1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
10 * These are all the functions necessary to implement POSIX clocks & timers
11 */
12 #include <linux/compat.h>
13 #include <linux/compiler.h>
14 #include <linux/init.h>
15 #include <linux/jhash.h>
16 #include <linux/interrupt.h>
17 #include <linux/list.h>
18 #include <linux/memblock.h>
19 #include <linux/nospec.h>
20 #include <linux/posix-clock.h>
21 #include <linux/posix-timers.h>
22 #include <linux/prctl.h>
23 #include <linux/sched/task.h>
24 #include <linux/slab.h>
25 #include <linux/syscalls.h>
26 #include <linux/time.h>
27 #include <linux/time_namespace.h>
28 #include <linux/uaccess.h>
29
30 #include "timekeeping.h"
31 #include "posix-timers.h"
32
33 /*
34 * Timers are managed in a hash table for lockless lookup. The hash key is
35 * constructed from current::signal and the timer ID and the timer is
36 * matched against current::signal and the timer ID when walking the hash
37 * bucket list.
38 *
39 * This allows checkpoint/restore to reconstruct the exact timer IDs for
40 * a process.
41 */
42 struct timer_hash_bucket {
43 spinlock_t lock;
44 struct hlist_head head;
45 };
46
47 static struct {
48 struct timer_hash_bucket *buckets;
49 unsigned long mask;
50 struct kmem_cache *cache;
51 } __timer_data __ro_after_init __aligned(4*sizeof(long));
52
53 #define timer_buckets (__timer_data.buckets)
54 #define timer_hashmask (__timer_data.mask)
55 #define posix_timers_cache (__timer_data.cache)
56
57 static const struct k_clock * const posix_clocks[];
58 static const struct k_clock *clockid_to_kclock(const clockid_t id);
59 static const struct k_clock clock_realtime, clock_monotonic;
60
61 #define TIMER_ANY_ID INT_MIN
62
63 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
64 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
65 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
66 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
67 #endif
68
69 static struct k_itimer *__lock_timer(timer_t timer_id);
70
71 #define lock_timer(tid) \
72 ({ struct k_itimer *__timr; \
73 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid)); \
74 __timr; \
75 })
76
unlock_timer(struct k_itimer * timr)77 static inline void unlock_timer(struct k_itimer *timr)
78 {
79 if (likely((timr)))
80 spin_unlock_irq(&timr->it_lock);
81 }
82
83 #define scoped_timer_get_or_fail(_id) \
84 scoped_cond_guard(lock_timer, return -EINVAL, _id)
85
86 #define scoped_timer (scope)
87
88 DEFINE_CLASS(lock_timer, struct k_itimer *, unlock_timer(_T), __lock_timer(id), timer_t id);
89 DEFINE_CLASS_IS_COND_GUARD(lock_timer);
90
hash_bucket(struct signal_struct * sig,unsigned int nr)91 static struct timer_hash_bucket *hash_bucket(struct signal_struct *sig, unsigned int nr)
92 {
93 return &timer_buckets[jhash2((u32 *)&sig, sizeof(sig) / sizeof(u32), nr) & timer_hashmask];
94 }
95
posix_timer_by_id(timer_t id)96 static struct k_itimer *posix_timer_by_id(timer_t id)
97 {
98 struct signal_struct *sig = current->signal;
99 struct timer_hash_bucket *bucket = hash_bucket(sig, id);
100 struct k_itimer *timer;
101
102 hlist_for_each_entry_rcu(timer, &bucket->head, t_hash) {
103 /* timer->it_signal can be set concurrently */
104 if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
105 return timer;
106 }
107 return NULL;
108 }
109
posix_sig_owner(const struct k_itimer * timer)110 static inline struct signal_struct *posix_sig_owner(const struct k_itimer *timer)
111 {
112 unsigned long val = (unsigned long)timer->it_signal;
113
114 /*
115 * Mask out bit 0, which acts as invalid marker to prevent
116 * posix_timer_by_id() detecting it as valid.
117 */
118 return (struct signal_struct *)(val & ~1UL);
119 }
120
posix_timer_hashed(struct timer_hash_bucket * bucket,struct signal_struct * sig,timer_t id)121 static bool posix_timer_hashed(struct timer_hash_bucket *bucket, struct signal_struct *sig,
122 timer_t id)
123 {
124 struct hlist_head *head = &bucket->head;
125 struct k_itimer *timer;
126
127 hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&bucket->lock)) {
128 if ((posix_sig_owner(timer) == sig) && (timer->it_id == id))
129 return true;
130 }
131 return false;
132 }
133
posix_timer_add_at(struct k_itimer * timer,struct signal_struct * sig,unsigned int id)134 static bool posix_timer_add_at(struct k_itimer *timer, struct signal_struct *sig, unsigned int id)
135 {
136 struct timer_hash_bucket *bucket = hash_bucket(sig, id);
137
138 scoped_guard (spinlock, &bucket->lock) {
139 /*
140 * Validate under the lock as this could have raced against
141 * another thread ending up with the same ID, which is
142 * highly unlikely, but possible.
143 */
144 if (!posix_timer_hashed(bucket, sig, id)) {
145 /*
146 * Set the timer ID and the signal pointer to make
147 * it identifiable in the hash table. The signal
148 * pointer has bit 0 set to indicate that it is not
149 * yet fully initialized. posix_timer_hashed()
150 * masks this bit out, but the syscall lookup fails
151 * to match due to it being set. This guarantees
152 * that there can't be duplicate timer IDs handed
153 * out.
154 */
155 timer->it_id = (timer_t)id;
156 timer->it_signal = (struct signal_struct *)((unsigned long)sig | 1UL);
157 hlist_add_head_rcu(&timer->t_hash, &bucket->head);
158 return true;
159 }
160 }
161 return false;
162 }
163
posix_timer_add(struct k_itimer * timer,int req_id)164 static int posix_timer_add(struct k_itimer *timer, int req_id)
165 {
166 struct signal_struct *sig = current->signal;
167
168 if (unlikely(req_id != TIMER_ANY_ID)) {
169 if (!posix_timer_add_at(timer, sig, req_id))
170 return -EBUSY;
171
172 /*
173 * Move the ID counter past the requested ID, so that after
174 * switching back to normal mode the IDs are outside of the
175 * exact allocated region. That avoids ID collisions on the
176 * next regular timer_create() invocations.
177 */
178 atomic_set(&sig->next_posix_timer_id, req_id + 1);
179 return req_id;
180 }
181
182 for (unsigned int cnt = 0; cnt <= INT_MAX; cnt++) {
183 /* Get the next timer ID and clamp it to positive space */
184 unsigned int id = atomic_fetch_inc(&sig->next_posix_timer_id) & INT_MAX;
185
186 if (posix_timer_add_at(timer, sig, id))
187 return id;
188 cond_resched();
189 }
190 /* POSIX return code when no timer ID could be allocated */
191 return -EAGAIN;
192 }
193
posix_get_realtime_timespec(clockid_t which_clock,struct timespec64 * tp)194 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
195 {
196 ktime_get_real_ts64(tp);
197 return 0;
198 }
199
posix_get_realtime_ktime(clockid_t which_clock)200 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
201 {
202 return ktime_get_real();
203 }
204
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec64 * tp)205 static int posix_clock_realtime_set(const clockid_t which_clock,
206 const struct timespec64 *tp)
207 {
208 return do_sys_settimeofday64(tp, NULL);
209 }
210
posix_clock_realtime_adj(const clockid_t which_clock,struct __kernel_timex * t)211 static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct __kernel_timex *t)
213 {
214 return do_adjtimex(t);
215 }
216
posix_get_monotonic_timespec(clockid_t which_clock,struct timespec64 * tp)217 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
218 {
219 ktime_get_ts64(tp);
220 timens_add_monotonic(tp);
221 return 0;
222 }
223
posix_get_monotonic_ktime(clockid_t which_clock)224 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
225 {
226 return ktime_get();
227 }
228
posix_get_monotonic_raw(clockid_t which_clock,struct timespec64 * tp)229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230 {
231 ktime_get_raw_ts64(tp);
232 timens_add_monotonic(tp);
233 return 0;
234 }
235
posix_get_realtime_coarse(clockid_t which_clock,struct timespec64 * tp)236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237 {
238 ktime_get_coarse_real_ts64(tp);
239 return 0;
240 }
241
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec64 * tp)242 static int posix_get_monotonic_coarse(clockid_t which_clock,
243 struct timespec64 *tp)
244 {
245 ktime_get_coarse_ts64(tp);
246 timens_add_monotonic(tp);
247 return 0;
248 }
249
posix_get_coarse_res(const clockid_t which_clock,struct timespec64 * tp)250 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
251 {
252 *tp = ktime_to_timespec64(KTIME_LOW_RES);
253 return 0;
254 }
255
posix_get_boottime_timespec(const clockid_t which_clock,struct timespec64 * tp)256 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
257 {
258 ktime_get_boottime_ts64(tp);
259 timens_add_boottime(tp);
260 return 0;
261 }
262
posix_get_boottime_ktime(const clockid_t which_clock)263 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
264 {
265 return ktime_get_boottime();
266 }
267
posix_get_tai_timespec(clockid_t which_clock,struct timespec64 * tp)268 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
269 {
270 ktime_get_clocktai_ts64(tp);
271 return 0;
272 }
273
posix_get_tai_ktime(clockid_t which_clock)274 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
275 {
276 return ktime_get_clocktai();
277 }
278
posix_get_hrtimer_res(clockid_t which_clock,struct timespec64 * tp)279 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
280 {
281 tp->tv_sec = 0;
282 tp->tv_nsec = hrtimer_resolution;
283 return 0;
284 }
285
286 /*
287 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
288 * are of type int. Clamp the overrun value to INT_MAX
289 */
timer_overrun_to_int(struct k_itimer * timr)290 static inline int timer_overrun_to_int(struct k_itimer *timr)
291 {
292 if (timr->it_overrun_last > (s64)INT_MAX)
293 return INT_MAX;
294
295 return (int)timr->it_overrun_last;
296 }
297
common_hrtimer_rearm(struct k_itimer * timr)298 static void common_hrtimer_rearm(struct k_itimer *timr)
299 {
300 struct hrtimer *timer = &timr->it.real.timer;
301
302 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
303 timr->it_interval);
304 hrtimer_restart(timer);
305 }
306
__posixtimer_deliver_signal(struct kernel_siginfo * info,struct k_itimer * timr)307 static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
308 {
309 guard(spinlock)(&timr->it_lock);
310
311 /*
312 * Check if the timer is still alive or whether it got modified
313 * since the signal was queued. In either case, don't rearm and
314 * drop the signal.
315 */
316 if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!posixtimer_valid(timr)))
317 return false;
318
319 if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
320 return true;
321
322 timr->kclock->timer_rearm(timr);
323 timr->it_status = POSIX_TIMER_ARMED;
324 timr->it_overrun_last = timr->it_overrun;
325 timr->it_overrun = -1LL;
326 ++timr->it_signal_seq;
327 info->si_overrun = timer_overrun_to_int(timr);
328 return true;
329 }
330
331 /*
332 * This function is called from the signal delivery code. It decides
333 * whether the signal should be dropped and rearms interval timers. The
334 * timer can be unconditionally accessed as there is a reference held on
335 * it.
336 */
posixtimer_deliver_signal(struct kernel_siginfo * info,struct sigqueue * timer_sigq)337 bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
338 {
339 struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
340 bool ret;
341
342 /*
343 * Release siglock to ensure proper locking order versus
344 * timr::it_lock. Keep interrupts disabled.
345 */
346 spin_unlock(¤t->sighand->siglock);
347
348 ret = __posixtimer_deliver_signal(info, timr);
349
350 /* Drop the reference which was acquired when the signal was queued */
351 posixtimer_putref(timr);
352
353 spin_lock(¤t->sighand->siglock);
354 return ret;
355 }
356
posix_timer_queue_signal(struct k_itimer * timr)357 void posix_timer_queue_signal(struct k_itimer *timr)
358 {
359 lockdep_assert_held(&timr->it_lock);
360
361 if (!posixtimer_valid(timr))
362 return;
363
364 timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED;
365 posixtimer_send_sigqueue(timr);
366 }
367
368 /*
369 * This function gets called when a POSIX.1b interval timer expires from
370 * the HRTIMER interrupt (soft interrupt on RT kernels).
371 *
372 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
373 * based timers.
374 */
posix_timer_fn(struct hrtimer * timer)375 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
376 {
377 struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
378
379 guard(spinlock_irqsave)(&timr->it_lock);
380 posix_timer_queue_signal(timr);
381 return HRTIMER_NORESTART;
382 }
383
posixtimer_create_prctl(unsigned long ctrl)384 long posixtimer_create_prctl(unsigned long ctrl)
385 {
386 switch (ctrl) {
387 case PR_TIMER_CREATE_RESTORE_IDS_OFF:
388 current->signal->timer_create_restore_ids = 0;
389 return 0;
390 case PR_TIMER_CREATE_RESTORE_IDS_ON:
391 current->signal->timer_create_restore_ids = 1;
392 return 0;
393 case PR_TIMER_CREATE_RESTORE_IDS_GET:
394 return current->signal->timer_create_restore_ids;
395 }
396 return -EINVAL;
397 }
398
good_sigevent(sigevent_t * event)399 static struct pid *good_sigevent(sigevent_t * event)
400 {
401 struct pid *pid = task_tgid(current);
402 struct task_struct *rtn;
403
404 switch (event->sigev_notify) {
405 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
406 pid = find_vpid(event->sigev_notify_thread_id);
407 rtn = pid_task(pid, PIDTYPE_PID);
408 if (!rtn || !same_thread_group(rtn, current))
409 return NULL;
410 fallthrough;
411 case SIGEV_SIGNAL:
412 case SIGEV_THREAD:
413 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
414 return NULL;
415 fallthrough;
416 case SIGEV_NONE:
417 return pid;
418 default:
419 return NULL;
420 }
421 }
422
alloc_posix_timer(void)423 static struct k_itimer *alloc_posix_timer(void)
424 {
425 struct k_itimer *tmr;
426
427 if (unlikely(!posix_timers_cache))
428 return NULL;
429
430 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
431 if (!tmr)
432 return tmr;
433
434 if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
435 kmem_cache_free(posix_timers_cache, tmr);
436 return NULL;
437 }
438 rcuref_init(&tmr->rcuref, 1);
439 return tmr;
440 }
441
posixtimer_free_timer(struct k_itimer * tmr)442 void posixtimer_free_timer(struct k_itimer *tmr)
443 {
444 put_pid(tmr->it_pid);
445 if (tmr->sigq.ucounts)
446 dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
447 kfree_rcu(tmr, rcu);
448 }
449
posix_timer_unhash_and_free(struct k_itimer * tmr)450 static void posix_timer_unhash_and_free(struct k_itimer *tmr)
451 {
452 struct timer_hash_bucket *bucket = hash_bucket(posix_sig_owner(tmr), tmr->it_id);
453
454 scoped_guard (spinlock, &bucket->lock)
455 hlist_del_rcu(&tmr->t_hash);
456 posixtimer_putref(tmr);
457 }
458
common_timer_create(struct k_itimer * new_timer)459 static int common_timer_create(struct k_itimer *new_timer)
460 {
461 hrtimer_setup(&new_timer->it.real.timer, posix_timer_fn, new_timer->it_clock, 0);
462 return 0;
463 }
464
465 /* Create a POSIX.1b interval timer. */
do_timer_create(clockid_t which_clock,struct sigevent * event,timer_t __user * created_timer_id)466 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
467 timer_t __user *created_timer_id)
468 {
469 const struct k_clock *kc = clockid_to_kclock(which_clock);
470 timer_t req_id = TIMER_ANY_ID;
471 struct k_itimer *new_timer;
472 int error, new_timer_id;
473
474 if (!kc)
475 return -EINVAL;
476 if (!kc->timer_create)
477 return -EOPNOTSUPP;
478
479 new_timer = alloc_posix_timer();
480 if (unlikely(!new_timer))
481 return -EAGAIN;
482
483 spin_lock_init(&new_timer->it_lock);
484
485 /* Special case for CRIU to restore timers with a given timer ID. */
486 if (unlikely(current->signal->timer_create_restore_ids)) {
487 if (copy_from_user(&req_id, created_timer_id, sizeof(req_id)))
488 return -EFAULT;
489 /* Valid IDs are 0..INT_MAX */
490 if ((unsigned int)req_id > INT_MAX)
491 return -EINVAL;
492 }
493
494 /*
495 * Add the timer to the hash table. The timer is not yet valid
496 * after insertion, but has a unique ID allocated.
497 */
498 new_timer_id = posix_timer_add(new_timer, req_id);
499 if (new_timer_id < 0) {
500 posixtimer_free_timer(new_timer);
501 return new_timer_id;
502 }
503
504 new_timer->it_clock = which_clock;
505 new_timer->kclock = kc;
506 new_timer->it_overrun = -1LL;
507
508 if (event) {
509 scoped_guard (rcu)
510 new_timer->it_pid = get_pid(good_sigevent(event));
511 if (!new_timer->it_pid) {
512 error = -EINVAL;
513 goto out;
514 }
515 new_timer->it_sigev_notify = event->sigev_notify;
516 new_timer->sigq.info.si_signo = event->sigev_signo;
517 new_timer->sigq.info.si_value = event->sigev_value;
518 } else {
519 new_timer->it_sigev_notify = SIGEV_SIGNAL;
520 new_timer->sigq.info.si_signo = SIGALRM;
521 new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
522 new_timer->it_pid = get_pid(task_tgid(current));
523 }
524
525 if (new_timer->it_sigev_notify & SIGEV_THREAD_ID)
526 new_timer->it_pid_type = PIDTYPE_PID;
527 else
528 new_timer->it_pid_type = PIDTYPE_TGID;
529
530 new_timer->sigq.info.si_tid = new_timer->it_id;
531 new_timer->sigq.info.si_code = SI_TIMER;
532
533 if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
534 error = -EFAULT;
535 goto out;
536 }
537 /*
538 * After succesful copy out, the timer ID is visible to user space
539 * now but not yet valid because new_timer::signal low order bit is 1.
540 *
541 * Complete the initialization with the clock specific create
542 * callback.
543 */
544 error = kc->timer_create(new_timer);
545 if (error)
546 goto out;
547
548 /*
549 * timer::it_lock ensures that __lock_timer() observes a fully
550 * initialized timer when it observes a valid timer::it_signal.
551 *
552 * sighand::siglock is required to protect signal::posix_timers.
553 */
554 scoped_guard (spinlock_irq, &new_timer->it_lock) {
555 guard(spinlock)(¤t->sighand->siglock);
556 /*
557 * new_timer::it_signal contains the signal pointer with
558 * bit 0 set, which makes it invalid for syscall operations.
559 * Store the unmodified signal pointer to make it valid.
560 */
561 WRITE_ONCE(new_timer->it_signal, current->signal);
562 hlist_add_head_rcu(&new_timer->list, ¤t->signal->posix_timers);
563 }
564 /*
565 * After unlocking @new_timer is subject to concurrent removal and
566 * cannot be touched anymore
567 */
568 return 0;
569 out:
570 posix_timer_unhash_and_free(new_timer);
571 return error;
572 }
573
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)574 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
575 struct sigevent __user *, timer_event_spec,
576 timer_t __user *, created_timer_id)
577 {
578 if (timer_event_spec) {
579 sigevent_t event;
580
581 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
582 return -EFAULT;
583 return do_timer_create(which_clock, &event, created_timer_id);
584 }
585 return do_timer_create(which_clock, NULL, created_timer_id);
586 }
587
588 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create,clockid_t,which_clock,struct compat_sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)589 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
590 struct compat_sigevent __user *, timer_event_spec,
591 timer_t __user *, created_timer_id)
592 {
593 if (timer_event_spec) {
594 sigevent_t event;
595
596 if (get_compat_sigevent(&event, timer_event_spec))
597 return -EFAULT;
598 return do_timer_create(which_clock, &event, created_timer_id);
599 }
600 return do_timer_create(which_clock, NULL, created_timer_id);
601 }
602 #endif
603
__lock_timer(timer_t timer_id)604 static struct k_itimer *__lock_timer(timer_t timer_id)
605 {
606 struct k_itimer *timr;
607
608 /*
609 * timer_t could be any type >= int and we want to make sure any
610 * @timer_id outside positive int range fails lookup.
611 */
612 if ((unsigned long long)timer_id > INT_MAX)
613 return NULL;
614
615 /*
616 * The hash lookup and the timers are RCU protected.
617 *
618 * Timers are added to the hash in invalid state where
619 * timr::it_signal is marked invalid. timer::it_signal is only set
620 * after the rest of the initialization succeeded.
621 *
622 * Timer destruction happens in steps:
623 * 1) Set timr::it_signal marked invalid with timr::it_lock held
624 * 2) Release timr::it_lock
625 * 3) Remove from the hash under hash_lock
626 * 4) Put the reference count.
627 *
628 * The reference count might not drop to zero if timr::sigq is
629 * queued. In that case the signal delivery or flush will put the
630 * last reference count.
631 *
632 * When the reference count reaches zero, the timer is scheduled
633 * for RCU removal after the grace period.
634 *
635 * Holding rcu_read_lock() across the lookup ensures that
636 * the timer cannot be freed.
637 *
638 * The lookup validates locklessly that timr::it_signal ==
639 * current::it_signal and timr::it_id == @timer_id. timr::it_id
640 * can't change, but timr::it_signal can become invalid during
641 * destruction, which makes the locked check fail.
642 */
643 guard(rcu)();
644 timr = posix_timer_by_id(timer_id);
645 if (timr) {
646 spin_lock_irq(&timr->it_lock);
647 /*
648 * Validate under timr::it_lock that timr::it_signal is
649 * still valid. Pairs with #1 above.
650 */
651 if (timr->it_signal == current->signal)
652 return timr;
653 spin_unlock_irq(&timr->it_lock);
654 }
655 return NULL;
656 }
657
common_hrtimer_remaining(struct k_itimer * timr,ktime_t now)658 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
659 {
660 struct hrtimer *timer = &timr->it.real.timer;
661
662 return __hrtimer_expires_remaining_adjusted(timer, now);
663 }
664
common_hrtimer_forward(struct k_itimer * timr,ktime_t now)665 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
666 {
667 struct hrtimer *timer = &timr->it.real.timer;
668
669 return hrtimer_forward(timer, now, timr->it_interval);
670 }
671
672 /*
673 * Get the time remaining on a POSIX.1b interval timer.
674 *
675 * Two issues to handle here:
676 *
677 * 1) The timer has a requeue pending. The return value must appear as
678 * if the timer has been requeued right now.
679 *
680 * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued
681 * into the hrtimer queue and therefore never expired. Emulate expiry
682 * here taking #1 into account.
683 */
common_timer_get(struct k_itimer * timr,struct itimerspec64 * cur_setting)684 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
685 {
686 const struct k_clock *kc = timr->kclock;
687 ktime_t now, remaining, iv;
688 bool sig_none;
689
690 sig_none = timr->it_sigev_notify == SIGEV_NONE;
691 iv = timr->it_interval;
692
693 /* interval timer ? */
694 if (iv) {
695 cur_setting->it_interval = ktime_to_timespec64(iv);
696 } else if (timr->it_status == POSIX_TIMER_DISARMED) {
697 /*
698 * SIGEV_NONE oneshot timers are never queued and therefore
699 * timr->it_status is always DISARMED. The check below
700 * vs. remaining time will handle this case.
701 *
702 * For all other timers there is nothing to update here, so
703 * return.
704 */
705 if (!sig_none)
706 return;
707 }
708
709 now = kc->clock_get_ktime(timr->it_clock);
710
711 /*
712 * If this is an interval timer and either has requeue pending or
713 * is a SIGEV_NONE timer move the expiry time forward by intervals,
714 * so expiry is > now.
715 */
716 if (iv && timr->it_status != POSIX_TIMER_ARMED)
717 timr->it_overrun += kc->timer_forward(timr, now);
718
719 remaining = kc->timer_remaining(timr, now);
720 /*
721 * As @now is retrieved before a possible timer_forward() and
722 * cannot be reevaluated by the compiler @remaining is based on the
723 * same @now value. Therefore @remaining is consistent vs. @now.
724 *
725 * Consequently all interval timers, i.e. @iv > 0, cannot have a
726 * remaining time <= 0 because timer_forward() guarantees to move
727 * them forward so that the next timer expiry is > @now.
728 */
729 if (remaining <= 0) {
730 /*
731 * A single shot SIGEV_NONE timer must return 0, when it is
732 * expired! Timers which have a real signal delivery mode
733 * must return a remaining time greater than 0 because the
734 * signal has not yet been delivered.
735 */
736 if (!sig_none)
737 cur_setting->it_value.tv_nsec = 1;
738 } else {
739 cur_setting->it_value = ktime_to_timespec64(remaining);
740 }
741 }
742
do_timer_gettime(timer_t timer_id,struct itimerspec64 * setting)743 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
744 {
745 memset(setting, 0, sizeof(*setting));
746 scoped_timer_get_or_fail(timer_id)
747 scoped_timer->kclock->timer_get(scoped_timer, setting);
748 return 0;
749 }
750
751 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct __kernel_itimerspec __user *,setting)752 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
753 struct __kernel_itimerspec __user *, setting)
754 {
755 struct itimerspec64 cur_setting;
756
757 int ret = do_timer_gettime(timer_id, &cur_setting);
758 if (!ret) {
759 if (put_itimerspec64(&cur_setting, setting))
760 ret = -EFAULT;
761 }
762 return ret;
763 }
764
765 #ifdef CONFIG_COMPAT_32BIT_TIME
766
SYSCALL_DEFINE2(timer_gettime32,timer_t,timer_id,struct old_itimerspec32 __user *,setting)767 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
768 struct old_itimerspec32 __user *, setting)
769 {
770 struct itimerspec64 cur_setting;
771
772 int ret = do_timer_gettime(timer_id, &cur_setting);
773 if (!ret) {
774 if (put_old_itimerspec32(&cur_setting, setting))
775 ret = -EFAULT;
776 }
777 return ret;
778 }
779
780 #endif
781
782 /**
783 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
784 * @timer_id: The timer ID which identifies the timer
785 *
786 * The "overrun count" of a timer is one plus the number of expiration
787 * intervals which have elapsed between the first expiry, which queues the
788 * signal and the actual signal delivery. On signal delivery the "overrun
789 * count" is calculated and cached, so it can be returned directly here.
790 *
791 * As this is relative to the last queued signal the returned overrun count
792 * is meaningless outside of the signal delivery path and even there it
793 * does not accurately reflect the current state when user space evaluates
794 * it.
795 *
796 * Returns:
797 * -EINVAL @timer_id is invalid
798 * 1..INT_MAX The number of overruns related to the last delivered signal
799 */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)800 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
801 {
802 scoped_timer_get_or_fail(timer_id)
803 return timer_overrun_to_int(scoped_timer);
804 }
805
common_hrtimer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)806 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
807 bool absolute, bool sigev_none)
808 {
809 struct hrtimer *timer = &timr->it.real.timer;
810 enum hrtimer_mode mode;
811
812 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
813 /*
814 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
815 * clock modifications, so they become CLOCK_MONOTONIC based under the
816 * hood. See hrtimer_setup(). Update timr->kclock, so the generic
817 * functions which use timr->kclock->clock_get_*() work.
818 *
819 * Note: it_clock stays unmodified, because the next timer_set() might
820 * use ABSTIME, so it needs to switch back.
821 */
822 if (timr->it_clock == CLOCK_REALTIME)
823 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
824
825 hrtimer_setup(&timr->it.real.timer, posix_timer_fn, timr->it_clock, mode);
826
827 if (!absolute)
828 expires = ktime_add_safe(expires, timer->base->get_time());
829 hrtimer_set_expires(timer, expires);
830
831 if (!sigev_none)
832 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
833 }
834
common_hrtimer_try_to_cancel(struct k_itimer * timr)835 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
836 {
837 return hrtimer_try_to_cancel(&timr->it.real.timer);
838 }
839
common_timer_wait_running(struct k_itimer * timer)840 static void common_timer_wait_running(struct k_itimer *timer)
841 {
842 hrtimer_cancel_wait_running(&timer->it.real.timer);
843 }
844
845 /*
846 * On PREEMPT_RT this prevents priority inversion and a potential livelock
847 * against the ksoftirqd thread in case that ksoftirqd gets preempted while
848 * executing a hrtimer callback.
849 *
850 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
851 * just results in a cpu_relax().
852 *
853 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
854 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
855 * prevents spinning on an eventually scheduled out task and a livelock
856 * when the task which tries to delete or disarm the timer has preempted
857 * the task which runs the expiry in task work context.
858 */
timer_wait_running(struct k_itimer * timer)859 static void timer_wait_running(struct k_itimer *timer)
860 {
861 /*
862 * kc->timer_wait_running() might drop RCU lock. So @timer
863 * cannot be touched anymore after the function returns!
864 */
865 timer->kclock->timer_wait_running(timer);
866 }
867
868 /*
869 * Set up the new interval and reset the signal delivery data
870 */
posix_timer_set_common(struct k_itimer * timer,struct itimerspec64 * new_setting)871 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
872 {
873 if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
874 timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
875 else
876 timer->it_interval = 0;
877
878 /* Reset overrun accounting */
879 timer->it_overrun_last = 0;
880 timer->it_overrun = -1LL;
881 }
882
883 /* Set a POSIX.1b interval timer. */
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec64 * new_setting,struct itimerspec64 * old_setting)884 int common_timer_set(struct k_itimer *timr, int flags,
885 struct itimerspec64 *new_setting,
886 struct itimerspec64 *old_setting)
887 {
888 const struct k_clock *kc = timr->kclock;
889 bool sigev_none;
890 ktime_t expires;
891
892 if (old_setting)
893 common_timer_get(timr, old_setting);
894
895 /*
896 * Careful here. On SMP systems the timer expiry function could be
897 * active and spinning on timr->it_lock.
898 */
899 if (kc->timer_try_to_cancel(timr) < 0)
900 return TIMER_RETRY;
901
902 timr->it_status = POSIX_TIMER_DISARMED;
903 posix_timer_set_common(timr, new_setting);
904
905 /* Keep timer disarmed when it_value is zero */
906 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
907 return 0;
908
909 expires = timespec64_to_ktime(new_setting->it_value);
910 if (flags & TIMER_ABSTIME)
911 expires = timens_ktime_to_host(timr->it_clock, expires);
912 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
913
914 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
915 if (!sigev_none)
916 timr->it_status = POSIX_TIMER_ARMED;
917 return 0;
918 }
919
do_timer_settime(timer_t timer_id,int tmr_flags,struct itimerspec64 * new_spec64,struct itimerspec64 * old_spec64)920 static int do_timer_settime(timer_t timer_id, int tmr_flags, struct itimerspec64 *new_spec64,
921 struct itimerspec64 *old_spec64)
922 {
923 if (!timespec64_valid(&new_spec64->it_interval) ||
924 !timespec64_valid(&new_spec64->it_value))
925 return -EINVAL;
926
927 if (old_spec64)
928 memset(old_spec64, 0, sizeof(*old_spec64));
929
930 for (; ; old_spec64 = NULL) {
931 struct k_itimer *timr;
932
933 scoped_timer_get_or_fail(timer_id) {
934 timr = scoped_timer;
935
936 if (old_spec64)
937 old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
938
939 /* Prevent signal delivery and rearming. */
940 timr->it_signal_seq++;
941
942 int ret = timr->kclock->timer_set(timr, tmr_flags, new_spec64, old_spec64);
943 if (ret != TIMER_RETRY)
944 return ret;
945
946 /* Protect the timer from being freed when leaving the lock scope */
947 rcu_read_lock();
948 }
949 timer_wait_running(timr);
950 rcu_read_unlock();
951 }
952 }
953
954 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct __kernel_itimerspec __user *,new_setting,struct __kernel_itimerspec __user *,old_setting)955 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
956 const struct __kernel_itimerspec __user *, new_setting,
957 struct __kernel_itimerspec __user *, old_setting)
958 {
959 struct itimerspec64 new_spec, old_spec, *rtn;
960 int error = 0;
961
962 if (!new_setting)
963 return -EINVAL;
964
965 if (get_itimerspec64(&new_spec, new_setting))
966 return -EFAULT;
967
968 rtn = old_setting ? &old_spec : NULL;
969 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
970 if (!error && old_setting) {
971 if (put_itimerspec64(&old_spec, old_setting))
972 error = -EFAULT;
973 }
974 return error;
975 }
976
977 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timer_settime32,timer_t,timer_id,int,flags,struct old_itimerspec32 __user *,new,struct old_itimerspec32 __user *,old)978 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
979 struct old_itimerspec32 __user *, new,
980 struct old_itimerspec32 __user *, old)
981 {
982 struct itimerspec64 new_spec, old_spec;
983 struct itimerspec64 *rtn = old ? &old_spec : NULL;
984 int error = 0;
985
986 if (!new)
987 return -EINVAL;
988 if (get_old_itimerspec32(&new_spec, new))
989 return -EFAULT;
990
991 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
992 if (!error && old) {
993 if (put_old_itimerspec32(&old_spec, old))
994 error = -EFAULT;
995 }
996 return error;
997 }
998 #endif
999
common_timer_del(struct k_itimer * timer)1000 int common_timer_del(struct k_itimer *timer)
1001 {
1002 const struct k_clock *kc = timer->kclock;
1003
1004 if (kc->timer_try_to_cancel(timer) < 0)
1005 return TIMER_RETRY;
1006 timer->it_status = POSIX_TIMER_DISARMED;
1007 return 0;
1008 }
1009
1010 /*
1011 * If the deleted timer is on the ignored list, remove it and
1012 * drop the associated reference.
1013 */
posix_timer_cleanup_ignored(struct k_itimer * tmr)1014 static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr)
1015 {
1016 if (!hlist_unhashed(&tmr->ignored_list)) {
1017 hlist_del_init(&tmr->ignored_list);
1018 posixtimer_putref(tmr);
1019 }
1020 }
1021
posix_timer_delete(struct k_itimer * timer)1022 static void posix_timer_delete(struct k_itimer *timer)
1023 {
1024 /*
1025 * Invalidate the timer, remove it from the linked list and remove
1026 * it from the ignored list if pending.
1027 *
1028 * The invalidation must be written with siglock held so that the
1029 * signal code observes the invalidated timer::it_signal in
1030 * do_sigaction(), which prevents it from moving a pending signal
1031 * of a deleted timer to the ignore list.
1032 *
1033 * The invalidation also prevents signal queueing, signal delivery
1034 * and therefore rearming from the signal delivery path.
1035 *
1036 * A concurrent lookup can still find the timer in the hash, but it
1037 * will check timer::it_signal with timer::it_lock held and observe
1038 * bit 0 set, which invalidates it. That also prevents the timer ID
1039 * from being handed out before this timer is completely gone.
1040 */
1041 timer->it_signal_seq++;
1042
1043 scoped_guard (spinlock, ¤t->sighand->siglock) {
1044 unsigned long sig = (unsigned long)timer->it_signal | 1UL;
1045
1046 WRITE_ONCE(timer->it_signal, (struct signal_struct *)sig);
1047 hlist_del_rcu(&timer->list);
1048 posix_timer_cleanup_ignored(timer);
1049 }
1050
1051 while (timer->kclock->timer_del(timer) == TIMER_RETRY) {
1052 guard(rcu)();
1053 spin_unlock_irq(&timer->it_lock);
1054 timer_wait_running(timer);
1055 spin_lock_irq(&timer->it_lock);
1056 }
1057 }
1058
1059 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)1060 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1061 {
1062 struct k_itimer *timer;
1063
1064 scoped_timer_get_or_fail(timer_id) {
1065 timer = scoped_timer;
1066 posix_timer_delete(timer);
1067 }
1068 /* Remove it from the hash, which frees up the timer ID */
1069 posix_timer_unhash_and_free(timer);
1070 return 0;
1071 }
1072
1073 /*
1074 * Invoked from do_exit() when the last thread of a thread group exits.
1075 * At that point no other task can access the timers of the dying
1076 * task anymore.
1077 */
exit_itimers(struct task_struct * tsk)1078 void exit_itimers(struct task_struct *tsk)
1079 {
1080 struct hlist_head timers;
1081 struct hlist_node *next;
1082 struct k_itimer *timer;
1083
1084 /* Clear restore mode for exec() */
1085 tsk->signal->timer_create_restore_ids = 0;
1086
1087 if (hlist_empty(&tsk->signal->posix_timers))
1088 return;
1089
1090 /* Protect against concurrent read via /proc/$PID/timers */
1091 scoped_guard (spinlock_irq, &tsk->sighand->siglock)
1092 hlist_move_list(&tsk->signal->posix_timers, &timers);
1093
1094 /* The timers are not longer accessible via tsk::signal */
1095 hlist_for_each_entry_safe(timer, next, &timers, list) {
1096 scoped_guard (spinlock_irq, &timer->it_lock)
1097 posix_timer_delete(timer);
1098 posix_timer_unhash_and_free(timer);
1099 cond_resched();
1100 }
1101
1102 /*
1103 * There should be no timers on the ignored list. itimer_delete() has
1104 * mopped them up.
1105 */
1106 if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers)))
1107 return;
1108
1109 hlist_move_list(&tsk->signal->ignored_posix_timers, &timers);
1110 while (!hlist_empty(&timers)) {
1111 posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer,
1112 ignored_list));
1113 }
1114 }
1115
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct __kernel_timespec __user *,tp)1116 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1117 const struct __kernel_timespec __user *, tp)
1118 {
1119 const struct k_clock *kc = clockid_to_kclock(which_clock);
1120 struct timespec64 new_tp;
1121
1122 if (!kc || !kc->clock_set)
1123 return -EINVAL;
1124
1125 if (get_timespec64(&new_tp, tp))
1126 return -EFAULT;
1127
1128 /*
1129 * Permission checks have to be done inside the clock specific
1130 * setter callback.
1131 */
1132 return kc->clock_set(which_clock, &new_tp);
1133 }
1134
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1135 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1136 struct __kernel_timespec __user *, tp)
1137 {
1138 const struct k_clock *kc = clockid_to_kclock(which_clock);
1139 struct timespec64 kernel_tp;
1140 int error;
1141
1142 if (!kc)
1143 return -EINVAL;
1144
1145 error = kc->clock_get_timespec(which_clock, &kernel_tp);
1146
1147 if (!error && put_timespec64(&kernel_tp, tp))
1148 error = -EFAULT;
1149
1150 return error;
1151 }
1152
do_clock_adjtime(const clockid_t which_clock,struct __kernel_timex * ktx)1153 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1154 {
1155 const struct k_clock *kc = clockid_to_kclock(which_clock);
1156
1157 if (!kc)
1158 return -EINVAL;
1159 if (!kc->clock_adj)
1160 return -EOPNOTSUPP;
1161
1162 return kc->clock_adj(which_clock, ktx);
1163 }
1164
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct __kernel_timex __user *,utx)1165 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1166 struct __kernel_timex __user *, utx)
1167 {
1168 struct __kernel_timex ktx;
1169 int err;
1170
1171 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1172 return -EFAULT;
1173
1174 err = do_clock_adjtime(which_clock, &ktx);
1175
1176 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1177 return -EFAULT;
1178
1179 return err;
1180 }
1181
1182 /**
1183 * sys_clock_getres - Get the resolution of a clock
1184 * @which_clock: The clock to get the resolution for
1185 * @tp: Pointer to a a user space timespec64 for storage
1186 *
1187 * POSIX defines:
1188 *
1189 * "The clock_getres() function shall return the resolution of any
1190 * clock. Clock resolutions are implementation-defined and cannot be set by
1191 * a process. If the argument res is not NULL, the resolution of the
1192 * specified clock shall be stored in the location pointed to by res. If
1193 * res is NULL, the clock resolution is not returned. If the time argument
1194 * of clock_settime() is not a multiple of res, then the value is truncated
1195 * to a multiple of res."
1196 *
1197 * Due to the various hardware constraints the real resolution can vary
1198 * wildly and even change during runtime when the underlying devices are
1199 * replaced. The kernel also can use hardware devices with different
1200 * resolutions for reading the time and for arming timers.
1201 *
1202 * The kernel therefore deviates from the POSIX spec in various aspects:
1203 *
1204 * 1) The resolution returned to user space
1205 *
1206 * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1207 * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1208 * the kernel differentiates only two cases:
1209 *
1210 * I) Low resolution mode:
1211 *
1212 * When high resolution timers are disabled at compile or runtime
1213 * the resolution returned is nanoseconds per tick, which represents
1214 * the precision at which timers expire.
1215 *
1216 * II) High resolution mode:
1217 *
1218 * When high resolution timers are enabled the resolution returned
1219 * is always one nanosecond independent of the actual resolution of
1220 * the underlying hardware devices.
1221 *
1222 * For CLOCK_*_ALARM the actual resolution depends on system
1223 * state. When system is running the resolution is the same as the
1224 * resolution of the other clocks. During suspend the actual
1225 * resolution is the resolution of the underlying RTC device which
1226 * might be way less precise than the clockevent device used during
1227 * running state.
1228 *
1229 * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1230 * returned is always nanoseconds per tick.
1231 *
1232 * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1233 * returned is always one nanosecond under the assumption that the
1234 * underlying scheduler clock has a better resolution than nanoseconds
1235 * per tick.
1236 *
1237 * For dynamic POSIX clocks (PTP devices) the resolution returned is
1238 * always one nanosecond.
1239 *
1240 * 2) Affect on sys_clock_settime()
1241 *
1242 * The kernel does not truncate the time which is handed in to
1243 * sys_clock_settime(). The kernel internal timekeeping is always using
1244 * nanoseconds precision independent of the clocksource device which is
1245 * used to read the time from. The resolution of that device only
1246 * affects the presicion of the time returned by sys_clock_gettime().
1247 *
1248 * Returns:
1249 * 0 Success. @tp contains the resolution
1250 * -EINVAL @which_clock is not a valid clock ID
1251 * -EFAULT Copying the resolution to @tp faulted
1252 * -ENODEV Dynamic POSIX clock is not backed by a device
1253 * -EOPNOTSUPP Dynamic POSIX clock does not support getres()
1254 */
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1255 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1256 struct __kernel_timespec __user *, tp)
1257 {
1258 const struct k_clock *kc = clockid_to_kclock(which_clock);
1259 struct timespec64 rtn_tp;
1260 int error;
1261
1262 if (!kc)
1263 return -EINVAL;
1264
1265 error = kc->clock_getres(which_clock, &rtn_tp);
1266
1267 if (!error && tp && put_timespec64(&rtn_tp, tp))
1268 error = -EFAULT;
1269
1270 return error;
1271 }
1272
1273 #ifdef CONFIG_COMPAT_32BIT_TIME
1274
SYSCALL_DEFINE2(clock_settime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1275 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1276 struct old_timespec32 __user *, tp)
1277 {
1278 const struct k_clock *kc = clockid_to_kclock(which_clock);
1279 struct timespec64 ts;
1280
1281 if (!kc || !kc->clock_set)
1282 return -EINVAL;
1283
1284 if (get_old_timespec32(&ts, tp))
1285 return -EFAULT;
1286
1287 return kc->clock_set(which_clock, &ts);
1288 }
1289
SYSCALL_DEFINE2(clock_gettime32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1290 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1291 struct old_timespec32 __user *, tp)
1292 {
1293 const struct k_clock *kc = clockid_to_kclock(which_clock);
1294 struct timespec64 ts;
1295 int err;
1296
1297 if (!kc)
1298 return -EINVAL;
1299
1300 err = kc->clock_get_timespec(which_clock, &ts);
1301
1302 if (!err && put_old_timespec32(&ts, tp))
1303 err = -EFAULT;
1304
1305 return err;
1306 }
1307
SYSCALL_DEFINE2(clock_adjtime32,clockid_t,which_clock,struct old_timex32 __user *,utp)1308 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1309 struct old_timex32 __user *, utp)
1310 {
1311 struct __kernel_timex ktx;
1312 int err;
1313
1314 err = get_old_timex32(&ktx, utp);
1315 if (err)
1316 return err;
1317
1318 err = do_clock_adjtime(which_clock, &ktx);
1319
1320 if (err >= 0 && put_old_timex32(utp, &ktx))
1321 return -EFAULT;
1322
1323 return err;
1324 }
1325
SYSCALL_DEFINE2(clock_getres_time32,clockid_t,which_clock,struct old_timespec32 __user *,tp)1326 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1327 struct old_timespec32 __user *, tp)
1328 {
1329 const struct k_clock *kc = clockid_to_kclock(which_clock);
1330 struct timespec64 ts;
1331 int err;
1332
1333 if (!kc)
1334 return -EINVAL;
1335
1336 err = kc->clock_getres(which_clock, &ts);
1337 if (!err && tp && put_old_timespec32(&ts, tp))
1338 return -EFAULT;
1339
1340 return err;
1341 }
1342
1343 #endif
1344
1345 /*
1346 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1347 */
common_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1348 static int common_nsleep(const clockid_t which_clock, int flags,
1349 const struct timespec64 *rqtp)
1350 {
1351 ktime_t texp = timespec64_to_ktime(*rqtp);
1352
1353 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1354 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1355 which_clock);
1356 }
1357
1358 /*
1359 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1360 *
1361 * Absolute nanosleeps for these clocks are time-namespace adjusted.
1362 */
common_nsleep_timens(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1363 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1364 const struct timespec64 *rqtp)
1365 {
1366 ktime_t texp = timespec64_to_ktime(*rqtp);
1367
1368 if (flags & TIMER_ABSTIME)
1369 texp = timens_ktime_to_host(which_clock, texp);
1370
1371 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1372 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1373 which_clock);
1374 }
1375
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)1376 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1377 const struct __kernel_timespec __user *, rqtp,
1378 struct __kernel_timespec __user *, rmtp)
1379 {
1380 const struct k_clock *kc = clockid_to_kclock(which_clock);
1381 struct timespec64 t;
1382
1383 if (!kc)
1384 return -EINVAL;
1385 if (!kc->nsleep)
1386 return -EOPNOTSUPP;
1387
1388 if (get_timespec64(&t, rqtp))
1389 return -EFAULT;
1390
1391 if (!timespec64_valid(&t))
1392 return -EINVAL;
1393 if (flags & TIMER_ABSTIME)
1394 rmtp = NULL;
1395 current->restart_block.fn = do_no_restart_syscall;
1396 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1397 current->restart_block.nanosleep.rmtp = rmtp;
1398
1399 return kc->nsleep(which_clock, flags, &t);
1400 }
1401
1402 #ifdef CONFIG_COMPAT_32BIT_TIME
1403
SYSCALL_DEFINE4(clock_nanosleep_time32,clockid_t,which_clock,int,flags,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)1404 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1405 struct old_timespec32 __user *, rqtp,
1406 struct old_timespec32 __user *, rmtp)
1407 {
1408 const struct k_clock *kc = clockid_to_kclock(which_clock);
1409 struct timespec64 t;
1410
1411 if (!kc)
1412 return -EINVAL;
1413 if (!kc->nsleep)
1414 return -EOPNOTSUPP;
1415
1416 if (get_old_timespec32(&t, rqtp))
1417 return -EFAULT;
1418
1419 if (!timespec64_valid(&t))
1420 return -EINVAL;
1421 if (flags & TIMER_ABSTIME)
1422 rmtp = NULL;
1423 current->restart_block.fn = do_no_restart_syscall;
1424 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1425 current->restart_block.nanosleep.compat_rmtp = rmtp;
1426
1427 return kc->nsleep(which_clock, flags, &t);
1428 }
1429
1430 #endif
1431
1432 static const struct k_clock clock_realtime = {
1433 .clock_getres = posix_get_hrtimer_res,
1434 .clock_get_timespec = posix_get_realtime_timespec,
1435 .clock_get_ktime = posix_get_realtime_ktime,
1436 .clock_set = posix_clock_realtime_set,
1437 .clock_adj = posix_clock_realtime_adj,
1438 .nsleep = common_nsleep,
1439 .timer_create = common_timer_create,
1440 .timer_set = common_timer_set,
1441 .timer_get = common_timer_get,
1442 .timer_del = common_timer_del,
1443 .timer_rearm = common_hrtimer_rearm,
1444 .timer_forward = common_hrtimer_forward,
1445 .timer_remaining = common_hrtimer_remaining,
1446 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1447 .timer_wait_running = common_timer_wait_running,
1448 .timer_arm = common_hrtimer_arm,
1449 };
1450
1451 static const struct k_clock clock_monotonic = {
1452 .clock_getres = posix_get_hrtimer_res,
1453 .clock_get_timespec = posix_get_monotonic_timespec,
1454 .clock_get_ktime = posix_get_monotonic_ktime,
1455 .nsleep = common_nsleep_timens,
1456 .timer_create = common_timer_create,
1457 .timer_set = common_timer_set,
1458 .timer_get = common_timer_get,
1459 .timer_del = common_timer_del,
1460 .timer_rearm = common_hrtimer_rearm,
1461 .timer_forward = common_hrtimer_forward,
1462 .timer_remaining = common_hrtimer_remaining,
1463 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1464 .timer_wait_running = common_timer_wait_running,
1465 .timer_arm = common_hrtimer_arm,
1466 };
1467
1468 static const struct k_clock clock_monotonic_raw = {
1469 .clock_getres = posix_get_hrtimer_res,
1470 .clock_get_timespec = posix_get_monotonic_raw,
1471 };
1472
1473 static const struct k_clock clock_realtime_coarse = {
1474 .clock_getres = posix_get_coarse_res,
1475 .clock_get_timespec = posix_get_realtime_coarse,
1476 };
1477
1478 static const struct k_clock clock_monotonic_coarse = {
1479 .clock_getres = posix_get_coarse_res,
1480 .clock_get_timespec = posix_get_monotonic_coarse,
1481 };
1482
1483 static const struct k_clock clock_tai = {
1484 .clock_getres = posix_get_hrtimer_res,
1485 .clock_get_ktime = posix_get_tai_ktime,
1486 .clock_get_timespec = posix_get_tai_timespec,
1487 .nsleep = common_nsleep,
1488 .timer_create = common_timer_create,
1489 .timer_set = common_timer_set,
1490 .timer_get = common_timer_get,
1491 .timer_del = common_timer_del,
1492 .timer_rearm = common_hrtimer_rearm,
1493 .timer_forward = common_hrtimer_forward,
1494 .timer_remaining = common_hrtimer_remaining,
1495 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1496 .timer_wait_running = common_timer_wait_running,
1497 .timer_arm = common_hrtimer_arm,
1498 };
1499
1500 static const struct k_clock clock_boottime = {
1501 .clock_getres = posix_get_hrtimer_res,
1502 .clock_get_ktime = posix_get_boottime_ktime,
1503 .clock_get_timespec = posix_get_boottime_timespec,
1504 .nsleep = common_nsleep_timens,
1505 .timer_create = common_timer_create,
1506 .timer_set = common_timer_set,
1507 .timer_get = common_timer_get,
1508 .timer_del = common_timer_del,
1509 .timer_rearm = common_hrtimer_rearm,
1510 .timer_forward = common_hrtimer_forward,
1511 .timer_remaining = common_hrtimer_remaining,
1512 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1513 .timer_wait_running = common_timer_wait_running,
1514 .timer_arm = common_hrtimer_arm,
1515 };
1516
1517 static const struct k_clock * const posix_clocks[] = {
1518 [CLOCK_REALTIME] = &clock_realtime,
1519 [CLOCK_MONOTONIC] = &clock_monotonic,
1520 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1521 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1522 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1523 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1524 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1525 [CLOCK_BOOTTIME] = &clock_boottime,
1526 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1527 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1528 [CLOCK_TAI] = &clock_tai,
1529 };
1530
clockid_to_kclock(const clockid_t id)1531 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1532 {
1533 clockid_t idx = id;
1534
1535 if (id < 0) {
1536 return (id & CLOCKFD_MASK) == CLOCKFD ?
1537 &clock_posix_dynamic : &clock_posix_cpu;
1538 }
1539
1540 if (id >= ARRAY_SIZE(posix_clocks))
1541 return NULL;
1542
1543 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1544 }
1545
posixtimer_init(void)1546 static int __init posixtimer_init(void)
1547 {
1548 unsigned long i, size;
1549 unsigned int shift;
1550
1551 posix_timers_cache = kmem_cache_create("posix_timers_cache",
1552 sizeof(struct k_itimer),
1553 __alignof__(struct k_itimer),
1554 SLAB_ACCOUNT, NULL);
1555
1556 if (IS_ENABLED(CONFIG_BASE_SMALL))
1557 size = 512;
1558 else
1559 size = roundup_pow_of_two(512 * num_possible_cpus());
1560
1561 timer_buckets = alloc_large_system_hash("posixtimers", sizeof(*timer_buckets),
1562 size, 0, 0, &shift, NULL, size, size);
1563 size = 1UL << shift;
1564 timer_hashmask = size - 1;
1565
1566 for (i = 0; i < size; i++) {
1567 spin_lock_init(&timer_buckets[i].lock);
1568 INIT_HLIST_HEAD(&timer_buckets[i].head);
1569 }
1570 return 0;
1571 }
1572 core_initcall(posixtimer_init);
1573