1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 /*
38 * External virtual filesystem routines
39 */
40
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87
88 #include <security/mac/mac_framework.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103
104 static void delmntque(struct vnode *vp);
105 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 int slpflag, int slptimeo);
107 static void syncer_shutdown(void *arg, int howto);
108 static int vtryrecycle(struct vnode *vp, bool isvnlru);
109 static void v_init_counters(struct vnode *);
110 static void vn_seqc_init(struct vnode *);
111 static void vn_seqc_write_end_free(struct vnode *vp);
112 static void vgonel(struct vnode *);
113 static bool vhold_recycle_free(struct vnode *);
114 static void vdropl_recycle(struct vnode *vp);
115 static void vdrop_recycle(struct vnode *vp);
116 static void vfs_knllock(void *arg);
117 static void vfs_knlunlock(void *arg);
118 static void vfs_knl_assert_lock(void *arg, int what);
119 static void destroy_vpollinfo(struct vpollinfo *vi);
120 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 daddr_t startlbn, daddr_t endlbn);
122 static void vnlru_recalc(void);
123
124 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
125 "vnode configuration and statistics");
126 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
127 "vnode configuration");
128 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129 "vnode statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131 "vnode recycling");
132
133 /*
134 * Number of vnodes in existence. Increased whenever getnewvnode()
135 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
136 */
137 static u_long __exclusive_cache_line numvnodes;
138
139 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
140 "Number of vnodes in existence (legacy)");
141 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
142 "Number of vnodes in existence");
143
144 static counter_u64_t vnodes_created;
145 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
146 "Number of vnodes created by getnewvnode (legacy)");
147 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
148 "Number of vnodes created by getnewvnode");
149
150 /*
151 * Conversion tables for conversion from vnode types to inode formats
152 * and back.
153 */
154 __enum_uint8(vtype) iftovt_tab[16] = {
155 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162
163 /*
164 * List of allocates vnodes in the system.
165 */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169
170 /*
171 * "Free" vnode target. Free vnodes are rarely completely free, but are
172 * just ones that are cheap to recycle. Usually they are for files which
173 * have been stat'd but not read; these usually have inode and namecache
174 * data attached to them. This target is the preferred minimum size of a
175 * sub-cache consisting mostly of such files. The system balances the size
176 * of this sub-cache with its complement to try to prevent either from
177 * thrashing while the other is relatively inactive. The targets express
178 * a preference for the best balance.
179 *
180 * "Above" this target there are 2 further targets (watermarks) related
181 * to recyling of free vnodes. In the best-operating case, the cache is
182 * exactly full, the free list has size between vlowat and vhiwat above the
183 * free target, and recycling from it and normal use maintains this state.
184 * Sometimes the free list is below vlowat or even empty, but this state
185 * is even better for immediate use provided the cache is not full.
186 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187 * ones) to reach one of these states. The watermarks are currently hard-
188 * coded as 4% and 9% of the available space higher. These and the default
189 * of 25% for wantfreevnodes are too large if the memory size is large.
190 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191 * whenever vnlru_proc() becomes active.
192 */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 static long freevnodes_old;
196
197 static u_long recycles_count;
198 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
199 "Number of vnodes recycled to meet vnode cache targets (legacy)");
200 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
201 &recycles_count, 0,
202 "Number of vnodes recycled to meet vnode cache targets");
203
204 static u_long recycles_free_count;
205 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
206 &recycles_free_count, 0,
207 "Number of free vnodes recycled to meet vnode cache targets (legacy)");
208 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209 &recycles_free_count, 0,
210 "Number of free vnodes recycled to meet vnode cache targets");
211
212 static counter_u64_t direct_recycles_free_count;
213 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
214 &direct_recycles_free_count,
215 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
216
217 static counter_u64_t vnode_skipped_requeues;
218 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
219 "Number of times LRU requeue was skipped due to lock contention");
220
221 static __read_mostly bool vnode_can_skip_requeue;
222 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
223 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
224
225 static u_long deferred_inact;
226 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227 &deferred_inact, 0, "Number of times inactive processing was deferred");
228
229 /* To keep more than one thread at a time from running vfs_getnewfsid */
230 static struct mtx mntid_mtx;
231
232 /*
233 * Lock for any access to the following:
234 * vnode_list
235 * numvnodes
236 * freevnodes
237 */
238 static struct mtx __exclusive_cache_line vnode_list_mtx;
239
240 /* Publicly exported FS */
241 struct nfs_public nfs_pub;
242
243 static uma_zone_t buf_trie_zone;
244 static smr_t buf_trie_smr;
245
246 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247 static uma_zone_t vnode_zone;
248 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249
250 __read_frequently smr_t vfs_smr;
251
252 /*
253 * The workitem queue.
254 *
255 * It is useful to delay writes of file data and filesystem metadata
256 * for tens of seconds so that quickly created and deleted files need
257 * not waste disk bandwidth being created and removed. To realize this,
258 * we append vnodes to a "workitem" queue. When running with a soft
259 * updates implementation, most pending metadata dependencies should
260 * not wait for more than a few seconds. Thus, mounted on block devices
261 * are delayed only about a half the time that file data is delayed.
262 * Similarly, directory updates are more critical, so are only delayed
263 * about a third the time that file data is delayed. Thus, there are
264 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265 * one each second (driven off the filesystem syncer process). The
266 * syncer_delayno variable indicates the next queue that is to be processed.
267 * Items that need to be processed soon are placed in this queue:
268 *
269 * syncer_workitem_pending[syncer_delayno]
270 *
271 * A delay of fifteen seconds is done by placing the request fifteen
272 * entries later in the queue:
273 *
274 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275 *
276 */
277 static int syncer_delayno;
278 static long syncer_mask;
279 LIST_HEAD(synclist, bufobj);
280 static struct synclist *syncer_workitem_pending;
281 /*
282 * The sync_mtx protects:
283 * bo->bo_synclist
284 * sync_vnode_count
285 * syncer_delayno
286 * syncer_state
287 * syncer_workitem_pending
288 * syncer_worklist_len
289 * rushjob
290 */
291 static struct mtx sync_mtx;
292 static struct cv sync_wakeup;
293
294 #define SYNCER_MAXDELAY 32
295 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
296 static int syncdelay = 30; /* max time to delay syncing data */
297 static int filedelay = 30; /* time to delay syncing files */
298 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299 "Time to delay syncing files (in seconds)");
300 static int dirdelay = 29; /* time to delay syncing directories */
301 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302 "Time to delay syncing directories (in seconds)");
303 static int metadelay = 28; /* time to delay syncing metadata */
304 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305 "Time to delay syncing metadata (in seconds)");
306 static int rushjob; /* number of slots to run ASAP */
307 static int stat_rush_requests; /* number of times I/O speeded up */
308 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309 "Number of times I/O speeded up (rush requests)");
310
311 #define VDBATCH_SIZE 8
312 struct vdbatch {
313 u_int index;
314 struct mtx lock;
315 struct vnode *tab[VDBATCH_SIZE];
316 };
317 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318
319 static void vdbatch_dequeue(struct vnode *vp);
320
321 /*
322 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
323 * we probably don't want to pause for the whole second each time.
324 */
325 #define SYNCER_SHUTDOWN_SPEEDUP 32
326 static int sync_vnode_count;
327 static int syncer_worklist_len;
328 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
329 syncer_state;
330
331 /* Target for maximum number of vnodes. */
332 u_long desiredvnodes;
333 static u_long gapvnodes; /* gap between wanted and desired */
334 static u_long vhiwat; /* enough extras after expansion */
335 static u_long vlowat; /* minimal extras before expansion */
336 static bool vstir; /* nonzero to stir non-free vnodes */
337 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
338
339 static u_long vnlru_read_freevnodes(void);
340
341 /*
342 * Note that no attempt is made to sanitize these parameters.
343 */
344 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)345 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
346 {
347 u_long val;
348 int error;
349
350 val = desiredvnodes;
351 error = sysctl_handle_long(oidp, &val, 0, req);
352 if (error != 0 || req->newptr == NULL)
353 return (error);
354
355 if (val == desiredvnodes)
356 return (0);
357 mtx_lock(&vnode_list_mtx);
358 desiredvnodes = val;
359 wantfreevnodes = desiredvnodes / 4;
360 vnlru_recalc();
361 mtx_unlock(&vnode_list_mtx);
362 /*
363 * XXX There is no protection against multiple threads changing
364 * desiredvnodes at the same time. Locking above only helps vnlru and
365 * getnewvnode.
366 */
367 vfs_hash_changesize(desiredvnodes);
368 cache_changesize(desiredvnodes);
369 return (0);
370 }
371
372 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
373 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
374 "LU", "Target for maximum number of vnodes (legacy)");
375 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
376 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377 "LU", "Target for maximum number of vnodes");
378
379 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)380 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
381 {
382 u_long rfreevnodes;
383
384 rfreevnodes = vnlru_read_freevnodes();
385 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
386 }
387
388 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
389 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
390 "LU", "Number of \"free\" vnodes (legacy)");
391 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
392 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393 "LU", "Number of \"free\" vnodes");
394
395 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)396 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
397 {
398 u_long val;
399 int error;
400
401 val = wantfreevnodes;
402 error = sysctl_handle_long(oidp, &val, 0, req);
403 if (error != 0 || req->newptr == NULL)
404 return (error);
405
406 if (val == wantfreevnodes)
407 return (0);
408 mtx_lock(&vnode_list_mtx);
409 wantfreevnodes = val;
410 vnlru_recalc();
411 mtx_unlock(&vnode_list_mtx);
412 return (0);
413 }
414
415 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
416 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
417 "LU", "Target for minimum number of \"free\" vnodes (legacy)");
418 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
419 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420 "LU", "Target for minimum number of \"free\" vnodes");
421
422 static int vnlru_nowhere;
423 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
424 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
425
426 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)427 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
428 {
429 struct vnode *vp;
430 struct nameidata nd;
431 char *buf;
432 unsigned long ndflags;
433 int error;
434
435 if (req->newptr == NULL)
436 return (EINVAL);
437 if (req->newlen >= PATH_MAX)
438 return (E2BIG);
439
440 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
441 error = SYSCTL_IN(req, buf, req->newlen);
442 if (error != 0)
443 goto out;
444
445 buf[req->newlen] = '\0';
446
447 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
448 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
449 if ((error = namei(&nd)) != 0)
450 goto out;
451 vp = nd.ni_vp;
452
453 if (VN_IS_DOOMED(vp)) {
454 /*
455 * This vnode is being recycled. Return != 0 to let the caller
456 * know that the sysctl had no effect. Return EAGAIN because a
457 * subsequent call will likely succeed (since namei will create
458 * a new vnode if necessary)
459 */
460 error = EAGAIN;
461 goto putvnode;
462 }
463
464 vgone(vp);
465 putvnode:
466 vput(vp);
467 NDFREE_PNBUF(&nd);
468 out:
469 free(buf, M_TEMP);
470 return (error);
471 }
472
473 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)474 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
475 {
476 struct thread *td = curthread;
477 struct vnode *vp;
478 struct file *fp;
479 int error;
480 int fd;
481
482 if (req->newptr == NULL)
483 return (EBADF);
484
485 error = sysctl_handle_int(oidp, &fd, 0, req);
486 if (error != 0)
487 return (error);
488 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
489 if (error != 0)
490 return (error);
491 vp = fp->f_vnode;
492
493 error = vn_lock(vp, LK_EXCLUSIVE);
494 if (error != 0)
495 goto drop;
496
497 vgone(vp);
498 VOP_UNLOCK(vp);
499 drop:
500 fdrop(fp, td);
501 return (error);
502 }
503
504 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
505 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
506 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
507 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
508 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509 sysctl_ftry_reclaim_vnode, "I",
510 "Try to reclaim a vnode by its file descriptor");
511
512 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
513 #define vnsz2log 8
514 #ifndef DEBUG_LOCKS
515 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
516 sizeof(struct vnode) < 1UL << (vnsz2log + 1),
517 "vnsz2log needs to be updated");
518 #endif
519
520 /*
521 * Support for the bufobj clean & dirty pctrie.
522 */
523 static void *
buf_trie_alloc(struct pctrie * ptree)524 buf_trie_alloc(struct pctrie *ptree)
525 {
526 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
527 }
528
529 static void
buf_trie_free(struct pctrie * ptree,void * node)530 buf_trie_free(struct pctrie *ptree, void *node)
531 {
532 uma_zfree_smr(buf_trie_zone, node);
533 }
534 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
535 buf_trie_smr);
536
537 /*
538 * Lookup the next element greater than or equal to lblkno, accounting for the
539 * fact that, for pctries, negative values are greater than nonnegative ones.
540 */
541 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)542 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
543 {
544 struct buf *bp;
545
546 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
547 if (bp == NULL && lblkno < 0)
548 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
549 if (bp != NULL && bp->b_lblkno < lblkno)
550 bp = NULL;
551 return (bp);
552 }
553
554 /*
555 * Insert bp, and find the next element smaller than bp, accounting for the fact
556 * that, for pctries, negative values are greater than nonnegative ones.
557 */
558 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)559 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
560 {
561 int error;
562
563 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
564 if (error != EEXIST) {
565 if (*n == NULL && bp->b_lblkno >= 0)
566 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
567 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
568 *n = NULL;
569 }
570 return (error);
571 }
572
573 /*
574 * Initialize the vnode management data structures.
575 *
576 * Reevaluate the following cap on the number of vnodes after the physical
577 * memory size exceeds 512GB. In the limit, as the physical memory size
578 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
579 */
580 #ifndef MAXVNODES_MAX
581 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
582 #endif
583
584 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
585
586 static struct vnode *
vn_alloc_marker(struct mount * mp)587 vn_alloc_marker(struct mount *mp)
588 {
589 struct vnode *vp;
590
591 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
592 vp->v_type = VMARKER;
593 vp->v_mount = mp;
594
595 return (vp);
596 }
597
598 static void
vn_free_marker(struct vnode * vp)599 vn_free_marker(struct vnode *vp)
600 {
601
602 MPASS(vp->v_type == VMARKER);
603 free(vp, M_VNODE_MARKER);
604 }
605
606 #ifdef KASAN
607 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)608 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
609 {
610 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
611 return (0);
612 }
613
614 static void
vnode_dtor(void * mem,int size,void * arg __unused)615 vnode_dtor(void *mem, int size, void *arg __unused)
616 {
617 size_t end1, end2, off1, off2;
618
619 _Static_assert(offsetof(struct vnode, v_vnodelist) <
620 offsetof(struct vnode, v_dbatchcpu),
621 "KASAN marks require updating");
622
623 off1 = offsetof(struct vnode, v_vnodelist);
624 off2 = offsetof(struct vnode, v_dbatchcpu);
625 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
626 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
627
628 /*
629 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
630 * after the vnode has been freed. Try to get some KASAN coverage by
631 * marking everything except those two fields as invalid. Because
632 * KASAN's tracking is not byte-granular, any preceding fields sharing
633 * the same 8-byte aligned word must also be marked valid.
634 */
635
636 /* Handle the area from the start until v_vnodelist... */
637 off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
638 kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
639
640 /* ... then the area between v_vnodelist and v_dbatchcpu ... */
641 off1 = roundup2(end1, KASAN_SHADOW_SCALE);
642 off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
643 if (off2 > off1)
644 kasan_mark((void *)((char *)mem + off1), off2 - off1,
645 off2 - off1, KASAN_UMA_FREED);
646
647 /* ... and finally the area from v_dbatchcpu to the end. */
648 off2 = roundup2(end2, KASAN_SHADOW_SCALE);
649 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
650 KASAN_UMA_FREED);
651 }
652 #endif /* KASAN */
653
654 /*
655 * Initialize a vnode as it first enters the zone.
656 */
657 static int
vnode_init(void * mem,int size,int flags)658 vnode_init(void *mem, int size, int flags)
659 {
660 struct vnode *vp;
661
662 vp = mem;
663 bzero(vp, size);
664 /*
665 * Setup locks.
666 */
667 vp->v_vnlock = &vp->v_lock;
668 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
669 /*
670 * By default, don't allow shared locks unless filesystems opt-in.
671 */
672 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
673 LK_NOSHARE | LK_IS_VNODE);
674 /*
675 * Initialize bufobj.
676 */
677 bufobj_init(&vp->v_bufobj, vp);
678 /*
679 * Initialize namecache.
680 */
681 cache_vnode_init(vp);
682 /*
683 * Initialize rangelocks.
684 */
685 rangelock_init(&vp->v_rl);
686
687 vp->v_dbatchcpu = NOCPU;
688
689 vp->v_state = VSTATE_DEAD;
690
691 /*
692 * Check vhold_recycle_free for an explanation.
693 */
694 vp->v_holdcnt = VHOLD_NO_SMR;
695 vp->v_type = VNON;
696 mtx_lock(&vnode_list_mtx);
697 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
698 mtx_unlock(&vnode_list_mtx);
699 return (0);
700 }
701
702 /*
703 * Free a vnode when it is cleared from the zone.
704 */
705 static void
vnode_fini(void * mem,int size)706 vnode_fini(void *mem, int size)
707 {
708 struct vnode *vp;
709 struct bufobj *bo;
710
711 vp = mem;
712 vdbatch_dequeue(vp);
713 mtx_lock(&vnode_list_mtx);
714 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
715 mtx_unlock(&vnode_list_mtx);
716 rangelock_destroy(&vp->v_rl);
717 lockdestroy(vp->v_vnlock);
718 mtx_destroy(&vp->v_interlock);
719 bo = &vp->v_bufobj;
720 rw_destroy(BO_LOCKPTR(bo));
721
722 kasan_mark(mem, size, size, 0);
723 }
724
725 /*
726 * Provide the size of NFS nclnode and NFS fh for calculation of the
727 * vnode memory consumption. The size is specified directly to
728 * eliminate dependency on NFS-private header.
729 *
730 * Other filesystems may use bigger or smaller (like UFS and ZFS)
731 * private inode data, but the NFS-based estimation is ample enough.
732 * Still, we care about differences in the size between 64- and 32-bit
733 * platforms.
734 *
735 * Namecache structure size is heuristically
736 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
737 */
738 #ifdef _LP64
739 #define NFS_NCLNODE_SZ (528 + 64)
740 #define NC_SZ 148
741 #else
742 #define NFS_NCLNODE_SZ (360 + 32)
743 #define NC_SZ 92
744 #endif
745
746 static void
vntblinit(void * dummy __unused)747 vntblinit(void *dummy __unused)
748 {
749 struct vdbatch *vd;
750 uma_ctor ctor;
751 uma_dtor dtor;
752 int cpu, physvnodes, virtvnodes;
753
754 /*
755 * 'desiredvnodes' is the minimum of a function of the physical memory
756 * size and another of the kernel heap size (UMA limit, a portion of the
757 * KVA).
758 *
759 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
760 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
761 * 'physvnodes' applies instead. With the current automatic tuning for
762 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
763 */
764 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
765 min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
766 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
767 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
768 desiredvnodes = min(physvnodes, virtvnodes);
769 if (desiredvnodes > MAXVNODES_MAX) {
770 if (bootverbose)
771 printf("Reducing kern.maxvnodes %lu -> %lu\n",
772 desiredvnodes, MAXVNODES_MAX);
773 desiredvnodes = MAXVNODES_MAX;
774 }
775 wantfreevnodes = desiredvnodes / 4;
776 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
777 TAILQ_INIT(&vnode_list);
778 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
779 /*
780 * The lock is taken to appease WITNESS.
781 */
782 mtx_lock(&vnode_list_mtx);
783 vnlru_recalc();
784 mtx_unlock(&vnode_list_mtx);
785 vnode_list_free_marker = vn_alloc_marker(NULL);
786 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
787 vnode_list_reclaim_marker = vn_alloc_marker(NULL);
788 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
789
790 #ifdef KASAN
791 ctor = vnode_ctor;
792 dtor = vnode_dtor;
793 #else
794 ctor = NULL;
795 dtor = NULL;
796 #endif
797 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
798 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
799 uma_zone_set_smr(vnode_zone, vfs_smr);
800
801 /*
802 * Preallocate enough nodes to support one-per buf so that
803 * we can not fail an insert. reassignbuf() callers can not
804 * tolerate the insertion failure.
805 */
806 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
807 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
808 UMA_ZONE_NOFREE | UMA_ZONE_SMR);
809 buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
810 uma_prealloc(buf_trie_zone, nbuf);
811
812 vnodes_created = counter_u64_alloc(M_WAITOK);
813 direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
814 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
815
816 /*
817 * Initialize the filesystem syncer.
818 */
819 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
820 &syncer_mask);
821 syncer_maxdelay = syncer_mask + 1;
822 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
823 cv_init(&sync_wakeup, "syncer");
824
825 CPU_FOREACH(cpu) {
826 vd = DPCPU_ID_PTR((cpu), vd);
827 bzero(vd, sizeof(*vd));
828 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
829 }
830 }
831 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
832
833 /*
834 * Mark a mount point as busy. Used to synchronize access and to delay
835 * unmounting. Eventually, mountlist_mtx is not released on failure.
836 *
837 * vfs_busy() is a custom lock, it can block the caller.
838 * vfs_busy() only sleeps if the unmount is active on the mount point.
839 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
840 * vnode belonging to mp.
841 *
842 * Lookup uses vfs_busy() to traverse mount points.
843 * root fs var fs
844 * / vnode lock A / vnode lock (/var) D
845 * /var vnode lock B /log vnode lock(/var/log) E
846 * vfs_busy lock C vfs_busy lock F
847 *
848 * Within each file system, the lock order is C->A->B and F->D->E.
849 *
850 * When traversing across mounts, the system follows that lock order:
851 *
852 * C->A->B
853 * |
854 * +->F->D->E
855 *
856 * The lookup() process for namei("/var") illustrates the process:
857 * 1. VOP_LOOKUP() obtains B while A is held
858 * 2. vfs_busy() obtains a shared lock on F while A and B are held
859 * 3. vput() releases lock on B
860 * 4. vput() releases lock on A
861 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held
862 * 6. vfs_unbusy() releases shared lock on F
863 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
864 * Attempt to lock A (instead of vp_crossmp) while D is held would
865 * violate the global order, causing deadlocks.
866 *
867 * dounmount() locks B while F is drained. Note that for stacked
868 * filesystems, D and B in the example above may be the same lock,
869 * which introdues potential lock order reversal deadlock between
870 * dounmount() and step 5 above. These filesystems may avoid the LOR
871 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
872 * remain held until after step 5.
873 */
874 int
vfs_busy(struct mount * mp,int flags)875 vfs_busy(struct mount *mp, int flags)
876 {
877 struct mount_pcpu *mpcpu;
878
879 MPASS((flags & ~MBF_MASK) == 0);
880 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
881
882 if (vfs_op_thread_enter(mp, mpcpu)) {
883 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
885 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
886 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
887 vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
888 vfs_op_thread_exit(mp, mpcpu);
889 if (flags & MBF_MNTLSTLOCK)
890 mtx_unlock(&mountlist_mtx);
891 return (0);
892 }
893
894 MNT_ILOCK(mp);
895 vfs_assert_mount_counters(mp);
896 MNT_REF(mp);
897 /*
898 * If mount point is currently being unmounted, sleep until the
899 * mount point fate is decided. If thread doing the unmounting fails,
900 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
901 * that this mount point has survived the unmount attempt and vfs_busy
902 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
903 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
904 * about to be really destroyed. vfs_busy needs to release its
905 * reference on the mount point in this case and return with ENOENT,
906 * telling the caller the mount it tried to busy is no longer valid.
907 */
908 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
909 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
910 ("%s: non-empty upper mount list with pending unmount",
911 __func__));
912 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
913 MNT_REL(mp);
914 MNT_IUNLOCK(mp);
915 CTR1(KTR_VFS, "%s: failed busying before sleeping",
916 __func__);
917 return (ENOENT);
918 }
919 if (flags & MBF_MNTLSTLOCK)
920 mtx_unlock(&mountlist_mtx);
921 mp->mnt_kern_flag |= MNTK_MWAIT;
922 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
923 if (flags & MBF_MNTLSTLOCK)
924 mtx_lock(&mountlist_mtx);
925 MNT_ILOCK(mp);
926 }
927 if (flags & MBF_MNTLSTLOCK)
928 mtx_unlock(&mountlist_mtx);
929 mp->mnt_lockref++;
930 MNT_IUNLOCK(mp);
931 return (0);
932 }
933
934 /*
935 * Free a busy filesystem.
936 */
937 void
vfs_unbusy(struct mount * mp)938 vfs_unbusy(struct mount *mp)
939 {
940 struct mount_pcpu *mpcpu;
941 int c;
942
943 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
944
945 if (vfs_op_thread_enter(mp, mpcpu)) {
946 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
947 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
948 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
949 vfs_op_thread_exit(mp, mpcpu);
950 return;
951 }
952
953 MNT_ILOCK(mp);
954 vfs_assert_mount_counters(mp);
955 MNT_REL(mp);
956 c = --mp->mnt_lockref;
957 if (mp->mnt_vfs_ops == 0) {
958 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
959 MNT_IUNLOCK(mp);
960 return;
961 }
962 if (c < 0)
963 vfs_dump_mount_counters(mp);
964 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
965 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
966 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
967 mp->mnt_kern_flag &= ~MNTK_DRAINING;
968 wakeup(&mp->mnt_lockref);
969 }
970 MNT_IUNLOCK(mp);
971 }
972
973 /*
974 * Lookup a mount point by filesystem identifier.
975 */
976 struct mount *
vfs_getvfs(fsid_t * fsid)977 vfs_getvfs(fsid_t *fsid)
978 {
979 struct mount *mp;
980
981 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
982 mtx_lock(&mountlist_mtx);
983 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
984 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
985 vfs_ref(mp);
986 mtx_unlock(&mountlist_mtx);
987 return (mp);
988 }
989 }
990 mtx_unlock(&mountlist_mtx);
991 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
992 return ((struct mount *) 0);
993 }
994
995 /*
996 * Lookup a mount point by filesystem identifier, busying it before
997 * returning.
998 *
999 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1000 * cache for popular filesystem identifiers. The cache is lockess, using
1001 * the fact that struct mount's are never freed. In worst case we may
1002 * get pointer to unmounted or even different filesystem, so we have to
1003 * check what we got, and go slow way if so.
1004 */
1005 struct mount *
vfs_busyfs(fsid_t * fsid)1006 vfs_busyfs(fsid_t *fsid)
1007 {
1008 #define FSID_CACHE_SIZE 256
1009 typedef struct mount * volatile vmp_t;
1010 static vmp_t cache[FSID_CACHE_SIZE];
1011 struct mount *mp;
1012 int error;
1013 uint32_t hash;
1014
1015 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1016 hash = fsid->val[0] ^ fsid->val[1];
1017 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1018 mp = cache[hash];
1019 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1020 goto slow;
1021 if (vfs_busy(mp, 0) != 0) {
1022 cache[hash] = NULL;
1023 goto slow;
1024 }
1025 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1026 return (mp);
1027 else
1028 vfs_unbusy(mp);
1029
1030 slow:
1031 mtx_lock(&mountlist_mtx);
1032 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1033 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1034 error = vfs_busy(mp, MBF_MNTLSTLOCK);
1035 if (error) {
1036 cache[hash] = NULL;
1037 mtx_unlock(&mountlist_mtx);
1038 return (NULL);
1039 }
1040 cache[hash] = mp;
1041 return (mp);
1042 }
1043 }
1044 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1045 mtx_unlock(&mountlist_mtx);
1046 return ((struct mount *) 0);
1047 }
1048
1049 /*
1050 * Check if a user can access privileged mount options.
1051 */
1052 int
vfs_suser(struct mount * mp,struct thread * td)1053 vfs_suser(struct mount *mp, struct thread *td)
1054 {
1055 int error;
1056
1057 if (jailed(td->td_ucred)) {
1058 /*
1059 * If the jail of the calling thread lacks permission for
1060 * this type of file system, deny immediately.
1061 */
1062 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1063 return (EPERM);
1064
1065 /*
1066 * If the file system was mounted outside the jail of the
1067 * calling thread, deny immediately.
1068 */
1069 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1070 return (EPERM);
1071 }
1072
1073 /*
1074 * If file system supports delegated administration, we don't check
1075 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1076 * by the file system itself.
1077 * If this is not the user that did original mount, we check for
1078 * the PRIV_VFS_MOUNT_OWNER privilege.
1079 */
1080 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1081 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1082 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1083 return (error);
1084 }
1085 return (0);
1086 }
1087
1088 /*
1089 * Get a new unique fsid. Try to make its val[0] unique, since this value
1090 * will be used to create fake device numbers for stat(). Also try (but
1091 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1092 * support 16-bit device numbers. We end up with unique val[0]'s for the
1093 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1094 *
1095 * Keep in mind that several mounts may be running in parallel. Starting
1096 * the search one past where the previous search terminated is both a
1097 * micro-optimization and a defense against returning the same fsid to
1098 * different mounts.
1099 */
1100 void
vfs_getnewfsid(struct mount * mp)1101 vfs_getnewfsid(struct mount *mp)
1102 {
1103 static uint16_t mntid_base;
1104 struct mount *nmp;
1105 fsid_t tfsid;
1106 int mtype;
1107
1108 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1109 mtx_lock(&mntid_mtx);
1110 mtype = mp->mnt_vfc->vfc_typenum;
1111 tfsid.val[1] = mtype;
1112 mtype = (mtype & 0xFF) << 24;
1113 for (;;) {
1114 tfsid.val[0] = makedev(255,
1115 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1116 mntid_base++;
1117 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1118 break;
1119 vfs_rel(nmp);
1120 }
1121 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1122 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1123 mtx_unlock(&mntid_mtx);
1124 }
1125
1126 /*
1127 * Knob to control the precision of file timestamps:
1128 *
1129 * 0 = seconds only; nanoseconds zeroed.
1130 * 1 = seconds and nanoseconds, accurate within 1/HZ.
1131 * 2 = seconds and nanoseconds, truncated to microseconds.
1132 * >=3 = seconds and nanoseconds, maximum precision.
1133 */
1134 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1135
1136 static int timestamp_precision = TSP_USEC;
1137 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1138 ×tamp_precision, 0, "File timestamp precision (0: seconds, "
1139 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1140 "3+: sec + ns (max. precision))");
1141
1142 /*
1143 * Get a current timestamp.
1144 */
1145 void
vfs_timestamp(struct timespec * tsp)1146 vfs_timestamp(struct timespec *tsp)
1147 {
1148 struct timeval tv;
1149
1150 switch (timestamp_precision) {
1151 case TSP_SEC:
1152 tsp->tv_sec = time_second;
1153 tsp->tv_nsec = 0;
1154 break;
1155 case TSP_HZ:
1156 getnanotime(tsp);
1157 break;
1158 case TSP_USEC:
1159 microtime(&tv);
1160 TIMEVAL_TO_TIMESPEC(&tv, tsp);
1161 break;
1162 case TSP_NSEC:
1163 default:
1164 nanotime(tsp);
1165 break;
1166 }
1167 }
1168
1169 /*
1170 * Set vnode attributes to VNOVAL
1171 */
1172 void
vattr_null(struct vattr * vap)1173 vattr_null(struct vattr *vap)
1174 {
1175
1176 vap->va_type = VNON;
1177 vap->va_size = VNOVAL;
1178 vap->va_bytes = VNOVAL;
1179 vap->va_mode = VNOVAL;
1180 vap->va_nlink = VNOVAL;
1181 vap->va_uid = VNOVAL;
1182 vap->va_gid = VNOVAL;
1183 vap->va_fsid = VNOVAL;
1184 vap->va_fileid = VNOVAL;
1185 vap->va_blocksize = VNOVAL;
1186 vap->va_rdev = VNOVAL;
1187 vap->va_atime.tv_sec = VNOVAL;
1188 vap->va_atime.tv_nsec = VNOVAL;
1189 vap->va_mtime.tv_sec = VNOVAL;
1190 vap->va_mtime.tv_nsec = VNOVAL;
1191 vap->va_ctime.tv_sec = VNOVAL;
1192 vap->va_ctime.tv_nsec = VNOVAL;
1193 vap->va_birthtime.tv_sec = VNOVAL;
1194 vap->va_birthtime.tv_nsec = VNOVAL;
1195 vap->va_flags = VNOVAL;
1196 vap->va_gen = VNOVAL;
1197 vap->va_vaflags = 0;
1198 vap->va_filerev = VNOVAL;
1199 vap->va_bsdflags = 0;
1200 }
1201
1202 /*
1203 * Try to reduce the total number of vnodes.
1204 *
1205 * This routine (and its user) are buggy in at least the following ways:
1206 * - all parameters were picked years ago when RAM sizes were significantly
1207 * smaller
1208 * - it can pick vnodes based on pages used by the vm object, but filesystems
1209 * like ZFS don't use it making the pick broken
1210 * - since ZFS has its own aging policy it gets partially combated by this one
1211 * - a dedicated method should be provided for filesystems to let them decide
1212 * whether the vnode should be recycled
1213 *
1214 * This routine is called when we have too many vnodes. It attempts
1215 * to free <count> vnodes and will potentially free vnodes that still
1216 * have VM backing store (VM backing store is typically the cause
1217 * of a vnode blowout so we want to do this). Therefore, this operation
1218 * is not considered cheap.
1219 *
1220 * A number of conditions may prevent a vnode from being reclaimed.
1221 * the buffer cache may have references on the vnode, a directory
1222 * vnode may still have references due to the namei cache representing
1223 * underlying files, or the vnode may be in active use. It is not
1224 * desirable to reuse such vnodes. These conditions may cause the
1225 * number of vnodes to reach some minimum value regardless of what
1226 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
1227 *
1228 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1229 * entries if this argument is strue
1230 * @param trigger Only reclaim vnodes with fewer than this many resident
1231 * pages.
1232 * @param target How many vnodes to reclaim.
1233 * @return The number of vnodes that were reclaimed.
1234 */
1235 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1236 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1237 {
1238 struct vnode *vp, *mvp;
1239 struct mount *mp;
1240 struct vm_object *object;
1241 u_long done;
1242 bool retried;
1243
1244 mtx_assert(&vnode_list_mtx, MA_OWNED);
1245
1246 retried = false;
1247 done = 0;
1248
1249 mvp = vnode_list_reclaim_marker;
1250 restart:
1251 vp = mvp;
1252 while (done < target) {
1253 vp = TAILQ_NEXT(vp, v_vnodelist);
1254 if (__predict_false(vp == NULL))
1255 break;
1256
1257 if (__predict_false(vp->v_type == VMARKER))
1258 continue;
1259
1260 /*
1261 * If it's been deconstructed already, it's still
1262 * referenced, or it exceeds the trigger, skip it.
1263 * Also skip free vnodes. We are trying to make space
1264 * for more free vnodes, not reduce their count.
1265 */
1266 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1267 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1268 goto next_iter;
1269
1270 if (vp->v_type == VBAD || vp->v_type == VNON)
1271 goto next_iter;
1272
1273 object = atomic_load_ptr(&vp->v_object);
1274 if (object == NULL || object->resident_page_count > trigger) {
1275 goto next_iter;
1276 }
1277
1278 /*
1279 * Handle races against vnode allocation. Filesystems lock the
1280 * vnode some time after it gets returned from getnewvnode,
1281 * despite type and hold count being manipulated earlier.
1282 * Resorting to checking v_mount restores guarantees present
1283 * before the global list was reworked to contain all vnodes.
1284 */
1285 if (!VI_TRYLOCK(vp))
1286 goto next_iter;
1287 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1288 VI_UNLOCK(vp);
1289 goto next_iter;
1290 }
1291 if (vp->v_mount == NULL) {
1292 VI_UNLOCK(vp);
1293 goto next_iter;
1294 }
1295 vholdl(vp);
1296 VI_UNLOCK(vp);
1297 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299 mtx_unlock(&vnode_list_mtx);
1300
1301 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1302 vdrop_recycle(vp);
1303 goto next_iter_unlocked;
1304 }
1305 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1306 vdrop_recycle(vp);
1307 vn_finished_write(mp);
1308 goto next_iter_unlocked;
1309 }
1310
1311 VI_LOCK(vp);
1312 if (vp->v_usecount > 0 ||
1313 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1314 (vp->v_object != NULL && vp->v_object->handle == vp &&
1315 vp->v_object->resident_page_count > trigger)) {
1316 VOP_UNLOCK(vp);
1317 vdropl_recycle(vp);
1318 vn_finished_write(mp);
1319 goto next_iter_unlocked;
1320 }
1321 recycles_count++;
1322 vgonel(vp);
1323 VOP_UNLOCK(vp);
1324 vdropl_recycle(vp);
1325 vn_finished_write(mp);
1326 done++;
1327 next_iter_unlocked:
1328 maybe_yield();
1329 mtx_lock(&vnode_list_mtx);
1330 goto restart;
1331 next_iter:
1332 MPASS(vp->v_type != VMARKER);
1333 if (!should_yield())
1334 continue;
1335 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1336 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1337 mtx_unlock(&vnode_list_mtx);
1338 kern_yield(PRI_USER);
1339 mtx_lock(&vnode_list_mtx);
1340 goto restart;
1341 }
1342 if (done == 0 && !retried) {
1343 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1344 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1345 retried = true;
1346 goto restart;
1347 }
1348 return (done);
1349 }
1350
1351 static int max_free_per_call = 10000;
1352 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1353 "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1354 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1355 &max_free_per_call, 0,
1356 "limit on vnode free requests per call to the vnlru_free routine");
1357
1358 /*
1359 * Attempt to recycle requested amount of free vnodes.
1360 */
1361 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1362 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1363 {
1364 struct vnode *vp;
1365 struct mount *mp;
1366 int ocount;
1367 bool retried;
1368
1369 mtx_assert(&vnode_list_mtx, MA_OWNED);
1370 if (count > max_free_per_call)
1371 count = max_free_per_call;
1372 if (count == 0) {
1373 mtx_unlock(&vnode_list_mtx);
1374 return (0);
1375 }
1376 ocount = count;
1377 retried = false;
1378 vp = mvp;
1379 for (;;) {
1380 vp = TAILQ_NEXT(vp, v_vnodelist);
1381 if (__predict_false(vp == NULL)) {
1382 /*
1383 * The free vnode marker can be past eligible vnodes:
1384 * 1. if vdbatch_process trylock failed
1385 * 2. if vtryrecycle failed
1386 *
1387 * If so, start the scan from scratch.
1388 */
1389 if (!retried && vnlru_read_freevnodes() > 0) {
1390 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1392 vp = mvp;
1393 retried = true;
1394 continue;
1395 }
1396
1397 /*
1398 * Give up
1399 */
1400 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1401 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1402 mtx_unlock(&vnode_list_mtx);
1403 break;
1404 }
1405 if (__predict_false(vp->v_type == VMARKER))
1406 continue;
1407 if (vp->v_holdcnt > 0)
1408 continue;
1409 /*
1410 * Don't recycle if our vnode is from different type
1411 * of mount point. Note that mp is type-safe, the
1412 * check does not reach unmapped address even if
1413 * vnode is reclaimed.
1414 */
1415 if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1416 mp->mnt_op != mnt_op) {
1417 continue;
1418 }
1419 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1420 continue;
1421 }
1422 if (!vhold_recycle_free(vp))
1423 continue;
1424 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1425 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1426 mtx_unlock(&vnode_list_mtx);
1427 /*
1428 * FIXME: ignores the return value, meaning it may be nothing
1429 * got recycled but it claims otherwise to the caller.
1430 *
1431 * Originally the value started being ignored in 2005 with
1432 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1433 *
1434 * Respecting the value can run into significant stalls if most
1435 * vnodes belong to one file system and it has writes
1436 * suspended. In presence of many threads and millions of
1437 * vnodes they keep contending on the vnode_list_mtx lock only
1438 * to find vnodes they can't recycle.
1439 *
1440 * The solution would be to pre-check if the vnode is likely to
1441 * be recycle-able, but it needs to happen with the
1442 * vnode_list_mtx lock held. This runs into a problem where
1443 * VOP_GETWRITEMOUNT (currently needed to find out about if
1444 * writes are frozen) can take locks which LOR against it.
1445 *
1446 * Check nullfs for one example (null_getwritemount).
1447 */
1448 vtryrecycle(vp, isvnlru);
1449 count--;
1450 if (count == 0) {
1451 break;
1452 }
1453 mtx_lock(&vnode_list_mtx);
1454 vp = mvp;
1455 }
1456 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1457 return (ocount - count);
1458 }
1459
1460 /*
1461 * XXX: returns without vnode_list_mtx locked!
1462 */
1463 static int
vnlru_free_locked_direct(int count)1464 vnlru_free_locked_direct(int count)
1465 {
1466 int ret;
1467
1468 mtx_assert(&vnode_list_mtx, MA_OWNED);
1469 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1470 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 return (ret);
1472 }
1473
1474 static int
vnlru_free_locked_vnlru(int count)1475 vnlru_free_locked_vnlru(int count)
1476 {
1477 int ret;
1478
1479 mtx_assert(&vnode_list_mtx, MA_OWNED);
1480 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1481 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1482 return (ret);
1483 }
1484
1485 static int
vnlru_free_vnlru(int count)1486 vnlru_free_vnlru(int count)
1487 {
1488
1489 mtx_lock(&vnode_list_mtx);
1490 return (vnlru_free_locked_vnlru(count));
1491 }
1492
1493 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1494 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1495 {
1496
1497 MPASS(mnt_op != NULL);
1498 MPASS(mvp != NULL);
1499 VNPASS(mvp->v_type == VMARKER, mvp);
1500 mtx_lock(&vnode_list_mtx);
1501 vnlru_free_impl(count, mnt_op, mvp, true);
1502 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1503 }
1504
1505 struct vnode *
vnlru_alloc_marker(void)1506 vnlru_alloc_marker(void)
1507 {
1508 struct vnode *mvp;
1509
1510 mvp = vn_alloc_marker(NULL);
1511 mtx_lock(&vnode_list_mtx);
1512 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1513 mtx_unlock(&vnode_list_mtx);
1514 return (mvp);
1515 }
1516
1517 void
vnlru_free_marker(struct vnode * mvp)1518 vnlru_free_marker(struct vnode *mvp)
1519 {
1520 mtx_lock(&vnode_list_mtx);
1521 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1522 mtx_unlock(&vnode_list_mtx);
1523 vn_free_marker(mvp);
1524 }
1525
1526 static void
vnlru_recalc(void)1527 vnlru_recalc(void)
1528 {
1529
1530 mtx_assert(&vnode_list_mtx, MA_OWNED);
1531 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1532 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1533 vlowat = vhiwat / 2;
1534 }
1535
1536 /*
1537 * Attempt to recycle vnodes in a context that is always safe to block.
1538 * Calling vlrurecycle() from the bowels of filesystem code has some
1539 * interesting deadlock problems.
1540 */
1541 static struct proc *vnlruproc;
1542 static int vnlruproc_sig;
1543 static u_long vnlruproc_kicks;
1544
1545 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1546 "Number of times vnlru awakened due to vnode shortage");
1547
1548 #define VNLRU_COUNT_SLOP 100
1549
1550 /*
1551 * The main freevnodes counter is only updated when a counter local to CPU
1552 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1553 * walked to compute a more accurate total.
1554 *
1555 * Note: the actual value at any given moment can still exceed slop, but it
1556 * should not be by significant margin in practice.
1557 */
1558 #define VNLRU_FREEVNODES_SLOP 126
1559
1560 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1561 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1562 {
1563
1564 atomic_add_long(&freevnodes, *lfreevnodes);
1565 *lfreevnodes = 0;
1566 critical_exit();
1567 }
1568
1569 static __inline void
vfs_freevnodes_inc(void)1570 vfs_freevnodes_inc(void)
1571 {
1572 int8_t *lfreevnodes;
1573
1574 critical_enter();
1575 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1576 (*lfreevnodes)++;
1577 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1578 vfs_freevnodes_rollup(lfreevnodes);
1579 else
1580 critical_exit();
1581 }
1582
1583 static __inline void
vfs_freevnodes_dec(void)1584 vfs_freevnodes_dec(void)
1585 {
1586 int8_t *lfreevnodes;
1587
1588 critical_enter();
1589 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1590 (*lfreevnodes)--;
1591 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1592 vfs_freevnodes_rollup(lfreevnodes);
1593 else
1594 critical_exit();
1595 }
1596
1597 static u_long
vnlru_read_freevnodes(void)1598 vnlru_read_freevnodes(void)
1599 {
1600 long slop, rfreevnodes, rfreevnodes_old;
1601 int cpu;
1602
1603 rfreevnodes = atomic_load_long(&freevnodes);
1604 rfreevnodes_old = atomic_load_long(&freevnodes_old);
1605
1606 if (rfreevnodes > rfreevnodes_old)
1607 slop = rfreevnodes - rfreevnodes_old;
1608 else
1609 slop = rfreevnodes_old - rfreevnodes;
1610 if (slop < VNLRU_FREEVNODES_SLOP)
1611 return (rfreevnodes >= 0 ? rfreevnodes : 0);
1612 CPU_FOREACH(cpu) {
1613 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1614 }
1615 atomic_store_long(&freevnodes_old, rfreevnodes);
1616 return (freevnodes_old >= 0 ? freevnodes_old : 0);
1617 }
1618
1619 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1620 vnlru_under(u_long rnumvnodes, u_long limit)
1621 {
1622 u_long rfreevnodes, space;
1623
1624 if (__predict_false(rnumvnodes > desiredvnodes))
1625 return (true);
1626
1627 space = desiredvnodes - rnumvnodes;
1628 if (space < limit) {
1629 rfreevnodes = vnlru_read_freevnodes();
1630 if (rfreevnodes > wantfreevnodes)
1631 space += rfreevnodes - wantfreevnodes;
1632 }
1633 return (space < limit);
1634 }
1635
1636 static void
vnlru_kick_locked(void)1637 vnlru_kick_locked(void)
1638 {
1639
1640 mtx_assert(&vnode_list_mtx, MA_OWNED);
1641 if (vnlruproc_sig == 0) {
1642 vnlruproc_sig = 1;
1643 vnlruproc_kicks++;
1644 wakeup(vnlruproc);
1645 }
1646 }
1647
1648 static void
vnlru_kick_cond(void)1649 vnlru_kick_cond(void)
1650 {
1651
1652 if (vnlru_read_freevnodes() > wantfreevnodes)
1653 return;
1654
1655 if (vnlruproc_sig)
1656 return;
1657 mtx_lock(&vnode_list_mtx);
1658 vnlru_kick_locked();
1659 mtx_unlock(&vnode_list_mtx);
1660 }
1661
1662 static void
vnlru_proc_sleep(void)1663 vnlru_proc_sleep(void)
1664 {
1665
1666 if (vnlruproc_sig) {
1667 vnlruproc_sig = 0;
1668 wakeup(&vnlruproc_sig);
1669 }
1670 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1671 }
1672
1673 /*
1674 * A lighter version of the machinery below.
1675 *
1676 * Tries to reach goals only by recycling free vnodes and does not invoke
1677 * uma_reclaim(UMA_RECLAIM_DRAIN).
1678 *
1679 * This works around pathological behavior in vnlru in presence of tons of free
1680 * vnodes, but without having to rewrite the machinery at this time. Said
1681 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1682 * (cycling through all levels of "force") when the count is transiently above
1683 * limit. This happens a lot when all vnodes are used up and vn_alloc
1684 * speculatively increments the counter.
1685 *
1686 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1687 * 1 million files in total and 20 find(1) processes stating them in parallel
1688 * (one per each tree).
1689 *
1690 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1691 * seconds to execute (time varies *wildly* between runs). With the workaround
1692 * it consistently stays around 20 seconds [it got further down with later
1693 * changes].
1694 *
1695 * That is to say the entire thing needs a fundamental redesign (most notably
1696 * to accommodate faster recycling), the above only tries to get it ouf the way.
1697 *
1698 * Return values are:
1699 * -1 -- fallback to regular vnlru loop
1700 * 0 -- do nothing, go to sleep
1701 * >0 -- recycle this many vnodes
1702 */
1703 static long
vnlru_proc_light_pick(void)1704 vnlru_proc_light_pick(void)
1705 {
1706 u_long rnumvnodes, rfreevnodes;
1707
1708 if (vstir || vnlruproc_sig == 1)
1709 return (-1);
1710
1711 rnumvnodes = atomic_load_long(&numvnodes);
1712 rfreevnodes = vnlru_read_freevnodes();
1713
1714 /*
1715 * vnode limit might have changed and now we may be at a significant
1716 * excess. Bail if we can't sort it out with free vnodes.
1717 *
1718 * Due to atomic updates the count can legitimately go above
1719 * the limit for a short period, don't bother doing anything in
1720 * that case.
1721 */
1722 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1723 if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1724 rfreevnodes <= wantfreevnodes) {
1725 return (-1);
1726 }
1727
1728 return (rnumvnodes - desiredvnodes);
1729 }
1730
1731 /*
1732 * Don't try to reach wantfreevnodes target if there are too few vnodes
1733 * to begin with.
1734 */
1735 if (rnumvnodes < wantfreevnodes) {
1736 return (0);
1737 }
1738
1739 if (rfreevnodes < wantfreevnodes) {
1740 return (-1);
1741 }
1742
1743 return (0);
1744 }
1745
1746 static bool
vnlru_proc_light(void)1747 vnlru_proc_light(void)
1748 {
1749 long freecount;
1750
1751 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1752
1753 freecount = vnlru_proc_light_pick();
1754 if (freecount == -1)
1755 return (false);
1756
1757 if (freecount != 0) {
1758 vnlru_free_vnlru(freecount);
1759 }
1760
1761 mtx_lock(&vnode_list_mtx);
1762 vnlru_proc_sleep();
1763 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1764 return (true);
1765 }
1766
1767 static u_long uma_reclaim_calls;
1768 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1769 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1770
1771 static void
vnlru_proc(void)1772 vnlru_proc(void)
1773 {
1774 u_long rnumvnodes, rfreevnodes, target;
1775 unsigned long onumvnodes;
1776 int done, force, trigger, usevnodes;
1777 bool reclaim_nc_src, want_reread;
1778
1779 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1780 SHUTDOWN_PRI_FIRST);
1781
1782 force = 0;
1783 want_reread = false;
1784 for (;;) {
1785 kproc_suspend_check(vnlruproc);
1786
1787 if (force == 0 && vnlru_proc_light())
1788 continue;
1789
1790 mtx_lock(&vnode_list_mtx);
1791 rnumvnodes = atomic_load_long(&numvnodes);
1792
1793 if (want_reread) {
1794 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1795 want_reread = false;
1796 }
1797
1798 /*
1799 * If numvnodes is too large (due to desiredvnodes being
1800 * adjusted using its sysctl, or emergency growth), first
1801 * try to reduce it by discarding free vnodes.
1802 */
1803 if (rnumvnodes > desiredvnodes + 10) {
1804 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1805 mtx_lock(&vnode_list_mtx);
1806 rnumvnodes = atomic_load_long(&numvnodes);
1807 }
1808 /*
1809 * Sleep if the vnode cache is in a good state. This is
1810 * when it is not over-full and has space for about a 4%
1811 * or 9% expansion (by growing its size or inexcessively
1812 * reducing free vnode count). Otherwise, try to reclaim
1813 * space for a 10% expansion.
1814 */
1815 if (vstir && force == 0) {
1816 force = 1;
1817 vstir = false;
1818 }
1819 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1820 vnlru_proc_sleep();
1821 continue;
1822 }
1823 rfreevnodes = vnlru_read_freevnodes();
1824
1825 onumvnodes = rnumvnodes;
1826 /*
1827 * Calculate parameters for recycling. These are the same
1828 * throughout the loop to give some semblance of fairness.
1829 * The trigger point is to avoid recycling vnodes with lots
1830 * of resident pages. We aren't trying to free memory; we
1831 * are trying to recycle or at least free vnodes.
1832 */
1833 if (rnumvnodes <= desiredvnodes)
1834 usevnodes = rnumvnodes - rfreevnodes;
1835 else
1836 usevnodes = rnumvnodes;
1837 if (usevnodes <= 0)
1838 usevnodes = 1;
1839 /*
1840 * The trigger value is chosen to give a conservatively
1841 * large value to ensure that it alone doesn't prevent
1842 * making progress. The value can easily be so large that
1843 * it is effectively infinite in some congested and
1844 * misconfigured cases, and this is necessary. Normally
1845 * it is about 8 to 100 (pages), which is quite large.
1846 */
1847 trigger = vm_cnt.v_page_count * 2 / usevnodes;
1848 if (force < 2)
1849 trigger = vsmalltrigger;
1850 reclaim_nc_src = force >= 3;
1851 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1852 target = target / 10 + 1;
1853 done = vlrureclaim(reclaim_nc_src, trigger, target);
1854 mtx_unlock(&vnode_list_mtx);
1855 /*
1856 * Total number of vnodes can transiently go slightly above the
1857 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1858 * this happens.
1859 */
1860 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1861 numvnodes <= desiredvnodes) {
1862 uma_reclaim_calls++;
1863 uma_reclaim(UMA_RECLAIM_DRAIN);
1864 }
1865 if (done == 0) {
1866 if (force == 0 || force == 1) {
1867 force = 2;
1868 continue;
1869 }
1870 if (force == 2) {
1871 force = 3;
1872 continue;
1873 }
1874 want_reread = true;
1875 force = 0;
1876 vnlru_nowhere++;
1877 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1878 } else {
1879 want_reread = true;
1880 kern_yield(PRI_USER);
1881 }
1882 }
1883 }
1884
1885 static struct kproc_desc vnlru_kp = {
1886 "vnlru",
1887 vnlru_proc,
1888 &vnlruproc
1889 };
1890 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1891 &vnlru_kp);
1892
1893 /*
1894 * Routines having to do with the management of the vnode table.
1895 */
1896
1897 /*
1898 * Try to recycle a freed vnode.
1899 */
1900 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1901 vtryrecycle(struct vnode *vp, bool isvnlru)
1902 {
1903 struct mount *vnmp;
1904
1905 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1906 VNPASS(vp->v_holdcnt > 0, vp);
1907 /*
1908 * This vnode may found and locked via some other list, if so we
1909 * can't recycle it yet.
1910 */
1911 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1912 CTR2(KTR_VFS,
1913 "%s: impossible to recycle, vp %p lock is already held",
1914 __func__, vp);
1915 vdrop_recycle(vp);
1916 return (EWOULDBLOCK);
1917 }
1918 /*
1919 * Don't recycle if its filesystem is being suspended.
1920 */
1921 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1922 VOP_UNLOCK(vp);
1923 CTR2(KTR_VFS,
1924 "%s: impossible to recycle, cannot start the write for %p",
1925 __func__, vp);
1926 vdrop_recycle(vp);
1927 return (EBUSY);
1928 }
1929 /*
1930 * If we got this far, we need to acquire the interlock and see if
1931 * anyone picked up this vnode from another list. If not, we will
1932 * mark it with DOOMED via vgonel() so that anyone who does find it
1933 * will skip over it.
1934 */
1935 VI_LOCK(vp);
1936 if (vp->v_usecount) {
1937 VOP_UNLOCK(vp);
1938 vdropl_recycle(vp);
1939 vn_finished_write(vnmp);
1940 CTR2(KTR_VFS,
1941 "%s: impossible to recycle, %p is already referenced",
1942 __func__, vp);
1943 return (EBUSY);
1944 }
1945 if (!VN_IS_DOOMED(vp)) {
1946 if (isvnlru)
1947 recycles_free_count++;
1948 else
1949 counter_u64_add(direct_recycles_free_count, 1);
1950 vgonel(vp);
1951 }
1952 VOP_UNLOCK(vp);
1953 vdropl_recycle(vp);
1954 vn_finished_write(vnmp);
1955 return (0);
1956 }
1957
1958 /*
1959 * Allocate a new vnode.
1960 *
1961 * The operation never returns an error. Returning an error was disabled
1962 * in r145385 (dated 2005) with the following comment:
1963 *
1964 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1965 *
1966 * Given the age of this commit (almost 15 years at the time of writing this
1967 * comment) restoring the ability to fail requires a significant audit of
1968 * all codepaths.
1969 *
1970 * The routine can try to free a vnode or stall for up to 1 second waiting for
1971 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1972 */
1973 static u_long vn_alloc_cyclecount;
1974 static u_long vn_alloc_sleeps;
1975
1976 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1977 "Number of times vnode allocation blocked waiting on vnlru");
1978
1979 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1980 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1981 {
1982 u_long rfreevnodes;
1983
1984 if (bumped) {
1985 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1986 atomic_subtract_long(&numvnodes, 1);
1987 bumped = false;
1988 }
1989 }
1990
1991 mtx_lock(&vnode_list_mtx);
1992
1993 /*
1994 * Reload 'numvnodes', as since we acquired the lock, it may have
1995 * changed significantly if we waited, and 'rnumvnodes' above was only
1996 * actually passed if 'bumped' is true (else it is 0).
1997 */
1998 rnumvnodes = atomic_load_long(&numvnodes);
1999 if (rnumvnodes + !bumped < desiredvnodes) {
2000 vn_alloc_cyclecount = 0;
2001 mtx_unlock(&vnode_list_mtx);
2002 goto alloc;
2003 }
2004
2005 rfreevnodes = vnlru_read_freevnodes();
2006 if (vn_alloc_cyclecount++ >= rfreevnodes) {
2007 vn_alloc_cyclecount = 0;
2008 vstir = true;
2009 }
2010
2011 /*
2012 * Grow the vnode cache if it will not be above its target max after
2013 * growing. Otherwise, if there is at least one free vnode, try to
2014 * reclaim 1 item from it before growing the cache (possibly above its
2015 * target max if the reclamation failed or is delayed).
2016 */
2017 if (vnlru_free_locked_direct(1) > 0)
2018 goto alloc;
2019 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2020 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2021 /*
2022 * Wait for space for a new vnode.
2023 */
2024 if (bumped) {
2025 atomic_subtract_long(&numvnodes, 1);
2026 bumped = false;
2027 }
2028 mtx_lock(&vnode_list_mtx);
2029 vnlru_kick_locked();
2030 vn_alloc_sleeps++;
2031 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2032 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2033 vnlru_read_freevnodes() > 1)
2034 vnlru_free_locked_direct(1);
2035 else
2036 mtx_unlock(&vnode_list_mtx);
2037 }
2038 alloc:
2039 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2040 if (!bumped)
2041 atomic_add_long(&numvnodes, 1);
2042 vnlru_kick_cond();
2043 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2044 }
2045
2046 static struct vnode *
vn_alloc(struct mount * mp)2047 vn_alloc(struct mount *mp)
2048 {
2049 u_long rnumvnodes;
2050
2051 if (__predict_false(vn_alloc_cyclecount != 0))
2052 return (vn_alloc_hard(mp, 0, false));
2053 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2054 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2055 return (vn_alloc_hard(mp, rnumvnodes, true));
2056 }
2057
2058 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2059 }
2060
2061 static void
vn_free(struct vnode * vp)2062 vn_free(struct vnode *vp)
2063 {
2064
2065 atomic_subtract_long(&numvnodes, 1);
2066 uma_zfree_smr(vnode_zone, vp);
2067 }
2068
2069 /*
2070 * Allocate a new vnode.
2071 */
2072 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2073 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2074 struct vnode **vpp)
2075 {
2076 struct vnode *vp;
2077 struct thread *td;
2078 struct lock_object *lo;
2079
2080 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2081
2082 KASSERT(vops->registered,
2083 ("%s: not registered vector op %p\n", __func__, vops));
2084 cache_validate_vop_vector(mp, vops);
2085
2086 td = curthread;
2087 if (td->td_vp_reserved != NULL) {
2088 vp = td->td_vp_reserved;
2089 td->td_vp_reserved = NULL;
2090 } else {
2091 vp = vn_alloc(mp);
2092 }
2093 counter_u64_add(vnodes_created, 1);
2094
2095 vn_set_state(vp, VSTATE_UNINITIALIZED);
2096
2097 /*
2098 * Locks are given the generic name "vnode" when created.
2099 * Follow the historic practice of using the filesystem
2100 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2101 *
2102 * Locks live in a witness group keyed on their name. Thus,
2103 * when a lock is renamed, it must also move from the witness
2104 * group of its old name to the witness group of its new name.
2105 *
2106 * The change only needs to be made when the vnode moves
2107 * from one filesystem type to another. We ensure that each
2108 * filesystem use a single static name pointer for its tag so
2109 * that we can compare pointers rather than doing a strcmp().
2110 */
2111 lo = &vp->v_vnlock->lock_object;
2112 #ifdef WITNESS
2113 if (lo->lo_name != tag) {
2114 #endif
2115 lo->lo_name = tag;
2116 #ifdef WITNESS
2117 WITNESS_DESTROY(lo);
2118 WITNESS_INIT(lo, tag);
2119 }
2120 #endif
2121 /*
2122 * By default, don't allow shared locks unless filesystems opt-in.
2123 */
2124 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2125 /*
2126 * Finalize various vnode identity bits.
2127 */
2128 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2129 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2130 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2131 vp->v_type = VNON;
2132 vp->v_op = vops;
2133 vp->v_irflag = 0;
2134 v_init_counters(vp);
2135 vn_seqc_init(vp);
2136 vp->v_bufobj.bo_ops = &buf_ops_bio;
2137 #ifdef DIAGNOSTIC
2138 if (mp == NULL && vops != &dead_vnodeops)
2139 printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2140 #endif
2141 #ifdef MAC
2142 mac_vnode_init(vp);
2143 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2144 mac_vnode_associate_singlelabel(mp, vp);
2145 #endif
2146 if (mp != NULL) {
2147 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2148 }
2149
2150 /*
2151 * For the filesystems which do not use vfs_hash_insert(),
2152 * still initialize v_hash to have vfs_hash_index() useful.
2153 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2154 * its own hashing.
2155 */
2156 vp->v_hash = (uintptr_t)vp >> vnsz2log;
2157
2158 *vpp = vp;
2159 return (0);
2160 }
2161
2162 void
getnewvnode_reserve(void)2163 getnewvnode_reserve(void)
2164 {
2165 struct thread *td;
2166
2167 td = curthread;
2168 MPASS(td->td_vp_reserved == NULL);
2169 td->td_vp_reserved = vn_alloc(NULL);
2170 }
2171
2172 void
getnewvnode_drop_reserve(void)2173 getnewvnode_drop_reserve(void)
2174 {
2175 struct thread *td;
2176
2177 td = curthread;
2178 if (td->td_vp_reserved != NULL) {
2179 vn_free(td->td_vp_reserved);
2180 td->td_vp_reserved = NULL;
2181 }
2182 }
2183
2184 static void __noinline
freevnode(struct vnode * vp)2185 freevnode(struct vnode *vp)
2186 {
2187 struct bufobj *bo;
2188
2189 ASSERT_VOP_UNLOCKED(vp, __func__);
2190
2191 /*
2192 * The vnode has been marked for destruction, so free it.
2193 *
2194 * The vnode will be returned to the zone where it will
2195 * normally remain until it is needed for another vnode. We
2196 * need to cleanup (or verify that the cleanup has already
2197 * been done) any residual data left from its current use
2198 * so as not to contaminate the freshly allocated vnode.
2199 */
2200 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2201 /*
2202 * Paired with vgone.
2203 */
2204 vn_seqc_write_end_free(vp);
2205
2206 bo = &vp->v_bufobj;
2207 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2208 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2209 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2210 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2211 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2212 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2213 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2214 ("clean blk trie not empty"));
2215 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2216 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2217 ("dirty blk trie not empty"));
2218 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2219 ("Leaked inactivation"));
2220 VI_UNLOCK(vp);
2221 cache_assert_no_entries(vp);
2222
2223 #ifdef MAC
2224 mac_vnode_destroy(vp);
2225 #endif
2226 if (vp->v_pollinfo != NULL) {
2227 int error __diagused;
2228
2229 /*
2230 * Use LK_NOWAIT to shut up witness about the lock. We may get
2231 * here while having another vnode locked when trying to
2232 * satisfy a lookup and needing to recycle.
2233 */
2234 error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2235 VNASSERT(error == 0, vp,
2236 ("freevnode: cannot lock vp %p for pollinfo destroy", vp));
2237 destroy_vpollinfo(vp->v_pollinfo);
2238 VOP_UNLOCK(vp);
2239 vp->v_pollinfo = NULL;
2240 }
2241 vp->v_mountedhere = NULL;
2242 vp->v_unpcb = NULL;
2243 vp->v_rdev = NULL;
2244 vp->v_fifoinfo = NULL;
2245 vp->v_iflag = 0;
2246 vp->v_vflag = 0;
2247 bo->bo_flag = 0;
2248 vn_free(vp);
2249 }
2250
2251 /*
2252 * Delete from old mount point vnode list, if on one.
2253 */
2254 static void
delmntque(struct vnode * vp)2255 delmntque(struct vnode *vp)
2256 {
2257 struct mount *mp;
2258
2259 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2260
2261 mp = vp->v_mount;
2262 MNT_ILOCK(mp);
2263 VI_LOCK(vp);
2264 vp->v_mount = NULL;
2265 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2266 ("bad mount point vnode list size"));
2267 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2268 mp->mnt_nvnodelistsize--;
2269 MNT_REL(mp);
2270 MNT_IUNLOCK(mp);
2271 /*
2272 * The caller expects the interlock to be still held.
2273 */
2274 ASSERT_VI_LOCKED(vp, __func__);
2275 }
2276
2277 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2278 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2279 {
2280
2281 KASSERT(vp->v_mount == NULL,
2282 ("insmntque: vnode already on per mount vnode list"));
2283 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2284 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2285 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2286 } else {
2287 KASSERT(!dtr,
2288 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2289 __func__));
2290 }
2291
2292 /*
2293 * We acquire the vnode interlock early to ensure that the
2294 * vnode cannot be recycled by another process releasing a
2295 * holdcnt on it before we get it on both the vnode list
2296 * and the active vnode list. The mount mutex protects only
2297 * manipulation of the vnode list and the vnode freelist
2298 * mutex protects only manipulation of the active vnode list.
2299 * Hence the need to hold the vnode interlock throughout.
2300 */
2301 MNT_ILOCK(mp);
2302 VI_LOCK(vp);
2303 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2304 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2305 mp->mnt_nvnodelistsize == 0)) &&
2306 (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2307 VI_UNLOCK(vp);
2308 MNT_IUNLOCK(mp);
2309 if (dtr) {
2310 vp->v_data = NULL;
2311 vp->v_op = &dead_vnodeops;
2312 vgone(vp);
2313 vput(vp);
2314 }
2315 return (EBUSY);
2316 }
2317 vp->v_mount = mp;
2318 MNT_REF(mp);
2319 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2320 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2321 ("neg mount point vnode list size"));
2322 mp->mnt_nvnodelistsize++;
2323 VI_UNLOCK(vp);
2324 MNT_IUNLOCK(mp);
2325 return (0);
2326 }
2327
2328 /*
2329 * Insert into list of vnodes for the new mount point, if available.
2330 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2331 * leaves handling of the vnode to the caller.
2332 */
2333 int
insmntque(struct vnode * vp,struct mount * mp)2334 insmntque(struct vnode *vp, struct mount *mp)
2335 {
2336 return (insmntque1_int(vp, mp, true));
2337 }
2338
2339 int
insmntque1(struct vnode * vp,struct mount * mp)2340 insmntque1(struct vnode *vp, struct mount *mp)
2341 {
2342 return (insmntque1_int(vp, mp, false));
2343 }
2344
2345 /*
2346 * Flush out and invalidate all buffers associated with a bufobj
2347 * Called with the underlying object locked.
2348 */
2349 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2350 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2351 {
2352 int error;
2353
2354 BO_LOCK(bo);
2355 if (flags & V_SAVE) {
2356 error = bufobj_wwait(bo, slpflag, slptimeo);
2357 if (error) {
2358 BO_UNLOCK(bo);
2359 return (error);
2360 }
2361 if (bo->bo_dirty.bv_cnt > 0) {
2362 BO_UNLOCK(bo);
2363 do {
2364 error = BO_SYNC(bo, MNT_WAIT);
2365 } while (error == ERELOOKUP);
2366 if (error != 0)
2367 return (error);
2368 BO_LOCK(bo);
2369 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2370 BO_UNLOCK(bo);
2371 return (EBUSY);
2372 }
2373 }
2374 }
2375 /*
2376 * If you alter this loop please notice that interlock is dropped and
2377 * reacquired in flushbuflist. Special care is needed to ensure that
2378 * no race conditions occur from this.
2379 */
2380 do {
2381 error = flushbuflist(&bo->bo_clean,
2382 flags, bo, slpflag, slptimeo);
2383 if (error == 0 && !(flags & V_CLEANONLY))
2384 error = flushbuflist(&bo->bo_dirty,
2385 flags, bo, slpflag, slptimeo);
2386 if (error != 0 && error != EAGAIN) {
2387 BO_UNLOCK(bo);
2388 return (error);
2389 }
2390 } while (error != 0);
2391
2392 /*
2393 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
2394 * have write I/O in-progress but if there is a VM object then the
2395 * VM object can also have read-I/O in-progress.
2396 */
2397 do {
2398 bufobj_wwait(bo, 0, 0);
2399 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2400 BO_UNLOCK(bo);
2401 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2402 BO_LOCK(bo);
2403 }
2404 } while (bo->bo_numoutput > 0);
2405 BO_UNLOCK(bo);
2406
2407 /*
2408 * Destroy the copy in the VM cache, too.
2409 */
2410 if (bo->bo_object != NULL &&
2411 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2412 VM_OBJECT_WLOCK(bo->bo_object);
2413 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2414 OBJPR_CLEANONLY : 0);
2415 VM_OBJECT_WUNLOCK(bo->bo_object);
2416 }
2417
2418 #ifdef INVARIANTS
2419 BO_LOCK(bo);
2420 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2421 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2422 bo->bo_clean.bv_cnt > 0))
2423 panic("vinvalbuf: flush failed");
2424 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2425 bo->bo_dirty.bv_cnt > 0)
2426 panic("vinvalbuf: flush dirty failed");
2427 BO_UNLOCK(bo);
2428 #endif
2429 return (0);
2430 }
2431
2432 /*
2433 * Flush out and invalidate all buffers associated with a vnode.
2434 * Called with the underlying object locked.
2435 */
2436 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2437 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2438 {
2439
2440 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2441 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2442 if (vp->v_object != NULL && vp->v_object->handle != vp)
2443 return (0);
2444 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2445 }
2446
2447 /*
2448 * Flush out buffers on the specified list.
2449 *
2450 */
2451 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2452 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2453 int slptimeo)
2454 {
2455 struct buf *bp, *nbp;
2456 int retval, error;
2457 daddr_t lblkno;
2458 b_xflags_t xflags;
2459
2460 ASSERT_BO_WLOCKED(bo);
2461
2462 retval = 0;
2463 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2464 /*
2465 * If we are flushing both V_NORMAL and V_ALT buffers then
2466 * do not skip any buffers. If we are flushing only V_NORMAL
2467 * buffers then skip buffers marked as BX_ALTDATA. If we are
2468 * flushing only V_ALT buffers then skip buffers not marked
2469 * as BX_ALTDATA.
2470 */
2471 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2472 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2473 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2474 continue;
2475 }
2476 if (nbp != NULL) {
2477 lblkno = nbp->b_lblkno;
2478 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2479 }
2480 retval = EAGAIN;
2481 error = BUF_TIMELOCK(bp,
2482 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2483 "flushbuf", slpflag, slptimeo);
2484 if (error) {
2485 BO_LOCK(bo);
2486 return (error != ENOLCK ? error : EAGAIN);
2487 }
2488 KASSERT(bp->b_bufobj == bo,
2489 ("bp %p wrong b_bufobj %p should be %p",
2490 bp, bp->b_bufobj, bo));
2491 /*
2492 * XXX Since there are no node locks for NFS, I
2493 * believe there is a slight chance that a delayed
2494 * write will occur while sleeping just above, so
2495 * check for it.
2496 */
2497 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2498 (flags & V_SAVE)) {
2499 bremfree(bp);
2500 bp->b_flags |= B_ASYNC;
2501 bwrite(bp);
2502 BO_LOCK(bo);
2503 return (EAGAIN); /* XXX: why not loop ? */
2504 }
2505 bremfree(bp);
2506 bp->b_flags |= (B_INVAL | B_RELBUF);
2507 bp->b_flags &= ~B_ASYNC;
2508 brelse(bp);
2509 BO_LOCK(bo);
2510 if (nbp == NULL)
2511 break;
2512 nbp = gbincore(bo, lblkno);
2513 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2514 != xflags)
2515 break; /* nbp invalid */
2516 }
2517 return (retval);
2518 }
2519
2520 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2521 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2522 {
2523 struct buf *bp;
2524 int error;
2525 daddr_t lblkno;
2526
2527 ASSERT_BO_LOCKED(bo);
2528
2529 for (lblkno = startn;;) {
2530 again:
2531 bp = buf_lookup_ge(bufv, lblkno);
2532 if (bp == NULL || bp->b_lblkno >= endn)
2533 break;
2534 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2535 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2536 if (error != 0) {
2537 BO_RLOCK(bo);
2538 if (error == ENOLCK)
2539 goto again;
2540 return (error);
2541 }
2542 KASSERT(bp->b_bufobj == bo,
2543 ("bp %p wrong b_bufobj %p should be %p",
2544 bp, bp->b_bufobj, bo));
2545 lblkno = bp->b_lblkno + 1;
2546 if ((bp->b_flags & B_MANAGED) == 0)
2547 bremfree(bp);
2548 bp->b_flags |= B_RELBUF;
2549 /*
2550 * In the VMIO case, use the B_NOREUSE flag to hint that the
2551 * pages backing each buffer in the range are unlikely to be
2552 * reused. Dirty buffers will have the hint applied once
2553 * they've been written.
2554 */
2555 if ((bp->b_flags & B_VMIO) != 0)
2556 bp->b_flags |= B_NOREUSE;
2557 brelse(bp);
2558 BO_RLOCK(bo);
2559 }
2560 return (0);
2561 }
2562
2563 /*
2564 * Truncate a file's buffer and pages to a specified length. This
2565 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2566 * sync activity.
2567 */
2568 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2569 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2570 {
2571 struct buf *bp, *nbp;
2572 struct bufobj *bo;
2573 daddr_t startlbn;
2574
2575 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2576 vp, blksize, (uintmax_t)length);
2577
2578 /*
2579 * Round up to the *next* lbn.
2580 */
2581 startlbn = howmany(length, blksize);
2582
2583 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2584
2585 bo = &vp->v_bufobj;
2586 restart_unlocked:
2587 BO_LOCK(bo);
2588
2589 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2590 ;
2591
2592 if (length > 0) {
2593 /*
2594 * Write out vnode metadata, e.g. indirect blocks.
2595 */
2596 restartsync:
2597 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2598 if (bp->b_lblkno >= 0)
2599 continue;
2600 /*
2601 * Since we hold the vnode lock this should only
2602 * fail if we're racing with the buf daemon.
2603 */
2604 if (BUF_LOCK(bp,
2605 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2606 BO_LOCKPTR(bo)) == ENOLCK)
2607 goto restart_unlocked;
2608
2609 VNASSERT((bp->b_flags & B_DELWRI), vp,
2610 ("buf(%p) on dirty queue without DELWRI", bp));
2611
2612 bremfree(bp);
2613 bawrite(bp);
2614 BO_LOCK(bo);
2615 goto restartsync;
2616 }
2617 }
2618
2619 bufobj_wwait(bo, 0, 0);
2620 BO_UNLOCK(bo);
2621 vnode_pager_setsize(vp, length);
2622
2623 return (0);
2624 }
2625
2626 /*
2627 * Invalidate the cached pages of a file's buffer within the range of block
2628 * numbers [startlbn, endlbn).
2629 */
2630 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2631 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2632 int blksize)
2633 {
2634 struct bufobj *bo;
2635 off_t start, end;
2636
2637 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2638
2639 start = blksize * startlbn;
2640 end = blksize * endlbn;
2641
2642 bo = &vp->v_bufobj;
2643 BO_LOCK(bo);
2644 MPASS(blksize == bo->bo_bsize);
2645
2646 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2647 ;
2648
2649 BO_UNLOCK(bo);
2650 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2651 }
2652
2653 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2654 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2655 daddr_t startlbn, daddr_t endlbn)
2656 {
2657 struct bufv *bv;
2658 struct buf *bp, *nbp;
2659 uint8_t anyfreed;
2660 bool clean;
2661
2662 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2663 ASSERT_BO_LOCKED(bo);
2664
2665 anyfreed = 1;
2666 clean = true;
2667 do {
2668 bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2669 bp = buf_lookup_ge(bv, startlbn);
2670 if (bp == NULL)
2671 continue;
2672 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2673 if (bp->b_lblkno >= endlbn)
2674 break;
2675 if (BUF_LOCK(bp,
2676 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2677 BO_LOCKPTR(bo)) == ENOLCK) {
2678 BO_LOCK(bo);
2679 return (EAGAIN);
2680 }
2681
2682 bremfree(bp);
2683 bp->b_flags |= B_INVAL | B_RELBUF;
2684 bp->b_flags &= ~B_ASYNC;
2685 brelse(bp);
2686 anyfreed = 2;
2687
2688 BO_LOCK(bo);
2689 if (nbp != NULL &&
2690 (((nbp->b_xflags &
2691 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2692 nbp->b_vp != vp ||
2693 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2694 return (EAGAIN);
2695 }
2696 } while (clean = !clean, anyfreed-- > 0);
2697 return (0);
2698 }
2699
2700 static void
buf_vlist_remove(struct buf * bp)2701 buf_vlist_remove(struct buf *bp)
2702 {
2703 struct bufv *bv;
2704 b_xflags_t flags;
2705
2706 flags = bp->b_xflags;
2707
2708 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2709 ASSERT_BO_WLOCKED(bp->b_bufobj);
2710 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2711 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2712 ("%s: buffer %p has invalid queue state", __func__, bp));
2713
2714 if ((flags & BX_VNDIRTY) != 0)
2715 bv = &bp->b_bufobj->bo_dirty;
2716 else
2717 bv = &bp->b_bufobj->bo_clean;
2718 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2719 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2720 bv->bv_cnt--;
2721 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2722 }
2723
2724 /*
2725 * Add the buffer to the sorted clean or dirty block list. Return zero on
2726 * success, EEXIST if a buffer with this identity already exists, or another
2727 * error on allocation failure.
2728 */
2729 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2730 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2731 {
2732 struct bufv *bv;
2733 struct buf *n;
2734 int error;
2735
2736 ASSERT_BO_WLOCKED(bo);
2737 KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2738 ("buf_vlist_add: bo %p does not allow bufs", bo));
2739 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2740 ("dead bo %p", bo));
2741 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2742 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2743
2744 if (xflags & BX_VNDIRTY)
2745 bv = &bo->bo_dirty;
2746 else
2747 bv = &bo->bo_clean;
2748
2749 error = buf_insert_lookup_le(bv, bp, &n);
2750 if (n == NULL) {
2751 KASSERT(error != EEXIST,
2752 ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2753 bp));
2754 } else {
2755 KASSERT(n->b_lblkno <= bp->b_lblkno,
2756 ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2757 bp, n));
2758 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2759 ("buf_vlist_add: inconsistent result for existing buf: "
2760 "error %d bp %p n %p", error, bp, n));
2761 }
2762 if (error != 0)
2763 return (error);
2764
2765 /* Keep the list ordered. */
2766 if (n == NULL) {
2767 KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2768 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2769 ("buf_vlist_add: queue order: "
2770 "%p should be before first %p",
2771 bp, TAILQ_FIRST(&bv->bv_hd)));
2772 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2773 } else {
2774 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2775 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2776 ("buf_vlist_add: queue order: "
2777 "%p should be before next %p",
2778 bp, TAILQ_NEXT(n, b_bobufs)));
2779 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2780 }
2781
2782 bv->bv_cnt++;
2783 return (0);
2784 }
2785
2786 /*
2787 * Add the buffer to the sorted clean or dirty block list.
2788 *
2789 * NOTE: xflags is passed as a constant, optimizing this inline function!
2790 */
2791 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2792 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2793 {
2794 int error;
2795
2796 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2797 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2798 bp->b_xflags |= xflags;
2799 error = buf_vlist_find_or_add(bp, bo, xflags);
2800 if (error)
2801 panic("buf_vlist_add: error=%d", error);
2802 }
2803
2804 /*
2805 * Look up a buffer using the buffer tries.
2806 */
2807 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2808 gbincore(struct bufobj *bo, daddr_t lblkno)
2809 {
2810 struct buf *bp;
2811
2812 ASSERT_BO_LOCKED(bo);
2813 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2814 if (bp != NULL)
2815 return (bp);
2816 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2817 }
2818
2819 /*
2820 * Look up a buf using the buffer tries, without the bufobj lock. This relies
2821 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2822 * stability of the result. Like other lockless lookups, the found buf may
2823 * already be invalid by the time this function returns.
2824 */
2825 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2826 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2827 {
2828 struct buf *bp;
2829
2830 ASSERT_BO_UNLOCKED(bo);
2831 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2832 if (bp != NULL)
2833 return (bp);
2834 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2835 }
2836
2837 /*
2838 * Associate a buffer with a vnode.
2839 */
2840 int
bgetvp(struct vnode * vp,struct buf * bp)2841 bgetvp(struct vnode *vp, struct buf *bp)
2842 {
2843 struct bufobj *bo;
2844 int error;
2845
2846 bo = &vp->v_bufobj;
2847 ASSERT_BO_UNLOCKED(bo);
2848 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2849
2850 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2851 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2852 ("bgetvp: bp already attached! %p", bp));
2853
2854 /*
2855 * Add the buf to the vnode's clean list unless we lost a race and find
2856 * an existing buf in either dirty or clean.
2857 */
2858 bp->b_vp = vp;
2859 bp->b_bufobj = bo;
2860 bp->b_xflags |= BX_VNCLEAN;
2861 error = EEXIST;
2862 BO_LOCK(bo);
2863 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2864 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2865 BO_UNLOCK(bo);
2866 if (__predict_true(error == 0)) {
2867 vhold(vp);
2868 return (0);
2869 }
2870 if (error != EEXIST)
2871 panic("bgetvp: buf_vlist_add error: %d", error);
2872 bp->b_vp = NULL;
2873 bp->b_bufobj = NULL;
2874 bp->b_xflags &= ~BX_VNCLEAN;
2875 return (error);
2876 }
2877
2878 /*
2879 * Disassociate a buffer from a vnode.
2880 */
2881 void
brelvp(struct buf * bp)2882 brelvp(struct buf *bp)
2883 {
2884 struct bufobj *bo;
2885 struct vnode *vp;
2886
2887 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2888 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2889
2890 /*
2891 * Delete from old vnode list, if on one.
2892 */
2893 vp = bp->b_vp; /* XXX */
2894 bo = bp->b_bufobj;
2895 BO_LOCK(bo);
2896 buf_vlist_remove(bp);
2897 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2898 bo->bo_flag &= ~BO_ONWORKLST;
2899 mtx_lock(&sync_mtx);
2900 LIST_REMOVE(bo, bo_synclist);
2901 syncer_worklist_len--;
2902 mtx_unlock(&sync_mtx);
2903 }
2904 bp->b_vp = NULL;
2905 bp->b_bufobj = NULL;
2906 BO_UNLOCK(bo);
2907 vdrop(vp);
2908 }
2909
2910 /*
2911 * Add an item to the syncer work queue.
2912 */
2913 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2914 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2915 {
2916 int slot;
2917
2918 ASSERT_BO_WLOCKED(bo);
2919
2920 mtx_lock(&sync_mtx);
2921 if (bo->bo_flag & BO_ONWORKLST)
2922 LIST_REMOVE(bo, bo_synclist);
2923 else {
2924 bo->bo_flag |= BO_ONWORKLST;
2925 syncer_worklist_len++;
2926 }
2927
2928 if (delay > syncer_maxdelay - 2)
2929 delay = syncer_maxdelay - 2;
2930 slot = (syncer_delayno + delay) & syncer_mask;
2931
2932 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2933 mtx_unlock(&sync_mtx);
2934 }
2935
2936 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2937 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2938 {
2939 int error, len;
2940
2941 mtx_lock(&sync_mtx);
2942 len = syncer_worklist_len - sync_vnode_count;
2943 mtx_unlock(&sync_mtx);
2944 error = SYSCTL_OUT(req, &len, sizeof(len));
2945 return (error);
2946 }
2947
2948 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2949 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2950 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2951
2952 static struct proc *updateproc;
2953 static void sched_sync(void);
2954 static struct kproc_desc up_kp = {
2955 "syncer",
2956 sched_sync,
2957 &updateproc
2958 };
2959 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2960
2961 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2962 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2963 {
2964 struct vnode *vp;
2965 struct mount *mp;
2966
2967 *bo = LIST_FIRST(slp);
2968 if (*bo == NULL)
2969 return (0);
2970 vp = bo2vnode(*bo);
2971 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2972 return (1);
2973 /*
2974 * We use vhold in case the vnode does not
2975 * successfully sync. vhold prevents the vnode from
2976 * going away when we unlock the sync_mtx so that
2977 * we can acquire the vnode interlock.
2978 */
2979 vholdl(vp);
2980 mtx_unlock(&sync_mtx);
2981 VI_UNLOCK(vp);
2982 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2983 vdrop(vp);
2984 mtx_lock(&sync_mtx);
2985 return (*bo == LIST_FIRST(slp));
2986 }
2987 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2988 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2989 ("suspended mp syncing vp %p", vp));
2990 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2991 (void) VOP_FSYNC(vp, MNT_LAZY, td);
2992 VOP_UNLOCK(vp);
2993 vn_finished_write(mp);
2994 BO_LOCK(*bo);
2995 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2996 /*
2997 * Put us back on the worklist. The worklist
2998 * routine will remove us from our current
2999 * position and then add us back in at a later
3000 * position.
3001 */
3002 vn_syncer_add_to_worklist(*bo, syncdelay);
3003 }
3004 BO_UNLOCK(*bo);
3005 vdrop(vp);
3006 mtx_lock(&sync_mtx);
3007 return (0);
3008 }
3009
3010 static int first_printf = 1;
3011
3012 /*
3013 * System filesystem synchronizer daemon.
3014 */
3015 static void
sched_sync(void)3016 sched_sync(void)
3017 {
3018 struct synclist *next, *slp;
3019 struct bufobj *bo;
3020 long starttime;
3021 struct thread *td = curthread;
3022 int last_work_seen;
3023 int net_worklist_len;
3024 int syncer_final_iter;
3025 int error;
3026
3027 last_work_seen = 0;
3028 syncer_final_iter = 0;
3029 syncer_state = SYNCER_RUNNING;
3030 starttime = time_uptime;
3031 td->td_pflags |= TDP_NORUNNINGBUF;
3032
3033 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3034 SHUTDOWN_PRI_LAST);
3035
3036 mtx_lock(&sync_mtx);
3037 for (;;) {
3038 if (syncer_state == SYNCER_FINAL_DELAY &&
3039 syncer_final_iter == 0) {
3040 mtx_unlock(&sync_mtx);
3041 kproc_suspend_check(td->td_proc);
3042 mtx_lock(&sync_mtx);
3043 }
3044 net_worklist_len = syncer_worklist_len - sync_vnode_count;
3045 if (syncer_state != SYNCER_RUNNING &&
3046 starttime != time_uptime) {
3047 if (first_printf) {
3048 printf("\nSyncing disks, vnodes remaining... ");
3049 first_printf = 0;
3050 }
3051 printf("%d ", net_worklist_len);
3052 }
3053 starttime = time_uptime;
3054
3055 /*
3056 * Push files whose dirty time has expired. Be careful
3057 * of interrupt race on slp queue.
3058 *
3059 * Skip over empty worklist slots when shutting down.
3060 */
3061 do {
3062 slp = &syncer_workitem_pending[syncer_delayno];
3063 syncer_delayno += 1;
3064 if (syncer_delayno == syncer_maxdelay)
3065 syncer_delayno = 0;
3066 next = &syncer_workitem_pending[syncer_delayno];
3067 /*
3068 * If the worklist has wrapped since the
3069 * it was emptied of all but syncer vnodes,
3070 * switch to the FINAL_DELAY state and run
3071 * for one more second.
3072 */
3073 if (syncer_state == SYNCER_SHUTTING_DOWN &&
3074 net_worklist_len == 0 &&
3075 last_work_seen == syncer_delayno) {
3076 syncer_state = SYNCER_FINAL_DELAY;
3077 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3078 }
3079 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3080 syncer_worklist_len > 0);
3081
3082 /*
3083 * Keep track of the last time there was anything
3084 * on the worklist other than syncer vnodes.
3085 * Return to the SHUTTING_DOWN state if any
3086 * new work appears.
3087 */
3088 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3089 last_work_seen = syncer_delayno;
3090 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3091 syncer_state = SYNCER_SHUTTING_DOWN;
3092 while (!LIST_EMPTY(slp)) {
3093 error = sync_vnode(slp, &bo, td);
3094 if (error == 1) {
3095 LIST_REMOVE(bo, bo_synclist);
3096 LIST_INSERT_HEAD(next, bo, bo_synclist);
3097 continue;
3098 }
3099
3100 if (first_printf == 0) {
3101 /*
3102 * Drop the sync mutex, because some watchdog
3103 * drivers need to sleep while patting
3104 */
3105 mtx_unlock(&sync_mtx);
3106 wdog_kern_pat(WD_LASTVAL);
3107 mtx_lock(&sync_mtx);
3108 }
3109 }
3110 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3111 syncer_final_iter--;
3112 /*
3113 * The variable rushjob allows the kernel to speed up the
3114 * processing of the filesystem syncer process. A rushjob
3115 * value of N tells the filesystem syncer to process the next
3116 * N seconds worth of work on its queue ASAP. Currently rushjob
3117 * is used by the soft update code to speed up the filesystem
3118 * syncer process when the incore state is getting so far
3119 * ahead of the disk that the kernel memory pool is being
3120 * threatened with exhaustion.
3121 */
3122 if (rushjob > 0) {
3123 rushjob -= 1;
3124 continue;
3125 }
3126 /*
3127 * Just sleep for a short period of time between
3128 * iterations when shutting down to allow some I/O
3129 * to happen.
3130 *
3131 * If it has taken us less than a second to process the
3132 * current work, then wait. Otherwise start right over
3133 * again. We can still lose time if any single round
3134 * takes more than two seconds, but it does not really
3135 * matter as we are just trying to generally pace the
3136 * filesystem activity.
3137 */
3138 if (syncer_state != SYNCER_RUNNING ||
3139 time_uptime == starttime) {
3140 thread_lock(td);
3141 sched_prio(td, PPAUSE);
3142 thread_unlock(td);
3143 }
3144 if (syncer_state != SYNCER_RUNNING)
3145 cv_timedwait(&sync_wakeup, &sync_mtx,
3146 hz / SYNCER_SHUTDOWN_SPEEDUP);
3147 else if (time_uptime == starttime)
3148 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3149 }
3150 }
3151
3152 /*
3153 * Request the syncer daemon to speed up its work.
3154 * We never push it to speed up more than half of its
3155 * normal turn time, otherwise it could take over the cpu.
3156 */
3157 int
speedup_syncer(void)3158 speedup_syncer(void)
3159 {
3160 int ret = 0;
3161
3162 mtx_lock(&sync_mtx);
3163 if (rushjob < syncdelay / 2) {
3164 rushjob += 1;
3165 stat_rush_requests += 1;
3166 ret = 1;
3167 }
3168 mtx_unlock(&sync_mtx);
3169 cv_broadcast(&sync_wakeup);
3170 return (ret);
3171 }
3172
3173 /*
3174 * Tell the syncer to speed up its work and run though its work
3175 * list several times, then tell it to shut down.
3176 */
3177 static void
syncer_shutdown(void * arg,int howto)3178 syncer_shutdown(void *arg, int howto)
3179 {
3180
3181 if (howto & RB_NOSYNC)
3182 return;
3183 mtx_lock(&sync_mtx);
3184 syncer_state = SYNCER_SHUTTING_DOWN;
3185 rushjob = 0;
3186 mtx_unlock(&sync_mtx);
3187 cv_broadcast(&sync_wakeup);
3188 kproc_shutdown(arg, howto);
3189 }
3190
3191 void
syncer_suspend(void)3192 syncer_suspend(void)
3193 {
3194
3195 syncer_shutdown(updateproc, 0);
3196 }
3197
3198 void
syncer_resume(void)3199 syncer_resume(void)
3200 {
3201
3202 mtx_lock(&sync_mtx);
3203 first_printf = 1;
3204 syncer_state = SYNCER_RUNNING;
3205 mtx_unlock(&sync_mtx);
3206 cv_broadcast(&sync_wakeup);
3207 kproc_resume(updateproc);
3208 }
3209
3210 /*
3211 * Move the buffer between the clean and dirty lists of its vnode.
3212 */
3213 void
reassignbuf(struct buf * bp)3214 reassignbuf(struct buf *bp)
3215 {
3216 struct vnode *vp;
3217 struct bufobj *bo;
3218 int delay;
3219 #ifdef INVARIANTS
3220 struct bufv *bv;
3221 #endif
3222
3223 vp = bp->b_vp;
3224 bo = bp->b_bufobj;
3225
3226 KASSERT((bp->b_flags & B_PAGING) == 0,
3227 ("%s: cannot reassign paging buffer %p", __func__, bp));
3228
3229 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3230 bp, bp->b_vp, bp->b_flags);
3231
3232 BO_LOCK(bo);
3233 if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3234 /*
3235 * Coordinate with getblk's unlocked lookup. Make
3236 * BO_NONSTERILE visible before the first reassignbuf produces
3237 * any side effect. This could be outside the bo lock if we
3238 * used a separate atomic flag field.
3239 */
3240 bo->bo_flag |= BO_NONSTERILE;
3241 atomic_thread_fence_rel();
3242 }
3243 buf_vlist_remove(bp);
3244
3245 /*
3246 * If dirty, put on list of dirty buffers; otherwise insert onto list
3247 * of clean buffers.
3248 */
3249 if (bp->b_flags & B_DELWRI) {
3250 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3251 switch (vp->v_type) {
3252 case VDIR:
3253 delay = dirdelay;
3254 break;
3255 case VCHR:
3256 delay = metadelay;
3257 break;
3258 default:
3259 delay = filedelay;
3260 }
3261 vn_syncer_add_to_worklist(bo, delay);
3262 }
3263 buf_vlist_add(bp, bo, BX_VNDIRTY);
3264 } else {
3265 buf_vlist_add(bp, bo, BX_VNCLEAN);
3266
3267 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3268 mtx_lock(&sync_mtx);
3269 LIST_REMOVE(bo, bo_synclist);
3270 syncer_worklist_len--;
3271 mtx_unlock(&sync_mtx);
3272 bo->bo_flag &= ~BO_ONWORKLST;
3273 }
3274 }
3275 #ifdef INVARIANTS
3276 bv = &bo->bo_clean;
3277 bp = TAILQ_FIRST(&bv->bv_hd);
3278 KASSERT(bp == NULL || bp->b_bufobj == bo,
3279 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3280 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3281 KASSERT(bp == NULL || bp->b_bufobj == bo,
3282 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3283 bv = &bo->bo_dirty;
3284 bp = TAILQ_FIRST(&bv->bv_hd);
3285 KASSERT(bp == NULL || bp->b_bufobj == bo,
3286 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3287 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3288 KASSERT(bp == NULL || bp->b_bufobj == bo,
3289 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3290 #endif
3291 BO_UNLOCK(bo);
3292 }
3293
3294 static void
v_init_counters(struct vnode * vp)3295 v_init_counters(struct vnode *vp)
3296 {
3297
3298 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3299 vp, ("%s called for an initialized vnode", __FUNCTION__));
3300 ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3301
3302 refcount_init(&vp->v_holdcnt, 1);
3303 refcount_init(&vp->v_usecount, 1);
3304 }
3305
3306 /*
3307 * Get a usecount on a vnode.
3308 *
3309 * vget and vget_finish may fail to lock the vnode if they lose a race against
3310 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3311 *
3312 * Consumers which don't guarantee liveness of the vnode can use SMR to
3313 * try to get a reference. Note this operation can fail since the vnode
3314 * may be awaiting getting freed by the time they get to it.
3315 */
3316 enum vgetstate
vget_prep_smr(struct vnode * vp)3317 vget_prep_smr(struct vnode *vp)
3318 {
3319 enum vgetstate vs;
3320
3321 VFS_SMR_ASSERT_ENTERED();
3322
3323 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3324 vs = VGET_USECOUNT;
3325 } else {
3326 if (vhold_smr(vp))
3327 vs = VGET_HOLDCNT;
3328 else
3329 vs = VGET_NONE;
3330 }
3331 return (vs);
3332 }
3333
3334 enum vgetstate
vget_prep(struct vnode * vp)3335 vget_prep(struct vnode *vp)
3336 {
3337 enum vgetstate vs;
3338
3339 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3340 vs = VGET_USECOUNT;
3341 } else {
3342 vhold(vp);
3343 vs = VGET_HOLDCNT;
3344 }
3345 return (vs);
3346 }
3347
3348 void
vget_abort(struct vnode * vp,enum vgetstate vs)3349 vget_abort(struct vnode *vp, enum vgetstate vs)
3350 {
3351
3352 switch (vs) {
3353 case VGET_USECOUNT:
3354 vrele(vp);
3355 break;
3356 case VGET_HOLDCNT:
3357 vdrop(vp);
3358 break;
3359 default:
3360 __assert_unreachable();
3361 }
3362 }
3363
3364 int
vget(struct vnode * vp,int flags)3365 vget(struct vnode *vp, int flags)
3366 {
3367 enum vgetstate vs;
3368
3369 vs = vget_prep(vp);
3370 return (vget_finish(vp, flags, vs));
3371 }
3372
3373 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3374 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3375 {
3376 int error;
3377
3378 if ((flags & LK_INTERLOCK) != 0)
3379 ASSERT_VI_LOCKED(vp, __func__);
3380 else
3381 ASSERT_VI_UNLOCKED(vp, __func__);
3382 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3383 VNPASS(vp->v_holdcnt > 0, vp);
3384 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3385
3386 error = vn_lock(vp, flags);
3387 if (__predict_false(error != 0)) {
3388 vget_abort(vp, vs);
3389 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3390 vp);
3391 return (error);
3392 }
3393
3394 vget_finish_ref(vp, vs);
3395 return (0);
3396 }
3397
3398 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3399 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3400 {
3401 int old;
3402
3403 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3404 VNPASS(vp->v_holdcnt > 0, vp);
3405 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3406
3407 if (vs == VGET_USECOUNT)
3408 return;
3409
3410 /*
3411 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3412 * the vnode around. Otherwise someone else lended their hold count and
3413 * we have to drop ours.
3414 */
3415 old = atomic_fetchadd_int(&vp->v_usecount, 1);
3416 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3417 if (old != 0) {
3418 #ifdef INVARIANTS
3419 old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3420 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3421 #else
3422 refcount_release(&vp->v_holdcnt);
3423 #endif
3424 }
3425 }
3426
3427 void
vref(struct vnode * vp)3428 vref(struct vnode *vp)
3429 {
3430 enum vgetstate vs;
3431
3432 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3433 vs = vget_prep(vp);
3434 vget_finish_ref(vp, vs);
3435 }
3436
3437 void
vrefact(struct vnode * vp)3438 vrefact(struct vnode *vp)
3439 {
3440 int old __diagused;
3441
3442 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3443 old = refcount_acquire(&vp->v_usecount);
3444 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3445 }
3446
3447 void
vlazy(struct vnode * vp)3448 vlazy(struct vnode *vp)
3449 {
3450 struct mount *mp;
3451
3452 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3453
3454 if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3455 return;
3456 /*
3457 * We may get here for inactive routines after the vnode got doomed.
3458 */
3459 if (VN_IS_DOOMED(vp))
3460 return;
3461 mp = vp->v_mount;
3462 mtx_lock(&mp->mnt_listmtx);
3463 if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3464 vp->v_mflag |= VMP_LAZYLIST;
3465 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3466 mp->mnt_lazyvnodelistsize++;
3467 }
3468 mtx_unlock(&mp->mnt_listmtx);
3469 }
3470
3471 static void
vunlazy(struct vnode * vp)3472 vunlazy(struct vnode *vp)
3473 {
3474 struct mount *mp;
3475
3476 ASSERT_VI_LOCKED(vp, __func__);
3477 VNPASS(!VN_IS_DOOMED(vp), vp);
3478
3479 mp = vp->v_mount;
3480 mtx_lock(&mp->mnt_listmtx);
3481 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3482 /*
3483 * Don't remove the vnode from the lazy list if another thread
3484 * has increased the hold count. It may have re-enqueued the
3485 * vnode to the lazy list and is now responsible for its
3486 * removal.
3487 */
3488 if (vp->v_holdcnt == 0) {
3489 vp->v_mflag &= ~VMP_LAZYLIST;
3490 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3491 mp->mnt_lazyvnodelistsize--;
3492 }
3493 mtx_unlock(&mp->mnt_listmtx);
3494 }
3495
3496 /*
3497 * This routine is only meant to be called from vgonel prior to dooming
3498 * the vnode.
3499 */
3500 static void
vunlazy_gone(struct vnode * vp)3501 vunlazy_gone(struct vnode *vp)
3502 {
3503 struct mount *mp;
3504
3505 ASSERT_VOP_ELOCKED(vp, __func__);
3506 ASSERT_VI_LOCKED(vp, __func__);
3507 VNPASS(!VN_IS_DOOMED(vp), vp);
3508
3509 if (vp->v_mflag & VMP_LAZYLIST) {
3510 mp = vp->v_mount;
3511 mtx_lock(&mp->mnt_listmtx);
3512 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3513 vp->v_mflag &= ~VMP_LAZYLIST;
3514 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3515 mp->mnt_lazyvnodelistsize--;
3516 mtx_unlock(&mp->mnt_listmtx);
3517 }
3518 }
3519
3520 static void
vdefer_inactive(struct vnode * vp)3521 vdefer_inactive(struct vnode *vp)
3522 {
3523
3524 ASSERT_VI_LOCKED(vp, __func__);
3525 VNPASS(vp->v_holdcnt > 0, vp);
3526 if (VN_IS_DOOMED(vp)) {
3527 vdropl(vp);
3528 return;
3529 }
3530 if (vp->v_iflag & VI_DEFINACT) {
3531 VNPASS(vp->v_holdcnt > 1, vp);
3532 vdropl(vp);
3533 return;
3534 }
3535 if (vp->v_usecount > 0) {
3536 vp->v_iflag &= ~VI_OWEINACT;
3537 vdropl(vp);
3538 return;
3539 }
3540 vlazy(vp);
3541 vp->v_iflag |= VI_DEFINACT;
3542 VI_UNLOCK(vp);
3543 atomic_add_long(&deferred_inact, 1);
3544 }
3545
3546 static void
vdefer_inactive_unlocked(struct vnode * vp)3547 vdefer_inactive_unlocked(struct vnode *vp)
3548 {
3549
3550 VI_LOCK(vp);
3551 if ((vp->v_iflag & VI_OWEINACT) == 0) {
3552 vdropl(vp);
3553 return;
3554 }
3555 vdefer_inactive(vp);
3556 }
3557
3558 enum vput_op { VRELE, VPUT, VUNREF };
3559
3560 /*
3561 * Handle ->v_usecount transitioning to 0.
3562 *
3563 * By releasing the last usecount we take ownership of the hold count which
3564 * provides liveness of the vnode, meaning we have to vdrop.
3565 *
3566 * For all vnodes we may need to perform inactive processing. It requires an
3567 * exclusive lock on the vnode, while it is legal to call here with only a
3568 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3569 * inactive processing gets deferred to the syncer.
3570 *
3571 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3572 * on the lock being held all the way until VOP_INACTIVE. This in particular
3573 * happens with UFS which adds half-constructed vnodes to the hash, where they
3574 * can be found by other code.
3575 */
3576 static void
vput_final(struct vnode * vp,enum vput_op func)3577 vput_final(struct vnode *vp, enum vput_op func)
3578 {
3579 int error;
3580 bool want_unlock;
3581
3582 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3583 VNPASS(vp->v_holdcnt > 0, vp);
3584
3585 VI_LOCK(vp);
3586
3587 /*
3588 * By the time we got here someone else might have transitioned
3589 * the count back to > 0.
3590 */
3591 if (vp->v_usecount > 0)
3592 goto out;
3593
3594 /*
3595 * If the vnode is doomed vgone already performed inactive processing
3596 * (if needed).
3597 */
3598 if (VN_IS_DOOMED(vp))
3599 goto out;
3600
3601 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3602 goto out;
3603
3604 if (vp->v_iflag & VI_DOINGINACT)
3605 goto out;
3606
3607 /*
3608 * Locking operations here will drop the interlock and possibly the
3609 * vnode lock, opening a window where the vnode can get doomed all the
3610 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3611 * perform inactive.
3612 */
3613 vp->v_iflag |= VI_OWEINACT;
3614 want_unlock = false;
3615 error = 0;
3616 switch (func) {
3617 case VRELE:
3618 switch (VOP_ISLOCKED(vp)) {
3619 case LK_EXCLUSIVE:
3620 break;
3621 case LK_EXCLOTHER:
3622 case 0:
3623 want_unlock = true;
3624 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3625 VI_LOCK(vp);
3626 break;
3627 default:
3628 /*
3629 * The lock has at least one sharer, but we have no way
3630 * to conclude whether this is us. Play it safe and
3631 * defer processing.
3632 */
3633 error = EAGAIN;
3634 break;
3635 }
3636 break;
3637 case VPUT:
3638 want_unlock = true;
3639 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3640 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3641 LK_NOWAIT);
3642 VI_LOCK(vp);
3643 }
3644 break;
3645 case VUNREF:
3646 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3647 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3648 VI_LOCK(vp);
3649 }
3650 break;
3651 }
3652 if (error == 0) {
3653 if (func == VUNREF) {
3654 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3655 ("recursive vunref"));
3656 vp->v_vflag |= VV_UNREF;
3657 }
3658 for (;;) {
3659 error = vinactive(vp);
3660 if (want_unlock)
3661 VOP_UNLOCK(vp);
3662 if (error != ERELOOKUP || !want_unlock)
3663 break;
3664 VOP_LOCK(vp, LK_EXCLUSIVE);
3665 }
3666 if (func == VUNREF)
3667 vp->v_vflag &= ~VV_UNREF;
3668 vdropl(vp);
3669 } else {
3670 vdefer_inactive(vp);
3671 }
3672 return;
3673 out:
3674 if (func == VPUT)
3675 VOP_UNLOCK(vp);
3676 vdropl(vp);
3677 }
3678
3679 /*
3680 * Decrement ->v_usecount for a vnode.
3681 *
3682 * Releasing the last use count requires additional processing, see vput_final
3683 * above for details.
3684 *
3685 * Comment above each variant denotes lock state on entry and exit.
3686 */
3687
3688 /*
3689 * in: any
3690 * out: same as passed in
3691 */
3692 void
vrele(struct vnode * vp)3693 vrele(struct vnode *vp)
3694 {
3695
3696 ASSERT_VI_UNLOCKED(vp, __func__);
3697 if (!refcount_release(&vp->v_usecount))
3698 return;
3699 vput_final(vp, VRELE);
3700 }
3701
3702 /*
3703 * in: locked
3704 * out: unlocked
3705 */
3706 void
vput(struct vnode * vp)3707 vput(struct vnode *vp)
3708 {
3709
3710 ASSERT_VOP_LOCKED(vp, __func__);
3711 ASSERT_VI_UNLOCKED(vp, __func__);
3712 if (!refcount_release(&vp->v_usecount)) {
3713 VOP_UNLOCK(vp);
3714 return;
3715 }
3716 vput_final(vp, VPUT);
3717 }
3718
3719 /*
3720 * in: locked
3721 * out: locked
3722 */
3723 void
vunref(struct vnode * vp)3724 vunref(struct vnode *vp)
3725 {
3726
3727 ASSERT_VOP_LOCKED(vp, __func__);
3728 ASSERT_VI_UNLOCKED(vp, __func__);
3729 if (!refcount_release(&vp->v_usecount))
3730 return;
3731 vput_final(vp, VUNREF);
3732 }
3733
3734 void
vhold(struct vnode * vp)3735 vhold(struct vnode *vp)
3736 {
3737 int old;
3738
3739 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3740 old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3741 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3742 ("%s: wrong hold count %d", __func__, old));
3743 if (old == 0)
3744 vfs_freevnodes_dec();
3745 }
3746
3747 void
vholdnz(struct vnode * vp)3748 vholdnz(struct vnode *vp)
3749 {
3750
3751 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3752 #ifdef INVARIANTS
3753 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3754 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3755 ("%s: wrong hold count %d", __func__, old));
3756 #else
3757 atomic_add_int(&vp->v_holdcnt, 1);
3758 #endif
3759 }
3760
3761 /*
3762 * Grab a hold count unless the vnode is freed.
3763 *
3764 * Only use this routine if vfs smr is the only protection you have against
3765 * freeing the vnode.
3766 *
3767 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3768 * is not set. After the flag is set the vnode becomes immutable to anyone but
3769 * the thread which managed to set the flag.
3770 *
3771 * It may be tempting to replace the loop with:
3772 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3773 * if (count & VHOLD_NO_SMR) {
3774 * backpedal and error out;
3775 * }
3776 *
3777 * However, while this is more performant, it hinders debugging by eliminating
3778 * the previously mentioned invariant.
3779 */
3780 bool
vhold_smr(struct vnode * vp)3781 vhold_smr(struct vnode *vp)
3782 {
3783 int count;
3784
3785 VFS_SMR_ASSERT_ENTERED();
3786
3787 count = atomic_load_int(&vp->v_holdcnt);
3788 for (;;) {
3789 if (count & VHOLD_NO_SMR) {
3790 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3791 ("non-zero hold count with flags %d\n", count));
3792 return (false);
3793 }
3794 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3795 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3796 if (count == 0)
3797 vfs_freevnodes_dec();
3798 return (true);
3799 }
3800 }
3801 }
3802
3803 /*
3804 * Hold a free vnode for recycling.
3805 *
3806 * Note: vnode_init references this comment.
3807 *
3808 * Attempts to recycle only need the global vnode list lock and have no use for
3809 * SMR.
3810 *
3811 * However, vnodes get inserted into the global list before they get fully
3812 * initialized and stay there until UMA decides to free the memory. This in
3813 * particular means the target can be found before it becomes usable and after
3814 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3815 * VHOLD_NO_SMR.
3816 *
3817 * Note: the vnode may gain more references after we transition the count 0->1.
3818 */
3819 static bool
vhold_recycle_free(struct vnode * vp)3820 vhold_recycle_free(struct vnode *vp)
3821 {
3822 int count;
3823
3824 mtx_assert(&vnode_list_mtx, MA_OWNED);
3825
3826 count = atomic_load_int(&vp->v_holdcnt);
3827 for (;;) {
3828 if (count & VHOLD_NO_SMR) {
3829 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3830 ("non-zero hold count with flags %d\n", count));
3831 return (false);
3832 }
3833 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3834 if (count > 0) {
3835 return (false);
3836 }
3837 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3838 vfs_freevnodes_dec();
3839 return (true);
3840 }
3841 }
3842 }
3843
3844 static void __noinline
vdbatch_process(struct vdbatch * vd)3845 vdbatch_process(struct vdbatch *vd)
3846 {
3847 struct vnode *vp;
3848 int i;
3849
3850 mtx_assert(&vd->lock, MA_OWNED);
3851 MPASS(curthread->td_pinned > 0);
3852 MPASS(vd->index == VDBATCH_SIZE);
3853
3854 /*
3855 * Attempt to requeue the passed batch, but give up easily.
3856 *
3857 * Despite batching the mechanism is prone to transient *significant*
3858 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3859 * if multiple CPUs get here (one real-world example is highly parallel
3860 * do-nothing make , which will stat *tons* of vnodes). Since it is
3861 * quasi-LRU (read: not that great even if fully honoured) provide an
3862 * option to just dodge the problem. Parties which don't like it are
3863 * welcome to implement something better.
3864 */
3865 if (vnode_can_skip_requeue) {
3866 if (!mtx_trylock(&vnode_list_mtx)) {
3867 counter_u64_add(vnode_skipped_requeues, 1);
3868 critical_enter();
3869 for (i = 0; i < VDBATCH_SIZE; i++) {
3870 vp = vd->tab[i];
3871 vd->tab[i] = NULL;
3872 MPASS(vp->v_dbatchcpu != NOCPU);
3873 vp->v_dbatchcpu = NOCPU;
3874 }
3875 vd->index = 0;
3876 critical_exit();
3877 return;
3878
3879 }
3880 /* fallthrough to locked processing */
3881 } else {
3882 mtx_lock(&vnode_list_mtx);
3883 }
3884
3885 mtx_assert(&vnode_list_mtx, MA_OWNED);
3886 critical_enter();
3887 for (i = 0; i < VDBATCH_SIZE; i++) {
3888 vp = vd->tab[i];
3889 vd->tab[i] = NULL;
3890 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3891 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3892 MPASS(vp->v_dbatchcpu != NOCPU);
3893 vp->v_dbatchcpu = NOCPU;
3894 }
3895 mtx_unlock(&vnode_list_mtx);
3896 vd->index = 0;
3897 critical_exit();
3898 }
3899
3900 static void
vdbatch_enqueue(struct vnode * vp)3901 vdbatch_enqueue(struct vnode *vp)
3902 {
3903 struct vdbatch *vd;
3904
3905 ASSERT_VI_LOCKED(vp, __func__);
3906 VNPASS(!VN_IS_DOOMED(vp), vp);
3907
3908 if (vp->v_dbatchcpu != NOCPU) {
3909 VI_UNLOCK(vp);
3910 return;
3911 }
3912
3913 sched_pin();
3914 vd = DPCPU_PTR(vd);
3915 mtx_lock(&vd->lock);
3916 MPASS(vd->index < VDBATCH_SIZE);
3917 MPASS(vd->tab[vd->index] == NULL);
3918 /*
3919 * A hack: we depend on being pinned so that we know what to put in
3920 * ->v_dbatchcpu.
3921 */
3922 vp->v_dbatchcpu = curcpu;
3923 vd->tab[vd->index] = vp;
3924 vd->index++;
3925 VI_UNLOCK(vp);
3926 if (vd->index == VDBATCH_SIZE)
3927 vdbatch_process(vd);
3928 mtx_unlock(&vd->lock);
3929 sched_unpin();
3930 }
3931
3932 /*
3933 * This routine must only be called for vnodes which are about to be
3934 * deallocated. Supporting dequeue for arbitrary vndoes would require
3935 * validating that the locked batch matches.
3936 */
3937 static void
vdbatch_dequeue(struct vnode * vp)3938 vdbatch_dequeue(struct vnode *vp)
3939 {
3940 struct vdbatch *vd;
3941 int i;
3942 short cpu;
3943
3944 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3945
3946 cpu = vp->v_dbatchcpu;
3947 if (cpu == NOCPU)
3948 return;
3949
3950 vd = DPCPU_ID_PTR(cpu, vd);
3951 mtx_lock(&vd->lock);
3952 for (i = 0; i < vd->index; i++) {
3953 if (vd->tab[i] != vp)
3954 continue;
3955 vp->v_dbatchcpu = NOCPU;
3956 vd->index--;
3957 vd->tab[i] = vd->tab[vd->index];
3958 vd->tab[vd->index] = NULL;
3959 break;
3960 }
3961 mtx_unlock(&vd->lock);
3962 /*
3963 * Either we dequeued the vnode above or the target CPU beat us to it.
3964 */
3965 MPASS(vp->v_dbatchcpu == NOCPU);
3966 }
3967
3968 /*
3969 * Drop the hold count of the vnode.
3970 *
3971 * It will only get freed if this is the last hold *and* it has been vgone'd.
3972 *
3973 * Because the vnode vm object keeps a hold reference on the vnode if
3974 * there is at least one resident non-cached page, the vnode cannot
3975 * leave the active list without the page cleanup done.
3976 */
3977 static void __noinline
vdropl_final(struct vnode * vp)3978 vdropl_final(struct vnode *vp)
3979 {
3980
3981 ASSERT_VI_LOCKED(vp, __func__);
3982 VNPASS(VN_IS_DOOMED(vp), vp);
3983 /*
3984 * Set the VHOLD_NO_SMR flag.
3985 *
3986 * We may be racing against vhold_smr. If they win we can just pretend
3987 * we never got this far, they will vdrop later.
3988 */
3989 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3990 vfs_freevnodes_inc();
3991 VI_UNLOCK(vp);
3992 /*
3993 * We lost the aforementioned race. Any subsequent access is
3994 * invalid as they might have managed to vdropl on their own.
3995 */
3996 return;
3997 }
3998 /*
3999 * Don't bump freevnodes as this one is going away.
4000 */
4001 freevnode(vp);
4002 }
4003
4004 void
vdrop(struct vnode * vp)4005 vdrop(struct vnode *vp)
4006 {
4007
4008 ASSERT_VI_UNLOCKED(vp, __func__);
4009 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4010 if (refcount_release_if_not_last(&vp->v_holdcnt))
4011 return;
4012 VI_LOCK(vp);
4013 vdropl(vp);
4014 }
4015
4016 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4017 vdropl_impl(struct vnode *vp, bool enqueue)
4018 {
4019
4020 ASSERT_VI_LOCKED(vp, __func__);
4021 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4022 if (!refcount_release(&vp->v_holdcnt)) {
4023 VI_UNLOCK(vp);
4024 return;
4025 }
4026 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4027 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4028 if (VN_IS_DOOMED(vp)) {
4029 vdropl_final(vp);
4030 return;
4031 }
4032
4033 vfs_freevnodes_inc();
4034 if (vp->v_mflag & VMP_LAZYLIST) {
4035 vunlazy(vp);
4036 }
4037
4038 if (!enqueue) {
4039 VI_UNLOCK(vp);
4040 return;
4041 }
4042
4043 /*
4044 * Also unlocks the interlock. We can't assert on it as we
4045 * released our hold and by now the vnode might have been
4046 * freed.
4047 */
4048 vdbatch_enqueue(vp);
4049 }
4050
4051 void
vdropl(struct vnode * vp)4052 vdropl(struct vnode *vp)
4053 {
4054
4055 vdropl_impl(vp, true);
4056 }
4057
4058 /*
4059 * vdrop a vnode when recycling
4060 *
4061 * This is a special case routine only to be used when recycling, differs from
4062 * regular vdrop by not requeieing the vnode on LRU.
4063 *
4064 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4065 * e.g., frozen writes on the filesystem), filling the batch and causing it to
4066 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4067 * loop which can last for as long as writes are frozen.
4068 */
4069 static void
vdropl_recycle(struct vnode * vp)4070 vdropl_recycle(struct vnode *vp)
4071 {
4072
4073 vdropl_impl(vp, false);
4074 }
4075
4076 static void
vdrop_recycle(struct vnode * vp)4077 vdrop_recycle(struct vnode *vp)
4078 {
4079
4080 VI_LOCK(vp);
4081 vdropl_recycle(vp);
4082 }
4083
4084 /*
4085 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4086 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
4087 */
4088 static int
vinactivef(struct vnode * vp)4089 vinactivef(struct vnode *vp)
4090 {
4091 int error;
4092
4093 ASSERT_VOP_ELOCKED(vp, "vinactive");
4094 ASSERT_VI_LOCKED(vp, "vinactive");
4095 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4096 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4097 vp->v_iflag |= VI_DOINGINACT;
4098 vp->v_iflag &= ~VI_OWEINACT;
4099 VI_UNLOCK(vp);
4100
4101 /*
4102 * Before moving off the active list, we must be sure that any
4103 * modified pages are converted into the vnode's dirty
4104 * buffers, since these will no longer be checked once the
4105 * vnode is on the inactive list.
4106 *
4107 * The write-out of the dirty pages is asynchronous. At the
4108 * point that VOP_INACTIVE() is called, there could still be
4109 * pending I/O and dirty pages in the object.
4110 */
4111 if ((vp->v_vflag & VV_NOSYNC) == 0)
4112 vnode_pager_clean_async(vp);
4113
4114 error = VOP_INACTIVE(vp);
4115 VI_LOCK(vp);
4116 VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4117 vp->v_iflag &= ~VI_DOINGINACT;
4118 return (error);
4119 }
4120
4121 int
vinactive(struct vnode * vp)4122 vinactive(struct vnode *vp)
4123 {
4124
4125 ASSERT_VOP_ELOCKED(vp, "vinactive");
4126 ASSERT_VI_LOCKED(vp, "vinactive");
4127 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4128
4129 if ((vp->v_iflag & VI_OWEINACT) == 0)
4130 return (0);
4131 if (vp->v_iflag & VI_DOINGINACT)
4132 return (0);
4133 if (vp->v_usecount > 0) {
4134 vp->v_iflag &= ~VI_OWEINACT;
4135 return (0);
4136 }
4137 return (vinactivef(vp));
4138 }
4139
4140 /*
4141 * Remove any vnodes in the vnode table belonging to mount point mp.
4142 *
4143 * If FORCECLOSE is not specified, there should not be any active ones,
4144 * return error if any are found (nb: this is a user error, not a
4145 * system error). If FORCECLOSE is specified, detach any active vnodes
4146 * that are found.
4147 *
4148 * If WRITECLOSE is set, only flush out regular file vnodes open for
4149 * writing.
4150 *
4151 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4152 *
4153 * `rootrefs' specifies the base reference count for the root vnode
4154 * of this filesystem. The root vnode is considered busy if its
4155 * v_usecount exceeds this value. On a successful return, vflush(, td)
4156 * will call vrele() on the root vnode exactly rootrefs times.
4157 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4158 * be zero.
4159 */
4160 #ifdef DIAGNOSTIC
4161 static int busyprt = 0; /* print out busy vnodes */
4162 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4163 #endif
4164
4165 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4166 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4167 {
4168 struct vnode *vp, *mvp, *rootvp = NULL;
4169 struct vattr vattr;
4170 int busy = 0, error;
4171
4172 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4173 rootrefs, flags);
4174 if (rootrefs > 0) {
4175 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4176 ("vflush: bad args"));
4177 /*
4178 * Get the filesystem root vnode. We can vput() it
4179 * immediately, since with rootrefs > 0, it won't go away.
4180 */
4181 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4182 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4183 __func__, error);
4184 return (error);
4185 }
4186 vput(rootvp);
4187 }
4188 loop:
4189 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4190 vholdl(vp);
4191 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4192 if (error) {
4193 vdrop(vp);
4194 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4195 goto loop;
4196 }
4197 /*
4198 * Skip over a vnodes marked VV_SYSTEM.
4199 */
4200 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4201 VOP_UNLOCK(vp);
4202 vdrop(vp);
4203 continue;
4204 }
4205 /*
4206 * If WRITECLOSE is set, flush out unlinked but still open
4207 * files (even if open only for reading) and regular file
4208 * vnodes open for writing.
4209 */
4210 if (flags & WRITECLOSE) {
4211 vnode_pager_clean_async(vp);
4212 do {
4213 error = VOP_FSYNC(vp, MNT_WAIT, td);
4214 } while (error == ERELOOKUP);
4215 if (error != 0) {
4216 VOP_UNLOCK(vp);
4217 vdrop(vp);
4218 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4219 return (error);
4220 }
4221 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4222 VI_LOCK(vp);
4223
4224 if ((vp->v_type == VNON ||
4225 (error == 0 && vattr.va_nlink > 0)) &&
4226 (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4227 VOP_UNLOCK(vp);
4228 vdropl(vp);
4229 continue;
4230 }
4231 } else
4232 VI_LOCK(vp);
4233 /*
4234 * With v_usecount == 0, all we need to do is clear out the
4235 * vnode data structures and we are done.
4236 *
4237 * If FORCECLOSE is set, forcibly close the vnode.
4238 */
4239 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4240 vgonel(vp);
4241 } else {
4242 busy++;
4243 #ifdef DIAGNOSTIC
4244 if (busyprt)
4245 vn_printf(vp, "vflush: busy vnode ");
4246 #endif
4247 }
4248 VOP_UNLOCK(vp);
4249 vdropl(vp);
4250 }
4251 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4252 /*
4253 * If just the root vnode is busy, and if its refcount
4254 * is equal to `rootrefs', then go ahead and kill it.
4255 */
4256 VI_LOCK(rootvp);
4257 KASSERT(busy > 0, ("vflush: not busy"));
4258 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4259 ("vflush: usecount %d < rootrefs %d",
4260 rootvp->v_usecount, rootrefs));
4261 if (busy == 1 && rootvp->v_usecount == rootrefs) {
4262 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4263 vgone(rootvp);
4264 VOP_UNLOCK(rootvp);
4265 busy = 0;
4266 } else
4267 VI_UNLOCK(rootvp);
4268 }
4269 if (busy) {
4270 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4271 busy);
4272 return (EBUSY);
4273 }
4274 for (; rootrefs > 0; rootrefs--)
4275 vrele(rootvp);
4276 return (0);
4277 }
4278
4279 /*
4280 * Recycle an unused vnode.
4281 */
4282 int
vrecycle(struct vnode * vp)4283 vrecycle(struct vnode *vp)
4284 {
4285 int recycled;
4286
4287 VI_LOCK(vp);
4288 recycled = vrecyclel(vp);
4289 VI_UNLOCK(vp);
4290 return (recycled);
4291 }
4292
4293 /*
4294 * vrecycle, with the vp interlock held.
4295 */
4296 int
vrecyclel(struct vnode * vp)4297 vrecyclel(struct vnode *vp)
4298 {
4299 int recycled;
4300
4301 ASSERT_VOP_ELOCKED(vp, __func__);
4302 ASSERT_VI_LOCKED(vp, __func__);
4303 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4304 recycled = 0;
4305 if (vp->v_usecount == 0) {
4306 recycled = 1;
4307 vgonel(vp);
4308 }
4309 return (recycled);
4310 }
4311
4312 /*
4313 * Eliminate all activity associated with a vnode
4314 * in preparation for reuse.
4315 */
4316 void
vgone(struct vnode * vp)4317 vgone(struct vnode *vp)
4318 {
4319 VI_LOCK(vp);
4320 vgonel(vp);
4321 VI_UNLOCK(vp);
4322 }
4323
4324 /*
4325 * Notify upper mounts about reclaimed or unlinked vnode.
4326 */
4327 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4328 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4329 {
4330 struct mount *mp;
4331 struct mount_upper_node *ump;
4332
4333 mp = atomic_load_ptr(&vp->v_mount);
4334 if (mp == NULL)
4335 return;
4336 if (TAILQ_EMPTY(&mp->mnt_notify))
4337 return;
4338
4339 MNT_ILOCK(mp);
4340 mp->mnt_upper_pending++;
4341 KASSERT(mp->mnt_upper_pending > 0,
4342 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4343 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4344 MNT_IUNLOCK(mp);
4345 switch (event) {
4346 case VFS_NOTIFY_UPPER_RECLAIM:
4347 VFS_RECLAIM_LOWERVP(ump->mp, vp);
4348 break;
4349 case VFS_NOTIFY_UPPER_UNLINK:
4350 VFS_UNLINK_LOWERVP(ump->mp, vp);
4351 break;
4352 }
4353 MNT_ILOCK(mp);
4354 }
4355 mp->mnt_upper_pending--;
4356 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4357 mp->mnt_upper_pending == 0) {
4358 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4359 wakeup(&mp->mnt_uppers);
4360 }
4361 MNT_IUNLOCK(mp);
4362 }
4363
4364 /*
4365 * vgone, with the vp interlock held.
4366 */
4367 static void
vgonel(struct vnode * vp)4368 vgonel(struct vnode *vp)
4369 {
4370 struct thread *td;
4371 struct mount *mp;
4372 vm_object_t object;
4373 bool active, doinginact, oweinact;
4374
4375 ASSERT_VOP_ELOCKED(vp, "vgonel");
4376 ASSERT_VI_LOCKED(vp, "vgonel");
4377 VNASSERT(vp->v_holdcnt, vp,
4378 ("vgonel: vp %p has no reference.", vp));
4379 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4380 td = curthread;
4381
4382 /*
4383 * Don't vgonel if we're already doomed.
4384 */
4385 if (VN_IS_DOOMED(vp)) {
4386 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4387 vn_get_state(vp) == VSTATE_DEAD, vp);
4388 return;
4389 }
4390 /*
4391 * Paired with freevnode.
4392 */
4393 vn_seqc_write_begin_locked(vp);
4394 vunlazy_gone(vp);
4395 vn_irflag_set_locked(vp, VIRF_DOOMED);
4396 vn_set_state(vp, VSTATE_DESTROYING);
4397
4398 /*
4399 * Check to see if the vnode is in use. If so, we have to
4400 * call VOP_CLOSE() and VOP_INACTIVE().
4401 *
4402 * It could be that VOP_INACTIVE() requested reclamation, in
4403 * which case we should avoid recursion, so check
4404 * VI_DOINGINACT. This is not precise but good enough.
4405 */
4406 active = vp->v_usecount > 0;
4407 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4408 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4409
4410 /*
4411 * If we need to do inactive VI_OWEINACT will be set.
4412 */
4413 if (vp->v_iflag & VI_DEFINACT) {
4414 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4415 vp->v_iflag &= ~VI_DEFINACT;
4416 vdropl(vp);
4417 } else {
4418 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4419 VI_UNLOCK(vp);
4420 }
4421 cache_purge_vgone(vp);
4422 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4423
4424 /*
4425 * If purging an active vnode, it must be closed and
4426 * deactivated before being reclaimed.
4427 */
4428 if (active)
4429 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4430 if (!doinginact) {
4431 do {
4432 if (oweinact || active) {
4433 VI_LOCK(vp);
4434 vinactivef(vp);
4435 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4436 VI_UNLOCK(vp);
4437 }
4438 } while (oweinact);
4439 }
4440 if (vp->v_type == VSOCK)
4441 vfs_unp_reclaim(vp);
4442
4443 /*
4444 * Clean out any buffers associated with the vnode.
4445 * If the flush fails, just toss the buffers.
4446 */
4447 mp = NULL;
4448 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4449 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
4450 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4451 while (vinvalbuf(vp, 0, 0, 0) != 0)
4452 ;
4453 }
4454
4455 BO_LOCK(&vp->v_bufobj);
4456 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4457 vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4458 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4459 vp->v_bufobj.bo_clean.bv_cnt == 0,
4460 ("vp %p bufobj not invalidated", vp));
4461
4462 /*
4463 * For VMIO bufobj, BO_DEAD is set later, or in
4464 * vm_object_terminate() after the object's page queue is
4465 * flushed.
4466 */
4467 object = vp->v_bufobj.bo_object;
4468 if (object == NULL)
4469 vp->v_bufobj.bo_flag |= BO_DEAD;
4470 BO_UNLOCK(&vp->v_bufobj);
4471
4472 /*
4473 * Handle the VM part. Tmpfs handles v_object on its own (the
4474 * OBJT_VNODE check). Nullfs or other bypassing filesystems
4475 * should not touch the object borrowed from the lower vnode
4476 * (the handle check).
4477 */
4478 if (object != NULL && object->type == OBJT_VNODE &&
4479 object->handle == vp)
4480 vnode_destroy_vobject(vp);
4481
4482 /*
4483 * Reclaim the vnode.
4484 */
4485 if (VOP_RECLAIM(vp))
4486 panic("vgone: cannot reclaim");
4487 if (mp != NULL)
4488 vn_finished_secondary_write(mp);
4489 VNASSERT(vp->v_object == NULL, vp,
4490 ("vop_reclaim left v_object vp=%p", vp));
4491 /*
4492 * Clear the advisory locks and wake up waiting threads.
4493 */
4494 if (vp->v_lockf != NULL) {
4495 (void)VOP_ADVLOCKPURGE(vp);
4496 vp->v_lockf = NULL;
4497 }
4498 /*
4499 * Delete from old mount point vnode list.
4500 */
4501 if (vp->v_mount == NULL) {
4502 VI_LOCK(vp);
4503 } else {
4504 delmntque(vp);
4505 ASSERT_VI_LOCKED(vp, "vgonel 2");
4506 }
4507 /*
4508 * Done with purge, reset to the standard lock and invalidate
4509 * the vnode.
4510 *
4511 * FIXME: this is buggy for vnode ops with custom locking primitives.
4512 *
4513 * vget used to be gated with a special flag serializing it against vgone,
4514 * which got lost in the process of SMP-ifying the VFS layer.
4515 *
4516 * Suppose a custom locking routine references ->v_data.
4517 *
4518 * Since now it is possible to start executing it as vgone is
4519 * progressing, this very well may crash as ->v_data gets invalidated
4520 * and memory used to back it is freed.
4521 */
4522 vp->v_vnlock = &vp->v_lock;
4523 vp->v_op = &dead_vnodeops;
4524 vp->v_type = VBAD;
4525 vn_set_state(vp, VSTATE_DEAD);
4526 }
4527
4528 /*
4529 * Print out a description of a vnode.
4530 */
4531 static const char *const vtypename[] = {
4532 [VNON] = "VNON",
4533 [VREG] = "VREG",
4534 [VDIR] = "VDIR",
4535 [VBLK] = "VBLK",
4536 [VCHR] = "VCHR",
4537 [VLNK] = "VLNK",
4538 [VSOCK] = "VSOCK",
4539 [VFIFO] = "VFIFO",
4540 [VBAD] = "VBAD",
4541 [VMARKER] = "VMARKER",
4542 };
4543 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4544 "vnode type name not added to vtypename");
4545
4546 static const char *const vstatename[] = {
4547 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4548 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4549 [VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4550 [VSTATE_DEAD] = "VSTATE_DEAD",
4551 };
4552 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4553 "vnode state name not added to vstatename");
4554
4555 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4556 "new hold count flag not added to vn_printf");
4557
4558 void
vn_printf(struct vnode * vp,const char * fmt,...)4559 vn_printf(struct vnode *vp, const char *fmt, ...)
4560 {
4561 va_list ap;
4562 char buf[256], buf2[16];
4563 u_long flags;
4564 u_int holdcnt;
4565 short irflag;
4566
4567 va_start(ap, fmt);
4568 vprintf(fmt, ap);
4569 va_end(ap);
4570 printf("%p: ", (void *)vp);
4571 printf("type %s state %s op %p\n", vtypename[vp->v_type],
4572 vstatename[vp->v_state], vp->v_op);
4573 holdcnt = atomic_load_int(&vp->v_holdcnt);
4574 printf(" usecount %d, writecount %d, refcount %d seqc users %d",
4575 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4576 vp->v_seqc_users);
4577 switch (vp->v_type) {
4578 case VDIR:
4579 printf(" mountedhere %p\n", vp->v_mountedhere);
4580 break;
4581 case VCHR:
4582 printf(" rdev %p\n", vp->v_rdev);
4583 break;
4584 case VSOCK:
4585 printf(" socket %p\n", vp->v_unpcb);
4586 break;
4587 case VFIFO:
4588 printf(" fifoinfo %p\n", vp->v_fifoinfo);
4589 break;
4590 default:
4591 printf("\n");
4592 break;
4593 }
4594 buf[0] = '\0';
4595 buf[1] = '\0';
4596 if (holdcnt & VHOLD_NO_SMR)
4597 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4598 printf(" hold count flags (%s)\n", buf + 1);
4599
4600 buf[0] = '\0';
4601 buf[1] = '\0';
4602 irflag = vn_irflag_read(vp);
4603 if (irflag & VIRF_DOOMED)
4604 strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4605 if (irflag & VIRF_PGREAD)
4606 strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4607 if (irflag & VIRF_MOUNTPOINT)
4608 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4609 if (irflag & VIRF_TEXT_REF)
4610 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4611 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4612 if (flags != 0) {
4613 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4614 strlcat(buf, buf2, sizeof(buf));
4615 }
4616 if (vp->v_vflag & VV_ROOT)
4617 strlcat(buf, "|VV_ROOT", sizeof(buf));
4618 if (vp->v_vflag & VV_ISTTY)
4619 strlcat(buf, "|VV_ISTTY", sizeof(buf));
4620 if (vp->v_vflag & VV_NOSYNC)
4621 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4622 if (vp->v_vflag & VV_ETERNALDEV)
4623 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4624 if (vp->v_vflag & VV_CACHEDLABEL)
4625 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4626 if (vp->v_vflag & VV_VMSIZEVNLOCK)
4627 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4628 if (vp->v_vflag & VV_COPYONWRITE)
4629 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4630 if (vp->v_vflag & VV_SYSTEM)
4631 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4632 if (vp->v_vflag & VV_PROCDEP)
4633 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4634 if (vp->v_vflag & VV_DELETED)
4635 strlcat(buf, "|VV_DELETED", sizeof(buf));
4636 if (vp->v_vflag & VV_MD)
4637 strlcat(buf, "|VV_MD", sizeof(buf));
4638 if (vp->v_vflag & VV_FORCEINSMQ)
4639 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4640 if (vp->v_vflag & VV_READLINK)
4641 strlcat(buf, "|VV_READLINK", sizeof(buf));
4642 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4643 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4644 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4645 if (flags != 0) {
4646 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4647 strlcat(buf, buf2, sizeof(buf));
4648 }
4649 if (vp->v_iflag & VI_MOUNT)
4650 strlcat(buf, "|VI_MOUNT", sizeof(buf));
4651 if (vp->v_iflag & VI_DOINGINACT)
4652 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4653 if (vp->v_iflag & VI_OWEINACT)
4654 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4655 if (vp->v_iflag & VI_DEFINACT)
4656 strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4657 if (vp->v_iflag & VI_FOPENING)
4658 strlcat(buf, "|VI_FOPENING", sizeof(buf));
4659 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4660 VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4661 if (flags != 0) {
4662 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4663 strlcat(buf, buf2, sizeof(buf));
4664 }
4665 if (vp->v_mflag & VMP_LAZYLIST)
4666 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4667 flags = vp->v_mflag & ~(VMP_LAZYLIST);
4668 if (flags != 0) {
4669 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4670 strlcat(buf, buf2, sizeof(buf));
4671 }
4672 printf(" flags (%s)", buf + 1);
4673 if (mtx_owned(VI_MTX(vp)))
4674 printf(" VI_LOCKed");
4675 printf("\n");
4676 if (vp->v_object != NULL)
4677 printf(" v_object %p ref %d pages %d "
4678 "cleanbuf %d dirtybuf %d\n",
4679 vp->v_object, vp->v_object->ref_count,
4680 vp->v_object->resident_page_count,
4681 vp->v_bufobj.bo_clean.bv_cnt,
4682 vp->v_bufobj.bo_dirty.bv_cnt);
4683 printf(" ");
4684 lockmgr_printinfo(vp->v_vnlock);
4685 if (vp->v_data != NULL)
4686 VOP_PRINT(vp);
4687 }
4688
4689 #ifdef DDB
4690 /*
4691 * List all of the locked vnodes in the system.
4692 * Called when debugging the kernel.
4693 */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4694 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4695 {
4696 struct mount *mp;
4697 struct vnode *vp;
4698
4699 /*
4700 * Note: because this is DDB, we can't obey the locking semantics
4701 * for these structures, which means we could catch an inconsistent
4702 * state and dereference a nasty pointer. Not much to be done
4703 * about that.
4704 */
4705 db_printf("Locked vnodes\n");
4706 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4707 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4708 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4709 vn_printf(vp, "vnode ");
4710 }
4711 }
4712 }
4713
4714 /*
4715 * Show details about the given vnode.
4716 */
DB_SHOW_COMMAND(vnode,db_show_vnode)4717 DB_SHOW_COMMAND(vnode, db_show_vnode)
4718 {
4719 struct vnode *vp;
4720
4721 if (!have_addr)
4722 return;
4723 vp = (struct vnode *)addr;
4724 vn_printf(vp, "vnode ");
4725 }
4726
4727 /*
4728 * Show details about the given mount point.
4729 */
DB_SHOW_COMMAND(mount,db_show_mount)4730 DB_SHOW_COMMAND(mount, db_show_mount)
4731 {
4732 struct mount *mp;
4733 struct vfsopt *opt;
4734 struct statfs *sp;
4735 struct vnode *vp;
4736 char buf[512];
4737 uint64_t mflags;
4738 u_int flags;
4739
4740 if (!have_addr) {
4741 /* No address given, print short info about all mount points. */
4742 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4743 db_printf("%p %s on %s (%s)\n", mp,
4744 mp->mnt_stat.f_mntfromname,
4745 mp->mnt_stat.f_mntonname,
4746 mp->mnt_stat.f_fstypename);
4747 if (db_pager_quit)
4748 break;
4749 }
4750 db_printf("\nMore info: show mount <addr>\n");
4751 return;
4752 }
4753
4754 mp = (struct mount *)addr;
4755 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4756 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4757
4758 buf[0] = '\0';
4759 mflags = mp->mnt_flag;
4760 #define MNT_FLAG(flag) do { \
4761 if (mflags & (flag)) { \
4762 if (buf[0] != '\0') \
4763 strlcat(buf, ", ", sizeof(buf)); \
4764 strlcat(buf, (#flag) + 4, sizeof(buf)); \
4765 mflags &= ~(flag); \
4766 } \
4767 } while (0)
4768 MNT_FLAG(MNT_RDONLY);
4769 MNT_FLAG(MNT_SYNCHRONOUS);
4770 MNT_FLAG(MNT_NOEXEC);
4771 MNT_FLAG(MNT_NOSUID);
4772 MNT_FLAG(MNT_NFS4ACLS);
4773 MNT_FLAG(MNT_UNION);
4774 MNT_FLAG(MNT_ASYNC);
4775 MNT_FLAG(MNT_SUIDDIR);
4776 MNT_FLAG(MNT_SOFTDEP);
4777 MNT_FLAG(MNT_NOSYMFOLLOW);
4778 MNT_FLAG(MNT_GJOURNAL);
4779 MNT_FLAG(MNT_MULTILABEL);
4780 MNT_FLAG(MNT_ACLS);
4781 MNT_FLAG(MNT_NOATIME);
4782 MNT_FLAG(MNT_NOCLUSTERR);
4783 MNT_FLAG(MNT_NOCLUSTERW);
4784 MNT_FLAG(MNT_SUJ);
4785 MNT_FLAG(MNT_EXRDONLY);
4786 MNT_FLAG(MNT_EXPORTED);
4787 MNT_FLAG(MNT_DEFEXPORTED);
4788 MNT_FLAG(MNT_EXPORTANON);
4789 MNT_FLAG(MNT_EXKERB);
4790 MNT_FLAG(MNT_EXPUBLIC);
4791 MNT_FLAG(MNT_LOCAL);
4792 MNT_FLAG(MNT_QUOTA);
4793 MNT_FLAG(MNT_ROOTFS);
4794 MNT_FLAG(MNT_USER);
4795 MNT_FLAG(MNT_IGNORE);
4796 MNT_FLAG(MNT_UPDATE);
4797 MNT_FLAG(MNT_DELEXPORT);
4798 MNT_FLAG(MNT_RELOAD);
4799 MNT_FLAG(MNT_FORCE);
4800 MNT_FLAG(MNT_SNAPSHOT);
4801 MNT_FLAG(MNT_BYFSID);
4802 MNT_FLAG(MNT_NAMEDATTR);
4803 #undef MNT_FLAG
4804 if (mflags != 0) {
4805 if (buf[0] != '\0')
4806 strlcat(buf, ", ", sizeof(buf));
4807 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4808 "0x%016jx", mflags);
4809 }
4810 db_printf(" mnt_flag = %s\n", buf);
4811
4812 buf[0] = '\0';
4813 flags = mp->mnt_kern_flag;
4814 #define MNT_KERN_FLAG(flag) do { \
4815 if (flags & (flag)) { \
4816 if (buf[0] != '\0') \
4817 strlcat(buf, ", ", sizeof(buf)); \
4818 strlcat(buf, (#flag) + 5, sizeof(buf)); \
4819 flags &= ~(flag); \
4820 } \
4821 } while (0)
4822 MNT_KERN_FLAG(MNTK_UNMOUNTF);
4823 MNT_KERN_FLAG(MNTK_ASYNC);
4824 MNT_KERN_FLAG(MNTK_SOFTDEP);
4825 MNT_KERN_FLAG(MNTK_NOMSYNC);
4826 MNT_KERN_FLAG(MNTK_DRAINING);
4827 MNT_KERN_FLAG(MNTK_REFEXPIRE);
4828 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4829 MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4830 MNT_KERN_FLAG(MNTK_NO_IOPF);
4831 MNT_KERN_FLAG(MNTK_RECURSE);
4832 MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4833 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4834 MNT_KERN_FLAG(MNTK_USES_BCACHE);
4835 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4836 MNT_KERN_FLAG(MNTK_FPLOOKUP);
4837 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4838 MNT_KERN_FLAG(MNTK_NOASYNC);
4839 MNT_KERN_FLAG(MNTK_UNMOUNT);
4840 MNT_KERN_FLAG(MNTK_MWAIT);
4841 MNT_KERN_FLAG(MNTK_SUSPEND);
4842 MNT_KERN_FLAG(MNTK_SUSPEND2);
4843 MNT_KERN_FLAG(MNTK_SUSPENDED);
4844 MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4845 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4846 #undef MNT_KERN_FLAG
4847 if (flags != 0) {
4848 if (buf[0] != '\0')
4849 strlcat(buf, ", ", sizeof(buf));
4850 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4851 "0x%08x", flags);
4852 }
4853 db_printf(" mnt_kern_flag = %s\n", buf);
4854
4855 db_printf(" mnt_opt = ");
4856 opt = TAILQ_FIRST(mp->mnt_opt);
4857 if (opt != NULL) {
4858 db_printf("%s", opt->name);
4859 opt = TAILQ_NEXT(opt, link);
4860 while (opt != NULL) {
4861 db_printf(", %s", opt->name);
4862 opt = TAILQ_NEXT(opt, link);
4863 }
4864 }
4865 db_printf("\n");
4866
4867 sp = &mp->mnt_stat;
4868 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
4869 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4870 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4871 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4872 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4873 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4874 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4875 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4876 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4877 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4878 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4879 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4880
4881 db_printf(" mnt_cred = { uid=%u ruid=%u",
4882 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4883 if (jailed(mp->mnt_cred))
4884 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4885 db_printf(" }\n");
4886 db_printf(" mnt_ref = %d (with %d in the struct)\n",
4887 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4888 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
4889 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4890 db_printf(" mnt_lazyvnodelistsize = %d\n",
4891 mp->mnt_lazyvnodelistsize);
4892 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
4893 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4894 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4895 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
4896 db_printf(" mnt_lockref = %d (with %d in the struct)\n",
4897 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4898 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4899 db_printf(" mnt_secondary_accwrites = %d\n",
4900 mp->mnt_secondary_accwrites);
4901 db_printf(" mnt_gjprovider = %s\n",
4902 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4903 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4904
4905 db_printf("\n\nList of active vnodes\n");
4906 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4907 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4908 vn_printf(vp, "vnode ");
4909 if (db_pager_quit)
4910 break;
4911 }
4912 }
4913 db_printf("\n\nList of inactive vnodes\n");
4914 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4915 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4916 vn_printf(vp, "vnode ");
4917 if (db_pager_quit)
4918 break;
4919 }
4920 }
4921 }
4922 #endif /* DDB */
4923
4924 /*
4925 * Fill in a struct xvfsconf based on a struct vfsconf.
4926 */
4927 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4928 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4929 {
4930 struct xvfsconf xvfsp;
4931
4932 bzero(&xvfsp, sizeof(xvfsp));
4933 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4934 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4935 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4936 xvfsp.vfc_flags = vfsp->vfc_flags;
4937 /*
4938 * These are unused in userland, we keep them
4939 * to not break binary compatibility.
4940 */
4941 xvfsp.vfc_vfsops = NULL;
4942 xvfsp.vfc_next = NULL;
4943 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4944 }
4945
4946 #ifdef COMPAT_FREEBSD32
4947 struct xvfsconf32 {
4948 uint32_t vfc_vfsops;
4949 char vfc_name[MFSNAMELEN];
4950 int32_t vfc_typenum;
4951 int32_t vfc_refcount;
4952 int32_t vfc_flags;
4953 uint32_t vfc_next;
4954 };
4955
4956 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4957 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4958 {
4959 struct xvfsconf32 xvfsp;
4960
4961 bzero(&xvfsp, sizeof(xvfsp));
4962 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4963 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4964 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4965 xvfsp.vfc_flags = vfsp->vfc_flags;
4966 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4967 }
4968 #endif
4969
4970 /*
4971 * Top level filesystem related information gathering.
4972 */
4973 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4974 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4975 {
4976 struct vfsconf *vfsp;
4977 int error;
4978
4979 error = 0;
4980 vfsconf_slock();
4981 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4982 #ifdef COMPAT_FREEBSD32
4983 if (req->flags & SCTL_MASK32)
4984 error = vfsconf2x32(req, vfsp);
4985 else
4986 #endif
4987 error = vfsconf2x(req, vfsp);
4988 if (error)
4989 break;
4990 }
4991 vfsconf_sunlock();
4992 return (error);
4993 }
4994
4995 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4996 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4997 "S,xvfsconf", "List of all configured filesystems");
4998
4999 #ifndef BURN_BRIDGES
5000 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
5001
5002 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)5003 vfs_sysctl(SYSCTL_HANDLER_ARGS)
5004 {
5005 int *name = (int *)arg1 - 1; /* XXX */
5006 u_int namelen = arg2 + 1; /* XXX */
5007 struct vfsconf *vfsp;
5008
5009 log(LOG_WARNING, "userland calling deprecated sysctl, "
5010 "please rebuild world\n");
5011
5012 #if 1 || defined(COMPAT_PRELITE2)
5013 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
5014 if (namelen == 1)
5015 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
5016 #endif
5017
5018 switch (name[1]) {
5019 case VFS_MAXTYPENUM:
5020 if (namelen != 2)
5021 return (ENOTDIR);
5022 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5023 case VFS_CONF:
5024 if (namelen != 3)
5025 return (ENOTDIR); /* overloaded */
5026 vfsconf_slock();
5027 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5028 if (vfsp->vfc_typenum == name[2])
5029 break;
5030 }
5031 vfsconf_sunlock();
5032 if (vfsp == NULL)
5033 return (EOPNOTSUPP);
5034 #ifdef COMPAT_FREEBSD32
5035 if (req->flags & SCTL_MASK32)
5036 return (vfsconf2x32(req, vfsp));
5037 else
5038 #endif
5039 return (vfsconf2x(req, vfsp));
5040 }
5041 return (EOPNOTSUPP);
5042 }
5043
5044 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5045 CTLFLAG_MPSAFE, vfs_sysctl,
5046 "Generic filesystem");
5047
5048 #if 1 || defined(COMPAT_PRELITE2)
5049
5050 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5051 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5052 {
5053 int error;
5054 struct vfsconf *vfsp;
5055 struct ovfsconf ovfs;
5056
5057 vfsconf_slock();
5058 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5059 bzero(&ovfs, sizeof(ovfs));
5060 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
5061 strcpy(ovfs.vfc_name, vfsp->vfc_name);
5062 ovfs.vfc_index = vfsp->vfc_typenum;
5063 ovfs.vfc_refcount = vfsp->vfc_refcount;
5064 ovfs.vfc_flags = vfsp->vfc_flags;
5065 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5066 if (error != 0) {
5067 vfsconf_sunlock();
5068 return (error);
5069 }
5070 }
5071 vfsconf_sunlock();
5072 return (0);
5073 }
5074
5075 #endif /* 1 || COMPAT_PRELITE2 */
5076 #endif /* !BURN_BRIDGES */
5077
5078 static void
unmount_or_warn(struct mount * mp)5079 unmount_or_warn(struct mount *mp)
5080 {
5081 int error;
5082
5083 error = dounmount(mp, MNT_FORCE, curthread);
5084 if (error != 0) {
5085 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5086 if (error == EBUSY)
5087 printf("BUSY)\n");
5088 else
5089 printf("%d)\n", error);
5090 }
5091 }
5092
5093 /*
5094 * Unmount all filesystems. The list is traversed in reverse order
5095 * of mounting to avoid dependencies.
5096 */
5097 void
vfs_unmountall(void)5098 vfs_unmountall(void)
5099 {
5100 struct mount *mp, *tmp;
5101
5102 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5103
5104 /*
5105 * Since this only runs when rebooting, it is not interlocked.
5106 */
5107 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5108 vfs_ref(mp);
5109
5110 /*
5111 * Forcibly unmounting "/dev" before "/" would prevent clean
5112 * unmount of the latter.
5113 */
5114 if (mp == rootdevmp)
5115 continue;
5116
5117 unmount_or_warn(mp);
5118 }
5119
5120 if (rootdevmp != NULL)
5121 unmount_or_warn(rootdevmp);
5122 }
5123
5124 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5125 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5126 {
5127
5128 ASSERT_VI_LOCKED(vp, __func__);
5129 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5130 if ((vp->v_iflag & VI_OWEINACT) == 0) {
5131 vdropl(vp);
5132 return;
5133 }
5134 if (vn_lock(vp, lkflags) == 0) {
5135 VI_LOCK(vp);
5136 vinactive(vp);
5137 VOP_UNLOCK(vp);
5138 vdropl(vp);
5139 return;
5140 }
5141 vdefer_inactive_unlocked(vp);
5142 }
5143
5144 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5145 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5146 {
5147
5148 return (vp->v_iflag & VI_DEFINACT);
5149 }
5150
5151 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5152 vfs_periodic_inactive(struct mount *mp, int flags)
5153 {
5154 struct vnode *vp, *mvp;
5155 int lkflags;
5156
5157 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5158 if (flags != MNT_WAIT)
5159 lkflags |= LK_NOWAIT;
5160
5161 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5162 if ((vp->v_iflag & VI_DEFINACT) == 0) {
5163 VI_UNLOCK(vp);
5164 continue;
5165 }
5166 vp->v_iflag &= ~VI_DEFINACT;
5167 vfs_deferred_inactive(vp, lkflags);
5168 }
5169 }
5170
5171 static inline bool
vfs_want_msync(struct vnode * vp)5172 vfs_want_msync(struct vnode *vp)
5173 {
5174 struct vm_object *obj;
5175
5176 /*
5177 * This test may be performed without any locks held.
5178 * We rely on vm_object's type stability.
5179 */
5180 if (vp->v_vflag & VV_NOSYNC)
5181 return (false);
5182 obj = vp->v_object;
5183 return (obj != NULL && vm_object_mightbedirty(obj));
5184 }
5185
5186 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5187 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5188 {
5189
5190 if (vp->v_vflag & VV_NOSYNC)
5191 return (false);
5192 if (vp->v_iflag & VI_DEFINACT)
5193 return (true);
5194 return (vfs_want_msync(vp));
5195 }
5196
5197 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5198 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5199 {
5200 struct vnode *vp, *mvp;
5201 int lkflags;
5202 bool seen_defer;
5203
5204 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5205 if (flags != MNT_WAIT)
5206 lkflags |= LK_NOWAIT;
5207
5208 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5209 seen_defer = false;
5210 if (vp->v_iflag & VI_DEFINACT) {
5211 vp->v_iflag &= ~VI_DEFINACT;
5212 seen_defer = true;
5213 }
5214 if (!vfs_want_msync(vp)) {
5215 if (seen_defer)
5216 vfs_deferred_inactive(vp, lkflags);
5217 else
5218 VI_UNLOCK(vp);
5219 continue;
5220 }
5221 if (vget(vp, lkflags) == 0) {
5222 if ((vp->v_vflag & VV_NOSYNC) == 0) {
5223 if (flags == MNT_WAIT)
5224 vnode_pager_clean_sync(vp);
5225 else
5226 vnode_pager_clean_async(vp);
5227 }
5228 vput(vp);
5229 if (seen_defer)
5230 vdrop(vp);
5231 } else {
5232 if (seen_defer)
5233 vdefer_inactive_unlocked(vp);
5234 }
5235 }
5236 }
5237
5238 void
vfs_periodic(struct mount * mp,int flags)5239 vfs_periodic(struct mount *mp, int flags)
5240 {
5241
5242 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5243
5244 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5245 vfs_periodic_inactive(mp, flags);
5246 else
5247 vfs_periodic_msync_inactive(mp, flags);
5248 }
5249
5250 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5251 destroy_vpollinfo_free(struct vpollinfo *vi)
5252 {
5253
5254 knlist_destroy(&vi->vpi_selinfo.si_note);
5255 mtx_destroy(&vi->vpi_lock);
5256 free(vi, M_VNODEPOLL);
5257 }
5258
5259 static void
destroy_vpollinfo(struct vpollinfo * vi)5260 destroy_vpollinfo(struct vpollinfo *vi)
5261 {
5262 KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5263 ("%s: pollinfo %p has lingering watches", __func__, vi));
5264 knlist_clear(&vi->vpi_selinfo.si_note, 1);
5265 seldrain(&vi->vpi_selinfo);
5266 destroy_vpollinfo_free(vi);
5267 }
5268
5269 /*
5270 * Initialize per-vnode helper structure to hold poll-related state.
5271 */
5272 void
v_addpollinfo(struct vnode * vp)5273 v_addpollinfo(struct vnode *vp)
5274 {
5275 struct vpollinfo *vi;
5276
5277 if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5278 return;
5279 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5280 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5281 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5282 vfs_knlunlock, vfs_knl_assert_lock);
5283 TAILQ_INIT(&vi->vpi_inotify);
5284 VI_LOCK(vp);
5285 if (vp->v_pollinfo != NULL) {
5286 VI_UNLOCK(vp);
5287 destroy_vpollinfo_free(vi);
5288 return;
5289 }
5290 vp->v_pollinfo = vi;
5291 VI_UNLOCK(vp);
5292 }
5293
5294 /*
5295 * Record a process's interest in events which might happen to
5296 * a vnode. Because poll uses the historic select-style interface
5297 * internally, this routine serves as both the ``check for any
5298 * pending events'' and the ``record my interest in future events''
5299 * functions. (These are done together, while the lock is held,
5300 * to avoid race conditions.)
5301 */
5302 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5303 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5304 {
5305
5306 v_addpollinfo(vp);
5307 mtx_lock(&vp->v_pollinfo->vpi_lock);
5308 if (vp->v_pollinfo->vpi_revents & events) {
5309 /*
5310 * This leaves events we are not interested
5311 * in available for the other process which
5312 * which presumably had requested them
5313 * (otherwise they would never have been
5314 * recorded).
5315 */
5316 events &= vp->v_pollinfo->vpi_revents;
5317 vp->v_pollinfo->vpi_revents &= ~events;
5318
5319 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5320 return (events);
5321 }
5322 vp->v_pollinfo->vpi_events |= events;
5323 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5324 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5325 return (0);
5326 }
5327
5328 /*
5329 * Routine to create and manage a filesystem syncer vnode.
5330 */
5331 #define sync_close ((int (*)(struct vop_close_args *))nullop)
5332 static int sync_fsync(struct vop_fsync_args *);
5333 static int sync_inactive(struct vop_inactive_args *);
5334 static int sync_reclaim(struct vop_reclaim_args *);
5335
5336 static struct vop_vector sync_vnodeops = {
5337 .vop_bypass = VOP_EOPNOTSUPP,
5338 .vop_close = sync_close,
5339 .vop_fsync = sync_fsync,
5340 .vop_getwritemount = vop_stdgetwritemount,
5341 .vop_inactive = sync_inactive,
5342 .vop_need_inactive = vop_stdneed_inactive,
5343 .vop_reclaim = sync_reclaim,
5344 .vop_lock1 = vop_stdlock,
5345 .vop_unlock = vop_stdunlock,
5346 .vop_islocked = vop_stdislocked,
5347 .vop_fplookup_vexec = VOP_EAGAIN,
5348 .vop_fplookup_symlink = VOP_EAGAIN,
5349 };
5350 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5351
5352 /*
5353 * Create a new filesystem syncer vnode for the specified mount point.
5354 */
5355 void
vfs_allocate_syncvnode(struct mount * mp)5356 vfs_allocate_syncvnode(struct mount *mp)
5357 {
5358 struct vnode *vp;
5359 struct bufobj *bo;
5360 static long start, incr, next;
5361 int error;
5362
5363 /* Allocate a new vnode */
5364 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5365 if (error != 0)
5366 panic("vfs_allocate_syncvnode: getnewvnode() failed");
5367 vp->v_type = VNON;
5368 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5369 vp->v_vflag |= VV_FORCEINSMQ;
5370 error = insmntque1(vp, mp);
5371 if (error != 0)
5372 panic("vfs_allocate_syncvnode: insmntque() failed");
5373 vp->v_vflag &= ~VV_FORCEINSMQ;
5374 vn_set_state(vp, VSTATE_CONSTRUCTED);
5375 VOP_UNLOCK(vp);
5376 /*
5377 * Place the vnode onto the syncer worklist. We attempt to
5378 * scatter them about on the list so that they will go off
5379 * at evenly distributed times even if all the filesystems
5380 * are mounted at once.
5381 */
5382 next += incr;
5383 if (next == 0 || next > syncer_maxdelay) {
5384 start /= 2;
5385 incr /= 2;
5386 if (start == 0) {
5387 start = syncer_maxdelay / 2;
5388 incr = syncer_maxdelay;
5389 }
5390 next = start;
5391 }
5392 bo = &vp->v_bufobj;
5393 BO_LOCK(bo);
5394 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5395 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5396 mtx_lock(&sync_mtx);
5397 sync_vnode_count++;
5398 if (mp->mnt_syncer == NULL) {
5399 mp->mnt_syncer = vp;
5400 vp = NULL;
5401 }
5402 mtx_unlock(&sync_mtx);
5403 BO_UNLOCK(bo);
5404 if (vp != NULL) {
5405 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5406 vgone(vp);
5407 vput(vp);
5408 }
5409 }
5410
5411 void
vfs_deallocate_syncvnode(struct mount * mp)5412 vfs_deallocate_syncvnode(struct mount *mp)
5413 {
5414 struct vnode *vp;
5415
5416 mtx_lock(&sync_mtx);
5417 vp = mp->mnt_syncer;
5418 if (vp != NULL)
5419 mp->mnt_syncer = NULL;
5420 mtx_unlock(&sync_mtx);
5421 if (vp != NULL)
5422 vrele(vp);
5423 }
5424
5425 /*
5426 * Do a lazy sync of the filesystem.
5427 */
5428 static int
sync_fsync(struct vop_fsync_args * ap)5429 sync_fsync(struct vop_fsync_args *ap)
5430 {
5431 struct vnode *syncvp = ap->a_vp;
5432 struct mount *mp = syncvp->v_mount;
5433 int error, save;
5434 struct bufobj *bo;
5435
5436 /*
5437 * We only need to do something if this is a lazy evaluation.
5438 */
5439 if (ap->a_waitfor != MNT_LAZY)
5440 return (0);
5441
5442 /*
5443 * Move ourselves to the back of the sync list.
5444 */
5445 bo = &syncvp->v_bufobj;
5446 BO_LOCK(bo);
5447 vn_syncer_add_to_worklist(bo, syncdelay);
5448 BO_UNLOCK(bo);
5449
5450 /*
5451 * Walk the list of vnodes pushing all that are dirty and
5452 * not already on the sync list.
5453 */
5454 if (vfs_busy(mp, MBF_NOWAIT) != 0)
5455 return (0);
5456 VOP_UNLOCK(syncvp);
5457 save = curthread_pflags_set(TDP_SYNCIO);
5458 /*
5459 * The filesystem at hand may be idle with free vnodes stored in the
5460 * batch. Return them instead of letting them stay there indefinitely.
5461 */
5462 vfs_periodic(mp, MNT_NOWAIT);
5463 error = VFS_SYNC(mp, MNT_LAZY);
5464 curthread_pflags_restore(save);
5465 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5466 vfs_unbusy(mp);
5467 return (error);
5468 }
5469
5470 /*
5471 * The syncer vnode is no referenced.
5472 */
5473 static int
sync_inactive(struct vop_inactive_args * ap)5474 sync_inactive(struct vop_inactive_args *ap)
5475 {
5476
5477 vgone(ap->a_vp);
5478 return (0);
5479 }
5480
5481 /*
5482 * The syncer vnode is no longer needed and is being decommissioned.
5483 *
5484 * Modifications to the worklist must be protected by sync_mtx.
5485 */
5486 static int
sync_reclaim(struct vop_reclaim_args * ap)5487 sync_reclaim(struct vop_reclaim_args *ap)
5488 {
5489 struct vnode *vp = ap->a_vp;
5490 struct bufobj *bo;
5491
5492 bo = &vp->v_bufobj;
5493 BO_LOCK(bo);
5494 mtx_lock(&sync_mtx);
5495 if (vp->v_mount->mnt_syncer == vp)
5496 vp->v_mount->mnt_syncer = NULL;
5497 if (bo->bo_flag & BO_ONWORKLST) {
5498 LIST_REMOVE(bo, bo_synclist);
5499 syncer_worklist_len--;
5500 sync_vnode_count--;
5501 bo->bo_flag &= ~BO_ONWORKLST;
5502 }
5503 mtx_unlock(&sync_mtx);
5504 BO_UNLOCK(bo);
5505
5506 return (0);
5507 }
5508
5509 int
vn_need_pageq_flush(struct vnode * vp)5510 vn_need_pageq_flush(struct vnode *vp)
5511 {
5512 struct vm_object *obj;
5513
5514 obj = vp->v_object;
5515 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5516 vm_object_mightbedirty(obj));
5517 }
5518
5519 /*
5520 * Check if vnode represents a disk device
5521 */
5522 bool
vn_isdisk_error(struct vnode * vp,int * errp)5523 vn_isdisk_error(struct vnode *vp, int *errp)
5524 {
5525 int error;
5526
5527 if (vp->v_type != VCHR) {
5528 error = ENOTBLK;
5529 goto out;
5530 }
5531 error = 0;
5532 dev_lock();
5533 if (vp->v_rdev == NULL)
5534 error = ENXIO;
5535 else if (vp->v_rdev->si_devsw == NULL)
5536 error = ENXIO;
5537 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5538 error = ENOTBLK;
5539 dev_unlock();
5540 out:
5541 *errp = error;
5542 return (error == 0);
5543 }
5544
5545 bool
vn_isdisk(struct vnode * vp)5546 vn_isdisk(struct vnode *vp)
5547 {
5548 int error;
5549
5550 return (vn_isdisk_error(vp, &error));
5551 }
5552
5553 /*
5554 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5555 * the comment above cache_fplookup for details.
5556 */
5557 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5558 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5559 {
5560 int error;
5561
5562 VFS_SMR_ASSERT_ENTERED();
5563
5564 /* Check the owner. */
5565 if (cred->cr_uid == file_uid) {
5566 if (file_mode & S_IXUSR)
5567 return (0);
5568 goto out_error;
5569 }
5570
5571 /* Otherwise, check the groups (first match) */
5572 if (groupmember(file_gid, cred)) {
5573 if (file_mode & S_IXGRP)
5574 return (0);
5575 goto out_error;
5576 }
5577
5578 /* Otherwise, check everyone else. */
5579 if (file_mode & S_IXOTH)
5580 return (0);
5581 out_error:
5582 /*
5583 * Permission check failed, but it is possible denial will get overwritten
5584 * (e.g., when root is traversing through a 700 directory owned by someone
5585 * else).
5586 *
5587 * vaccess() calls priv_check_cred which in turn can descent into MAC
5588 * modules overriding this result. It's quite unclear what semantics
5589 * are allowed for them to operate, thus for safety we don't call them
5590 * from within the SMR section. This also means if any such modules
5591 * are present, we have to let the regular lookup decide.
5592 */
5593 error = priv_check_cred_vfs_lookup_nomac(cred);
5594 switch (error) {
5595 case 0:
5596 return (0);
5597 case EAGAIN:
5598 /*
5599 * MAC modules present.
5600 */
5601 return (EAGAIN);
5602 case EPERM:
5603 return (EACCES);
5604 default:
5605 return (error);
5606 }
5607 }
5608
5609 /*
5610 * Common filesystem object access control check routine. Accepts a
5611 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5612 * Returns 0 on success, or an errno on failure.
5613 */
5614 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5615 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5616 accmode_t accmode, struct ucred *cred)
5617 {
5618 accmode_t dac_granted;
5619 accmode_t priv_granted;
5620
5621 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5622 ("invalid bit in accmode"));
5623 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5624 ("VAPPEND without VWRITE"));
5625
5626 /*
5627 * Look for a normal, non-privileged way to access the file/directory
5628 * as requested. If it exists, go with that.
5629 */
5630
5631 dac_granted = 0;
5632
5633 /* Check the owner. */
5634 if (cred->cr_uid == file_uid) {
5635 dac_granted |= VADMIN;
5636 if (file_mode & S_IXUSR)
5637 dac_granted |= VEXEC;
5638 if (file_mode & S_IRUSR)
5639 dac_granted |= VREAD;
5640 if (file_mode & S_IWUSR)
5641 dac_granted |= (VWRITE | VAPPEND);
5642
5643 if ((accmode & dac_granted) == accmode)
5644 return (0);
5645
5646 goto privcheck;
5647 }
5648
5649 /* Otherwise, check the groups (first match) */
5650 if (groupmember(file_gid, cred)) {
5651 if (file_mode & S_IXGRP)
5652 dac_granted |= VEXEC;
5653 if (file_mode & S_IRGRP)
5654 dac_granted |= VREAD;
5655 if (file_mode & S_IWGRP)
5656 dac_granted |= (VWRITE | VAPPEND);
5657
5658 if ((accmode & dac_granted) == accmode)
5659 return (0);
5660
5661 goto privcheck;
5662 }
5663
5664 /* Otherwise, check everyone else. */
5665 if (file_mode & S_IXOTH)
5666 dac_granted |= VEXEC;
5667 if (file_mode & S_IROTH)
5668 dac_granted |= VREAD;
5669 if (file_mode & S_IWOTH)
5670 dac_granted |= (VWRITE | VAPPEND);
5671 if ((accmode & dac_granted) == accmode)
5672 return (0);
5673
5674 privcheck:
5675 /*
5676 * Build a privilege mask to determine if the set of privileges
5677 * satisfies the requirements when combined with the granted mask
5678 * from above. For each privilege, if the privilege is required,
5679 * bitwise or the request type onto the priv_granted mask.
5680 */
5681 priv_granted = 0;
5682
5683 if (type == VDIR) {
5684 /*
5685 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5686 * requests, instead of PRIV_VFS_EXEC.
5687 */
5688 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5689 !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5690 priv_granted |= VEXEC;
5691 } else {
5692 /*
5693 * Ensure that at least one execute bit is on. Otherwise,
5694 * a privileged user will always succeed, and we don't want
5695 * this to happen unless the file really is executable.
5696 */
5697 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5698 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5699 !priv_check_cred(cred, PRIV_VFS_EXEC))
5700 priv_granted |= VEXEC;
5701 }
5702
5703 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5704 !priv_check_cred(cred, PRIV_VFS_READ))
5705 priv_granted |= VREAD;
5706
5707 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5708 !priv_check_cred(cred, PRIV_VFS_WRITE))
5709 priv_granted |= (VWRITE | VAPPEND);
5710
5711 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5712 !priv_check_cred(cred, PRIV_VFS_ADMIN))
5713 priv_granted |= VADMIN;
5714
5715 if ((accmode & (priv_granted | dac_granted)) == accmode) {
5716 return (0);
5717 }
5718
5719 return ((accmode & VADMIN) ? EPERM : EACCES);
5720 }
5721
5722 /*
5723 * Credential check based on process requesting service, and per-attribute
5724 * permissions.
5725 */
5726 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5727 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5728 struct thread *td, accmode_t accmode)
5729 {
5730
5731 /*
5732 * Kernel-invoked always succeeds.
5733 */
5734 if (cred == NOCRED)
5735 return (0);
5736
5737 /*
5738 * Do not allow privileged processes in jail to directly manipulate
5739 * system attributes.
5740 */
5741 switch (attrnamespace) {
5742 case EXTATTR_NAMESPACE_SYSTEM:
5743 /* Potentially should be: return (EPERM); */
5744 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5745 case EXTATTR_NAMESPACE_USER:
5746 return (VOP_ACCESS(vp, accmode, cred, td));
5747 default:
5748 return (EPERM);
5749 }
5750 }
5751
5752 #ifdef INVARIANTS
5753 void
assert_vi_locked(struct vnode * vp,const char * str)5754 assert_vi_locked(struct vnode *vp, const char *str)
5755 {
5756 VNASSERT(mtx_owned(VI_MTX(vp)), vp,
5757 ("%s: vnode interlock is not locked but should be", str));
5758 }
5759
5760 void
assert_vi_unlocked(struct vnode * vp,const char * str)5761 assert_vi_unlocked(struct vnode *vp, const char *str)
5762 {
5763 VNASSERT(!mtx_owned(VI_MTX(vp)), vp,
5764 ("%s: vnode interlock is locked but should not be", str));
5765 }
5766
5767 void
assert_vop_locked(struct vnode * vp,const char * str)5768 assert_vop_locked(struct vnode *vp, const char *str)
5769 {
5770 bool locked;
5771
5772 if (KERNEL_PANICKED() || vp == NULL)
5773 return;
5774
5775 #ifdef WITNESS
5776 locked = !((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5777 witness_is_owned(&vp->v_vnlock->lock_object) == -1);
5778 #else
5779 int state = VOP_ISLOCKED(vp);
5780 locked = state != 0 && state != LK_EXCLOTHER;
5781 #endif
5782 VNASSERT(locked, vp, ("%s: vnode is not locked but should be", str));
5783 }
5784
5785 void
assert_vop_unlocked(struct vnode * vp,const char * str)5786 assert_vop_unlocked(struct vnode *vp, const char *str)
5787 {
5788 bool locked;
5789
5790 if (KERNEL_PANICKED() || vp == NULL)
5791 return;
5792
5793 #ifdef WITNESS
5794 locked = (vp->v_irflag & VIRF_CROSSMP) == 0 &&
5795 witness_is_owned(&vp->v_vnlock->lock_object) == 1;
5796 #else
5797 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5798 #endif
5799 VNASSERT(!locked, vp, ("%s: vnode is locked but should not be", str));
5800 }
5801
5802 void
assert_vop_elocked(struct vnode * vp,const char * str)5803 assert_vop_elocked(struct vnode *vp, const char *str)
5804 {
5805 bool locked;
5806
5807 if (KERNEL_PANICKED() || vp == NULL)
5808 return;
5809
5810 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5811 VNASSERT(locked, vp,
5812 ("%s: vnode is not exclusive locked but should be", str));
5813 }
5814 #endif /* INVARIANTS */
5815
5816 void
vop_rename_fail(struct vop_rename_args * ap)5817 vop_rename_fail(struct vop_rename_args *ap)
5818 {
5819
5820 if (ap->a_tvp != NULL)
5821 vput(ap->a_tvp);
5822 if (ap->a_tdvp == ap->a_tvp)
5823 vrele(ap->a_tdvp);
5824 else
5825 vput(ap->a_tdvp);
5826 vrele(ap->a_fdvp);
5827 vrele(ap->a_fvp);
5828 }
5829
5830 void
vop_rename_pre(void * ap)5831 vop_rename_pre(void *ap)
5832 {
5833 struct vop_rename_args *a = ap;
5834
5835 #ifdef INVARIANTS
5836 struct mount *tmp;
5837
5838 if (a->a_tvp)
5839 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5840 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5841 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5842 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5843
5844 /* Check the source (from). */
5845 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5846 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5847 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5848 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5849 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5850
5851 /* Check the target. */
5852 if (a->a_tvp)
5853 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5854 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5855
5856 tmp = NULL;
5857 VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5858 lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5859 vfs_rel(tmp);
5860 #endif
5861 /*
5862 * It may be tempting to add vn_seqc_write_begin/end calls here and
5863 * in vop_rename_post but that's not going to work out since some
5864 * filesystems relookup vnodes mid-rename. This is probably a bug.
5865 *
5866 * For now filesystems are expected to do the relevant calls after they
5867 * decide what vnodes to operate on.
5868 */
5869 if (a->a_tdvp != a->a_fdvp)
5870 vhold(a->a_fdvp);
5871 if (a->a_tvp != a->a_fvp)
5872 vhold(a->a_fvp);
5873 vhold(a->a_tdvp);
5874 if (a->a_tvp)
5875 vhold(a->a_tvp);
5876 }
5877
5878 #ifdef INVARIANTS
5879 void
vop_fplookup_vexec_debugpre(void * ap __unused)5880 vop_fplookup_vexec_debugpre(void *ap __unused)
5881 {
5882
5883 VFS_SMR_ASSERT_ENTERED();
5884 }
5885
5886 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5887 vop_fplookup_vexec_debugpost(void *ap, int rc)
5888 {
5889 struct vop_fplookup_vexec_args *a;
5890 struct vnode *vp;
5891
5892 a = ap;
5893 vp = a->a_vp;
5894
5895 VFS_SMR_ASSERT_ENTERED();
5896 if (rc == EOPNOTSUPP)
5897 VNPASS(VN_IS_DOOMED(vp), vp);
5898 }
5899
5900 void
vop_fplookup_symlink_debugpre(void * ap __unused)5901 vop_fplookup_symlink_debugpre(void *ap __unused)
5902 {
5903
5904 VFS_SMR_ASSERT_ENTERED();
5905 }
5906
5907 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5908 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5909 {
5910
5911 VFS_SMR_ASSERT_ENTERED();
5912 }
5913
5914 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5915 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5916 {
5917 struct mount *mp;
5918
5919 if (vp->v_type == VCHR)
5920 ;
5921 /*
5922 * The shared vs. exclusive locking policy for fsync()
5923 * is actually determined by vp's write mount as indicated
5924 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5925 * may not be the same as vp->v_mount. However, if the
5926 * underlying filesystem which really handles the fsync()
5927 * supports shared locking, the stacked filesystem must also
5928 * be prepared for its VOP_FSYNC() operation to be called
5929 * with only a shared lock. On the other hand, if the
5930 * stacked filesystem claims support for shared write
5931 * locking but the underlying filesystem does not, and the
5932 * caller incorrectly uses a shared lock, this condition
5933 * should still be caught when the stacked filesystem
5934 * invokes VOP_FSYNC() on the underlying filesystem.
5935 */
5936 else {
5937 mp = NULL;
5938 VOP_GETWRITEMOUNT(vp, &mp);
5939 if (vn_lktype_write(mp, vp) == LK_SHARED)
5940 ASSERT_VOP_LOCKED(vp, name);
5941 else
5942 ASSERT_VOP_ELOCKED(vp, name);
5943 if (mp != NULL)
5944 vfs_rel(mp);
5945 }
5946 }
5947
5948 void
vop_fsync_debugpre(void * a)5949 vop_fsync_debugpre(void *a)
5950 {
5951 struct vop_fsync_args *ap;
5952
5953 ap = a;
5954 vop_fsync_debugprepost(ap->a_vp, "fsync");
5955 }
5956
5957 void
vop_fsync_debugpost(void * a,int rc __unused)5958 vop_fsync_debugpost(void *a, int rc __unused)
5959 {
5960 struct vop_fsync_args *ap;
5961
5962 ap = a;
5963 vop_fsync_debugprepost(ap->a_vp, "fsync");
5964 }
5965
5966 void
vop_fdatasync_debugpre(void * a)5967 vop_fdatasync_debugpre(void *a)
5968 {
5969 struct vop_fdatasync_args *ap;
5970
5971 ap = a;
5972 vop_fsync_debugprepost(ap->a_vp, "fsync");
5973 }
5974
5975 void
vop_fdatasync_debugpost(void * a,int rc __unused)5976 vop_fdatasync_debugpost(void *a, int rc __unused)
5977 {
5978 struct vop_fdatasync_args *ap;
5979
5980 ap = a;
5981 vop_fsync_debugprepost(ap->a_vp, "fsync");
5982 }
5983
5984 void
vop_strategy_debugpre(void * ap)5985 vop_strategy_debugpre(void *ap)
5986 {
5987 struct vop_strategy_args *a;
5988 struct buf *bp;
5989
5990 a = ap;
5991 bp = a->a_bp;
5992
5993 /*
5994 * Cluster ops lock their component buffers but not the IO container.
5995 */
5996 if ((bp->b_flags & B_CLUSTER) != 0)
5997 return;
5998
5999 BUF_ASSERT_LOCKED(bp);
6000 }
6001
6002 void
vop_lock_debugpre(void * ap)6003 vop_lock_debugpre(void *ap)
6004 {
6005 struct vop_lock1_args *a = ap;
6006
6007 if ((a->a_flags & LK_INTERLOCK) == 0)
6008 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6009 else
6010 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6011 }
6012
6013 void
vop_lock_debugpost(void * ap,int rc)6014 vop_lock_debugpost(void *ap, int rc)
6015 {
6016 struct vop_lock1_args *a = ap;
6017
6018 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6019 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6020 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6021 }
6022
6023 void
vop_unlock_debugpre(void * ap)6024 vop_unlock_debugpre(void *ap)
6025 {
6026 struct vop_unlock_args *a = ap;
6027 struct vnode *vp = a->a_vp;
6028
6029 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6030 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6031 }
6032
6033 void
vop_need_inactive_debugpre(void * ap)6034 vop_need_inactive_debugpre(void *ap)
6035 {
6036 struct vop_need_inactive_args *a = ap;
6037
6038 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6039 }
6040
6041 void
vop_need_inactive_debugpost(void * ap,int rc)6042 vop_need_inactive_debugpost(void *ap, int rc)
6043 {
6044 struct vop_need_inactive_args *a = ap;
6045
6046 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6047 }
6048 #endif /* INVARIANTS */
6049
6050 void
vop_allocate_post(void * ap,int rc)6051 vop_allocate_post(void *ap, int rc)
6052 {
6053 struct vop_allocate_args *a;
6054
6055 a = ap;
6056 if (rc == 0)
6057 INOTIFY(a->a_vp, IN_MODIFY);
6058 }
6059
6060 void
vop_copy_file_range_post(void * ap,int rc)6061 vop_copy_file_range_post(void *ap, int rc)
6062 {
6063 struct vop_copy_file_range_args *a;
6064
6065 a = ap;
6066 if (rc == 0) {
6067 INOTIFY(a->a_invp, IN_ACCESS);
6068 INOTIFY(a->a_outvp, IN_MODIFY);
6069 }
6070 }
6071
6072 void
vop_create_pre(void * ap)6073 vop_create_pre(void *ap)
6074 {
6075 struct vop_create_args *a;
6076 struct vnode *dvp;
6077
6078 a = ap;
6079 dvp = a->a_dvp;
6080 vn_seqc_write_begin(dvp);
6081 }
6082
6083 void
vop_create_post(void * ap,int rc)6084 vop_create_post(void *ap, int rc)
6085 {
6086 struct vop_create_args *a;
6087 struct vnode *dvp;
6088
6089 a = ap;
6090 dvp = a->a_dvp;
6091 vn_seqc_write_end(dvp);
6092 if (!rc) {
6093 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6094 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6095 }
6096 }
6097
6098 void
vop_deallocate_post(void * ap,int rc)6099 vop_deallocate_post(void *ap, int rc)
6100 {
6101 struct vop_deallocate_args *a;
6102
6103 a = ap;
6104 if (rc == 0)
6105 INOTIFY(a->a_vp, IN_MODIFY);
6106 }
6107
6108 void
vop_whiteout_pre(void * ap)6109 vop_whiteout_pre(void *ap)
6110 {
6111 struct vop_whiteout_args *a;
6112 struct vnode *dvp;
6113
6114 a = ap;
6115 dvp = a->a_dvp;
6116 vn_seqc_write_begin(dvp);
6117 }
6118
6119 void
vop_whiteout_post(void * ap,int rc)6120 vop_whiteout_post(void *ap, int rc)
6121 {
6122 struct vop_whiteout_args *a;
6123 struct vnode *dvp;
6124
6125 a = ap;
6126 dvp = a->a_dvp;
6127 vn_seqc_write_end(dvp);
6128 }
6129
6130 void
vop_deleteextattr_pre(void * ap)6131 vop_deleteextattr_pre(void *ap)
6132 {
6133 struct vop_deleteextattr_args *a;
6134 struct vnode *vp;
6135
6136 a = ap;
6137 vp = a->a_vp;
6138 vn_seqc_write_begin(vp);
6139 }
6140
6141 void
vop_deleteextattr_post(void * ap,int rc)6142 vop_deleteextattr_post(void *ap, int rc)
6143 {
6144 struct vop_deleteextattr_args *a;
6145 struct vnode *vp;
6146
6147 a = ap;
6148 vp = a->a_vp;
6149 vn_seqc_write_end(vp);
6150 if (!rc) {
6151 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6152 INOTIFY(vp, IN_ATTRIB);
6153 }
6154 }
6155
6156 void
vop_link_pre(void * ap)6157 vop_link_pre(void *ap)
6158 {
6159 struct vop_link_args *a;
6160 struct vnode *vp, *tdvp;
6161
6162 a = ap;
6163 vp = a->a_vp;
6164 tdvp = a->a_tdvp;
6165 vn_seqc_write_begin(vp);
6166 vn_seqc_write_begin(tdvp);
6167 }
6168
6169 void
vop_link_post(void * ap,int rc)6170 vop_link_post(void *ap, int rc)
6171 {
6172 struct vop_link_args *a;
6173 struct vnode *vp, *tdvp;
6174
6175 a = ap;
6176 vp = a->a_vp;
6177 tdvp = a->a_tdvp;
6178 vn_seqc_write_end(vp);
6179 vn_seqc_write_end(tdvp);
6180 if (!rc) {
6181 VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6182 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6183 INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6184 INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6185 }
6186 }
6187
6188 void
vop_mkdir_pre(void * ap)6189 vop_mkdir_pre(void *ap)
6190 {
6191 struct vop_mkdir_args *a;
6192 struct vnode *dvp;
6193
6194 a = ap;
6195 dvp = a->a_dvp;
6196 vn_seqc_write_begin(dvp);
6197 }
6198
6199 void
vop_mkdir_post(void * ap,int rc)6200 vop_mkdir_post(void *ap, int rc)
6201 {
6202 struct vop_mkdir_args *a;
6203 struct vnode *dvp;
6204
6205 a = ap;
6206 dvp = a->a_dvp;
6207 vn_seqc_write_end(dvp);
6208 if (!rc) {
6209 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6210 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6211 }
6212 }
6213
6214 #ifdef INVARIANTS
6215 void
vop_mkdir_debugpost(void * ap,int rc)6216 vop_mkdir_debugpost(void *ap, int rc)
6217 {
6218 struct vop_mkdir_args *a;
6219
6220 a = ap;
6221 if (!rc)
6222 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6223 }
6224 #endif
6225
6226 void
vop_mknod_pre(void * ap)6227 vop_mknod_pre(void *ap)
6228 {
6229 struct vop_mknod_args *a;
6230 struct vnode *dvp;
6231
6232 a = ap;
6233 dvp = a->a_dvp;
6234 vn_seqc_write_begin(dvp);
6235 }
6236
6237 void
vop_mknod_post(void * ap,int rc)6238 vop_mknod_post(void *ap, int rc)
6239 {
6240 struct vop_mknod_args *a;
6241 struct vnode *dvp;
6242
6243 a = ap;
6244 dvp = a->a_dvp;
6245 vn_seqc_write_end(dvp);
6246 if (!rc) {
6247 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6248 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6249 }
6250 }
6251
6252 void
vop_reclaim_post(void * ap,int rc)6253 vop_reclaim_post(void *ap, int rc)
6254 {
6255 struct vop_reclaim_args *a;
6256 struct vnode *vp;
6257
6258 a = ap;
6259 vp = a->a_vp;
6260 ASSERT_VOP_IN_SEQC(vp);
6261 if (!rc) {
6262 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6263 INOTIFY_REVOKE(vp);
6264 }
6265 }
6266
6267 void
vop_remove_pre(void * ap)6268 vop_remove_pre(void *ap)
6269 {
6270 struct vop_remove_args *a;
6271 struct vnode *dvp, *vp;
6272
6273 a = ap;
6274 dvp = a->a_dvp;
6275 vp = a->a_vp;
6276 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6277 vn_seqc_write_begin(dvp);
6278 vn_seqc_write_begin(vp);
6279 }
6280
6281 void
vop_remove_post(void * ap,int rc)6282 vop_remove_post(void *ap, int rc)
6283 {
6284 struct vop_remove_args *a;
6285 struct vnode *dvp, *vp;
6286
6287 a = ap;
6288 dvp = a->a_dvp;
6289 vp = a->a_vp;
6290 vn_seqc_write_end(dvp);
6291 vn_seqc_write_end(vp);
6292 if (!rc) {
6293 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6294 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6295 INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6296 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6297 }
6298 }
6299
6300 void
vop_rename_post(void * ap,int rc)6301 vop_rename_post(void *ap, int rc)
6302 {
6303 struct vop_rename_args *a = ap;
6304 long hint;
6305
6306 if (!rc) {
6307 hint = NOTE_WRITE;
6308 if (a->a_fdvp == a->a_tdvp) {
6309 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6310 hint |= NOTE_LINK;
6311 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6312 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6313 } else {
6314 hint |= NOTE_EXTEND;
6315 if (a->a_fvp->v_type == VDIR)
6316 hint |= NOTE_LINK;
6317 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6318
6319 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6320 a->a_tvp->v_type == VDIR)
6321 hint &= ~NOTE_LINK;
6322 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6323 }
6324
6325 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6326 if (a->a_tvp)
6327 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6328 INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6329 a->a_tdvp, a->a_tcnp);
6330 }
6331 if (a->a_tdvp != a->a_fdvp)
6332 vdrop(a->a_fdvp);
6333 if (a->a_tvp != a->a_fvp)
6334 vdrop(a->a_fvp);
6335 vdrop(a->a_tdvp);
6336 if (a->a_tvp)
6337 vdrop(a->a_tvp);
6338 }
6339
6340 void
vop_rmdir_pre(void * ap)6341 vop_rmdir_pre(void *ap)
6342 {
6343 struct vop_rmdir_args *a;
6344 struct vnode *dvp, *vp;
6345
6346 a = ap;
6347 dvp = a->a_dvp;
6348 vp = a->a_vp;
6349 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6350 vn_seqc_write_begin(dvp);
6351 vn_seqc_write_begin(vp);
6352 }
6353
6354 void
vop_rmdir_post(void * ap,int rc)6355 vop_rmdir_post(void *ap, int rc)
6356 {
6357 struct vop_rmdir_args *a;
6358 struct vnode *dvp, *vp;
6359
6360 a = ap;
6361 dvp = a->a_dvp;
6362 vp = a->a_vp;
6363 vn_seqc_write_end(dvp);
6364 vn_seqc_write_end(vp);
6365 if (!rc) {
6366 vp->v_vflag |= VV_UNLINKED;
6367 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6368 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6369 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6370 }
6371 }
6372
6373 void
vop_setattr_pre(void * ap)6374 vop_setattr_pre(void *ap)
6375 {
6376 struct vop_setattr_args *a;
6377 struct vnode *vp;
6378
6379 a = ap;
6380 vp = a->a_vp;
6381 vn_seqc_write_begin(vp);
6382 }
6383
6384 void
vop_setattr_post(void * ap,int rc)6385 vop_setattr_post(void *ap, int rc)
6386 {
6387 struct vop_setattr_args *a;
6388 struct vnode *vp;
6389
6390 a = ap;
6391 vp = a->a_vp;
6392 vn_seqc_write_end(vp);
6393 if (!rc) {
6394 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6395 INOTIFY(vp, IN_ATTRIB);
6396 }
6397 }
6398
6399 void
vop_setacl_pre(void * ap)6400 vop_setacl_pre(void *ap)
6401 {
6402 struct vop_setacl_args *a;
6403 struct vnode *vp;
6404
6405 a = ap;
6406 vp = a->a_vp;
6407 vn_seqc_write_begin(vp);
6408 }
6409
6410 void
vop_setacl_post(void * ap,int rc __unused)6411 vop_setacl_post(void *ap, int rc __unused)
6412 {
6413 struct vop_setacl_args *a;
6414 struct vnode *vp;
6415
6416 a = ap;
6417 vp = a->a_vp;
6418 vn_seqc_write_end(vp);
6419 }
6420
6421 void
vop_setextattr_pre(void * ap)6422 vop_setextattr_pre(void *ap)
6423 {
6424 struct vop_setextattr_args *a;
6425 struct vnode *vp;
6426
6427 a = ap;
6428 vp = a->a_vp;
6429 vn_seqc_write_begin(vp);
6430 }
6431
6432 void
vop_setextattr_post(void * ap,int rc)6433 vop_setextattr_post(void *ap, int rc)
6434 {
6435 struct vop_setextattr_args *a;
6436 struct vnode *vp;
6437
6438 a = ap;
6439 vp = a->a_vp;
6440 vn_seqc_write_end(vp);
6441 if (!rc) {
6442 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6443 INOTIFY(vp, IN_ATTRIB);
6444 }
6445 }
6446
6447 void
vop_symlink_pre(void * ap)6448 vop_symlink_pre(void *ap)
6449 {
6450 struct vop_symlink_args *a;
6451 struct vnode *dvp;
6452
6453 a = ap;
6454 dvp = a->a_dvp;
6455 vn_seqc_write_begin(dvp);
6456 }
6457
6458 void
vop_symlink_post(void * ap,int rc)6459 vop_symlink_post(void *ap, int rc)
6460 {
6461 struct vop_symlink_args *a;
6462 struct vnode *dvp;
6463
6464 a = ap;
6465 dvp = a->a_dvp;
6466 vn_seqc_write_end(dvp);
6467 if (!rc) {
6468 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6469 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6470 }
6471 }
6472
6473 void
vop_open_post(void * ap,int rc)6474 vop_open_post(void *ap, int rc)
6475 {
6476 struct vop_open_args *a = ap;
6477
6478 if (!rc) {
6479 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6480 INOTIFY(a->a_vp, IN_OPEN);
6481 }
6482 }
6483
6484 void
vop_close_post(void * ap,int rc)6485 vop_close_post(void *ap, int rc)
6486 {
6487 struct vop_close_args *a = ap;
6488
6489 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6490 !VN_IS_DOOMED(a->a_vp))) {
6491 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6492 NOTE_CLOSE_WRITE : NOTE_CLOSE);
6493 INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6494 IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6495 }
6496 }
6497
6498 void
vop_read_post(void * ap,int rc)6499 vop_read_post(void *ap, int rc)
6500 {
6501 struct vop_read_args *a = ap;
6502
6503 if (!rc) {
6504 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6505 INOTIFY(a->a_vp, IN_ACCESS);
6506 }
6507 }
6508
6509 void
vop_read_pgcache_post(void * ap,int rc)6510 vop_read_pgcache_post(void *ap, int rc)
6511 {
6512 struct vop_read_pgcache_args *a = ap;
6513
6514 if (!rc)
6515 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6516 }
6517
6518 static struct knlist fs_knlist;
6519
6520 static void
vfs_event_init(void * arg)6521 vfs_event_init(void *arg)
6522 {
6523 knlist_init_mtx(&fs_knlist, NULL);
6524 }
6525 /* XXX - correct order? */
6526 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6527
6528 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6529 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6530 {
6531
6532 KNOTE_UNLOCKED(&fs_knlist, event);
6533 }
6534
6535 static int filt_fsattach(struct knote *kn);
6536 static void filt_fsdetach(struct knote *kn);
6537 static int filt_fsevent(struct knote *kn, long hint);
6538
6539 const struct filterops fs_filtops = {
6540 .f_isfd = 0,
6541 .f_attach = filt_fsattach,
6542 .f_detach = filt_fsdetach,
6543 .f_event = filt_fsevent,
6544 };
6545
6546 static int
filt_fsattach(struct knote * kn)6547 filt_fsattach(struct knote *kn)
6548 {
6549
6550 kn->kn_flags |= EV_CLEAR;
6551 knlist_add(&fs_knlist, kn, 0);
6552 return (0);
6553 }
6554
6555 static void
filt_fsdetach(struct knote * kn)6556 filt_fsdetach(struct knote *kn)
6557 {
6558
6559 knlist_remove(&fs_knlist, kn, 0);
6560 }
6561
6562 static int
filt_fsevent(struct knote * kn,long hint)6563 filt_fsevent(struct knote *kn, long hint)
6564 {
6565
6566 kn->kn_fflags |= kn->kn_sfflags & hint;
6567
6568 return (kn->kn_fflags != 0);
6569 }
6570
6571 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6572 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6573 {
6574 struct vfsidctl vc;
6575 int error;
6576 struct mount *mp;
6577
6578 if (req->newptr == NULL)
6579 return (EINVAL);
6580 error = SYSCTL_IN(req, &vc, sizeof(vc));
6581 if (error)
6582 return (error);
6583 if (vc.vc_vers != VFS_CTL_VERS1)
6584 return (EINVAL);
6585 mp = vfs_getvfs(&vc.vc_fsid);
6586 if (mp == NULL)
6587 return (ENOENT);
6588 /* ensure that a specific sysctl goes to the right filesystem. */
6589 if (strcmp(vc.vc_fstypename, "*") != 0 &&
6590 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6591 vfs_rel(mp);
6592 return (EINVAL);
6593 }
6594 VCTLTOREQ(&vc, req);
6595 error = VFS_SYSCTL(mp, vc.vc_op, req);
6596 vfs_rel(mp);
6597 return (error);
6598 }
6599
6600 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6601 NULL, 0, sysctl_vfs_ctl, "",
6602 "Sysctl by fsid");
6603
6604 /*
6605 * Function to initialize a va_filerev field sensibly.
6606 * XXX: Wouldn't a random number make a lot more sense ??
6607 */
6608 u_quad_t
init_va_filerev(void)6609 init_va_filerev(void)
6610 {
6611 struct bintime bt;
6612
6613 getbinuptime(&bt);
6614 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6615 }
6616
6617 static int filt_vfsread(struct knote *kn, long hint);
6618 static int filt_vfswrite(struct knote *kn, long hint);
6619 static int filt_vfsvnode(struct knote *kn, long hint);
6620 static void filt_vfsdetach(struct knote *kn);
6621 static int filt_vfsdump(struct proc *p, struct knote *kn,
6622 struct kinfo_knote *kin);
6623
6624 static const struct filterops vfsread_filtops = {
6625 .f_isfd = 1,
6626 .f_detach = filt_vfsdetach,
6627 .f_event = filt_vfsread,
6628 .f_userdump = filt_vfsdump,
6629 };
6630 static const struct filterops vfswrite_filtops = {
6631 .f_isfd = 1,
6632 .f_detach = filt_vfsdetach,
6633 .f_event = filt_vfswrite,
6634 .f_userdump = filt_vfsdump,
6635 };
6636 static const struct filterops vfsvnode_filtops = {
6637 .f_isfd = 1,
6638 .f_detach = filt_vfsdetach,
6639 .f_event = filt_vfsvnode,
6640 .f_userdump = filt_vfsdump,
6641 };
6642
6643 static void
vfs_knllock(void * arg)6644 vfs_knllock(void *arg)
6645 {
6646 struct vnode *vp = arg;
6647
6648 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6649 }
6650
6651 static void
vfs_knlunlock(void * arg)6652 vfs_knlunlock(void *arg)
6653 {
6654 struct vnode *vp = arg;
6655
6656 VOP_UNLOCK(vp);
6657 }
6658
6659 static void
vfs_knl_assert_lock(void * arg,int what)6660 vfs_knl_assert_lock(void *arg, int what)
6661 {
6662 #ifdef INVARIANTS
6663 struct vnode *vp = arg;
6664
6665 if (what == LA_LOCKED)
6666 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6667 else
6668 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6669 #endif
6670 }
6671
6672 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6673 vfs_kqfilter(struct vop_kqfilter_args *ap)
6674 {
6675 struct vnode *vp = ap->a_vp;
6676 struct knote *kn = ap->a_kn;
6677 struct knlist *knl;
6678
6679 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6680 kn->kn_filter != EVFILT_WRITE),
6681 ("READ/WRITE filter on a FIFO leaked through"));
6682 switch (kn->kn_filter) {
6683 case EVFILT_READ:
6684 kn->kn_fop = &vfsread_filtops;
6685 break;
6686 case EVFILT_WRITE:
6687 kn->kn_fop = &vfswrite_filtops;
6688 break;
6689 case EVFILT_VNODE:
6690 kn->kn_fop = &vfsvnode_filtops;
6691 break;
6692 default:
6693 return (EINVAL);
6694 }
6695
6696 kn->kn_hook = (caddr_t)vp;
6697
6698 v_addpollinfo(vp);
6699 if (vp->v_pollinfo == NULL)
6700 return (ENOMEM);
6701 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6702 vhold(vp);
6703 knlist_add(knl, kn, 0);
6704
6705 return (0);
6706 }
6707
6708 /*
6709 * Detach knote from vnode
6710 */
6711 static void
filt_vfsdetach(struct knote * kn)6712 filt_vfsdetach(struct knote *kn)
6713 {
6714 struct vnode *vp = (struct vnode *)kn->kn_hook;
6715
6716 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6717 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6718 vdrop(vp);
6719 }
6720
6721 /*ARGSUSED*/
6722 static int
filt_vfsread(struct knote * kn,long hint)6723 filt_vfsread(struct knote *kn, long hint)
6724 {
6725 struct vnode *vp = (struct vnode *)kn->kn_hook;
6726 off_t size;
6727 int res;
6728
6729 /*
6730 * filesystem is gone, so set the EOF flag and schedule
6731 * the knote for deletion.
6732 */
6733 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6734 VI_LOCK(vp);
6735 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6736 VI_UNLOCK(vp);
6737 return (1);
6738 }
6739
6740 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6741 return (0);
6742
6743 VI_LOCK(vp);
6744 kn->kn_data = size - kn->kn_fp->f_offset;
6745 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6746 VI_UNLOCK(vp);
6747 return (res);
6748 }
6749
6750 /*ARGSUSED*/
6751 static int
filt_vfswrite(struct knote * kn,long hint)6752 filt_vfswrite(struct knote *kn, long hint)
6753 {
6754 struct vnode *vp = (struct vnode *)kn->kn_hook;
6755
6756 VI_LOCK(vp);
6757
6758 /*
6759 * filesystem is gone, so set the EOF flag and schedule
6760 * the knote for deletion.
6761 */
6762 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6763 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6764
6765 kn->kn_data = 0;
6766 VI_UNLOCK(vp);
6767 return (1);
6768 }
6769
6770 static int
filt_vfsvnode(struct knote * kn,long hint)6771 filt_vfsvnode(struct knote *kn, long hint)
6772 {
6773 struct vnode *vp = (struct vnode *)kn->kn_hook;
6774 int res;
6775
6776 VI_LOCK(vp);
6777 if (kn->kn_sfflags & hint)
6778 kn->kn_fflags |= hint;
6779 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6780 kn->kn_flags |= EV_EOF;
6781 VI_UNLOCK(vp);
6782 return (1);
6783 }
6784 res = (kn->kn_fflags != 0);
6785 VI_UNLOCK(vp);
6786 return (res);
6787 }
6788
6789 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6790 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6791 {
6792 struct vattr va;
6793 struct vnode *vp;
6794 char *fullpath, *freepath;
6795 int error;
6796
6797 kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6798
6799 vp = kn->kn_fp->f_vnode;
6800 kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6801
6802 va.va_fsid = VNOVAL;
6803 vn_lock(vp, LK_SHARED | LK_RETRY);
6804 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6805 VOP_UNLOCK(vp);
6806 if (error != 0)
6807 return (error);
6808 kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6809 kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6810
6811 freepath = NULL;
6812 fullpath = "-";
6813 error = vn_fullpath(vp, &fullpath, &freepath);
6814 if (error == 0) {
6815 strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6816 sizeof(kin->knt_vnode.knt_vnode_fullpath));
6817 }
6818 if (freepath != NULL)
6819 free(freepath, M_TEMP);
6820
6821 return (0);
6822 }
6823
6824 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6825 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6826 {
6827 int error;
6828
6829 if (dp->d_reclen > ap->a_uio->uio_resid)
6830 return (ENAMETOOLONG);
6831 error = uiomove(dp, dp->d_reclen, ap->a_uio);
6832 if (error) {
6833 if (ap->a_ncookies != NULL) {
6834 if (ap->a_cookies != NULL)
6835 free(ap->a_cookies, M_TEMP);
6836 ap->a_cookies = NULL;
6837 *ap->a_ncookies = 0;
6838 }
6839 return (error);
6840 }
6841 if (ap->a_ncookies == NULL)
6842 return (0);
6843
6844 KASSERT(ap->a_cookies,
6845 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6846
6847 *ap->a_cookies = realloc(*ap->a_cookies,
6848 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6849 (*ap->a_cookies)[*ap->a_ncookies] = off;
6850 *ap->a_ncookies += 1;
6851 return (0);
6852 }
6853
6854 /*
6855 * The purpose of this routine is to remove granularity from accmode_t,
6856 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6857 * VADMIN and VAPPEND.
6858 *
6859 * If it returns 0, the caller is supposed to continue with the usual
6860 * access checks using 'accmode' as modified by this routine. If it
6861 * returns nonzero value, the caller is supposed to return that value
6862 * as errno.
6863 *
6864 * Note that after this routine runs, accmode may be zero.
6865 */
6866 int
vfs_unixify_accmode(accmode_t * accmode)6867 vfs_unixify_accmode(accmode_t *accmode)
6868 {
6869 /*
6870 * There is no way to specify explicit "deny" rule using
6871 * file mode or POSIX.1e ACLs.
6872 */
6873 if (*accmode & VEXPLICIT_DENY) {
6874 *accmode = 0;
6875 return (0);
6876 }
6877
6878 /*
6879 * None of these can be translated into usual access bits.
6880 * Also, the common case for NFSv4 ACLs is to not contain
6881 * either of these bits. Caller should check for VWRITE
6882 * on the containing directory instead.
6883 */
6884 if (*accmode & (VDELETE_CHILD | VDELETE))
6885 return (EPERM);
6886
6887 if (*accmode & VADMIN_PERMS) {
6888 *accmode &= ~VADMIN_PERMS;
6889 *accmode |= VADMIN;
6890 }
6891
6892 /*
6893 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6894 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6895 */
6896 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6897
6898 return (0);
6899 }
6900
6901 /*
6902 * Clear out a doomed vnode (if any) and replace it with a new one as long
6903 * as the fs is not being unmounted. Return the root vnode to the caller.
6904 */
6905 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6906 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6907 {
6908 struct vnode *vp;
6909 int error;
6910
6911 restart:
6912 if (mp->mnt_rootvnode != NULL) {
6913 MNT_ILOCK(mp);
6914 vp = mp->mnt_rootvnode;
6915 if (vp != NULL) {
6916 if (!VN_IS_DOOMED(vp)) {
6917 vrefact(vp);
6918 MNT_IUNLOCK(mp);
6919 error = vn_lock(vp, flags);
6920 if (error == 0) {
6921 *vpp = vp;
6922 return (0);
6923 }
6924 vrele(vp);
6925 goto restart;
6926 }
6927 /*
6928 * Clear the old one.
6929 */
6930 mp->mnt_rootvnode = NULL;
6931 }
6932 MNT_IUNLOCK(mp);
6933 if (vp != NULL) {
6934 vfs_op_barrier_wait(mp);
6935 vrele(vp);
6936 }
6937 }
6938 error = VFS_CACHEDROOT(mp, flags, vpp);
6939 if (error != 0)
6940 return (error);
6941 if (mp->mnt_vfs_ops == 0) {
6942 MNT_ILOCK(mp);
6943 if (mp->mnt_vfs_ops != 0) {
6944 MNT_IUNLOCK(mp);
6945 return (0);
6946 }
6947 if (mp->mnt_rootvnode == NULL) {
6948 vrefact(*vpp);
6949 mp->mnt_rootvnode = *vpp;
6950 } else {
6951 if (mp->mnt_rootvnode != *vpp) {
6952 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6953 panic("%s: mismatch between vnode returned "
6954 " by VFS_CACHEDROOT and the one cached "
6955 " (%p != %p)",
6956 __func__, *vpp, mp->mnt_rootvnode);
6957 }
6958 }
6959 }
6960 MNT_IUNLOCK(mp);
6961 }
6962 return (0);
6963 }
6964
6965 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6966 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6967 {
6968 struct mount_pcpu *mpcpu;
6969 struct vnode *vp;
6970 int error;
6971
6972 if (!vfs_op_thread_enter(mp, mpcpu))
6973 return (vfs_cache_root_fallback(mp, flags, vpp));
6974 vp = atomic_load_ptr(&mp->mnt_rootvnode);
6975 if (vp == NULL || VN_IS_DOOMED(vp)) {
6976 vfs_op_thread_exit(mp, mpcpu);
6977 return (vfs_cache_root_fallback(mp, flags, vpp));
6978 }
6979 vrefact(vp);
6980 vfs_op_thread_exit(mp, mpcpu);
6981 error = vn_lock(vp, flags);
6982 if (error != 0) {
6983 vrele(vp);
6984 return (vfs_cache_root_fallback(mp, flags, vpp));
6985 }
6986 *vpp = vp;
6987 return (0);
6988 }
6989
6990 struct vnode *
vfs_cache_root_clear(struct mount * mp)6991 vfs_cache_root_clear(struct mount *mp)
6992 {
6993 struct vnode *vp;
6994
6995 /*
6996 * ops > 0 guarantees there is nobody who can see this vnode
6997 */
6998 MPASS(mp->mnt_vfs_ops > 0);
6999 vp = mp->mnt_rootvnode;
7000 if (vp != NULL)
7001 vn_seqc_write_begin(vp);
7002 mp->mnt_rootvnode = NULL;
7003 return (vp);
7004 }
7005
7006 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)7007 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
7008 {
7009
7010 MPASS(mp->mnt_vfs_ops > 0);
7011 vrefact(vp);
7012 mp->mnt_rootvnode = vp;
7013 }
7014
7015 /*
7016 * These are helper functions for filesystems to traverse all
7017 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
7018 *
7019 * This interface replaces MNT_VNODE_FOREACH.
7020 */
7021
7022 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)7023 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
7024 {
7025 struct vnode *vp;
7026
7027 maybe_yield();
7028 MNT_ILOCK(mp);
7029 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7030 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7031 vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7032 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7033 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7034 continue;
7035 VI_LOCK(vp);
7036 if (VN_IS_DOOMED(vp)) {
7037 VI_UNLOCK(vp);
7038 continue;
7039 }
7040 break;
7041 }
7042 if (vp == NULL) {
7043 __mnt_vnode_markerfree_all(mvp, mp);
7044 /* MNT_IUNLOCK(mp); -- done in above function */
7045 mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7046 return (NULL);
7047 }
7048 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7049 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7050 MNT_IUNLOCK(mp);
7051 return (vp);
7052 }
7053
7054 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7055 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7056 {
7057 struct vnode *vp;
7058
7059 *mvp = vn_alloc_marker(mp);
7060 MNT_ILOCK(mp);
7061 MNT_REF(mp);
7062
7063 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7064 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7065 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7066 continue;
7067 VI_LOCK(vp);
7068 if (VN_IS_DOOMED(vp)) {
7069 VI_UNLOCK(vp);
7070 continue;
7071 }
7072 break;
7073 }
7074 if (vp == NULL) {
7075 MNT_REL(mp);
7076 MNT_IUNLOCK(mp);
7077 vn_free_marker(*mvp);
7078 *mvp = NULL;
7079 return (NULL);
7080 }
7081 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7082 MNT_IUNLOCK(mp);
7083 return (vp);
7084 }
7085
7086 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7087 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7088 {
7089
7090 if (*mvp == NULL) {
7091 MNT_IUNLOCK(mp);
7092 return;
7093 }
7094
7095 mtx_assert(MNT_MTX(mp), MA_OWNED);
7096
7097 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7098 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7099 MNT_REL(mp);
7100 MNT_IUNLOCK(mp);
7101 vn_free_marker(*mvp);
7102 *mvp = NULL;
7103 }
7104
7105 /*
7106 * These are helper functions for filesystems to traverse their
7107 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7108 */
7109 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7110 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7111 {
7112
7113 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7114
7115 MNT_ILOCK(mp);
7116 MNT_REL(mp);
7117 MNT_IUNLOCK(mp);
7118 vn_free_marker(*mvp);
7119 *mvp = NULL;
7120 }
7121
7122 /*
7123 * Relock the mp mount vnode list lock with the vp vnode interlock in the
7124 * conventional lock order during mnt_vnode_next_lazy iteration.
7125 *
7126 * On entry, the mount vnode list lock is held and the vnode interlock is not.
7127 * The list lock is dropped and reacquired. On success, both locks are held.
7128 * On failure, the mount vnode list lock is held but the vnode interlock is
7129 * not, and the procedure may have yielded.
7130 */
7131 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7132 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7133 struct vnode *vp)
7134 {
7135
7136 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7137 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7138 ("%s: bad marker", __func__));
7139 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7140 ("%s: inappropriate vnode", __func__));
7141 ASSERT_VI_UNLOCKED(vp, __func__);
7142 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7143
7144 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7145 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7146
7147 /*
7148 * Note we may be racing against vdrop which transitioned the hold
7149 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7150 * if we are the only user after we get the interlock we will just
7151 * vdrop.
7152 */
7153 vhold(vp);
7154 mtx_unlock(&mp->mnt_listmtx);
7155 VI_LOCK(vp);
7156 if (VN_IS_DOOMED(vp)) {
7157 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7158 goto out_lost;
7159 }
7160 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7161 /*
7162 * There is nothing to do if we are the last user.
7163 */
7164 if (!refcount_release_if_not_last(&vp->v_holdcnt))
7165 goto out_lost;
7166 mtx_lock(&mp->mnt_listmtx);
7167 return (true);
7168 out_lost:
7169 vdropl(vp);
7170 maybe_yield();
7171 mtx_lock(&mp->mnt_listmtx);
7172 return (false);
7173 }
7174
7175 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7176 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7177 void *cbarg)
7178 {
7179 struct vnode *vp;
7180
7181 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7182 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7183 restart:
7184 vp = TAILQ_NEXT(*mvp, v_lazylist);
7185 while (vp != NULL) {
7186 if (vp->v_type == VMARKER) {
7187 vp = TAILQ_NEXT(vp, v_lazylist);
7188 continue;
7189 }
7190 /*
7191 * See if we want to process the vnode. Note we may encounter a
7192 * long string of vnodes we don't care about and hog the list
7193 * as a result. Check for it and requeue the marker.
7194 */
7195 VNPASS(!VN_IS_DOOMED(vp), vp);
7196 if (!cb(vp, cbarg)) {
7197 if (!should_yield()) {
7198 vp = TAILQ_NEXT(vp, v_lazylist);
7199 continue;
7200 }
7201 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7202 v_lazylist);
7203 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7204 v_lazylist);
7205 mtx_unlock(&mp->mnt_listmtx);
7206 kern_yield(PRI_USER);
7207 mtx_lock(&mp->mnt_listmtx);
7208 goto restart;
7209 }
7210 /*
7211 * Try-lock because this is the wrong lock order.
7212 */
7213 if (!VI_TRYLOCK(vp) &&
7214 !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7215 goto restart;
7216 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7217 KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7218 ("alien vnode on the lazy list %p %p", vp, mp));
7219 VNPASS(vp->v_mount == mp, vp);
7220 VNPASS(!VN_IS_DOOMED(vp), vp);
7221 break;
7222 }
7223 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7224
7225 /* Check if we are done */
7226 if (vp == NULL) {
7227 mtx_unlock(&mp->mnt_listmtx);
7228 mnt_vnode_markerfree_lazy(mvp, mp);
7229 return (NULL);
7230 }
7231 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7232 mtx_unlock(&mp->mnt_listmtx);
7233 ASSERT_VI_LOCKED(vp, "lazy iter");
7234 return (vp);
7235 }
7236
7237 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7238 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7239 void *cbarg)
7240 {
7241
7242 maybe_yield();
7243 mtx_lock(&mp->mnt_listmtx);
7244 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7245 }
7246
7247 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7248 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7249 void *cbarg)
7250 {
7251 struct vnode *vp;
7252
7253 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7254 return (NULL);
7255
7256 *mvp = vn_alloc_marker(mp);
7257 MNT_ILOCK(mp);
7258 MNT_REF(mp);
7259 MNT_IUNLOCK(mp);
7260
7261 mtx_lock(&mp->mnt_listmtx);
7262 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7263 if (vp == NULL) {
7264 mtx_unlock(&mp->mnt_listmtx);
7265 mnt_vnode_markerfree_lazy(mvp, mp);
7266 return (NULL);
7267 }
7268 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7269 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7270 }
7271
7272 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7273 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7274 {
7275
7276 if (*mvp == NULL)
7277 return;
7278
7279 mtx_lock(&mp->mnt_listmtx);
7280 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7281 mtx_unlock(&mp->mnt_listmtx);
7282 mnt_vnode_markerfree_lazy(mvp, mp);
7283 }
7284
7285 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7286 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7287 {
7288
7289 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7290 cnp->cn_flags &= ~NOEXECCHECK;
7291 return (0);
7292 }
7293
7294 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7295 }
7296
7297 /*
7298 * Do not use this variant unless you have means other than the hold count
7299 * to prevent the vnode from getting freed.
7300 */
7301 void
vn_seqc_write_begin_locked(struct vnode * vp)7302 vn_seqc_write_begin_locked(struct vnode *vp)
7303 {
7304
7305 ASSERT_VI_LOCKED(vp, __func__);
7306 VNPASS(vp->v_holdcnt > 0, vp);
7307 VNPASS(vp->v_seqc_users >= 0, vp);
7308 vp->v_seqc_users++;
7309 if (vp->v_seqc_users == 1)
7310 seqc_sleepable_write_begin(&vp->v_seqc);
7311 }
7312
7313 void
vn_seqc_write_begin(struct vnode * vp)7314 vn_seqc_write_begin(struct vnode *vp)
7315 {
7316
7317 VI_LOCK(vp);
7318 vn_seqc_write_begin_locked(vp);
7319 VI_UNLOCK(vp);
7320 }
7321
7322 void
vn_seqc_write_end_locked(struct vnode * vp)7323 vn_seqc_write_end_locked(struct vnode *vp)
7324 {
7325
7326 ASSERT_VI_LOCKED(vp, __func__);
7327 VNPASS(vp->v_seqc_users > 0, vp);
7328 vp->v_seqc_users--;
7329 if (vp->v_seqc_users == 0)
7330 seqc_sleepable_write_end(&vp->v_seqc);
7331 }
7332
7333 void
vn_seqc_write_end(struct vnode * vp)7334 vn_seqc_write_end(struct vnode *vp)
7335 {
7336
7337 VI_LOCK(vp);
7338 vn_seqc_write_end_locked(vp);
7339 VI_UNLOCK(vp);
7340 }
7341
7342 /*
7343 * Special case handling for allocating and freeing vnodes.
7344 *
7345 * The counter remains unchanged on free so that a doomed vnode will
7346 * keep testing as in modify as long as it is accessible with SMR.
7347 */
7348 static void
vn_seqc_init(struct vnode * vp)7349 vn_seqc_init(struct vnode *vp)
7350 {
7351
7352 vp->v_seqc = 0;
7353 vp->v_seqc_users = 0;
7354 }
7355
7356 static void
vn_seqc_write_end_free(struct vnode * vp)7357 vn_seqc_write_end_free(struct vnode *vp)
7358 {
7359
7360 VNPASS(seqc_in_modify(vp->v_seqc), vp);
7361 VNPASS(vp->v_seqc_users == 1, vp);
7362 }
7363
7364 void
vn_irflag_set_locked(struct vnode * vp,short toset)7365 vn_irflag_set_locked(struct vnode *vp, short toset)
7366 {
7367 short flags;
7368
7369 ASSERT_VI_LOCKED(vp, __func__);
7370 flags = vn_irflag_read(vp);
7371 VNASSERT((flags & toset) == 0, vp,
7372 ("%s: some of the passed flags already set (have %d, passed %d)\n",
7373 __func__, flags, toset));
7374 atomic_store_short(&vp->v_irflag, flags | toset);
7375 }
7376
7377 void
vn_irflag_set(struct vnode * vp,short toset)7378 vn_irflag_set(struct vnode *vp, short toset)
7379 {
7380
7381 VI_LOCK(vp);
7382 vn_irflag_set_locked(vp, toset);
7383 VI_UNLOCK(vp);
7384 }
7385
7386 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7387 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7388 {
7389 short flags;
7390
7391 ASSERT_VI_LOCKED(vp, __func__);
7392 flags = vn_irflag_read(vp);
7393 atomic_store_short(&vp->v_irflag, flags | toset);
7394 }
7395
7396 void
vn_irflag_set_cond(struct vnode * vp,short toset)7397 vn_irflag_set_cond(struct vnode *vp, short toset)
7398 {
7399
7400 VI_LOCK(vp);
7401 vn_irflag_set_cond_locked(vp, toset);
7402 VI_UNLOCK(vp);
7403 }
7404
7405 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7406 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7407 {
7408 short flags;
7409
7410 ASSERT_VI_LOCKED(vp, __func__);
7411 flags = vn_irflag_read(vp);
7412 VNASSERT((flags & tounset) == tounset, vp,
7413 ("%s: some of the passed flags not set (have %d, passed %d)\n",
7414 __func__, flags, tounset));
7415 atomic_store_short(&vp->v_irflag, flags & ~tounset);
7416 }
7417
7418 void
vn_irflag_unset(struct vnode * vp,short tounset)7419 vn_irflag_unset(struct vnode *vp, short tounset)
7420 {
7421
7422 VI_LOCK(vp);
7423 vn_irflag_unset_locked(vp, tounset);
7424 VI_UNLOCK(vp);
7425 }
7426
7427 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7428 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7429 {
7430 struct vattr vattr;
7431 int error;
7432
7433 ASSERT_VOP_LOCKED(vp, __func__);
7434 error = VOP_GETATTR(vp, &vattr, cred);
7435 if (__predict_true(error == 0)) {
7436 if (vattr.va_size <= OFF_MAX)
7437 *size = vattr.va_size;
7438 else
7439 error = EFBIG;
7440 }
7441 return (error);
7442 }
7443
7444 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7445 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7446 {
7447 int error;
7448
7449 VOP_LOCK(vp, LK_SHARED);
7450 error = vn_getsize_locked(vp, size, cred);
7451 VOP_UNLOCK(vp);
7452 return (error);
7453 }
7454
7455 #ifdef INVARIANTS
7456 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7457 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7458 {
7459
7460 switch (vp->v_state) {
7461 case VSTATE_UNINITIALIZED:
7462 switch (state) {
7463 case VSTATE_CONSTRUCTED:
7464 case VSTATE_DESTROYING:
7465 return;
7466 default:
7467 break;
7468 }
7469 break;
7470 case VSTATE_CONSTRUCTED:
7471 ASSERT_VOP_ELOCKED(vp, __func__);
7472 switch (state) {
7473 case VSTATE_DESTROYING:
7474 return;
7475 default:
7476 break;
7477 }
7478 break;
7479 case VSTATE_DESTROYING:
7480 ASSERT_VOP_ELOCKED(vp, __func__);
7481 switch (state) {
7482 case VSTATE_DEAD:
7483 return;
7484 default:
7485 break;
7486 }
7487 break;
7488 case VSTATE_DEAD:
7489 switch (state) {
7490 case VSTATE_UNINITIALIZED:
7491 return;
7492 default:
7493 break;
7494 }
7495 break;
7496 }
7497
7498 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7499 panic("invalid state transition %d -> %d\n", vp->v_state, state);
7500 }
7501 #endif
7502