xref: /linux/drivers/gpu/drm/omapdrm/omap_dmm_tiler.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMM IOMMU driver support functions for TI OMAP processors.
4  *
5  * Copyright (C) 2011 Texas Instruments Incorporated - https://www.ti.com/
6  * Author: Rob Clark <rob@ti.com>
7  *         Andy Gross <andy.gross@ti.com>
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h> /* platform_device() */
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <linux/vmalloc.h>
27 #include <linux/wait.h>
28 
29 #include <drm/drm_print.h>
30 
31 #include "omap_dmm_tiler.h"
32 #include "omap_dmm_priv.h"
33 
34 #define DMM_DRIVER_NAME "dmm"
35 
36 /* mappings for associating views to luts */
37 static struct tcm *containers[TILFMT_NFORMATS];
38 static struct dmm *omap_dmm;
39 
40 #if defined(CONFIG_OF)
41 static const struct of_device_id dmm_of_match[];
42 #endif
43 
44 /* global spinlock for protecting lists */
45 static DEFINE_SPINLOCK(list_lock);
46 
47 /* Geometry table */
48 #define GEOM(xshift, yshift, bytes_per_pixel) { \
49 		.x_shft = (xshift), \
50 		.y_shft = (yshift), \
51 		.cpp    = (bytes_per_pixel), \
52 		.slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \
53 		.slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \
54 	}
55 
56 static const struct {
57 	u32 x_shft;	/* unused X-bits (as part of bpp) */
58 	u32 y_shft;	/* unused Y-bits (as part of bpp) */
59 	u32 cpp;		/* bytes/chars per pixel */
60 	u32 slot_w;	/* width of each slot (in pixels) */
61 	u32 slot_h;	/* height of each slot (in pixels) */
62 } geom[TILFMT_NFORMATS] = {
63 	[TILFMT_8BIT]  = GEOM(0, 0, 1),
64 	[TILFMT_16BIT] = GEOM(0, 1, 2),
65 	[TILFMT_32BIT] = GEOM(1, 1, 4),
66 	[TILFMT_PAGE]  = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1),
67 };
68 
69 
70 /* lookup table for registers w/ per-engine instances */
71 static const u32 reg[][4] = {
72 	[PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1,
73 			DMM_PAT_STATUS__2, DMM_PAT_STATUS__3},
74 	[PAT_DESCR]  = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1,
75 			DMM_PAT_DESCR__2, DMM_PAT_DESCR__3},
76 };
77 
78 static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst)
79 {
80 	struct dma_async_tx_descriptor *tx;
81 	enum dma_status status;
82 	dma_cookie_t cookie;
83 
84 	tx = dmaengine_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0);
85 	if (!tx) {
86 		dev_err(dmm->dev, "Failed to prepare DMA memcpy\n");
87 		return -EIO;
88 	}
89 
90 	cookie = tx->tx_submit(tx);
91 	if (dma_submit_error(cookie)) {
92 		dev_err(dmm->dev, "Failed to do DMA tx_submit\n");
93 		return -EIO;
94 	}
95 
96 	status = dma_sync_wait(dmm->wa_dma_chan, cookie);
97 	if (status != DMA_COMPLETE)
98 		dev_err(dmm->dev, "i878 wa DMA copy failure\n");
99 
100 	dmaengine_terminate_all(dmm->wa_dma_chan);
101 	return 0;
102 }
103 
104 static u32 dmm_read_wa(struct dmm *dmm, u32 reg)
105 {
106 	dma_addr_t src, dst;
107 	int r;
108 
109 	src = dmm->phys_base + reg;
110 	dst = dmm->wa_dma_handle;
111 
112 	r = dmm_dma_copy(dmm, src, dst);
113 	if (r) {
114 		dev_err(dmm->dev, "sDMA read transfer timeout\n");
115 		return readl(dmm->base + reg);
116 	}
117 
118 	/*
119 	 * As per i878 workaround, the DMA is used to access the DMM registers.
120 	 * Make sure that the readl is not moved by the compiler or the CPU
121 	 * earlier than the DMA finished writing the value to memory.
122 	 */
123 	rmb();
124 	return readl((__iomem void *)dmm->wa_dma_data);
125 }
126 
127 static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg)
128 {
129 	dma_addr_t src, dst;
130 	int r;
131 
132 	writel(val, (__iomem void *)dmm->wa_dma_data);
133 	/*
134 	 * As per i878 workaround, the DMA is used to access the DMM registers.
135 	 * Make sure that the writel is not moved by the compiler or the CPU, so
136 	 * the data will be in place before we start the DMA to do the actual
137 	 * register write.
138 	 */
139 	wmb();
140 
141 	src = dmm->wa_dma_handle;
142 	dst = dmm->phys_base + reg;
143 
144 	r = dmm_dma_copy(dmm, src, dst);
145 	if (r) {
146 		dev_err(dmm->dev, "sDMA write transfer timeout\n");
147 		writel(val, dmm->base + reg);
148 	}
149 }
150 
151 static u32 dmm_read(struct dmm *dmm, u32 reg)
152 {
153 	if (dmm->dmm_workaround) {
154 		u32 v;
155 		unsigned long flags;
156 
157 		spin_lock_irqsave(&dmm->wa_lock, flags);
158 		v = dmm_read_wa(dmm, reg);
159 		spin_unlock_irqrestore(&dmm->wa_lock, flags);
160 
161 		return v;
162 	} else {
163 		return readl(dmm->base + reg);
164 	}
165 }
166 
167 static void dmm_write(struct dmm *dmm, u32 val, u32 reg)
168 {
169 	if (dmm->dmm_workaround) {
170 		unsigned long flags;
171 
172 		spin_lock_irqsave(&dmm->wa_lock, flags);
173 		dmm_write_wa(dmm, val, reg);
174 		spin_unlock_irqrestore(&dmm->wa_lock, flags);
175 	} else {
176 		writel(val, dmm->base + reg);
177 	}
178 }
179 
180 static int dmm_workaround_init(struct dmm *dmm)
181 {
182 	dma_cap_mask_t mask;
183 
184 	spin_lock_init(&dmm->wa_lock);
185 
186 	dmm->wa_dma_data = dma_alloc_coherent(dmm->dev,  sizeof(u32),
187 					      &dmm->wa_dma_handle, GFP_KERNEL);
188 	if (!dmm->wa_dma_data)
189 		return -ENOMEM;
190 
191 	dma_cap_zero(mask);
192 	dma_cap_set(DMA_MEMCPY, mask);
193 
194 	dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL);
195 	if (!dmm->wa_dma_chan) {
196 		dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
197 		return -ENODEV;
198 	}
199 
200 	return 0;
201 }
202 
203 static void dmm_workaround_uninit(struct dmm *dmm)
204 {
205 	dma_release_channel(dmm->wa_dma_chan);
206 
207 	dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle);
208 }
209 
210 /* simple allocator to grab next 16 byte aligned memory from txn */
211 static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa)
212 {
213 	void *ptr;
214 	struct refill_engine *engine = txn->engine_handle;
215 
216 	/* dmm programming requires 16 byte aligned addresses */
217 	txn->current_pa = round_up(txn->current_pa, 16);
218 	txn->current_va = (void *)round_up((long)txn->current_va, 16);
219 
220 	ptr = txn->current_va;
221 	*pa = txn->current_pa;
222 
223 	txn->current_pa += sz;
224 	txn->current_va += sz;
225 
226 	BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE);
227 
228 	return ptr;
229 }
230 
231 /* check status and spin until wait_mask comes true */
232 static int wait_status(struct refill_engine *engine, u32 wait_mask)
233 {
234 	struct dmm *dmm = engine->dmm;
235 	u32 r = 0, err, i;
236 
237 	i = DMM_FIXED_RETRY_COUNT;
238 	while (true) {
239 		r = dmm_read(dmm, reg[PAT_STATUS][engine->id]);
240 		err = r & DMM_PATSTATUS_ERR;
241 		if (err) {
242 			dev_err(dmm->dev,
243 				"%s: error (engine%d). PAT_STATUS: 0x%08x\n",
244 				__func__, engine->id, r);
245 			return -EFAULT;
246 		}
247 
248 		if ((r & wait_mask) == wait_mask)
249 			break;
250 
251 		if (--i == 0) {
252 			dev_err(dmm->dev,
253 				"%s: timeout (engine%d). PAT_STATUS: 0x%08x\n",
254 				__func__, engine->id, r);
255 			return -ETIMEDOUT;
256 		}
257 
258 		udelay(1);
259 	}
260 
261 	return 0;
262 }
263 
264 static void release_engine(struct refill_engine *engine)
265 {
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&list_lock, flags);
269 	list_add(&engine->idle_node, &omap_dmm->idle_head);
270 	spin_unlock_irqrestore(&list_lock, flags);
271 
272 	atomic_inc(&omap_dmm->engine_counter);
273 	wake_up_interruptible(&omap_dmm->engine_queue);
274 }
275 
276 static irqreturn_t omap_dmm_irq_handler(int irq, void *arg)
277 {
278 	struct dmm *dmm = arg;
279 	u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS);
280 	int i;
281 
282 	/* ack IRQ */
283 	dmm_write(dmm, status, DMM_PAT_IRQSTATUS);
284 
285 	for (i = 0; i < dmm->num_engines; i++) {
286 		if (status & DMM_IRQSTAT_ERR_MASK)
287 			dev_err(dmm->dev,
288 				"irq error(engine%d): IRQSTAT 0x%02x\n",
289 				i, status & 0xff);
290 
291 		if (status & DMM_IRQSTAT_LST) {
292 			if (dmm->engines[i].async)
293 				release_engine(&dmm->engines[i]);
294 
295 			complete(&dmm->engines[i].compl);
296 		}
297 
298 		status >>= 8;
299 	}
300 
301 	return IRQ_HANDLED;
302 }
303 
304 /*
305  * Get a handle for a DMM transaction
306  */
307 static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm)
308 {
309 	struct dmm_txn *txn = NULL;
310 	struct refill_engine *engine = NULL;
311 	int ret;
312 	unsigned long flags;
313 
314 
315 	/* wait until an engine is available */
316 	ret = wait_event_interruptible(omap_dmm->engine_queue,
317 		atomic_add_unless(&omap_dmm->engine_counter, -1, 0));
318 	if (ret)
319 		return ERR_PTR(ret);
320 
321 	/* grab an idle engine */
322 	spin_lock_irqsave(&list_lock, flags);
323 	if (!list_empty(&dmm->idle_head)) {
324 		engine = list_entry(dmm->idle_head.next, struct refill_engine,
325 					idle_node);
326 		list_del(&engine->idle_node);
327 	}
328 	spin_unlock_irqrestore(&list_lock, flags);
329 
330 	BUG_ON(!engine);
331 
332 	txn = &engine->txn;
333 	engine->tcm = tcm;
334 	txn->engine_handle = engine;
335 	txn->last_pat = NULL;
336 	txn->current_va = engine->refill_va;
337 	txn->current_pa = engine->refill_pa;
338 
339 	return txn;
340 }
341 
342 /*
343  * Add region to DMM transaction.  If pages or pages[i] is NULL, then the
344  * corresponding slot is cleared (ie. dummy_pa is programmed)
345  */
346 static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area,
347 		struct page **pages, u32 npages, u32 roll)
348 {
349 	dma_addr_t pat_pa = 0, data_pa = 0;
350 	u32 *data;
351 	struct pat *pat;
352 	struct refill_engine *engine = txn->engine_handle;
353 	int columns = (1 + area->x1 - area->x0);
354 	int rows = (1 + area->y1 - area->y0);
355 	int i = columns*rows;
356 
357 	pat = alloc_dma(txn, sizeof(*pat), &pat_pa);
358 
359 	if (txn->last_pat)
360 		txn->last_pat->next_pa = (u32)pat_pa;
361 
362 	pat->area = *area;
363 
364 	/* adjust Y coordinates based off of container parameters */
365 	pat->area.y0 += engine->tcm->y_offset;
366 	pat->area.y1 += engine->tcm->y_offset;
367 
368 	pat->ctrl = (struct pat_ctrl){
369 			.start = 1,
370 			.lut_id = engine->tcm->lut_id,
371 		};
372 
373 	data = alloc_dma(txn, 4*i, &data_pa);
374 	/* FIXME: what if data_pa is more than 32-bit ? */
375 	pat->data_pa = data_pa;
376 
377 	while (i--) {
378 		int n = i + roll;
379 		if (n >= npages)
380 			n -= npages;
381 		data[i] = (pages && pages[n]) ?
382 			page_to_phys(pages[n]) : engine->dmm->dummy_pa;
383 	}
384 
385 	txn->last_pat = pat;
386 
387 	return;
388 }
389 
390 /*
391  * Commit the DMM transaction.
392  */
393 static int dmm_txn_commit(struct dmm_txn *txn, bool wait)
394 {
395 	int ret = 0;
396 	struct refill_engine *engine = txn->engine_handle;
397 	struct dmm *dmm = engine->dmm;
398 
399 	if (!txn->last_pat) {
400 		dev_err(engine->dmm->dev, "need at least one txn\n");
401 		ret = -EINVAL;
402 		goto cleanup;
403 	}
404 
405 	txn->last_pat->next_pa = 0;
406 	/* ensure that the written descriptors are visible to DMM */
407 	wmb();
408 
409 	/*
410 	 * NOTE: the wmb() above should be enough, but there seems to be a bug
411 	 * in OMAP's memory barrier implementation, which in some rare cases may
412 	 * cause the writes not to be observable after wmb().
413 	 */
414 
415 	/* read back to ensure the data is in RAM */
416 	readl((__iomem void *)&txn->last_pat->next_pa);
417 
418 	/* write to PAT_DESCR to clear out any pending transaction */
419 	dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]);
420 
421 	/* wait for engine ready: */
422 	ret = wait_status(engine, DMM_PATSTATUS_READY);
423 	if (ret) {
424 		ret = -EFAULT;
425 		goto cleanup;
426 	}
427 
428 	/* mark whether it is async to denote list management in IRQ handler */
429 	engine->async = wait ? false : true;
430 	reinit_completion(&engine->compl);
431 	/* verify that the irq handler sees the 'async' and completion value */
432 	smp_mb();
433 
434 	/* kick reload */
435 	dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]);
436 
437 	if (wait) {
438 		if (!wait_for_completion_timeout(&engine->compl,
439 				msecs_to_jiffies(100))) {
440 			dev_err(dmm->dev, "timed out waiting for done\n");
441 			ret = -ETIMEDOUT;
442 			goto cleanup;
443 		}
444 
445 		/* Check the engine status before continue */
446 		ret = wait_status(engine, DMM_PATSTATUS_READY |
447 				  DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE);
448 	}
449 
450 cleanup:
451 	/* only place engine back on list if we are done with it */
452 	if (ret || wait)
453 		release_engine(engine);
454 
455 	return ret;
456 }
457 
458 /*
459  * DMM programming
460  */
461 static int fill(struct tcm_area *area, struct page **pages,
462 		u32 npages, u32 roll, bool wait)
463 {
464 	int ret = 0;
465 	struct tcm_area slice, area_s;
466 	struct dmm_txn *txn;
467 
468 	/*
469 	 * FIXME
470 	 *
471 	 * Asynchronous fill does not work reliably, as the driver does not
472 	 * handle errors in the async code paths. The fill operation may
473 	 * silently fail, leading to leaking DMM engines, which may eventually
474 	 * lead to deadlock if we run out of DMM engines.
475 	 *
476 	 * For now, always set 'wait' so that we only use sync fills. Async
477 	 * fills should be fixed, or alternatively we could decide to only
478 	 * support sync fills and so the whole async code path could be removed.
479 	 */
480 
481 	wait = true;
482 
483 	txn = dmm_txn_init(omap_dmm, area->tcm);
484 	if (IS_ERR_OR_NULL(txn))
485 		return -ENOMEM;
486 
487 	tcm_for_each_slice(slice, *area, area_s) {
488 		struct pat_area p_area = {
489 				.x0 = slice.p0.x,  .y0 = slice.p0.y,
490 				.x1 = slice.p1.x,  .y1 = slice.p1.y,
491 		};
492 
493 		dmm_txn_append(txn, &p_area, pages, npages, roll);
494 
495 		roll += tcm_sizeof(slice);
496 	}
497 
498 	ret = dmm_txn_commit(txn, wait);
499 
500 	return ret;
501 }
502 
503 /*
504  * Pin/unpin
505  */
506 
507 /* note: slots for which pages[i] == NULL are filled w/ dummy page
508  */
509 int tiler_pin(struct tiler_block *block, struct page **pages,
510 		u32 npages, u32 roll, bool wait)
511 {
512 	int ret;
513 
514 	ret = fill(&block->area, pages, npages, roll, wait);
515 
516 	if (ret)
517 		tiler_unpin(block);
518 
519 	return ret;
520 }
521 
522 int tiler_unpin(struct tiler_block *block)
523 {
524 	return fill(&block->area, NULL, 0, 0, false);
525 }
526 
527 /*
528  * Reserve/release
529  */
530 struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w,
531 		u16 h, u16 align)
532 {
533 	struct tiler_block *block;
534 	u32 min_align = 128;
535 	int ret;
536 	unsigned long flags;
537 	u32 slot_bytes;
538 
539 	block = kzalloc(sizeof(*block), GFP_KERNEL);
540 	if (!block)
541 		return ERR_PTR(-ENOMEM);
542 
543 	BUG_ON(!validfmt(fmt));
544 
545 	/* convert width/height to slots */
546 	w = DIV_ROUND_UP(w, geom[fmt].slot_w);
547 	h = DIV_ROUND_UP(h, geom[fmt].slot_h);
548 
549 	/* convert alignment to slots */
550 	slot_bytes = geom[fmt].slot_w * geom[fmt].cpp;
551 	min_align = max(min_align, slot_bytes);
552 	align = (align > min_align) ? ALIGN(align, min_align) : min_align;
553 	align /= slot_bytes;
554 
555 	block->fmt = fmt;
556 
557 	ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes,
558 			&block->area);
559 	if (ret) {
560 		kfree(block);
561 		return ERR_PTR(-ENOMEM);
562 	}
563 
564 	/* add to allocation list */
565 	spin_lock_irqsave(&list_lock, flags);
566 	list_add(&block->alloc_node, &omap_dmm->alloc_head);
567 	spin_unlock_irqrestore(&list_lock, flags);
568 
569 	return block;
570 }
571 
572 struct tiler_block *tiler_reserve_1d(size_t size)
573 {
574 	struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL);
575 	int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
576 	unsigned long flags;
577 
578 	if (!block)
579 		return ERR_PTR(-ENOMEM);
580 
581 	block->fmt = TILFMT_PAGE;
582 
583 	if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages,
584 				&block->area)) {
585 		kfree(block);
586 		return ERR_PTR(-ENOMEM);
587 	}
588 
589 	spin_lock_irqsave(&list_lock, flags);
590 	list_add(&block->alloc_node, &omap_dmm->alloc_head);
591 	spin_unlock_irqrestore(&list_lock, flags);
592 
593 	return block;
594 }
595 
596 /* note: if you have pin'd pages, you should have already unpin'd first! */
597 int tiler_release(struct tiler_block *block)
598 {
599 	int ret = tcm_free(&block->area);
600 	unsigned long flags;
601 
602 	if (block->area.tcm)
603 		dev_err(omap_dmm->dev, "failed to release block\n");
604 
605 	spin_lock_irqsave(&list_lock, flags);
606 	list_del(&block->alloc_node);
607 	spin_unlock_irqrestore(&list_lock, flags);
608 
609 	kfree(block);
610 	return ret;
611 }
612 
613 /*
614  * Utils
615  */
616 
617 /* calculate the tiler space address of a pixel in a view orientation...
618  * below description copied from the display subsystem section of TRM:
619  *
620  * When the TILER is addressed, the bits:
621  *   [28:27] = 0x0 for 8-bit tiled
622  *             0x1 for 16-bit tiled
623  *             0x2 for 32-bit tiled
624  *             0x3 for page mode
625  *   [31:29] = 0x0 for 0-degree view
626  *             0x1 for 180-degree view + mirroring
627  *             0x2 for 0-degree view + mirroring
628  *             0x3 for 180-degree view
629  *             0x4 for 270-degree view + mirroring
630  *             0x5 for 270-degree view
631  *             0x6 for 90-degree view
632  *             0x7 for 90-degree view + mirroring
633  * Otherwise the bits indicated the corresponding bit address to access
634  * the SDRAM.
635  */
636 static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y)
637 {
638 	u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment;
639 
640 	x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft;
641 	y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft;
642 	alignment = geom[fmt].x_shft + geom[fmt].y_shft;
643 
644 	/* validate coordinate */
645 	x_mask = MASK(x_bits);
646 	y_mask = MASK(y_bits);
647 
648 	if (x < 0 || x > x_mask || y < 0 || y > y_mask) {
649 		DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u",
650 				x, x, x_mask, y, y, y_mask);
651 		return 0;
652 	}
653 
654 	/* account for mirroring */
655 	if (orient & MASK_X_INVERT)
656 		x ^= x_mask;
657 	if (orient & MASK_Y_INVERT)
658 		y ^= y_mask;
659 
660 	/* get coordinate address */
661 	if (orient & MASK_XY_FLIP)
662 		tmp = ((x << y_bits) + y);
663 	else
664 		tmp = ((y << x_bits) + x);
665 
666 	return TIL_ADDR((tmp << alignment), orient, fmt);
667 }
668 
669 dma_addr_t tiler_ssptr(struct tiler_block *block)
670 {
671 	BUG_ON(!validfmt(block->fmt));
672 
673 	return TILVIEW_8BIT + tiler_get_address(block->fmt, 0,
674 			block->area.p0.x * geom[block->fmt].slot_w,
675 			block->area.p0.y * geom[block->fmt].slot_h);
676 }
677 
678 dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient,
679 		u32 x, u32 y)
680 {
681 	struct tcm_pt *p = &block->area.p0;
682 	BUG_ON(!validfmt(block->fmt));
683 
684 	return tiler_get_address(block->fmt, orient,
685 			(p->x * geom[block->fmt].slot_w) + x,
686 			(p->y * geom[block->fmt].slot_h) + y);
687 }
688 
689 void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h)
690 {
691 	BUG_ON(!validfmt(fmt));
692 	*w = round_up(*w, geom[fmt].slot_w);
693 	*h = round_up(*h, geom[fmt].slot_h);
694 }
695 
696 u32 tiler_stride(enum tiler_fmt fmt, u32 orient)
697 {
698 	BUG_ON(!validfmt(fmt));
699 
700 	if (orient & MASK_XY_FLIP)
701 		return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft);
702 	else
703 		return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft);
704 }
705 
706 size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h)
707 {
708 	tiler_align(fmt, &w, &h);
709 	return geom[fmt].cpp * w * h;
710 }
711 
712 size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h)
713 {
714 	BUG_ON(!validfmt(fmt));
715 	return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h;
716 }
717 
718 u32 tiler_get_cpu_cache_flags(void)
719 {
720 	return omap_dmm->plat_data->cpu_cache_flags;
721 }
722 
723 bool dmm_is_available(void)
724 {
725 	return omap_dmm ? true : false;
726 }
727 
728 static void omap_dmm_remove(struct platform_device *dev)
729 {
730 	struct tiler_block *block, *_block;
731 	int i;
732 	unsigned long flags;
733 
734 	if (omap_dmm) {
735 		/* Disable all enabled interrupts */
736 		dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR);
737 		free_irq(omap_dmm->irq, omap_dmm);
738 
739 		/* free all area regions */
740 		spin_lock_irqsave(&list_lock, flags);
741 		list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head,
742 					alloc_node) {
743 			list_del(&block->alloc_node);
744 			kfree(block);
745 		}
746 		spin_unlock_irqrestore(&list_lock, flags);
747 
748 		for (i = 0; i < omap_dmm->num_lut; i++)
749 			if (omap_dmm->tcm && omap_dmm->tcm[i])
750 				omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]);
751 		kfree(omap_dmm->tcm);
752 
753 		kfree(omap_dmm->engines);
754 		if (omap_dmm->refill_va)
755 			dma_free_wc(omap_dmm->dev,
756 				    REFILL_BUFFER_SIZE * omap_dmm->num_engines,
757 				    omap_dmm->refill_va, omap_dmm->refill_pa);
758 		if (omap_dmm->dummy_page)
759 			__free_page(omap_dmm->dummy_page);
760 
761 		if (omap_dmm->dmm_workaround)
762 			dmm_workaround_uninit(omap_dmm);
763 
764 		iounmap(omap_dmm->base);
765 		kfree(omap_dmm);
766 		omap_dmm = NULL;
767 	}
768 }
769 
770 static int omap_dmm_probe(struct platform_device *dev)
771 {
772 	int ret = -EFAULT, i;
773 	struct tcm_area area = {0};
774 	u32 hwinfo, pat_geom;
775 	struct resource *mem;
776 
777 	omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL);
778 	if (!omap_dmm)
779 		goto fail;
780 
781 	/* initialize lists */
782 	INIT_LIST_HEAD(&omap_dmm->alloc_head);
783 	INIT_LIST_HEAD(&omap_dmm->idle_head);
784 
785 	init_waitqueue_head(&omap_dmm->engine_queue);
786 
787 	if (dev->dev.of_node) {
788 		const struct of_device_id *match;
789 
790 		match = of_match_node(dmm_of_match, dev->dev.of_node);
791 		if (!match) {
792 			dev_err(&dev->dev, "failed to find matching device node\n");
793 			ret = -ENODEV;
794 			goto fail;
795 		}
796 
797 		omap_dmm->plat_data = match->data;
798 	}
799 
800 	/* lookup hwmod data - base address and irq */
801 	mem = platform_get_resource(dev, IORESOURCE_MEM, 0);
802 	if (!mem) {
803 		dev_err(&dev->dev, "failed to get base address resource\n");
804 		goto fail;
805 	}
806 
807 	omap_dmm->phys_base = mem->start;
808 	omap_dmm->base = ioremap(mem->start, SZ_2K);
809 
810 	if (!omap_dmm->base) {
811 		dev_err(&dev->dev, "failed to get dmm base address\n");
812 		goto fail;
813 	}
814 
815 	omap_dmm->irq = platform_get_irq(dev, 0);
816 	if (omap_dmm->irq < 0)
817 		goto fail;
818 
819 	omap_dmm->dev = &dev->dev;
820 
821 	if (of_machine_is_compatible("ti,dra7")) {
822 		/*
823 		 * DRA7 Errata i878 says that MPU should not be used to access
824 		 * RAM and DMM at the same time. As it's not possible to prevent
825 		 * MPU accessing RAM, we need to access DMM via a proxy.
826 		 */
827 		if (!dmm_workaround_init(omap_dmm)) {
828 			omap_dmm->dmm_workaround = true;
829 			dev_info(&dev->dev,
830 				"workaround for errata i878 in use\n");
831 		} else {
832 			dev_warn(&dev->dev,
833 				 "failed to initialize work-around for i878\n");
834 		}
835 	}
836 
837 	hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO);
838 	omap_dmm->num_engines = (hwinfo >> 24) & 0x1F;
839 	omap_dmm->num_lut = (hwinfo >> 16) & 0x1F;
840 	omap_dmm->container_width = 256;
841 	omap_dmm->container_height = 128;
842 
843 	atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines);
844 
845 	/* read out actual LUT width and height */
846 	pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY);
847 	omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5;
848 	omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5;
849 
850 	/* increment LUT by one if on OMAP5 */
851 	/* LUT has twice the height, and is split into a separate container */
852 	if (omap_dmm->lut_height != omap_dmm->container_height)
853 		omap_dmm->num_lut++;
854 
855 	/* initialize DMM registers */
856 	dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0);
857 	dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1);
858 	dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0);
859 	dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE);
860 	dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0);
861 	dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1);
862 
863 	omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32);
864 	if (!omap_dmm->dummy_page) {
865 		dev_err(&dev->dev, "could not allocate dummy page\n");
866 		ret = -ENOMEM;
867 		goto fail;
868 	}
869 
870 	/* set dma mask for device */
871 	ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32));
872 	if (ret)
873 		goto fail;
874 
875 	omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page);
876 
877 	/* alloc refill memory */
878 	omap_dmm->refill_va = dma_alloc_wc(&dev->dev,
879 					   REFILL_BUFFER_SIZE * omap_dmm->num_engines,
880 					   &omap_dmm->refill_pa, GFP_KERNEL);
881 	if (!omap_dmm->refill_va) {
882 		dev_err(&dev->dev, "could not allocate refill memory\n");
883 		ret = -ENOMEM;
884 		goto fail;
885 	}
886 
887 	/* alloc engines */
888 	omap_dmm->engines = kcalloc(omap_dmm->num_engines,
889 				    sizeof(*omap_dmm->engines), GFP_KERNEL);
890 	if (!omap_dmm->engines) {
891 		ret = -ENOMEM;
892 		goto fail;
893 	}
894 
895 	for (i = 0; i < omap_dmm->num_engines; i++) {
896 		omap_dmm->engines[i].id = i;
897 		omap_dmm->engines[i].dmm = omap_dmm;
898 		omap_dmm->engines[i].refill_va = omap_dmm->refill_va +
899 						(REFILL_BUFFER_SIZE * i);
900 		omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa +
901 						(REFILL_BUFFER_SIZE * i);
902 		init_completion(&omap_dmm->engines[i].compl);
903 
904 		list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head);
905 	}
906 
907 	omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm),
908 				GFP_KERNEL);
909 	if (!omap_dmm->tcm) {
910 		ret = -ENOMEM;
911 		goto fail;
912 	}
913 
914 	/* init containers */
915 	/* Each LUT is associated with a TCM (container manager).  We use the
916 	   lut_id to denote the lut_id used to identify the correct LUT for
917 	   programming during reill operations */
918 	for (i = 0; i < omap_dmm->num_lut; i++) {
919 		omap_dmm->tcm[i] = sita_init(omap_dmm->container_width,
920 						omap_dmm->container_height);
921 
922 		if (!omap_dmm->tcm[i]) {
923 			dev_err(&dev->dev, "failed to allocate container\n");
924 			ret = -ENOMEM;
925 			goto fail;
926 		}
927 
928 		omap_dmm->tcm[i]->lut_id = i;
929 	}
930 
931 	/* assign access mode containers to applicable tcm container */
932 	/* OMAP 4 has 1 container for all 4 views */
933 	/* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */
934 	containers[TILFMT_8BIT] = omap_dmm->tcm[0];
935 	containers[TILFMT_16BIT] = omap_dmm->tcm[0];
936 	containers[TILFMT_32BIT] = omap_dmm->tcm[0];
937 
938 	if (omap_dmm->container_height != omap_dmm->lut_height) {
939 		/* second LUT is used for PAGE mode.  Programming must use
940 		   y offset that is added to all y coordinates.  LUT id is still
941 		   0, because it is the same LUT, just the upper 128 lines */
942 		containers[TILFMT_PAGE] = omap_dmm->tcm[1];
943 		omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET;
944 		omap_dmm->tcm[1]->lut_id = 0;
945 	} else {
946 		containers[TILFMT_PAGE] = omap_dmm->tcm[0];
947 	}
948 
949 	area = (struct tcm_area) {
950 		.tcm = NULL,
951 		.p1.x = omap_dmm->container_width - 1,
952 		.p1.y = omap_dmm->container_height - 1,
953 	};
954 
955 	ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED,
956 				"omap_dmm_irq_handler", omap_dmm);
957 
958 	if (ret) {
959 		dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n",
960 			omap_dmm->irq, ret);
961 		omap_dmm->irq = -1;
962 		goto fail;
963 	}
964 
965 	/* Enable all interrupts for each refill engine except
966 	 * ERR_LUT_MISS<n> (which is just advisory, and we don't care
967 	 * about because we want to be able to refill live scanout
968 	 * buffers for accelerated pan/scroll) and FILL_DSC<n> which
969 	 * we just generally don't care about.
970 	 */
971 	dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET);
972 
973 	/* initialize all LUTs to dummy page entries */
974 	for (i = 0; i < omap_dmm->num_lut; i++) {
975 		area.tcm = omap_dmm->tcm[i];
976 		if (fill(&area, NULL, 0, 0, true))
977 			dev_err(omap_dmm->dev, "refill failed");
978 	}
979 
980 	dev_info(omap_dmm->dev, "initialized all PAT entries\n");
981 
982 	return 0;
983 
984 fail:
985 	omap_dmm_remove(dev);
986 	return ret;
987 }
988 
989 /*
990  * debugfs support
991  */
992 
993 #ifdef CONFIG_DEBUG_FS
994 
995 static const char *alphabet = "abcdefghijklmnopqrstuvwxyz"
996 				"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
997 static const char *special = ".,:;'\"`~!^-+";
998 
999 static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a,
1000 							char c, bool ovw)
1001 {
1002 	int x, y;
1003 	for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++)
1004 		for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++)
1005 			if (map[y][x] == ' ' || ovw)
1006 				map[y][x] = c;
1007 }
1008 
1009 static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p,
1010 									char c)
1011 {
1012 	map[p->y / ydiv][p->x / xdiv] = c;
1013 }
1014 
1015 static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p)
1016 {
1017 	return map[p->y / ydiv][p->x / xdiv];
1018 }
1019 
1020 static int map_width(int xdiv, int x0, int x1)
1021 {
1022 	return (x1 / xdiv) - (x0 / xdiv) + 1;
1023 }
1024 
1025 static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1)
1026 {
1027 	char *p = map[yd] + (x0 / xdiv);
1028 	int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2;
1029 	if (w >= 0) {
1030 		p += w;
1031 		while (*nice)
1032 			*p++ = *nice++;
1033 	}
1034 }
1035 
1036 static void map_1d_info(char **map, int xdiv, int ydiv, char *nice,
1037 							struct tcm_area *a)
1038 {
1039 	sprintf(nice, "%dK", tcm_sizeof(*a) * 4);
1040 	if (a->p0.y + 1 < a->p1.y) {
1041 		text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0,
1042 							256 - 1);
1043 	} else if (a->p0.y < a->p1.y) {
1044 		if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1))
1045 			text_map(map, xdiv, nice, a->p0.y / ydiv,
1046 					a->p0.x + xdiv,	256 - 1);
1047 		else if (strlen(nice) < map_width(xdiv, 0, a->p1.x))
1048 			text_map(map, xdiv, nice, a->p1.y / ydiv,
1049 					0, a->p1.y - xdiv);
1050 	} else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) {
1051 		text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x);
1052 	}
1053 }
1054 
1055 static void map_2d_info(char **map, int xdiv, int ydiv, char *nice,
1056 							struct tcm_area *a)
1057 {
1058 	sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a));
1059 	if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x))
1060 		text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv,
1061 							a->p0.x, a->p1.x);
1062 }
1063 
1064 int tiler_map_show(struct seq_file *s, void *arg)
1065 {
1066 	int xdiv = 2, ydiv = 1;
1067 	char **map = NULL, *global_map;
1068 	struct tiler_block *block;
1069 	struct tcm_area a, p;
1070 	int i;
1071 	const char *m2d = alphabet;
1072 	const char *a2d = special;
1073 	const char *m2dp = m2d, *a2dp = a2d;
1074 	char nice[128];
1075 	int h_adj;
1076 	int w_adj;
1077 	unsigned long flags;
1078 	int lut_idx;
1079 
1080 
1081 	if (!omap_dmm) {
1082 		/* early return if dmm/tiler device is not initialized */
1083 		return 0;
1084 	}
1085 
1086 	h_adj = omap_dmm->container_height / ydiv;
1087 	w_adj = omap_dmm->container_width / xdiv;
1088 
1089 	map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL);
1090 	global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL);
1091 
1092 	if (!map || !global_map)
1093 		goto error;
1094 
1095 	for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) {
1096 		memset(map, 0, h_adj * sizeof(*map));
1097 		memset(global_map, ' ', (w_adj + 1) * h_adj);
1098 
1099 		for (i = 0; i < omap_dmm->container_height; i++) {
1100 			map[i] = global_map + i * (w_adj + 1);
1101 			map[i][w_adj] = 0;
1102 		}
1103 
1104 		spin_lock_irqsave(&list_lock, flags);
1105 
1106 		list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) {
1107 			if (block->area.tcm == omap_dmm->tcm[lut_idx]) {
1108 				if (block->fmt != TILFMT_PAGE) {
1109 					fill_map(map, xdiv, ydiv, &block->area,
1110 						*m2dp, true);
1111 					if (!*++a2dp)
1112 						a2dp = a2d;
1113 					if (!*++m2dp)
1114 						m2dp = m2d;
1115 					map_2d_info(map, xdiv, ydiv, nice,
1116 							&block->area);
1117 				} else {
1118 					bool start = read_map_pt(map, xdiv,
1119 						ydiv, &block->area.p0) == ' ';
1120 					bool end = read_map_pt(map, xdiv, ydiv,
1121 							&block->area.p1) == ' ';
1122 
1123 					tcm_for_each_slice(a, block->area, p)
1124 						fill_map(map, xdiv, ydiv, &a,
1125 							'=', true);
1126 					fill_map_pt(map, xdiv, ydiv,
1127 							&block->area.p0,
1128 							start ? '<' : 'X');
1129 					fill_map_pt(map, xdiv, ydiv,
1130 							&block->area.p1,
1131 							end ? '>' : 'X');
1132 					map_1d_info(map, xdiv, ydiv, nice,
1133 							&block->area);
1134 				}
1135 			}
1136 		}
1137 
1138 		spin_unlock_irqrestore(&list_lock, flags);
1139 
1140 		if (s) {
1141 			seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx);
1142 			for (i = 0; i < 128; i++)
1143 				seq_printf(s, "%03d:%s\n", i, map[i]);
1144 			seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx);
1145 		} else {
1146 			dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n",
1147 				lut_idx);
1148 			for (i = 0; i < 128; i++)
1149 				dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]);
1150 			dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n",
1151 				lut_idx);
1152 		}
1153 	}
1154 
1155 error:
1156 	kfree(map);
1157 	kfree(global_map);
1158 
1159 	return 0;
1160 }
1161 #endif
1162 
1163 #ifdef CONFIG_PM_SLEEP
1164 static int omap_dmm_resume(struct device *dev)
1165 {
1166 	struct tcm_area area;
1167 	int i;
1168 
1169 	if (!omap_dmm)
1170 		return -ENODEV;
1171 
1172 	area = (struct tcm_area) {
1173 		.tcm = NULL,
1174 		.p1.x = omap_dmm->container_width - 1,
1175 		.p1.y = omap_dmm->container_height - 1,
1176 	};
1177 
1178 	/* initialize all LUTs to dummy page entries */
1179 	for (i = 0; i < omap_dmm->num_lut; i++) {
1180 		area.tcm = omap_dmm->tcm[i];
1181 		if (fill(&area, NULL, 0, 0, true))
1182 			dev_err(dev, "refill failed");
1183 	}
1184 
1185 	return 0;
1186 }
1187 #endif
1188 
1189 static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume);
1190 
1191 #if defined(CONFIG_OF)
1192 static const struct dmm_platform_data dmm_omap4_platform_data = {
1193 	.cpu_cache_flags = OMAP_BO_WC,
1194 };
1195 
1196 static const struct dmm_platform_data dmm_omap5_platform_data = {
1197 	.cpu_cache_flags = OMAP_BO_UNCACHED,
1198 };
1199 
1200 static const struct of_device_id dmm_of_match[] = {
1201 	{
1202 		.compatible = "ti,omap4-dmm",
1203 		.data = &dmm_omap4_platform_data,
1204 	},
1205 	{
1206 		.compatible = "ti,omap5-dmm",
1207 		.data = &dmm_omap5_platform_data,
1208 	},
1209 	{},
1210 };
1211 #endif
1212 
1213 struct platform_driver omap_dmm_driver = {
1214 	.probe = omap_dmm_probe,
1215 	.remove = omap_dmm_remove,
1216 	.driver = {
1217 		.name = DMM_DRIVER_NAME,
1218 		.of_match_table = of_match_ptr(dmm_of_match),
1219 		.pm = &omap_dmm_pm_ops,
1220 	},
1221 };
1222 
1223 MODULE_LICENSE("GPL v2");
1224 MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>");
1225 MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");
1226