1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28
29 /* A workqueue to queue throttle related work */
30 static struct workqueue_struct *kthrotld_workqueue;
31
32 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
33
34 struct throtl_data
35 {
36 /* service tree for active throtl groups */
37 struct throtl_service_queue service_queue;
38
39 struct request_queue *queue;
40
41 /* Total Number of queued bios on READ and WRITE lists */
42 unsigned int nr_queued[2];
43
44 unsigned int throtl_slice;
45
46 /* Work for dispatching throttled bios */
47 struct work_struct dispatch_work;
48
49 bool track_bio_latency;
50 };
51
52 static void throtl_pending_timer_fn(struct timer_list *t);
53
tg_to_blkg(struct throtl_grp * tg)54 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
55 {
56 return pd_to_blkg(&tg->pd);
57 }
58
59 /**
60 * sq_to_tg - return the throl_grp the specified service queue belongs to
61 * @sq: the throtl_service_queue of interest
62 *
63 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
64 * embedded in throtl_data, %NULL is returned.
65 */
sq_to_tg(struct throtl_service_queue * sq)66 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
67 {
68 if (sq && sq->parent_sq)
69 return container_of(sq, struct throtl_grp, service_queue);
70 else
71 return NULL;
72 }
73
74 /**
75 * sq_to_td - return throtl_data the specified service queue belongs to
76 * @sq: the throtl_service_queue of interest
77 *
78 * A service_queue can be embedded in either a throtl_grp or throtl_data.
79 * Determine the associated throtl_data accordingly and return it.
80 */
sq_to_td(struct throtl_service_queue * sq)81 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
82 {
83 struct throtl_grp *tg = sq_to_tg(sq);
84
85 if (tg)
86 return tg->td;
87 else
88 return container_of(sq, struct throtl_data, service_queue);
89 }
90
tg_bps_limit(struct throtl_grp * tg,int rw)91 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
92 {
93 struct blkcg_gq *blkg = tg_to_blkg(tg);
94
95 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
96 return U64_MAX;
97
98 return tg->bps[rw];
99 }
100
tg_iops_limit(struct throtl_grp * tg,int rw)101 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
102 {
103 struct blkcg_gq *blkg = tg_to_blkg(tg);
104
105 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
106 return UINT_MAX;
107
108 return tg->iops[rw];
109 }
110
111 /**
112 * throtl_log - log debug message via blktrace
113 * @sq: the service_queue being reported
114 * @fmt: printf format string
115 * @args: printf args
116 *
117 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
118 * throtl_grp; otherwise, just "throtl".
119 */
120 #define throtl_log(sq, fmt, args...) do { \
121 struct throtl_grp *__tg = sq_to_tg((sq)); \
122 struct throtl_data *__td = sq_to_td((sq)); \
123 \
124 (void)__td; \
125 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
126 break; \
127 if ((__tg)) { \
128 blk_add_cgroup_trace_msg(__td->queue, \
129 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
130 } else { \
131 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
132 } \
133 } while (0)
134
throtl_bio_data_size(struct bio * bio)135 static inline unsigned int throtl_bio_data_size(struct bio *bio)
136 {
137 /* assume it's one sector */
138 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
139 return 512;
140 return bio->bi_iter.bi_size;
141 }
142
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)143 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
144 {
145 INIT_LIST_HEAD(&qn->node);
146 bio_list_init(&qn->bios);
147 qn->tg = tg;
148 }
149
150 /**
151 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
152 * @bio: bio being added
153 * @qn: qnode to add bio to
154 * @queued: the service_queue->queued[] list @qn belongs to
155 *
156 * Add @bio to @qn and put @qn on @queued if it's not already on.
157 * @qn->tg's reference count is bumped when @qn is activated. See the
158 * comment on top of throtl_qnode definition for details.
159 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)160 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
161 struct list_head *queued)
162 {
163 bio_list_add(&qn->bios, bio);
164 if (list_empty(&qn->node)) {
165 list_add_tail(&qn->node, queued);
166 blkg_get(tg_to_blkg(qn->tg));
167 }
168 }
169
170 /**
171 * throtl_peek_queued - peek the first bio on a qnode list
172 * @queued: the qnode list to peek
173 */
throtl_peek_queued(struct list_head * queued)174 static struct bio *throtl_peek_queued(struct list_head *queued)
175 {
176 struct throtl_qnode *qn;
177 struct bio *bio;
178
179 if (list_empty(queued))
180 return NULL;
181
182 qn = list_first_entry(queued, struct throtl_qnode, node);
183 bio = bio_list_peek(&qn->bios);
184 WARN_ON_ONCE(!bio);
185 return bio;
186 }
187
188 /**
189 * throtl_pop_queued - pop the first bio form a qnode list
190 * @queued: the qnode list to pop a bio from
191 * @tg_to_put: optional out argument for throtl_grp to put
192 *
193 * Pop the first bio from the qnode list @queued. After popping, the first
194 * qnode is removed from @queued if empty or moved to the end of @queued so
195 * that the popping order is round-robin.
196 *
197 * When the first qnode is removed, its associated throtl_grp should be put
198 * too. If @tg_to_put is NULL, this function automatically puts it;
199 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
200 * responsible for putting it.
201 */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)202 static struct bio *throtl_pop_queued(struct list_head *queued,
203 struct throtl_grp **tg_to_put)
204 {
205 struct throtl_qnode *qn;
206 struct bio *bio;
207
208 if (list_empty(queued))
209 return NULL;
210
211 qn = list_first_entry(queued, struct throtl_qnode, node);
212 bio = bio_list_pop(&qn->bios);
213 WARN_ON_ONCE(!bio);
214
215 if (bio_list_empty(&qn->bios)) {
216 list_del_init(&qn->node);
217 if (tg_to_put)
218 *tg_to_put = qn->tg;
219 else
220 blkg_put(tg_to_blkg(qn->tg));
221 } else {
222 list_move_tail(&qn->node, queued);
223 }
224
225 return bio;
226 }
227
228 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)229 static void throtl_service_queue_init(struct throtl_service_queue *sq)
230 {
231 INIT_LIST_HEAD(&sq->queued[READ]);
232 INIT_LIST_HEAD(&sq->queued[WRITE]);
233 sq->pending_tree = RB_ROOT_CACHED;
234 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
235 }
236
throtl_pd_alloc(struct gendisk * disk,struct blkcg * blkcg,gfp_t gfp)237 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
238 struct blkcg *blkcg, gfp_t gfp)
239 {
240 struct throtl_grp *tg;
241 int rw;
242
243 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
244 if (!tg)
245 return NULL;
246
247 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
248 goto err_free_tg;
249
250 if (blkg_rwstat_init(&tg->stat_ios, gfp))
251 goto err_exit_stat_bytes;
252
253 throtl_service_queue_init(&tg->service_queue);
254
255 for (rw = READ; rw <= WRITE; rw++) {
256 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
257 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
258 }
259
260 RB_CLEAR_NODE(&tg->rb_node);
261 tg->bps[READ] = U64_MAX;
262 tg->bps[WRITE] = U64_MAX;
263 tg->iops[READ] = UINT_MAX;
264 tg->iops[WRITE] = UINT_MAX;
265
266 return &tg->pd;
267
268 err_exit_stat_bytes:
269 blkg_rwstat_exit(&tg->stat_bytes);
270 err_free_tg:
271 kfree(tg);
272 return NULL;
273 }
274
throtl_pd_init(struct blkg_policy_data * pd)275 static void throtl_pd_init(struct blkg_policy_data *pd)
276 {
277 struct throtl_grp *tg = pd_to_tg(pd);
278 struct blkcg_gq *blkg = tg_to_blkg(tg);
279 struct throtl_data *td = blkg->q->td;
280 struct throtl_service_queue *sq = &tg->service_queue;
281
282 /*
283 * If on the default hierarchy, we switch to properly hierarchical
284 * behavior where limits on a given throtl_grp are applied to the
285 * whole subtree rather than just the group itself. e.g. If 16M
286 * read_bps limit is set on a parent group, summary bps of
287 * parent group and its subtree groups can't exceed 16M for the
288 * device.
289 *
290 * If not on the default hierarchy, the broken flat hierarchy
291 * behavior is retained where all throtl_grps are treated as if
292 * they're all separate root groups right below throtl_data.
293 * Limits of a group don't interact with limits of other groups
294 * regardless of the position of the group in the hierarchy.
295 */
296 sq->parent_sq = &td->service_queue;
297 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
298 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
299 tg->td = td;
300 }
301
302 /*
303 * Set has_rules[] if @tg or any of its parents have limits configured.
304 * This doesn't require walking up to the top of the hierarchy as the
305 * parent's has_rules[] is guaranteed to be correct.
306 */
tg_update_has_rules(struct throtl_grp * tg)307 static void tg_update_has_rules(struct throtl_grp *tg)
308 {
309 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
310 int rw;
311
312 for (rw = READ; rw <= WRITE; rw++) {
313 tg->has_rules_iops[rw] =
314 (parent_tg && parent_tg->has_rules_iops[rw]) ||
315 tg_iops_limit(tg, rw) != UINT_MAX;
316 tg->has_rules_bps[rw] =
317 (parent_tg && parent_tg->has_rules_bps[rw]) ||
318 tg_bps_limit(tg, rw) != U64_MAX;
319 }
320 }
321
throtl_pd_online(struct blkg_policy_data * pd)322 static void throtl_pd_online(struct blkg_policy_data *pd)
323 {
324 struct throtl_grp *tg = pd_to_tg(pd);
325 /*
326 * We don't want new groups to escape the limits of its ancestors.
327 * Update has_rules[] after a new group is brought online.
328 */
329 tg_update_has_rules(tg);
330 }
331
throtl_pd_free(struct blkg_policy_data * pd)332 static void throtl_pd_free(struct blkg_policy_data *pd)
333 {
334 struct throtl_grp *tg = pd_to_tg(pd);
335
336 del_timer_sync(&tg->service_queue.pending_timer);
337 blkg_rwstat_exit(&tg->stat_bytes);
338 blkg_rwstat_exit(&tg->stat_ios);
339 kfree(tg);
340 }
341
342 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)343 throtl_rb_first(struct throtl_service_queue *parent_sq)
344 {
345 struct rb_node *n;
346
347 n = rb_first_cached(&parent_sq->pending_tree);
348 WARN_ON_ONCE(!n);
349 if (!n)
350 return NULL;
351 return rb_entry_tg(n);
352 }
353
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)354 static void throtl_rb_erase(struct rb_node *n,
355 struct throtl_service_queue *parent_sq)
356 {
357 rb_erase_cached(n, &parent_sq->pending_tree);
358 RB_CLEAR_NODE(n);
359 }
360
update_min_dispatch_time(struct throtl_service_queue * parent_sq)361 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
362 {
363 struct throtl_grp *tg;
364
365 tg = throtl_rb_first(parent_sq);
366 if (!tg)
367 return;
368
369 parent_sq->first_pending_disptime = tg->disptime;
370 }
371
tg_service_queue_add(struct throtl_grp * tg)372 static void tg_service_queue_add(struct throtl_grp *tg)
373 {
374 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
375 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
376 struct rb_node *parent = NULL;
377 struct throtl_grp *__tg;
378 unsigned long key = tg->disptime;
379 bool leftmost = true;
380
381 while (*node != NULL) {
382 parent = *node;
383 __tg = rb_entry_tg(parent);
384
385 if (time_before(key, __tg->disptime))
386 node = &parent->rb_left;
387 else {
388 node = &parent->rb_right;
389 leftmost = false;
390 }
391 }
392
393 rb_link_node(&tg->rb_node, parent, node);
394 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
395 leftmost);
396 }
397
throtl_enqueue_tg(struct throtl_grp * tg)398 static void throtl_enqueue_tg(struct throtl_grp *tg)
399 {
400 if (!(tg->flags & THROTL_TG_PENDING)) {
401 tg_service_queue_add(tg);
402 tg->flags |= THROTL_TG_PENDING;
403 tg->service_queue.parent_sq->nr_pending++;
404 }
405 }
406
throtl_dequeue_tg(struct throtl_grp * tg)407 static void throtl_dequeue_tg(struct throtl_grp *tg)
408 {
409 if (tg->flags & THROTL_TG_PENDING) {
410 struct throtl_service_queue *parent_sq =
411 tg->service_queue.parent_sq;
412
413 throtl_rb_erase(&tg->rb_node, parent_sq);
414 --parent_sq->nr_pending;
415 tg->flags &= ~THROTL_TG_PENDING;
416 }
417 }
418
419 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)420 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
421 unsigned long expires)
422 {
423 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
424
425 /*
426 * Since we are adjusting the throttle limit dynamically, the sleep
427 * time calculated according to previous limit might be invalid. It's
428 * possible the cgroup sleep time is very long and no other cgroups
429 * have IO running so notify the limit changes. Make sure the cgroup
430 * doesn't sleep too long to avoid the missed notification.
431 */
432 if (time_after(expires, max_expire))
433 expires = max_expire;
434 mod_timer(&sq->pending_timer, expires);
435 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
436 expires - jiffies, jiffies);
437 }
438
439 /**
440 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
441 * @sq: the service_queue to schedule dispatch for
442 * @force: force scheduling
443 *
444 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
445 * dispatch time of the first pending child. Returns %true if either timer
446 * is armed or there's no pending child left. %false if the current
447 * dispatch window is still open and the caller should continue
448 * dispatching.
449 *
450 * If @force is %true, the dispatch timer is always scheduled and this
451 * function is guaranteed to return %true. This is to be used when the
452 * caller can't dispatch itself and needs to invoke pending_timer
453 * unconditionally. Note that forced scheduling is likely to induce short
454 * delay before dispatch starts even if @sq->first_pending_disptime is not
455 * in the future and thus shouldn't be used in hot paths.
456 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)457 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
458 bool force)
459 {
460 /* any pending children left? */
461 if (!sq->nr_pending)
462 return true;
463
464 update_min_dispatch_time(sq);
465
466 /* is the next dispatch time in the future? */
467 if (force || time_after(sq->first_pending_disptime, jiffies)) {
468 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
469 return true;
470 }
471
472 /* tell the caller to continue dispatching */
473 return false;
474 }
475
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)476 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
477 bool rw, unsigned long start)
478 {
479 tg->bytes_disp[rw] = 0;
480 tg->io_disp[rw] = 0;
481
482 /*
483 * Previous slice has expired. We must have trimmed it after last
484 * bio dispatch. That means since start of last slice, we never used
485 * that bandwidth. Do try to make use of that bandwidth while giving
486 * credit.
487 */
488 if (time_after(start, tg->slice_start[rw]))
489 tg->slice_start[rw] = start;
490
491 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
492 throtl_log(&tg->service_queue,
493 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
494 rw == READ ? 'R' : 'W', tg->slice_start[rw],
495 tg->slice_end[rw], jiffies);
496 }
497
throtl_start_new_slice(struct throtl_grp * tg,bool rw,bool clear)498 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
499 bool clear)
500 {
501 if (clear) {
502 tg->bytes_disp[rw] = 0;
503 tg->io_disp[rw] = 0;
504 }
505 tg->slice_start[rw] = jiffies;
506 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
507
508 throtl_log(&tg->service_queue,
509 "[%c] new slice start=%lu end=%lu jiffies=%lu",
510 rw == READ ? 'R' : 'W', tg->slice_start[rw],
511 tg->slice_end[rw], jiffies);
512 }
513
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)514 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
515 unsigned long jiffy_end)
516 {
517 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
518 }
519
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)520 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
521 unsigned long jiffy_end)
522 {
523 throtl_set_slice_end(tg, rw, jiffy_end);
524 throtl_log(&tg->service_queue,
525 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
526 rw == READ ? 'R' : 'W', tg->slice_start[rw],
527 tg->slice_end[rw], jiffies);
528 }
529
530 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)531 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
532 {
533 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
534 return false;
535
536 return true;
537 }
538
calculate_io_allowed(u32 iops_limit,unsigned long jiffy_elapsed)539 static unsigned int calculate_io_allowed(u32 iops_limit,
540 unsigned long jiffy_elapsed)
541 {
542 unsigned int io_allowed;
543 u64 tmp;
544
545 /*
546 * jiffy_elapsed should not be a big value as minimum iops can be
547 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
548 * will allow dispatch after 1 second and after that slice should
549 * have been trimmed.
550 */
551
552 tmp = (u64)iops_limit * jiffy_elapsed;
553 do_div(tmp, HZ);
554
555 if (tmp > UINT_MAX)
556 io_allowed = UINT_MAX;
557 else
558 io_allowed = tmp;
559
560 return io_allowed;
561 }
562
calculate_bytes_allowed(u64 bps_limit,unsigned long jiffy_elapsed)563 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
564 {
565 /*
566 * Can result be wider than 64 bits?
567 * We check against 62, not 64, due to ilog2 truncation.
568 */
569 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
570 return U64_MAX;
571 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
572 }
573
574 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)575 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
576 {
577 unsigned long time_elapsed;
578 long long bytes_trim;
579 int io_trim;
580
581 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
582
583 /*
584 * If bps are unlimited (-1), then time slice don't get
585 * renewed. Don't try to trim the slice if slice is used. A new
586 * slice will start when appropriate.
587 */
588 if (throtl_slice_used(tg, rw))
589 return;
590
591 /*
592 * A bio has been dispatched. Also adjust slice_end. It might happen
593 * that initially cgroup limit was very low resulting in high
594 * slice_end, but later limit was bumped up and bio was dispatched
595 * sooner, then we need to reduce slice_end. A high bogus slice_end
596 * is bad because it does not allow new slice to start.
597 */
598 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
599
600 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
601 tg->td->throtl_slice);
602 /* Don't trim slice until at least 2 slices are used */
603 if (time_elapsed < tg->td->throtl_slice * 2)
604 return;
605
606 /*
607 * The bio submission time may be a few jiffies more than the expected
608 * waiting time, due to 'extra_bytes' can't be divided in
609 * tg_within_bps_limit(), and also due to timer wakeup delay. In this
610 * case, adjust slice_start will discard the extra wait time, causing
611 * lower rate than expected. Therefore, other than the above rounddown,
612 * one extra slice is preserved for deviation.
613 */
614 time_elapsed -= tg->td->throtl_slice;
615 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
616 time_elapsed);
617 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed);
618 if (bytes_trim <= 0 && io_trim <= 0)
619 return;
620
621 if ((long long)tg->bytes_disp[rw] >= bytes_trim)
622 tg->bytes_disp[rw] -= bytes_trim;
623 else
624 tg->bytes_disp[rw] = 0;
625
626 if ((int)tg->io_disp[rw] >= io_trim)
627 tg->io_disp[rw] -= io_trim;
628 else
629 tg->io_disp[rw] = 0;
630
631 tg->slice_start[rw] += time_elapsed;
632
633 throtl_log(&tg->service_queue,
634 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
635 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
636 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
637 jiffies);
638 }
639
__tg_update_carryover(struct throtl_grp * tg,bool rw,long long * bytes,int * ios)640 static void __tg_update_carryover(struct throtl_grp *tg, bool rw,
641 long long *bytes, int *ios)
642 {
643 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
644 u64 bps_limit = tg_bps_limit(tg, rw);
645 u32 iops_limit = tg_iops_limit(tg, rw);
646
647 /*
648 * If config is updated while bios are still throttled, calculate and
649 * accumulate how many bytes/ios are waited across changes. And
650 * carryover_bytes/ios will be used to calculate new wait time under new
651 * configuration.
652 */
653 if (bps_limit != U64_MAX)
654 *bytes = calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
655 tg->bytes_disp[rw];
656 if (iops_limit != UINT_MAX)
657 *ios = calculate_io_allowed(iops_limit, jiffy_elapsed) -
658 tg->io_disp[rw];
659 tg->bytes_disp[rw] -= *bytes;
660 tg->io_disp[rw] -= *ios;
661 }
662
tg_update_carryover(struct throtl_grp * tg)663 static void tg_update_carryover(struct throtl_grp *tg)
664 {
665 long long bytes[2] = {0};
666 int ios[2] = {0};
667
668 if (tg->service_queue.nr_queued[READ])
669 __tg_update_carryover(tg, READ, &bytes[READ], &ios[READ]);
670 if (tg->service_queue.nr_queued[WRITE])
671 __tg_update_carryover(tg, WRITE, &bytes[WRITE], &ios[WRITE]);
672
673 /* see comments in struct throtl_grp for meaning of these fields. */
674 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
675 bytes[READ], bytes[WRITE], ios[READ], ios[WRITE]);
676 }
677
tg_within_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit)678 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
679 u32 iops_limit)
680 {
681 bool rw = bio_data_dir(bio);
682 int io_allowed;
683 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
684
685 if (iops_limit == UINT_MAX) {
686 return 0;
687 }
688
689 jiffy_elapsed = jiffies - tg->slice_start[rw];
690
691 /* Round up to the next throttle slice, wait time must be nonzero */
692 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
693 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd);
694 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
695 return 0;
696
697 /* Calc approx time to dispatch */
698 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
699
700 /* make sure at least one io can be dispatched after waiting */
701 jiffy_wait = max(jiffy_wait, HZ / iops_limit + 1);
702 return jiffy_wait;
703 }
704
tg_within_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit)705 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
706 u64 bps_limit)
707 {
708 bool rw = bio_data_dir(bio);
709 long long bytes_allowed;
710 u64 extra_bytes;
711 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
712 unsigned int bio_size = throtl_bio_data_size(bio);
713
714 /* no need to throttle if this bio's bytes have been accounted */
715 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
716 return 0;
717 }
718
719 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
720
721 /* Slice has just started. Consider one slice interval */
722 if (!jiffy_elapsed)
723 jiffy_elapsed_rnd = tg->td->throtl_slice;
724
725 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
726 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd);
727 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
728 return 0;
729
730 /* Calc approx time to dispatch */
731 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
732 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
733
734 if (!jiffy_wait)
735 jiffy_wait = 1;
736
737 /*
738 * This wait time is without taking into consideration the rounding
739 * up we did. Add that time also.
740 */
741 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
742 return jiffy_wait;
743 }
744
745 /*
746 * Returns whether one can dispatch a bio or not. Also returns approx number
747 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
748 */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)749 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
750 unsigned long *wait)
751 {
752 bool rw = bio_data_dir(bio);
753 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
754 u64 bps_limit = tg_bps_limit(tg, rw);
755 u32 iops_limit = tg_iops_limit(tg, rw);
756
757 /*
758 * Currently whole state machine of group depends on first bio
759 * queued in the group bio list. So one should not be calling
760 * this function with a different bio if there are other bios
761 * queued.
762 */
763 BUG_ON(tg->service_queue.nr_queued[rw] &&
764 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
765
766 /* If tg->bps = -1, then BW is unlimited */
767 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
768 tg->flags & THROTL_TG_CANCELING) {
769 if (wait)
770 *wait = 0;
771 return true;
772 }
773
774 /*
775 * If previous slice expired, start a new one otherwise renew/extend
776 * existing slice to make sure it is at least throtl_slice interval
777 * long since now. New slice is started only for empty throttle group.
778 * If there is queued bio, that means there should be an active
779 * slice and it should be extended instead.
780 */
781 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
782 throtl_start_new_slice(tg, rw, true);
783 else {
784 if (time_before(tg->slice_end[rw],
785 jiffies + tg->td->throtl_slice))
786 throtl_extend_slice(tg, rw,
787 jiffies + tg->td->throtl_slice);
788 }
789
790 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
791 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
792 if (bps_wait + iops_wait == 0) {
793 if (wait)
794 *wait = 0;
795 return true;
796 }
797
798 max_wait = max(bps_wait, iops_wait);
799
800 if (wait)
801 *wait = max_wait;
802
803 if (time_before(tg->slice_end[rw], jiffies + max_wait))
804 throtl_extend_slice(tg, rw, jiffies + max_wait);
805
806 return false;
807 }
808
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)809 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
810 {
811 bool rw = bio_data_dir(bio);
812 unsigned int bio_size = throtl_bio_data_size(bio);
813
814 /* Charge the bio to the group */
815 if (!bio_flagged(bio, BIO_BPS_THROTTLED))
816 tg->bytes_disp[rw] += bio_size;
817
818 tg->io_disp[rw]++;
819 }
820
821 /**
822 * throtl_add_bio_tg - add a bio to the specified throtl_grp
823 * @bio: bio to add
824 * @qn: qnode to use
825 * @tg: the target throtl_grp
826 *
827 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
828 * tg->qnode_on_self[] is used.
829 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)830 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
831 struct throtl_grp *tg)
832 {
833 struct throtl_service_queue *sq = &tg->service_queue;
834 bool rw = bio_data_dir(bio);
835
836 if (!qn)
837 qn = &tg->qnode_on_self[rw];
838
839 /*
840 * If @tg doesn't currently have any bios queued in the same
841 * direction, queueing @bio can change when @tg should be
842 * dispatched. Mark that @tg was empty. This is automatically
843 * cleared on the next tg_update_disptime().
844 */
845 if (!sq->nr_queued[rw])
846 tg->flags |= THROTL_TG_WAS_EMPTY;
847
848 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
849
850 sq->nr_queued[rw]++;
851 throtl_enqueue_tg(tg);
852 }
853
tg_update_disptime(struct throtl_grp * tg)854 static void tg_update_disptime(struct throtl_grp *tg)
855 {
856 struct throtl_service_queue *sq = &tg->service_queue;
857 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
858 struct bio *bio;
859
860 bio = throtl_peek_queued(&sq->queued[READ]);
861 if (bio)
862 tg_may_dispatch(tg, bio, &read_wait);
863
864 bio = throtl_peek_queued(&sq->queued[WRITE]);
865 if (bio)
866 tg_may_dispatch(tg, bio, &write_wait);
867
868 min_wait = min(read_wait, write_wait);
869 disptime = jiffies + min_wait;
870
871 /* Update dispatch time */
872 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
873 tg->disptime = disptime;
874 tg_service_queue_add(tg);
875
876 /* see throtl_add_bio_tg() */
877 tg->flags &= ~THROTL_TG_WAS_EMPTY;
878 }
879
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)880 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
881 struct throtl_grp *parent_tg, bool rw)
882 {
883 if (throtl_slice_used(parent_tg, rw)) {
884 throtl_start_new_slice_with_credit(parent_tg, rw,
885 child_tg->slice_start[rw]);
886 }
887
888 }
889
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)890 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
891 {
892 struct throtl_service_queue *sq = &tg->service_queue;
893 struct throtl_service_queue *parent_sq = sq->parent_sq;
894 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
895 struct throtl_grp *tg_to_put = NULL;
896 struct bio *bio;
897
898 /*
899 * @bio is being transferred from @tg to @parent_sq. Popping a bio
900 * from @tg may put its reference and @parent_sq might end up
901 * getting released prematurely. Remember the tg to put and put it
902 * after @bio is transferred to @parent_sq.
903 */
904 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
905 sq->nr_queued[rw]--;
906
907 throtl_charge_bio(tg, bio);
908
909 /*
910 * If our parent is another tg, we just need to transfer @bio to
911 * the parent using throtl_add_bio_tg(). If our parent is
912 * @td->service_queue, @bio is ready to be issued. Put it on its
913 * bio_lists[] and decrease total number queued. The caller is
914 * responsible for issuing these bios.
915 */
916 if (parent_tg) {
917 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
918 start_parent_slice_with_credit(tg, parent_tg, rw);
919 } else {
920 bio_set_flag(bio, BIO_BPS_THROTTLED);
921 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
922 &parent_sq->queued[rw]);
923 BUG_ON(tg->td->nr_queued[rw] <= 0);
924 tg->td->nr_queued[rw]--;
925 }
926
927 throtl_trim_slice(tg, rw);
928
929 if (tg_to_put)
930 blkg_put(tg_to_blkg(tg_to_put));
931 }
932
throtl_dispatch_tg(struct throtl_grp * tg)933 static int throtl_dispatch_tg(struct throtl_grp *tg)
934 {
935 struct throtl_service_queue *sq = &tg->service_queue;
936 unsigned int nr_reads = 0, nr_writes = 0;
937 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
938 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
939 struct bio *bio;
940
941 /* Try to dispatch 75% READS and 25% WRITES */
942
943 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
944 tg_may_dispatch(tg, bio, NULL)) {
945
946 tg_dispatch_one_bio(tg, READ);
947 nr_reads++;
948
949 if (nr_reads >= max_nr_reads)
950 break;
951 }
952
953 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
954 tg_may_dispatch(tg, bio, NULL)) {
955
956 tg_dispatch_one_bio(tg, WRITE);
957 nr_writes++;
958
959 if (nr_writes >= max_nr_writes)
960 break;
961 }
962
963 return nr_reads + nr_writes;
964 }
965
throtl_select_dispatch(struct throtl_service_queue * parent_sq)966 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
967 {
968 unsigned int nr_disp = 0;
969
970 while (1) {
971 struct throtl_grp *tg;
972 struct throtl_service_queue *sq;
973
974 if (!parent_sq->nr_pending)
975 break;
976
977 tg = throtl_rb_first(parent_sq);
978 if (!tg)
979 break;
980
981 if (time_before(jiffies, tg->disptime))
982 break;
983
984 nr_disp += throtl_dispatch_tg(tg);
985
986 sq = &tg->service_queue;
987 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
988 tg_update_disptime(tg);
989 else
990 throtl_dequeue_tg(tg);
991
992 if (nr_disp >= THROTL_QUANTUM)
993 break;
994 }
995
996 return nr_disp;
997 }
998
999 /**
1000 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1001 * @t: the pending_timer member of the throtl_service_queue being serviced
1002 *
1003 * This timer is armed when a child throtl_grp with active bio's become
1004 * pending and queued on the service_queue's pending_tree and expires when
1005 * the first child throtl_grp should be dispatched. This function
1006 * dispatches bio's from the children throtl_grps to the parent
1007 * service_queue.
1008 *
1009 * If the parent's parent is another throtl_grp, dispatching is propagated
1010 * by either arming its pending_timer or repeating dispatch directly. If
1011 * the top-level service_tree is reached, throtl_data->dispatch_work is
1012 * kicked so that the ready bio's are issued.
1013 */
throtl_pending_timer_fn(struct timer_list * t)1014 static void throtl_pending_timer_fn(struct timer_list *t)
1015 {
1016 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1017 struct throtl_grp *tg = sq_to_tg(sq);
1018 struct throtl_data *td = sq_to_td(sq);
1019 struct throtl_service_queue *parent_sq;
1020 struct request_queue *q;
1021 bool dispatched;
1022 int ret;
1023
1024 /* throtl_data may be gone, so figure out request queue by blkg */
1025 if (tg)
1026 q = tg->pd.blkg->q;
1027 else
1028 q = td->queue;
1029
1030 spin_lock_irq(&q->queue_lock);
1031
1032 if (!q->root_blkg)
1033 goto out_unlock;
1034
1035 again:
1036 parent_sq = sq->parent_sq;
1037 dispatched = false;
1038
1039 while (true) {
1040 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1041 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1042 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1043
1044 ret = throtl_select_dispatch(sq);
1045 if (ret) {
1046 throtl_log(sq, "bios disp=%u", ret);
1047 dispatched = true;
1048 }
1049
1050 if (throtl_schedule_next_dispatch(sq, false))
1051 break;
1052
1053 /* this dispatch windows is still open, relax and repeat */
1054 spin_unlock_irq(&q->queue_lock);
1055 cpu_relax();
1056 spin_lock_irq(&q->queue_lock);
1057 }
1058
1059 if (!dispatched)
1060 goto out_unlock;
1061
1062 if (parent_sq) {
1063 /* @parent_sq is another throl_grp, propagate dispatch */
1064 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1065 tg_update_disptime(tg);
1066 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1067 /* window is already open, repeat dispatching */
1068 sq = parent_sq;
1069 tg = sq_to_tg(sq);
1070 goto again;
1071 }
1072 }
1073 } else {
1074 /* reached the top-level, queue issuing */
1075 queue_work(kthrotld_workqueue, &td->dispatch_work);
1076 }
1077 out_unlock:
1078 spin_unlock_irq(&q->queue_lock);
1079 }
1080
1081 /**
1082 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1083 * @work: work item being executed
1084 *
1085 * This function is queued for execution when bios reach the bio_lists[]
1086 * of throtl_data->service_queue. Those bios are ready and issued by this
1087 * function.
1088 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1089 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1090 {
1091 struct throtl_data *td = container_of(work, struct throtl_data,
1092 dispatch_work);
1093 struct throtl_service_queue *td_sq = &td->service_queue;
1094 struct request_queue *q = td->queue;
1095 struct bio_list bio_list_on_stack;
1096 struct bio *bio;
1097 struct blk_plug plug;
1098 int rw;
1099
1100 bio_list_init(&bio_list_on_stack);
1101
1102 spin_lock_irq(&q->queue_lock);
1103 for (rw = READ; rw <= WRITE; rw++)
1104 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1105 bio_list_add(&bio_list_on_stack, bio);
1106 spin_unlock_irq(&q->queue_lock);
1107
1108 if (!bio_list_empty(&bio_list_on_stack)) {
1109 blk_start_plug(&plug);
1110 while ((bio = bio_list_pop(&bio_list_on_stack)))
1111 submit_bio_noacct_nocheck(bio);
1112 blk_finish_plug(&plug);
1113 }
1114 }
1115
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1116 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1117 int off)
1118 {
1119 struct throtl_grp *tg = pd_to_tg(pd);
1120 u64 v = *(u64 *)((void *)tg + off);
1121
1122 if (v == U64_MAX)
1123 return 0;
1124 return __blkg_prfill_u64(sf, pd, v);
1125 }
1126
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1127 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1128 int off)
1129 {
1130 struct throtl_grp *tg = pd_to_tg(pd);
1131 unsigned int v = *(unsigned int *)((void *)tg + off);
1132
1133 if (v == UINT_MAX)
1134 return 0;
1135 return __blkg_prfill_u64(sf, pd, v);
1136 }
1137
tg_print_conf_u64(struct seq_file * sf,void * v)1138 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1139 {
1140 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1141 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1142 return 0;
1143 }
1144
tg_print_conf_uint(struct seq_file * sf,void * v)1145 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1146 {
1147 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1148 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1149 return 0;
1150 }
1151
tg_conf_updated(struct throtl_grp * tg,bool global)1152 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1153 {
1154 struct throtl_service_queue *sq = &tg->service_queue;
1155 struct cgroup_subsys_state *pos_css;
1156 struct blkcg_gq *blkg;
1157
1158 throtl_log(&tg->service_queue,
1159 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1160 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1161 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1162
1163 rcu_read_lock();
1164 /*
1165 * Update has_rules[] flags for the updated tg's subtree. A tg is
1166 * considered to have rules if either the tg itself or any of its
1167 * ancestors has rules. This identifies groups without any
1168 * restrictions in the whole hierarchy and allows them to bypass
1169 * blk-throttle.
1170 */
1171 blkg_for_each_descendant_pre(blkg, pos_css,
1172 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1173 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1174
1175 tg_update_has_rules(this_tg);
1176 /* ignore root/second level */
1177 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1178 !blkg->parent->parent)
1179 continue;
1180 }
1181 rcu_read_unlock();
1182
1183 /*
1184 * We're already holding queue_lock and know @tg is valid. Let's
1185 * apply the new config directly.
1186 *
1187 * Restart the slices for both READ and WRITES. It might happen
1188 * that a group's limit are dropped suddenly and we don't want to
1189 * account recently dispatched IO with new low rate.
1190 */
1191 throtl_start_new_slice(tg, READ, false);
1192 throtl_start_new_slice(tg, WRITE, false);
1193
1194 if (tg->flags & THROTL_TG_PENDING) {
1195 tg_update_disptime(tg);
1196 throtl_schedule_next_dispatch(sq->parent_sq, true);
1197 }
1198 }
1199
blk_throtl_init(struct gendisk * disk)1200 static int blk_throtl_init(struct gendisk *disk)
1201 {
1202 struct request_queue *q = disk->queue;
1203 struct throtl_data *td;
1204 unsigned int memflags;
1205 int ret;
1206
1207 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1208 if (!td)
1209 return -ENOMEM;
1210
1211 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1212 throtl_service_queue_init(&td->service_queue);
1213
1214 /*
1215 * Freeze queue before activating policy, to synchronize with IO path,
1216 * which is protected by 'q_usage_counter'.
1217 */
1218 memflags = blk_mq_freeze_queue(disk->queue);
1219 blk_mq_quiesce_queue(disk->queue);
1220
1221 q->td = td;
1222 td->queue = q;
1223
1224 /* activate policy */
1225 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
1226 if (ret) {
1227 q->td = NULL;
1228 kfree(td);
1229 goto out;
1230 }
1231
1232 if (blk_queue_nonrot(q))
1233 td->throtl_slice = DFL_THROTL_SLICE_SSD;
1234 else
1235 td->throtl_slice = DFL_THROTL_SLICE_HD;
1236 td->track_bio_latency = !queue_is_mq(q);
1237 if (!td->track_bio_latency)
1238 blk_stat_enable_accounting(q);
1239
1240 out:
1241 blk_mq_unquiesce_queue(disk->queue);
1242 blk_mq_unfreeze_queue(disk->queue, memflags);
1243
1244 return ret;
1245 }
1246
1247
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1248 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1249 char *buf, size_t nbytes, loff_t off, bool is_u64)
1250 {
1251 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1252 struct blkg_conf_ctx ctx;
1253 struct throtl_grp *tg;
1254 int ret;
1255 u64 v;
1256
1257 blkg_conf_init(&ctx, buf);
1258
1259 ret = blkg_conf_open_bdev(&ctx);
1260 if (ret)
1261 goto out_finish;
1262
1263 if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1264 ret = blk_throtl_init(ctx.bdev->bd_disk);
1265 if (ret)
1266 goto out_finish;
1267 }
1268
1269 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1270 if (ret)
1271 goto out_finish;
1272
1273 ret = -EINVAL;
1274 if (sscanf(ctx.body, "%llu", &v) != 1)
1275 goto out_finish;
1276 if (!v)
1277 v = U64_MAX;
1278
1279 tg = blkg_to_tg(ctx.blkg);
1280 tg_update_carryover(tg);
1281
1282 if (is_u64)
1283 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1284 else
1285 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1286
1287 tg_conf_updated(tg, false);
1288 ret = 0;
1289 out_finish:
1290 blkg_conf_exit(&ctx);
1291 return ret ?: nbytes;
1292 }
1293
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1294 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1295 char *buf, size_t nbytes, loff_t off)
1296 {
1297 return tg_set_conf(of, buf, nbytes, off, true);
1298 }
1299
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1300 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1301 char *buf, size_t nbytes, loff_t off)
1302 {
1303 return tg_set_conf(of, buf, nbytes, off, false);
1304 }
1305
tg_print_rwstat(struct seq_file * sf,void * v)1306 static int tg_print_rwstat(struct seq_file *sf, void *v)
1307 {
1308 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1309 blkg_prfill_rwstat, &blkcg_policy_throtl,
1310 seq_cft(sf)->private, true);
1311 return 0;
1312 }
1313
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1314 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1315 struct blkg_policy_data *pd, int off)
1316 {
1317 struct blkg_rwstat_sample sum;
1318
1319 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1320 &sum);
1321 return __blkg_prfill_rwstat(sf, pd, &sum);
1322 }
1323
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1324 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1325 {
1326 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1327 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1328 seq_cft(sf)->private, true);
1329 return 0;
1330 }
1331
1332 static struct cftype throtl_legacy_files[] = {
1333 {
1334 .name = "throttle.read_bps_device",
1335 .private = offsetof(struct throtl_grp, bps[READ]),
1336 .seq_show = tg_print_conf_u64,
1337 .write = tg_set_conf_u64,
1338 },
1339 {
1340 .name = "throttle.write_bps_device",
1341 .private = offsetof(struct throtl_grp, bps[WRITE]),
1342 .seq_show = tg_print_conf_u64,
1343 .write = tg_set_conf_u64,
1344 },
1345 {
1346 .name = "throttle.read_iops_device",
1347 .private = offsetof(struct throtl_grp, iops[READ]),
1348 .seq_show = tg_print_conf_uint,
1349 .write = tg_set_conf_uint,
1350 },
1351 {
1352 .name = "throttle.write_iops_device",
1353 .private = offsetof(struct throtl_grp, iops[WRITE]),
1354 .seq_show = tg_print_conf_uint,
1355 .write = tg_set_conf_uint,
1356 },
1357 {
1358 .name = "throttle.io_service_bytes",
1359 .private = offsetof(struct throtl_grp, stat_bytes),
1360 .seq_show = tg_print_rwstat,
1361 },
1362 {
1363 .name = "throttle.io_service_bytes_recursive",
1364 .private = offsetof(struct throtl_grp, stat_bytes),
1365 .seq_show = tg_print_rwstat_recursive,
1366 },
1367 {
1368 .name = "throttle.io_serviced",
1369 .private = offsetof(struct throtl_grp, stat_ios),
1370 .seq_show = tg_print_rwstat,
1371 },
1372 {
1373 .name = "throttle.io_serviced_recursive",
1374 .private = offsetof(struct throtl_grp, stat_ios),
1375 .seq_show = tg_print_rwstat_recursive,
1376 },
1377 { } /* terminate */
1378 };
1379
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1380 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1381 int off)
1382 {
1383 struct throtl_grp *tg = pd_to_tg(pd);
1384 const char *dname = blkg_dev_name(pd->blkg);
1385 u64 bps_dft;
1386 unsigned int iops_dft;
1387
1388 if (!dname)
1389 return 0;
1390
1391 bps_dft = U64_MAX;
1392 iops_dft = UINT_MAX;
1393
1394 if (tg->bps[READ] == bps_dft &&
1395 tg->bps[WRITE] == bps_dft &&
1396 tg->iops[READ] == iops_dft &&
1397 tg->iops[WRITE] == iops_dft)
1398 return 0;
1399
1400 seq_printf(sf, "%s", dname);
1401 if (tg->bps[READ] == U64_MAX)
1402 seq_printf(sf, " rbps=max");
1403 else
1404 seq_printf(sf, " rbps=%llu", tg->bps[READ]);
1405
1406 if (tg->bps[WRITE] == U64_MAX)
1407 seq_printf(sf, " wbps=max");
1408 else
1409 seq_printf(sf, " wbps=%llu", tg->bps[WRITE]);
1410
1411 if (tg->iops[READ] == UINT_MAX)
1412 seq_printf(sf, " riops=max");
1413 else
1414 seq_printf(sf, " riops=%u", tg->iops[READ]);
1415
1416 if (tg->iops[WRITE] == UINT_MAX)
1417 seq_printf(sf, " wiops=max");
1418 else
1419 seq_printf(sf, " wiops=%u", tg->iops[WRITE]);
1420
1421 seq_printf(sf, "\n");
1422 return 0;
1423 }
1424
tg_print_limit(struct seq_file * sf,void * v)1425 static int tg_print_limit(struct seq_file *sf, void *v)
1426 {
1427 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1428 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1429 return 0;
1430 }
1431
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1432 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1433 char *buf, size_t nbytes, loff_t off)
1434 {
1435 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1436 struct blkg_conf_ctx ctx;
1437 struct throtl_grp *tg;
1438 u64 v[4];
1439 int ret;
1440
1441 blkg_conf_init(&ctx, buf);
1442
1443 ret = blkg_conf_open_bdev(&ctx);
1444 if (ret)
1445 goto out_finish;
1446
1447 if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1448 ret = blk_throtl_init(ctx.bdev->bd_disk);
1449 if (ret)
1450 goto out_finish;
1451 }
1452
1453 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1454 if (ret)
1455 goto out_finish;
1456
1457 tg = blkg_to_tg(ctx.blkg);
1458 tg_update_carryover(tg);
1459
1460 v[0] = tg->bps[READ];
1461 v[1] = tg->bps[WRITE];
1462 v[2] = tg->iops[READ];
1463 v[3] = tg->iops[WRITE];
1464
1465 while (true) {
1466 char tok[27]; /* wiops=18446744073709551616 */
1467 char *p;
1468 u64 val = U64_MAX;
1469 int len;
1470
1471 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1472 break;
1473 if (tok[0] == '\0')
1474 break;
1475 ctx.body += len;
1476
1477 ret = -EINVAL;
1478 p = tok;
1479 strsep(&p, "=");
1480 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1481 goto out_finish;
1482
1483 ret = -ERANGE;
1484 if (!val)
1485 goto out_finish;
1486
1487 ret = -EINVAL;
1488 if (!strcmp(tok, "rbps"))
1489 v[0] = val;
1490 else if (!strcmp(tok, "wbps"))
1491 v[1] = val;
1492 else if (!strcmp(tok, "riops"))
1493 v[2] = min_t(u64, val, UINT_MAX);
1494 else if (!strcmp(tok, "wiops"))
1495 v[3] = min_t(u64, val, UINT_MAX);
1496 else
1497 goto out_finish;
1498 }
1499
1500 tg->bps[READ] = v[0];
1501 tg->bps[WRITE] = v[1];
1502 tg->iops[READ] = v[2];
1503 tg->iops[WRITE] = v[3];
1504
1505 tg_conf_updated(tg, false);
1506 ret = 0;
1507 out_finish:
1508 blkg_conf_exit(&ctx);
1509 return ret ?: nbytes;
1510 }
1511
1512 static struct cftype throtl_files[] = {
1513 {
1514 .name = "max",
1515 .flags = CFTYPE_NOT_ON_ROOT,
1516 .seq_show = tg_print_limit,
1517 .write = tg_set_limit,
1518 },
1519 { } /* terminate */
1520 };
1521
throtl_shutdown_wq(struct request_queue * q)1522 static void throtl_shutdown_wq(struct request_queue *q)
1523 {
1524 struct throtl_data *td = q->td;
1525
1526 cancel_work_sync(&td->dispatch_work);
1527 }
1528
tg_flush_bios(struct throtl_grp * tg)1529 static void tg_flush_bios(struct throtl_grp *tg)
1530 {
1531 struct throtl_service_queue *sq = &tg->service_queue;
1532
1533 if (tg->flags & THROTL_TG_CANCELING)
1534 return;
1535 /*
1536 * Set the flag to make sure throtl_pending_timer_fn() won't
1537 * stop until all throttled bios are dispatched.
1538 */
1539 tg->flags |= THROTL_TG_CANCELING;
1540
1541 /*
1542 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1543 * will be inserted to service queue without THROTL_TG_PENDING
1544 * set in tg_update_disptime below. Then IO dispatched from
1545 * child in tg_dispatch_one_bio will trigger double insertion
1546 * and corrupt the tree.
1547 */
1548 if (!(tg->flags & THROTL_TG_PENDING))
1549 return;
1550
1551 /*
1552 * Update disptime after setting the above flag to make sure
1553 * throtl_select_dispatch() won't exit without dispatching.
1554 */
1555 tg_update_disptime(tg);
1556
1557 throtl_schedule_pending_timer(sq, jiffies + 1);
1558 }
1559
throtl_pd_offline(struct blkg_policy_data * pd)1560 static void throtl_pd_offline(struct blkg_policy_data *pd)
1561 {
1562 tg_flush_bios(pd_to_tg(pd));
1563 }
1564
1565 struct blkcg_policy blkcg_policy_throtl = {
1566 .dfl_cftypes = throtl_files,
1567 .legacy_cftypes = throtl_legacy_files,
1568
1569 .pd_alloc_fn = throtl_pd_alloc,
1570 .pd_init_fn = throtl_pd_init,
1571 .pd_online_fn = throtl_pd_online,
1572 .pd_offline_fn = throtl_pd_offline,
1573 .pd_free_fn = throtl_pd_free,
1574 };
1575
blk_throtl_cancel_bios(struct gendisk * disk)1576 void blk_throtl_cancel_bios(struct gendisk *disk)
1577 {
1578 struct request_queue *q = disk->queue;
1579 struct cgroup_subsys_state *pos_css;
1580 struct blkcg_gq *blkg;
1581
1582 if (!blk_throtl_activated(q))
1583 return;
1584
1585 spin_lock_irq(&q->queue_lock);
1586 /*
1587 * queue_lock is held, rcu lock is not needed here technically.
1588 * However, rcu lock is still held to emphasize that following
1589 * path need RCU protection and to prevent warning from lockdep.
1590 */
1591 rcu_read_lock();
1592 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1593 /*
1594 * disk_release will call pd_offline_fn to cancel bios.
1595 * However, disk_release can't be called if someone get
1596 * the refcount of device and issued bios which are
1597 * inflight after del_gendisk.
1598 * Cancel bios here to ensure no bios are inflight after
1599 * del_gendisk.
1600 */
1601 tg_flush_bios(blkg_to_tg(blkg));
1602 }
1603 rcu_read_unlock();
1604 spin_unlock_irq(&q->queue_lock);
1605 }
1606
tg_within_limit(struct throtl_grp * tg,struct bio * bio,bool rw)1607 static bool tg_within_limit(struct throtl_grp *tg, struct bio *bio, bool rw)
1608 {
1609 /* throtl is FIFO - if bios are already queued, should queue */
1610 if (tg->service_queue.nr_queued[rw])
1611 return false;
1612
1613 return tg_may_dispatch(tg, bio, NULL);
1614 }
1615
__blk_throtl_bio(struct bio * bio)1616 bool __blk_throtl_bio(struct bio *bio)
1617 {
1618 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1619 struct blkcg_gq *blkg = bio->bi_blkg;
1620 struct throtl_qnode *qn = NULL;
1621 struct throtl_grp *tg = blkg_to_tg(blkg);
1622 struct throtl_service_queue *sq;
1623 bool rw = bio_data_dir(bio);
1624 bool throttled = false;
1625 struct throtl_data *td = tg->td;
1626
1627 rcu_read_lock();
1628 spin_lock_irq(&q->queue_lock);
1629 sq = &tg->service_queue;
1630
1631 while (true) {
1632 if (tg_within_limit(tg, bio, rw)) {
1633 /* within limits, let's charge and dispatch directly */
1634 throtl_charge_bio(tg, bio);
1635
1636 /*
1637 * We need to trim slice even when bios are not being
1638 * queued otherwise it might happen that a bio is not
1639 * queued for a long time and slice keeps on extending
1640 * and trim is not called for a long time. Now if limits
1641 * are reduced suddenly we take into account all the IO
1642 * dispatched so far at new low rate and * newly queued
1643 * IO gets a really long dispatch time.
1644 *
1645 * So keep on trimming slice even if bio is not queued.
1646 */
1647 throtl_trim_slice(tg, rw);
1648 } else if (bio_issue_as_root_blkg(bio)) {
1649 /*
1650 * IOs which may cause priority inversions are
1651 * dispatched directly, even if they're over limit.
1652 *
1653 * Charge and dispatch directly, and our throttle
1654 * control algorithm is adaptive, and extra IO bytes
1655 * will be throttled for paying the debt
1656 */
1657 throtl_charge_bio(tg, bio);
1658 } else {
1659 /* if above limits, break to queue */
1660 break;
1661 }
1662
1663 /*
1664 * @bio passed through this layer without being throttled.
1665 * Climb up the ladder. If we're already at the top, it
1666 * can be executed directly.
1667 */
1668 qn = &tg->qnode_on_parent[rw];
1669 sq = sq->parent_sq;
1670 tg = sq_to_tg(sq);
1671 if (!tg) {
1672 bio_set_flag(bio, BIO_BPS_THROTTLED);
1673 goto out_unlock;
1674 }
1675 }
1676
1677 /* out-of-limit, queue to @tg */
1678 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1679 rw == READ ? 'R' : 'W',
1680 tg->bytes_disp[rw], bio->bi_iter.bi_size,
1681 tg_bps_limit(tg, rw),
1682 tg->io_disp[rw], tg_iops_limit(tg, rw),
1683 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1684
1685 td->nr_queued[rw]++;
1686 throtl_add_bio_tg(bio, qn, tg);
1687 throttled = true;
1688
1689 /*
1690 * Update @tg's dispatch time and force schedule dispatch if @tg
1691 * was empty before @bio. The forced scheduling isn't likely to
1692 * cause undue delay as @bio is likely to be dispatched directly if
1693 * its @tg's disptime is not in the future.
1694 */
1695 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1696 tg_update_disptime(tg);
1697 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1698 }
1699
1700 out_unlock:
1701 spin_unlock_irq(&q->queue_lock);
1702
1703 rcu_read_unlock();
1704 return throttled;
1705 }
1706
blk_throtl_exit(struct gendisk * disk)1707 void blk_throtl_exit(struct gendisk *disk)
1708 {
1709 struct request_queue *q = disk->queue;
1710
1711 if (!blk_throtl_activated(q))
1712 return;
1713
1714 del_timer_sync(&q->td->service_queue.pending_timer);
1715 throtl_shutdown_wq(q);
1716 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
1717 kfree(q->td);
1718 }
1719
throtl_init(void)1720 static int __init throtl_init(void)
1721 {
1722 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1723 if (!kthrotld_workqueue)
1724 panic("Failed to create kthrotld\n");
1725
1726 return blkcg_policy_register(&blkcg_policy_throtl);
1727 }
1728
1729 module_init(throtl_init);
1730