,
298     vm_page_t, vm_prot_t);
299 static void		mmu_booke_enter_quick(pmap_t, vm_offset_t, vm_page_t,
300     vm_prot_t);
301 static vm_paddr_t	mmu_booke_extract(pmap_t, vm_offset_t);
302 static vm_page_t	mmu_booke_extract_and_hold(pmap_t, vm_offset_t,
303     vm_prot_t);
304 static void		mmu_booke_init(void);
305 static bool		mmu_booke_is_modified(vm_page_t);
306 static bool		mmu_booke_is_prefaultable(pmap_t, vm_offset_t);
307 static bool		mmu_booke_is_referenced(vm_page_t);
308 static int		mmu_booke_ts_referenced(vm_page_t);
309 static vm_offset_t	mmu_booke_map(vm_offset_t *, vm_paddr_t, vm_paddr_t,
310     int);
311 static int		mmu_booke_mincore(pmap_t, vm_offset_t,
312     vm_paddr_t *);
313 static void		mmu_booke_object_init_pt(pmap_t, vm_offset_t,
314     vm_object_t, vm_pindex_t, vm_size_t);
315 static bool		mmu_booke_page_exists_quick(pmap_t, vm_page_t);
316 static void		mmu_booke_page_init(vm_page_t);
317 static int		mmu_booke_page_wired_mappings(vm_page_t);
318 static int		mmu_booke_pinit(pmap_t);
319 static void		mmu_booke_pinit0(pmap_t);
320 static void		mmu_booke_protect(pmap_t, vm_offset_t, vm_offset_t,
321     vm_prot_t);
322 static void		mmu_booke_qenter(vm_offset_t, vm_page_t *, int);
323 static void		mmu_booke_qremove(vm_offset_t, int);
324 static void		mmu_booke_release(pmap_t);
325 static void		mmu_booke_remove(pmap_t, vm_offset_t, vm_offset_t);
326 static void		mmu_booke_remove_all(vm_page_t);
327 static void		mmu_booke_remove_write(vm_page_t);
328 static void		mmu_booke_unwire(pmap_t, vm_offset_t, vm_offset_t);
329 static void		mmu_booke_zero_page(vm_page_t);
330 static void		mmu_booke_zero_page_area(vm_page_t, int, int);
331 static void		mmu_booke_activate(struct thread *);
332 static void		mmu_booke_deactivate(struct thread *);
333 static void		mmu_booke_bootstrap(vm_offset_t, vm_offset_t);
334 static void		*mmu_booke_mapdev(vm_paddr_t, vm_size_t);
335 static void		*mmu_booke_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
336 static void		mmu_booke_unmapdev(void *, vm_size_t);
337 static vm_paddr_t	mmu_booke_kextract(vm_offset_t);
338 static void		mmu_booke_kenter(vm_offset_t, vm_paddr_t);
339 static void		mmu_booke_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
340 static void		mmu_booke_kremove(vm_offset_t);
341 static int		mmu_booke_dev_direct_mapped(vm_paddr_t, vm_size_t);
342 static void		mmu_booke_sync_icache(pmap_t, vm_offset_t,
343     vm_size_t);
344 static void		mmu_booke_dumpsys_map(vm_paddr_t pa, size_t,
345     void **);
346 static void		mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t,
347     void *);
348 static void		mmu_booke_scan_init(void);
349 static vm_offset_t	mmu_booke_quick_enter_page(vm_page_t m);
350 static void		mmu_booke_quick_remove_page(vm_offset_t addr);
351 static int		mmu_booke_change_attr(vm_offset_t addr,
352     vm_size_t sz, vm_memattr_t mode);
353 static int		mmu_booke_decode_kernel_ptr(vm_offset_t addr,
354     int *is_user, vm_offset_t *decoded_addr);
355 static void		mmu_booke_page_array_startup(long);
356 static bool mmu_booke_page_is_mapped(vm_page_t m);
357 static bool mmu_booke_ps_enabled(pmap_t pmap);
358 
359 static struct pmap_funcs mmu_booke_methods = {
360 	/* pmap dispatcher interface */
361 	.clear_modify = mmu_booke_clear_modify,
362 	.copy = mmu_booke_copy,
363 	.copy_page = mmu_booke_copy_page,
364 	.copy_pages = mmu_booke_copy_pages,
365 	.enter = mmu_booke_enter,
366 	.enter_object = mmu_booke_enter_object,
367 	.enter_quick = mmu_booke_enter_quick,
368 	.extract = mmu_booke_extract,
369 	.extract_and_hold = mmu_booke_extract_and_hold,
370 	.init = mmu_booke_init,
371 	.is_modified = mmu_booke_is_modified,
372 	.is_prefaultable = mmu_booke_is_prefaultable,
373 	.is_referenced = mmu_booke_is_referenced,
374 	.ts_referenced = mmu_booke_ts_referenced,
375 	.map = mmu_booke_map,
376 	.mincore = mmu_booke_mincore,
377 	.object_init_pt = mmu_booke_object_init_pt,
378 	.page_exists_quick = mmu_booke_page_exists_quick,
379 	.page_init = mmu_booke_page_init,
380 	.page_wired_mappings =  mmu_booke_page_wired_mappings,
381 	.pinit = mmu_booke_pinit,
382 	.pinit0 = mmu_booke_pinit0,
383 	.protect = mmu_booke_protect,
384 	.qenter = mmu_booke_qenter,
385 	.qremove = mmu_booke_qremove,
386 	.release = mmu_booke_release,
387 	.remove = mmu_booke_remove,
388 	.remove_all = mmu_booke_remove_all,
389 	.remove_write = mmu_booke_remove_write,
390 	.sync_icache = mmu_booke_sync_icache,
391 	.unwire = mmu_booke_unwire,
392 	.zero_page = mmu_booke_zero_page,
393 	.zero_page_area = mmu_booke_zero_page_area,
394 	.activate = mmu_booke_activate,
395 	.deactivate = mmu_booke_deactivate,
396 	.quick_enter_page =  mmu_booke_quick_enter_page,
397 	.quick_remove_page =  mmu_booke_quick_remove_page,
398 	.page_array_startup = mmu_booke_page_array_startup,
399 	.page_is_mapped = mmu_booke_page_is_mapped,
400 	.ps_enabled = mmu_booke_ps_enabled,
401 
402 	/* Internal interfaces */
403 	.bootstrap = mmu_booke_bootstrap,
404 	.dev_direct_mapped = mmu_booke_dev_direct_mapped,
405 	.mapdev = mmu_booke_mapdev,
406 	.mapdev_attr = mmu_booke_mapdev_attr,
407 	.kenter = mmu_booke_kenter,
408 	.kenter_attr = mmu_booke_kenter_attr,
409 	.kextract = mmu_booke_kextract,
410 	.kremove = mmu_booke_kremove,
411 	.unmapdev = mmu_booke_unmapdev,
412 	.change_attr = mmu_booke_change_attr,
413 	.decode_kernel_ptr =  mmu_booke_decode_kernel_ptr,
414 
415 	/* dumpsys() support */
416 	.dumpsys_map_chunk = mmu_booke_dumpsys_map,
417 	.dumpsys_unmap_chunk = mmu_booke_dumpsys_unmap,
418 	.dumpsys_pa_init = mmu_booke_scan_init,
419 };
420 
421 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods);
422 
423 #ifdef __powerpc64__
424 #include "pmap_64.c"
425 #else
426 #include "pmap_32.c"
427 #endif
428 
429 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
430 
431 static __inline uint32_t
tlb_calc_wimg(vm_paddr_t pa,vm_memattr_t ma)432 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
433 {
434 	uint32_t attrib;
435 	int i;
436 
437 	if (ma != VM_MEMATTR_DEFAULT) {
438 		switch (ma) {
439 		case VM_MEMATTR_UNCACHEABLE:
440 			return (MAS2_I | MAS2_G);
441 		case VM_MEMATTR_WRITE_COMBINING:
442 		case VM_MEMATTR_WRITE_BACK:
443 		case VM_MEMATTR_PREFETCHABLE:
444 			return (MAS2_I);
445 		case VM_MEMATTR_WRITE_THROUGH:
446 			return (MAS2_W | MAS2_M);
447 		case VM_MEMATTR_CACHEABLE:
448 			return (MAS2_M);
449 		}
450 	}
451 
452 	/*
453 	 * Assume the page is cache inhibited and access is guarded unless
454 	 * it's in our available memory array.
455 	 */
456 	attrib = _TLB_ENTRY_IO;
457 	for (i = 0; i < physmem_regions_sz; i++) {
458 		if ((pa >= physmem_regions[i].mr_start) &&
459 		    (pa < (physmem_regions[i].mr_start +
460 		     physmem_regions[i].mr_size))) {
461 			attrib = _TLB_ENTRY_MEM;
462 			break;
463 		}
464 	}
465 
466 	return (attrib);
467 }
468 
469 static inline void
tlb_miss_lock(void)470 tlb_miss_lock(void)
471 {
472 #ifdef SMP
473 	struct pcpu *pc;
474 
475 	if (!smp_started)
476 		return;
477 
478 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
479 		if (pc != pcpup) {
480 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
481 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
482 
483 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
484 			    ("tlb_miss_lock: tried to lock self"));
485 
486 			tlb_lock(pc->pc_booke.tlb_lock);
487 
488 			CTR1(KTR_PMAP, "%s: locked", __func__);
489 		}
490 	}
491 #endif
492 }
493 
494 static inline void
tlb_miss_unlock(void)495 tlb_miss_unlock(void)
496 {
497 #ifdef SMP
498 	struct pcpu *pc;
499 
500 	if (!smp_started)
501 		return;
502 
503 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
504 		if (pc != pcpup) {
505 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
506 			    __func__, pc->pc_cpuid);
507 
508 			tlb_unlock(pc->pc_booke.tlb_lock);
509 
510 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
511 		}
512 	}
513 #endif
514 }
515 
516 /* Return number of entries in TLB0. */
517 static __inline void
tlb0_get_tlbconf(void)518 tlb0_get_tlbconf(void)
519 {
520 	uint32_t tlb0_cfg;
521 
522 	tlb0_cfg = mfspr(SPR_TLB0CFG);
523 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
524 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
525 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
526 }
527 
528 /* Return number of entries in TLB1. */
529 static __inline void
tlb1_get_tlbconf(void)530 tlb1_get_tlbconf(void)
531 {
532 	uint32_t tlb1_cfg;
533 
534 	tlb1_cfg = mfspr(SPR_TLB1CFG);
535 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
536 }
537 
538 /**************************************************************************/
539 /* Page table related */
540 /**************************************************************************/
541 
542 /* Allocate pv_entry structure. */
543 pv_entry_t
pv_alloc(void)544 pv_alloc(void)
545 {
546 	pv_entry_t pv;
547 
548 	pv_entry_count++;
549 	if (pv_entry_count > pv_entry_high_water)
550 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
551 	pv = uma_zalloc(pvzone, M_NOWAIT);
552 
553 	return (pv);
554 }
555 
556 /* Free pv_entry structure. */
557 static __inline void
pv_free(pv_entry_t pve)558 pv_free(pv_entry_t pve)
559 {
560 
561 	pv_entry_count--;
562 	uma_zfree(pvzone, pve);
563 }
564 
565 /* Allocate and initialize pv_entry structure. */
566 static void
pv_insert(pmap_t pmap,vm_offset_t va,vm_page_t m)567 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
568 {
569 	pv_entry_t pve;
570 
571 	//int su = (pmap == kernel_pmap);
572 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
573 	//	(u_int32_t)pmap, va, (u_int32_t)m);
574 
575 	pve = pv_alloc();
576 	if (pve == NULL)
577 		panic("pv_insert: no pv entries!");
578 
579 	pve->pv_pmap = pmap;
580 	pve->pv_va = va;
581 
582 	/* add to pv_list */
583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
584 	rw_assert(&pvh_global_lock, RA_WLOCKED);
585 
586 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
587 
588 	//debugf("pv_insert: e\n");
589 }
590 
591 /* Destroy pv entry. */
592 static void
pv_remove(pmap_t pmap,vm_offset_t va,vm_page_t m)593 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
594 {
595 	pv_entry_t pve;
596 
597 	//int su = (pmap == kernel_pmap);
598 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
599 
600 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
601 	rw_assert(&pvh_global_lock, RA_WLOCKED);
602 
603 	/* find pv entry */
604 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
605 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
606 			/* remove from pv_list */
607 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
608 			if (TAILQ_EMPTY(&m->md.pv_list))
609 				vm_page_aflag_clear(m, PGA_WRITEABLE);
610 
611 			/* free pv entry struct */
612 			pv_free(pve);
613 			break;
614 		}
615 	}
616 
617 	//debugf("pv_remove: e\n");
618 }
619 
620 /**************************************************************************/
621 /* PMAP related */
622 /**************************************************************************/
623 
624 /*
625  * This is called during booke_init, before the system is really initialized.
626  */
627 static void
mmu_booke_bootstrap(vm_offset_t start,vm_offset_t kernelend)628 mmu_booke_bootstrap(vm_offset_t start, vm_offset_t kernelend)
629 {
630 	vm_paddr_t phys_kernelend;
631 	struct mem_region *mp, *mp1;
632 	int cnt, i, j;
633 	vm_paddr_t s, e, sz;
634 	vm_paddr_t physsz, hwphyssz;
635 	u_int phys_avail_count __debug_used;
636 	vm_size_t kstack0_sz;
637 	vm_paddr_t kstack0_phys;
638 	vm_offset_t kstack0;
639 	void *dpcpu;
640 
641 	debugf("mmu_booke_bootstrap: entered\n");
642 
643 	/* Set interesting system properties */
644 #ifdef __powerpc64__
645 	hw_direct_map = 1;
646 #else
647 	hw_direct_map = 0;
648 #endif
649 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
650 	elf32_nxstack = 1;
651 #endif
652 
653 	/* Initialize invalidation mutex */
654 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
655 
656 	/* Read TLB0 size and associativity. */
657 	tlb0_get_tlbconf();
658 
659 	/*
660 	 * Align kernel start and end address (kernel image).
661 	 * Note that kernel end does not necessarily relate to kernsize.
662 	 * kernsize is the size of the kernel that is actually mapped.
663 	 */
664 	data_start = round_page(kernelend);
665 	data_end = data_start;
666 
667 	/* Allocate the dynamic per-cpu area. */
668 	dpcpu = (void *)data_end;
669 	data_end += DPCPU_SIZE;
670 
671 	/* Allocate space for the message buffer. */
672 	msgbufp = (struct msgbuf *)data_end;
673 	data_end += msgbufsize;
674 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
675 	    (uintptr_t)msgbufp, data_end);
676 
677 	data_end = round_page(data_end);
678 	data_end = round_page(mmu_booke_alloc_kernel_pgtables(data_end));
679 
680 	/* Retrieve phys/avail mem regions */
681 	mem_regions(&physmem_regions, &physmem_regions_sz,
682 	    &availmem_regions, &availmem_regions_sz);
683 
684 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
685 		panic("mmu_booke_bootstrap: phys_avail too small");
686 
687 	data_end = round_page(data_end);
688 	vm_page_array = (vm_page_t)data_end;
689 	/*
690 	 * Get a rough idea (upper bound) on the size of the page array.  The
691 	 * vm_page_array will not handle any more pages than we have in the
692 	 * avail_regions array, and most likely much less.
693 	 */
694 	sz = 0;
695 	for (mp = availmem_regions; mp->mr_size; mp++) {
696 		sz += mp->mr_size;
697 	}
698 	sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
699 	data_end += round_page(sz * sizeof(struct vm_page));
700 
701 	/* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
702 	data_end = roundup2(data_end, 1 << 20);
703 
704 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
705 	debugf(" kernstart: %#zx\n", kernstart);
706 	debugf(" kernsize: %#zx\n", kernsize);
707 
708 	if (data_end - kernstart > kernsize) {
709 		kernsize += tlb1_mapin_region(kernstart + kernsize,
710 		    kernload + kernsize, (data_end - kernstart) - kernsize,
711 		    _TLB_ENTRY_MEM);
712 	}
713 	data_end = kernstart + kernsize;
714 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
715 
716 	/*
717 	 * Clear the structures - note we can only do it safely after the
718 	 * possible additional TLB1 translations are in place (above) so that
719 	 * all range up to the currently calculated 'data_end' is covered.
720 	 */
721 	bzero((void *)data_start, data_end - data_start);
722 	dpcpu_init(dpcpu, 0);
723 
724 	/*******************************************************/
725 	/* Set the start and end of kva. */
726 	/*******************************************************/
727 	virtual_avail = round_page(data_end);
728 	virtual_end = VM_MAX_KERNEL_ADDRESS;
729 
730 #ifndef __powerpc64__
731 	/* Allocate KVA space for page zero/copy operations. */
732 	zero_page_va = virtual_avail;
733 	virtual_avail += PAGE_SIZE;
734 	copy_page_src_va = virtual_avail;
735 	virtual_avail += PAGE_SIZE;
736 	copy_page_dst_va = virtual_avail;
737 	virtual_avail += PAGE_SIZE;
738 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
739 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
740 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
741 
742 	/* Initialize page zero/copy mutexes. */
743 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
744 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
745 
746 	/* Allocate KVA space for ptbl bufs. */
747 	ptbl_buf_pool_vabase = virtual_avail;
748 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
749 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
750 	    ptbl_buf_pool_vabase, virtual_avail);
751 #endif
752 #ifdef	__powerpc64__
753 	/* Allocate KVA space for crashdumpmap. */
754 	crashdumpmap = (caddr_t)virtual_avail;
755 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
756 #endif
757 
758 	/* Calculate corresponding physical addresses for the kernel region. */
759 	phys_kernelend = kernload + kernsize;
760 	debugf("kernel image and allocated data:\n");
761 	debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
762 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
763 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
764 
765 	/*
766 	 * Remove kernel physical address range from avail regions list. Page
767 	 * align all regions.  Non-page aligned memory isn't very interesting
768 	 * to us.  Also, sort the entries for ascending addresses.
769 	 */
770 
771 	sz = 0;
772 	cnt = availmem_regions_sz;
773 	debugf("processing avail regions:\n");
774 	for (mp = availmem_regions; mp->mr_size; mp++) {
775 		s = mp->mr_start;
776 		e = mp->mr_start + mp->mr_size;
777 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
778 		/* Check whether this region holds all of the kernel. */
779 		if (s < kernload && e > phys_kernelend) {
780 			availmem_regions[cnt].mr_start = phys_kernelend;
781 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
782 			e = kernload;
783 		}
784 		/* Look whether this regions starts within the kernel. */
785 		if (s >= kernload && s < phys_kernelend) {
786 			if (e <= phys_kernelend)
787 				goto empty;
788 			s = phys_kernelend;
789 		}
790 		/* Now look whether this region ends within the kernel. */
791 		if (e > kernload && e <= phys_kernelend) {
792 			if (s >= kernload)
793 				goto empty;
794 			e = kernload;
795 		}
796 		/* Now page align the start and size of the region. */
797 		s = round_page(s);
798 		e = trunc_page(e);
799 		if (e < s)
800 			e = s;
801 		sz = e - s;
802 		debugf("%09jx-%09jx = %jx\n",
803 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
804 
805 		/* Check whether some memory is left here. */
806 		if (sz == 0) {
807 		empty:
808 			memmove(mp, mp + 1,
809 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
810 			cnt--;
811 			mp--;
812 			continue;
813 		}
814 
815 		/* Do an insertion sort. */
816 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
817 			if (s < mp1->mr_start)
818 				break;
819 		if (mp1 < mp) {
820 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
821 			mp1->mr_start = s;
822 			mp1->mr_size = sz;
823 		} else {
824 			mp->mr_start = s;
825 			mp->mr_size = sz;
826 		}
827 	}
828 	availmem_regions_sz = cnt;
829 
830 	/*******************************************************/
831 	/* Steal physical memory for kernel stack from the end */
832 	/* of the first avail region                           */
833 	/*******************************************************/
834 	kstack0_sz = kstack_pages * PAGE_SIZE;
835 	kstack0_phys = availmem_regions[0].mr_start +
836 	    availmem_regions[0].mr_size;
837 	kstack0_phys -= kstack0_sz;
838 	availmem_regions[0].mr_size -= kstack0_sz;
839 
840 	/*******************************************************/
841 	/* Fill in phys_avail table, based on availmem_regions */
842 	/*******************************************************/
843 	phys_avail_count = 0;
844 	physsz = 0;
845 	hwphyssz = 0;
846 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
847 
848 	debugf("fill in phys_avail:\n");
849 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
850 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
851 		    (uintmax_t)availmem_regions[i].mr_start,
852 		    (uintmax_t)availmem_regions[i].mr_start +
853 		        availmem_regions[i].mr_size,
854 		    (uintmax_t)availmem_regions[i].mr_size);
855 
856 		if (hwphyssz != 0 &&
857 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
858 			debugf(" hw.physmem adjust\n");
859 			if (physsz < hwphyssz) {
860 				phys_avail[j] = availmem_regions[i].mr_start;
861 				phys_avail[j + 1] =
862 				    availmem_regions[i].mr_start +
863 				    hwphyssz - physsz;
864 				physsz = hwphyssz;
865 				phys_avail_count++;
866 				dump_avail[j] = phys_avail[j];
867 				dump_avail[j + 1] = phys_avail[j + 1];
868 			}
869 			break;
870 		}
871 
872 		phys_avail[j] = availmem_regions[i].mr_start;
873 		phys_avail[j + 1] = availmem_regions[i].mr_start +
874 		    availmem_regions[i].mr_size;
875 		phys_avail_count++;
876 		physsz += availmem_regions[i].mr_size;
877 		dump_avail[j] = phys_avail[j];
878 		dump_avail[j + 1] = phys_avail[j + 1];
879 	}
880 	physmem = btoc(physsz);
881 
882 	/* Calculate the last available physical address. */
883 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
884 		;
885 	Maxmem = powerpc_btop(phys_avail[i + 1]);
886 
887 	debugf("Maxmem = 0x%08lx\n", Maxmem);
888 	debugf("phys_avail_count = %d\n", phys_avail_count);
889 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
890 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
891 
892 #ifdef __powerpc64__
893 	/*
894 	 * Map the physical memory contiguously in TLB1.
895 	 * Round so it fits into a single mapping.
896 	 */
897 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
898 	    phys_avail[i + 1], _TLB_ENTRY_MEM);
899 #endif
900 
901 	/*******************************************************/
902 	/* Initialize (statically allocated) kernel pmap. */
903 	/*******************************************************/
904 	PMAP_LOCK_INIT(kernel_pmap);
905 
906 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
907 	kernel_pte_alloc(virtual_avail, kernstart);
908 	for (i = 0; i < MAXCPU; i++) {
909 		kernel_pmap->pm_tid[i] = TID_KERNEL;
910 
911 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
912 		tidbusy[i][TID_KERNEL] = kernel_pmap;
913 	}
914 
915 	/* Mark kernel_pmap active on all CPUs */
916 	CPU_FILL(&kernel_pmap->pm_active);
917 
918  	/*
919 	 * Initialize the global pv list lock.
920 	 */
921 	rw_init(&pvh_global_lock, "pmap pv global");
922 
923 	/*******************************************************/
924 	/* Final setup */
925 	/*******************************************************/
926 
927 	/* Enter kstack0 into kernel map, provide guard page */
928 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
929 	thread0.td_kstack = kstack0;
930 	thread0.td_kstack_pages = kstack_pages;
931 
932 	debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
933 	debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
934 	    (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
935 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
936 	    kstack0, kstack0 + kstack0_sz);
937 
938 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
939 	for (i = 0; i < kstack_pages; i++) {
940 		mmu_booke_kenter(kstack0, kstack0_phys);
941 		kstack0 += PAGE_SIZE;
942 		kstack0_phys += PAGE_SIZE;
943 	}
944 
945 	pmap_bootstrapped = 1;
946 
947 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
948 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
949 
950 	debugf("mmu_booke_bootstrap: exit\n");
951 }
952 
953 #ifdef SMP
954 void
tlb1_ap_prep(void)955 tlb1_ap_prep(void)
956 {
957 	tlb_entry_t *e, tmp;
958 	unsigned int i;
959 
960 	/* Prepare TLB1 image for AP processors */
961 	e = __boot_tlb1;
962 	for (i = 0; i < TLB1_ENTRIES; i++) {
963 		tlb1_read_entry(&tmp, i);
964 
965 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
966 			memcpy(e++, &tmp, sizeof(tmp));
967 	}
968 }
969 
970 void
pmap_bootstrap_ap(volatile uint32_t * trcp __unused)971 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
972 {
973 	int i;
974 
975 	/*
976 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
977 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
978 	 * created by tlb1_ap_prep(), so use these values directly to
979 	 * (re)program AP's TLB1 hardware.
980 	 *
981 	 * Start at index 1 because index 0 has the kernel map.
982 	 */
983 	for (i = 1; i < TLB1_ENTRIES; i++) {
984 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
985 			tlb1_write_entry(&__boot_tlb1[i], i);
986 	}
987 
988 	set_mas4_defaults();
989 }
990 #endif
991 
992 static void
booke_pmap_init_qpages(void)993 booke_pmap_init_qpages(void)
994 {
995 	struct pcpu *pc;
996 	int i;
997 
998 	CPU_FOREACH(i) {
999 		pc = pcpu_find(i);
1000 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1001 		if (pc->pc_qmap_addr == 0)
1002 			panic("pmap_init_qpages: unable to allocate KVA");
1003 	}
1004 }
1005 
1006 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1007 
1008 /*
1009  * Get the physical page address for the given pmap/virtual address.
1010  */
1011 static vm_paddr_t
mmu_booke_extract(pmap_t pmap,vm_offset_t va)1012 mmu_booke_extract(pmap_t pmap, vm_offset_t va)
1013 {
1014 	vm_paddr_t pa;
1015 
1016 	PMAP_LOCK(pmap);
1017 	pa = pte_vatopa(pmap, va);
1018 	PMAP_UNLOCK(pmap);
1019 
1020 	return (pa);
1021 }
1022 
1023 /*
1024  * Extract the physical page address associated with the given
1025  * kernel virtual address.
1026  */
1027 static vm_paddr_t
mmu_booke_kextract(vm_offset_t va)1028 mmu_booke_kextract(vm_offset_t va)
1029 {
1030 	tlb_entry_t e;
1031 	vm_paddr_t p = 0;
1032 	int i;
1033 
1034 #ifdef __powerpc64__
1035 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1036 		return (DMAP_TO_PHYS(va));
1037 #endif
1038 
1039 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1040 		p = pte_vatopa(kernel_pmap, va);
1041 
1042 	if (p == 0) {
1043 		/* Check TLB1 mappings */
1044 		for (i = 0; i < TLB1_ENTRIES; i++) {
1045 			tlb1_read_entry(&e, i);
1046 			if (!(e.mas1 & MAS1_VALID))
1047 				continue;
1048 			if (va >= e.virt && va < e.virt + e.size)
1049 				return (e.phys + (va - e.virt));
1050 		}
1051 	}
1052 
1053 	return (p);
1054 }
1055 
1056 /*
1057  * Initialize the pmap module.
1058  *
1059  * Called by vm_mem_init(), to initialize any structures that the pmap system
1060  * needs to map virtual memory.
1061  */
1062 static void
mmu_booke_init(void)1063 mmu_booke_init(void)
1064 {
1065 	int shpgperproc = PMAP_SHPGPERPROC;
1066 
1067 	/*
1068 	 * Initialize the address space (zone) for the pv entries.  Set a
1069 	 * high water mark so that the system can recover from excessive
1070 	 * numbers of pv entries.
1071 	 */
1072 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1073 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1074 
1075 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1076 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1077 
1078 	TUNABLE_INT_FETCH("vm.pmap.pv_entry_max", &pv_entry_max);
1079 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1080 
1081 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1082 
1083 	/* Pre-fill pvzone with initial number of pv entries. */
1084 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1085 
1086 	/* Create a UMA zone for page table roots. */
1087 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
1088 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
1089 
1090 	/* Initialize ptbl allocation. */
1091 	ptbl_init();
1092 }
1093 
1094 /*
1095  * Map a list of wired pages into kernel virtual address space.  This is
1096  * intended for temporary mappings which do not need page modification or
1097  * references recorded.  Existing mappings in the region are overwritten.
1098  */
1099 static void
mmu_booke_qenter(vm_offset_t sva,vm_page_t * m,int count)1100 mmu_booke_qenter(vm_offset_t sva, vm_page_t *m, int count)
1101 {
1102 	vm_offset_t va;
1103 
1104 	va = sva;
1105 	while (count-- > 0) {
1106 		mmu_booke_kenter(va, VM_PAGE_TO_PHYS(*m));
1107 		va += PAGE_SIZE;
1108 		m++;
1109 	}
1110 }
1111 
1112 /*
1113  * Remove page mappings from kernel virtual address space.  Intended for
1114  * temporary mappings entered by mmu_booke_qenter.
1115  */
1116 static void
mmu_booke_qremove(vm_offset_t sva,int count)1117 mmu_booke_qremove(vm_offset_t sva, int count)
1118 {
1119 	vm_offset_t va;
1120 
1121 	va = sva;
1122 	while (count-- > 0) {
1123 		mmu_booke_kremove(va);
1124 		va += PAGE_SIZE;
1125 	}
1126 }
1127 
1128 /*
1129  * Map a wired page into kernel virtual address space.
1130  */
1131 static void
mmu_booke_kenter(vm_offset_t va,vm_paddr_t pa)1132 mmu_booke_kenter(vm_offset_t va, vm_paddr_t pa)
1133 {
1134 
1135 	mmu_booke_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1136 }
1137 
1138 static void
mmu_booke_kenter_attr(vm_offset_t va,vm_paddr_t pa,vm_memattr_t ma)1139 mmu_booke_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1140 {
1141 	uint32_t flags;
1142 	pte_t *pte;
1143 
1144 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1145 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1146 
1147 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1148 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1149 	flags |= PTE_PS_4KB;
1150 
1151 	pte = pte_find(kernel_pmap, va);
1152 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
1153 
1154 	mtx_lock_spin(&tlbivax_mutex);
1155 	tlb_miss_lock();
1156 
1157 	if (PTE_ISVALID(pte)) {
1158 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1159 
1160 		/* Flush entry from TLB0 */
1161 		tlb0_flush_entry(va);
1162 	}
1163 
1164 	*pte = PTE_RPN_FROM_PA(pa) | flags;
1165 
1166 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1167 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1168 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1169 
1170 	/* Flush the real memory from the instruction cache. */
1171 	if ((flags & (PTE_I | PTE_G)) == 0)
1172 		__syncicache((void *)va, PAGE_SIZE);
1173 
1174 	tlb_miss_unlock();
1175 	mtx_unlock_spin(&tlbivax_mutex);
1176 }
1177 
1178 /*
1179  * Remove a page from kernel page table.
1180  */
1181 static void
mmu_booke_kremove(vm_offset_t va)1182 mmu_booke_kremove(vm_offset_t va)
1183 {
1184 	pte_t *pte;
1185 
1186 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
1187 
1188 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1189 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1190 	    ("mmu_booke_kremove: invalid va"));
1191 
1192 	pte = pte_find(kernel_pmap, va);
1193 
1194 	if (!PTE_ISVALID(pte)) {
1195 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1196 
1197 		return;
1198 	}
1199 
1200 	mtx_lock_spin(&tlbivax_mutex);
1201 	tlb_miss_lock();
1202 
1203 	/* Invalidate entry in TLB0, update PTE. */
1204 	tlb0_flush_entry(va);
1205 	*pte = 0;
1206 
1207 	tlb_miss_unlock();
1208 	mtx_unlock_spin(&tlbivax_mutex);
1209 }
1210 
1211 /*
1212  * Figure out where a given kernel pointer (usually in a fault) points
1213  * to from the VM's perspective, potentially remapping into userland's
1214  * address space.
1215  */
1216 static int
mmu_booke_decode_kernel_ptr(vm_offset_t addr,int * is_user,vm_offset_t * decoded_addr)1217 mmu_booke_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1218     vm_offset_t *decoded_addr)
1219 {
1220 
1221 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
1222 		*is_user = 1;
1223 	else
1224 		*is_user = 0;
1225 
1226 	*decoded_addr = addr;
1227 	return (0);
1228 }
1229 
1230 static bool
mmu_booke_page_is_mapped(vm_page_t m)1231 mmu_booke_page_is_mapped(vm_page_t m)
1232 {
1233 
1234 	return (!TAILQ_EMPTY(&(m)->md.pv_list));
1235 }
1236 
1237 static bool
mmu_booke_ps_enabled(pmap_t pmap __unused)1238 mmu_booke_ps_enabled(pmap_t pmap __unused)
1239 {
1240 	return (false);
1241 }
1242 
1243 /*
1244  * Initialize pmap associated with process 0.
1245  */
1246 static void
mmu_booke_pinit0(pmap_t pmap)1247 mmu_booke_pinit0(pmap_t pmap)
1248 {
1249 
1250 	PMAP_LOCK_INIT(pmap);
1251 	mmu_booke_pinit(pmap);
1252 	PCPU_SET(curpmap, pmap);
1253 }
1254 
1255 /*
1256  * Insert the given physical page at the specified virtual address in the
1257  * target physical map with the protection requested. If specified the page
1258  * will be wired down.
1259  */
1260 static int
mmu_booke_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)1261 mmu_booke_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1262     vm_prot_t prot, u_int flags, int8_t psind)
1263 {
1264 	int error;
1265 
1266 	rw_wlock(&pvh_global_lock);
1267 	PMAP_LOCK(pmap);
1268 	error = mmu_booke_enter_locked(pmap, va, m, prot, flags, psind);
1269 	PMAP_UNLOCK(pmap);
1270 	rw_wunlock(&pvh_global_lock);
1271 	return (error);
1272 }
1273 
1274 static int
mmu_booke_enter_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int pmap_flags,int8_t psind __unused)1275 mmu_booke_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1276     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1277 {
1278 	pte_t *pte;
1279 	vm_paddr_t pa;
1280 	pte_t flags;
1281 	int error, su, sync;
1282 
1283 	pa = VM_PAGE_TO_PHYS(m);
1284 	su = (pmap == kernel_pmap);
1285 	sync = 0;
1286 
1287 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1288 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1289 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1290 	//		(u_int32_t)m, va, pa, prot, flags);
1291 
1292 	if (su) {
1293 		KASSERT(((va >= virtual_avail) &&
1294 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1295 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1296 	} else {
1297 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1298 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1299 	}
1300 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1301 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1302 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1303 		else
1304 			VM_OBJECT_ASSERT_LOCKED(m->object);
1305 	}
1306 
1307 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1308 
1309 	/*
1310 	 * If there is an existing mapping, and the physical address has not
1311 	 * changed, must be protection or wiring change.
1312 	 */
1313 	if (((pte = pte_find(pmap, va)) != NULL) &&
1314 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1315 
1316 		/*
1317 		 * Before actually updating pte->flags we calculate and
1318 		 * prepare its new value in a helper var.
1319 		 */
1320 		flags = *pte;
1321 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1322 
1323 		/* Wiring change, just update stats. */
1324 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1325 			if (!PTE_ISWIRED(pte)) {
1326 				flags |= PTE_WIRED;
1327 				pmap->pm_stats.wired_count++;
1328 			}
1329 		} else {
1330 			if (PTE_ISWIRED(pte)) {
1331 				flags &= ~PTE_WIRED;
1332 				pmap->pm_stats.wired_count--;
1333 			}
1334 		}
1335 
1336 		if (prot & VM_PROT_WRITE) {
1337 			/* Add write permissions. */
1338 			flags |= PTE_SW;
1339 			if (!su)
1340 				flags |= PTE_UW;
1341 
1342 			if ((flags & PTE_MANAGED) != 0)
1343 				vm_page_aflag_set(m, PGA_WRITEABLE);
1344 		} else {
1345 			/* Handle modified pages, sense modify status. */
1346 
1347 			/*
1348 			 * The PTE_MODIFIED flag could be set by underlying
1349 			 * TLB misses since we last read it (above), possibly
1350 			 * other CPUs could update it so we check in the PTE
1351 			 * directly rather than rely on that saved local flags
1352 			 * copy.
1353 			 */
1354 			if (PTE_ISMODIFIED(pte))
1355 				vm_page_dirty(m);
1356 		}
1357 
1358 		if (prot & VM_PROT_EXECUTE) {
1359 			flags |= PTE_SX;
1360 			if (!su)
1361 				flags |= PTE_UX;
1362 
1363 			/*
1364 			 * Check existing flags for execute permissions: if we
1365 			 * are turning execute permissions on, icache should
1366 			 * be flushed.
1367 			 */
1368 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1369 				sync++;
1370 		}
1371 
1372 		flags &= ~PTE_REFERENCED;
1373 
1374 		/*
1375 		 * The new flags value is all calculated -- only now actually
1376 		 * update the PTE.
1377 		 */
1378 		mtx_lock_spin(&tlbivax_mutex);
1379 		tlb_miss_lock();
1380 
1381 		tlb0_flush_entry(va);
1382 		*pte &= ~PTE_FLAGS_MASK;
1383 		*pte |= flags;
1384 
1385 		tlb_miss_unlock();
1386 		mtx_unlock_spin(&tlbivax_mutex);
1387 
1388 	} else {
1389 		/*
1390 		 * If there is an existing mapping, but it's for a different
1391 		 * physical address, pte_enter() will delete the old mapping.
1392 		 */
1393 		//if ((pte != NULL) && PTE_ISVALID(pte))
1394 		//	debugf("mmu_booke_enter_locked: replace\n");
1395 		//else
1396 		//	debugf("mmu_booke_enter_locked: new\n");
1397 
1398 		/* Now set up the flags and install the new mapping. */
1399 		flags = (PTE_SR | PTE_VALID);
1400 		flags |= PTE_M;
1401 
1402 		if (!su)
1403 			flags |= PTE_UR;
1404 
1405 		if (prot & VM_PROT_WRITE) {
1406 			flags |= PTE_SW;
1407 			if (!su)
1408 				flags |= PTE_UW;
1409 
1410 			if ((m->oflags & VPO_UNMANAGED) == 0)
1411 				vm_page_aflag_set(m, PGA_WRITEABLE);
1412 		}
1413 
1414 		if (prot & VM_PROT_EXECUTE) {
1415 			flags |= PTE_SX;
1416 			if (!su)
1417 				flags |= PTE_UX;
1418 		}
1419 
1420 		/* If its wired update stats. */
1421 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1422 			flags |= PTE_WIRED;
1423 
1424 		error = pte_enter(pmap, m, va, flags,
1425 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1426 		if (error != 0)
1427 			return (KERN_RESOURCE_SHORTAGE);
1428 
1429 		if ((flags & PMAP_ENTER_WIRED) != 0)
1430 			pmap->pm_stats.wired_count++;
1431 
1432 		/* Flush the real memory from the instruction cache. */
1433 		if (prot & VM_PROT_EXECUTE)
1434 			sync++;
1435 	}
1436 
1437 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1438 		__syncicache((void *)va, PAGE_SIZE);
1439 		sync = 0;
1440 	}
1441 
1442 	return (KERN_SUCCESS);
1443 }
1444 
1445 /*
1446  * Maps a sequence of resident pages belonging to the same object.
1447  * The sequence begins with the given page m_start.  This page is
1448  * mapped at the given virtual address start.  Each subsequent page is
1449  * mapped at a virtual address that is offset from start by the same
1450  * amount as the page is offset from m_start within the object.  The
1451  * last page in the sequence is the page with the largest offset from
1452  * m_start that can be mapped at a virtual address less than the given
1453  * virtual address end.  Not every virtual page between start and end
1454  * is mapped; only those for which a resident page exists with the
1455  * corresponding offset from m_start are mapped.
1456  */
1457 static void
mmu_booke_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)1458 mmu_booke_enter_object(pmap_t pmap, vm_offset_t start,
1459     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1460 {
1461 	struct pctrie_iter pages;
1462 	vm_offset_t va;
1463 	vm_page_t m;
1464 
1465 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1466 
1467 	vm_page_iter_limit_init(&pages, m_start->object,
1468 	    m_start->pindex + atop(end - start));
1469 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
1470 	rw_wlock(&pvh_global_lock);
1471 	PMAP_LOCK(pmap);
1472 	while (m != NULL) {
1473 		va = start + ptoa(m->pindex - m_start->pindex);
1474 		mmu_booke_enter_locked(pmap, va, m,
1475 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1476 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1477 		m = vm_radix_iter_step(&pages);
1478 	}
1479 	PMAP_UNLOCK(pmap);
1480 	rw_wunlock(&pvh_global_lock);
1481 }
1482 
1483 static void
mmu_booke_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)1484 mmu_booke_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
1485     vm_prot_t prot)
1486 {
1487 
1488 	rw_wlock(&pvh_global_lock);
1489 	PMAP_LOCK(pmap);
1490 	mmu_booke_enter_locked(pmap, va, m,
1491 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1492 	    PMAP_ENTER_QUICK_LOCKED, 0);
1493 	PMAP_UNLOCK(pmap);
1494 	rw_wunlock(&pvh_global_lock);
1495 }
1496 
1497 /*
1498  * Remove the given range of addresses from the specified map.
1499  *
1500  * It is assumed that the start and end are properly rounded to the page size.
1501  */
1502 static void
mmu_booke_remove(pmap_t pmap,vm_offset_t va,vm_offset_t endva)1503 mmu_booke_remove(pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1504 {
1505 	pte_t *pte;
1506 	uint8_t hold_flag;
1507 
1508 	int su = (pmap == kernel_pmap);
1509 
1510 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1511 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1512 
1513 	if (su) {
1514 		KASSERT(((va >= virtual_avail) &&
1515 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1516 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1517 	} else {
1518 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1519 		    ("mmu_booke_remove: user pmap, non user va"));
1520 	}
1521 
1522 	if (PMAP_REMOVE_DONE(pmap)) {
1523 		//debugf("mmu_booke_remove: e (empty)\n");
1524 		return;
1525 	}
1526 
1527 	hold_flag = PTBL_HOLD_FLAG(pmap);
1528 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1529 
1530 	rw_wlock(&pvh_global_lock);
1531 	PMAP_LOCK(pmap);
1532 	for (; va < endva; va += PAGE_SIZE) {
1533 		pte = pte_find_next(pmap, &va);
1534 		if ((pte == NULL) || !PTE_ISVALID(pte))
1535 			break;
1536 		if (va >= endva)
1537 			break;
1538 		pte_remove(pmap, va, hold_flag);
1539 	}
1540 	PMAP_UNLOCK(pmap);
1541 	rw_wunlock(&pvh_global_lock);
1542 
1543 	//debugf("mmu_booke_remove: e\n");
1544 }
1545 
1546 /*
1547  * Remove physical page from all pmaps in which it resides.
1548  */
1549 static void
mmu_booke_remove_all(vm_page_t m)1550 mmu_booke_remove_all(vm_page_t m)
1551 {
1552 	pv_entry_t pv, pvn;
1553 	uint8_t hold_flag;
1554 
1555 	rw_wlock(&pvh_global_lock);
1556 	TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_link, pvn) {
1557 		PMAP_LOCK(pv->pv_pmap);
1558 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1559 		pte_remove(pv->pv_pmap, pv->pv_va, hold_flag);
1560 		PMAP_UNLOCK(pv->pv_pmap);
1561 	}
1562 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1563 	rw_wunlock(&pvh_global_lock);
1564 }
1565 
1566 /*
1567  * Map a range of physical addresses into kernel virtual address space.
1568  */
1569 static vm_offset_t
mmu_booke_map(vm_offset_t * virt,vm_paddr_t pa_start,vm_paddr_t pa_end,int prot)1570 mmu_booke_map(vm_offset_t *virt, vm_paddr_t pa_start,
1571     vm_paddr_t pa_end, int prot)
1572 {
1573 	vm_offset_t sva = *virt;
1574 	vm_offset_t va = sva;
1575 
1576 #ifdef __powerpc64__
1577 	/* XXX: Handle memory not starting at 0x0. */
1578 	if (pa_end < ctob(Maxmem))
1579 		return (PHYS_TO_DMAP(pa_start));
1580 #endif
1581 
1582 	while (pa_start < pa_end) {
1583 		mmu_booke_kenter(va, pa_start);
1584 		va += PAGE_SIZE;
1585 		pa_start += PAGE_SIZE;
1586 	}
1587 	*virt = va;
1588 
1589 	return (sva);
1590 }
1591 
1592 /*
1593  * The pmap must be activated before it's address space can be accessed in any
1594  * way.
1595  */
1596 static void
mmu_booke_activate(struct thread * td)1597 mmu_booke_activate(struct thread *td)
1598 {
1599 	pmap_t pmap;
1600 	u_int cpuid;
1601 
1602 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1603 
1604 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
1605 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1606 
1607 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1608 
1609 	sched_pin();
1610 
1611 	cpuid = PCPU_GET(cpuid);
1612 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1613 	PCPU_SET(curpmap, pmap);
1614 
1615 	if (pmap->pm_tid[cpuid] == TID_NONE)
1616 		tid_alloc(pmap);
1617 
1618 	/* Load PID0 register with pmap tid value. */
1619 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1620 	__asm __volatile("isync");
1621 
1622 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1623 
1624 	sched_unpin();
1625 
1626 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1627 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1628 }
1629 
1630 /*
1631  * Deactivate the specified process's address space.
1632  */
1633 static void
mmu_booke_deactivate(struct thread * td)1634 mmu_booke_deactivate(struct thread *td)
1635 {
1636 	pmap_t pmap;
1637 
1638 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1639 
1640 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
1641 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1642 
1643 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1644 
1645 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1646 	PCPU_SET(curpmap, NULL);
1647 }
1648 
1649 /*
1650  * Copy the range specified by src_addr/len
1651  * from the source map to the range dst_addr/len
1652  * in the destination map.
1653  *
1654  * This routine is only advisory and need not do anything.
1655  */
1656 static void
mmu_booke_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)1657 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap,
1658     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1659 {
1660 
1661 }
1662 
1663 /*
1664  * Set the physical protection on the specified range of this map as requested.
1665  */
1666 static void
mmu_booke_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)1667 mmu_booke_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1668     vm_prot_t prot)
1669 {
1670 	vm_offset_t va;
1671 	vm_page_t m;
1672 	pte_t *pte;
1673 
1674 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1675 		mmu_booke_remove(pmap, sva, eva);
1676 		return;
1677 	}
1678 
1679 	if (prot & VM_PROT_WRITE)
1680 		return;
1681 
1682 	PMAP_LOCK(pmap);
1683 	for (va = sva; va < eva; va += PAGE_SIZE) {
1684 		if ((pte = pte_find(pmap, va)) != NULL) {
1685 			if (PTE_ISVALID(pte)) {
1686 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1687 
1688 				mtx_lock_spin(&tlbivax_mutex);
1689 				tlb_miss_lock();
1690 
1691 				/* Handle modified pages. */
1692 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1693 					vm_page_dirty(m);
1694 
1695 				tlb0_flush_entry(va);
1696 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1697 
1698 				tlb_miss_unlock();
1699 				mtx_unlock_spin(&tlbivax_mutex);
1700 			}
1701 		}
1702 	}
1703 	PMAP_UNLOCK(pmap);
1704 }
1705 
1706 /*
1707  * Clear the write and modified bits in each of the given page's mappings.
1708  */
1709 static void
mmu_booke_remove_write(vm_page_t m)1710 mmu_booke_remove_write(vm_page_t m)
1711 {
1712 	pv_entry_t pv;
1713 	pte_t *pte;
1714 
1715 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1716 	    ("mmu_booke_remove_write: page %p is not managed", m));
1717 	vm_page_assert_busied(m);
1718 
1719 	if (!pmap_page_is_write_mapped(m))
1720 	        return;
1721 	rw_wlock(&pvh_global_lock);
1722 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1723 		PMAP_LOCK(pv->pv_pmap);
1724 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL) {
1725 			if (PTE_ISVALID(pte)) {
1726 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1727 
1728 				mtx_lock_spin(&tlbivax_mutex);
1729 				tlb_miss_lock();
1730 
1731 				/* Handle modified pages. */
1732 				if (PTE_ISMODIFIED(pte))
1733 					vm_page_dirty(m);
1734 
1735 				/* Flush mapping from TLB0. */
1736 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1737 
1738 				tlb_miss_unlock();
1739 				mtx_unlock_spin(&tlbivax_mutex);
1740 			}
1741 		}
1742 		PMAP_UNLOCK(pv->pv_pmap);
1743 	}
1744 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1745 	rw_wunlock(&pvh_global_lock);
1746 }
1747 
1748 /*
1749  * Atomically extract and hold the physical page with the given
1750  * pmap and virtual address pair if that mapping permits the given
1751  * protection.
1752  */
1753 static vm_page_t
mmu_booke_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1754 mmu_booke_extract_and_hold(pmap_t pmap, vm_offset_t va,
1755     vm_prot_t prot)
1756 {
1757 	pte_t *pte;
1758 	vm_page_t m;
1759 	uint32_t pte_wbit;
1760 
1761 	m = NULL;
1762 	PMAP_LOCK(pmap);
1763 	pte = pte_find(pmap, va);
1764 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1765 		if (pmap == kernel_pmap)
1766 			pte_wbit = PTE_SW;
1767 		else
1768 			pte_wbit = PTE_UW;
1769 
1770 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
1771 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1772 			if (!vm_page_wire_mapped(m))
1773 				m = NULL;
1774 		}
1775 	}
1776 	PMAP_UNLOCK(pmap);
1777 	return (m);
1778 }
1779 
1780 /*
1781  * Initialize a vm_page's machine-dependent fields.
1782  */
1783 static void
mmu_booke_page_init(vm_page_t m)1784 mmu_booke_page_init(vm_page_t m)
1785 {
1786 
1787 	m->md.pv_tracked = 0;
1788 	TAILQ_INIT(&m->md.pv_list);
1789 }
1790 
1791 /*
1792  * Return whether or not the specified physical page was modified
1793  * in any of physical maps.
1794  */
1795 static bool
mmu_booke_is_modified(vm_page_t m)1796 mmu_booke_is_modified(vm_page_t m)
1797 {
1798 	pte_t *pte;
1799 	pv_entry_t pv;
1800 	bool rv;
1801 
1802 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1803 	    ("mmu_booke_is_modified: page %p is not managed", m));
1804 	rv = false;
1805 
1806 	/*
1807 	 * If the page is not busied then this check is racy.
1808 	 */
1809 	if (!pmap_page_is_write_mapped(m))
1810 		return (false);
1811 
1812 	rw_wlock(&pvh_global_lock);
1813 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1814 		PMAP_LOCK(pv->pv_pmap);
1815 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1816 		    PTE_ISVALID(pte)) {
1817 			if (PTE_ISMODIFIED(pte))
1818 				rv = true;
1819 		}
1820 		PMAP_UNLOCK(pv->pv_pmap);
1821 		if (rv)
1822 			break;
1823 	}
1824 	rw_wunlock(&pvh_global_lock);
1825 	return (rv);
1826 }
1827 
1828 /*
1829  * Return whether or not the specified virtual address is eligible
1830  * for prefault.
1831  */
1832 static bool
mmu_booke_is_prefaultable(pmap_t pmap,vm_offset_t addr)1833 mmu_booke_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1834 {
1835 
1836 	return (false);
1837 }
1838 
1839 /*
1840  * Return whether or not the specified physical page was referenced
1841  * in any physical maps.
1842  */
1843 static bool
mmu_booke_is_referenced(vm_page_t m)1844 mmu_booke_is_referenced(vm_page_t m)
1845 {
1846 	pte_t *pte;
1847 	pv_entry_t pv;
1848 	bool rv;
1849 
1850 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1851 	    ("mmu_booke_is_referenced: page %p is not managed", m));
1852 	rv = false;
1853 	rw_wlock(&pvh_global_lock);
1854 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1855 		PMAP_LOCK(pv->pv_pmap);
1856 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1857 		    PTE_ISVALID(pte)) {
1858 			if (PTE_ISREFERENCED(pte))
1859 				rv = true;
1860 		}
1861 		PMAP_UNLOCK(pv->pv_pmap);
1862 		if (rv)
1863 			break;
1864 	}
1865 	rw_wunlock(&pvh_global_lock);
1866 	return (rv);
1867 }
1868 
1869 /*
1870  * Clear the modify bits on the specified physical page.
1871  */
1872 static void
mmu_booke_clear_modify(vm_page_t m)1873 mmu_booke_clear_modify(vm_page_t m)
1874 {
1875 	pte_t *pte;
1876 	pv_entry_t pv;
1877 
1878 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1879 	    ("mmu_booke_clear_modify: page %p is not managed", m));
1880 	vm_page_assert_busied(m);
1881 
1882 	if (!pmap_page_is_write_mapped(m))
1883 	        return;
1884 
1885 	rw_wlock(&pvh_global_lock);
1886 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1887 		PMAP_LOCK(pv->pv_pmap);
1888 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1889 		    PTE_ISVALID(pte)) {
1890 			mtx_lock_spin(&tlbivax_mutex);
1891 			tlb_miss_lock();
1892 
1893 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
1894 				tlb0_flush_entry(pv->pv_va);
1895 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
1896 				    PTE_REFERENCED);
1897 			}
1898 
1899 			tlb_miss_unlock();
1900 			mtx_unlock_spin(&tlbivax_mutex);
1901 		}
1902 		PMAP_UNLOCK(pv->pv_pmap);
1903 	}
1904 	rw_wunlock(&pvh_global_lock);
1905 }
1906 
1907 /*
1908  * Return a count of reference bits for a page, clearing those bits.
1909  * It is not necessary for every reference bit to be cleared, but it
1910  * is necessary that 0 only be returned when there are truly no
1911  * reference bits set.
1912  *
1913  * As an optimization, update the page's dirty field if a modified bit is
1914  * found while counting reference bits.  This opportunistic update can be
1915  * performed at low cost and can eliminate the need for some future calls
1916  * to pmap_is_modified().  However, since this function stops after
1917  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
1918  * dirty pages.  Those dirty pages will only be detected by a future call
1919  * to pmap_is_modified().
1920  */
1921 static int
mmu_booke_ts_referenced(vm_page_t m)1922 mmu_booke_ts_referenced(vm_page_t m)
1923 {
1924 	pte_t *pte;
1925 	pv_entry_t pv;
1926 	int count;
1927 
1928 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1929 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
1930 	count = 0;
1931 	rw_wlock(&pvh_global_lock);
1932 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1933 		PMAP_LOCK(pv->pv_pmap);
1934 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1935 		    PTE_ISVALID(pte)) {
1936 			if (PTE_ISMODIFIED(pte))
1937 				vm_page_dirty(m);
1938 			if (PTE_ISREFERENCED(pte)) {
1939 				mtx_lock_spin(&tlbivax_mutex);
1940 				tlb_miss_lock();
1941 
1942 				tlb0_flush_entry(pv->pv_va);
1943 				*pte &= ~PTE_REFERENCED;
1944 
1945 				tlb_miss_unlock();
1946 				mtx_unlock_spin(&tlbivax_mutex);
1947 
1948 				if (++count >= PMAP_TS_REFERENCED_MAX) {
1949 					PMAP_UNLOCK(pv->pv_pmap);
1950 					break;
1951 				}
1952 			}
1953 		}
1954 		PMAP_UNLOCK(pv->pv_pmap);
1955 	}
1956 	rw_wunlock(&pvh_global_lock);
1957 	return (count);
1958 }
1959 
1960 /*
1961  * Clear the wired attribute from the mappings for the specified range of
1962  * addresses in the given pmap.  Every valid mapping within that range must
1963  * have the wired attribute set.  In contrast, invalid mappings cannot have
1964  * the wired attribute set, so they are ignored.
1965  *
1966  * The wired attribute of the page table entry is not a hardware feature, so
1967  * there is no need to invalidate any TLB entries.
1968  */
1969 static void
mmu_booke_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1970 mmu_booke_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1971 {
1972 	vm_offset_t va;
1973 	pte_t *pte;
1974 
1975 	PMAP_LOCK(pmap);
1976 	for (va = sva; va < eva; va += PAGE_SIZE) {
1977 		if ((pte = pte_find(pmap, va)) != NULL &&
1978 		    PTE_ISVALID(pte)) {
1979 			if (!PTE_ISWIRED(pte))
1980 				panic("mmu_booke_unwire: pte %p isn't wired",
1981 				    pte);
1982 			*pte &= ~PTE_WIRED;
1983 			pmap->pm_stats.wired_count--;
1984 		}
1985 	}
1986 	PMAP_UNLOCK(pmap);
1987 
1988 }
1989 
1990 /*
1991  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
1992  * page.  This count may be changed upwards or downwards in the future; it is
1993  * only necessary that true be returned for a small subset of pmaps for proper
1994  * page aging.
1995  */
1996 static bool
mmu_booke_page_exists_quick(pmap_t pmap,vm_page_t m)1997 mmu_booke_page_exists_quick(pmap_t pmap, vm_page_t m)
1998 {
1999 	pv_entry_t pv;
2000 	int loops;
2001 	bool rv;
2002 
2003 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2004 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2005 	loops = 0;
2006 	rv = false;
2007 	rw_wlock(&pvh_global_lock);
2008 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2009 		if (pv->pv_pmap == pmap) {
2010 			rv = true;
2011 			break;
2012 		}
2013 		if (++loops >= 16)
2014 			break;
2015 	}
2016 	rw_wunlock(&pvh_global_lock);
2017 	return (rv);
2018 }
2019 
2020 /*
2021  * Return the number of managed mappings to the given physical page that are
2022  * wired.
2023  */
2024 static int
mmu_booke_page_wired_mappings(vm_page_t m)2025 mmu_booke_page_wired_mappings(vm_page_t m)
2026 {
2027 	pv_entry_t pv;
2028 	pte_t *pte;
2029 	int count = 0;
2030 
2031 	if ((m->oflags & VPO_UNMANAGED) != 0)
2032 		return (count);
2033 	rw_wlock(&pvh_global_lock);
2034 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2035 		PMAP_LOCK(pv->pv_pmap);
2036 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL)
2037 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2038 				count++;
2039 		PMAP_UNLOCK(pv->pv_pmap);
2040 	}
2041 	rw_wunlock(&pvh_global_lock);
2042 	return (count);
2043 }
2044 
2045 static int
mmu_booke_dev_direct_mapped(vm_paddr_t pa,vm_size_t size)2046 mmu_booke_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2047 {
2048 	int i;
2049 	vm_offset_t va;
2050 
2051 	/*
2052 	 * This currently does not work for entries that
2053 	 * overlap TLB1 entries.
2054 	 */
2055 	for (i = 0; i < TLB1_ENTRIES; i ++) {
2056 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2057 			return (0);
2058 	}
2059 
2060 	return (EFAULT);
2061 }
2062 
2063 void
mmu_booke_dumpsys_map(vm_paddr_t pa,size_t sz,void ** va)2064 mmu_booke_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2065 {
2066 	vm_paddr_t ppa;
2067 	vm_offset_t ofs;
2068 	vm_size_t gran;
2069 
2070 	/* Minidumps are based on virtual memory addresses. */
2071 	if (do_minidump) {
2072 		*va = (void *)(vm_offset_t)pa;
2073 		return;
2074 	}
2075 
2076 	/* Raw physical memory dumps don't have a virtual address. */
2077 	/* We always map a 256MB page at 256M. */
2078 	gran = 256 * 1024 * 1024;
2079 	ppa = rounddown2(pa, gran);
2080 	ofs = pa - ppa;
2081 	*va = (void *)gran;
2082 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2083 
2084 	if (sz > (gran - ofs))
2085 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2086 		    _TLB_ENTRY_IO);
2087 }
2088 
2089 void
mmu_booke_dumpsys_unmap(vm_paddr_t pa,size_t sz,void * va)2090 mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t sz, void *va)
2091 {
2092 	vm_paddr_t ppa;
2093 	vm_offset_t ofs;
2094 	vm_size_t gran;
2095 	tlb_entry_t e;
2096 	int i;
2097 
2098 	/* Minidumps are based on virtual memory addresses. */
2099 	/* Nothing to do... */
2100 	if (do_minidump)
2101 		return;
2102 
2103 	for (i = 0; i < TLB1_ENTRIES; i++) {
2104 		tlb1_read_entry(&e, i);
2105 		if (!(e.mas1 & MAS1_VALID))
2106 			break;
2107 	}
2108 
2109 	/* Raw physical memory dumps don't have a virtual address. */
2110 	i--;
2111 	e.mas1 = 0;
2112 	e.mas2 = 0;
2113 	e.mas3 = 0;
2114 	tlb1_write_entry(&e, i);
2115 
2116 	gran = 256 * 1024 * 1024;
2117 	ppa = rounddown2(pa, gran);
2118 	ofs = pa - ppa;
2119 	if (sz > (gran - ofs)) {
2120 		i--;
2121 		e.mas1 = 0;
2122 		e.mas2 = 0;
2123 		e.mas3 = 0;
2124 		tlb1_write_entry(&e, i);
2125 	}
2126 }
2127 
2128 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2129 
2130 void
mmu_booke_scan_init(void)2131 mmu_booke_scan_init(void)
2132 {
2133 	vm_offset_t va;
2134 	pte_t *pte;
2135 	int i;
2136 
2137 	if (!do_minidump) {
2138 		/* Initialize phys. segments for dumpsys(). */
2139 		memset(&dump_map, 0, sizeof(dump_map));
2140 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2141 		    &availmem_regions_sz);
2142 		for (i = 0; i < physmem_regions_sz; i++) {
2143 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2144 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2145 		}
2146 		return;
2147 	}
2148 
2149 	/* Virtual segments for minidumps: */
2150 	memset(&dump_map, 0, sizeof(dump_map));
2151 
2152 	/* 1st: kernel .data and .bss. */
2153 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2154 	dump_map[0].pa_size =
2155 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2156 
2157 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2158 	dump_map[1].pa_start = data_start;
2159 	dump_map[1].pa_size = data_end - data_start;
2160 
2161 	/* 3rd: kernel VM. */
2162 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2163 	/* Find start of next chunk (from va). */
2164 	while (va < virtual_end) {
2165 		/* Don't dump the buffer cache. */
2166 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2167 			va = kmi.buffer_eva;
2168 			continue;
2169 		}
2170 		pte = pte_find(kernel_pmap, va);
2171 		if (pte != NULL && PTE_ISVALID(pte))
2172 			break;
2173 		va += PAGE_SIZE;
2174 	}
2175 	if (va < virtual_end) {
2176 		dump_map[2].pa_start = va;
2177 		va += PAGE_SIZE;
2178 		/* Find last page in chunk. */
2179 		while (va < virtual_end) {
2180 			/* Don't run into the buffer cache. */
2181 			if (va == kmi.buffer_sva)
2182 				break;
2183 			pte = pte_find(kernel_pmap, va);
2184 			if (pte == NULL || !PTE_ISVALID(pte))
2185 				break;
2186 			va += PAGE_SIZE;
2187 		}
2188 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2189 	}
2190 }
2191 
2192 /*
2193  * Map a set of physical memory pages into the kernel virtual address space.
2194  * Return a pointer to where it is mapped. This routine is intended to be used
2195  * for mapping device memory, NOT real memory.
2196  */
2197 static void *
mmu_booke_mapdev(vm_paddr_t pa,vm_size_t size)2198 mmu_booke_mapdev(vm_paddr_t pa, vm_size_t size)
2199 {
2200 
2201 	return (mmu_booke_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2202 }
2203 
2204 static int
tlb1_find_pa(vm_paddr_t pa,tlb_entry_t * e)2205 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
2206 {
2207 	int i;
2208 
2209 	for (i = 0; i < TLB1_ENTRIES; i++) {
2210 		tlb1_read_entry(e, i);
2211 		if ((e->mas1 & MAS1_VALID) == 0)
2212 			continue;
2213 		if (e->phys == pa)
2214 			return (i);
2215 	}
2216 	return (-1);
2217 }
2218 
2219 static void *
mmu_booke_mapdev_attr(vm_paddr_t pa,vm_size_t size,vm_memattr_t ma)2220 mmu_booke_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2221 {
2222 	tlb_entry_t e;
2223 	vm_paddr_t tmppa;
2224 #ifndef __powerpc64__
2225 	uintptr_t tmpva;
2226 #endif
2227 	uintptr_t va, retva;
2228 	vm_size_t sz;
2229 	int i;
2230 	int wimge;
2231 
2232 	/*
2233 	 * Check if this is premapped in TLB1.
2234 	 */
2235 	sz = size;
2236 	tmppa = pa;
2237 	va = ~0;
2238 	wimge = tlb_calc_wimg(pa, ma);
2239 	for (i = 0; i < TLB1_ENTRIES; i++) {
2240 		tlb1_read_entry(&e, i);
2241 		if (!(e.mas1 & MAS1_VALID))
2242 			continue;
2243 		if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2244 			continue;
2245 		if (tmppa >= e.phys && tmppa < e.phys + e.size) {
2246 			va = e.virt + (pa - e.phys);
2247 			tmppa = e.phys + e.size;
2248 			sz -= MIN(sz, e.size - (pa - e.phys));
2249 			while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
2250 				if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2251 					break;
2252 				sz -= MIN(sz, e.size);
2253 				tmppa = e.phys + e.size;
2254 			}
2255 			if (sz != 0)
2256 				break;
2257 			return ((void *)va);
2258 		}
2259 	}
2260 
2261 	size = roundup(size, PAGE_SIZE);
2262 
2263 #ifdef __powerpc64__
2264 	KASSERT(pa < VM_MAPDEV_PA_MAX,
2265 	    ("Unsupported physical address! %lx", pa));
2266 	va = VM_MAPDEV_BASE + pa;
2267 	retva = va;
2268 #ifdef POW2_MAPPINGS
2269 	/*
2270 	 * Align the mapping to a power of 2 size, taking into account that we
2271 	 * may need to increase the size multiple times to satisfy the size and
2272 	 * alignment requirements.
2273 	 *
2274 	 * This works in the general case because it's very rare (near never?)
2275 	 * to have different access properties (WIMG) within a single
2276 	 * power-of-two region.  If a design does call for that, POW2_MAPPINGS
2277 	 * can be undefined, and exact mappings will be used instead.
2278 	 */
2279 	sz = size;
2280 	size = roundup2(size, 1 << ilog2(size));
2281 	while (rounddown2(va, size) + size < va + sz)
2282 		size <<= 1;
2283 	va = rounddown2(va, size);
2284 	pa = rounddown2(pa, size);
2285 #endif
2286 #else
2287 	/*
2288 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2289 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2290 	 */
2291 #ifdef SPARSE_MAPDEV
2292 	/*
2293 	 * With a sparse mapdev, align to the largest starting region.  This
2294 	 * could feasibly be optimized for a 'best-fit' alignment, but that
2295 	 * calculation could be very costly.
2296 	 * Align to the smaller of:
2297 	 * - first set bit in overlap of (pa & size mask)
2298 	 * - largest size envelope
2299 	 *
2300 	 * It's possible the device mapping may start at a PA that's not larger
2301 	 * than the size mask, so we need to offset in to maximize the TLB entry
2302 	 * range and minimize the number of used TLB entries.
2303 	 */
2304 	do {
2305 	    tmpva = tlb1_map_base;
2306 	    sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
2307 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
2308 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
2309 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2310 #endif
2311 	va = atomic_fetchadd_int(&tlb1_map_base, size);
2312 	retva = va;
2313 #endif
2314 
2315 	if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
2316 		return (NULL);
2317 
2318 	return ((void *)retva);
2319 }
2320 
2321 /*
2322  * 'Unmap' a range mapped by mmu_booke_mapdev().
2323  */
2324 static void
mmu_booke_unmapdev(void * p,vm_size_t size)2325 mmu_booke_unmapdev(void *p, vm_size_t size)
2326 {
2327 #ifdef SUPPORTS_SHRINKING_TLB1
2328 	vm_offset_t base, offset, va;
2329 
2330 	/*
2331 	 * Unmap only if this is inside kernel virtual space.
2332 	 */
2333 	va = (vm_offset_t)p;
2334 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2335 		base = trunc_page(va);
2336 		offset = va & PAGE_MASK;
2337 		size = roundup(offset + size, PAGE_SIZE);
2338 		mmu_booke_qremove(base, atop(size));
2339 		kva_free(base, size);
2340 	}
2341 #endif
2342 }
2343 
2344 /*
2345  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2346  * specified pmap. This eliminates the blast of soft faults on process startup
2347  * and immediately after an mmap.
2348  */
2349 static void
mmu_booke_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)2350 mmu_booke_object_init_pt(pmap_t pmap, vm_offset_t addr,
2351     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2352 {
2353 
2354 	VM_OBJECT_ASSERT_WLOCKED(object);
2355 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2356 	    ("mmu_booke_object_init_pt: non-device object"));
2357 }
2358 
2359 /*
2360  * Perform the pmap work for mincore.
2361  */
2362 static int
mmu_booke_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)2363 mmu_booke_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
2364 {
2365 
2366 	/* XXX: this should be implemented at some point */
2367 	return (0);
2368 }
2369 
2370 static int
mmu_booke_change_attr(vm_offset_t addr,vm_size_t sz,vm_memattr_t mode)2371 mmu_booke_change_attr(vm_offset_t addr, vm_size_t sz, vm_memattr_t mode)
2372 {
2373 	vm_offset_t va;
2374 	pte_t *pte;
2375 	int i, j;
2376 	tlb_entry_t e;
2377 
2378 	addr = trunc_page(addr);
2379 
2380 	/* Only allow changes to mapped kernel addresses.  This includes:
2381 	 * - KVA
2382 	 * - DMAP (powerpc64)
2383 	 * - Device mappings
2384 	 */
2385 	if (addr <= VM_MAXUSER_ADDRESS ||
2386 #ifdef __powerpc64__
2387 	    (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
2388 	    (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
2389 #else
2390 	    (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
2391 #endif
2392 	    (addr > VM_MAX_KERNEL_ADDRESS))
2393 		return (EINVAL);
2394 
2395 	/* Check TLB1 mappings */
2396 	for (i = 0; i < TLB1_ENTRIES; i++) {
2397 		tlb1_read_entry(&e, i);
2398 		if (!(e.mas1 & MAS1_VALID))
2399 			continue;
2400 		if (addr >= e.virt && addr < e.virt + e.size)
2401 			break;
2402 	}
2403 	if (i < TLB1_ENTRIES) {
2404 		/* Only allow full mappings to be modified for now. */
2405 		/* Validate the range. */
2406 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2407 			tlb1_read_entry(&e, j);
2408 			if (va != e.virt || (sz - (va - addr) < e.size))
2409 				return (EINVAL);
2410 		}
2411 		for (va = addr; va < addr + sz; va += e.size, i++) {
2412 			tlb1_read_entry(&e, i);
2413 			e.mas2 &= ~MAS2_WIMGE_MASK;
2414 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2415 
2416 			/*
2417 			 * Write it out to the TLB.  Should really re-sync with other
2418 			 * cores.
2419 			 */
2420 			tlb1_write_entry(&e, i);
2421 		}
2422 		return (0);
2423 	}
2424 
2425 	/* Not in TLB1, try through pmap */
2426 	/* First validate the range. */
2427 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2428 		pte = pte_find(kernel_pmap, va);
2429 		if (pte == NULL || !PTE_ISVALID(pte))
2430 			return (EINVAL);
2431 	}
2432 
2433 	mtx_lock_spin(&tlbivax_mutex);
2434 	tlb_miss_lock();
2435 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2436 		pte = pte_find(kernel_pmap, va);
2437 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2438 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
2439 		tlb0_flush_entry(va);
2440 	}
2441 	tlb_miss_unlock();
2442 	mtx_unlock_spin(&tlbivax_mutex);
2443 
2444 	return (0);
2445 }
2446 
2447 static void
mmu_booke_page_array_startup(long pages)2448 mmu_booke_page_array_startup(long pages)
2449 {
2450 	vm_page_array_size = pages;
2451 }
2452 
2453 /**************************************************************************/
2454 /* TID handling */
2455 /**************************************************************************/
2456 
2457 /*
2458  * Allocate a TID. If necessary, steal one from someone else.
2459  * The new TID is flushed from the TLB before returning.
2460  */
2461 static tlbtid_t
tid_alloc(pmap_t pmap)2462 tid_alloc(pmap_t pmap)
2463 {
2464 	tlbtid_t tid;
2465 	int thiscpu;
2466 
2467 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2468 
2469 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2470 
2471 	thiscpu = PCPU_GET(cpuid);
2472 
2473 	tid = PCPU_GET(booke.tid_next);
2474 	if (tid > TID_MAX)
2475 		tid = TID_MIN;
2476 	PCPU_SET(booke.tid_next, tid + 1);
2477 
2478 	/* If we are stealing TID then clear the relevant pmap's field */
2479 	if (tidbusy[thiscpu][tid] != NULL) {
2480 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2481 
2482 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2483 
2484 		/* Flush all entries from TLB0 matching this TID. */
2485 		tid_flush(tid);
2486 	}
2487 
2488 	tidbusy[thiscpu][tid] = pmap;
2489 	pmap->pm_tid[thiscpu] = tid;
2490 	__asm __volatile("msync; isync");
2491 
2492 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2493 	    PCPU_GET(booke.tid_next));
2494 
2495 	return (tid);
2496 }
2497 
2498 /**************************************************************************/
2499 /* TLB0 handling */
2500 /**************************************************************************/
2501 
2502 /* Convert TLB0 va and way number to tlb0[] table index. */
2503 static inline unsigned int
tlb0_tableidx(vm_offset_t va,unsigned int way)2504 tlb0_tableidx(vm_offset_t va, unsigned int way)
2505 {
2506 	unsigned int idx;
2507 
2508 	idx = (way * TLB0_ENTRIES_PER_WAY);
2509 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2510 	return (idx);
2511 }
2512 
2513 /*
2514  * Invalidate TLB0 entry.
2515  */
2516 static inline void
tlb0_flush_entry(vm_offset_t va)2517 tlb0_flush_entry(vm_offset_t va)
2518 {
2519 
2520 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2521 
2522 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2523 
2524 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2525 	__asm __volatile("isync; msync");
2526 	__asm __volatile("tlbsync; msync");
2527 
2528 	CTR1(KTR_PMAP, "%s: e", __func__);
2529 }
2530 
2531 /**************************************************************************/
2532 /* TLB1 handling */
2533 /**************************************************************************/
2534 
2535 /*
2536  * TLB1 mapping notes:
2537  *
2538  * TLB1[0]	Kernel text and data.
2539  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2540  *		windows, other devices mappings.
2541  */
2542 
2543  /*
2544  * Read an entry from given TLB1 slot.
2545  */
2546 void
tlb1_read_entry(tlb_entry_t * entry,unsigned int slot)2547 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
2548 {
2549 	register_t msr;
2550 	uint32_t mas0;
2551 
2552 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
2553 
2554 	msr = mfmsr();
2555 	__asm __volatile("wrteei 0");
2556 
2557 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
2558 	mtspr(SPR_MAS0, mas0);
2559 	__asm __volatile("isync; tlbre");
2560 
2561 	entry->mas1 = mfspr(SPR_MAS1);
2562 	entry->mas2 = mfspr(SPR_MAS2);
2563 	entry->mas3 = mfspr(SPR_MAS3);
2564 
2565 	switch ((mfpvr() >> 16) & 0xFFFF) {
2566 	case FSL_E500v2:
2567 	case FSL_E500mc:
2568 	case FSL_E5500:
2569 	case FSL_E6500:
2570 		entry->mas7 = mfspr(SPR_MAS7);
2571 		break;
2572 	default:
2573 		entry->mas7 = 0;
2574 		break;
2575 	}
2576 	__asm __volatile("wrtee %0" :: "r"(msr));
2577 
2578 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
2579 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
2580 	    (entry->mas3 & MAS3_RPN);
2581 	entry->size =
2582 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
2583 }
2584 
2585 struct tlbwrite_args {
2586 	tlb_entry_t *e;
2587 	unsigned int idx;
2588 };
2589 
2590 static uint32_t
tlb1_find_free(void)2591 tlb1_find_free(void)
2592 {
2593 	tlb_entry_t e;
2594 	int i;
2595 
2596 	for (i = 0; i < TLB1_ENTRIES; i++) {
2597 		tlb1_read_entry(&e, i);
2598 		if ((e.mas1 & MAS1_VALID) == 0)
2599 			return (i);
2600 	}
2601 	return (-1);
2602 }
2603 
2604 static void
tlb1_purge_va_range(vm_offset_t va,vm_size_t size)2605 tlb1_purge_va_range(vm_offset_t va, vm_size_t size)
2606 {
2607 	tlb_entry_t e;
2608 	int i;
2609 
2610 	for (i = 0; i < TLB1_ENTRIES; i++) {
2611 		tlb1_read_entry(&e, i);
2612 		if ((e.mas1 & MAS1_VALID) == 0)
2613 			continue;
2614 		if ((e.mas2 & MAS2_EPN_MASK) >= va &&
2615 		    (e.mas2 & MAS2_EPN_MASK) < va + size) {
2616 			mtspr(SPR_MAS1, e.mas1 & ~MAS1_VALID);
2617 			__asm __volatile("isync; tlbwe; isync; msync");
2618 		}
2619 	}
2620 }
2621 
2622 static void
tlb1_write_entry_int(void * arg)2623 tlb1_write_entry_int(void *arg)
2624 {
2625 	struct tlbwrite_args *args = arg;
2626 	uint32_t idx, mas0;
2627 
2628 	idx = args->idx;
2629 	if (idx == -1) {
2630 		tlb1_purge_va_range(args->e->virt, args->e->size);
2631 		idx = tlb1_find_free();
2632 		if (idx == -1)
2633 			panic("No free TLB1 entries!\n");
2634 	}
2635 	/* Select entry */
2636 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2637 
2638 	mtspr(SPR_MAS0, mas0);
2639 	mtspr(SPR_MAS1, args->e->mas1);
2640 	mtspr(SPR_MAS2, args->e->mas2);
2641 	mtspr(SPR_MAS3, args->e->mas3);
2642 	switch ((mfpvr() >> 16) & 0xFFFF) {
2643 	case FSL_E500mc:
2644 	case FSL_E5500:
2645 	case FSL_E6500:
2646 		mtspr(SPR_MAS8, 0);
2647 		/* FALLTHROUGH */
2648 	case FSL_E500v2:
2649 		mtspr(SPR_MAS7, args->e->mas7);
2650 		break;
2651 	default:
2652 		break;
2653 	}
2654 
2655 	__asm __volatile("isync; tlbwe; isync; msync");
2656 
2657 }
2658 
2659 static void
tlb1_write_entry_sync(void * arg)2660 tlb1_write_entry_sync(void *arg)
2661 {
2662 	/* Empty synchronization point for smp_rendezvous(). */
2663 }
2664 
2665 /*
2666  * Write given entry to TLB1 hardware.
2667  */
2668 static void
tlb1_write_entry(tlb_entry_t * e,unsigned int idx)2669 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
2670 {
2671 	struct tlbwrite_args args;
2672 
2673 	args.e = e;
2674 	args.idx = idx;
2675 
2676 #ifdef SMP
2677 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
2678 		mb();
2679 		smp_rendezvous(tlb1_write_entry_sync,
2680 		    tlb1_write_entry_int,
2681 		    tlb1_write_entry_sync, &args);
2682 	} else
2683 #endif
2684 	{
2685 		register_t msr;
2686 
2687 		msr = mfmsr();
2688 		__asm __volatile("wrteei 0");
2689 		tlb1_write_entry_int(&args);
2690 		__asm __volatile("wrtee %0" :: "r"(msr));
2691 	}
2692 }
2693 
2694 /*
2695  * Convert TLB TSIZE value to mapped region size.
2696  */
2697 static vm_size_t
tsize2size(unsigned int tsize)2698 tsize2size(unsigned int tsize)
2699 {
2700 
2701 	/*
2702 	 * size = 4^tsize KB
2703 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2704 	 */
2705 
2706 	return ((1 << (2 * tsize)) * 1024);
2707 }
2708 
2709 /*
2710  * Convert region size (must be power of 4) to TLB TSIZE value.
2711  */
2712 static unsigned int
size2tsize(vm_size_t size)2713 size2tsize(vm_size_t size)
2714 {
2715 
2716 	return (ilog2(size) / 2 - 5);
2717 }
2718 
2719 /*
2720  * Register permanent kernel mapping in TLB1.
2721  *
2722  * Entries are created starting from index 0 (current free entry is
2723  * kept in tlb1_idx) and are not supposed to be invalidated.
2724  */
2725 int
tlb1_set_entry(vm_offset_t va,vm_paddr_t pa,vm_size_t size,uint32_t flags)2726 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
2727     uint32_t flags)
2728 {
2729 	tlb_entry_t e;
2730 	uint32_t ts, tid;
2731 	int tsize, index;
2732 
2733 	/* First try to update an existing entry. */
2734 	for (index = 0; index < TLB1_ENTRIES; index++) {
2735 		tlb1_read_entry(&e, index);
2736 		/* Check if we're just updating the flags, and update them. */
2737 		if (e.phys == pa && e.virt == va && e.size == size) {
2738 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
2739 			tlb1_write_entry(&e, index);
2740 			return (0);
2741 		}
2742 	}
2743 
2744 	/* Convert size to TSIZE */
2745 	tsize = size2tsize(size);
2746 
2747 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2748 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2749 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2750 
2751 	e.phys = pa;
2752 	e.virt = va;
2753 	e.size = size;
2754 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2755 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2756 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
2757 
2758 	/* Set supervisor RWX permission bits */
2759 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2760 	e.mas7 = (pa >> 32) & MAS7_RPN;
2761 
2762 	tlb1_write_entry(&e, -1);
2763 
2764 	return (0);
2765 }
2766 
2767 /*
2768  * Map in contiguous RAM region into the TLB1.
2769  */
2770 static vm_size_t
tlb1_mapin_region(vm_offset_t va,vm_paddr_t pa,vm_size_t size,int wimge)2771 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
2772 {
2773 	vm_offset_t base;
2774 	vm_size_t mapped, sz, ssize;
2775 
2776 	mapped = 0;
2777 	base = va;
2778 	ssize = size;
2779 
2780 	while (size > 0) {
2781 		sz = 1UL << (ilog2(size) & ~1);
2782 		/* Align size to PA */
2783 		if (pa % sz != 0) {
2784 			do {
2785 				sz >>= 2;
2786 			} while (pa % sz != 0);
2787 		}
2788 		/* Now align from there to VA */
2789 		if (va % sz != 0) {
2790 			do {
2791 				sz >>= 2;
2792 			} while (va % sz != 0);
2793 		}
2794 #ifdef __powerpc64__
2795 		/*
2796 		 * Clamp TLB1 entries to 4G.
2797 		 *
2798 		 * While the e6500 supports up to 1TB mappings, the e5500
2799 		 * only supports up to 4G mappings. (0b1011)
2800 		 *
2801 		 * If any e6500 machines capable of supporting a very
2802 		 * large amount of memory appear in the future, we can
2803 		 * revisit this.
2804 		 *
2805 		 * For now, though, since we have plenty of space in TLB1,
2806 		 * always avoid creating entries larger than 4GB.
2807 		 */
2808 		sz = MIN(sz, 1UL << 32);
2809 #endif
2810 		if (bootverbose)
2811 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
2812 			    (void *)va, (uintmax_t)pa, (long)sz);
2813 		if (tlb1_set_entry(va, pa, sz,
2814 		    _TLB_ENTRY_SHARED | wimge) < 0)
2815 			return (mapped);
2816 		size -= sz;
2817 		pa += sz;
2818 		va += sz;
2819 	}
2820 
2821 	mapped = (va - base);
2822 	if (bootverbose)
2823 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
2824 		    mapped, mapped - ssize);
2825 
2826 	return (mapped);
2827 }
2828 
2829 /*
2830  * TLB1 initialization routine, to be called after the very first
2831  * assembler level setup done in locore.S.
2832  */
2833 void
tlb1_init(void)2834 tlb1_init(void)
2835 {
2836 	vm_offset_t mas2;
2837 	uint32_t mas0, mas1, mas3, mas7;
2838 	uint32_t tsz;
2839 
2840 	tlb1_get_tlbconf();
2841 
2842 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
2843 	mtspr(SPR_MAS0, mas0);
2844 	__asm __volatile("isync; tlbre");
2845 
2846 	mas1 = mfspr(SPR_MAS1);
2847 	mas2 = mfspr(SPR_MAS2);
2848 	mas3 = mfspr(SPR_MAS3);
2849 	mas7 = mfspr(SPR_MAS7);
2850 
2851 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
2852 	    (mas3 & MAS3_RPN);
2853 
2854 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2855 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
2856 	kernstart = trunc_page(mas2);
2857 
2858 	/* Setup TLB miss defaults */
2859 	set_mas4_defaults();
2860 }
2861 
2862 /*
2863  * pmap_early_io_unmap() should be used in short conjunction with
2864  * pmap_early_io_map(), as in the following snippet:
2865  *
2866  * x = pmap_early_io_map(...);
2867  * <do something with x>
2868  * pmap_early_io_unmap(x, size);
2869  *
2870  * And avoiding more allocations between.
2871  */
2872 void
pmap_early_io_unmap(vm_offset_t va,vm_size_t size)2873 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
2874 {
2875 	int i;
2876 	tlb_entry_t e;
2877 	vm_size_t isize;
2878 
2879 	size = roundup(size, PAGE_SIZE);
2880 	isize = size;
2881 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
2882 		tlb1_read_entry(&e, i);
2883 		if (!(e.mas1 & MAS1_VALID))
2884 			continue;
2885 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
2886 			size -= e.size;
2887 			e.mas1 &= ~MAS1_VALID;
2888 			tlb1_write_entry(&e, i);
2889 		}
2890 	}
2891 	if (tlb1_map_base == va + isize)
2892 		tlb1_map_base -= isize;
2893 }
2894 
2895 vm_offset_t
pmap_early_io_map(vm_paddr_t pa,vm_size_t size)2896 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
2897 {
2898 	vm_paddr_t pa_base;
2899 	vm_offset_t va, sz;
2900 	int i;
2901 	tlb_entry_t e;
2902 
2903 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
2904 
2905 	for (i = 0; i < TLB1_ENTRIES; i++) {
2906 		tlb1_read_entry(&e, i);
2907 		if (!(e.mas1 & MAS1_VALID))
2908 			continue;
2909 		if (pa >= e.phys && (pa + size) <=
2910 		    (e.phys + e.size))
2911 			return (e.virt + (pa - e.phys));
2912 	}
2913 
2914 	pa_base = rounddown(pa, PAGE_SIZE);
2915 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
2916 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
2917 	va = tlb1_map_base + (pa - pa_base);
2918 
2919 	do {
2920 		sz = 1 << (ilog2(size) & ~1);
2921 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
2922 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
2923 		size -= sz;
2924 		pa_base += sz;
2925 		tlb1_map_base += sz;
2926 	} while (size > 0);
2927 
2928 	return (va);
2929 }
2930 
2931 void
pmap_track_page(pmap_t pmap,vm_offset_t va)2932 pmap_track_page(pmap_t pmap, vm_offset_t va)
2933 {
2934 	vm_paddr_t pa;
2935 	vm_page_t page;
2936 	struct pv_entry *pve;
2937 
2938 	va = trunc_page(va);
2939 	pa = pmap_kextract(va);
2940 	page = PHYS_TO_VM_PAGE(pa);
2941 
2942 	rw_wlock(&pvh_global_lock);
2943 	PMAP_LOCK(pmap);
2944 
2945 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
2946 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
2947 			goto out;
2948 		}
2949 	}
2950 	page->md.pv_tracked = true;
2951 	pv_insert(pmap, va, page);
2952 out:
2953 	PMAP_UNLOCK(pmap);
2954 	rw_wunlock(&pvh_global_lock);
2955 }
2956 
2957 /*
2958  * Setup MAS4 defaults.
2959  * These values are loaded to MAS0-2 on a TLB miss.
2960  */
2961 static void
set_mas4_defaults(void)2962 set_mas4_defaults(void)
2963 {
2964 	uint32_t mas4;
2965 
2966 	/* Defaults: TLB0, PID0, TSIZED=4K */
2967 	mas4 = MAS4_TLBSELD0;
2968 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2969 #ifdef SMP
2970 	mas4 |= MAS4_MD;
2971 #endif
2972 	mtspr(SPR_MAS4, mas4);
2973 	__asm __volatile("isync");
2974 }
2975 
2976 /*
2977  * Return 0 if the physical IO range is encompassed by one of the
2978  * the TLB1 entries, otherwise return related error code.
2979  */
2980 static int
tlb1_iomapped(int i,vm_paddr_t pa,vm_size_t size,vm_offset_t * va)2981 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2982 {
2983 	uint32_t prot;
2984 	vm_paddr_t pa_start;
2985 	vm_paddr_t pa_end;
2986 	unsigned int entry_tsize;
2987 	vm_size_t entry_size;
2988 	tlb_entry_t e;
2989 
2990 	*va = (vm_offset_t)NULL;
2991 
2992 	tlb1_read_entry(&e, i);
2993 	/* Skip invalid entries */
2994 	if (!(e.mas1 & MAS1_VALID))
2995 		return (EINVAL);
2996 
2997 	/*
2998 	 * The entry must be cache-inhibited, guarded, and r/w
2999 	 * so it can function as an i/o page
3000 	 */
3001 	prot = e.mas2 & (MAS2_I | MAS2_G);
3002 	if (prot != (MAS2_I | MAS2_G))
3003 		return (EPERM);
3004 
3005 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
3006 	if (prot != (MAS3_SR | MAS3_SW))
3007 		return (EPERM);
3008 
3009 	/* The address should be within the entry range. */
3010 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3011 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3012 
3013 	entry_size = tsize2size(entry_tsize);
3014 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3015 	    (e.mas3 & MAS3_RPN);
3016 	pa_end = pa_start + entry_size;
3017 
3018 	if ((pa < pa_start) || ((pa + size) > pa_end))
3019 		return (ERANGE);
3020 
3021 	/* Return virtual address of this mapping. */
3022 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3023 	return (0);
3024 }
3025 
3026 #ifdef DDB
3027 /* Print out contents of the MAS registers for each TLB0 entry */
3028 static void
3029 #ifdef __powerpc64__
tlb_print_entry(int i,uint32_t mas1,uint64_t mas2,uint32_t mas3,uint32_t mas7)3030 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
3031 #else
3032 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3033 #endif
3034     uint32_t mas7)
3035 {
3036 	int as;
3037 	char desc[3];
3038 	tlbtid_t tid;
3039 	vm_size_t size;
3040 	unsigned int tsize;
3041 
3042 	desc[2] = '\0';
3043 	if (mas1 & MAS1_VALID)
3044 		desc[0] = 'V';
3045 	else
3046 		desc[0] = ' ';
3047 
3048 	if (mas1 & MAS1_IPROT)
3049 		desc[1] = 'P';
3050 	else
3051 		desc[1] = ' ';
3052 
3053 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3054 	tid = MAS1_GETTID(mas1);
3055 
3056 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3057 	size = 0;
3058 	if (tsize)
3059 		size = tsize2size(tsize);
3060 
3061 	printf("%3d: (%s) [AS=%d] "
3062 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
3063 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3064 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
3065 }
3066 
DB_SHOW_COMMAND(tlb0,tlb0_print_tlbentries)3067 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
3068 {
3069 	uint32_t mas0, mas1, mas3, mas7;
3070 #ifdef __powerpc64__
3071 	uint64_t mas2;
3072 #else
3073 	uint32_t mas2;
3074 #endif
3075 	int entryidx, way, idx;
3076 
3077 	printf("TLB0 entries:\n");
3078 	for (way = 0; way < TLB0_WAYS; way ++)
3079 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3080 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3081 			mtspr(SPR_MAS0, mas0);
3082 
3083 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3084 			mtspr(SPR_MAS2, mas2);
3085 
3086 			__asm __volatile("isync; tlbre");
3087 
3088 			mas1 = mfspr(SPR_MAS1);
3089 			mas2 = mfspr(SPR_MAS2);
3090 			mas3 = mfspr(SPR_MAS3);
3091 			mas7 = mfspr(SPR_MAS7);
3092 
3093 			idx = tlb0_tableidx(mas2, way);
3094 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3095 		}
3096 }
3097 
3098 /*
3099  * Print out contents of the MAS registers for each TLB1 entry
3100  */
DB_SHOW_COMMAND(tlb1,tlb1_print_tlbentries)3101 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
3102 {
3103 	uint32_t mas0, mas1, mas3, mas7;
3104 #ifdef __powerpc64__
3105 	uint64_t mas2;
3106 #else
3107 	uint32_t mas2;
3108 #endif
3109 	int i;
3110 
3111 	printf("TLB1 entries:\n");
3112 	for (i = 0; i < TLB1_ENTRIES; i++) {
3113 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3114 		mtspr(SPR_MAS0, mas0);
3115 
3116 		__asm __volatile("isync; tlbre");
3117 
3118 		mas1 = mfspr(SPR_MAS1);
3119 		mas2 = mfspr(SPR_MAS2);
3120 		mas3 = mfspr(SPR_MAS3);
3121 		mas7 = mfspr(SPR_MAS7);
3122 
3123 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3124 	}
3125 }
3126 #endif
3127