xref: /linux/block/blk-throttle.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17 
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20 
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23 
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 
29 /* A workqueue to queue throttle related work */
30 static struct workqueue_struct *kthrotld_workqueue;
31 
32 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
33 
34 struct throtl_data
35 {
36 	/* service tree for active throtl groups */
37 	struct throtl_service_queue service_queue;
38 
39 	struct request_queue *queue;
40 
41 	/* Total Number of queued bios on READ and WRITE lists */
42 	unsigned int nr_queued[2];
43 
44 	unsigned int throtl_slice;
45 
46 	/* Work for dispatching throttled bios */
47 	struct work_struct dispatch_work;
48 
49 	bool track_bio_latency;
50 };
51 
52 static void throtl_pending_timer_fn(struct timer_list *t);
53 
tg_to_blkg(struct throtl_grp * tg)54 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
55 {
56 	return pd_to_blkg(&tg->pd);
57 }
58 
59 /**
60  * sq_to_tg - return the throl_grp the specified service queue belongs to
61  * @sq: the throtl_service_queue of interest
62  *
63  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
64  * embedded in throtl_data, %NULL is returned.
65  */
sq_to_tg(struct throtl_service_queue * sq)66 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
67 {
68 	if (sq && sq->parent_sq)
69 		return container_of(sq, struct throtl_grp, service_queue);
70 	else
71 		return NULL;
72 }
73 
74 /**
75  * sq_to_td - return throtl_data the specified service queue belongs to
76  * @sq: the throtl_service_queue of interest
77  *
78  * A service_queue can be embedded in either a throtl_grp or throtl_data.
79  * Determine the associated throtl_data accordingly and return it.
80  */
sq_to_td(struct throtl_service_queue * sq)81 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
82 {
83 	struct throtl_grp *tg = sq_to_tg(sq);
84 
85 	if (tg)
86 		return tg->td;
87 	else
88 		return container_of(sq, struct throtl_data, service_queue);
89 }
90 
tg_bps_limit(struct throtl_grp * tg,int rw)91 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
92 {
93 	struct blkcg_gq *blkg = tg_to_blkg(tg);
94 
95 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
96 		return U64_MAX;
97 
98 	return tg->bps[rw];
99 }
100 
tg_iops_limit(struct throtl_grp * tg,int rw)101 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
102 {
103 	struct blkcg_gq *blkg = tg_to_blkg(tg);
104 
105 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
106 		return UINT_MAX;
107 
108 	return tg->iops[rw];
109 }
110 
111 /**
112  * throtl_log - log debug message via blktrace
113  * @sq: the service_queue being reported
114  * @fmt: printf format string
115  * @args: printf args
116  *
117  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
118  * throtl_grp; otherwise, just "throtl".
119  */
120 #define throtl_log(sq, fmt, args...)	do {				\
121 	struct throtl_grp *__tg = sq_to_tg((sq));			\
122 	struct throtl_data *__td = sq_to_td((sq));			\
123 									\
124 	(void)__td;							\
125 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
126 		break;							\
127 	if ((__tg)) {							\
128 		blk_add_cgroup_trace_msg(__td->queue,			\
129 			&tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
130 	} else {							\
131 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
132 	}								\
133 } while (0)
134 
throtl_bio_data_size(struct bio * bio)135 static inline unsigned int throtl_bio_data_size(struct bio *bio)
136 {
137 	/* assume it's one sector */
138 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
139 		return 512;
140 	return bio->bi_iter.bi_size;
141 }
142 
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)143 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
144 {
145 	INIT_LIST_HEAD(&qn->node);
146 	bio_list_init(&qn->bios);
147 	qn->tg = tg;
148 }
149 
150 /**
151  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
152  * @bio: bio being added
153  * @qn: qnode to add bio to
154  * @queued: the service_queue->queued[] list @qn belongs to
155  *
156  * Add @bio to @qn and put @qn on @queued if it's not already on.
157  * @qn->tg's reference count is bumped when @qn is activated.  See the
158  * comment on top of throtl_qnode definition for details.
159  */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)160 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
161 				 struct list_head *queued)
162 {
163 	bio_list_add(&qn->bios, bio);
164 	if (list_empty(&qn->node)) {
165 		list_add_tail(&qn->node, queued);
166 		blkg_get(tg_to_blkg(qn->tg));
167 	}
168 }
169 
170 /**
171  * throtl_peek_queued - peek the first bio on a qnode list
172  * @queued: the qnode list to peek
173  */
throtl_peek_queued(struct list_head * queued)174 static struct bio *throtl_peek_queued(struct list_head *queued)
175 {
176 	struct throtl_qnode *qn;
177 	struct bio *bio;
178 
179 	if (list_empty(queued))
180 		return NULL;
181 
182 	qn = list_first_entry(queued, struct throtl_qnode, node);
183 	bio = bio_list_peek(&qn->bios);
184 	WARN_ON_ONCE(!bio);
185 	return bio;
186 }
187 
188 /**
189  * throtl_pop_queued - pop the first bio form a qnode list
190  * @queued: the qnode list to pop a bio from
191  * @tg_to_put: optional out argument for throtl_grp to put
192  *
193  * Pop the first bio from the qnode list @queued.  After popping, the first
194  * qnode is removed from @queued if empty or moved to the end of @queued so
195  * that the popping order is round-robin.
196  *
197  * When the first qnode is removed, its associated throtl_grp should be put
198  * too.  If @tg_to_put is NULL, this function automatically puts it;
199  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
200  * responsible for putting it.
201  */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)202 static struct bio *throtl_pop_queued(struct list_head *queued,
203 				     struct throtl_grp **tg_to_put)
204 {
205 	struct throtl_qnode *qn;
206 	struct bio *bio;
207 
208 	if (list_empty(queued))
209 		return NULL;
210 
211 	qn = list_first_entry(queued, struct throtl_qnode, node);
212 	bio = bio_list_pop(&qn->bios);
213 	WARN_ON_ONCE(!bio);
214 
215 	if (bio_list_empty(&qn->bios)) {
216 		list_del_init(&qn->node);
217 		if (tg_to_put)
218 			*tg_to_put = qn->tg;
219 		else
220 			blkg_put(tg_to_blkg(qn->tg));
221 	} else {
222 		list_move_tail(&qn->node, queued);
223 	}
224 
225 	return bio;
226 }
227 
228 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)229 static void throtl_service_queue_init(struct throtl_service_queue *sq)
230 {
231 	INIT_LIST_HEAD(&sq->queued[READ]);
232 	INIT_LIST_HEAD(&sq->queued[WRITE]);
233 	sq->pending_tree = RB_ROOT_CACHED;
234 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
235 }
236 
throtl_pd_alloc(struct gendisk * disk,struct blkcg * blkcg,gfp_t gfp)237 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
238 		struct blkcg *blkcg, gfp_t gfp)
239 {
240 	struct throtl_grp *tg;
241 	int rw;
242 
243 	tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
244 	if (!tg)
245 		return NULL;
246 
247 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
248 		goto err_free_tg;
249 
250 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
251 		goto err_exit_stat_bytes;
252 
253 	throtl_service_queue_init(&tg->service_queue);
254 
255 	for (rw = READ; rw <= WRITE; rw++) {
256 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
257 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
258 	}
259 
260 	RB_CLEAR_NODE(&tg->rb_node);
261 	tg->bps[READ] = U64_MAX;
262 	tg->bps[WRITE] = U64_MAX;
263 	tg->iops[READ] = UINT_MAX;
264 	tg->iops[WRITE] = UINT_MAX;
265 
266 	return &tg->pd;
267 
268 err_exit_stat_bytes:
269 	blkg_rwstat_exit(&tg->stat_bytes);
270 err_free_tg:
271 	kfree(tg);
272 	return NULL;
273 }
274 
throtl_pd_init(struct blkg_policy_data * pd)275 static void throtl_pd_init(struct blkg_policy_data *pd)
276 {
277 	struct throtl_grp *tg = pd_to_tg(pd);
278 	struct blkcg_gq *blkg = tg_to_blkg(tg);
279 	struct throtl_data *td = blkg->q->td;
280 	struct throtl_service_queue *sq = &tg->service_queue;
281 
282 	/*
283 	 * If on the default hierarchy, we switch to properly hierarchical
284 	 * behavior where limits on a given throtl_grp are applied to the
285 	 * whole subtree rather than just the group itself.  e.g. If 16M
286 	 * read_bps limit is set on a parent group, summary bps of
287 	 * parent group and its subtree groups can't exceed 16M for the
288 	 * device.
289 	 *
290 	 * If not on the default hierarchy, the broken flat hierarchy
291 	 * behavior is retained where all throtl_grps are treated as if
292 	 * they're all separate root groups right below throtl_data.
293 	 * Limits of a group don't interact with limits of other groups
294 	 * regardless of the position of the group in the hierarchy.
295 	 */
296 	sq->parent_sq = &td->service_queue;
297 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
298 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
299 	tg->td = td;
300 }
301 
302 /*
303  * Set has_rules[] if @tg or any of its parents have limits configured.
304  * This doesn't require walking up to the top of the hierarchy as the
305  * parent's has_rules[] is guaranteed to be correct.
306  */
tg_update_has_rules(struct throtl_grp * tg)307 static void tg_update_has_rules(struct throtl_grp *tg)
308 {
309 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
310 	int rw;
311 
312 	for (rw = READ; rw <= WRITE; rw++) {
313 		tg->has_rules_iops[rw] =
314 			(parent_tg && parent_tg->has_rules_iops[rw]) ||
315 			tg_iops_limit(tg, rw) != UINT_MAX;
316 		tg->has_rules_bps[rw] =
317 			(parent_tg && parent_tg->has_rules_bps[rw]) ||
318 			tg_bps_limit(tg, rw) != U64_MAX;
319 	}
320 }
321 
throtl_pd_online(struct blkg_policy_data * pd)322 static void throtl_pd_online(struct blkg_policy_data *pd)
323 {
324 	struct throtl_grp *tg = pd_to_tg(pd);
325 	/*
326 	 * We don't want new groups to escape the limits of its ancestors.
327 	 * Update has_rules[] after a new group is brought online.
328 	 */
329 	tg_update_has_rules(tg);
330 }
331 
throtl_pd_free(struct blkg_policy_data * pd)332 static void throtl_pd_free(struct blkg_policy_data *pd)
333 {
334 	struct throtl_grp *tg = pd_to_tg(pd);
335 
336 	del_timer_sync(&tg->service_queue.pending_timer);
337 	blkg_rwstat_exit(&tg->stat_bytes);
338 	blkg_rwstat_exit(&tg->stat_ios);
339 	kfree(tg);
340 }
341 
342 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)343 throtl_rb_first(struct throtl_service_queue *parent_sq)
344 {
345 	struct rb_node *n;
346 
347 	n = rb_first_cached(&parent_sq->pending_tree);
348 	WARN_ON_ONCE(!n);
349 	if (!n)
350 		return NULL;
351 	return rb_entry_tg(n);
352 }
353 
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)354 static void throtl_rb_erase(struct rb_node *n,
355 			    struct throtl_service_queue *parent_sq)
356 {
357 	rb_erase_cached(n, &parent_sq->pending_tree);
358 	RB_CLEAR_NODE(n);
359 }
360 
update_min_dispatch_time(struct throtl_service_queue * parent_sq)361 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
362 {
363 	struct throtl_grp *tg;
364 
365 	tg = throtl_rb_first(parent_sq);
366 	if (!tg)
367 		return;
368 
369 	parent_sq->first_pending_disptime = tg->disptime;
370 }
371 
tg_service_queue_add(struct throtl_grp * tg)372 static void tg_service_queue_add(struct throtl_grp *tg)
373 {
374 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
375 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
376 	struct rb_node *parent = NULL;
377 	struct throtl_grp *__tg;
378 	unsigned long key = tg->disptime;
379 	bool leftmost = true;
380 
381 	while (*node != NULL) {
382 		parent = *node;
383 		__tg = rb_entry_tg(parent);
384 
385 		if (time_before(key, __tg->disptime))
386 			node = &parent->rb_left;
387 		else {
388 			node = &parent->rb_right;
389 			leftmost = false;
390 		}
391 	}
392 
393 	rb_link_node(&tg->rb_node, parent, node);
394 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
395 			       leftmost);
396 }
397 
throtl_enqueue_tg(struct throtl_grp * tg)398 static void throtl_enqueue_tg(struct throtl_grp *tg)
399 {
400 	if (!(tg->flags & THROTL_TG_PENDING)) {
401 		tg_service_queue_add(tg);
402 		tg->flags |= THROTL_TG_PENDING;
403 		tg->service_queue.parent_sq->nr_pending++;
404 	}
405 }
406 
throtl_dequeue_tg(struct throtl_grp * tg)407 static void throtl_dequeue_tg(struct throtl_grp *tg)
408 {
409 	if (tg->flags & THROTL_TG_PENDING) {
410 		struct throtl_service_queue *parent_sq =
411 			tg->service_queue.parent_sq;
412 
413 		throtl_rb_erase(&tg->rb_node, parent_sq);
414 		--parent_sq->nr_pending;
415 		tg->flags &= ~THROTL_TG_PENDING;
416 	}
417 }
418 
419 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)420 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
421 					  unsigned long expires)
422 {
423 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
424 
425 	/*
426 	 * Since we are adjusting the throttle limit dynamically, the sleep
427 	 * time calculated according to previous limit might be invalid. It's
428 	 * possible the cgroup sleep time is very long and no other cgroups
429 	 * have IO running so notify the limit changes. Make sure the cgroup
430 	 * doesn't sleep too long to avoid the missed notification.
431 	 */
432 	if (time_after(expires, max_expire))
433 		expires = max_expire;
434 	mod_timer(&sq->pending_timer, expires);
435 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
436 		   expires - jiffies, jiffies);
437 }
438 
439 /**
440  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
441  * @sq: the service_queue to schedule dispatch for
442  * @force: force scheduling
443  *
444  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
445  * dispatch time of the first pending child.  Returns %true if either timer
446  * is armed or there's no pending child left.  %false if the current
447  * dispatch window is still open and the caller should continue
448  * dispatching.
449  *
450  * If @force is %true, the dispatch timer is always scheduled and this
451  * function is guaranteed to return %true.  This is to be used when the
452  * caller can't dispatch itself and needs to invoke pending_timer
453  * unconditionally.  Note that forced scheduling is likely to induce short
454  * delay before dispatch starts even if @sq->first_pending_disptime is not
455  * in the future and thus shouldn't be used in hot paths.
456  */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)457 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
458 					  bool force)
459 {
460 	/* any pending children left? */
461 	if (!sq->nr_pending)
462 		return true;
463 
464 	update_min_dispatch_time(sq);
465 
466 	/* is the next dispatch time in the future? */
467 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
468 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
469 		return true;
470 	}
471 
472 	/* tell the caller to continue dispatching */
473 	return false;
474 }
475 
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)476 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
477 		bool rw, unsigned long start)
478 {
479 	tg->bytes_disp[rw] = 0;
480 	tg->io_disp[rw] = 0;
481 
482 	/*
483 	 * Previous slice has expired. We must have trimmed it after last
484 	 * bio dispatch. That means since start of last slice, we never used
485 	 * that bandwidth. Do try to make use of that bandwidth while giving
486 	 * credit.
487 	 */
488 	if (time_after(start, tg->slice_start[rw]))
489 		tg->slice_start[rw] = start;
490 
491 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
492 	throtl_log(&tg->service_queue,
493 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
494 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
495 		   tg->slice_end[rw], jiffies);
496 }
497 
throtl_start_new_slice(struct throtl_grp * tg,bool rw,bool clear)498 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
499 					  bool clear)
500 {
501 	if (clear) {
502 		tg->bytes_disp[rw] = 0;
503 		tg->io_disp[rw] = 0;
504 	}
505 	tg->slice_start[rw] = jiffies;
506 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
507 
508 	throtl_log(&tg->service_queue,
509 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
510 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
511 		   tg->slice_end[rw], jiffies);
512 }
513 
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)514 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
515 					unsigned long jiffy_end)
516 {
517 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
518 }
519 
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)520 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
521 				       unsigned long jiffy_end)
522 {
523 	throtl_set_slice_end(tg, rw, jiffy_end);
524 	throtl_log(&tg->service_queue,
525 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
526 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
527 		   tg->slice_end[rw], jiffies);
528 }
529 
530 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)531 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
532 {
533 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
534 		return false;
535 
536 	return true;
537 }
538 
calculate_io_allowed(u32 iops_limit,unsigned long jiffy_elapsed)539 static unsigned int calculate_io_allowed(u32 iops_limit,
540 					 unsigned long jiffy_elapsed)
541 {
542 	unsigned int io_allowed;
543 	u64 tmp;
544 
545 	/*
546 	 * jiffy_elapsed should not be a big value as minimum iops can be
547 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
548 	 * will allow dispatch after 1 second and after that slice should
549 	 * have been trimmed.
550 	 */
551 
552 	tmp = (u64)iops_limit * jiffy_elapsed;
553 	do_div(tmp, HZ);
554 
555 	if (tmp > UINT_MAX)
556 		io_allowed = UINT_MAX;
557 	else
558 		io_allowed = tmp;
559 
560 	return io_allowed;
561 }
562 
calculate_bytes_allowed(u64 bps_limit,unsigned long jiffy_elapsed)563 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
564 {
565 	/*
566 	 * Can result be wider than 64 bits?
567 	 * We check against 62, not 64, due to ilog2 truncation.
568 	 */
569 	if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
570 		return U64_MAX;
571 	return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
572 }
573 
574 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)575 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
576 {
577 	unsigned long time_elapsed;
578 	long long bytes_trim;
579 	int io_trim;
580 
581 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
582 
583 	/*
584 	 * If bps are unlimited (-1), then time slice don't get
585 	 * renewed. Don't try to trim the slice if slice is used. A new
586 	 * slice will start when appropriate.
587 	 */
588 	if (throtl_slice_used(tg, rw))
589 		return;
590 
591 	/*
592 	 * A bio has been dispatched. Also adjust slice_end. It might happen
593 	 * that initially cgroup limit was very low resulting in high
594 	 * slice_end, but later limit was bumped up and bio was dispatched
595 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
596 	 * is bad because it does not allow new slice to start.
597 	 */
598 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
599 
600 	time_elapsed = rounddown(jiffies - tg->slice_start[rw],
601 				 tg->td->throtl_slice);
602 	/* Don't trim slice until at least 2 slices are used */
603 	if (time_elapsed < tg->td->throtl_slice * 2)
604 		return;
605 
606 	/*
607 	 * The bio submission time may be a few jiffies more than the expected
608 	 * waiting time, due to 'extra_bytes' can't be divided in
609 	 * tg_within_bps_limit(), and also due to timer wakeup delay. In this
610 	 * case, adjust slice_start will discard the extra wait time, causing
611 	 * lower rate than expected. Therefore, other than the above rounddown,
612 	 * one extra slice is preserved for deviation.
613 	 */
614 	time_elapsed -= tg->td->throtl_slice;
615 	bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
616 					     time_elapsed);
617 	io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed);
618 	if (bytes_trim <= 0 && io_trim <= 0)
619 		return;
620 
621 	if ((long long)tg->bytes_disp[rw] >= bytes_trim)
622 		tg->bytes_disp[rw] -= bytes_trim;
623 	else
624 		tg->bytes_disp[rw] = 0;
625 
626 	if ((int)tg->io_disp[rw] >= io_trim)
627 		tg->io_disp[rw] -= io_trim;
628 	else
629 		tg->io_disp[rw] = 0;
630 
631 	tg->slice_start[rw] += time_elapsed;
632 
633 	throtl_log(&tg->service_queue,
634 		   "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
635 		   rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
636 		   bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
637 		   jiffies);
638 }
639 
__tg_update_carryover(struct throtl_grp * tg,bool rw,long long * bytes,int * ios)640 static void __tg_update_carryover(struct throtl_grp *tg, bool rw,
641 				  long long *bytes, int *ios)
642 {
643 	unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
644 	u64 bps_limit = tg_bps_limit(tg, rw);
645 	u32 iops_limit = tg_iops_limit(tg, rw);
646 
647 	/*
648 	 * If config is updated while bios are still throttled, calculate and
649 	 * accumulate how many bytes/ios are waited across changes. And
650 	 * carryover_bytes/ios will be used to calculate new wait time under new
651 	 * configuration.
652 	 */
653 	if (bps_limit != U64_MAX)
654 		*bytes = calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
655 			tg->bytes_disp[rw];
656 	if (iops_limit != UINT_MAX)
657 		*ios = calculate_io_allowed(iops_limit, jiffy_elapsed) -
658 			tg->io_disp[rw];
659 	tg->bytes_disp[rw] -= *bytes;
660 	tg->io_disp[rw] -= *ios;
661 }
662 
tg_update_carryover(struct throtl_grp * tg)663 static void tg_update_carryover(struct throtl_grp *tg)
664 {
665 	long long bytes[2] = {0};
666 	int ios[2] = {0};
667 
668 	if (tg->service_queue.nr_queued[READ])
669 		__tg_update_carryover(tg, READ, &bytes[READ], &ios[READ]);
670 	if (tg->service_queue.nr_queued[WRITE])
671 		__tg_update_carryover(tg, WRITE, &bytes[WRITE], &ios[WRITE]);
672 
673 	/* see comments in struct throtl_grp for meaning of these fields. */
674 	throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
675 		   bytes[READ], bytes[WRITE], ios[READ], ios[WRITE]);
676 }
677 
tg_within_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit)678 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
679 				 u32 iops_limit)
680 {
681 	bool rw = bio_data_dir(bio);
682 	int io_allowed;
683 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
684 
685 	if (iops_limit == UINT_MAX) {
686 		return 0;
687 	}
688 
689 	jiffy_elapsed = jiffies - tg->slice_start[rw];
690 
691 	/* Round up to the next throttle slice, wait time must be nonzero */
692 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
693 	io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd);
694 	if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
695 		return 0;
696 
697 	/* Calc approx time to dispatch */
698 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
699 
700 	/* make sure at least one io can be dispatched after waiting */
701 	jiffy_wait = max(jiffy_wait, HZ / iops_limit + 1);
702 	return jiffy_wait;
703 }
704 
tg_within_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit)705 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
706 				u64 bps_limit)
707 {
708 	bool rw = bio_data_dir(bio);
709 	long long bytes_allowed;
710 	u64 extra_bytes;
711 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
712 	unsigned int bio_size = throtl_bio_data_size(bio);
713 
714 	/* no need to throttle if this bio's bytes have been accounted */
715 	if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
716 		return 0;
717 	}
718 
719 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
720 
721 	/* Slice has just started. Consider one slice interval */
722 	if (!jiffy_elapsed)
723 		jiffy_elapsed_rnd = tg->td->throtl_slice;
724 
725 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
726 	bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd);
727 	if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
728 		return 0;
729 
730 	/* Calc approx time to dispatch */
731 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
732 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
733 
734 	if (!jiffy_wait)
735 		jiffy_wait = 1;
736 
737 	/*
738 	 * This wait time is without taking into consideration the rounding
739 	 * up we did. Add that time also.
740 	 */
741 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
742 	return jiffy_wait;
743 }
744 
745 /*
746  * Returns whether one can dispatch a bio or not. Also returns approx number
747  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
748  */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)749 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
750 			    unsigned long *wait)
751 {
752 	bool rw = bio_data_dir(bio);
753 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
754 	u64 bps_limit = tg_bps_limit(tg, rw);
755 	u32 iops_limit = tg_iops_limit(tg, rw);
756 
757 	/*
758  	 * Currently whole state machine of group depends on first bio
759 	 * queued in the group bio list. So one should not be calling
760 	 * this function with a different bio if there are other bios
761 	 * queued.
762 	 */
763 	BUG_ON(tg->service_queue.nr_queued[rw] &&
764 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
765 
766 	/* If tg->bps = -1, then BW is unlimited */
767 	if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
768 	    tg->flags & THROTL_TG_CANCELING) {
769 		if (wait)
770 			*wait = 0;
771 		return true;
772 	}
773 
774 	/*
775 	 * If previous slice expired, start a new one otherwise renew/extend
776 	 * existing slice to make sure it is at least throtl_slice interval
777 	 * long since now. New slice is started only for empty throttle group.
778 	 * If there is queued bio, that means there should be an active
779 	 * slice and it should be extended instead.
780 	 */
781 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
782 		throtl_start_new_slice(tg, rw, true);
783 	else {
784 		if (time_before(tg->slice_end[rw],
785 		    jiffies + tg->td->throtl_slice))
786 			throtl_extend_slice(tg, rw,
787 				jiffies + tg->td->throtl_slice);
788 	}
789 
790 	bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
791 	iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
792 	if (bps_wait + iops_wait == 0) {
793 		if (wait)
794 			*wait = 0;
795 		return true;
796 	}
797 
798 	max_wait = max(bps_wait, iops_wait);
799 
800 	if (wait)
801 		*wait = max_wait;
802 
803 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
804 		throtl_extend_slice(tg, rw, jiffies + max_wait);
805 
806 	return false;
807 }
808 
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)809 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
810 {
811 	bool rw = bio_data_dir(bio);
812 	unsigned int bio_size = throtl_bio_data_size(bio);
813 
814 	/* Charge the bio to the group */
815 	if (!bio_flagged(bio, BIO_BPS_THROTTLED))
816 		tg->bytes_disp[rw] += bio_size;
817 
818 	tg->io_disp[rw]++;
819 }
820 
821 /**
822  * throtl_add_bio_tg - add a bio to the specified throtl_grp
823  * @bio: bio to add
824  * @qn: qnode to use
825  * @tg: the target throtl_grp
826  *
827  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
828  * tg->qnode_on_self[] is used.
829  */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)830 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
831 			      struct throtl_grp *tg)
832 {
833 	struct throtl_service_queue *sq = &tg->service_queue;
834 	bool rw = bio_data_dir(bio);
835 
836 	if (!qn)
837 		qn = &tg->qnode_on_self[rw];
838 
839 	/*
840 	 * If @tg doesn't currently have any bios queued in the same
841 	 * direction, queueing @bio can change when @tg should be
842 	 * dispatched.  Mark that @tg was empty.  This is automatically
843 	 * cleared on the next tg_update_disptime().
844 	 */
845 	if (!sq->nr_queued[rw])
846 		tg->flags |= THROTL_TG_WAS_EMPTY;
847 
848 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
849 
850 	sq->nr_queued[rw]++;
851 	throtl_enqueue_tg(tg);
852 }
853 
tg_update_disptime(struct throtl_grp * tg)854 static void tg_update_disptime(struct throtl_grp *tg)
855 {
856 	struct throtl_service_queue *sq = &tg->service_queue;
857 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
858 	struct bio *bio;
859 
860 	bio = throtl_peek_queued(&sq->queued[READ]);
861 	if (bio)
862 		tg_may_dispatch(tg, bio, &read_wait);
863 
864 	bio = throtl_peek_queued(&sq->queued[WRITE]);
865 	if (bio)
866 		tg_may_dispatch(tg, bio, &write_wait);
867 
868 	min_wait = min(read_wait, write_wait);
869 	disptime = jiffies + min_wait;
870 
871 	/* Update dispatch time */
872 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
873 	tg->disptime = disptime;
874 	tg_service_queue_add(tg);
875 
876 	/* see throtl_add_bio_tg() */
877 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
878 }
879 
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)880 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
881 					struct throtl_grp *parent_tg, bool rw)
882 {
883 	if (throtl_slice_used(parent_tg, rw)) {
884 		throtl_start_new_slice_with_credit(parent_tg, rw,
885 				child_tg->slice_start[rw]);
886 	}
887 
888 }
889 
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)890 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
891 {
892 	struct throtl_service_queue *sq = &tg->service_queue;
893 	struct throtl_service_queue *parent_sq = sq->parent_sq;
894 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
895 	struct throtl_grp *tg_to_put = NULL;
896 	struct bio *bio;
897 
898 	/*
899 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
900 	 * from @tg may put its reference and @parent_sq might end up
901 	 * getting released prematurely.  Remember the tg to put and put it
902 	 * after @bio is transferred to @parent_sq.
903 	 */
904 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
905 	sq->nr_queued[rw]--;
906 
907 	throtl_charge_bio(tg, bio);
908 
909 	/*
910 	 * If our parent is another tg, we just need to transfer @bio to
911 	 * the parent using throtl_add_bio_tg().  If our parent is
912 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
913 	 * bio_lists[] and decrease total number queued.  The caller is
914 	 * responsible for issuing these bios.
915 	 */
916 	if (parent_tg) {
917 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
918 		start_parent_slice_with_credit(tg, parent_tg, rw);
919 	} else {
920 		bio_set_flag(bio, BIO_BPS_THROTTLED);
921 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
922 				     &parent_sq->queued[rw]);
923 		BUG_ON(tg->td->nr_queued[rw] <= 0);
924 		tg->td->nr_queued[rw]--;
925 	}
926 
927 	throtl_trim_slice(tg, rw);
928 
929 	if (tg_to_put)
930 		blkg_put(tg_to_blkg(tg_to_put));
931 }
932 
throtl_dispatch_tg(struct throtl_grp * tg)933 static int throtl_dispatch_tg(struct throtl_grp *tg)
934 {
935 	struct throtl_service_queue *sq = &tg->service_queue;
936 	unsigned int nr_reads = 0, nr_writes = 0;
937 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
938 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
939 	struct bio *bio;
940 
941 	/* Try to dispatch 75% READS and 25% WRITES */
942 
943 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
944 	       tg_may_dispatch(tg, bio, NULL)) {
945 
946 		tg_dispatch_one_bio(tg, READ);
947 		nr_reads++;
948 
949 		if (nr_reads >= max_nr_reads)
950 			break;
951 	}
952 
953 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
954 	       tg_may_dispatch(tg, bio, NULL)) {
955 
956 		tg_dispatch_one_bio(tg, WRITE);
957 		nr_writes++;
958 
959 		if (nr_writes >= max_nr_writes)
960 			break;
961 	}
962 
963 	return nr_reads + nr_writes;
964 }
965 
throtl_select_dispatch(struct throtl_service_queue * parent_sq)966 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
967 {
968 	unsigned int nr_disp = 0;
969 
970 	while (1) {
971 		struct throtl_grp *tg;
972 		struct throtl_service_queue *sq;
973 
974 		if (!parent_sq->nr_pending)
975 			break;
976 
977 		tg = throtl_rb_first(parent_sq);
978 		if (!tg)
979 			break;
980 
981 		if (time_before(jiffies, tg->disptime))
982 			break;
983 
984 		nr_disp += throtl_dispatch_tg(tg);
985 
986 		sq = &tg->service_queue;
987 		if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
988 			tg_update_disptime(tg);
989 		else
990 			throtl_dequeue_tg(tg);
991 
992 		if (nr_disp >= THROTL_QUANTUM)
993 			break;
994 	}
995 
996 	return nr_disp;
997 }
998 
999 /**
1000  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1001  * @t: the pending_timer member of the throtl_service_queue being serviced
1002  *
1003  * This timer is armed when a child throtl_grp with active bio's become
1004  * pending and queued on the service_queue's pending_tree and expires when
1005  * the first child throtl_grp should be dispatched.  This function
1006  * dispatches bio's from the children throtl_grps to the parent
1007  * service_queue.
1008  *
1009  * If the parent's parent is another throtl_grp, dispatching is propagated
1010  * by either arming its pending_timer or repeating dispatch directly.  If
1011  * the top-level service_tree is reached, throtl_data->dispatch_work is
1012  * kicked so that the ready bio's are issued.
1013  */
throtl_pending_timer_fn(struct timer_list * t)1014 static void throtl_pending_timer_fn(struct timer_list *t)
1015 {
1016 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1017 	struct throtl_grp *tg = sq_to_tg(sq);
1018 	struct throtl_data *td = sq_to_td(sq);
1019 	struct throtl_service_queue *parent_sq;
1020 	struct request_queue *q;
1021 	bool dispatched;
1022 	int ret;
1023 
1024 	/* throtl_data may be gone, so figure out request queue by blkg */
1025 	if (tg)
1026 		q = tg->pd.blkg->q;
1027 	else
1028 		q = td->queue;
1029 
1030 	spin_lock_irq(&q->queue_lock);
1031 
1032 	if (!q->root_blkg)
1033 		goto out_unlock;
1034 
1035 again:
1036 	parent_sq = sq->parent_sq;
1037 	dispatched = false;
1038 
1039 	while (true) {
1040 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1041 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1042 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1043 
1044 		ret = throtl_select_dispatch(sq);
1045 		if (ret) {
1046 			throtl_log(sq, "bios disp=%u", ret);
1047 			dispatched = true;
1048 		}
1049 
1050 		if (throtl_schedule_next_dispatch(sq, false))
1051 			break;
1052 
1053 		/* this dispatch windows is still open, relax and repeat */
1054 		spin_unlock_irq(&q->queue_lock);
1055 		cpu_relax();
1056 		spin_lock_irq(&q->queue_lock);
1057 	}
1058 
1059 	if (!dispatched)
1060 		goto out_unlock;
1061 
1062 	if (parent_sq) {
1063 		/* @parent_sq is another throl_grp, propagate dispatch */
1064 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1065 			tg_update_disptime(tg);
1066 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1067 				/* window is already open, repeat dispatching */
1068 				sq = parent_sq;
1069 				tg = sq_to_tg(sq);
1070 				goto again;
1071 			}
1072 		}
1073 	} else {
1074 		/* reached the top-level, queue issuing */
1075 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1076 	}
1077 out_unlock:
1078 	spin_unlock_irq(&q->queue_lock);
1079 }
1080 
1081 /**
1082  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1083  * @work: work item being executed
1084  *
1085  * This function is queued for execution when bios reach the bio_lists[]
1086  * of throtl_data->service_queue.  Those bios are ready and issued by this
1087  * function.
1088  */
blk_throtl_dispatch_work_fn(struct work_struct * work)1089 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1090 {
1091 	struct throtl_data *td = container_of(work, struct throtl_data,
1092 					      dispatch_work);
1093 	struct throtl_service_queue *td_sq = &td->service_queue;
1094 	struct request_queue *q = td->queue;
1095 	struct bio_list bio_list_on_stack;
1096 	struct bio *bio;
1097 	struct blk_plug plug;
1098 	int rw;
1099 
1100 	bio_list_init(&bio_list_on_stack);
1101 
1102 	spin_lock_irq(&q->queue_lock);
1103 	for (rw = READ; rw <= WRITE; rw++)
1104 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1105 			bio_list_add(&bio_list_on_stack, bio);
1106 	spin_unlock_irq(&q->queue_lock);
1107 
1108 	if (!bio_list_empty(&bio_list_on_stack)) {
1109 		blk_start_plug(&plug);
1110 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1111 			submit_bio_noacct_nocheck(bio);
1112 		blk_finish_plug(&plug);
1113 	}
1114 }
1115 
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1116 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1117 			      int off)
1118 {
1119 	struct throtl_grp *tg = pd_to_tg(pd);
1120 	u64 v = *(u64 *)((void *)tg + off);
1121 
1122 	if (v == U64_MAX)
1123 		return 0;
1124 	return __blkg_prfill_u64(sf, pd, v);
1125 }
1126 
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1127 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1128 			       int off)
1129 {
1130 	struct throtl_grp *tg = pd_to_tg(pd);
1131 	unsigned int v = *(unsigned int *)((void *)tg + off);
1132 
1133 	if (v == UINT_MAX)
1134 		return 0;
1135 	return __blkg_prfill_u64(sf, pd, v);
1136 }
1137 
tg_print_conf_u64(struct seq_file * sf,void * v)1138 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1139 {
1140 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1141 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1142 	return 0;
1143 }
1144 
tg_print_conf_uint(struct seq_file * sf,void * v)1145 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1146 {
1147 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1148 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1149 	return 0;
1150 }
1151 
tg_conf_updated(struct throtl_grp * tg,bool global)1152 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1153 {
1154 	struct throtl_service_queue *sq = &tg->service_queue;
1155 	struct cgroup_subsys_state *pos_css;
1156 	struct blkcg_gq *blkg;
1157 
1158 	throtl_log(&tg->service_queue,
1159 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1160 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1161 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1162 
1163 	rcu_read_lock();
1164 	/*
1165 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1166 	 * considered to have rules if either the tg itself or any of its
1167 	 * ancestors has rules.  This identifies groups without any
1168 	 * restrictions in the whole hierarchy and allows them to bypass
1169 	 * blk-throttle.
1170 	 */
1171 	blkg_for_each_descendant_pre(blkg, pos_css,
1172 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1173 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1174 
1175 		tg_update_has_rules(this_tg);
1176 		/* ignore root/second level */
1177 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1178 		    !blkg->parent->parent)
1179 			continue;
1180 	}
1181 	rcu_read_unlock();
1182 
1183 	/*
1184 	 * We're already holding queue_lock and know @tg is valid.  Let's
1185 	 * apply the new config directly.
1186 	 *
1187 	 * Restart the slices for both READ and WRITES. It might happen
1188 	 * that a group's limit are dropped suddenly and we don't want to
1189 	 * account recently dispatched IO with new low rate.
1190 	 */
1191 	throtl_start_new_slice(tg, READ, false);
1192 	throtl_start_new_slice(tg, WRITE, false);
1193 
1194 	if (tg->flags & THROTL_TG_PENDING) {
1195 		tg_update_disptime(tg);
1196 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1197 	}
1198 }
1199 
blk_throtl_init(struct gendisk * disk)1200 static int blk_throtl_init(struct gendisk *disk)
1201 {
1202 	struct request_queue *q = disk->queue;
1203 	struct throtl_data *td;
1204 	unsigned int memflags;
1205 	int ret;
1206 
1207 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1208 	if (!td)
1209 		return -ENOMEM;
1210 
1211 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1212 	throtl_service_queue_init(&td->service_queue);
1213 
1214 	/*
1215 	 * Freeze queue before activating policy, to synchronize with IO path,
1216 	 * which is protected by 'q_usage_counter'.
1217 	 */
1218 	memflags = blk_mq_freeze_queue(disk->queue);
1219 	blk_mq_quiesce_queue(disk->queue);
1220 
1221 	q->td = td;
1222 	td->queue = q;
1223 
1224 	/* activate policy */
1225 	ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
1226 	if (ret) {
1227 		q->td = NULL;
1228 		kfree(td);
1229 		goto out;
1230 	}
1231 
1232 	if (blk_queue_nonrot(q))
1233 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
1234 	else
1235 		td->throtl_slice = DFL_THROTL_SLICE_HD;
1236 	td->track_bio_latency = !queue_is_mq(q);
1237 	if (!td->track_bio_latency)
1238 		blk_stat_enable_accounting(q);
1239 
1240 out:
1241 	blk_mq_unquiesce_queue(disk->queue);
1242 	blk_mq_unfreeze_queue(disk->queue, memflags);
1243 
1244 	return ret;
1245 }
1246 
1247 
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1248 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1249 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1250 {
1251 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1252 	struct blkg_conf_ctx ctx;
1253 	struct throtl_grp *tg;
1254 	int ret;
1255 	u64 v;
1256 
1257 	blkg_conf_init(&ctx, buf);
1258 
1259 	ret = blkg_conf_open_bdev(&ctx);
1260 	if (ret)
1261 		goto out_finish;
1262 
1263 	if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1264 		ret = blk_throtl_init(ctx.bdev->bd_disk);
1265 		if (ret)
1266 			goto out_finish;
1267 	}
1268 
1269 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1270 	if (ret)
1271 		goto out_finish;
1272 
1273 	ret = -EINVAL;
1274 	if (sscanf(ctx.body, "%llu", &v) != 1)
1275 		goto out_finish;
1276 	if (!v)
1277 		v = U64_MAX;
1278 
1279 	tg = blkg_to_tg(ctx.blkg);
1280 	tg_update_carryover(tg);
1281 
1282 	if (is_u64)
1283 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1284 	else
1285 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1286 
1287 	tg_conf_updated(tg, false);
1288 	ret = 0;
1289 out_finish:
1290 	blkg_conf_exit(&ctx);
1291 	return ret ?: nbytes;
1292 }
1293 
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1294 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1295 			       char *buf, size_t nbytes, loff_t off)
1296 {
1297 	return tg_set_conf(of, buf, nbytes, off, true);
1298 }
1299 
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1300 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1301 				char *buf, size_t nbytes, loff_t off)
1302 {
1303 	return tg_set_conf(of, buf, nbytes, off, false);
1304 }
1305 
tg_print_rwstat(struct seq_file * sf,void * v)1306 static int tg_print_rwstat(struct seq_file *sf, void *v)
1307 {
1308 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1309 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1310 			  seq_cft(sf)->private, true);
1311 	return 0;
1312 }
1313 
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1314 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1315 				      struct blkg_policy_data *pd, int off)
1316 {
1317 	struct blkg_rwstat_sample sum;
1318 
1319 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1320 				  &sum);
1321 	return __blkg_prfill_rwstat(sf, pd, &sum);
1322 }
1323 
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1324 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1325 {
1326 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1327 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1328 			  seq_cft(sf)->private, true);
1329 	return 0;
1330 }
1331 
1332 static struct cftype throtl_legacy_files[] = {
1333 	{
1334 		.name = "throttle.read_bps_device",
1335 		.private = offsetof(struct throtl_grp, bps[READ]),
1336 		.seq_show = tg_print_conf_u64,
1337 		.write = tg_set_conf_u64,
1338 	},
1339 	{
1340 		.name = "throttle.write_bps_device",
1341 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1342 		.seq_show = tg_print_conf_u64,
1343 		.write = tg_set_conf_u64,
1344 	},
1345 	{
1346 		.name = "throttle.read_iops_device",
1347 		.private = offsetof(struct throtl_grp, iops[READ]),
1348 		.seq_show = tg_print_conf_uint,
1349 		.write = tg_set_conf_uint,
1350 	},
1351 	{
1352 		.name = "throttle.write_iops_device",
1353 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1354 		.seq_show = tg_print_conf_uint,
1355 		.write = tg_set_conf_uint,
1356 	},
1357 	{
1358 		.name = "throttle.io_service_bytes",
1359 		.private = offsetof(struct throtl_grp, stat_bytes),
1360 		.seq_show = tg_print_rwstat,
1361 	},
1362 	{
1363 		.name = "throttle.io_service_bytes_recursive",
1364 		.private = offsetof(struct throtl_grp, stat_bytes),
1365 		.seq_show = tg_print_rwstat_recursive,
1366 	},
1367 	{
1368 		.name = "throttle.io_serviced",
1369 		.private = offsetof(struct throtl_grp, stat_ios),
1370 		.seq_show = tg_print_rwstat,
1371 	},
1372 	{
1373 		.name = "throttle.io_serviced_recursive",
1374 		.private = offsetof(struct throtl_grp, stat_ios),
1375 		.seq_show = tg_print_rwstat_recursive,
1376 	},
1377 	{ }	/* terminate */
1378 };
1379 
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1380 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1381 			 int off)
1382 {
1383 	struct throtl_grp *tg = pd_to_tg(pd);
1384 	const char *dname = blkg_dev_name(pd->blkg);
1385 	u64 bps_dft;
1386 	unsigned int iops_dft;
1387 
1388 	if (!dname)
1389 		return 0;
1390 
1391 	bps_dft = U64_MAX;
1392 	iops_dft = UINT_MAX;
1393 
1394 	if (tg->bps[READ] == bps_dft &&
1395 	    tg->bps[WRITE] == bps_dft &&
1396 	    tg->iops[READ] == iops_dft &&
1397 	    tg->iops[WRITE] == iops_dft)
1398 		return 0;
1399 
1400 	seq_printf(sf, "%s", dname);
1401 	if (tg->bps[READ] == U64_MAX)
1402 		seq_printf(sf, " rbps=max");
1403 	else
1404 		seq_printf(sf, " rbps=%llu", tg->bps[READ]);
1405 
1406 	if (tg->bps[WRITE] == U64_MAX)
1407 		seq_printf(sf, " wbps=max");
1408 	else
1409 		seq_printf(sf, " wbps=%llu", tg->bps[WRITE]);
1410 
1411 	if (tg->iops[READ] == UINT_MAX)
1412 		seq_printf(sf, " riops=max");
1413 	else
1414 		seq_printf(sf, " riops=%u", tg->iops[READ]);
1415 
1416 	if (tg->iops[WRITE] == UINT_MAX)
1417 		seq_printf(sf, " wiops=max");
1418 	else
1419 		seq_printf(sf, " wiops=%u", tg->iops[WRITE]);
1420 
1421 	seq_printf(sf, "\n");
1422 	return 0;
1423 }
1424 
tg_print_limit(struct seq_file * sf,void * v)1425 static int tg_print_limit(struct seq_file *sf, void *v)
1426 {
1427 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1428 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1429 	return 0;
1430 }
1431 
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1432 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1433 			  char *buf, size_t nbytes, loff_t off)
1434 {
1435 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1436 	struct blkg_conf_ctx ctx;
1437 	struct throtl_grp *tg;
1438 	u64 v[4];
1439 	int ret;
1440 
1441 	blkg_conf_init(&ctx, buf);
1442 
1443 	ret = blkg_conf_open_bdev(&ctx);
1444 	if (ret)
1445 		goto out_finish;
1446 
1447 	if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1448 		ret = blk_throtl_init(ctx.bdev->bd_disk);
1449 		if (ret)
1450 			goto out_finish;
1451 	}
1452 
1453 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1454 	if (ret)
1455 		goto out_finish;
1456 
1457 	tg = blkg_to_tg(ctx.blkg);
1458 	tg_update_carryover(tg);
1459 
1460 	v[0] = tg->bps[READ];
1461 	v[1] = tg->bps[WRITE];
1462 	v[2] = tg->iops[READ];
1463 	v[3] = tg->iops[WRITE];
1464 
1465 	while (true) {
1466 		char tok[27];	/* wiops=18446744073709551616 */
1467 		char *p;
1468 		u64 val = U64_MAX;
1469 		int len;
1470 
1471 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1472 			break;
1473 		if (tok[0] == '\0')
1474 			break;
1475 		ctx.body += len;
1476 
1477 		ret = -EINVAL;
1478 		p = tok;
1479 		strsep(&p, "=");
1480 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1481 			goto out_finish;
1482 
1483 		ret = -ERANGE;
1484 		if (!val)
1485 			goto out_finish;
1486 
1487 		ret = -EINVAL;
1488 		if (!strcmp(tok, "rbps"))
1489 			v[0] = val;
1490 		else if (!strcmp(tok, "wbps"))
1491 			v[1] = val;
1492 		else if (!strcmp(tok, "riops"))
1493 			v[2] = min_t(u64, val, UINT_MAX);
1494 		else if (!strcmp(tok, "wiops"))
1495 			v[3] = min_t(u64, val, UINT_MAX);
1496 		else
1497 			goto out_finish;
1498 	}
1499 
1500 	tg->bps[READ] = v[0];
1501 	tg->bps[WRITE] = v[1];
1502 	tg->iops[READ] = v[2];
1503 	tg->iops[WRITE] = v[3];
1504 
1505 	tg_conf_updated(tg, false);
1506 	ret = 0;
1507 out_finish:
1508 	blkg_conf_exit(&ctx);
1509 	return ret ?: nbytes;
1510 }
1511 
1512 static struct cftype throtl_files[] = {
1513 	{
1514 		.name = "max",
1515 		.flags = CFTYPE_NOT_ON_ROOT,
1516 		.seq_show = tg_print_limit,
1517 		.write = tg_set_limit,
1518 	},
1519 	{ }	/* terminate */
1520 };
1521 
throtl_shutdown_wq(struct request_queue * q)1522 static void throtl_shutdown_wq(struct request_queue *q)
1523 {
1524 	struct throtl_data *td = q->td;
1525 
1526 	cancel_work_sync(&td->dispatch_work);
1527 }
1528 
tg_flush_bios(struct throtl_grp * tg)1529 static void tg_flush_bios(struct throtl_grp *tg)
1530 {
1531 	struct throtl_service_queue *sq = &tg->service_queue;
1532 
1533 	if (tg->flags & THROTL_TG_CANCELING)
1534 		return;
1535 	/*
1536 	 * Set the flag to make sure throtl_pending_timer_fn() won't
1537 	 * stop until all throttled bios are dispatched.
1538 	 */
1539 	tg->flags |= THROTL_TG_CANCELING;
1540 
1541 	/*
1542 	 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1543 	 * will be inserted to service queue without THROTL_TG_PENDING
1544 	 * set in tg_update_disptime below. Then IO dispatched from
1545 	 * child in tg_dispatch_one_bio will trigger double insertion
1546 	 * and corrupt the tree.
1547 	 */
1548 	if (!(tg->flags & THROTL_TG_PENDING))
1549 		return;
1550 
1551 	/*
1552 	 * Update disptime after setting the above flag to make sure
1553 	 * throtl_select_dispatch() won't exit without dispatching.
1554 	 */
1555 	tg_update_disptime(tg);
1556 
1557 	throtl_schedule_pending_timer(sq, jiffies + 1);
1558 }
1559 
throtl_pd_offline(struct blkg_policy_data * pd)1560 static void throtl_pd_offline(struct blkg_policy_data *pd)
1561 {
1562 	tg_flush_bios(pd_to_tg(pd));
1563 }
1564 
1565 struct blkcg_policy blkcg_policy_throtl = {
1566 	.dfl_cftypes		= throtl_files,
1567 	.legacy_cftypes		= throtl_legacy_files,
1568 
1569 	.pd_alloc_fn		= throtl_pd_alloc,
1570 	.pd_init_fn		= throtl_pd_init,
1571 	.pd_online_fn		= throtl_pd_online,
1572 	.pd_offline_fn		= throtl_pd_offline,
1573 	.pd_free_fn		= throtl_pd_free,
1574 };
1575 
blk_throtl_cancel_bios(struct gendisk * disk)1576 void blk_throtl_cancel_bios(struct gendisk *disk)
1577 {
1578 	struct request_queue *q = disk->queue;
1579 	struct cgroup_subsys_state *pos_css;
1580 	struct blkcg_gq *blkg;
1581 
1582 	if (!blk_throtl_activated(q))
1583 		return;
1584 
1585 	spin_lock_irq(&q->queue_lock);
1586 	/*
1587 	 * queue_lock is held, rcu lock is not needed here technically.
1588 	 * However, rcu lock is still held to emphasize that following
1589 	 * path need RCU protection and to prevent warning from lockdep.
1590 	 */
1591 	rcu_read_lock();
1592 	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1593 		/*
1594 		 * disk_release will call pd_offline_fn to cancel bios.
1595 		 * However, disk_release can't be called if someone get
1596 		 * the refcount of device and issued bios which are
1597 		 * inflight after del_gendisk.
1598 		 * Cancel bios here to ensure no bios are inflight after
1599 		 * del_gendisk.
1600 		 */
1601 		tg_flush_bios(blkg_to_tg(blkg));
1602 	}
1603 	rcu_read_unlock();
1604 	spin_unlock_irq(&q->queue_lock);
1605 }
1606 
tg_within_limit(struct throtl_grp * tg,struct bio * bio,bool rw)1607 static bool tg_within_limit(struct throtl_grp *tg, struct bio *bio, bool rw)
1608 {
1609 	/* throtl is FIFO - if bios are already queued, should queue */
1610 	if (tg->service_queue.nr_queued[rw])
1611 		return false;
1612 
1613 	return tg_may_dispatch(tg, bio, NULL);
1614 }
1615 
__blk_throtl_bio(struct bio * bio)1616 bool __blk_throtl_bio(struct bio *bio)
1617 {
1618 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1619 	struct blkcg_gq *blkg = bio->bi_blkg;
1620 	struct throtl_qnode *qn = NULL;
1621 	struct throtl_grp *tg = blkg_to_tg(blkg);
1622 	struct throtl_service_queue *sq;
1623 	bool rw = bio_data_dir(bio);
1624 	bool throttled = false;
1625 	struct throtl_data *td = tg->td;
1626 
1627 	rcu_read_lock();
1628 	spin_lock_irq(&q->queue_lock);
1629 	sq = &tg->service_queue;
1630 
1631 	while (true) {
1632 		if (tg_within_limit(tg, bio, rw)) {
1633 			/* within limits, let's charge and dispatch directly */
1634 			throtl_charge_bio(tg, bio);
1635 
1636 			/*
1637 			 * We need to trim slice even when bios are not being
1638 			 * queued otherwise it might happen that a bio is not
1639 			 * queued for a long time and slice keeps on extending
1640 			 * and trim is not called for a long time. Now if limits
1641 			 * are reduced suddenly we take into account all the IO
1642 			 * dispatched so far at new low rate and * newly queued
1643 			 * IO gets a really long dispatch time.
1644 			 *
1645 			 * So keep on trimming slice even if bio is not queued.
1646 			 */
1647 			throtl_trim_slice(tg, rw);
1648 		} else if (bio_issue_as_root_blkg(bio)) {
1649 			/*
1650 			 * IOs which may cause priority inversions are
1651 			 * dispatched directly, even if they're over limit.
1652 			 *
1653 			 * Charge and dispatch directly, and our throttle
1654 			 * control algorithm is adaptive, and extra IO bytes
1655 			 * will be throttled for paying the debt
1656 			 */
1657 			throtl_charge_bio(tg, bio);
1658 		} else {
1659 			/* if above limits, break to queue */
1660 			break;
1661 		}
1662 
1663 		/*
1664 		 * @bio passed through this layer without being throttled.
1665 		 * Climb up the ladder.  If we're already at the top, it
1666 		 * can be executed directly.
1667 		 */
1668 		qn = &tg->qnode_on_parent[rw];
1669 		sq = sq->parent_sq;
1670 		tg = sq_to_tg(sq);
1671 		if (!tg) {
1672 			bio_set_flag(bio, BIO_BPS_THROTTLED);
1673 			goto out_unlock;
1674 		}
1675 	}
1676 
1677 	/* out-of-limit, queue to @tg */
1678 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1679 		   rw == READ ? 'R' : 'W',
1680 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
1681 		   tg_bps_limit(tg, rw),
1682 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1683 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1684 
1685 	td->nr_queued[rw]++;
1686 	throtl_add_bio_tg(bio, qn, tg);
1687 	throttled = true;
1688 
1689 	/*
1690 	 * Update @tg's dispatch time and force schedule dispatch if @tg
1691 	 * was empty before @bio.  The forced scheduling isn't likely to
1692 	 * cause undue delay as @bio is likely to be dispatched directly if
1693 	 * its @tg's disptime is not in the future.
1694 	 */
1695 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1696 		tg_update_disptime(tg);
1697 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1698 	}
1699 
1700 out_unlock:
1701 	spin_unlock_irq(&q->queue_lock);
1702 
1703 	rcu_read_unlock();
1704 	return throttled;
1705 }
1706 
blk_throtl_exit(struct gendisk * disk)1707 void blk_throtl_exit(struct gendisk *disk)
1708 {
1709 	struct request_queue *q = disk->queue;
1710 
1711 	if (!blk_throtl_activated(q))
1712 		return;
1713 
1714 	del_timer_sync(&q->td->service_queue.pending_timer);
1715 	throtl_shutdown_wq(q);
1716 	blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
1717 	kfree(q->td);
1718 }
1719 
throtl_init(void)1720 static int __init throtl_init(void)
1721 {
1722 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1723 	if (!kthrotld_workqueue)
1724 		panic("Failed to create kthrotld\n");
1725 
1726 	return blkcg_policy_register(&blkcg_policy_throtl);
1727 }
1728 
1729 module_init(throtl_init);
1730