xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 9352d2f6dd55afcf0ac24d2806da7c6febf19589)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011, 2025 Chelsio Communications.
5  * Written by: Navdeep Parhar <np@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_kern_tls.h"
33 #include "opt_ratelimit.h"
34 
35 #include <sys/types.h>
36 #include <sys/eventhandler.h>
37 #include <sys/mbuf.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/ktls.h>
41 #include <sys/malloc.h>
42 #include <sys/msan.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/socketvar.h>
51 #include <sys/counter.h>
52 #include <net/bpf.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_vlan_var.h>
56 #include <net/if_vxlan.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/ip6.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <machine/in_cksum.h>
63 #include <machine/md_var.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #ifdef DEV_NETMAP
67 #include <machine/bus.h>
68 #include <sys/selinfo.h>
69 #include <net/if_var.h>
70 #include <net/netmap.h>
71 #include <dev/netmap/netmap_kern.h>
72 #endif
73 
74 #include "common/common.h"
75 #include "common/t4_regs.h"
76 #include "common/t4_regs_values.h"
77 #include "common/t4_msg.h"
78 #include "t4_l2t.h"
79 #include "t4_mp_ring.h"
80 
81 #define RX_COPY_THRESHOLD MINCLSIZE
82 
83 /*
84  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
85  * 0-7 are valid values.
86  */
87 static int fl_pktshift = 0;
88 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
89     "payload DMA offset in rx buffer (bytes)");
90 
91 /*
92  * Pad ethernet payload up to this boundary.
93  * -1: driver should figure out a good value.
94  *  0: disable padding.
95  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
96  */
97 int fl_pad = -1;
98 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
99     "payload pad boundary (bytes)");
100 
101 /*
102  * Status page length.
103  * -1: driver should figure out a good value.
104  *  64 or 128 are the only other valid values.
105  */
106 static int spg_len = -1;
107 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
108     "status page size (bytes)");
109 
110 /*
111  * Congestion drops.
112  * -1: no congestion feedback (not recommended).
113  *  0: backpressure the channel instead of dropping packets right away.
114  *  1: no backpressure, drop packets for the congested queue immediately.
115  *  2: both backpressure and drop.
116  */
117 static int cong_drop = 0;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
119     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
120 #ifdef TCP_OFFLOAD
121 static int ofld_cong_drop = 0;
122 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
123     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
124 #endif
125 
126 /*
127  * Deliver multiple frames in the same free list buffer if they fit.
128  * -1: let the driver decide whether to enable buffer packing or not.
129  *  0: disable buffer packing.
130  *  1: enable buffer packing.
131  */
132 static int buffer_packing = -1;
133 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
134     0, "Enable buffer packing");
135 
136 /*
137  * Start next frame in a packed buffer at this boundary.
138  * -1: driver should figure out a good value.
139  * T4: driver will ignore this and use the same value as fl_pad above.
140  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
141  */
142 static int fl_pack = -1;
143 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
144     "payload pack boundary (bytes)");
145 
146 /*
147  * Largest rx cluster size that the driver is allowed to allocate.
148  */
149 static int largest_rx_cluster = MJUM16BYTES;
150 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
151     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
152 
153 /*
154  * Size of cluster allocation that's most likely to succeed.  The driver will
155  * fall back to this size if it fails to allocate clusters larger than this.
156  */
157 static int safest_rx_cluster = PAGE_SIZE;
158 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
159     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
160 
161 #ifdef RATELIMIT
162 /*
163  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
164  * for rewriting.  -1 and 0-3 are all valid values.
165  * -1: hardware should leave the TCP timestamps alone.
166  * 0: 1ms
167  * 1: 100us
168  * 2: 10us
169  * 3: 1us
170  */
171 static int tsclk = -1;
172 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
173     "Control TCP timestamp rewriting when using pacing");
174 
175 static int eo_max_backlog = 1024 * 1024;
176 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
177     0, "Maximum backlog of ratelimited data per flow");
178 #endif
179 
180 /*
181  * The interrupt holdoff timers are multiplied by this value on T6+.
182  * 1 and 3-17 (both inclusive) are legal values.
183  */
184 static int tscale = 1;
185 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
186     "Interrupt holdoff timer scale on T6+");
187 
188 /*
189  * Number of LRO entries in the lro_ctrl structure per rx queue.
190  */
191 static int lro_entries = TCP_LRO_ENTRIES;
192 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
193     "Number of LRO entries per RX queue");
194 
195 /*
196  * This enables presorting of frames before they're fed into tcp_lro_rx.
197  */
198 static int lro_mbufs = 0;
199 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
200     "Enable presorting of LRO frames");
201 
202 static counter_u64_t pullups;
203 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
204     "Number of mbuf pullups performed");
205 
206 static counter_u64_t defrags;
207 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
208     "Number of mbuf defrags performed");
209 
210 static int t4_tx_coalesce = 1;
211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
212     "tx coalescing allowed");
213 
214 /*
215  * The driver will make aggressive attempts at tx coalescing if it sees these
216  * many packets eligible for coalescing in quick succession, with no more than
217  * the specified gap in between the eth_tx calls that delivered the packets.
218  */
219 static int t4_tx_coalesce_pkts = 32;
220 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
221     &t4_tx_coalesce_pkts, 0,
222     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
223 static int t4_tx_coalesce_gap = 5;
224 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
225     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
226 
227 static int service_iq(struct sge_iq *, int);
228 static int service_iq_fl(struct sge_iq *, int);
229 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
230 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
231     u_int);
232 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
233     int, int, int);
234 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
235 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
236     struct sge_iq *, char *);
237 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
238     struct sysctl_ctx_list *, struct sysctl_oid *);
239 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
240 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
241     struct sge_iq *);
242 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
243     struct sysctl_oid *, struct sge_fl *);
244 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
245 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
246 static int alloc_fwq(struct adapter *);
247 static void free_fwq(struct adapter *);
248 static int alloc_ctrlq(struct adapter *, int);
249 static void free_ctrlq(struct adapter *, int);
250 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
251 static void free_rxq(struct vi_info *, struct sge_rxq *);
252 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
253     struct sge_rxq *);
254 #ifdef TCP_OFFLOAD
255 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
256     int);
257 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
258 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
259     struct sge_ofld_rxq *);
260 #endif
261 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *, int);
262 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
263     int);
264 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
265 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
266     int);
267 #endif
268 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
269     struct sysctl_oid *);
270 static void free_eq(struct adapter *, struct sge_eq *);
271 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
272     struct sysctl_oid *, struct sge_eq *);
273 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *,
274     int);
275 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
276 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
277     struct sysctl_ctx_list *, struct sysctl_oid *);
278 static void free_wrq(struct adapter *, struct sge_wrq *);
279 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
280     struct sge_wrq *);
281 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
282 static void free_txq(struct vi_info *, struct sge_txq *);
283 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
284     struct sysctl_oid *, struct sge_txq *);
285 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
286 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
287 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
288 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
289     struct sge_ofld_txq *);
290 #endif
291 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
292 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
293 static int refill_fl(struct adapter *, struct sge_fl *, int);
294 static void refill_sfl(void *);
295 static int find_refill_source(struct adapter *, int, bool);
296 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
297 
298 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
299 static inline u_int txpkt_len16(u_int, const u_int);
300 static inline u_int txpkt_vm_len16(u_int, const u_int);
301 static inline void calculate_mbuf_len16(struct mbuf *, bool);
302 static inline u_int txpkts0_len16(u_int);
303 static inline u_int txpkts1_len16(void);
304 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
305 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
306     u_int);
307 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
308     struct mbuf *);
309 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
310     int, bool *);
311 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
312     int, bool *);
313 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
314 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
315 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
316 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
317 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
318 static inline uint16_t read_hw_cidx(struct sge_eq *);
319 static inline u_int reclaimable_tx_desc(struct sge_eq *);
320 static inline u_int total_available_tx_desc(struct sge_eq *);
321 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
322 static void tx_reclaim(void *, int);
323 static __be64 get_flit(struct sglist_seg *, int, int);
324 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
325     struct mbuf *);
326 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
327     struct mbuf *);
328 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
329 static void wrq_tx_drain(void *, int);
330 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
331 
332 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
333 #ifdef RATELIMIT
334 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
335     struct mbuf *);
336 #if defined(INET) || defined(INET6)
337 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
338 static int ethofld_transmit(if_t, struct mbuf *);
339 #endif
340 #endif
341 
342 static counter_u64_t extfree_refs;
343 static counter_u64_t extfree_rels;
344 
345 an_handler_t t4_an_handler;
346 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
347 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
348 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
349 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
350 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
351 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
352 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
353 cpl_handler_t fw6_pld_handlers[NUM_CPL_FW6_COOKIES];
354 
355 void
t4_register_an_handler(an_handler_t h)356 t4_register_an_handler(an_handler_t h)
357 {
358 	uintptr_t *loc;
359 
360 	MPASS(h == NULL || t4_an_handler == NULL);
361 
362 	loc = (uintptr_t *)&t4_an_handler;
363 	atomic_store_rel_ptr(loc, (uintptr_t)h);
364 }
365 
366 void
t4_register_fw_msg_handler(int type,fw_msg_handler_t h)367 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
368 {
369 	uintptr_t *loc;
370 
371 	MPASS(type < nitems(t4_fw_msg_handler));
372 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
373 	/*
374 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
375 	 * handler dispatch table.  Reject any attempt to install a handler for
376 	 * this subtype.
377 	 */
378 	MPASS(type != FW_TYPE_RSSCPL);
379 	MPASS(type != FW6_TYPE_RSSCPL);
380 
381 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
382 	atomic_store_rel_ptr(loc, (uintptr_t)h);
383 }
384 
385 void
t4_register_cpl_handler(int opcode,cpl_handler_t h)386 t4_register_cpl_handler(int opcode, cpl_handler_t h)
387 {
388 	uintptr_t *loc;
389 
390 	MPASS(opcode < nitems(t4_cpl_handler));
391 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
392 
393 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
394 	atomic_store_rel_ptr(loc, (uintptr_t)h);
395 }
396 
397 static int
set_tcb_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)398 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
399     struct mbuf *m)
400 {
401 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
402 	u_int tid;
403 	int cookie;
404 
405 	MPASS(m == NULL);
406 
407 	tid = GET_TID(cpl);
408 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
409 		/*
410 		 * The return code for filter-write is put in the CPL cookie so
411 		 * we have to rely on the hardware tid (is_ftid) to determine
412 		 * that this is a response to a filter.
413 		 */
414 		cookie = CPL_COOKIE_FILTER;
415 	} else {
416 		cookie = G_COOKIE(cpl->cookie);
417 	}
418 	MPASS(cookie > CPL_COOKIE_RESERVED);
419 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
420 
421 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
422 }
423 
424 static int
l2t_write_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)425 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
426     struct mbuf *m)
427 {
428 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
429 	unsigned int cookie;
430 
431 	MPASS(m == NULL);
432 
433 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
434 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
435 }
436 
437 static int
act_open_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)438 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
439     struct mbuf *m)
440 {
441 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
442 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
443 
444 	MPASS(m == NULL);
445 	MPASS(cookie != CPL_COOKIE_RESERVED);
446 
447 	return (act_open_rpl_handlers[cookie](iq, rss, m));
448 }
449 
450 static int
abort_rpl_rss_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)451 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
452     struct mbuf *m)
453 {
454 	struct adapter *sc = iq->adapter;
455 	u_int cookie;
456 
457 	MPASS(m == NULL);
458 	if (is_hashfilter(sc))
459 		cookie = CPL_COOKIE_HASHFILTER;
460 	else
461 		cookie = CPL_COOKIE_TOM;
462 
463 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
464 }
465 
466 static int
fw4_ack_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)467 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
468 {
469 	struct adapter *sc = iq->adapter;
470 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
471 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
472 	u_int cookie;
473 
474 	MPASS(m == NULL);
475 	if (is_etid(sc, tid))
476 		cookie = CPL_COOKIE_ETHOFLD;
477 	else
478 		cookie = CPL_COOKIE_TOM;
479 
480 	return (fw4_ack_handlers[cookie](iq, rss, m));
481 }
482 
483 static int
fw6_pld_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)484 fw6_pld_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
485 {
486 	const struct cpl_fw6_pld *cpl;
487 	uint64_t cookie;
488 
489 	if (m != NULL)
490 		cpl = mtod(m, const void *);
491 	else
492 		cpl = (const void *)(rss + 1);
493 	cookie = be64toh(cpl->data[1]) & CPL_FW6_COOKIE_MASK;
494 
495 	return (fw6_pld_handlers[cookie](iq, rss, m));
496 }
497 
498 static void
t4_init_shared_cpl_handlers(void)499 t4_init_shared_cpl_handlers(void)
500 {
501 
502 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
503 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
504 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
505 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
506 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
507 	t4_register_cpl_handler(CPL_FW6_PLD, fw6_pld_handler);
508 }
509 
510 void
t4_register_shared_cpl_handler(int opcode,cpl_handler_t h,int cookie)511 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
512 {
513 	uintptr_t *loc;
514 
515 	MPASS(opcode < nitems(t4_cpl_handler));
516 	if (opcode == CPL_FW6_PLD) {
517 		MPASS(cookie < NUM_CPL_FW6_COOKIES);
518 	} else {
519 		MPASS(cookie > CPL_COOKIE_RESERVED);
520 		MPASS(cookie < NUM_CPL_COOKIES);
521 	}
522 	MPASS(t4_cpl_handler[opcode] != NULL);
523 
524 	switch (opcode) {
525 	case CPL_SET_TCB_RPL:
526 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
527 		break;
528 	case CPL_L2T_WRITE_RPL:
529 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
530 		break;
531 	case CPL_ACT_OPEN_RPL:
532 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
533 		break;
534 	case CPL_ABORT_RPL_RSS:
535 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
536 		break;
537 	case CPL_FW4_ACK:
538 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
539 		break;
540 	case CPL_FW6_PLD:
541 		loc = (uintptr_t *)&fw6_pld_handlers[cookie];
542 		break;
543 	default:
544 		MPASS(0);
545 		return;
546 	}
547 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
548 	atomic_store_rel_ptr(loc, (uintptr_t)h);
549 }
550 
551 /*
552  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
553  */
554 void
t4_sge_modload(void)555 t4_sge_modload(void)
556 {
557 
558 	if (fl_pktshift < 0 || fl_pktshift > 7) {
559 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
560 		    " using 0 instead.\n", fl_pktshift);
561 		fl_pktshift = 0;
562 	}
563 
564 	if (spg_len != 64 && spg_len != 128) {
565 		int len;
566 
567 #if defined(__i386__) || defined(__amd64__)
568 		len = cpu_clflush_line_size > 64 ? 128 : 64;
569 #else
570 		len = 64;
571 #endif
572 		if (spg_len != -1) {
573 			printf("Invalid hw.cxgbe.spg_len value (%d),"
574 			    " using %d instead.\n", spg_len, len);
575 		}
576 		spg_len = len;
577 	}
578 
579 	if (cong_drop < -1 || cong_drop > 2) {
580 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
581 		    " using 0 instead.\n", cong_drop);
582 		cong_drop = 0;
583 	}
584 #ifdef TCP_OFFLOAD
585 	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
586 		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
587 		    " using 0 instead.\n", ofld_cong_drop);
588 		ofld_cong_drop = 0;
589 	}
590 #endif
591 
592 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
593 		printf("Invalid hw.cxgbe.tscale value (%d),"
594 		    " using 1 instead.\n", tscale);
595 		tscale = 1;
596 	}
597 
598 	if (largest_rx_cluster != MCLBYTES &&
599 #if MJUMPAGESIZE != MCLBYTES
600 	    largest_rx_cluster != MJUMPAGESIZE &&
601 #endif
602 	    largest_rx_cluster != MJUM9BYTES &&
603 	    largest_rx_cluster != MJUM16BYTES) {
604 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
605 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
606 		largest_rx_cluster = MJUM16BYTES;
607 	}
608 
609 	if (safest_rx_cluster != MCLBYTES &&
610 #if MJUMPAGESIZE != MCLBYTES
611 	    safest_rx_cluster != MJUMPAGESIZE &&
612 #endif
613 	    safest_rx_cluster != MJUM9BYTES &&
614 	    safest_rx_cluster != MJUM16BYTES) {
615 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
616 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
617 		safest_rx_cluster = MJUMPAGESIZE;
618 	}
619 
620 	extfree_refs = counter_u64_alloc(M_WAITOK);
621 	extfree_rels = counter_u64_alloc(M_WAITOK);
622 	pullups = counter_u64_alloc(M_WAITOK);
623 	defrags = counter_u64_alloc(M_WAITOK);
624 	counter_u64_zero(extfree_refs);
625 	counter_u64_zero(extfree_rels);
626 	counter_u64_zero(pullups);
627 	counter_u64_zero(defrags);
628 
629 	t4_init_shared_cpl_handlers();
630 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
631 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
632 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
633 #ifdef RATELIMIT
634 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
635 	    CPL_COOKIE_ETHOFLD);
636 #endif
637 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
638 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
639 }
640 
641 void
t4_sge_modunload(void)642 t4_sge_modunload(void)
643 {
644 
645 	counter_u64_free(extfree_refs);
646 	counter_u64_free(extfree_rels);
647 	counter_u64_free(pullups);
648 	counter_u64_free(defrags);
649 }
650 
651 uint64_t
t4_sge_extfree_refs(void)652 t4_sge_extfree_refs(void)
653 {
654 	uint64_t refs, rels;
655 
656 	rels = counter_u64_fetch(extfree_rels);
657 	refs = counter_u64_fetch(extfree_refs);
658 
659 	return (refs - rels);
660 }
661 
662 /* max 4096 */
663 #define MAX_PACK_BOUNDARY 512
664 
665 static inline void
setup_pad_and_pack_boundaries(struct adapter * sc)666 setup_pad_and_pack_boundaries(struct adapter *sc)
667 {
668 	uint32_t v, m;
669 	int pad, pack, pad_shift;
670 
671 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
672 	    X_INGPADBOUNDARY_SHIFT;
673 	pad = fl_pad;
674 	if (fl_pad < (1 << pad_shift) ||
675 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
676 	    !powerof2(fl_pad)) {
677 		/*
678 		 * If there is any chance that we might use buffer packing and
679 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
680 		 * it to the minimum allowed in all other cases.
681 		 */
682 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
683 
684 		/*
685 		 * For fl_pad = 0 we'll still write a reasonable value to the
686 		 * register but all the freelists will opt out of padding.
687 		 * We'll complain here only if the user tried to set it to a
688 		 * value greater than 0 that was invalid.
689 		 */
690 		if (fl_pad > 0) {
691 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
692 			    " (%d), using %d instead.\n", fl_pad, pad);
693 		}
694 	}
695 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
696 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
697 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
698 
699 	if (is_t4(sc)) {
700 		if (fl_pack != -1 && fl_pack != pad) {
701 			/* Complain but carry on. */
702 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
703 			    " using %d instead.\n", fl_pack, pad);
704 		}
705 		return;
706 	}
707 
708 	pack = fl_pack;
709 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
710 	    !powerof2(fl_pack)) {
711 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
712 			pack = MAX_PACK_BOUNDARY;
713 		else
714 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
715 		MPASS(powerof2(pack));
716 		if (pack < 16)
717 			pack = 16;
718 		if (pack == 32)
719 			pack = 64;
720 		if (pack > 4096)
721 			pack = 4096;
722 		if (fl_pack != -1) {
723 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
724 			    " (%d), using %d instead.\n", fl_pack, pack);
725 		}
726 	}
727 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
728 	if (pack == 16)
729 		v = V_INGPACKBOUNDARY(0);
730 	else
731 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
732 
733 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
734 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
735 }
736 
737 /*
738  * adap->params.vpd.cclk must be set up before this is called.
739  */
740 void
t4_tweak_chip_settings(struct adapter * sc)741 t4_tweak_chip_settings(struct adapter *sc)
742 {
743 	int i, reg;
744 	uint32_t v, m;
745 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
746 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
747 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
748 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
749 	static int sw_buf_sizes[] = {
750 		MCLBYTES,
751 #if MJUMPAGESIZE != MCLBYTES
752 		MJUMPAGESIZE,
753 #endif
754 		MJUM9BYTES,
755 		MJUM16BYTES
756 	};
757 
758 	KASSERT(sc->flags & MASTER_PF,
759 	    ("%s: trying to change chip settings when not master.", __func__));
760 
761 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
762 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
763 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
764 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
765 
766 	setup_pad_and_pack_boundaries(sc);
767 
768 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
769 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
770 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
771 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
772 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
773 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
774 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
775 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
776 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
777 
778 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
779 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
780 	reg = A_SGE_FL_BUFFER_SIZE2;
781 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
782 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
783 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
784 		reg += 4;
785 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
786 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
787 		reg += 4;
788 	}
789 
790 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
791 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
792 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
793 
794 	KASSERT(intr_timer[0] <= timer_max,
795 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
796 	    timer_max));
797 	for (i = 1; i < nitems(intr_timer); i++) {
798 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
799 		    ("%s: timers not listed in increasing order (%d)",
800 		    __func__, i));
801 
802 		while (intr_timer[i] > timer_max) {
803 			if (i == nitems(intr_timer) - 1) {
804 				intr_timer[i] = timer_max;
805 				break;
806 			}
807 			intr_timer[i] += intr_timer[i - 1];
808 			intr_timer[i] /= 2;
809 		}
810 	}
811 
812 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
813 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
814 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
815 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
816 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
817 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
818 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
819 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
820 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
821 
822 	if (chip_id(sc) >= CHELSIO_T6) {
823 		m = V_TSCALE(M_TSCALE);
824 		if (tscale == 1)
825 			v = 0;
826 		else
827 			v = V_TSCALE(tscale - 2);
828 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
829 
830 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
831 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
832 			if (chip_id(sc) >= CHELSIO_T7) {
833 				v |= F_GLFL;
834 			} else {
835 				m = V_RDTHRESHOLD(M_RDTHRESHOLD) |
836 				    F_WRTHRTHRESHEN |
837 				    V_WRTHRTHRESH(M_WRTHRTHRESH);
838 				v &= ~m;
839 				v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
840 				    V_WRTHRTHRESH(16);
841 			}
842 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
843 		}
844 	}
845 
846 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
847 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
848 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
849 
850 	/*
851 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
852 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
853 	 * may have to deal with is MAXPHYS + 1 page.
854 	 */
855 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
856 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
857 
858 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
859 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
860 	if (sc->nvmecaps != 0) {
861 		/* Request DDP status bit for NVMe PDU completions. */
862 		m |= F_NVME_TCP_DDP_VAL_EN;
863 		v |= F_NVME_TCP_DDP_VAL_EN;
864 	}
865 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
866 
867 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
868 	    F_RESETDDPOFFSET;
869 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
870 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
871 }
872 
873 /*
874  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
875  * address mut be 16B aligned.  If padding is in use the buffer's start and end
876  * need to be aligned to the pad boundary as well.  We'll just make sure that
877  * the size is a multiple of the pad boundary here, it is up to the buffer
878  * allocation code to make sure the start of the buffer is aligned.
879  */
880 static inline int
hwsz_ok(struct adapter * sc,int hwsz)881 hwsz_ok(struct adapter *sc, int hwsz)
882 {
883 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
884 
885 	return (hwsz >= 64 && (hwsz & mask) == 0);
886 }
887 
888 /*
889  * Initialize the rx buffer sizes and figure out which zones the buffers will
890  * be allocated from.
891  */
892 void
t4_init_rx_buf_info(struct adapter * sc)893 t4_init_rx_buf_info(struct adapter *sc)
894 {
895 	struct sge *s = &sc->sge;
896 	struct sge_params *sp = &sc->params.sge;
897 	int i, j, n;
898 	static int sw_buf_sizes[] = {	/* Sorted by size */
899 		MCLBYTES,
900 #if MJUMPAGESIZE != MCLBYTES
901 		MJUMPAGESIZE,
902 #endif
903 		MJUM9BYTES,
904 		MJUM16BYTES
905 	};
906 	struct rx_buf_info *rxb;
907 
908 	s->safe_zidx = -1;
909 	rxb = &s->rx_buf_info[0];
910 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
911 		rxb->size1 = sw_buf_sizes[i];
912 		rxb->zone = m_getzone(rxb->size1);
913 		rxb->type = m_gettype(rxb->size1);
914 		rxb->size2 = 0;
915 		rxb->hwidx1 = -1;
916 		rxb->hwidx2 = -1;
917 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
918 			int hwsize = sp->sge_fl_buffer_size[j];
919 
920 			if (!hwsz_ok(sc, hwsize))
921 				continue;
922 
923 			/* hwidx for size1 */
924 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
925 				rxb->hwidx1 = j;
926 
927 			/* hwidx for size2 (buffer packing) */
928 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
929 				continue;
930 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
931 			if (n == 0) {
932 				rxb->hwidx2 = j;
933 				rxb->size2 = hwsize;
934 				break;	/* stop looking */
935 			}
936 			if (rxb->hwidx2 != -1) {
937 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
938 				    hwsize - CL_METADATA_SIZE) {
939 					rxb->hwidx2 = j;
940 					rxb->size2 = hwsize;
941 				}
942 			} else if (n <= 2 * CL_METADATA_SIZE) {
943 				rxb->hwidx2 = j;
944 				rxb->size2 = hwsize;
945 			}
946 		}
947 		if (rxb->hwidx2 != -1)
948 			sc->flags |= BUF_PACKING_OK;
949 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
950 			s->safe_zidx = i;
951 	}
952 }
953 
954 /*
955  * Verify some basic SGE settings for the PF and VF driver, and other
956  * miscellaneous settings for the PF driver.
957  */
958 int
t4_verify_chip_settings(struct adapter * sc)959 t4_verify_chip_settings(struct adapter *sc)
960 {
961 	struct sge_params *sp = &sc->params.sge;
962 	uint32_t m, v, r;
963 	int rc = 0;
964 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
965 
966 	m = F_RXPKTCPLMODE;
967 	v = F_RXPKTCPLMODE;
968 	r = sp->sge_control;
969 	if ((r & m) != v) {
970 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
971 		rc = EINVAL;
972 	}
973 
974 	/*
975 	 * If this changes then every single use of PAGE_SHIFT in the driver
976 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
977 	 */
978 	if (sp->page_shift != PAGE_SHIFT) {
979 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
980 		rc = EINVAL;
981 	}
982 
983 	if (sc->flags & IS_VF)
984 		return (0);
985 
986 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
987 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
988 	if (r != v) {
989 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
990 		if (sc->vres.ddp.size != 0)
991 			rc = EINVAL;
992 	}
993 
994 	m = v = F_TDDPTAGTCB;
995 	r = t4_read_reg(sc, A_ULP_RX_CTL);
996 	if ((r & m) != v) {
997 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
998 		if (sc->vres.ddp.size != 0)
999 			rc = EINVAL;
1000 	}
1001 
1002 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
1003 	    F_RESETDDPOFFSET;
1004 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
1005 	r = t4_read_reg(sc, A_TP_PARA_REG5);
1006 	if ((r & m) != v) {
1007 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
1008 		if (sc->vres.ddp.size != 0)
1009 			rc = EINVAL;
1010 	}
1011 
1012 	return (rc);
1013 }
1014 
1015 int
t4_create_dma_tag(struct adapter * sc)1016 t4_create_dma_tag(struct adapter *sc)
1017 {
1018 	int rc;
1019 
1020 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
1021 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
1022 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
1023 	    NULL, &sc->dmat);
1024 	if (rc != 0) {
1025 		device_printf(sc->dev,
1026 		    "failed to create main DMA tag: %d\n", rc);
1027 	}
1028 
1029 	return (rc);
1030 }
1031 
1032 void
t4_sge_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * children)1033 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
1034     struct sysctl_oid_list *children)
1035 {
1036 	struct sge_params *sp = &sc->params.sge;
1037 
1038 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1039 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1040 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1041 
1042 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1043 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1044 
1045 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1046 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1047 
1048 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1049 	    NULL, sp->spg_len, "status page size (bytes)");
1050 
1051 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1052 	    NULL, cong_drop, "congestion drop setting");
1053 #ifdef TCP_OFFLOAD
1054 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1055 	    NULL, ofld_cong_drop, "congestion drop setting");
1056 #endif
1057 
1058 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1059 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1060 }
1061 
1062 int
t4_destroy_dma_tag(struct adapter * sc)1063 t4_destroy_dma_tag(struct adapter *sc)
1064 {
1065 	if (sc->dmat)
1066 		bus_dma_tag_destroy(sc->dmat);
1067 
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Allocate and initialize the firmware event queue, control queues, and special
1073  * purpose rx queues owned by the adapter.
1074  *
1075  * Returns errno on failure.  Resources allocated up to that point may still be
1076  * allocated.  Caller is responsible for cleanup in case this function fails.
1077  */
1078 int
t4_setup_adapter_queues(struct adapter * sc)1079 t4_setup_adapter_queues(struct adapter *sc)
1080 {
1081 	int rc, i;
1082 
1083 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1084 
1085 	/*
1086 	 * Firmware event queue
1087 	 */
1088 	rc = alloc_fwq(sc);
1089 	if (rc != 0)
1090 		return (rc);
1091 
1092 	/*
1093 	 * That's all for the VF driver.
1094 	 */
1095 	if (sc->flags & IS_VF)
1096 		return (rc);
1097 
1098 	/*
1099 	 * XXX: General purpose rx queues, one per port.
1100 	 */
1101 
1102 	/*
1103 	 * Control queues.  At least one per port and per internal core.
1104 	 */
1105 	for (i = 0; i < sc->sge.nctrlq; i++) {
1106 		rc = alloc_ctrlq(sc, i);
1107 		if (rc != 0)
1108 			return (rc);
1109 	}
1110 
1111 	return (rc);
1112 }
1113 
1114 /*
1115  * Idempotent
1116  */
1117 int
t4_teardown_adapter_queues(struct adapter * sc)1118 t4_teardown_adapter_queues(struct adapter *sc)
1119 {
1120 	int i;
1121 
1122 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1123 
1124 	if (sc->sge.ctrlq != NULL) {
1125 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1126 		for (i = 0; i < sc->sge.nctrlq; i++)
1127 			free_ctrlq(sc, i);
1128 	}
1129 	free_fwq(sc);
1130 
1131 	return (0);
1132 }
1133 
1134 /* Maximum payload that could arrive with a single iq descriptor. */
1135 static inline int
max_rx_payload(struct adapter * sc,if_t ifp,const bool ofld)1136 max_rx_payload(struct adapter *sc, if_t ifp, const bool ofld)
1137 {
1138 	int maxp;
1139 
1140 	/* large enough even when hw VLAN extraction is disabled */
1141 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1142 	    ETHER_VLAN_ENCAP_LEN + if_getmtu(ifp);
1143 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1144 	    maxp < sc->params.tp.max_rx_pdu)
1145 		maxp = sc->params.tp.max_rx_pdu;
1146 	return (maxp);
1147 }
1148 
1149 int
t4_setup_vi_queues(struct vi_info * vi)1150 t4_setup_vi_queues(struct vi_info *vi)
1151 {
1152 	int rc = 0, i, intr_idx;
1153 	struct sge_rxq *rxq;
1154 	struct sge_txq *txq;
1155 #ifdef TCP_OFFLOAD
1156 	struct sge_ofld_rxq *ofld_rxq;
1157 #endif
1158 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1159 	struct sge_ofld_txq *ofld_txq;
1160 #endif
1161 #ifdef DEV_NETMAP
1162 	int saved_idx, iqidx;
1163 	struct sge_nm_rxq *nm_rxq;
1164 	struct sge_nm_txq *nm_txq;
1165 #endif
1166 	struct adapter *sc = vi->adapter;
1167 	if_t ifp = vi->ifp;
1168 	int maxp;
1169 
1170 	/* Interrupt vector to start from (when using multiple vectors) */
1171 	intr_idx = vi->first_intr;
1172 
1173 #ifdef DEV_NETMAP
1174 	saved_idx = intr_idx;
1175 	if (if_getcapabilities(ifp) & IFCAP_NETMAP) {
1176 
1177 		/* netmap is supported with direct interrupts only. */
1178 		MPASS(!forwarding_intr_to_fwq(sc));
1179 		MPASS(vi->first_intr >= 0);
1180 
1181 		/*
1182 		 * We don't have buffers to back the netmap rx queues
1183 		 * right now so we create the queues in a way that
1184 		 * doesn't set off any congestion signal in the chip.
1185 		 */
1186 		for_each_nm_rxq(vi, i, nm_rxq) {
1187 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1188 			if (rc != 0)
1189 				goto done;
1190 			intr_idx++;
1191 		}
1192 
1193 		for_each_nm_txq(vi, i, nm_txq) {
1194 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1195 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1196 			if (rc != 0)
1197 				goto done;
1198 		}
1199 	}
1200 
1201 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1202 	intr_idx = saved_idx;
1203 #endif
1204 
1205 	/*
1206 	 * Allocate rx queues first because a default iqid is required when
1207 	 * creating a tx queue.
1208 	 */
1209 	maxp = max_rx_payload(sc, ifp, false);
1210 	for_each_rxq(vi, i, rxq) {
1211 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1212 		if (rc != 0)
1213 			goto done;
1214 		if (!forwarding_intr_to_fwq(sc))
1215 			intr_idx++;
1216 	}
1217 #ifdef DEV_NETMAP
1218 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
1219 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1220 #endif
1221 #ifdef TCP_OFFLOAD
1222 	maxp = max_rx_payload(sc, ifp, true);
1223 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1224 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1225 		if (rc != 0)
1226 			goto done;
1227 		if (!forwarding_intr_to_fwq(sc))
1228 			intr_idx++;
1229 	}
1230 #endif
1231 
1232 	/*
1233 	 * Now the tx queues.
1234 	 */
1235 	for_each_txq(vi, i, txq) {
1236 		rc = alloc_txq(vi, txq, i);
1237 		if (rc != 0)
1238 			goto done;
1239 	}
1240 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1241 	for_each_ofld_txq(vi, i, ofld_txq) {
1242 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1243 		if (rc != 0)
1244 			goto done;
1245 	}
1246 #endif
1247 done:
1248 	if (rc)
1249 		t4_teardown_vi_queues(vi);
1250 
1251 	return (rc);
1252 }
1253 
1254 /*
1255  * Idempotent
1256  */
1257 int
t4_teardown_vi_queues(struct vi_info * vi)1258 t4_teardown_vi_queues(struct vi_info *vi)
1259 {
1260 	int i;
1261 	struct sge_rxq *rxq;
1262 	struct sge_txq *txq;
1263 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1264 	struct sge_ofld_txq *ofld_txq;
1265 #endif
1266 #ifdef TCP_OFFLOAD
1267 	struct sge_ofld_rxq *ofld_rxq;
1268 #endif
1269 #ifdef DEV_NETMAP
1270 	struct sge_nm_rxq *nm_rxq;
1271 	struct sge_nm_txq *nm_txq;
1272 #endif
1273 
1274 #ifdef DEV_NETMAP
1275 	if (if_getcapabilities(vi->ifp) & IFCAP_NETMAP) {
1276 		for_each_nm_txq(vi, i, nm_txq) {
1277 			free_nm_txq(vi, nm_txq);
1278 		}
1279 
1280 		for_each_nm_rxq(vi, i, nm_rxq) {
1281 			free_nm_rxq(vi, nm_rxq);
1282 		}
1283 	}
1284 #endif
1285 
1286 	/*
1287 	 * Take down all the tx queues first, as they reference the rx queues
1288 	 * (for egress updates, etc.).
1289 	 */
1290 
1291 	for_each_txq(vi, i, txq) {
1292 		free_txq(vi, txq);
1293 	}
1294 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1295 	for_each_ofld_txq(vi, i, ofld_txq) {
1296 		free_ofld_txq(vi, ofld_txq);
1297 	}
1298 #endif
1299 
1300 	/*
1301 	 * Then take down the rx queues.
1302 	 */
1303 
1304 	for_each_rxq(vi, i, rxq) {
1305 		free_rxq(vi, rxq);
1306 	}
1307 #ifdef TCP_OFFLOAD
1308 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1309 		free_ofld_rxq(vi, ofld_rxq);
1310 	}
1311 #endif
1312 
1313 	return (0);
1314 }
1315 
1316 /*
1317  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1318  * unusual scenario.
1319  *
1320  * a) Deals with errors, if any.
1321  * b) Services firmware event queue, which is taking interrupts for all other
1322  *    queues.
1323  */
1324 void
t4_intr_all(void * arg)1325 t4_intr_all(void *arg)
1326 {
1327 	struct adapter *sc = arg;
1328 	struct sge_iq *fwq = &sc->sge.fwq;
1329 
1330 	MPASS(sc->intr_count == 1);
1331 
1332 	if (sc->intr_type == INTR_INTX)
1333 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1334 
1335 	t4_intr_err(arg);
1336 	t4_intr_evt(fwq);
1337 }
1338 
1339 /*
1340  * Interrupt handler for errors (installed directly when multiple interrupts are
1341  * being used, or called by t4_intr_all).
1342  */
1343 void
t4_intr_err(void * arg)1344 t4_intr_err(void *arg)
1345 {
1346 	struct adapter *sc = arg;
1347 	uint32_t v;
1348 
1349 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1350 		return;
1351 
1352 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1353 	if (v & F_PFSW) {
1354 		sc->swintr++;
1355 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1356 	}
1357 
1358 	if (t4_slow_intr_handler(sc, sc->intr_flags))
1359 		t4_fatal_err(sc, false);
1360 }
1361 
1362 /*
1363  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1364  * such queue right now.
1365  */
1366 void
t4_intr_evt(void * arg)1367 t4_intr_evt(void *arg)
1368 {
1369 	struct sge_iq *iq = arg;
1370 
1371 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1372 		service_iq(iq, 0);
1373 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1374 	}
1375 }
1376 
1377 /*
1378  * Interrupt handler for iq+fl queues.
1379  */
1380 void
t4_intr(void * arg)1381 t4_intr(void *arg)
1382 {
1383 	struct sge_iq *iq = arg;
1384 
1385 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1386 		service_iq_fl(iq, 0);
1387 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1388 	}
1389 }
1390 
1391 #ifdef DEV_NETMAP
1392 /*
1393  * Interrupt handler for netmap rx queues.
1394  */
1395 void
t4_nm_intr(void * arg)1396 t4_nm_intr(void *arg)
1397 {
1398 	struct sge_nm_rxq *nm_rxq = arg;
1399 
1400 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1401 		service_nm_rxq(nm_rxq);
1402 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1403 	}
1404 }
1405 
1406 /*
1407  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1408  */
1409 void
t4_vi_intr(void * arg)1410 t4_vi_intr(void *arg)
1411 {
1412 	struct irq *irq = arg;
1413 
1414 	MPASS(irq->nm_rxq != NULL);
1415 	t4_nm_intr(irq->nm_rxq);
1416 
1417 	MPASS(irq->rxq != NULL);
1418 	t4_intr(irq->rxq);
1419 }
1420 #endif
1421 
1422 /*
1423  * Deals with interrupts on an iq-only (no freelist) queue.
1424  */
1425 static int
service_iq(struct sge_iq * iq,int budget)1426 service_iq(struct sge_iq *iq, int budget)
1427 {
1428 	struct sge_iq *q;
1429 	struct adapter *sc = iq->adapter;
1430 	struct iq_desc *d = &iq->desc[iq->cidx];
1431 	int ndescs = 0, limit;
1432 	int rsp_type;
1433 	uint32_t lq;
1434 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1435 
1436 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1437 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1438 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1439 	    iq->flags));
1440 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1441 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1442 
1443 	limit = budget ? budget : iq->qsize / 16;
1444 
1445 	/*
1446 	 * We always come back and check the descriptor ring for new indirect
1447 	 * interrupts and other responses after running a single handler.
1448 	 */
1449 	for (;;) {
1450 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1451 
1452 			rmb();
1453 
1454 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1455 			lq = be32toh(d->rsp.pldbuflen_qid);
1456 
1457 			switch (rsp_type) {
1458 			case X_RSPD_TYPE_FLBUF:
1459 				panic("%s: data for an iq (%p) with no freelist",
1460 				    __func__, iq);
1461 
1462 				/* NOTREACHED */
1463 
1464 			case X_RSPD_TYPE_CPL:
1465 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1466 				    ("%s: bad opcode %02x.", __func__,
1467 				    d->rss.opcode));
1468 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1469 				break;
1470 
1471 			case X_RSPD_TYPE_INTR:
1472 				/*
1473 				 * There are 1K interrupt-capable queues (qids 0
1474 				 * through 1023).  A response type indicating a
1475 				 * forwarded interrupt with a qid >= 1K is an
1476 				 * iWARP async notification.
1477 				 */
1478 				if (__predict_true(lq >= 1024)) {
1479 					t4_an_handler(iq, &d->rsp);
1480 					break;
1481 				}
1482 
1483 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1484 				    sc->sge.iq_base];
1485 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1486 				    IQS_BUSY)) {
1487 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1488 						(void) atomic_cmpset_int(&q->state,
1489 						    IQS_BUSY, IQS_IDLE);
1490 					} else {
1491 						STAILQ_INSERT_TAIL(&iql, q,
1492 						    link);
1493 					}
1494 				}
1495 				break;
1496 
1497 			default:
1498 				KASSERT(0,
1499 				    ("%s: illegal response type %d on iq %p",
1500 				    __func__, rsp_type, iq));
1501 				log(LOG_ERR,
1502 				    "%s: illegal response type %d on iq %p",
1503 				    device_get_nameunit(sc->dev), rsp_type, iq);
1504 				break;
1505 			}
1506 
1507 			d++;
1508 			if (__predict_false(++iq->cidx == iq->sidx)) {
1509 				iq->cidx = 0;
1510 				iq->gen ^= F_RSPD_GEN;
1511 				d = &iq->desc[0];
1512 			}
1513 			if (__predict_false(++ndescs == limit)) {
1514 				t4_write_reg(sc, sc->sge_gts_reg,
1515 				    V_CIDXINC(ndescs) |
1516 				    V_INGRESSQID(iq->cntxt_id) |
1517 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1518 				ndescs = 0;
1519 
1520 				if (budget) {
1521 					return (EINPROGRESS);
1522 				}
1523 			}
1524 		}
1525 
1526 		if (STAILQ_EMPTY(&iql))
1527 			break;
1528 
1529 		/*
1530 		 * Process the head only, and send it to the back of the list if
1531 		 * it's still not done.
1532 		 */
1533 		q = STAILQ_FIRST(&iql);
1534 		STAILQ_REMOVE_HEAD(&iql, link);
1535 		if (service_iq_fl(q, q->qsize / 8) == 0)
1536 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1537 		else
1538 			STAILQ_INSERT_TAIL(&iql, q, link);
1539 	}
1540 
1541 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1542 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1543 
1544 	return (0);
1545 }
1546 
1547 #if defined(INET) || defined(INET6)
1548 static inline int
sort_before_lro(struct lro_ctrl * lro)1549 sort_before_lro(struct lro_ctrl *lro)
1550 {
1551 
1552 	return (lro->lro_mbuf_max != 0);
1553 }
1554 #endif
1555 
1556 static inline uint64_t
t4_tstmp_to_ns(struct adapter * sc,uint64_t hw_tstmp)1557 t4_tstmp_to_ns(struct adapter *sc, uint64_t hw_tstmp)
1558 {
1559 	struct clock_sync *cur, dcur;
1560 	uint64_t hw_clocks;
1561 	uint64_t hw_clk_div;
1562 	sbintime_t sbt_cur_to_prev, sbt;
1563 	seqc_t gen;
1564 
1565 	for (;;) {
1566 		cur = &sc->cal_info[sc->cal_current];
1567 		gen = seqc_read(&cur->gen);
1568 		if (gen == 0)
1569 			return (0);
1570 		dcur = *cur;
1571 		if (seqc_consistent(&cur->gen, gen))
1572 			break;
1573 	}
1574 
1575 	/*
1576 	 * Our goal here is to have a result that is:
1577 	 *
1578 	 * (                             (cur_time - prev_time)   )
1579 	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1580 	 * (                             (hw_cur - hw_prev)       )
1581 	 *
1582 	 * With the constraints that we cannot use float and we
1583 	 * don't want to overflow the uint64_t numbers we are using.
1584 	 */
1585 	hw_clocks = hw_tstmp - dcur.hw_prev;
1586 	sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1587 	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1588 	sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1589 	return (sbttons(sbt));
1590 }
1591 
1592 static inline void
move_to_next_rxbuf(struct sge_fl * fl)1593 move_to_next_rxbuf(struct sge_fl *fl)
1594 {
1595 
1596 	fl->rx_offset = 0;
1597 	if (__predict_false((++fl->cidx & 7) == 0)) {
1598 		uint16_t cidx = fl->cidx >> 3;
1599 
1600 		if (__predict_false(cidx == fl->sidx))
1601 			fl->cidx = cidx = 0;
1602 		fl->hw_cidx = cidx;
1603 	}
1604 }
1605 
1606 /*
1607  * Deals with interrupts on an iq+fl queue.
1608  */
1609 static int
service_iq_fl(struct sge_iq * iq,int budget)1610 service_iq_fl(struct sge_iq *iq, int budget)
1611 {
1612 	struct sge_rxq *rxq = iq_to_rxq(iq);
1613 	struct sge_fl *fl;
1614 	struct adapter *sc = iq->adapter;
1615 	struct iq_desc *d = &iq->desc[iq->cidx];
1616 	int ndescs, limit;
1617 	int rsp_type, starved;
1618 	uint32_t lq;
1619 	uint16_t fl_hw_cidx;
1620 	struct mbuf *m0;
1621 #if defined(INET) || defined(INET6)
1622 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1623 	struct lro_ctrl *lro = &rxq->lro;
1624 #endif
1625 
1626 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1627 	MPASS(iq->flags & IQ_HAS_FL);
1628 
1629 	ndescs = 0;
1630 #if defined(INET) || defined(INET6)
1631 	if (iq->flags & IQ_ADJ_CREDIT) {
1632 		MPASS(sort_before_lro(lro));
1633 		iq->flags &= ~IQ_ADJ_CREDIT;
1634 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1635 			tcp_lro_flush_all(lro);
1636 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1637 			    V_INGRESSQID((u32)iq->cntxt_id) |
1638 			    V_SEINTARM(iq->intr_params));
1639 			return (0);
1640 		}
1641 		ndescs = 1;
1642 	}
1643 #else
1644 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1645 #endif
1646 
1647 	limit = budget ? budget : iq->qsize / 16;
1648 	fl = &rxq->fl;
1649 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1650 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1651 
1652 		rmb();
1653 
1654 		m0 = NULL;
1655 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1656 		lq = be32toh(d->rsp.pldbuflen_qid);
1657 
1658 		switch (rsp_type) {
1659 		case X_RSPD_TYPE_FLBUF:
1660 			if (lq & F_RSPD_NEWBUF) {
1661 				if (fl->rx_offset > 0)
1662 					move_to_next_rxbuf(fl);
1663 				lq = G_RSPD_LEN(lq);
1664 			}
1665 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1666 				FL_LOCK(fl);
1667 				refill_fl(sc, fl, 64);
1668 				FL_UNLOCK(fl);
1669 				fl_hw_cidx = fl->hw_cidx;
1670 			}
1671 
1672 			if (d->rss.opcode == CPL_RX_PKT) {
1673 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1674 					break;
1675 				goto out;
1676 			}
1677 			m0 = get_fl_payload(sc, fl, lq);
1678 			if (__predict_false(m0 == NULL))
1679 				goto out;
1680 
1681 			/* fall through */
1682 
1683 		case X_RSPD_TYPE_CPL:
1684 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1685 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1686 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1687 			break;
1688 
1689 		case X_RSPD_TYPE_INTR:
1690 
1691 			/*
1692 			 * There are 1K interrupt-capable queues (qids 0
1693 			 * through 1023).  A response type indicating a
1694 			 * forwarded interrupt with a qid >= 1K is an
1695 			 * iWARP async notification.  That is the only
1696 			 * acceptable indirect interrupt on this queue.
1697 			 */
1698 			if (__predict_false(lq < 1024)) {
1699 				panic("%s: indirect interrupt on iq_fl %p "
1700 				    "with qid %u", __func__, iq, lq);
1701 			}
1702 
1703 			t4_an_handler(iq, &d->rsp);
1704 			break;
1705 
1706 		default:
1707 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1708 			    __func__, rsp_type, iq));
1709 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1710 			    device_get_nameunit(sc->dev), rsp_type, iq);
1711 			break;
1712 		}
1713 
1714 		d++;
1715 		if (__predict_false(++iq->cidx == iq->sidx)) {
1716 			iq->cidx = 0;
1717 			iq->gen ^= F_RSPD_GEN;
1718 			d = &iq->desc[0];
1719 		}
1720 		if (__predict_false(++ndescs == limit)) {
1721 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1722 			    V_INGRESSQID(iq->cntxt_id) |
1723 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1724 
1725 #if defined(INET) || defined(INET6)
1726 			if (iq->flags & IQ_LRO_ENABLED &&
1727 			    !sort_before_lro(lro) &&
1728 			    sc->lro_timeout != 0) {
1729 				tcp_lro_flush_inactive(lro, &lro_timeout);
1730 			}
1731 #endif
1732 			if (budget)
1733 				return (EINPROGRESS);
1734 			ndescs = 0;
1735 		}
1736 	}
1737 out:
1738 #if defined(INET) || defined(INET6)
1739 	if (iq->flags & IQ_LRO_ENABLED) {
1740 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1741 			MPASS(sort_before_lro(lro));
1742 			/* hold back one credit and don't flush LRO state */
1743 			iq->flags |= IQ_ADJ_CREDIT;
1744 			ndescs--;
1745 		} else {
1746 			tcp_lro_flush_all(lro);
1747 		}
1748 	}
1749 #endif
1750 
1751 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1752 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1753 
1754 	FL_LOCK(fl);
1755 	starved = refill_fl(sc, fl, 64);
1756 	FL_UNLOCK(fl);
1757 	if (__predict_false(starved != 0))
1758 		add_fl_to_sfl(sc, fl);
1759 
1760 	return (0);
1761 }
1762 
1763 static inline struct cluster_metadata *
cl_metadata(struct fl_sdesc * sd)1764 cl_metadata(struct fl_sdesc *sd)
1765 {
1766 
1767 	return ((void *)(sd->cl + sd->moff));
1768 }
1769 
1770 static void
rxb_free(struct mbuf * m)1771 rxb_free(struct mbuf *m)
1772 {
1773 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1774 
1775 	uma_zfree(clm->zone, clm->cl);
1776 	counter_u64_add(extfree_rels, 1);
1777 }
1778 
1779 /*
1780  * The mbuf returned comes from zone_muf and carries the payload in one of these
1781  * ways
1782  * a) complete frame inside the mbuf
1783  * b) m_cljset (for clusters without metadata)
1784  * d) m_extaddref (cluster with metadata)
1785  */
1786 static struct mbuf *
get_scatter_segment(struct adapter * sc,struct sge_fl * fl,int fr_offset,int remaining)1787 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1788     int remaining)
1789 {
1790 	struct mbuf *m;
1791 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1792 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1793 	struct cluster_metadata *clm;
1794 	int len, blen;
1795 	caddr_t payload;
1796 
1797 	if (fl->flags & FL_BUF_PACKING) {
1798 		u_int l, pad;
1799 
1800 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1801 		len = min(remaining, blen);
1802 		payload = sd->cl + fl->rx_offset;
1803 
1804 		l = fr_offset + len;
1805 		pad = roundup2(l, fl->buf_boundary) - l;
1806 		if (fl->rx_offset + len + pad < rxb->size2)
1807 			blen = len + pad;
1808 		MPASS(fl->rx_offset + blen <= rxb->size2);
1809 	} else {
1810 		MPASS(fl->rx_offset == 0);	/* not packing */
1811 		blen = rxb->size1;
1812 		len = min(remaining, blen);
1813 		payload = sd->cl;
1814 	}
1815 
1816 	if (fr_offset == 0) {
1817 		m = m_gethdr(M_NOWAIT, MT_DATA);
1818 		if (__predict_false(m == NULL))
1819 			return (NULL);
1820 		m->m_pkthdr.len = remaining;
1821 	} else {
1822 		m = m_get(M_NOWAIT, MT_DATA);
1823 		if (__predict_false(m == NULL))
1824 			return (NULL);
1825 	}
1826 	m->m_len = len;
1827 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1828 
1829 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1830 		/* copy data to mbuf */
1831 		bcopy(payload, mtod(m, caddr_t), len);
1832 		if (fl->flags & FL_BUF_PACKING) {
1833 			fl->rx_offset += blen;
1834 			MPASS(fl->rx_offset <= rxb->size2);
1835 			if (fl->rx_offset < rxb->size2)
1836 				return (m);	/* without advancing the cidx */
1837 		}
1838 	} else if (fl->flags & FL_BUF_PACKING) {
1839 		clm = cl_metadata(sd);
1840 		if (sd->nmbuf++ == 0) {
1841 			clm->refcount = 1;
1842 			clm->zone = rxb->zone;
1843 			clm->cl = sd->cl;
1844 			counter_u64_add(extfree_refs, 1);
1845 		}
1846 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1847 		    NULL);
1848 
1849 		fl->rx_offset += blen;
1850 		MPASS(fl->rx_offset <= rxb->size2);
1851 		if (fl->rx_offset < rxb->size2)
1852 			return (m);	/* without advancing the cidx */
1853 	} else {
1854 		m_cljset(m, sd->cl, rxb->type);
1855 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1856 	}
1857 
1858 	move_to_next_rxbuf(fl);
1859 
1860 	return (m);
1861 }
1862 
1863 static struct mbuf *
get_fl_payload(struct adapter * sc,struct sge_fl * fl,const u_int plen)1864 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1865 {
1866 	struct mbuf *m0, *m, **pnext;
1867 	u_int remaining;
1868 
1869 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1870 		M_ASSERTPKTHDR(fl->m0);
1871 		MPASS(fl->m0->m_pkthdr.len == plen);
1872 		MPASS(fl->remaining < plen);
1873 
1874 		m0 = fl->m0;
1875 		pnext = fl->pnext;
1876 		remaining = fl->remaining;
1877 		fl->flags &= ~FL_BUF_RESUME;
1878 		goto get_segment;
1879 	}
1880 
1881 	/*
1882 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1883 	 * 'len' and it may span multiple hw buffers.
1884 	 */
1885 
1886 	m0 = get_scatter_segment(sc, fl, 0, plen);
1887 	if (m0 == NULL)
1888 		return (NULL);
1889 	remaining = plen - m0->m_len;
1890 	pnext = &m0->m_next;
1891 	while (remaining > 0) {
1892 get_segment:
1893 		MPASS(fl->rx_offset == 0);
1894 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1895 		if (__predict_false(m == NULL)) {
1896 			fl->m0 = m0;
1897 			fl->pnext = pnext;
1898 			fl->remaining = remaining;
1899 			fl->flags |= FL_BUF_RESUME;
1900 			return (NULL);
1901 		}
1902 		*pnext = m;
1903 		pnext = &m->m_next;
1904 		remaining -= m->m_len;
1905 	}
1906 	*pnext = NULL;
1907 
1908 	M_ASSERTPKTHDR(m0);
1909 	return (m0);
1910 }
1911 
1912 static int
skip_scatter_segment(struct adapter * sc,struct sge_fl * fl,int fr_offset,int remaining)1913 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1914     int remaining)
1915 {
1916 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1917 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1918 	int len, blen;
1919 
1920 	if (fl->flags & FL_BUF_PACKING) {
1921 		u_int l, pad;
1922 
1923 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1924 		len = min(remaining, blen);
1925 
1926 		l = fr_offset + len;
1927 		pad = roundup2(l, fl->buf_boundary) - l;
1928 		if (fl->rx_offset + len + pad < rxb->size2)
1929 			blen = len + pad;
1930 		fl->rx_offset += blen;
1931 		MPASS(fl->rx_offset <= rxb->size2);
1932 		if (fl->rx_offset < rxb->size2)
1933 			return (len);	/* without advancing the cidx */
1934 	} else {
1935 		MPASS(fl->rx_offset == 0);	/* not packing */
1936 		blen = rxb->size1;
1937 		len = min(remaining, blen);
1938 	}
1939 	move_to_next_rxbuf(fl);
1940 	return (len);
1941 }
1942 
1943 static inline void
skip_fl_payload(struct adapter * sc,struct sge_fl * fl,int plen)1944 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1945 {
1946 	int remaining, fr_offset, len;
1947 
1948 	fr_offset = 0;
1949 	remaining = plen;
1950 	while (remaining > 0) {
1951 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1952 		fr_offset += len;
1953 		remaining -= len;
1954 	}
1955 }
1956 
1957 static inline int
get_segment_len(struct adapter * sc,struct sge_fl * fl,int plen)1958 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1959 {
1960 	int len;
1961 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1962 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1963 
1964 	if (fl->flags & FL_BUF_PACKING)
1965 		len = rxb->size2 - fl->rx_offset;
1966 	else
1967 		len = rxb->size1;
1968 
1969 	return (min(plen, len));
1970 }
1971 
1972 static void
handle_cpl_rx_pkt(struct adapter * sc,struct sge_rxq * rxq,const struct cpl_rx_pkt * cpl,struct mbuf * m0)1973 handle_cpl_rx_pkt(struct adapter *sc, struct sge_rxq *rxq,
1974     const struct cpl_rx_pkt *cpl, struct mbuf *m0)
1975 {
1976 	if_t ifp = rxq->ifp;
1977 	uint16_t err_vec, tnl_type, tnlhdr_len;
1978 	static const int sw_csum_flags[2][2] = {
1979 		{
1980 			/* IP, inner IP */
1981 			CSUM_ENCAP_VXLAN |
1982 			    CSUM_L3_CALC | CSUM_L3_VALID |
1983 			    CSUM_L4_CALC | CSUM_L4_VALID |
1984 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1985 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1986 
1987 			/* IP, inner IP6 */
1988 			CSUM_ENCAP_VXLAN |
1989 			    CSUM_L3_CALC | CSUM_L3_VALID |
1990 			    CSUM_L4_CALC | CSUM_L4_VALID |
1991 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1992 		},
1993 		{
1994 			/* IP6, inner IP */
1995 			CSUM_ENCAP_VXLAN |
1996 			    CSUM_L4_CALC | CSUM_L4_VALID |
1997 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1998 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1999 
2000 			/* IP6, inner IP6 */
2001 			CSUM_ENCAP_VXLAN |
2002 			    CSUM_L4_CALC | CSUM_L4_VALID |
2003 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2004 		},
2005 	};
2006 
2007 	if (sc->params.tp.rx_pkt_encap) {
2008 		const uint16_t ev = be16toh(cpl->err_vec);
2009 
2010 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2011 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2012 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2013 	} else {
2014 		err_vec = be16toh(cpl->err_vec);
2015 		tnl_type = 0;
2016 		tnlhdr_len = 0;
2017 	}
2018 	if (cpl->csum_calc && err_vec == 0) {
2019 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2020 
2021 		/* checksum(s) calculated and found to be correct. */
2022 
2023 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2024 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2025 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2026 		if (tnl_type == 0) {
2027 			if (!ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM) {
2028 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2029 				    CSUM_L3_VALID | CSUM_L4_CALC |
2030 				    CSUM_L4_VALID;
2031 			} else if (ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM_IPV6) {
2032 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2033 				    CSUM_L4_VALID;
2034 			}
2035 			rxq->rxcsum++;
2036 		} else {
2037 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2038 
2039 			M_HASHTYPE_SETINNER(m0);
2040 			if (__predict_false(cpl->ip_frag)) {
2041 				/*
2042 				 * csum_data is for the inner frame (which is an
2043 				 * IP fragment) and is not 0xffff.  There is no
2044 				 * way to pass the inner csum_data to the stack.
2045 				 * We don't want the stack to use the inner
2046 				 * csum_data to validate the outer frame or it
2047 				 * will get rejected.  So we fix csum_data here
2048 				 * and let sw do the checksum of inner IP
2049 				 * fragments.
2050 				 *
2051 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2052 				 * Maybe stuff it into rcv_tstmp?
2053 				 */
2054 				m0->m_pkthdr.csum_data = 0xffff;
2055 				if (ipv6) {
2056 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2057 					    CSUM_L4_VALID;
2058 				} else {
2059 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2060 					    CSUM_L3_VALID | CSUM_L4_CALC |
2061 					    CSUM_L4_VALID;
2062 				}
2063 			} else {
2064 				int outer_ipv6;
2065 
2066 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2067 
2068 				outer_ipv6 = tnlhdr_len >=
2069 				    sizeof(struct ether_header) +
2070 				    sizeof(struct ip6_hdr);
2071 				m0->m_pkthdr.csum_flags =
2072 				    sw_csum_flags[outer_ipv6][ipv6];
2073 			}
2074 			rxq->vxlan_rxcsum++;
2075 		}
2076 	}
2077 
2078 	if (cpl->vlan_ex) {
2079 		if (sc->flags & IS_VF && sc->vlan_id) {
2080 			/*
2081 			 * HW is not setup correctly if extracted vlan_id does
2082 			 * not match the VF's setting.
2083 			 */
2084 			MPASS(be16toh(cpl->vlan) == sc->vlan_id);
2085 		} else {
2086 			m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2087 			m0->m_flags |= M_VLANTAG;
2088 			rxq->vlan_extraction++;
2089 		}
2090 	}
2091 }
2092 
2093 static int
eth_rx(struct adapter * sc,struct sge_rxq * rxq,const struct iq_desc * d,u_int plen)2094 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
2095     u_int plen)
2096 {
2097 	struct mbuf *m0;
2098 	if_t ifp = rxq->ifp;
2099 	struct sge_fl *fl = &rxq->fl;
2100 	struct vi_info *vi = if_getsoftc(ifp);
2101 #if defined(INET) || defined(INET6)
2102 	struct lro_ctrl *lro = &rxq->lro;
2103 #endif
2104 	int rc;
2105 	const uint8_t fl_pktshift = sc->params.sge.fl_pktshift;
2106 	static const uint8_t sw_hashtype[4][2] = {
2107 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
2108 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
2109 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
2110 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
2111 	};
2112 
2113 	MPASS(plen > fl_pktshift);
2114 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
2115 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
2116 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
2117 		caddr_t frame;
2118 		const int slen = get_segment_len(sc, fl, plen) - fl_pktshift;
2119 
2120 		frame = sd->cl + fl->rx_offset + fl_pktshift;
2121 		CURVNET_SET_QUIET(if_getvnet(ifp));
2122 		rc = pfil_mem_in(vi->pfil, frame, slen, ifp, &m0);
2123 		CURVNET_RESTORE();
2124 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2125 			skip_fl_payload(sc, fl, plen);
2126 			return (0);
2127 		}
2128 		if (rc == PFIL_REALLOCED) {
2129 			skip_fl_payload(sc, fl, plen);
2130 			goto have_mbuf;
2131 		}
2132 	}
2133 
2134 	m0 = get_fl_payload(sc, fl, plen);
2135 	if (__predict_false(m0 == NULL))
2136 		return (ENOMEM);
2137 	m0->m_pkthdr.len -= fl_pktshift;
2138 	m0->m_len -= fl_pktshift;
2139 	m0->m_data += fl_pktshift;
2140 
2141 have_mbuf:
2142 	m0->m_pkthdr.rcvif = ifp;
2143 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2144 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2145 #ifdef NUMA
2146 	m0->m_pkthdr.numa_domain = if_getnumadomain(ifp);
2147 #endif
2148 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2149 		/*
2150 		 * Fill up rcv_tstmp and set M_TSTMP if we get a a non-zero back
2151 		 * from t4_tstmp_to_ns().  The descriptor has a 60b timestamp.
2152 		 */
2153 		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2154 		    be64toh(d->rsp.u.last_flit) & 0x0fffffffffffffffULL);
2155 		if (m0->m_pkthdr.rcv_tstmp != 0)
2156 			m0->m_flags |= M_TSTMP;
2157 	}
2158 
2159 	handle_cpl_rx_pkt(sc, rxq, (const void *)(&d->rss + 1), m0);
2160 
2161 #if defined(INET) || defined(INET6)
2162 	if (rxq->iq.flags & IQ_LRO_ENABLED &&
2163 	    (m0->m_pkthdr.rsstype & M_HASHTYPE_INNER) == 0 &&
2164 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2165 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2166 		if (sort_before_lro(lro)) {
2167 			tcp_lro_queue_mbuf(lro, m0);
2168 			return (0); /* queued for sort, then LRO */
2169 		}
2170 		if (tcp_lro_rx(lro, m0, 0) == 0)
2171 			return (0); /* queued for LRO */
2172 	}
2173 #endif
2174 	if_input(ifp, m0);
2175 
2176 	return (0);
2177 }
2178 
2179 /*
2180  * Must drain the wrq or make sure that someone else will.
2181  */
2182 static void
wrq_tx_drain(void * arg,int n)2183 wrq_tx_drain(void *arg, int n)
2184 {
2185 	struct sge_wrq *wrq = arg;
2186 	struct sge_eq *eq = &wrq->eq;
2187 
2188 	EQ_LOCK(eq);
2189 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2190 		drain_wrq_wr_list(wrq->adapter, wrq);
2191 	EQ_UNLOCK(eq);
2192 }
2193 
2194 static void
drain_wrq_wr_list(struct adapter * sc,struct sge_wrq * wrq)2195 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2196 {
2197 	struct sge_eq *eq = &wrq->eq;
2198 	u_int available, dbdiff;	/* # of hardware descriptors */
2199 	u_int n;
2200 	struct wrqe *wr;
2201 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2202 
2203 	EQ_LOCK_ASSERT_OWNED(eq);
2204 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2205 	wr = STAILQ_FIRST(&wrq->wr_list);
2206 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2207 	MPASS(eq->pidx == eq->dbidx);
2208 	dbdiff = 0;
2209 
2210 	do {
2211 		eq->cidx = read_hw_cidx(eq);
2212 		if (eq->pidx == eq->cidx)
2213 			available = eq->sidx - 1;
2214 		else
2215 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2216 
2217 		MPASS(wr->wrq == wrq);
2218 		n = howmany(wr->wr_len, EQ_ESIZE);
2219 		if (available < n)
2220 			break;
2221 
2222 		dst = (void *)&eq->desc[eq->pidx];
2223 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2224 			/* Won't wrap, won't end exactly at the status page. */
2225 			bcopy(&wr->wr[0], dst, wr->wr_len);
2226 			eq->pidx += n;
2227 		} else {
2228 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2229 
2230 			bcopy(&wr->wr[0], dst, first_portion);
2231 			if (wr->wr_len > first_portion) {
2232 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2233 				    wr->wr_len - first_portion);
2234 			}
2235 			eq->pidx = n - (eq->sidx - eq->pidx);
2236 		}
2237 		wrq->tx_wrs_copied++;
2238 
2239 		if (available < eq->sidx / 4 &&
2240 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2241 				/*
2242 				 * XXX: This is not 100% reliable with some
2243 				 * types of WRs.  But this is a very unusual
2244 				 * situation for an ofld/ctrl queue anyway.
2245 				 */
2246 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2247 			    F_FW_WR_EQUEQ);
2248 		}
2249 
2250 		dbdiff += n;
2251 		if (dbdiff >= 16) {
2252 			ring_eq_db(sc, eq, dbdiff);
2253 			dbdiff = 0;
2254 		}
2255 
2256 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2257 		free_wrqe(wr);
2258 		MPASS(wrq->nwr_pending > 0);
2259 		wrq->nwr_pending--;
2260 		MPASS(wrq->ndesc_needed >= n);
2261 		wrq->ndesc_needed -= n;
2262 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2263 
2264 	if (dbdiff)
2265 		ring_eq_db(sc, eq, dbdiff);
2266 }
2267 
2268 /*
2269  * Doesn't fail.  Holds on to work requests it can't send right away.
2270  */
2271 void
t4_wrq_tx_locked(struct adapter * sc,struct sge_wrq * wrq,struct wrqe * wr)2272 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2273 {
2274 #ifdef INVARIANTS
2275 	struct sge_eq *eq = &wrq->eq;
2276 #endif
2277 
2278 	EQ_LOCK_ASSERT_OWNED(eq);
2279 	MPASS(wr != NULL);
2280 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2281 	MPASS((wr->wr_len & 0x7) == 0);
2282 
2283 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2284 	wrq->nwr_pending++;
2285 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2286 
2287 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2288 		return;	/* commit_wrq_wr will drain wr_list as well. */
2289 
2290 	drain_wrq_wr_list(sc, wrq);
2291 
2292 	/* Doorbell must have caught up to the pidx. */
2293 	MPASS(eq->pidx == eq->dbidx);
2294 }
2295 
2296 void
t4_update_fl_bufsize(if_t ifp)2297 t4_update_fl_bufsize(if_t ifp)
2298 {
2299 	struct vi_info *vi = if_getsoftc(ifp);
2300 	struct adapter *sc = vi->adapter;
2301 	struct sge_rxq *rxq;
2302 #ifdef TCP_OFFLOAD
2303 	struct sge_ofld_rxq *ofld_rxq;
2304 #endif
2305 	struct sge_fl *fl;
2306 	int i, maxp;
2307 
2308 	maxp = max_rx_payload(sc, ifp, false);
2309 	for_each_rxq(vi, i, rxq) {
2310 		fl = &rxq->fl;
2311 
2312 		FL_LOCK(fl);
2313 		fl->zidx = find_refill_source(sc, maxp,
2314 		    fl->flags & FL_BUF_PACKING);
2315 		FL_UNLOCK(fl);
2316 	}
2317 #ifdef TCP_OFFLOAD
2318 	maxp = max_rx_payload(sc, ifp, true);
2319 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2320 		fl = &ofld_rxq->fl;
2321 
2322 		FL_LOCK(fl);
2323 		fl->zidx = find_refill_source(sc, maxp,
2324 		    fl->flags & FL_BUF_PACKING);
2325 		FL_UNLOCK(fl);
2326 	}
2327 #endif
2328 }
2329 
2330 #ifdef RATELIMIT
2331 static inline int
mbuf_eo_nsegs(struct mbuf * m)2332 mbuf_eo_nsegs(struct mbuf *m)
2333 {
2334 
2335 	M_ASSERTPKTHDR(m);
2336 	return (m->m_pkthdr.PH_loc.eight[1]);
2337 }
2338 
2339 #if defined(INET) || defined(INET6)
2340 static inline void
set_mbuf_eo_nsegs(struct mbuf * m,uint8_t nsegs)2341 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2342 {
2343 
2344 	M_ASSERTPKTHDR(m);
2345 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2346 }
2347 #endif
2348 
2349 static inline int
mbuf_eo_len16(struct mbuf * m)2350 mbuf_eo_len16(struct mbuf *m)
2351 {
2352 	int n;
2353 
2354 	M_ASSERTPKTHDR(m);
2355 	n = m->m_pkthdr.PH_loc.eight[2];
2356 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2357 
2358 	return (n);
2359 }
2360 
2361 #if defined(INET) || defined(INET6)
2362 static inline void
set_mbuf_eo_len16(struct mbuf * m,uint8_t len16)2363 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2364 {
2365 
2366 	M_ASSERTPKTHDR(m);
2367 	m->m_pkthdr.PH_loc.eight[2] = len16;
2368 }
2369 #endif
2370 
2371 static inline int
mbuf_eo_tsclk_tsoff(struct mbuf * m)2372 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2373 {
2374 
2375 	M_ASSERTPKTHDR(m);
2376 	return (m->m_pkthdr.PH_loc.eight[3]);
2377 }
2378 
2379 #if defined(INET) || defined(INET6)
2380 static inline void
set_mbuf_eo_tsclk_tsoff(struct mbuf * m,uint8_t tsclk_tsoff)2381 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2382 {
2383 
2384 	M_ASSERTPKTHDR(m);
2385 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2386 }
2387 #endif
2388 
2389 static inline int
needs_eo(struct m_snd_tag * mst)2390 needs_eo(struct m_snd_tag *mst)
2391 {
2392 
2393 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2394 }
2395 #endif
2396 
2397 /*
2398  * Try to allocate an mbuf to contain a raw work request.  To make it
2399  * easy to construct the work request, don't allocate a chain but a
2400  * single mbuf.
2401  */
2402 struct mbuf *
alloc_wr_mbuf(int len,int how)2403 alloc_wr_mbuf(int len, int how)
2404 {
2405 	struct mbuf *m;
2406 
2407 	if (len <= MHLEN)
2408 		m = m_gethdr(how, MT_DATA);
2409 	else if (len <= MCLBYTES)
2410 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2411 	else
2412 		m = NULL;
2413 	if (m == NULL)
2414 		return (NULL);
2415 	m->m_pkthdr.len = len;
2416 	m->m_len = len;
2417 	set_mbuf_cflags(m, MC_RAW_WR);
2418 	set_mbuf_len16(m, howmany(len, 16));
2419 	return (m);
2420 }
2421 
2422 static inline bool
needs_hwcsum(struct mbuf * m)2423 needs_hwcsum(struct mbuf *m)
2424 {
2425 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2426 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2427 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2428 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2429 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2430 
2431 	M_ASSERTPKTHDR(m);
2432 
2433 	return (m->m_pkthdr.csum_flags & csum_flags);
2434 }
2435 
2436 static inline bool
needs_tso(struct mbuf * m)2437 needs_tso(struct mbuf *m)
2438 {
2439 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2440 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2441 
2442 	M_ASSERTPKTHDR(m);
2443 
2444 	return (m->m_pkthdr.csum_flags & csum_flags);
2445 }
2446 
2447 static inline bool
needs_vxlan_csum(struct mbuf * m)2448 needs_vxlan_csum(struct mbuf *m)
2449 {
2450 
2451 	M_ASSERTPKTHDR(m);
2452 
2453 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2454 }
2455 
2456 static inline bool
needs_vxlan_tso(struct mbuf * m)2457 needs_vxlan_tso(struct mbuf *m)
2458 {
2459 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2460 	    CSUM_INNER_IP6_TSO;
2461 
2462 	M_ASSERTPKTHDR(m);
2463 
2464 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2465 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2466 }
2467 
2468 #if defined(INET) || defined(INET6)
2469 static inline bool
needs_inner_tcp_csum(struct mbuf * m)2470 needs_inner_tcp_csum(struct mbuf *m)
2471 {
2472 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2473 
2474 	M_ASSERTPKTHDR(m);
2475 
2476 	return (m->m_pkthdr.csum_flags & csum_flags);
2477 }
2478 #endif
2479 
2480 static inline bool
needs_l3_csum(struct mbuf * m)2481 needs_l3_csum(struct mbuf *m)
2482 {
2483 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2484 	    CSUM_INNER_IP_TSO;
2485 
2486 	M_ASSERTPKTHDR(m);
2487 
2488 	return (m->m_pkthdr.csum_flags & csum_flags);
2489 }
2490 
2491 static inline bool
needs_outer_tcp_csum(struct mbuf * m)2492 needs_outer_tcp_csum(struct mbuf *m)
2493 {
2494 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2495 	    CSUM_IP6_TSO;
2496 
2497 	M_ASSERTPKTHDR(m);
2498 
2499 	return (m->m_pkthdr.csum_flags & csum_flags);
2500 }
2501 
2502 #ifdef RATELIMIT
2503 static inline bool
needs_outer_l4_csum(struct mbuf * m)2504 needs_outer_l4_csum(struct mbuf *m)
2505 {
2506 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2507 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2508 
2509 	M_ASSERTPKTHDR(m);
2510 
2511 	return (m->m_pkthdr.csum_flags & csum_flags);
2512 }
2513 
2514 static inline bool
needs_outer_udp_csum(struct mbuf * m)2515 needs_outer_udp_csum(struct mbuf *m)
2516 {
2517 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2518 
2519 	M_ASSERTPKTHDR(m);
2520 
2521 	return (m->m_pkthdr.csum_flags & csum_flags);
2522 }
2523 #endif
2524 
2525 static inline bool
needs_vlan_insertion(struct mbuf * m)2526 needs_vlan_insertion(struct mbuf *m)
2527 {
2528 
2529 	M_ASSERTPKTHDR(m);
2530 
2531 	return (m->m_flags & M_VLANTAG);
2532 }
2533 
2534 #if defined(INET) || defined(INET6)
2535 static void *
m_advance(struct mbuf ** pm,int * poffset,int len)2536 m_advance(struct mbuf **pm, int *poffset, int len)
2537 {
2538 	struct mbuf *m = *pm;
2539 	int offset = *poffset;
2540 	uintptr_t p = 0;
2541 
2542 	MPASS(len > 0);
2543 
2544 	for (;;) {
2545 		if (offset + len < m->m_len) {
2546 			offset += len;
2547 			p = mtod(m, uintptr_t) + offset;
2548 			break;
2549 		}
2550 		len -= m->m_len - offset;
2551 		m = m->m_next;
2552 		offset = 0;
2553 		MPASS(m != NULL);
2554 	}
2555 	*poffset = offset;
2556 	*pm = m;
2557 	return ((void *)p);
2558 }
2559 #endif
2560 
2561 static inline int
count_mbuf_ext_pgs(struct mbuf * m,int skip,vm_paddr_t * nextaddr)2562 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2563 {
2564 	vm_paddr_t paddr;
2565 	int i, len, off, pglen, pgoff, seglen, segoff;
2566 	int nsegs = 0;
2567 
2568 	M_ASSERTEXTPG(m);
2569 	off = mtod(m, vm_offset_t);
2570 	len = m->m_len;
2571 	off += skip;
2572 	len -= skip;
2573 
2574 	if (m->m_epg_hdrlen != 0) {
2575 		if (off >= m->m_epg_hdrlen) {
2576 			off -= m->m_epg_hdrlen;
2577 		} else {
2578 			seglen = m->m_epg_hdrlen - off;
2579 			segoff = off;
2580 			seglen = min(seglen, len);
2581 			off = 0;
2582 			len -= seglen;
2583 			paddr = pmap_kextract(
2584 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2585 			if (*nextaddr != paddr)
2586 				nsegs++;
2587 			*nextaddr = paddr + seglen;
2588 		}
2589 	}
2590 	pgoff = m->m_epg_1st_off;
2591 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2592 		pglen = m_epg_pagelen(m, i, pgoff);
2593 		if (off >= pglen) {
2594 			off -= pglen;
2595 			pgoff = 0;
2596 			continue;
2597 		}
2598 		seglen = pglen - off;
2599 		segoff = pgoff + off;
2600 		off = 0;
2601 		seglen = min(seglen, len);
2602 		len -= seglen;
2603 		paddr = m->m_epg_pa[i] + segoff;
2604 		if (*nextaddr != paddr)
2605 			nsegs++;
2606 		*nextaddr = paddr + seglen;
2607 		pgoff = 0;
2608 	};
2609 	if (len != 0) {
2610 		seglen = min(len, m->m_epg_trllen - off);
2611 		len -= seglen;
2612 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2613 		if (*nextaddr != paddr)
2614 			nsegs++;
2615 		*nextaddr = paddr + seglen;
2616 	}
2617 
2618 	return (nsegs);
2619 }
2620 
2621 
2622 /*
2623  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2624  * must have at least one mbuf that's not empty.  It is possible for this
2625  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2626  */
2627 static inline int
count_mbuf_nsegs(struct mbuf * m,int skip,uint8_t * cflags)2628 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2629 {
2630 	vm_paddr_t nextaddr, paddr;
2631 	vm_offset_t va;
2632 	int len, nsegs;
2633 
2634 	M_ASSERTPKTHDR(m);
2635 	MPASS(m->m_pkthdr.len > 0);
2636 	MPASS(m->m_pkthdr.len >= skip);
2637 
2638 	nsegs = 0;
2639 	nextaddr = 0;
2640 	for (; m; m = m->m_next) {
2641 		len = m->m_len;
2642 		if (__predict_false(len == 0))
2643 			continue;
2644 		if (skip >= len) {
2645 			skip -= len;
2646 			continue;
2647 		}
2648 		if ((m->m_flags & M_EXTPG) != 0) {
2649 			*cflags |= MC_NOMAP;
2650 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2651 			skip = 0;
2652 			continue;
2653 		}
2654 		va = mtod(m, vm_offset_t) + skip;
2655 		len -= skip;
2656 		skip = 0;
2657 		paddr = pmap_kextract(va);
2658 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2659 		if (paddr == nextaddr)
2660 			nsegs--;
2661 		nextaddr = pmap_kextract(va + len - 1) + 1;
2662 	}
2663 
2664 	return (nsegs);
2665 }
2666 
2667 /*
2668  * The maximum number of segments that can fit in a WR.
2669  */
2670 static int
max_nsegs_allowed(struct mbuf * m,bool vm_wr)2671 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2672 {
2673 
2674 	if (vm_wr) {
2675 		if (needs_tso(m))
2676 			return (TX_SGL_SEGS_VM_TSO);
2677 		return (TX_SGL_SEGS_VM);
2678 	}
2679 
2680 	if (needs_tso(m)) {
2681 		if (needs_vxlan_tso(m))
2682 			return (TX_SGL_SEGS_VXLAN_TSO);
2683 		else
2684 			return (TX_SGL_SEGS_TSO);
2685 	}
2686 
2687 	return (TX_SGL_SEGS);
2688 }
2689 
2690 static struct timeval txerr_ratecheck = {0};
2691 static const struct timeval txerr_interval = {3, 0};
2692 
2693 /*
2694  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2695  * a) caller can assume it's been freed if this function returns with an error.
2696  * b) it may get defragged up if the gather list is too long for the hardware.
2697  */
2698 int
parse_pkt(struct mbuf ** mp,bool vm_wr)2699 parse_pkt(struct mbuf **mp, bool vm_wr)
2700 {
2701 	struct mbuf *m0 = *mp, *m;
2702 	int rc, nsegs, defragged = 0;
2703 	struct ether_header *eh;
2704 #ifdef INET
2705 	void *l3hdr;
2706 #endif
2707 #if defined(INET) || defined(INET6)
2708 	int offset;
2709 	struct tcphdr *tcp;
2710 #endif
2711 #if defined(KERN_TLS) || defined(RATELIMIT)
2712 	struct m_snd_tag *mst;
2713 #endif
2714 	uint16_t eh_type;
2715 	uint8_t cflags;
2716 
2717 	cflags = 0;
2718 	M_ASSERTPKTHDR(m0);
2719 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2720 		rc = EINVAL;
2721 fail:
2722 		m_freem(m0);
2723 		*mp = NULL;
2724 		return (rc);
2725 	}
2726 restart:
2727 	/*
2728 	 * First count the number of gather list segments in the payload.
2729 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2730 	 */
2731 	M_ASSERTPKTHDR(m0);
2732 	MPASS(m0->m_pkthdr.len > 0);
2733 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2734 #if defined(KERN_TLS) || defined(RATELIMIT)
2735 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2736 		mst = m0->m_pkthdr.snd_tag;
2737 	else
2738 		mst = NULL;
2739 #endif
2740 #ifdef KERN_TLS
2741 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2742 		struct vi_info *vi = if_getsoftc(mst->ifp);
2743 
2744 		cflags |= MC_TLS;
2745 		set_mbuf_cflags(m0, cflags);
2746 		if (is_t6(vi->pi->adapter))
2747 			rc = t6_ktls_parse_pkt(m0);
2748 		else
2749 			rc = t7_ktls_parse_pkt(m0);
2750 		if (rc != 0)
2751 			goto fail;
2752 		return (EINPROGRESS);
2753 	}
2754 #endif
2755 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2756 		if (defragged++ > 0) {
2757 			rc = EFBIG;
2758 			goto fail;
2759 		}
2760 		counter_u64_add(defrags, 1);
2761 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2762 			rc = ENOMEM;
2763 			goto fail;
2764 		}
2765 		*mp = m0 = m;	/* update caller's copy after defrag */
2766 		goto restart;
2767 	}
2768 
2769 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2770 	    !(cflags & MC_NOMAP))) {
2771 		counter_u64_add(pullups, 1);
2772 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2773 		if (m0 == NULL) {
2774 			/* Should have left well enough alone. */
2775 			rc = EFBIG;
2776 			goto fail;
2777 		}
2778 		*mp = m0;	/* update caller's copy after pullup */
2779 		goto restart;
2780 	}
2781 	set_mbuf_nsegs(m0, nsegs);
2782 	set_mbuf_cflags(m0, cflags);
2783 	calculate_mbuf_len16(m0, vm_wr);
2784 
2785 #ifdef RATELIMIT
2786 	/*
2787 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2788 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2789 	 * all the right things.
2790 	 */
2791 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2792 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2793 		m0->m_pkthdr.snd_tag = NULL;
2794 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2795 		mst = NULL;
2796 	}
2797 #endif
2798 
2799 	if (!needs_hwcsum(m0)
2800 #ifdef RATELIMIT
2801 		 && !needs_eo(mst)
2802 #endif
2803 	)
2804 		return (0);
2805 
2806 	m = m0;
2807 	eh = mtod(m, struct ether_header *);
2808 	eh_type = ntohs(eh->ether_type);
2809 	if (eh_type == ETHERTYPE_VLAN) {
2810 		struct ether_vlan_header *evh = (void *)eh;
2811 
2812 		eh_type = ntohs(evh->evl_proto);
2813 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2814 	} else
2815 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2816 
2817 #if defined(INET) || defined(INET6)
2818 	offset = 0;
2819 #ifdef INET
2820 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2821 #else
2822 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2823 #endif
2824 #endif
2825 
2826 	switch (eh_type) {
2827 #ifdef INET6
2828 	case ETHERTYPE_IPV6:
2829 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2830 		break;
2831 #endif
2832 #ifdef INET
2833 	case ETHERTYPE_IP:
2834 	{
2835 		struct ip *ip = l3hdr;
2836 
2837 		if (needs_vxlan_csum(m0)) {
2838 			/* Driver will do the outer IP hdr checksum. */
2839 			ip->ip_sum = 0;
2840 			if (needs_vxlan_tso(m0)) {
2841 				const uint16_t ipl = ip->ip_len;
2842 
2843 				ip->ip_len = 0;
2844 				ip->ip_sum = ~in_cksum_hdr(ip);
2845 				ip->ip_len = ipl;
2846 			} else
2847 				ip->ip_sum = in_cksum_hdr(ip);
2848 		}
2849 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2850 		break;
2851 	}
2852 #endif
2853 	default:
2854 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2855 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2856 			    "if_cxgbe must be compiled with the same "
2857 			    "INET/INET6 options as the kernel.\n", __func__,
2858 			    eh_type);
2859 		}
2860 		rc = EINVAL;
2861 		goto fail;
2862 	}
2863 
2864 #if defined(INET) || defined(INET6)
2865 	if (needs_vxlan_csum(m0)) {
2866 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2867 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2868 
2869 		/* Inner headers. */
2870 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2871 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2872 		eh_type = ntohs(eh->ether_type);
2873 		if (eh_type == ETHERTYPE_VLAN) {
2874 			struct ether_vlan_header *evh = (void *)eh;
2875 
2876 			eh_type = ntohs(evh->evl_proto);
2877 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2878 		} else
2879 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2880 #ifdef INET
2881 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2882 #else
2883 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2884 #endif
2885 
2886 		switch (eh_type) {
2887 #ifdef INET6
2888 		case ETHERTYPE_IPV6:
2889 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2890 			break;
2891 #endif
2892 #ifdef INET
2893 		case ETHERTYPE_IP:
2894 		{
2895 			struct ip *ip = l3hdr;
2896 
2897 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2898 			break;
2899 		}
2900 #endif
2901 		default:
2902 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2903 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2904 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2905 				    "must be compiled with the same INET/INET6 "
2906 				    "options as the kernel.\n", __func__,
2907 				    eh_type);
2908 			}
2909 			rc = EINVAL;
2910 			goto fail;
2911 		}
2912 		if (needs_inner_tcp_csum(m0)) {
2913 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2914 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2915 		}
2916 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2917 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2918 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2919 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2920 		    CSUM_ENCAP_VXLAN;
2921 	}
2922 
2923 	if (needs_outer_tcp_csum(m0)) {
2924 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2925 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2926 #ifdef RATELIMIT
2927 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2928 			set_mbuf_eo_tsclk_tsoff(m0,
2929 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2930 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2931 		} else
2932 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2933 	} else if (needs_outer_udp_csum(m0)) {
2934 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2935 #endif
2936 	}
2937 #ifdef RATELIMIT
2938 	if (needs_eo(mst)) {
2939 		u_int immhdrs;
2940 
2941 		/* EO WRs have the headers in the WR and not the GL. */
2942 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2943 		    m0->m_pkthdr.l4hlen;
2944 		cflags = 0;
2945 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2946 		MPASS(cflags == mbuf_cflags(m0));
2947 		set_mbuf_eo_nsegs(m0, nsegs);
2948 		set_mbuf_eo_len16(m0,
2949 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2950 		rc = ethofld_transmit(mst->ifp, m0);
2951 		if (rc != 0)
2952 			goto fail;
2953 		return (EINPROGRESS);
2954 	}
2955 #endif
2956 #endif
2957 	MPASS(m0 == *mp);
2958 	return (0);
2959 }
2960 
2961 void *
start_wrq_wr(struct sge_wrq * wrq,int len16,struct wrq_cookie * cookie)2962 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2963 {
2964 	struct sge_eq *eq = &wrq->eq;
2965 	struct adapter *sc = wrq->adapter;
2966 	int ndesc, available;
2967 	struct wrqe *wr;
2968 	void *w;
2969 
2970 	MPASS(len16 > 0);
2971 	ndesc = tx_len16_to_desc(len16);
2972 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2973 
2974 	EQ_LOCK(eq);
2975 	if (__predict_false((eq->flags & EQ_HW_ALLOCATED) == 0)) {
2976 		EQ_UNLOCK(eq);
2977 		return (NULL);
2978 	}
2979 
2980 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2981 		drain_wrq_wr_list(sc, wrq);
2982 
2983 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2984 slowpath:
2985 		EQ_UNLOCK(eq);
2986 		wr = alloc_wrqe(len16 * 16, wrq);
2987 		if (__predict_false(wr == NULL))
2988 			return (NULL);
2989 		cookie->pidx = -1;
2990 		cookie->ndesc = ndesc;
2991 		return (&wr->wr);
2992 	}
2993 
2994 	eq->cidx = read_hw_cidx(eq);
2995 	if (eq->pidx == eq->cidx)
2996 		available = eq->sidx - 1;
2997 	else
2998 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2999 	if (available < ndesc)
3000 		goto slowpath;
3001 
3002 	cookie->pidx = eq->pidx;
3003 	cookie->ndesc = ndesc;
3004 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
3005 
3006 	w = &eq->desc[eq->pidx];
3007 	IDXINCR(eq->pidx, ndesc, eq->sidx);
3008 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
3009 		w = &wrq->ss[0];
3010 		wrq->ss_pidx = cookie->pidx;
3011 		wrq->ss_len = len16 * 16;
3012 	}
3013 
3014 	EQ_UNLOCK(eq);
3015 
3016 	return (w);
3017 }
3018 
3019 void
commit_wrq_wr(struct sge_wrq * wrq,void * w,struct wrq_cookie * cookie)3020 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3021 {
3022 	struct sge_eq *eq = &wrq->eq;
3023 	struct adapter *sc = wrq->adapter;
3024 	int ndesc, pidx;
3025 	struct wrq_cookie *prev, *next;
3026 
3027 	if (cookie->pidx == -1) {
3028 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3029 
3030 		t4_wrq_tx(sc, wr);
3031 		return;
3032 	}
3033 
3034 	if (__predict_false(w == &wrq->ss[0])) {
3035 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3036 
3037 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3038 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3039 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3040 		wrq->tx_wrs_ss++;
3041 	} else
3042 		wrq->tx_wrs_direct++;
3043 
3044 	EQ_LOCK(eq);
3045 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3046 	pidx = cookie->pidx;
3047 	MPASS(pidx >= 0 && pidx < eq->sidx);
3048 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3049 	next = TAILQ_NEXT(cookie, link);
3050 	if (prev == NULL) {
3051 		MPASS(pidx == eq->dbidx);
3052 		if (next == NULL || ndesc >= 16) {
3053 			int available;
3054 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3055 
3056 			/*
3057 			 * Note that the WR via which we'll request tx updates
3058 			 * is at pidx and not eq->pidx, which has moved on
3059 			 * already.
3060 			 */
3061 			dst = (void *)&eq->desc[pidx];
3062 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3063 			if (available < eq->sidx / 4 &&
3064 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3065 				/*
3066 				 * XXX: This is not 100% reliable with some
3067 				 * types of WRs.  But this is a very unusual
3068 				 * situation for an ofld/ctrl queue anyway.
3069 				 */
3070 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3071 				    F_FW_WR_EQUEQ);
3072 			}
3073 
3074 			if (__predict_true(eq->flags & EQ_HW_ALLOCATED))
3075 				ring_eq_db(wrq->adapter, eq, ndesc);
3076 			else
3077 				IDXINCR(eq->dbidx, ndesc, eq->sidx);
3078 		} else {
3079 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3080 			next->pidx = pidx;
3081 			next->ndesc += ndesc;
3082 		}
3083 	} else {
3084 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3085 		prev->ndesc += ndesc;
3086 	}
3087 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3088 
3089 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3090 		drain_wrq_wr_list(sc, wrq);
3091 
3092 #ifdef INVARIANTS
3093 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3094 		/* Doorbell must have caught up to the pidx. */
3095 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3096 	}
3097 #endif
3098 	EQ_UNLOCK(eq);
3099 }
3100 
3101 static u_int
can_resume_eth_tx(struct mp_ring * r)3102 can_resume_eth_tx(struct mp_ring *r)
3103 {
3104 	struct sge_eq *eq = r->cookie;
3105 
3106 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3107 }
3108 
3109 static inline bool
cannot_use_txpkts(struct mbuf * m)3110 cannot_use_txpkts(struct mbuf *m)
3111 {
3112 	/* maybe put a GL limit too, to avoid silliness? */
3113 
3114 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3115 }
3116 
3117 static inline int
discard_tx(struct sge_eq * eq)3118 discard_tx(struct sge_eq *eq)
3119 {
3120 
3121 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3122 }
3123 
3124 static inline int
wr_can_update_eq(void * p)3125 wr_can_update_eq(void *p)
3126 {
3127 	struct fw_eth_tx_pkts_wr *wr = p;
3128 
3129 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3130 	case FW_ULPTX_WR:
3131 	case FW_ETH_TX_PKT_WR:
3132 	case FW_ETH_TX_PKTS_WR:
3133 	case FW_ETH_TX_PKTS2_WR:
3134 	case FW_ETH_TX_PKT_VM_WR:
3135 	case FW_ETH_TX_PKTS_VM_WR:
3136 		return (1);
3137 	default:
3138 		return (0);
3139 	}
3140 }
3141 
3142 static inline void
set_txupdate_flags(struct sge_txq * txq,u_int avail,struct fw_eth_tx_pkt_wr * wr)3143 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3144     struct fw_eth_tx_pkt_wr *wr)
3145 {
3146 	struct sge_eq *eq = &txq->eq;
3147 	struct txpkts *txp = &txq->txp;
3148 
3149 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3150 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3151 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3152 		eq->equeqidx = eq->pidx;
3153 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3154 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3155 		eq->equeqidx = eq->pidx;
3156 	}
3157 }
3158 
3159 #if defined(__i386__) || defined(__amd64__)
3160 extern uint64_t tsc_freq;
3161 #endif
3162 
3163 static inline bool
record_eth_tx_time(struct sge_txq * txq)3164 record_eth_tx_time(struct sge_txq *txq)
3165 {
3166 	const uint64_t cycles = get_cyclecount();
3167 	const uint64_t last_tx = txq->last_tx;
3168 #if defined(__i386__) || defined(__amd64__)
3169 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3170 #else
3171 	const uint64_t itg = 0;
3172 #endif
3173 
3174 	MPASS(cycles >= last_tx);
3175 	txq->last_tx = cycles;
3176 	return (cycles - last_tx < itg);
3177 }
3178 
3179 /*
3180  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3181  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3182  */
3183 static u_int
eth_tx(struct mp_ring * r,u_int cidx,u_int pidx,bool * coalescing)3184 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3185 {
3186 	struct sge_txq *txq = r->cookie;
3187 	if_t ifp = txq->ifp;
3188 	struct sge_eq *eq = &txq->eq;
3189 	struct txpkts *txp = &txq->txp;
3190 	struct vi_info *vi = if_getsoftc(ifp);
3191 	struct adapter *sc = vi->adapter;
3192 	u_int total, remaining;		/* # of packets */
3193 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3194 	int i, rc;
3195 	struct mbuf *m0;
3196 	bool snd, recent_tx;
3197 	void *wr;	/* start of the last WR written to the ring */
3198 
3199 	TXQ_LOCK_ASSERT_OWNED(txq);
3200 	recent_tx = record_eth_tx_time(txq);
3201 
3202 	remaining = IDXDIFF(pidx, cidx, r->size);
3203 	if (__predict_false(discard_tx(eq))) {
3204 		for (i = 0; i < txp->npkt; i++)
3205 			m_freem(txp->mb[i]);
3206 		txp->npkt = 0;
3207 		while (cidx != pidx) {
3208 			m0 = r->items[cidx];
3209 			m_freem(m0);
3210 			if (++cidx == r->size)
3211 				cidx = 0;
3212 		}
3213 		reclaim_tx_descs(txq, eq->sidx);
3214 		*coalescing = false;
3215 		return (remaining);	/* emptied */
3216 	}
3217 
3218 	/* How many hardware descriptors do we have readily available. */
3219 	if (eq->pidx == eq->cidx)
3220 		avail = eq->sidx - 1;
3221 	else
3222 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3223 
3224 	total = 0;
3225 	if (remaining == 0) {
3226 		txp->score = 0;
3227 		txq->txpkts_flush++;
3228 		goto send_txpkts;
3229 	}
3230 
3231 	dbdiff = 0;
3232 	MPASS(remaining > 0);
3233 	while (remaining > 0) {
3234 		m0 = r->items[cidx];
3235 		M_ASSERTPKTHDR(m0);
3236 		MPASS(m0->m_nextpkt == NULL);
3237 
3238 		if (avail < 2 * SGE_MAX_WR_NDESC)
3239 			avail += reclaim_tx_descs(txq, 64);
3240 
3241 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3242 			goto skip_coalescing;
3243 		if (cannot_use_txpkts(m0))
3244 			txp->score = 0;
3245 		else if (recent_tx) {
3246 			if (++txp->score == 0)
3247 				txp->score = UINT8_MAX;
3248 		} else
3249 			txp->score = 1;
3250 		if (txp->npkt > 0 || remaining > 1 ||
3251 		    txp->score >= t4_tx_coalesce_pkts ||
3252 		    atomic_load_int(&txq->eq.equiq) != 0) {
3253 			if (vi->flags & TX_USES_VM_WR)
3254 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3255 			else
3256 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3257 		} else {
3258 			snd = false;
3259 			rc = EINVAL;
3260 		}
3261 		if (snd) {
3262 			MPASS(txp->npkt > 0);
3263 			for (i = 0; i < txp->npkt; i++)
3264 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3265 			if (txp->npkt > 1) {
3266 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3267 				if (vi->flags & TX_USES_VM_WR)
3268 					n = write_txpkts_vm_wr(sc, txq);
3269 				else
3270 					n = write_txpkts_wr(sc, txq);
3271 			} else {
3272 				MPASS(avail >=
3273 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3274 				if (vi->flags & TX_USES_VM_WR)
3275 					n = write_txpkt_vm_wr(sc, txq,
3276 					    txp->mb[0]);
3277 				else
3278 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3279 					    avail);
3280 			}
3281 			MPASS(n <= SGE_MAX_WR_NDESC);
3282 			avail -= n;
3283 			dbdiff += n;
3284 			wr = &eq->desc[eq->pidx];
3285 			IDXINCR(eq->pidx, n, eq->sidx);
3286 			txp->npkt = 0;	/* emptied */
3287 		}
3288 		if (rc == 0) {
3289 			/* m0 was coalesced into txq->txpkts. */
3290 			goto next_mbuf;
3291 		}
3292 		if (rc == EAGAIN) {
3293 			/*
3294 			 * m0 is suitable for tx coalescing but could not be
3295 			 * combined with the existing txq->txpkts, which has now
3296 			 * been transmitted.  Start a new txpkts with m0.
3297 			 */
3298 			MPASS(snd);
3299 			MPASS(txp->npkt == 0);
3300 			continue;
3301 		}
3302 
3303 		MPASS(rc != 0 && rc != EAGAIN);
3304 		MPASS(txp->npkt == 0);
3305 skip_coalescing:
3306 		n = tx_len16_to_desc(mbuf_len16(m0));
3307 		if (__predict_false(avail < n)) {
3308 			avail += reclaim_tx_descs(txq, min(n, 32));
3309 			if (avail < n)
3310 				break;	/* out of descriptors */
3311 		}
3312 
3313 		wr = &eq->desc[eq->pidx];
3314 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3315 			n = write_raw_wr(txq, wr, m0, avail);
3316 #ifdef KERN_TLS
3317 		} else if (mbuf_cflags(m0) & MC_TLS) {
3318 			ETHER_BPF_MTAP(ifp, m0);
3319 			if (is_t6(sc))
3320 				n = t6_ktls_write_wr(txq, wr, m0, avail);
3321 			else
3322 				n = t7_ktls_write_wr(txq, wr, m0, avail);
3323 #endif
3324 		} else {
3325 			ETHER_BPF_MTAP(ifp, m0);
3326 			if (vi->flags & TX_USES_VM_WR)
3327 				n = write_txpkt_vm_wr(sc, txq, m0);
3328 			else
3329 				n = write_txpkt_wr(sc, txq, m0, avail);
3330 		}
3331 		MPASS(n >= 1 && n <= avail);
3332 		if (!(mbuf_cflags(m0) & MC_TLS))
3333 			MPASS(n <= SGE_MAX_WR_NDESC);
3334 
3335 		avail -= n;
3336 		dbdiff += n;
3337 		IDXINCR(eq->pidx, n, eq->sidx);
3338 
3339 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3340 			if (wr_can_update_eq(wr))
3341 				set_txupdate_flags(txq, avail, wr);
3342 			ring_eq_db(sc, eq, dbdiff);
3343 			avail += reclaim_tx_descs(txq, 32);
3344 			dbdiff = 0;
3345 		}
3346 next_mbuf:
3347 		total++;
3348 		remaining--;
3349 		if (__predict_false(++cidx == r->size))
3350 			cidx = 0;
3351 	}
3352 	if (dbdiff != 0) {
3353 		if (wr_can_update_eq(wr))
3354 			set_txupdate_flags(txq, avail, wr);
3355 		ring_eq_db(sc, eq, dbdiff);
3356 		reclaim_tx_descs(txq, 32);
3357 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3358 	    atomic_load_int(&txq->eq.equiq) == 0) {
3359 		/*
3360 		 * If nothing was submitted to the chip for tx (it was coalesced
3361 		 * into txpkts instead) and there is no tx update outstanding
3362 		 * then we need to send txpkts now.
3363 		 */
3364 send_txpkts:
3365 		MPASS(txp->npkt > 0);
3366 		for (i = 0; i < txp->npkt; i++)
3367 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3368 		if (txp->npkt > 1) {
3369 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3370 			if (vi->flags & TX_USES_VM_WR)
3371 				n = write_txpkts_vm_wr(sc, txq);
3372 			else
3373 				n = write_txpkts_wr(sc, txq);
3374 		} else {
3375 			MPASS(avail >=
3376 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3377 			if (vi->flags & TX_USES_VM_WR)
3378 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3379 			else
3380 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3381 		}
3382 		MPASS(n <= SGE_MAX_WR_NDESC);
3383 		wr = &eq->desc[eq->pidx];
3384 		IDXINCR(eq->pidx, n, eq->sidx);
3385 		txp->npkt = 0;	/* emptied */
3386 
3387 		MPASS(wr_can_update_eq(wr));
3388 		set_txupdate_flags(txq, avail - n, wr);
3389 		ring_eq_db(sc, eq, n);
3390 		reclaim_tx_descs(txq, 32);
3391 	}
3392 	*coalescing = txp->npkt > 0;
3393 
3394 	return (total);
3395 }
3396 
3397 static inline void
init_iq(struct sge_iq * iq,struct adapter * sc,int tmr_idx,int pktc_idx,int qsize,int intr_idx,int cong,int qtype)3398 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3399     int qsize, int intr_idx, int cong, int qtype)
3400 {
3401 
3402 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3403 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3404 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3405 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3406 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3407 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3408 	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3409 	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3410 
3411 	iq->flags = 0;
3412 	iq->state = IQS_DISABLED;
3413 	iq->adapter = sc;
3414 	iq->qtype = qtype;
3415 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3416 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3417 	if (pktc_idx >= 0) {
3418 		iq->intr_params |= F_QINTR_CNT_EN;
3419 		iq->intr_pktc_idx = pktc_idx;
3420 	}
3421 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3422 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3423 	iq->intr_idx = intr_idx;
3424 	iq->cong_drop = cong;
3425 }
3426 
3427 static inline void
init_fl(struct adapter * sc,struct sge_fl * fl,int qsize,int maxp,char * name)3428 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3429 {
3430 	struct sge_params *sp = &sc->params.sge;
3431 
3432 	fl->qsize = qsize;
3433 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3434 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3435 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3436 	if (sc->flags & BUF_PACKING_OK &&
3437 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3438 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3439 		fl->flags |= FL_BUF_PACKING;
3440 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3441 	fl->safe_zidx = sc->sge.safe_zidx;
3442 	if (fl->flags & FL_BUF_PACKING) {
3443 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3444 		fl->buf_boundary = sp->pack_boundary;
3445 	} else {
3446 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3447 		fl->buf_boundary = 16;
3448 	}
3449 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3450 		fl->buf_boundary = sp->pad_boundary;
3451 }
3452 
3453 static inline void
init_eq(struct adapter * sc,struct sge_eq * eq,int eqtype,int qsize,uint8_t port_id,struct sge_iq * iq,char * name)3454 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3455     uint8_t port_id, struct sge_iq *iq, char *name)
3456 {
3457 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3458 	    ("%s: bad qtype %d", __func__, eqtype));
3459 
3460 	eq->type = eqtype;
3461 	eq->port_id = port_id;
3462 	eq->tx_chan = sc->port[port_id]->tx_chan;
3463 	eq->hw_port = sc->port[port_id]->hw_port;
3464 	eq->iq = iq;
3465 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3466 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3467 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3468 }
3469 
3470 int
alloc_ring(struct adapter * sc,size_t len,bus_dma_tag_t * tag,bus_dmamap_t * map,bus_addr_t * pa,void ** va)3471 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3472     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3473 {
3474 	int rc;
3475 
3476 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3477 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3478 	if (rc != 0) {
3479 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3480 		goto done;
3481 	}
3482 
3483 	rc = bus_dmamem_alloc(*tag, va,
3484 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3485 	if (rc != 0) {
3486 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3487 		goto done;
3488 	}
3489 
3490 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3491 	if (rc != 0) {
3492 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3493 		goto done;
3494 	}
3495 done:
3496 	if (rc)
3497 		free_ring(sc, *tag, *map, *pa, *va);
3498 
3499 	return (rc);
3500 }
3501 
3502 int
free_ring(struct adapter * sc,bus_dma_tag_t tag,bus_dmamap_t map,bus_addr_t pa,void * va)3503 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3504     bus_addr_t pa, void *va)
3505 {
3506 	if (pa)
3507 		bus_dmamap_unload(tag, map);
3508 	if (va)
3509 		bus_dmamem_free(tag, va, map);
3510 	if (tag)
3511 		bus_dma_tag_destroy(tag);
3512 
3513 	return (0);
3514 }
3515 
3516 /*
3517  * Allocates the software resources (mainly memory and sysctl nodes) for an
3518  * ingress queue and an optional freelist.
3519  *
3520  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3521  */
3522 static int
alloc_iq_fl(struct vi_info * vi,struct sge_iq * iq,struct sge_fl * fl,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)3523 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3524     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3525 {
3526 	int rc;
3527 	size_t len;
3528 	struct adapter *sc = vi->adapter;
3529 
3530 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3531 
3532 	len = iq->qsize * IQ_ESIZE;
3533 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3534 	    (void **)&iq->desc);
3535 	if (rc != 0)
3536 		return (rc);
3537 
3538 	if (fl) {
3539 		len = fl->qsize * EQ_ESIZE;
3540 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3541 		    &fl->ba, (void **)&fl->desc);
3542 		if (rc) {
3543 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3544 			    iq->desc);
3545 			return (rc);
3546 		}
3547 
3548 		/* Allocate space for one software descriptor per buffer. */
3549 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3550 		    M_CXGBE, M_ZERO | M_WAITOK);
3551 
3552 		add_fl_sysctls(sc, ctx, oid, fl);
3553 		iq->flags |= IQ_HAS_FL;
3554 	}
3555 	add_iq_sysctls(ctx, oid, iq);
3556 	iq->flags |= IQ_SW_ALLOCATED;
3557 
3558 	return (0);
3559 }
3560 
3561 /*
3562  * Frees all software resources (memory and locks) associated with an ingress
3563  * queue and an optional freelist.
3564  */
3565 static void
free_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)3566 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3567 {
3568 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3569 
3570 	if (fl) {
3571 		MPASS(iq->flags & IQ_HAS_FL);
3572 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3573 		free_fl_buffers(sc, fl);
3574 		free(fl->sdesc, M_CXGBE);
3575 		mtx_destroy(&fl->fl_lock);
3576 		bzero(fl, sizeof(*fl));
3577 	}
3578 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3579 	bzero(iq, sizeof(*iq));
3580 }
3581 
3582 /*
3583  * Allocates a hardware ingress queue and an optional freelist that will be
3584  * associated with it.
3585  *
3586  * Returns errno on failure.  Resources allocated up to that point may still be
3587  * allocated.  Caller is responsible for cleanup in case this function fails.
3588  */
3589 static int
alloc_iq_fl_hwq(struct vi_info * vi,struct sge_iq * iq,struct sge_fl * fl)3590 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3591 {
3592 	int rc, cntxt_id, cong_map;
3593 	struct fw_iq_cmd c;
3594 	struct adapter *sc = vi->adapter;
3595 	struct port_info *pi = vi->pi;
3596 	__be32 v = 0;
3597 
3598 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3599 
3600 	bzero(&c, sizeof(c));
3601 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3602 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3603 	    V_FW_IQ_CMD_VFN(0));
3604 
3605 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3606 	    FW_LEN16(c));
3607 
3608 	/* Special handling for firmware event queue */
3609 	if (iq == &sc->sge.fwq)
3610 		v |= F_FW_IQ_CMD_IQASYNCH;
3611 
3612 	if (iq->intr_idx < 0) {
3613 		/* Forwarded interrupts, all headed to fwq */
3614 		v |= F_FW_IQ_CMD_IQANDST;
3615 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3616 	} else {
3617 		KASSERT(iq->intr_idx < sc->intr_count,
3618 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3619 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3620 	}
3621 
3622 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3623 	c.type_to_iqandstindex = htobe32(v |
3624 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3625 	    V_FW_IQ_CMD_VIID(vi->viid) |
3626 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3627 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->hw_port) |
3628 	    F_FW_IQ_CMD_IQGTSMODE |
3629 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3630 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3631 	c.iqsize = htobe16(iq->qsize);
3632 	c.iqaddr = htobe64(iq->ba);
3633 	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3634 	if (iq->cong_drop != -1) {
3635 		if (iq->qtype == IQ_ETH) {
3636 			if (chip_id(sc) >= CHELSIO_T7)
3637 				cong_map = 1 << pi->hw_port;
3638 			else
3639 				cong_map = pi->rx_e_chan_map;
3640 		} else
3641 			cong_map = 0;
3642 		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3643 	}
3644 
3645 	if (fl) {
3646 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3647 		c.iqns_to_fl0congen |=
3648 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3649 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3650 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3651 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3652 			    0));
3653 		if (iq->cong_drop != -1) {
3654 			c.iqns_to_fl0congen |=
3655 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3656 				    F_FW_IQ_CMD_FL0CONGCIF |
3657 				    F_FW_IQ_CMD_FL0CONGEN);
3658 		}
3659 		c.fl0dcaen_to_fl0cidxfthresh =
3660 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3661 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3662 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3663 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3664 		c.fl0size = htobe16(fl->qsize);
3665 		c.fl0addr = htobe64(fl->ba);
3666 	}
3667 
3668 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3669 	if (rc != 0) {
3670 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3671 		return (rc);
3672 	}
3673 
3674 	iq->cidx = 0;
3675 	iq->gen = F_RSPD_GEN;
3676 	iq->cntxt_id = be16toh(c.iqid);
3677 	iq->abs_id = be16toh(c.physiqid);
3678 
3679 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3680 	if (cntxt_id >= sc->sge.iqmap_sz) {
3681 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3682 		    cntxt_id, sc->sge.iqmap_sz - 1);
3683 	}
3684 	sc->sge.iqmap[cntxt_id] = iq;
3685 
3686 	if (fl) {
3687 		u_int qid;
3688 #ifdef INVARIANTS
3689 		int i;
3690 
3691 		MPASS(!(fl->flags & FL_BUF_RESUME));
3692 		for (i = 0; i < fl->sidx * 8; i++)
3693 			MPASS(fl->sdesc[i].cl == NULL);
3694 #endif
3695 		fl->cntxt_id = be16toh(c.fl0id);
3696 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3697 		fl->rx_offset = 0;
3698 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3699 
3700 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3701 		if (cntxt_id >= sc->sge.eqmap_sz) {
3702 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3703 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3704 		}
3705 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3706 
3707 		qid = fl->cntxt_id;
3708 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3709 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3710 			uint32_t mask = (1 << s_qpp) - 1;
3711 			volatile uint8_t *udb;
3712 
3713 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3714 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3715 			qid &= mask;
3716 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3717 				udb += qid << UDBS_SEG_SHIFT;
3718 				qid = 0;
3719 			}
3720 			fl->udb = (volatile void *)udb;
3721 		}
3722 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3723 
3724 		FL_LOCK(fl);
3725 		/* Enough to make sure the SGE doesn't think it's starved */
3726 		refill_fl(sc, fl, fl->lowat);
3727 		FL_UNLOCK(fl);
3728 	}
3729 
3730 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3731 	    iq->cong_drop != -1) {
3732 		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3733 		    cong_map);
3734 	}
3735 
3736 	/* Enable IQ interrupts */
3737 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3738 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3739 	    V_INGRESSQID(iq->cntxt_id));
3740 
3741 	iq->flags |= IQ_HW_ALLOCATED;
3742 
3743 	return (0);
3744 }
3745 
3746 static int
free_iq_fl_hwq(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)3747 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3748 {
3749 	int rc;
3750 
3751 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3752 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3753 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3754 	if (rc != 0) {
3755 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3756 		return (rc);
3757 	}
3758 	iq->flags &= ~IQ_HW_ALLOCATED;
3759 
3760 	return (0);
3761 }
3762 
3763 static void
add_iq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_iq * iq)3764 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3765     struct sge_iq *iq)
3766 {
3767 	struct sysctl_oid_list *children;
3768 
3769 	if (ctx == NULL || oid == NULL)
3770 		return;
3771 
3772 	children = SYSCTL_CHILDREN(oid);
3773 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3774 	    "bus address of descriptor ring");
3775 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3776 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3777 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3778 	    &iq->abs_id, 0, "absolute id of the queue");
3779 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3780 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3781 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3782 	    0, "consumer index");
3783 }
3784 
3785 static void
add_fl_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_fl * fl)3786 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3787     struct sysctl_oid *oid, struct sge_fl *fl)
3788 {
3789 	struct sysctl_oid_list *children;
3790 
3791 	if (ctx == NULL || oid == NULL)
3792 		return;
3793 
3794 	children = SYSCTL_CHILDREN(oid);
3795 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3796 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3797 	children = SYSCTL_CHILDREN(oid);
3798 
3799 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3800 	    &fl->ba, "bus address of descriptor ring");
3801 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3802 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3803 	    "desc ring size in bytes");
3804 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3805 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3806 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3807 	    fl_pad ? 1 : 0, "padding enabled");
3808 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3809 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3810 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3811 	    0, "consumer index");
3812 	if (fl->flags & FL_BUF_PACKING) {
3813 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3814 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3815 	}
3816 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3817 	    0, "producer index");
3818 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3819 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3820 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3821 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3822 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3823 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3824 }
3825 
3826 /*
3827  * Idempotent.
3828  */
3829 static int
alloc_fwq(struct adapter * sc)3830 alloc_fwq(struct adapter *sc)
3831 {
3832 	int rc, intr_idx;
3833 	struct sge_iq *fwq = &sc->sge.fwq;
3834 	struct vi_info *vi = &sc->port[0]->vi[0];
3835 
3836 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3837 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3838 
3839 		if (sc->flags & IS_VF)
3840 			intr_idx = 0;
3841 		else
3842 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3843 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3844 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3845 		if (rc != 0) {
3846 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3847 			return (rc);
3848 		}
3849 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3850 	}
3851 
3852 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3853 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3854 
3855 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3856 		if (rc != 0) {
3857 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3858 			return (rc);
3859 		}
3860 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3861 	}
3862 
3863 	return (0);
3864 }
3865 
3866 /*
3867  * Idempotent.
3868  */
3869 static void
free_fwq(struct adapter * sc)3870 free_fwq(struct adapter *sc)
3871 {
3872 	struct sge_iq *fwq = &sc->sge.fwq;
3873 
3874 	if (fwq->flags & IQ_HW_ALLOCATED) {
3875 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3876 		free_iq_fl_hwq(sc, fwq, NULL);
3877 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3878 	}
3879 
3880 	if (fwq->flags & IQ_SW_ALLOCATED) {
3881 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3882 		free_iq_fl(sc, fwq, NULL);
3883 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3884 	}
3885 }
3886 
3887 /*
3888  * Idempotent.
3889  */
3890 static int
alloc_ctrlq(struct adapter * sc,int idx)3891 alloc_ctrlq(struct adapter *sc, int idx)
3892 {
3893 	int rc;
3894 	char name[16];
3895 	struct sysctl_oid *oid;
3896 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3897 
3898 	MPASS(idx < sc->sge.nctrlq);
3899 
3900 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3901 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3902 
3903 		snprintf(name, sizeof(name), "%d", idx);
3904 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3905 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3906 		    "ctrl queue");
3907 
3908 		snprintf(name, sizeof(name), "%s ctrlq%d",
3909 		    device_get_nameunit(sc->dev), idx);
3910 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3911 		    idx % sc->params.nports, &sc->sge.fwq, name);
3912 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3913 		if (rc != 0) {
3914 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3915 			sysctl_remove_oid(oid, 1, 1);
3916 			return (rc);
3917 		}
3918 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3919 	}
3920 
3921 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3922 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3923 		MPASS(ctrlq->nwr_pending == 0);
3924 		MPASS(ctrlq->ndesc_needed == 0);
3925 
3926 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq, idx);
3927 		if (rc != 0) {
3928 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3929 			return (rc);
3930 		}
3931 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3932 	}
3933 
3934 	return (0);
3935 }
3936 
3937 /*
3938  * Idempotent.
3939  */
3940 static void
free_ctrlq(struct adapter * sc,int idx)3941 free_ctrlq(struct adapter *sc, int idx)
3942 {
3943 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3944 
3945 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3946 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3947 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3948 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3949 	}
3950 
3951 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3952 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3953 		free_wrq(sc, ctrlq);
3954 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3955 	}
3956 }
3957 
3958 int
t4_sge_set_conm_context(struct adapter * sc,int cntxt_id,int cong_drop,int cong_map)3959 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3960     int cong_map)
3961 {
3962 	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3963 	uint32_t param, val;
3964 	uint16_t ch_map;
3965 	int cong_mode, rc, i;
3966 
3967 	if (chip_id(sc) < CHELSIO_T5)
3968 		return (ENOTSUP);
3969 
3970 	/* Convert the driver knob to the mode understood by the firmware. */
3971 	switch (cong_drop) {
3972 	case -1:
3973 		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3974 		break;
3975 	case 0:
3976 		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3977 		break;
3978 	case 1:
3979 		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3980 		break;
3981 	case 2:
3982 		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3983 		break;
3984 	default:
3985 		MPASS(0);
3986 		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3987 		    cong_drop, cntxt_id);
3988 		return (EINVAL);
3989 	}
3990 
3991 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3992 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3993 	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
3994 	if (chip_id(sc) >= CHELSIO_T7) {
3995 		val = V_T7_DMAQ_CONM_CTXT_CNGTPMODE(cong_mode) |
3996 		    V_T7_DMAQ_CONM_CTXT_CH_VEC(cong_map);
3997 	} else {
3998 		val = V_CONMCTXT_CNGTPMODE(cong_mode);
3999 		if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
4000 		    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
4001 			for (i = 0, ch_map = 0; i < 4; i++) {
4002 				if (cong_map & (1 << i))
4003 					ch_map |= 1 << (i << cng_ch_bits_log);
4004 			}
4005 			val |= V_CONMCTXT_CNGCHMAP(ch_map);
4006 		}
4007 	}
4008 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4009 	if (rc != 0) {
4010 		CH_ERR(sc, "failed to set congestion manager context "
4011 		    "for ingress queue %d: %d\n", cntxt_id, rc);
4012 	}
4013 
4014 	return (rc);
4015 }
4016 
4017 /*
4018  * Idempotent.
4019  */
4020 static int
alloc_rxq(struct vi_info * vi,struct sge_rxq * rxq,int idx,int intr_idx,int maxp)4021 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
4022     int maxp)
4023 {
4024 	int rc;
4025 	struct adapter *sc = vi->adapter;
4026 	if_t ifp = vi->ifp;
4027 	struct sysctl_oid *oid;
4028 	char name[16];
4029 
4030 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
4031 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4032 #if defined(INET) || defined(INET6)
4033 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
4034 		if (rc != 0)
4035 			return (rc);
4036 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
4037 #endif
4038 		rxq->ifp = ifp;
4039 
4040 		snprintf(name, sizeof(name), "%d", idx);
4041 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
4042 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4043 		    "rx queue");
4044 
4045 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
4046 		    intr_idx, cong_drop, IQ_ETH);
4047 #if defined(INET) || defined(INET6)
4048 		if (if_getcapenable(ifp) & IFCAP_LRO)
4049 			rxq->iq.flags |= IQ_LRO_ENABLED;
4050 #endif
4051 		if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
4052 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
4053 		snprintf(name, sizeof(name), "%s rxq%d-fl",
4054 		    device_get_nameunit(vi->dev), idx);
4055 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
4056 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
4057 		if (rc != 0) {
4058 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
4059 			sysctl_remove_oid(oid, 1, 1);
4060 #if defined(INET) || defined(INET6)
4061 			tcp_lro_free(&rxq->lro);
4062 			rxq->lro.ifp = NULL;
4063 #endif
4064 			return (rc);
4065 		}
4066 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4067 		add_rxq_sysctls(&vi->ctx, oid, rxq);
4068 	}
4069 
4070 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
4071 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4072 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
4073 		if (rc != 0) {
4074 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
4075 			return (rc);
4076 		}
4077 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4078 
4079 		if (idx == 0)
4080 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4081 		else
4082 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4083 			    ("iq_base mismatch"));
4084 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4085 		    ("PF with non-zero iq_base"));
4086 
4087 		/*
4088 		 * The freelist is just barely above the starvation threshold
4089 		 * right now, fill it up a bit more.
4090 		 */
4091 		FL_LOCK(&rxq->fl);
4092 		refill_fl(sc, &rxq->fl, 128);
4093 		FL_UNLOCK(&rxq->fl);
4094 	}
4095 
4096 	return (0);
4097 }
4098 
4099 /*
4100  * Idempotent.
4101  */
4102 static void
free_rxq(struct vi_info * vi,struct sge_rxq * rxq)4103 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4104 {
4105 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4106 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4107 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4108 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4109 	}
4110 
4111 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4112 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4113 #if defined(INET) || defined(INET6)
4114 		tcp_lro_free(&rxq->lro);
4115 #endif
4116 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4117 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4118 		bzero(rxq, sizeof(*rxq));
4119 	}
4120 }
4121 
4122 static void
add_rxq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_rxq * rxq)4123 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4124     struct sge_rxq *rxq)
4125 {
4126 	struct sysctl_oid_list *children;
4127 
4128 	if (ctx == NULL || oid == NULL)
4129 		return;
4130 
4131 	children = SYSCTL_CHILDREN(oid);
4132 #if defined(INET) || defined(INET6)
4133 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4134 	    &rxq->lro.lro_queued, 0, NULL);
4135 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4136 	    &rxq->lro.lro_flushed, 0, NULL);
4137 #endif
4138 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4139 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4140 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4141 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4142 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4143 	    &rxq->vxlan_rxcsum,
4144 	    "# of times hardware assisted with inner checksum (VXLAN)");
4145 }
4146 
4147 #ifdef TCP_OFFLOAD
4148 /*
4149  * Idempotent.
4150  */
4151 static int
alloc_ofld_rxq(struct vi_info * vi,struct sge_ofld_rxq * ofld_rxq,int idx,int intr_idx,int maxp)4152 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4153     int intr_idx, int maxp)
4154 {
4155 	int rc;
4156 	struct adapter *sc = vi->adapter;
4157 	struct sysctl_oid *oid;
4158 	char name[16];
4159 
4160 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4161 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4162 
4163 		snprintf(name, sizeof(name), "%d", idx);
4164 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4165 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4166 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4167 
4168 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4169 		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4170 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4171 		    device_get_nameunit(vi->dev), idx);
4172 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4173 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4174 		    oid);
4175 		if (rc != 0) {
4176 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4177 			    rc);
4178 			sysctl_remove_oid(oid, 1, 1);
4179 			return (rc);
4180 		}
4181 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4182 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4183 		ofld_rxq->rx_iscsi_ddp_setup_error =
4184 		    counter_u64_alloc(M_WAITOK);
4185 		ofld_rxq->rx_nvme_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4186 		ofld_rxq->rx_nvme_ddp_setup_no_stag =
4187 		    counter_u64_alloc(M_WAITOK);
4188 		ofld_rxq->rx_nvme_ddp_setup_error =
4189 		    counter_u64_alloc(M_WAITOK);
4190 		ofld_rxq->rx_nvme_ddp_octets = counter_u64_alloc(M_WAITOK);
4191 		ofld_rxq->rx_nvme_ddp_pdus = counter_u64_alloc(M_WAITOK);
4192 		ofld_rxq->rx_nvme_fl_octets = counter_u64_alloc(M_WAITOK);
4193 		ofld_rxq->rx_nvme_fl_pdus = counter_u64_alloc(M_WAITOK);
4194 		ofld_rxq->rx_nvme_invalid_headers = counter_u64_alloc(M_WAITOK);
4195 		ofld_rxq->rx_nvme_header_digest_errors =
4196 		    counter_u64_alloc(M_WAITOK);
4197 		ofld_rxq->rx_nvme_data_digest_errors =
4198 		    counter_u64_alloc(M_WAITOK);
4199 		ofld_rxq->ddp_buffer_alloc = counter_u64_alloc(M_WAITOK);
4200 		ofld_rxq->ddp_buffer_reuse = counter_u64_alloc(M_WAITOK);
4201 		ofld_rxq->ddp_buffer_free = counter_u64_alloc(M_WAITOK);
4202 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4203 	}
4204 
4205 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4206 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4207 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4208 		if (rc != 0) {
4209 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4210 			    rc);
4211 			return (rc);
4212 		}
4213 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4214 	}
4215 	return (rc);
4216 }
4217 
4218 /*
4219  * Idempotent.
4220  */
4221 static void
free_ofld_rxq(struct vi_info * vi,struct sge_ofld_rxq * ofld_rxq)4222 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4223 {
4224 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4225 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4226 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4227 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4228 	}
4229 
4230 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4231 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4232 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4233 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4234 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4235 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4236 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_ok);
4237 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_no_stag);
4238 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_error);
4239 		counter_u64_free(ofld_rxq->rx_nvme_ddp_octets);
4240 		counter_u64_free(ofld_rxq->rx_nvme_ddp_pdus);
4241 		counter_u64_free(ofld_rxq->rx_nvme_fl_octets);
4242 		counter_u64_free(ofld_rxq->rx_nvme_fl_pdus);
4243 		counter_u64_free(ofld_rxq->rx_nvme_invalid_headers);
4244 		counter_u64_free(ofld_rxq->rx_nvme_header_digest_errors);
4245 		counter_u64_free(ofld_rxq->rx_nvme_data_digest_errors);
4246 		counter_u64_free(ofld_rxq->ddp_buffer_alloc);
4247 		counter_u64_free(ofld_rxq->ddp_buffer_reuse);
4248 		counter_u64_free(ofld_rxq->ddp_buffer_free);
4249 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4250 	}
4251 }
4252 
4253 static void
add_ofld_rxq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_ofld_rxq * ofld_rxq)4254 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4255     struct sge_ofld_rxq *ofld_rxq)
4256 {
4257 	struct sysctl_oid_list *children, *top;
4258 
4259 	if (ctx == NULL || oid == NULL)
4260 		return;
4261 
4262 	top = children = SYSCTL_CHILDREN(oid);
4263 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_jobs",
4264 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_jobs, 0,
4265 	    "# of aio_read(2) jobs completed via DDP");
4266 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_octets",
4267 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_octets, 0,
4268 	    "# of octets placed directly for aio_read(2) jobs");
4269 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4270 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4271 	    "# of TOE TLS records received");
4272 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4273 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4274 	    "# of payload octets in received TOE TLS records");
4275 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4276 	    "rx_toe_ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_ddp_octets,
4277 	    "# of payload octets received via TCP DDP");
4278 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4279 	    "ddp_buffer_alloc", CTLFLAG_RD, &ofld_rxq->ddp_buffer_alloc,
4280 	    "# of DDP RCV buffers allocated");
4281 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4282 	    "ddp_buffer_reuse", CTLFLAG_RD, &ofld_rxq->ddp_buffer_reuse,
4283 	    "# of DDP RCV buffers reused");
4284 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4285 	    "ddp_buffer_free", CTLFLAG_RD, &ofld_rxq->ddp_buffer_free,
4286 	    "# of DDP RCV buffers freed");
4287 
4288 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4289 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4290 	children = SYSCTL_CHILDREN(oid);
4291 
4292 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4293 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4294 	    "# of times DDP buffer was setup successfully.");
4295 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4296 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4297 	    "# of times DDP buffer setup failed.");
4298 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4299 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4300 	    "# of octets placed directly");
4301 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4302 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4303 	    "# of PDUs with data placed directly.");
4304 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4305 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4306 	    "# of data octets delivered in freelist");
4307 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4308 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4309 	    "# of PDUs with data delivered in freelist");
4310 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4311 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4312 	    "# of PDUs with invalid padding");
4313 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4314 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4315 	    "# of PDUs with invalid header digests");
4316 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4317 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4318 	    "# of PDUs with invalid data digests");
4319 
4320 	oid = SYSCTL_ADD_NODE(ctx, top, OID_AUTO, "nvme",
4321 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE NVMe statistics");
4322 	children = SYSCTL_CHILDREN(oid);
4323 
4324 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4325 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_ok,
4326 	    "# of times DDP buffer was setup successfully");
4327 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_no_stag",
4328 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_no_stag,
4329 	    "# of times STAG was not available for DDP buffer setup");
4330 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4331 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_error,
4332 	    "# of times DDP buffer setup failed");
4333 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_octets",
4334 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_octets,
4335 	    "# of octets placed directly");
4336 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_pdus",
4337 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_pdus,
4338 	    "# of PDUs with data placed directly");
4339 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "fl_octets",
4340 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_fl_octets,
4341 	    "# of data octets delivered in freelist");
4342 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "fl_pdus",
4343 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_fl_pdus,
4344 	    "# of PDUs with data delivered in freelist");
4345 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "invalid_headers",
4346 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_invalid_headers,
4347 	    "# of PDUs with invalid header field");
4348 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "header_digest_errors",
4349 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_header_digest_errors,
4350 	    "# of PDUs with invalid header digests");
4351 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "data_digest_errors",
4352 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_data_digest_errors,
4353 	    "# of PDUs with invalid data digests");
4354 }
4355 #endif
4356 
4357 /*
4358  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4359  */
4360 static u_int
qsize_to_fthresh(int qsize)4361 qsize_to_fthresh(int qsize)
4362 {
4363 	u_int fthresh;
4364 
4365 	fthresh = qsize == 0 ? 0 : order_base_2(qsize);
4366 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4367 		fthresh = X_CIDXFLUSHTHRESH_128;
4368 
4369 	return (fthresh);
4370 }
4371 
4372 static int
ctrl_eq_alloc(struct adapter * sc,struct sge_eq * eq,int idx)4373 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq, int idx)
4374 {
4375 	int rc, cntxt_id, core;
4376 	struct fw_eq_ctrl_cmd c;
4377 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4378 
4379 	core = sc->params.tid_qid_sel_mask != 0 ? idx % sc->params.ncores : 0;
4380 	bzero(&c, sizeof(c));
4381 
4382 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4383 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4384 	    V_FW_EQ_CTRL_CMD_VFN(0));
4385 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4386 	    V_FW_EQ_CTRL_CMD_COREGROUP(core) |
4387 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4388 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4389 	c.physeqid_pkd = htobe32(0);
4390 	c.fetchszm_to_iqid =
4391 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4392 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->hw_port) |
4393 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4394 	c.dcaen_to_eqsize =
4395 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4396 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4397 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4398 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4399 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4400 	c.eqaddr = htobe64(eq->ba);
4401 
4402 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4403 	if (rc != 0) {
4404 		CH_ERR(sc, "failed to create hw ctrlq for port %d: %d\n",
4405 		    eq->port_id, rc);
4406 		return (rc);
4407 	}
4408 
4409 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4410 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4411 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4412 	if (cntxt_id >= sc->sge.eqmap_sz)
4413 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4414 		cntxt_id, sc->sge.eqmap_sz - 1);
4415 	sc->sge.eqmap[cntxt_id] = eq;
4416 
4417 	return (rc);
4418 }
4419 
4420 static int
eth_eq_alloc(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4421 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4422 {
4423 	int rc, cntxt_id, core;
4424 	struct fw_eq_eth_cmd c;
4425 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4426 
4427 	core = sc->params.ncores > 1 ? idx % sc->params.ncores : 0;
4428 	bzero(&c, sizeof(c));
4429 
4430 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4431 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4432 	    V_FW_EQ_ETH_CMD_VFN(0));
4433 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4434 	    V_FW_EQ_ETH_CMD_COREGROUP(core) |
4435 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4436 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4437 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4438 	c.fetchszm_to_iqid =
4439 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4440 		V_FW_EQ_ETH_CMD_PCIECHN(eq->hw_port) | F_FW_EQ_ETH_CMD_FETCHRO |
4441 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4442 	c.dcaen_to_eqsize =
4443 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4444 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4445 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4446 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4447 	c.eqaddr = htobe64(eq->ba);
4448 
4449 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4450 	if (rc != 0) {
4451 		device_printf(vi->dev,
4452 		    "failed to create Ethernet egress queue: %d\n", rc);
4453 		return (rc);
4454 	}
4455 
4456 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4457 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4458 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4459 	if (cntxt_id >= sc->sge.eqmap_sz)
4460 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4461 		cntxt_id, sc->sge.eqmap_sz - 1);
4462 	sc->sge.eqmap[cntxt_id] = eq;
4463 
4464 	return (rc);
4465 }
4466 
4467 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4468 /*
4469  * ncores	number of uP cores.
4470  * nq		number of queues for this VI
4471  * idx		queue index
4472  */
4473 static inline int
qidx_to_core(int ncores,int nq,int idx)4474 qidx_to_core(int ncores, int nq, int idx)
4475 {
4476 	MPASS(nq % ncores == 0);
4477 	MPASS(idx >= 0 && idx < nq);
4478 
4479 	return (idx * ncores / nq);
4480 }
4481 
4482 static int
ofld_eq_alloc(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4483 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq,
4484     int idx)
4485 {
4486 	int rc, cntxt_id, core;
4487 	struct fw_eq_ofld_cmd c;
4488 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4489 
4490 	if (sc->params.tid_qid_sel_mask != 0)
4491 		core = qidx_to_core(sc->params.ncores, vi->nofldtxq, idx);
4492 	else
4493 		core = 0;
4494 
4495 	bzero(&c, sizeof(c));
4496 
4497 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4498 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4499 	    V_FW_EQ_OFLD_CMD_VFN(0));
4500 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4501 	    V_FW_EQ_OFLD_CMD_COREGROUP(core) |
4502 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4503 	c.fetchszm_to_iqid =
4504 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4505 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->hw_port) |
4506 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4507 	c.dcaen_to_eqsize =
4508 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4509 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4510 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4511 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4512 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4513 	c.eqaddr = htobe64(eq->ba);
4514 
4515 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4516 	if (rc != 0) {
4517 		device_printf(vi->dev,
4518 		    "failed to create egress queue for TCP offload: %d\n", rc);
4519 		return (rc);
4520 	}
4521 
4522 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4523 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4524 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4525 	if (cntxt_id >= sc->sge.eqmap_sz)
4526 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4527 		cntxt_id, sc->sge.eqmap_sz - 1);
4528 	sc->sge.eqmap[cntxt_id] = eq;
4529 
4530 	return (rc);
4531 }
4532 #endif
4533 
4534 /* SW only */
4535 static int
alloc_eq(struct adapter * sc,struct sge_eq * eq,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)4536 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4537     struct sysctl_oid *oid)
4538 {
4539 	int rc, qsize;
4540 	size_t len;
4541 
4542 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4543 
4544 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4545 	len = qsize * EQ_ESIZE;
4546 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4547 	    (void **)&eq->desc);
4548 	if (rc)
4549 		return (rc);
4550 	if (ctx != NULL && oid != NULL)
4551 		add_eq_sysctls(sc, ctx, oid, eq);
4552 	eq->flags |= EQ_SW_ALLOCATED;
4553 
4554 	return (0);
4555 }
4556 
4557 /* SW only */
4558 static void
free_eq(struct adapter * sc,struct sge_eq * eq)4559 free_eq(struct adapter *sc, struct sge_eq *eq)
4560 {
4561 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4562 	if (eq->type == EQ_ETH)
4563 		MPASS(eq->pidx == eq->cidx);
4564 
4565 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4566 	mtx_destroy(&eq->eq_lock);
4567 	bzero(eq, sizeof(*eq));
4568 }
4569 
4570 static void
add_eq_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_eq * eq)4571 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4572     struct sysctl_oid *oid, struct sge_eq *eq)
4573 {
4574 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4575 
4576 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4577 	    "bus address of descriptor ring");
4578 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4579 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4580 	    "desc ring size in bytes");
4581 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4582 	    &eq->abs_id, 0, "absolute id of the queue");
4583 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4584 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4585 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4586 	    0, "consumer index");
4587 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4588 	    0, "producer index");
4589 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4590 	    eq->sidx, "status page index");
4591 }
4592 
4593 static int
alloc_eq_hwq(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4594 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4595 {
4596 	int rc;
4597 
4598 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4599 
4600 	eq->iqid = eq->iq->cntxt_id;
4601 	eq->pidx = eq->cidx = eq->dbidx = 0;
4602 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4603 	eq->equeqidx = 0;
4604 	eq->doorbells = sc->doorbells;
4605 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4606 
4607 	switch (eq->type) {
4608 	case EQ_CTRL:
4609 		rc = ctrl_eq_alloc(sc, eq, idx);
4610 		break;
4611 
4612 	case EQ_ETH:
4613 		rc = eth_eq_alloc(sc, vi, eq, idx);
4614 		break;
4615 
4616 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4617 	case EQ_OFLD:
4618 		rc = ofld_eq_alloc(sc, vi, eq, idx);
4619 		break;
4620 #endif
4621 
4622 	default:
4623 		panic("%s: invalid eq type %d.", __func__, eq->type);
4624 	}
4625 	if (rc != 0) {
4626 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4627 		    eq->type, rc);
4628 		return (rc);
4629 	}
4630 
4631 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4632 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4633 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4634 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4635 		uint32_t mask = (1 << s_qpp) - 1;
4636 		volatile uint8_t *udb;
4637 
4638 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4639 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4640 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4641 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4642 			clrbit(&eq->doorbells, DOORBELL_WCWR);
4643 		else {
4644 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4645 			eq->udb_qid = 0;
4646 		}
4647 		eq->udb = (volatile void *)udb;
4648 	}
4649 
4650 	eq->flags |= EQ_HW_ALLOCATED;
4651 	return (0);
4652 }
4653 
4654 static int
free_eq_hwq(struct adapter * sc,struct vi_info * vi __unused,struct sge_eq * eq)4655 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4656 {
4657 	int rc;
4658 
4659 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4660 
4661 	switch (eq->type) {
4662 	case EQ_CTRL:
4663 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4664 		break;
4665 	case EQ_ETH:
4666 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4667 		break;
4668 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4669 	case EQ_OFLD:
4670 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4671 		break;
4672 #endif
4673 	default:
4674 		panic("%s: invalid eq type %d.", __func__, eq->type);
4675 	}
4676 	if (rc != 0) {
4677 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4678 		return (rc);
4679 	}
4680 	eq->flags &= ~EQ_HW_ALLOCATED;
4681 
4682 	return (0);
4683 }
4684 
4685 static int
alloc_wrq(struct adapter * sc,struct vi_info * vi,struct sge_wrq * wrq,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)4686 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4687     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4688 {
4689 	struct sge_eq *eq = &wrq->eq;
4690 	int rc;
4691 
4692 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4693 
4694 	rc = alloc_eq(sc, eq, ctx, oid);
4695 	if (rc)
4696 		return (rc);
4697 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4698 	/* Can't fail after this. */
4699 
4700 	wrq->adapter = sc;
4701 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4702 	TAILQ_INIT(&wrq->incomplete_wrs);
4703 	STAILQ_INIT(&wrq->wr_list);
4704 	wrq->nwr_pending = 0;
4705 	wrq->ndesc_needed = 0;
4706 	add_wrq_sysctls(ctx, oid, wrq);
4707 
4708 	return (0);
4709 }
4710 
4711 static void
free_wrq(struct adapter * sc,struct sge_wrq * wrq)4712 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4713 {
4714 	free_eq(sc, &wrq->eq);
4715 	MPASS(wrq->nwr_pending == 0);
4716 	MPASS(wrq->ndesc_needed == 0);
4717 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4718 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4719 	bzero(wrq, sizeof(*wrq));
4720 }
4721 
4722 static void
add_wrq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_wrq * wrq)4723 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4724     struct sge_wrq *wrq)
4725 {
4726 	struct sysctl_oid_list *children;
4727 
4728 	if (ctx == NULL || oid == NULL)
4729 		return;
4730 
4731 	children = SYSCTL_CHILDREN(oid);
4732 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4733 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4734 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4735 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4736 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4737 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4738 }
4739 
4740 /*
4741  * Idempotent.
4742  */
4743 static int
alloc_txq(struct vi_info * vi,struct sge_txq * txq,int idx)4744 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4745 {
4746 	int rc, iqidx;
4747 	struct port_info *pi = vi->pi;
4748 	struct adapter *sc = vi->adapter;
4749 	struct sge_eq *eq = &txq->eq;
4750 	struct txpkts *txp;
4751 	char name[16];
4752 	struct sysctl_oid *oid;
4753 
4754 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4755 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4756 
4757 		snprintf(name, sizeof(name), "%d", idx);
4758 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4759 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4760 		    "tx queue");
4761 
4762 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4763 		snprintf(name, sizeof(name), "%s txq%d",
4764 		    device_get_nameunit(vi->dev), idx);
4765 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->port_id,
4766 		    &sc->sge.rxq[iqidx].iq, name);
4767 
4768 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4769 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4770 		if (rc != 0) {
4771 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4772 			    idx, rc);
4773 failed:
4774 			sysctl_remove_oid(oid, 1, 1);
4775 			return (rc);
4776 		}
4777 
4778 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4779 		if (rc) {
4780 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4781 			mp_ring_free(txq->r);
4782 			goto failed;
4783 		}
4784 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4785 		/* Can't fail after this point. */
4786 
4787 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4788 		txq->ifp = vi->ifp;
4789 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4790 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4791 		    M_ZERO | M_WAITOK);
4792 
4793 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4794 	}
4795 
4796 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4797 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4798 		rc = alloc_eq_hwq(sc, vi, eq, idx);
4799 		if (rc != 0) {
4800 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4801 			return (rc);
4802 		}
4803 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4804 		/* Can't fail after this point. */
4805 
4806 		if (idx == 0)
4807 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4808 		else
4809 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4810 			    ("eq_base mismatch"));
4811 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4812 		    ("PF with non-zero eq_base"));
4813 
4814 		txp = &txq->txp;
4815 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4816 		txq->txp.max_npkt = min(nitems(txp->mb),
4817 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4818 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4819 			txq->txp.max_npkt--;
4820 
4821 		if (vi->flags & TX_USES_VM_WR)
4822 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4823 			    V_TXPKT_INTF(pi->hw_port));
4824 		else
4825 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4826 			    V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
4827 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4828 
4829 		txq->tc_idx = -1;
4830 	}
4831 
4832 	return (0);
4833 }
4834 
4835 /*
4836  * Idempotent.
4837  */
4838 static void
free_txq(struct vi_info * vi,struct sge_txq * txq)4839 free_txq(struct vi_info *vi, struct sge_txq *txq)
4840 {
4841 	struct adapter *sc = vi->adapter;
4842 	struct sge_eq *eq = &txq->eq;
4843 
4844 	if (eq->flags & EQ_HW_ALLOCATED) {
4845 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4846 		free_eq_hwq(sc, NULL, eq);
4847 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4848 	}
4849 
4850 	if (eq->flags & EQ_SW_ALLOCATED) {
4851 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4852 		sglist_free(txq->gl);
4853 		free(txq->sdesc, M_CXGBE);
4854 		mp_ring_free(txq->r);
4855 		free_eq(sc, eq);
4856 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4857 		bzero(txq, sizeof(*txq));
4858 	}
4859 }
4860 
4861 static void
add_txq_sysctls(struct vi_info * vi,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_txq * txq)4862 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4863     struct sysctl_oid *oid, struct sge_txq *txq)
4864 {
4865 	struct adapter *sc;
4866 	struct sysctl_oid_list *children;
4867 
4868 	if (ctx == NULL || oid == NULL)
4869 		return;
4870 
4871 	sc = vi->adapter;
4872 	children = SYSCTL_CHILDREN(oid);
4873 
4874 	mp_ring_sysctls(txq->r, ctx, children);
4875 
4876 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4877 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4878 	    sysctl_tc, "I", "traffic class (-1 means none)");
4879 
4880 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4881 	    &txq->txcsum, "# of times hardware assisted with checksum");
4882 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4883 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4884 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4885 	    &txq->tso_wrs, "# of TSO work requests");
4886 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4887 	    &txq->imm_wrs, "# of work requests with immediate data");
4888 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4889 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4890 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4891 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4892 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4893 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4894 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4895 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4896 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4897 	    &txq->txpkts0_pkts,
4898 	    "# of frames tx'd using type0 txpkts work requests");
4899 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4900 	    &txq->txpkts1_pkts,
4901 	    "# of frames tx'd using type1 txpkts work requests");
4902 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4903 	    &txq->txpkts_flush,
4904 	    "# of times txpkts had to be flushed out by an egress-update");
4905 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4906 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4907 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4908 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4909 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4910 	    &txq->vxlan_txcsum,
4911 	    "# of times hardware assisted with inner checksums (VXLAN)");
4912 
4913 #ifdef KERN_TLS
4914 	if (is_ktls(sc)) {
4915 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4916 		    CTLFLAG_RD, &txq->kern_tls_records,
4917 		    "# of NIC TLS records transmitted");
4918 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4919 		    CTLFLAG_RD, &txq->kern_tls_short,
4920 		    "# of short NIC TLS records transmitted");
4921 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4922 		    CTLFLAG_RD, &txq->kern_tls_partial,
4923 		    "# of partial NIC TLS records transmitted");
4924 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4925 		    CTLFLAG_RD, &txq->kern_tls_full,
4926 		    "# of full NIC TLS records transmitted");
4927 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4928 		    CTLFLAG_RD, &txq->kern_tls_octets,
4929 		    "# of payload octets in transmitted NIC TLS records");
4930 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4931 		    CTLFLAG_RD, &txq->kern_tls_waste,
4932 		    "# of octets DMAd but not transmitted in NIC TLS records");
4933 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4934 		    CTLFLAG_RD, &txq->kern_tls_header,
4935 		    "# of NIC TLS header-only packets transmitted");
4936 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4937 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4938 		    "# of NIC TLS padded FIN packets on short TLS records");
4939 		if (is_t6(sc)) {
4940 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4941 			    "kern_tls_options", CTLFLAG_RD,
4942 			    &txq->kern_tls_options,
4943 			    "# of NIC TLS options-only packets transmitted");
4944 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4945 			    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4946 			    "# of NIC TLS FIN-only packets transmitted");
4947 		} else {
4948 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4949 			    "kern_tls_ghash_received", CTLFLAG_RD,
4950 			    &txq->kern_tls_ghash_received,
4951 			    "# of NIC TLS GHASHes received");
4952 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4953 			    "kern_tls_ghash_requested", CTLFLAG_RD,
4954 			    &txq->kern_tls_ghash_requested,
4955 			    "# of NIC TLS GHASHes requested");
4956 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4957 			    "kern_tls_lso", CTLFLAG_RD,
4958 			    &txq->kern_tls_lso,
4959 			    "# of NIC TLS records transmitted using LSO");
4960 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4961 			    "kern_tls_partial_ghash", CTLFLAG_RD,
4962 			    &txq->kern_tls_partial_ghash,
4963 			    "# of NIC TLS records encrypted using a partial GHASH");
4964 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4965 			    "kern_tls_splitmode", CTLFLAG_RD,
4966 			    &txq->kern_tls_splitmode,
4967 			    "# of NIC TLS records using SplitMode");
4968 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4969 			    "kern_tls_trailer", CTLFLAG_RD,
4970 			    &txq->kern_tls_trailer,
4971 			    "# of NIC TLS trailer-only packets transmitted");
4972 		}
4973 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4974 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4975 		    "# of NIC TLS sessions using AES-CBC");
4976 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4977 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4978 		    "# of NIC TLS sessions using AES-GCM");
4979 	}
4980 #endif
4981 }
4982 
4983 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4984 /*
4985  * Idempotent.
4986  */
4987 static int
alloc_ofld_txq(struct vi_info * vi,struct sge_ofld_txq * ofld_txq,int idx)4988 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4989 {
4990 	struct sysctl_oid *oid;
4991 	struct port_info *pi = vi->pi;
4992 	struct adapter *sc = vi->adapter;
4993 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4994 	int rc, iqidx;
4995 	char name[16];
4996 
4997 	MPASS(idx >= 0);
4998 	MPASS(idx < vi->nofldtxq);
4999 
5000 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
5001 		snprintf(name, sizeof(name), "%d", idx);
5002 		oid = SYSCTL_ADD_NODE(&vi->ctx,
5003 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
5004 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
5005 
5006 		snprintf(name, sizeof(name), "%s ofld_txq%d",
5007 		    device_get_nameunit(vi->dev), idx);
5008 		if (vi->nofldrxq > 0) {
5009 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
5010 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
5011 			    &sc->sge.ofld_rxq[iqidx].iq, name);
5012 		} else {
5013 			iqidx = vi->first_rxq + (idx % vi->nrxq);
5014 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
5015 			    &sc->sge.rxq[iqidx].iq, name);
5016 		}
5017 
5018 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
5019 		if (rc != 0) {
5020 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
5021 			    rc);
5022 			sysctl_remove_oid(oid, 1, 1);
5023 			return (rc);
5024 		}
5025 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5026 		/* Can't fail after this point. */
5027 
5028 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
5029 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
5030 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
5031 		ofld_txq->tx_nvme_pdus = counter_u64_alloc(M_WAITOK);
5032 		ofld_txq->tx_nvme_octets = counter_u64_alloc(M_WAITOK);
5033 		ofld_txq->tx_nvme_iso_wrs = counter_u64_alloc(M_WAITOK);
5034 		ofld_txq->tx_aio_jobs = counter_u64_alloc(M_WAITOK);
5035 		ofld_txq->tx_aio_octets = counter_u64_alloc(M_WAITOK);
5036 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
5037 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
5038 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
5039 	}
5040 
5041 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
5042 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5043 		MPASS(ofld_txq->wrq.nwr_pending == 0);
5044 		MPASS(ofld_txq->wrq.ndesc_needed == 0);
5045 		rc = alloc_eq_hwq(sc, vi, eq, idx);
5046 		if (rc != 0) {
5047 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
5048 			    rc);
5049 			return (rc);
5050 		}
5051 		MPASS(eq->flags & EQ_HW_ALLOCATED);
5052 	}
5053 
5054 	return (0);
5055 }
5056 
5057 /*
5058  * Idempotent.
5059  */
5060 static void
free_ofld_txq(struct vi_info * vi,struct sge_ofld_txq * ofld_txq)5061 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
5062 {
5063 	struct adapter *sc = vi->adapter;
5064 	struct sge_eq *eq = &ofld_txq->wrq.eq;
5065 
5066 	if (eq->flags & EQ_HW_ALLOCATED) {
5067 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5068 		free_eq_hwq(sc, NULL, eq);
5069 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
5070 	}
5071 
5072 	if (eq->flags & EQ_SW_ALLOCATED) {
5073 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
5074 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
5075 		counter_u64_free(ofld_txq->tx_iscsi_octets);
5076 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
5077 		counter_u64_free(ofld_txq->tx_nvme_pdus);
5078 		counter_u64_free(ofld_txq->tx_nvme_octets);
5079 		counter_u64_free(ofld_txq->tx_nvme_iso_wrs);
5080 		counter_u64_free(ofld_txq->tx_aio_jobs);
5081 		counter_u64_free(ofld_txq->tx_aio_octets);
5082 		counter_u64_free(ofld_txq->tx_toe_tls_records);
5083 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
5084 		free_wrq(sc, &ofld_txq->wrq);
5085 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
5086 		bzero(ofld_txq, sizeof(*ofld_txq));
5087 	}
5088 }
5089 
5090 static void
add_ofld_txq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_ofld_txq * ofld_txq)5091 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
5092     struct sge_ofld_txq *ofld_txq)
5093 {
5094 	struct sysctl_oid_list *children;
5095 
5096 	if (ctx == NULL || oid == NULL)
5097 		return;
5098 
5099 	children = SYSCTL_CHILDREN(oid);
5100 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
5101 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
5102 	    "# of iSCSI PDUs transmitted");
5103 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
5104 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
5105 	    "# of payload octets in transmitted iSCSI PDUs");
5106 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
5107 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
5108 	    "# of iSCSI segmentation offload work requests");
5109 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_pdus",
5110 	    CTLFLAG_RD, &ofld_txq->tx_nvme_pdus,
5111 	    "# of NVMe PDUs transmitted");
5112 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_octets",
5113 	    CTLFLAG_RD, &ofld_txq->tx_nvme_octets,
5114 	    "# of payload octets in transmitted NVMe PDUs");
5115 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_iso_wrs",
5116 	    CTLFLAG_RD, &ofld_txq->tx_nvme_iso_wrs,
5117 	    "# of NVMe segmentation offload work requests");
5118 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_jobs",
5119 	    CTLFLAG_RD, &ofld_txq->tx_aio_jobs,
5120 	    "# of zero-copy aio_write(2) jobs transmitted");
5121 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_octets",
5122 	    CTLFLAG_RD, &ofld_txq->tx_aio_octets,
5123 	    "# of payload octets in transmitted zero-copy aio_write(2) jobs");
5124 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
5125 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
5126 	    "# of TOE TLS records transmitted");
5127 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
5128 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
5129 	    "# of payload octets in transmitted TOE TLS records");
5130 }
5131 #endif
5132 
5133 static void
oneseg_dma_callback(void * arg,bus_dma_segment_t * segs,int nseg,int error)5134 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
5135 {
5136 	bus_addr_t *ba = arg;
5137 
5138 	KASSERT(nseg == 1,
5139 	    ("%s meant for single segment mappings only.", __func__));
5140 
5141 	*ba = error ? 0 : segs->ds_addr;
5142 }
5143 
5144 static inline void
ring_fl_db(struct adapter * sc,struct sge_fl * fl)5145 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
5146 {
5147 	uint32_t n, v;
5148 
5149 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
5150 	MPASS(n > 0);
5151 
5152 	wmb();
5153 	v = fl->dbval | V_PIDX(n);
5154 	if (fl->udb)
5155 		*fl->udb = htole32(v);
5156 	else
5157 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
5158 	IDXINCR(fl->dbidx, n, fl->sidx);
5159 }
5160 
5161 /*
5162  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
5163  * recycled do not count towards this allocation budget.
5164  *
5165  * Returns non-zero to indicate that this freelist should be added to the list
5166  * of starving freelists.
5167  */
5168 static int
refill_fl(struct adapter * sc,struct sge_fl * fl,int n)5169 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
5170 {
5171 	__be64 *d;
5172 	struct fl_sdesc *sd;
5173 	uintptr_t pa;
5174 	caddr_t cl;
5175 	struct rx_buf_info *rxb;
5176 	struct cluster_metadata *clm;
5177 	uint16_t max_pidx, zidx = fl->zidx;
5178 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
5179 
5180 	FL_LOCK_ASSERT_OWNED(fl);
5181 
5182 	/*
5183 	 * We always stop at the beginning of the hardware descriptor that's just
5184 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
5185 	 * which would mean an empty freelist to the chip.
5186 	 */
5187 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
5188 	if (fl->pidx == max_pidx * 8)
5189 		return (0);
5190 
5191 	d = &fl->desc[fl->pidx];
5192 	sd = &fl->sdesc[fl->pidx];
5193 	rxb = &sc->sge.rx_buf_info[zidx];
5194 
5195 	while (n > 0) {
5196 
5197 		if (sd->cl != NULL) {
5198 
5199 			if (sd->nmbuf == 0) {
5200 				/*
5201 				 * Fast recycle without involving any atomics on
5202 				 * the cluster's metadata (if the cluster has
5203 				 * metadata).  This happens when all frames
5204 				 * received in the cluster were small enough to
5205 				 * fit within a single mbuf each.
5206 				 */
5207 				fl->cl_fast_recycled++;
5208 				goto recycled;
5209 			}
5210 
5211 			/*
5212 			 * Cluster is guaranteed to have metadata.  Clusters
5213 			 * without metadata always take the fast recycle path
5214 			 * when they're recycled.
5215 			 */
5216 			clm = cl_metadata(sd);
5217 			MPASS(clm != NULL);
5218 
5219 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5220 				fl->cl_recycled++;
5221 				counter_u64_add(extfree_rels, 1);
5222 				goto recycled;
5223 			}
5224 			sd->cl = NULL;	/* gave up my reference */
5225 		}
5226 		MPASS(sd->cl == NULL);
5227 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
5228 		if (__predict_false(cl == NULL)) {
5229 			if (zidx != fl->safe_zidx) {
5230 				zidx = fl->safe_zidx;
5231 				rxb = &sc->sge.rx_buf_info[zidx];
5232 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
5233 			}
5234 			if (cl == NULL)
5235 				break;
5236 		}
5237 		fl->cl_allocated++;
5238 		n--;
5239 
5240 		pa = pmap_kextract((vm_offset_t)cl);
5241 		sd->cl = cl;
5242 		sd->zidx = zidx;
5243 
5244 		if (fl->flags & FL_BUF_PACKING) {
5245 			*d = htobe64(pa | rxb->hwidx2);
5246 			sd->moff = rxb->size2;
5247 		} else {
5248 			*d = htobe64(pa | rxb->hwidx1);
5249 			sd->moff = 0;
5250 		}
5251 recycled:
5252 		sd->nmbuf = 0;
5253 		d++;
5254 		sd++;
5255 		if (__predict_false((++fl->pidx & 7) == 0)) {
5256 			uint16_t pidx = fl->pidx >> 3;
5257 
5258 			if (__predict_false(pidx == fl->sidx)) {
5259 				fl->pidx = 0;
5260 				pidx = 0;
5261 				sd = fl->sdesc;
5262 				d = fl->desc;
5263 			}
5264 			if (n < 8 || pidx == max_pidx)
5265 				break;
5266 
5267 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5268 				ring_fl_db(sc, fl);
5269 		}
5270 	}
5271 
5272 	if ((fl->pidx >> 3) != fl->dbidx)
5273 		ring_fl_db(sc, fl);
5274 
5275 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5276 }
5277 
5278 /*
5279  * Attempt to refill all starving freelists.
5280  */
5281 static void
refill_sfl(void * arg)5282 refill_sfl(void *arg)
5283 {
5284 	struct adapter *sc = arg;
5285 	struct sge_fl *fl, *fl_temp;
5286 
5287 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5288 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5289 		FL_LOCK(fl);
5290 		refill_fl(sc, fl, 64);
5291 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5292 			TAILQ_REMOVE(&sc->sfl, fl, link);
5293 			fl->flags &= ~FL_STARVING;
5294 		}
5295 		FL_UNLOCK(fl);
5296 	}
5297 
5298 	if (!TAILQ_EMPTY(&sc->sfl))
5299 		callout_schedule(&sc->sfl_callout, hz / 5);
5300 }
5301 
5302 /*
5303  * Release the driver's reference on all buffers in the given freelist.  Buffers
5304  * with kernel references cannot be freed and will prevent the driver from being
5305  * unloaded safely.
5306  */
5307 void
free_fl_buffers(struct adapter * sc,struct sge_fl * fl)5308 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5309 {
5310 	struct fl_sdesc *sd;
5311 	struct cluster_metadata *clm;
5312 	int i;
5313 
5314 	sd = fl->sdesc;
5315 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5316 		if (sd->cl == NULL)
5317 			continue;
5318 
5319 		if (sd->nmbuf == 0)
5320 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5321 		else if (fl->flags & FL_BUF_PACKING) {
5322 			clm = cl_metadata(sd);
5323 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5324 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5325 				    sd->cl);
5326 				counter_u64_add(extfree_rels, 1);
5327 			}
5328 		}
5329 		sd->cl = NULL;
5330 	}
5331 
5332 	if (fl->flags & FL_BUF_RESUME) {
5333 		m_freem(fl->m0);
5334 		fl->flags &= ~FL_BUF_RESUME;
5335 	}
5336 }
5337 
5338 static inline void
get_pkt_gl(struct mbuf * m,struct sglist * gl)5339 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5340 {
5341 	int rc;
5342 
5343 	M_ASSERTPKTHDR(m);
5344 
5345 	sglist_reset(gl);
5346 	rc = sglist_append_mbuf(gl, m);
5347 	if (__predict_false(rc != 0)) {
5348 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5349 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5350 	}
5351 
5352 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5353 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5354 	    mbuf_nsegs(m), gl->sg_nseg));
5355 #if 0	/* vm_wr not readily available here. */
5356 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5357 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5358 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5359 #endif
5360 }
5361 
5362 /*
5363  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5364  */
5365 static inline u_int
txpkt_len16(u_int nsegs,const u_int extra)5366 txpkt_len16(u_int nsegs, const u_int extra)
5367 {
5368 	u_int n;
5369 
5370 	MPASS(nsegs > 0);
5371 
5372 	nsegs--; /* first segment is part of ulptx_sgl */
5373 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5374 	    sizeof(struct cpl_tx_pkt_core) +
5375 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5376 
5377 	return (howmany(n, 16));
5378 }
5379 
5380 /*
5381  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5382  * request header.
5383  */
5384 static inline u_int
txpkt_vm_len16(u_int nsegs,const u_int extra)5385 txpkt_vm_len16(u_int nsegs, const u_int extra)
5386 {
5387 	u_int n;
5388 
5389 	MPASS(nsegs > 0);
5390 
5391 	nsegs--; /* first segment is part of ulptx_sgl */
5392 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5393 	    sizeof(struct cpl_tx_pkt_core) +
5394 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5395 
5396 	return (howmany(n, 16));
5397 }
5398 
5399 static inline void
calculate_mbuf_len16(struct mbuf * m,bool vm_wr)5400 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5401 {
5402 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5403 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5404 
5405 	if (vm_wr) {
5406 		if (needs_tso(m))
5407 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5408 		else
5409 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5410 		return;
5411 	}
5412 
5413 	if (needs_tso(m)) {
5414 		if (needs_vxlan_tso(m))
5415 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5416 		else
5417 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5418 	} else
5419 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5420 }
5421 
5422 /*
5423  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5424  * request header.
5425  */
5426 static inline u_int
txpkts0_len16(u_int nsegs)5427 txpkts0_len16(u_int nsegs)
5428 {
5429 	u_int n;
5430 
5431 	MPASS(nsegs > 0);
5432 
5433 	nsegs--; /* first segment is part of ulptx_sgl */
5434 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5435 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5436 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5437 
5438 	return (howmany(n, 16));
5439 }
5440 
5441 /*
5442  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5443  * request header.
5444  */
5445 static inline u_int
txpkts1_len16(void)5446 txpkts1_len16(void)
5447 {
5448 	u_int n;
5449 
5450 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5451 
5452 	return (howmany(n, 16));
5453 }
5454 
5455 static inline u_int
imm_payload(u_int ndesc)5456 imm_payload(u_int ndesc)
5457 {
5458 	u_int n;
5459 
5460 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5461 	    sizeof(struct cpl_tx_pkt_core);
5462 
5463 	return (n);
5464 }
5465 
5466 static inline uint64_t
csum_to_ctrl(struct adapter * sc,struct mbuf * m)5467 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5468 {
5469 	uint64_t ctrl;
5470 	int csum_type, l2hlen, l3hlen;
5471 	int x, y;
5472 	static const int csum_types[3][2] = {
5473 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5474 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5475 		{TX_CSUM_IP, 0}
5476 	};
5477 
5478 	M_ASSERTPKTHDR(m);
5479 
5480 	if (!needs_hwcsum(m))
5481 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5482 
5483 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5484 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5485 
5486 	if (needs_vxlan_csum(m)) {
5487 		MPASS(m->m_pkthdr.l4hlen > 0);
5488 		MPASS(m->m_pkthdr.l5hlen > 0);
5489 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5490 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5491 
5492 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5493 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5494 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5495 		l3hlen = m->m_pkthdr.inner_l3hlen;
5496 	} else {
5497 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5498 		l3hlen = m->m_pkthdr.l3hlen;
5499 	}
5500 
5501 	ctrl = 0;
5502 	if (!needs_l3_csum(m))
5503 		ctrl |= F_TXPKT_IPCSUM_DIS;
5504 
5505 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5506 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5507 		x = 0;	/* TCP */
5508 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5509 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5510 		x = 1;	/* UDP */
5511 	else
5512 		x = 2;
5513 
5514 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5515 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5516 		y = 0;	/* IPv4 */
5517 	else {
5518 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5519 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5520 		y = 1;	/* IPv6 */
5521 	}
5522 	/*
5523 	 * needs_hwcsum returned true earlier so there must be some kind of
5524 	 * checksum to calculate.
5525 	 */
5526 	csum_type = csum_types[x][y];
5527 	MPASS(csum_type != 0);
5528 	if (csum_type == TX_CSUM_IP)
5529 		ctrl |= F_TXPKT_L4CSUM_DIS;
5530 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5531 	if (chip_id(sc) <= CHELSIO_T5)
5532 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5533 	else
5534 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5535 
5536 	return (ctrl);
5537 }
5538 
5539 static inline void *
write_lso_cpl(void * cpl,struct mbuf * m0)5540 write_lso_cpl(void *cpl, struct mbuf *m0)
5541 {
5542 	struct cpl_tx_pkt_lso_core *lso;
5543 	uint32_t ctrl;
5544 
5545 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5546 	    m0->m_pkthdr.l4hlen > 0,
5547 	    ("%s: mbuf %p needs TSO but missing header lengths",
5548 		__func__, m0));
5549 
5550 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5551 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5552 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5553 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5554 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5555 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5556 		ctrl |= F_LSO_IPV6;
5557 
5558 	lso = cpl;
5559 	lso->lso_ctrl = htobe32(ctrl);
5560 	lso->ipid_ofst = htobe16(0);
5561 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5562 	lso->seqno_offset = htobe32(0);
5563 	lso->len = htobe32(m0->m_pkthdr.len);
5564 
5565 	return (lso + 1);
5566 }
5567 
5568 static void *
write_tnl_lso_cpl(void * cpl,struct mbuf * m0)5569 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5570 {
5571 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5572 	uint32_t ctrl;
5573 
5574 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5575 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5576 	    m0->m_pkthdr.inner_l5hlen > 0,
5577 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5578 		__func__, m0));
5579 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5580 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5581 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5582 		__func__, m0));
5583 
5584 	/* Outer headers. */
5585 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5586 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5587 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5588 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5589 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5590 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5591 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5592 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5593 	else {
5594 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5595 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5596 	}
5597 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5598 	tnl_lso->IpIdOffsetOut = 0;
5599 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5600 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5601 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5602 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5603 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5604 			m0->m_pkthdr.l5hlen) |
5605 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5606 	tnl_lso->ipsecen_to_rocev2 = 0;
5607 	tnl_lso->roce_eth = 0;
5608 
5609 	/* Inner headers. */
5610 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5611 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5612 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5613 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5614 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5615 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5616 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5617 	tnl_lso->IpIdOffset = 0;
5618 	tnl_lso->IpIdSplit_to_Mss =
5619 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5620 	tnl_lso->TCPSeqOffset = 0;
5621 	tnl_lso->EthLenOffset_Size =
5622 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5623 
5624 	return (tnl_lso + 1);
5625 }
5626 
5627 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5628 
5629 /*
5630  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5631  * software descriptor, and advance the pidx.  It is guaranteed that enough
5632  * descriptors are available.
5633  *
5634  * The return value is the # of hardware descriptors used.
5635  */
5636 static u_int
write_txpkt_vm_wr(struct adapter * sc,struct sge_txq * txq,struct mbuf * m0)5637 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5638 {
5639 	struct sge_eq *eq;
5640 	struct fw_eth_tx_pkt_vm_wr *wr;
5641 	struct tx_sdesc *txsd;
5642 	struct cpl_tx_pkt_core *cpl;
5643 	uint32_t ctrl;	/* used in many unrelated places */
5644 	uint64_t ctrl1;
5645 	int len16, ndesc, pktlen;
5646 	caddr_t dst;
5647 
5648 	TXQ_LOCK_ASSERT_OWNED(txq);
5649 	M_ASSERTPKTHDR(m0);
5650 
5651 	len16 = mbuf_len16(m0);
5652 	pktlen = m0->m_pkthdr.len;
5653 	ctrl = sizeof(struct cpl_tx_pkt_core);
5654 	if (needs_tso(m0))
5655 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5656 	ndesc = tx_len16_to_desc(len16);
5657 
5658 	/* Firmware work request header */
5659 	eq = &txq->eq;
5660 	wr = (void *)&eq->desc[eq->pidx];
5661 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5662 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5663 
5664 	ctrl = V_FW_WR_LEN16(len16);
5665 	wr->equiq_to_len16 = htobe32(ctrl);
5666 	wr->r3[0] = 0;
5667 	wr->r3[1] = 0;
5668 
5669 	/*
5670 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5671 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5672 	 * simpler to always copy it rather than making it
5673 	 * conditional.  Also, it seems that we do not have to set
5674 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5675 	 */
5676 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5677 
5678 	if (needs_tso(m0)) {
5679 		cpl = write_lso_cpl(wr + 1, m0);
5680 		txq->tso_wrs++;
5681 	} else
5682 		cpl = (void *)(wr + 1);
5683 
5684 	/* Checksum offload */
5685 	ctrl1 = csum_to_ctrl(sc, m0);
5686 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5687 		txq->txcsum++;	/* some hardware assistance provided */
5688 
5689 	/* VLAN tag insertion */
5690 	if (needs_vlan_insertion(m0)) {
5691 		ctrl1 |= F_TXPKT_VLAN_VLD |
5692 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5693 		txq->vlan_insertion++;
5694 	} else if (sc->vlan_id)
5695 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
5696 
5697 	/* CPL header */
5698 	cpl->ctrl0 = txq->cpl_ctrl0;
5699 	cpl->pack = 0;
5700 	cpl->len = htobe16(pktlen);
5701 	cpl->ctrl1 = htobe64(ctrl1);
5702 
5703 	/* SGL */
5704 	dst = (void *)(cpl + 1);
5705 
5706 	/*
5707 	 * A packet using TSO will use up an entire descriptor for the
5708 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5709 	 * If this descriptor is the last descriptor in the ring, wrap
5710 	 * around to the front of the ring explicitly for the start of
5711 	 * the sgl.
5712 	 */
5713 	if (dst == (void *)&eq->desc[eq->sidx]) {
5714 		dst = (void *)&eq->desc[0];
5715 		write_gl_to_txd(txq, m0, &dst, 0);
5716 	} else
5717 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5718 	txq->sgl_wrs++;
5719 	txq->txpkt_wrs++;
5720 
5721 	txsd = &txq->sdesc[eq->pidx];
5722 	txsd->m = m0;
5723 	txsd->desc_used = ndesc;
5724 
5725 	return (ndesc);
5726 }
5727 
5728 /*
5729  * Write a raw WR to the hardware descriptors, update the software
5730  * descriptor, and advance the pidx.  It is guaranteed that enough
5731  * descriptors are available.
5732  *
5733  * The return value is the # of hardware descriptors used.
5734  */
5735 static u_int
write_raw_wr(struct sge_txq * txq,void * wr,struct mbuf * m0,u_int available)5736 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5737 {
5738 	struct sge_eq *eq = &txq->eq;
5739 	struct tx_sdesc *txsd;
5740 	struct mbuf *m;
5741 	caddr_t dst;
5742 	int len16, ndesc;
5743 
5744 	len16 = mbuf_len16(m0);
5745 	ndesc = tx_len16_to_desc(len16);
5746 	MPASS(ndesc <= available);
5747 
5748 	dst = wr;
5749 	for (m = m0; m != NULL; m = m->m_next)
5750 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5751 
5752 	txq->raw_wrs++;
5753 
5754 	txsd = &txq->sdesc[eq->pidx];
5755 	txsd->m = m0;
5756 	txsd->desc_used = ndesc;
5757 
5758 	return (ndesc);
5759 }
5760 
5761 /*
5762  * Write a txpkt WR for this packet to the hardware descriptors, update the
5763  * software descriptor, and advance the pidx.  It is guaranteed that enough
5764  * descriptors are available.
5765  *
5766  * The return value is the # of hardware descriptors used.
5767  */
5768 static u_int
write_txpkt_wr(struct adapter * sc,struct sge_txq * txq,struct mbuf * m0,u_int available)5769 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5770     u_int available)
5771 {
5772 	struct sge_eq *eq;
5773 	struct fw_eth_tx_pkt_wr *wr;
5774 	struct tx_sdesc *txsd;
5775 	struct cpl_tx_pkt_core *cpl;
5776 	uint32_t ctrl;	/* used in many unrelated places */
5777 	uint64_t ctrl1;
5778 	int len16, ndesc, pktlen, nsegs;
5779 	caddr_t dst;
5780 
5781 	TXQ_LOCK_ASSERT_OWNED(txq);
5782 	M_ASSERTPKTHDR(m0);
5783 
5784 	len16 = mbuf_len16(m0);
5785 	nsegs = mbuf_nsegs(m0);
5786 	pktlen = m0->m_pkthdr.len;
5787 	ctrl = sizeof(struct cpl_tx_pkt_core);
5788 	if (needs_tso(m0)) {
5789 		if (needs_vxlan_tso(m0))
5790 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5791 		else
5792 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5793 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5794 	    available >= 2) {
5795 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5796 		ctrl += pktlen;
5797 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5798 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5799 		nsegs = 0;
5800 	}
5801 	ndesc = tx_len16_to_desc(len16);
5802 	MPASS(ndesc <= available);
5803 
5804 	/* Firmware work request header */
5805 	eq = &txq->eq;
5806 	wr = (void *)&eq->desc[eq->pidx];
5807 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5808 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5809 
5810 	ctrl = V_FW_WR_LEN16(len16);
5811 	wr->equiq_to_len16 = htobe32(ctrl);
5812 	wr->r3 = 0;
5813 
5814 	if (needs_tso(m0)) {
5815 		if (needs_vxlan_tso(m0)) {
5816 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5817 			txq->vxlan_tso_wrs++;
5818 		} else {
5819 			cpl = write_lso_cpl(wr + 1, m0);
5820 			txq->tso_wrs++;
5821 		}
5822 	} else
5823 		cpl = (void *)(wr + 1);
5824 
5825 	/* Checksum offload */
5826 	ctrl1 = csum_to_ctrl(sc, m0);
5827 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5828 		/* some hardware assistance provided */
5829 		if (needs_vxlan_csum(m0))
5830 			txq->vxlan_txcsum++;
5831 		else
5832 			txq->txcsum++;
5833 	}
5834 
5835 	/* VLAN tag insertion */
5836 	if (needs_vlan_insertion(m0)) {
5837 		ctrl1 |= F_TXPKT_VLAN_VLD |
5838 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5839 		txq->vlan_insertion++;
5840 	}
5841 
5842 	/* CPL header */
5843 	cpl->ctrl0 = txq->cpl_ctrl0;
5844 	cpl->pack = 0;
5845 	cpl->len = htobe16(pktlen);
5846 	cpl->ctrl1 = htobe64(ctrl1);
5847 
5848 	/* SGL */
5849 	dst = (void *)(cpl + 1);
5850 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5851 		dst = (caddr_t)&eq->desc[0];
5852 	if (nsegs > 0) {
5853 
5854 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5855 		txq->sgl_wrs++;
5856 	} else {
5857 		struct mbuf *m;
5858 
5859 		for (m = m0; m != NULL; m = m->m_next) {
5860 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5861 #ifdef INVARIANTS
5862 			pktlen -= m->m_len;
5863 #endif
5864 		}
5865 #ifdef INVARIANTS
5866 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5867 #endif
5868 		txq->imm_wrs++;
5869 	}
5870 
5871 	txq->txpkt_wrs++;
5872 
5873 	txsd = &txq->sdesc[eq->pidx];
5874 	txsd->m = m0;
5875 	txsd->desc_used = ndesc;
5876 
5877 	return (ndesc);
5878 }
5879 
5880 static inline bool
cmp_l2hdr(struct txpkts * txp,struct mbuf * m)5881 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5882 {
5883 	int len;
5884 
5885 	MPASS(txp->npkt > 0);
5886 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5887 
5888 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5889 		len = VM_TX_L2HDR_LEN;
5890 	else
5891 		len = sizeof(struct ether_header);
5892 
5893 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5894 }
5895 
5896 static inline void
save_l2hdr(struct txpkts * txp,struct mbuf * m)5897 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5898 {
5899 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5900 
5901 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5902 }
5903 
5904 static int
add_to_txpkts_vf(struct adapter * sc,struct sge_txq * txq,struct mbuf * m,int avail,bool * send)5905 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5906     int avail, bool *send)
5907 {
5908 	struct txpkts *txp = &txq->txp;
5909 
5910 	/* Cannot have TSO and coalesce at the same time. */
5911 	if (cannot_use_txpkts(m)) {
5912 cannot_coalesce:
5913 		*send = txp->npkt > 0;
5914 		return (EINVAL);
5915 	}
5916 
5917 	/* VF allows coalescing of type 1 (1 GL) only */
5918 	if (mbuf_nsegs(m) > 1)
5919 		goto cannot_coalesce;
5920 
5921 	*send = false;
5922 	if (txp->npkt > 0) {
5923 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5924 		MPASS(txp->npkt < txp->max_npkt);
5925 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5926 
5927 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5928 retry_after_send:
5929 			*send = true;
5930 			return (EAGAIN);
5931 		}
5932 		if (m->m_pkthdr.len + txp->plen > 65535)
5933 			goto retry_after_send;
5934 		if (cmp_l2hdr(txp, m))
5935 			goto retry_after_send;
5936 
5937 		txp->len16 += txpkts1_len16();
5938 		txp->plen += m->m_pkthdr.len;
5939 		txp->mb[txp->npkt++] = m;
5940 		if (txp->npkt == txp->max_npkt)
5941 			*send = true;
5942 	} else {
5943 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5944 		    txpkts1_len16();
5945 		if (tx_len16_to_desc(txp->len16) > avail)
5946 			goto cannot_coalesce;
5947 		txp->npkt = 1;
5948 		txp->wr_type = 1;
5949 		txp->plen = m->m_pkthdr.len;
5950 		txp->mb[0] = m;
5951 		save_l2hdr(txp, m);
5952 	}
5953 	return (0);
5954 }
5955 
5956 static int
add_to_txpkts_pf(struct adapter * sc,struct sge_txq * txq,struct mbuf * m,int avail,bool * send)5957 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5958     int avail, bool *send)
5959 {
5960 	struct txpkts *txp = &txq->txp;
5961 	int nsegs;
5962 
5963 	MPASS(!(sc->flags & IS_VF));
5964 
5965 	/* Cannot have TSO and coalesce at the same time. */
5966 	if (cannot_use_txpkts(m)) {
5967 cannot_coalesce:
5968 		*send = txp->npkt > 0;
5969 		return (EINVAL);
5970 	}
5971 
5972 	*send = false;
5973 	nsegs = mbuf_nsegs(m);
5974 	if (txp->npkt == 0) {
5975 		if (m->m_pkthdr.len > 65535)
5976 			goto cannot_coalesce;
5977 		if (nsegs > 1) {
5978 			txp->wr_type = 0;
5979 			txp->len16 =
5980 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5981 			    txpkts0_len16(nsegs);
5982 		} else {
5983 			txp->wr_type = 1;
5984 			txp->len16 =
5985 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5986 			    txpkts1_len16();
5987 		}
5988 		if (tx_len16_to_desc(txp->len16) > avail)
5989 			goto cannot_coalesce;
5990 		txp->npkt = 1;
5991 		txp->plen = m->m_pkthdr.len;
5992 		txp->mb[0] = m;
5993 	} else {
5994 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5995 		MPASS(txp->npkt < txp->max_npkt);
5996 
5997 		if (m->m_pkthdr.len + txp->plen > 65535) {
5998 retry_after_send:
5999 			*send = true;
6000 			return (EAGAIN);
6001 		}
6002 
6003 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
6004 		if (txp->wr_type == 0) {
6005 			if (tx_len16_to_desc(txp->len16 +
6006 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
6007 				goto retry_after_send;
6008 			txp->len16 += txpkts0_len16(nsegs);
6009 		} else {
6010 			if (nsegs != 1)
6011 				goto retry_after_send;
6012 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
6013 			    avail)
6014 				goto retry_after_send;
6015 			txp->len16 += txpkts1_len16();
6016 		}
6017 
6018 		txp->plen += m->m_pkthdr.len;
6019 		txp->mb[txp->npkt++] = m;
6020 		if (txp->npkt == txp->max_npkt)
6021 			*send = true;
6022 	}
6023 	return (0);
6024 }
6025 
6026 /*
6027  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
6028  * the software descriptor, and advance the pidx.  It is guaranteed that enough
6029  * descriptors are available.
6030  *
6031  * The return value is the # of hardware descriptors used.
6032  */
6033 static u_int
write_txpkts_wr(struct adapter * sc,struct sge_txq * txq)6034 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
6035 {
6036 	const struct txpkts *txp = &txq->txp;
6037 	struct sge_eq *eq = &txq->eq;
6038 	struct fw_eth_tx_pkts_wr *wr;
6039 	struct tx_sdesc *txsd;
6040 	struct cpl_tx_pkt_core *cpl;
6041 	uint64_t ctrl1;
6042 	int ndesc, i, checkwrap;
6043 	struct mbuf *m, *last;
6044 	void *flitp;
6045 
6046 	TXQ_LOCK_ASSERT_OWNED(txq);
6047 	MPASS(txp->npkt > 0);
6048 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6049 
6050 	wr = (void *)&eq->desc[eq->pidx];
6051 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
6052 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6053 	wr->plen = htobe16(txp->plen);
6054 	wr->npkt = txp->npkt;
6055 	wr->r3 = 0;
6056 	wr->type = txp->wr_type;
6057 	flitp = wr + 1;
6058 
6059 	/*
6060 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
6061 	 * set then we know the WR is going to wrap around somewhere.  We'll
6062 	 * check for that at appropriate points.
6063 	 */
6064 	ndesc = tx_len16_to_desc(txp->len16);
6065 	last = NULL;
6066 	checkwrap = eq->sidx - ndesc < eq->pidx;
6067 	for (i = 0; i < txp->npkt; i++) {
6068 		m = txp->mb[i];
6069 		if (txp->wr_type == 0) {
6070 			struct ulp_txpkt *ulpmc;
6071 			struct ulptx_idata *ulpsc;
6072 
6073 			/* ULP master command */
6074 			ulpmc = flitp;
6075 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
6076 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
6077 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
6078 
6079 			/* ULP subcommand */
6080 			ulpsc = (void *)(ulpmc + 1);
6081 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
6082 			    F_ULP_TX_SC_MORE);
6083 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
6084 
6085 			cpl = (void *)(ulpsc + 1);
6086 			if (checkwrap &&
6087 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
6088 				cpl = (void *)&eq->desc[0];
6089 		} else {
6090 			cpl = flitp;
6091 		}
6092 
6093 		/* Checksum offload */
6094 		ctrl1 = csum_to_ctrl(sc, m);
6095 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
6096 			/* some hardware assistance provided */
6097 			if (needs_vxlan_csum(m))
6098 				txq->vxlan_txcsum++;
6099 			else
6100 				txq->txcsum++;
6101 		}
6102 
6103 		/* VLAN tag insertion */
6104 		if (needs_vlan_insertion(m)) {
6105 			ctrl1 |= F_TXPKT_VLAN_VLD |
6106 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6107 			txq->vlan_insertion++;
6108 		}
6109 
6110 		/* CPL header */
6111 		cpl->ctrl0 = txq->cpl_ctrl0;
6112 		cpl->pack = 0;
6113 		cpl->len = htobe16(m->m_pkthdr.len);
6114 		cpl->ctrl1 = htobe64(ctrl1);
6115 
6116 		flitp = cpl + 1;
6117 		if (checkwrap &&
6118 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6119 			flitp = (void *)&eq->desc[0];
6120 
6121 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
6122 
6123 		if (last != NULL)
6124 			last->m_nextpkt = m;
6125 		last = m;
6126 	}
6127 
6128 	txq->sgl_wrs++;
6129 	if (txp->wr_type == 0) {
6130 		txq->txpkts0_pkts += txp->npkt;
6131 		txq->txpkts0_wrs++;
6132 	} else {
6133 		txq->txpkts1_pkts += txp->npkt;
6134 		txq->txpkts1_wrs++;
6135 	}
6136 
6137 	txsd = &txq->sdesc[eq->pidx];
6138 	txsd->m = txp->mb[0];
6139 	txsd->desc_used = ndesc;
6140 
6141 	return (ndesc);
6142 }
6143 
6144 static u_int
write_txpkts_vm_wr(struct adapter * sc,struct sge_txq * txq)6145 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
6146 {
6147 	const struct txpkts *txp = &txq->txp;
6148 	struct sge_eq *eq = &txq->eq;
6149 	struct fw_eth_tx_pkts_vm_wr *wr;
6150 	struct tx_sdesc *txsd;
6151 	struct cpl_tx_pkt_core *cpl;
6152 	uint64_t ctrl1;
6153 	int ndesc, i;
6154 	struct mbuf *m, *last;
6155 	void *flitp;
6156 
6157 	TXQ_LOCK_ASSERT_OWNED(txq);
6158 	MPASS(txp->npkt > 0);
6159 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
6160 	MPASS(txp->mb[0] != NULL);
6161 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6162 
6163 	wr = (void *)&eq->desc[eq->pidx];
6164 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
6165 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6166 	wr->r3 = 0;
6167 	wr->plen = htobe16(txp->plen);
6168 	wr->npkt = txp->npkt;
6169 	wr->r4 = 0;
6170 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
6171 	flitp = wr + 1;
6172 
6173 	/*
6174 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
6175 	 * the WR will take 32B so we check for the end of the descriptor ring
6176 	 * before writing odd mbufs (mb[1], 3, 5, ..)
6177 	 */
6178 	ndesc = tx_len16_to_desc(txp->len16);
6179 	last = NULL;
6180 	for (i = 0; i < txp->npkt; i++) {
6181 		m = txp->mb[i];
6182 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6183 			flitp = &eq->desc[0];
6184 		cpl = flitp;
6185 
6186 		/* Checksum offload */
6187 		ctrl1 = csum_to_ctrl(sc, m);
6188 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
6189 			txq->txcsum++;	/* some hardware assistance provided */
6190 
6191 		/* VLAN tag insertion */
6192 		if (needs_vlan_insertion(m)) {
6193 			ctrl1 |= F_TXPKT_VLAN_VLD |
6194 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6195 			txq->vlan_insertion++;
6196 		} else if (sc->vlan_id)
6197 			ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
6198 
6199 		/* CPL header */
6200 		cpl->ctrl0 = txq->cpl_ctrl0;
6201 		cpl->pack = 0;
6202 		cpl->len = htobe16(m->m_pkthdr.len);
6203 		cpl->ctrl1 = htobe64(ctrl1);
6204 
6205 		flitp = cpl + 1;
6206 		MPASS(mbuf_nsegs(m) == 1);
6207 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
6208 
6209 		if (last != NULL)
6210 			last->m_nextpkt = m;
6211 		last = m;
6212 	}
6213 
6214 	txq->sgl_wrs++;
6215 	txq->txpkts1_pkts += txp->npkt;
6216 	txq->txpkts1_wrs++;
6217 
6218 	txsd = &txq->sdesc[eq->pidx];
6219 	txsd->m = txp->mb[0];
6220 	txsd->desc_used = ndesc;
6221 
6222 	return (ndesc);
6223 }
6224 
6225 /*
6226  * If the SGL ends on an address that is not 16 byte aligned, this function will
6227  * add a 0 filled flit at the end.
6228  */
6229 static void
write_gl_to_txd(struct sge_txq * txq,struct mbuf * m,caddr_t * to,int checkwrap)6230 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6231 {
6232 	struct sge_eq *eq = &txq->eq;
6233 	struct sglist *gl = txq->gl;
6234 	struct sglist_seg *seg;
6235 	__be64 *flitp, *wrap;
6236 	struct ulptx_sgl *usgl;
6237 	int i, nflits, nsegs;
6238 
6239 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6240 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6241 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6242 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6243 
6244 	get_pkt_gl(m, gl);
6245 	nsegs = gl->sg_nseg;
6246 	MPASS(nsegs > 0);
6247 
6248 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6249 	flitp = (__be64 *)(*to);
6250 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6251 	seg = &gl->sg_segs[0];
6252 	usgl = (void *)flitp;
6253 
6254 	/*
6255 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6256 	 * ring, so we're at least 16 bytes away from the status page.  There is
6257 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6258 	 */
6259 
6260 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6261 	    V_ULPTX_NSGE(nsegs));
6262 	usgl->len0 = htobe32(seg->ss_len);
6263 	usgl->addr0 = htobe64(seg->ss_paddr);
6264 	seg++;
6265 
6266 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6267 
6268 		/* Won't wrap around at all */
6269 
6270 		for (i = 0; i < nsegs - 1; i++, seg++) {
6271 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6272 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6273 		}
6274 		if (i & 1)
6275 			usgl->sge[i / 2].len[1] = htobe32(0);
6276 		flitp += nflits;
6277 	} else {
6278 
6279 		/* Will wrap somewhere in the rest of the SGL */
6280 
6281 		/* 2 flits already written, write the rest flit by flit */
6282 		flitp = (void *)(usgl + 1);
6283 		for (i = 0; i < nflits - 2; i++) {
6284 			if (flitp == wrap)
6285 				flitp = (void *)eq->desc;
6286 			*flitp++ = get_flit(seg, nsegs - 1, i);
6287 		}
6288 	}
6289 
6290 	if (nflits & 1) {
6291 		MPASS(((uintptr_t)flitp) & 0xf);
6292 		*flitp++ = 0;
6293 	}
6294 
6295 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6296 	if (__predict_false(flitp == wrap))
6297 		*to = (void *)eq->desc;
6298 	else
6299 		*to = (void *)flitp;
6300 }
6301 
6302 static inline void
copy_to_txd(struct sge_eq * eq,caddr_t from,caddr_t * to,int len)6303 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6304 {
6305 
6306 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6307 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6308 
6309 	if (__predict_true((uintptr_t)(*to) + len <=
6310 	    (uintptr_t)&eq->desc[eq->sidx])) {
6311 		bcopy(from, *to, len);
6312 		(*to) += len;
6313 	} else {
6314 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6315 
6316 		bcopy(from, *to, portion);
6317 		from += portion;
6318 		portion = len - portion;	/* remaining */
6319 		bcopy(from, (void *)eq->desc, portion);
6320 		(*to) = (caddr_t)eq->desc + portion;
6321 	}
6322 }
6323 
6324 static inline void
ring_eq_db(struct adapter * sc,struct sge_eq * eq,u_int n)6325 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6326 {
6327 	u_int db;
6328 
6329 	MPASS(n > 0);
6330 
6331 	db = eq->doorbells;
6332 	if (n > 1)
6333 		clrbit(&db, DOORBELL_WCWR);
6334 	wmb();
6335 
6336 	switch (ffs(db) - 1) {
6337 	case DOORBELL_UDB:
6338 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6339 		break;
6340 
6341 	case DOORBELL_WCWR: {
6342 		volatile uint64_t *dst, *src;
6343 		int i;
6344 
6345 		/*
6346 		 * Queues whose 128B doorbell segment fits in the page do not
6347 		 * use relative qid (udb_qid is always 0).  Only queues with
6348 		 * doorbell segments can do WCWR.
6349 		 */
6350 		KASSERT(eq->udb_qid == 0 && n == 1,
6351 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6352 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6353 
6354 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6355 		    UDBS_DB_OFFSET);
6356 		i = eq->dbidx;
6357 		src = (void *)&eq->desc[i];
6358 		while (src != (void *)&eq->desc[i + 1])
6359 			*dst++ = *src++;
6360 		wmb();
6361 		break;
6362 	}
6363 
6364 	case DOORBELL_UDBWC:
6365 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6366 		wmb();
6367 		break;
6368 
6369 	case DOORBELL_KDB:
6370 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6371 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6372 		break;
6373 	}
6374 
6375 	IDXINCR(eq->dbidx, n, eq->sidx);
6376 }
6377 
6378 static inline u_int
reclaimable_tx_desc(struct sge_eq * eq)6379 reclaimable_tx_desc(struct sge_eq *eq)
6380 {
6381 	uint16_t hw_cidx;
6382 
6383 	hw_cidx = read_hw_cidx(eq);
6384 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6385 }
6386 
6387 static inline u_int
total_available_tx_desc(struct sge_eq * eq)6388 total_available_tx_desc(struct sge_eq *eq)
6389 {
6390 	uint16_t hw_cidx, pidx;
6391 
6392 	hw_cidx = read_hw_cidx(eq);
6393 	pidx = eq->pidx;
6394 
6395 	if (pidx == hw_cidx)
6396 		return (eq->sidx - 1);
6397 	else
6398 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6399 }
6400 
6401 static inline uint16_t
read_hw_cidx(struct sge_eq * eq)6402 read_hw_cidx(struct sge_eq *eq)
6403 {
6404 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6405 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6406 
6407 	return (be16toh(cidx));
6408 }
6409 
6410 /*
6411  * Reclaim 'n' descriptors approximately.
6412  */
6413 static u_int
reclaim_tx_descs(struct sge_txq * txq,u_int n)6414 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6415 {
6416 	struct tx_sdesc *txsd;
6417 	struct sge_eq *eq = &txq->eq;
6418 	u_int can_reclaim, reclaimed;
6419 
6420 	TXQ_LOCK_ASSERT_OWNED(txq);
6421 	MPASS(n > 0);
6422 
6423 	reclaimed = 0;
6424 	can_reclaim = reclaimable_tx_desc(eq);
6425 	while (can_reclaim && reclaimed < n) {
6426 		int ndesc;
6427 		struct mbuf *m, *nextpkt;
6428 
6429 		txsd = &txq->sdesc[eq->cidx];
6430 		ndesc = txsd->desc_used;
6431 
6432 		/* Firmware doesn't return "partial" credits. */
6433 		KASSERT(can_reclaim >= ndesc,
6434 		    ("%s: unexpected number of credits: %d, %d",
6435 		    __func__, can_reclaim, ndesc));
6436 		KASSERT(ndesc != 0,
6437 		    ("%s: descriptor with no credits: cidx %d",
6438 		    __func__, eq->cidx));
6439 
6440 		for (m = txsd->m; m != NULL; m = nextpkt) {
6441 			nextpkt = m->m_nextpkt;
6442 			m->m_nextpkt = NULL;
6443 			m_freem(m);
6444 		}
6445 		reclaimed += ndesc;
6446 		can_reclaim -= ndesc;
6447 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6448 	}
6449 
6450 	return (reclaimed);
6451 }
6452 
6453 static void
tx_reclaim(void * arg,int n)6454 tx_reclaim(void *arg, int n)
6455 {
6456 	struct sge_txq *txq = arg;
6457 	struct sge_eq *eq = &txq->eq;
6458 
6459 	do {
6460 		if (TXQ_TRYLOCK(txq) == 0)
6461 			break;
6462 		n = reclaim_tx_descs(txq, 32);
6463 		if (eq->cidx == eq->pidx)
6464 			eq->equeqidx = eq->pidx;
6465 		TXQ_UNLOCK(txq);
6466 	} while (n > 0);
6467 }
6468 
6469 static __be64
get_flit(struct sglist_seg * segs,int nsegs,int idx)6470 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6471 {
6472 	int i = (idx / 3) * 2;
6473 
6474 	switch (idx % 3) {
6475 	case 0: {
6476 		uint64_t rc;
6477 
6478 		rc = (uint64_t)segs[i].ss_len << 32;
6479 		if (i + 1 < nsegs)
6480 			rc |= (uint64_t)(segs[i + 1].ss_len);
6481 
6482 		return (htobe64(rc));
6483 	}
6484 	case 1:
6485 		return (htobe64(segs[i].ss_paddr));
6486 	case 2:
6487 		return (htobe64(segs[i + 1].ss_paddr));
6488 	}
6489 
6490 	return (0);
6491 }
6492 
6493 static int
find_refill_source(struct adapter * sc,int maxp,bool packing)6494 find_refill_source(struct adapter *sc, int maxp, bool packing)
6495 {
6496 	int i, zidx = -1;
6497 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6498 
6499 	if (packing) {
6500 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6501 			if (rxb->hwidx2 == -1)
6502 				continue;
6503 			if (rxb->size1 < PAGE_SIZE &&
6504 			    rxb->size1 < largest_rx_cluster)
6505 				continue;
6506 			if (rxb->size1 > largest_rx_cluster)
6507 				break;
6508 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6509 			if (rxb->size2 >= maxp)
6510 				return (i);
6511 			zidx = i;
6512 		}
6513 	} else {
6514 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6515 			if (rxb->hwidx1 == -1)
6516 				continue;
6517 			if (rxb->size1 > largest_rx_cluster)
6518 				break;
6519 			if (rxb->size1 >= maxp)
6520 				return (i);
6521 			zidx = i;
6522 		}
6523 	}
6524 
6525 	return (zidx);
6526 }
6527 
6528 static void
add_fl_to_sfl(struct adapter * sc,struct sge_fl * fl)6529 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6530 {
6531 	mtx_lock(&sc->sfl_lock);
6532 	FL_LOCK(fl);
6533 	if ((fl->flags & FL_DOOMED) == 0) {
6534 		fl->flags |= FL_STARVING;
6535 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6536 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6537 	}
6538 	FL_UNLOCK(fl);
6539 	mtx_unlock(&sc->sfl_lock);
6540 }
6541 
6542 static void
handle_wrq_egr_update(struct adapter * sc,struct sge_eq * eq)6543 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6544 {
6545 	struct sge_wrq *wrq = (void *)eq;
6546 
6547 	atomic_readandclear_int(&eq->equiq);
6548 	taskqueue_enqueue(sc->tq[eq->port_id], &wrq->wrq_tx_task);
6549 }
6550 
6551 static void
handle_eth_egr_update(struct adapter * sc,struct sge_eq * eq)6552 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6553 {
6554 	struct sge_txq *txq = (void *)eq;
6555 
6556 	MPASS(eq->type == EQ_ETH);
6557 
6558 	atomic_readandclear_int(&eq->equiq);
6559 	if (mp_ring_is_idle(txq->r))
6560 		taskqueue_enqueue(sc->tq[eq->port_id], &txq->tx_reclaim_task);
6561 	else
6562 		mp_ring_check_drainage(txq->r, 64);
6563 }
6564 
6565 static int
handle_sge_egr_update(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)6566 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6567     struct mbuf *m)
6568 {
6569 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6570 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6571 	struct adapter *sc = iq->adapter;
6572 	struct sge *s = &sc->sge;
6573 	struct sge_eq *eq;
6574 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6575 		&handle_wrq_egr_update, &handle_eth_egr_update,
6576 		&handle_wrq_egr_update};
6577 
6578 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6579 	    rss->opcode));
6580 
6581 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6582 	(*h[eq->type])(sc, eq);
6583 
6584 	return (0);
6585 }
6586 
6587 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6588 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6589     offsetof(struct cpl_fw6_msg, data));
6590 
6591 static int
handle_fw_msg(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)6592 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6593 {
6594 	struct adapter *sc = iq->adapter;
6595 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6596 
6597 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6598 	    rss->opcode));
6599 
6600 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6601 		const struct rss_header *rss2;
6602 
6603 		rss2 = (const struct rss_header *)&cpl->data[0];
6604 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6605 	}
6606 
6607 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6608 }
6609 
6610 /**
6611  *	t4_handle_wrerr_rpl - process a FW work request error message
6612  *	@adap: the adapter
6613  *	@rpl: start of the FW message
6614  */
6615 static int
t4_handle_wrerr_rpl(struct adapter * adap,const __be64 * rpl)6616 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6617 {
6618 	u8 opcode = *(const u8 *)rpl;
6619 	const struct fw_error_cmd *e = (const void *)rpl;
6620 	unsigned int i;
6621 
6622 	if (opcode != FW_ERROR_CMD) {
6623 		log(LOG_ERR,
6624 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6625 		    device_get_nameunit(adap->dev), opcode);
6626 		return (EINVAL);
6627 	}
6628 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6629 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6630 	    "non-fatal");
6631 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6632 	case FW_ERROR_TYPE_EXCEPTION:
6633 		log(LOG_ERR, "exception info:\n");
6634 		for (i = 0; i < nitems(e->u.exception.info); i++)
6635 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6636 			    be32toh(e->u.exception.info[i]));
6637 		log(LOG_ERR, "\n");
6638 		break;
6639 	case FW_ERROR_TYPE_HWMODULE:
6640 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6641 		    be32toh(e->u.hwmodule.regaddr),
6642 		    be32toh(e->u.hwmodule.regval));
6643 		break;
6644 	case FW_ERROR_TYPE_WR:
6645 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6646 		    be16toh(e->u.wr.cidx),
6647 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6648 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6649 		    be32toh(e->u.wr.eqid));
6650 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6651 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6652 			    e->u.wr.wrhdr[i]);
6653 		log(LOG_ERR, "\n");
6654 		break;
6655 	case FW_ERROR_TYPE_ACL:
6656 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6657 		    be16toh(e->u.acl.cidx),
6658 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6659 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6660 		    be32toh(e->u.acl.eqid),
6661 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6662 		    "MAC");
6663 		for (i = 0; i < nitems(e->u.acl.val); i++)
6664 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6665 		log(LOG_ERR, "\n");
6666 		break;
6667 	default:
6668 		log(LOG_ERR, "type %#x\n",
6669 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6670 		return (EINVAL);
6671 	}
6672 	return (0);
6673 }
6674 
6675 static inline bool
bufidx_used(struct adapter * sc,int idx)6676 bufidx_used(struct adapter *sc, int idx)
6677 {
6678 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6679 	int i;
6680 
6681 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6682 		if (rxb->size1 > largest_rx_cluster)
6683 			continue;
6684 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6685 			return (true);
6686 	}
6687 
6688 	return (false);
6689 }
6690 
6691 static int
sysctl_bufsizes(SYSCTL_HANDLER_ARGS)6692 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6693 {
6694 	struct adapter *sc = arg1;
6695 	struct sge_params *sp = &sc->params.sge;
6696 	int i, rc;
6697 	struct sbuf sb;
6698 	char c;
6699 
6700 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6701 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6702 		if (bufidx_used(sc, i))
6703 			c = '*';
6704 		else
6705 			c = '\0';
6706 
6707 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6708 	}
6709 	sbuf_trim(&sb);
6710 	sbuf_finish(&sb);
6711 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6712 	sbuf_delete(&sb);
6713 	return (rc);
6714 }
6715 
6716 #ifdef RATELIMIT
6717 #if defined(INET) || defined(INET6)
6718 /*
6719  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6720  */
6721 static inline u_int
txpkt_eo_len16(u_int nsegs,u_int immhdrs,u_int tso)6722 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6723 {
6724 	u_int n;
6725 
6726 	MPASS(immhdrs > 0);
6727 
6728 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6729 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6730 	if (__predict_false(nsegs == 0))
6731 		goto done;
6732 
6733 	nsegs--; /* first segment is part of ulptx_sgl */
6734 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6735 	if (tso)
6736 		n += sizeof(struct cpl_tx_pkt_lso_core);
6737 
6738 done:
6739 	return (howmany(n, 16));
6740 }
6741 #endif
6742 
6743 #define ETID_FLOWC_NPARAMS 6
6744 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6745     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6746 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6747 
6748 #if defined(INET) || defined(INET6)
6749 static int
send_etid_flowc_wr(struct cxgbe_rate_tag * cst,struct port_info * pi,struct vi_info * vi)6750 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6751     struct vi_info *vi)
6752 {
6753 	struct wrq_cookie cookie;
6754 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6755 	struct fw_flowc_wr *flowc;
6756 
6757 	mtx_assert(&cst->lock, MA_OWNED);
6758 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6759 	    EO_FLOWC_PENDING);
6760 
6761 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6762 	if (__predict_false(flowc == NULL))
6763 		return (ENOMEM);
6764 
6765 	bzero(flowc, ETID_FLOWC_LEN);
6766 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6767 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6768 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6769 	    V_FW_WR_FLOWID(cst->etid));
6770 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6771 	flowc->mnemval[0].val = htobe32(pfvf);
6772 	/* Firmware expects hw port and will translate to channel itself. */
6773 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6774 	flowc->mnemval[1].val = htobe32(pi->hw_port);
6775 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6776 	flowc->mnemval[2].val = htobe32(pi->hw_port);
6777 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6778 	flowc->mnemval[3].val = htobe32(cst->iqid);
6779 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6780 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6781 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6782 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6783 
6784 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6785 
6786 	cst->flags &= ~EO_FLOWC_PENDING;
6787 	cst->flags |= EO_FLOWC_RPL_PENDING;
6788 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6789 	cst->tx_credits -= ETID_FLOWC_LEN16;
6790 
6791 	return (0);
6792 }
6793 #endif
6794 
6795 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6796 
6797 void
send_etid_flush_wr(struct cxgbe_rate_tag * cst)6798 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6799 {
6800 	struct fw_flowc_wr *flowc;
6801 	struct wrq_cookie cookie;
6802 
6803 	mtx_assert(&cst->lock, MA_OWNED);
6804 
6805 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6806 	if (__predict_false(flowc == NULL))
6807 		CXGBE_UNIMPLEMENTED(__func__);
6808 
6809 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6810 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6811 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6812 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6813 	    V_FW_WR_FLOWID(cst->etid));
6814 
6815 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6816 
6817 	cst->flags |= EO_FLUSH_RPL_PENDING;
6818 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6819 	cst->tx_credits -= ETID_FLUSH_LEN16;
6820 	cst->ncompl++;
6821 }
6822 
6823 static void
write_ethofld_wr(struct cxgbe_rate_tag * cst,struct fw_eth_tx_eo_wr * wr,struct mbuf * m0,int compl)6824 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6825     struct mbuf *m0, int compl)
6826 {
6827 	struct cpl_tx_pkt_core *cpl;
6828 	uint64_t ctrl1;
6829 	uint32_t ctrl;	/* used in many unrelated places */
6830 	int len16, pktlen, nsegs, immhdrs;
6831 	uintptr_t p;
6832 	struct ulptx_sgl *usgl;
6833 	struct sglist sg;
6834 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6835 
6836 	mtx_assert(&cst->lock, MA_OWNED);
6837 	M_ASSERTPKTHDR(m0);
6838 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6839 	    m0->m_pkthdr.l4hlen > 0,
6840 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6841 
6842 	len16 = mbuf_eo_len16(m0);
6843 	nsegs = mbuf_eo_nsegs(m0);
6844 	pktlen = m0->m_pkthdr.len;
6845 	ctrl = sizeof(struct cpl_tx_pkt_core);
6846 	if (needs_tso(m0))
6847 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6848 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6849 	ctrl += immhdrs;
6850 
6851 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6852 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6853 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6854 	    V_FW_WR_FLOWID(cst->etid));
6855 	wr->r3 = 0;
6856 	if (needs_outer_udp_csum(m0)) {
6857 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6858 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6859 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6860 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6861 		wr->u.udpseg.rtplen = 0;
6862 		wr->u.udpseg.r4 = 0;
6863 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6864 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6865 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6866 		cpl = (void *)(wr + 1);
6867 	} else {
6868 		MPASS(needs_outer_tcp_csum(m0));
6869 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6870 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6871 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6872 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6873 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6874 		wr->u.tcpseg.r4 = 0;
6875 		wr->u.tcpseg.r5 = 0;
6876 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6877 
6878 		if (needs_tso(m0)) {
6879 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6880 
6881 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6882 
6883 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6884 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6885 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6886 				ETHER_HDR_LEN) >> 2) |
6887 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6888 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6889 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6890 				ctrl |= F_LSO_IPV6;
6891 			lso->lso_ctrl = htobe32(ctrl);
6892 			lso->ipid_ofst = htobe16(0);
6893 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6894 			lso->seqno_offset = htobe32(0);
6895 			lso->len = htobe32(pktlen);
6896 
6897 			cpl = (void *)(lso + 1);
6898 		} else {
6899 			wr->u.tcpseg.mss = htobe16(0xffff);
6900 			cpl = (void *)(wr + 1);
6901 		}
6902 	}
6903 
6904 	/* Checksum offload must be requested for ethofld. */
6905 	MPASS(needs_outer_l4_csum(m0));
6906 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6907 
6908 	/* VLAN tag insertion */
6909 	if (needs_vlan_insertion(m0)) {
6910 		ctrl1 |= F_TXPKT_VLAN_VLD |
6911 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6912 	}
6913 
6914 	/* CPL header */
6915 	cpl->ctrl0 = cst->ctrl0;
6916 	cpl->pack = 0;
6917 	cpl->len = htobe16(pktlen);
6918 	cpl->ctrl1 = htobe64(ctrl1);
6919 
6920 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6921 	p = (uintptr_t)(cpl + 1);
6922 	m_copydata(m0, 0, immhdrs, (void *)p);
6923 
6924 	/* SGL */
6925 	if (nsegs > 0) {
6926 		int i, pad;
6927 
6928 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6929 		p += immhdrs;
6930 		pad = 16 - (immhdrs & 0xf);
6931 		bzero((void *)p, pad);
6932 
6933 		usgl = (void *)(p + pad);
6934 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6935 		    V_ULPTX_NSGE(nsegs));
6936 
6937 		sglist_init(&sg, nitems(segs), segs);
6938 		for (; m0 != NULL; m0 = m0->m_next) {
6939 			if (__predict_false(m0->m_len == 0))
6940 				continue;
6941 			if (immhdrs >= m0->m_len) {
6942 				immhdrs -= m0->m_len;
6943 				continue;
6944 			}
6945 			if (m0->m_flags & M_EXTPG)
6946 				sglist_append_mbuf_epg(&sg, m0,
6947 				    mtod(m0, vm_offset_t), m0->m_len);
6948                         else
6949 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6950 				    m0->m_len - immhdrs);
6951 			immhdrs = 0;
6952 		}
6953 		MPASS(sg.sg_nseg == nsegs);
6954 
6955 		/*
6956 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6957 		 * boundary.
6958 		 */
6959 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6960 
6961 		usgl->len0 = htobe32(segs[0].ss_len);
6962 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6963 		for (i = 0; i < nsegs - 1; i++) {
6964 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6965 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6966 		}
6967 		if (i & 1)
6968 			usgl->sge[i / 2].len[1] = htobe32(0);
6969 	}
6970 
6971 }
6972 
6973 static void
ethofld_tx(struct cxgbe_rate_tag * cst)6974 ethofld_tx(struct cxgbe_rate_tag *cst)
6975 {
6976 	struct mbuf *m;
6977 	struct wrq_cookie cookie;
6978 	int next_credits, compl;
6979 	struct fw_eth_tx_eo_wr *wr;
6980 
6981 	mtx_assert(&cst->lock, MA_OWNED);
6982 
6983 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6984 		M_ASSERTPKTHDR(m);
6985 
6986 		/* How many len16 credits do we need to send this mbuf. */
6987 		next_credits = mbuf_eo_len16(m);
6988 		MPASS(next_credits > 0);
6989 		if (next_credits > cst->tx_credits) {
6990 			/*
6991 			 * Tx will make progress eventually because there is at
6992 			 * least one outstanding fw4_ack that will return
6993 			 * credits and kick the tx.
6994 			 */
6995 			MPASS(cst->ncompl > 0);
6996 			return;
6997 		}
6998 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6999 		if (__predict_false(wr == NULL)) {
7000 			/* XXX: wishful thinking, not a real assertion. */
7001 			MPASS(cst->ncompl > 0);
7002 			return;
7003 		}
7004 		cst->tx_credits -= next_credits;
7005 		cst->tx_nocompl += next_credits;
7006 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
7007 		ETHER_BPF_MTAP(cst->com.ifp, m);
7008 		write_ethofld_wr(cst, wr, m, compl);
7009 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
7010 		if (compl) {
7011 			cst->ncompl++;
7012 			cst->tx_nocompl	= 0;
7013 		}
7014 		(void) mbufq_dequeue(&cst->pending_tx);
7015 
7016 		/*
7017 		 * Drop the mbuf's reference on the tag now rather
7018 		 * than waiting until m_freem().  This ensures that
7019 		 * cxgbe_rate_tag_free gets called when the inp drops
7020 		 * its reference on the tag and there are no more
7021 		 * mbufs in the pending_tx queue and can flush any
7022 		 * pending requests.  Otherwise if the last mbuf
7023 		 * doesn't request a completion the etid will never be
7024 		 * released.
7025 		 */
7026 		m->m_pkthdr.snd_tag = NULL;
7027 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
7028 		m_snd_tag_rele(&cst->com);
7029 
7030 		mbufq_enqueue(&cst->pending_fwack, m);
7031 	}
7032 }
7033 
7034 #if defined(INET) || defined(INET6)
7035 static int
ethofld_transmit(if_t ifp,struct mbuf * m0)7036 ethofld_transmit(if_t ifp, struct mbuf *m0)
7037 {
7038 	struct cxgbe_rate_tag *cst;
7039 	int rc;
7040 
7041 	MPASS(m0->m_nextpkt == NULL);
7042 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
7043 	MPASS(m0->m_pkthdr.snd_tag != NULL);
7044 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
7045 
7046 	mtx_lock(&cst->lock);
7047 	MPASS(cst->flags & EO_SND_TAG_REF);
7048 
7049 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
7050 		struct vi_info *vi = if_getsoftc(ifp);
7051 		struct port_info *pi = vi->pi;
7052 		struct adapter *sc = pi->adapter;
7053 		const uint32_t rss_mask = vi->rss_size - 1;
7054 		uint32_t rss_hash;
7055 
7056 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
7057 		if (M_HASHTYPE_ISHASH(m0))
7058 			rss_hash = m0->m_pkthdr.flowid;
7059 		else
7060 			rss_hash = arc4random();
7061 		/* We assume RSS hashing */
7062 		cst->iqid = vi->rss[rss_hash & rss_mask];
7063 		cst->eo_txq += rss_hash % vi->nofldtxq;
7064 		rc = send_etid_flowc_wr(cst, pi, vi);
7065 		if (rc != 0)
7066 			goto done;
7067 	}
7068 
7069 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
7070 		rc = ENOBUFS;
7071 		goto done;
7072 	}
7073 
7074 	mbufq_enqueue(&cst->pending_tx, m0);
7075 	cst->plen += m0->m_pkthdr.len;
7076 
7077 	/*
7078 	 * Hold an extra reference on the tag while generating work
7079 	 * requests to ensure that we don't try to free the tag during
7080 	 * ethofld_tx() in case we are sending the final mbuf after
7081 	 * the inp was freed.
7082 	 */
7083 	m_snd_tag_ref(&cst->com);
7084 	ethofld_tx(cst);
7085 	mtx_unlock(&cst->lock);
7086 	m_snd_tag_rele(&cst->com);
7087 	return (0);
7088 
7089 done:
7090 	mtx_unlock(&cst->lock);
7091 	return (rc);
7092 }
7093 #endif
7094 
7095 static int
ethofld_fw4_ack(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m0)7096 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
7097 {
7098 	struct adapter *sc = iq->adapter;
7099 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
7100 	struct mbuf *m;
7101 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
7102 	struct cxgbe_rate_tag *cst;
7103 	uint8_t credits = cpl->credits;
7104 
7105 	cst = lookup_etid(sc, etid);
7106 	mtx_lock(&cst->lock);
7107 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
7108 		MPASS(credits >= ETID_FLOWC_LEN16);
7109 		credits -= ETID_FLOWC_LEN16;
7110 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
7111 	}
7112 
7113 	KASSERT(cst->ncompl > 0,
7114 	    ("%s: etid %u (%p) wasn't expecting completion.",
7115 	    __func__, etid, cst));
7116 	cst->ncompl--;
7117 
7118 	while (credits > 0) {
7119 		m = mbufq_dequeue(&cst->pending_fwack);
7120 		if (__predict_false(m == NULL)) {
7121 			/*
7122 			 * The remaining credits are for the final flush that
7123 			 * was issued when the tag was freed by the kernel.
7124 			 */
7125 			MPASS((cst->flags &
7126 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
7127 			    EO_FLUSH_RPL_PENDING);
7128 			MPASS(credits == ETID_FLUSH_LEN16);
7129 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
7130 			MPASS(cst->ncompl == 0);
7131 
7132 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
7133 			cst->tx_credits += cpl->credits;
7134 			cxgbe_rate_tag_free_locked(cst);
7135 			return (0);	/* cst is gone. */
7136 		}
7137 		KASSERT(m != NULL,
7138 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
7139 		    credits));
7140 		KASSERT(credits >= mbuf_eo_len16(m),
7141 		    ("%s: too few credits (%u, %u, %u)", __func__,
7142 		    cpl->credits, credits, mbuf_eo_len16(m)));
7143 		credits -= mbuf_eo_len16(m);
7144 		cst->plen -= m->m_pkthdr.len;
7145 		m_freem(m);
7146 	}
7147 
7148 	cst->tx_credits += cpl->credits;
7149 	MPASS(cst->tx_credits <= cst->tx_total);
7150 
7151 	if (cst->flags & EO_SND_TAG_REF) {
7152 		/*
7153 		 * As with ethofld_transmit(), hold an extra reference
7154 		 * so that the tag is stable across ethold_tx().
7155 		 */
7156 		m_snd_tag_ref(&cst->com);
7157 		m = mbufq_first(&cst->pending_tx);
7158 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
7159 			ethofld_tx(cst);
7160 		mtx_unlock(&cst->lock);
7161 		m_snd_tag_rele(&cst->com);
7162 	} else {
7163 		/*
7164 		 * There shouldn't be any pending packets if the tag
7165 		 * was freed by the kernel since any pending packet
7166 		 * should hold a reference to the tag.
7167 		 */
7168 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
7169 		mtx_unlock(&cst->lock);
7170 	}
7171 
7172 	return (0);
7173 }
7174 #endif
7175