1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2021 Joyent, Inc.
25 * Copyright 2021 Oxide Computer Company
26 */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/signal.h>
32 #include <sys/stack.h>
33 #include <sys/pcb.h>
34 #include <sys/user.h>
35 #include <sys/systm.h>
36 #include <sys/sysinfo.h>
37 #include <sys/errno.h>
38 #include <sys/cmn_err.h>
39 #include <sys/cred.h>
40 #include <sys/resource.h>
41 #include <sys/task.h>
42 #include <sys/project.h>
43 #include <sys/proc.h>
44 #include <sys/debug.h>
45 #include <sys/disp.h>
46 #include <sys/class.h>
47 #include <vm/seg_kmem.h>
48 #include <vm/seg_kp.h>
49 #include <sys/machlock.h>
50 #include <sys/kmem.h>
51 #include <sys/varargs.h>
52 #include <sys/turnstile.h>
53 #include <sys/poll.h>
54 #include <sys/vtrace.h>
55 #include <sys/callb.h>
56 #include <c2/audit.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>
59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 #include <sys/ctype.h>
78 #include <sys/smt.h>
79
80 struct kmem_cache *thread_cache; /* cache of free threads */
81 struct kmem_cache *lwp_cache; /* cache of free lwps */
82 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */
83
84 /*
85 * allthreads is only for use by kmem_readers. All kernel loops can use
86 * the current thread as a start/end point.
87 */
88 kthread_t *allthreads = &t0; /* circular list of all threads */
89
90 static kcondvar_t reaper_cv; /* synchronization var */
91 kthread_t *thread_deathrow; /* circular list of reapable threads */
92 kthread_t *lwp_deathrow; /* circular list of reapable threads */
93 kmutex_t reaplock; /* protects lwp and thread deathrows */
94 int thread_reapcnt = 0; /* number of threads on deathrow */
95 int lwp_reapcnt = 0; /* number of lwps on deathrow */
96 int reaplimit = 16; /* delay reaping until reaplimit */
97
98 thread_free_lock_t *thread_free_lock;
99 /* protects tick thread from reaper */
100
101 extern int nthread;
102
103 /* System Scheduling classes. */
104 id_t syscid; /* system scheduling class ID */
105 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */
106
107 void *segkp_thread; /* cookie for segkp pool */
108
109 int lwp_cache_sz = 32;
110 int t_cache_sz = 8;
111 static kt_did_t next_t_id = 1;
112
113 /* Default mode for thread binding to CPUs and processor sets */
114 int default_binding_mode = TB_ALLHARD;
115
116 /*
117 * Min/Max stack sizes for stack size parameters
118 */
119 #define MAX_STKSIZE (32 * DEFAULTSTKSZ)
120 #define MIN_STKSIZE DEFAULTSTKSZ
121
122 /*
123 * default_stksize overrides lwp_default_stksize if it is set.
124 */
125 int default_stksize;
126 int lwp_default_stksize;
127
128 static zone_key_t zone_thread_key;
129
130 unsigned int kmem_stackinfo; /* stackinfo feature on-off */
131 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */
132 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */
133
134 /*
135 * forward declarations for internal thread specific data (tsd)
136 */
137 static void *tsd_realloc(void *, size_t, size_t);
138
139 void thread_reaper(void);
140
141 /* forward declarations for stackinfo feature */
142 static void stkinfo_begin(kthread_t *);
143 static void stkinfo_end(kthread_t *);
144 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
145
146 /*ARGSUSED*/
147 static int
turnstile_constructor(void * buf,void * cdrarg,int kmflags)148 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
149 {
150 bzero(buf, sizeof (turnstile_t));
151 return (0);
152 }
153
154 /*ARGSUSED*/
155 static void
turnstile_destructor(void * buf,void * cdrarg)156 turnstile_destructor(void *buf, void *cdrarg)
157 {
158 turnstile_t *ts = buf;
159
160 ASSERT(ts->ts_free == NULL);
161 ASSERT(ts->ts_waiters == 0);
162 ASSERT(ts->ts_inheritor == NULL);
163 ASSERT(ts->ts_sleepq[0].sq_first == NULL);
164 ASSERT(ts->ts_sleepq[1].sq_first == NULL);
165 }
166
167 void
thread_init(void)168 thread_init(void)
169 {
170 kthread_t *tp;
171 extern char sys_name[];
172 extern void idle();
173 struct cpu *cpu = CPU;
174 int i;
175 kmutex_t *lp;
176
177 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
178 thread_free_lock =
179 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
180 for (i = 0; i < THREAD_FREE_NUM; i++) {
181 lp = &thread_free_lock[i].tf_lock;
182 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
183 }
184
185 #if defined(__x86)
186 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
187 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
188
189 /*
190 * "struct _klwp" includes a "struct pcb", which includes a
191 * "struct fpu", which needs to be 64-byte aligned on amd64
192 * (and even on i386) for xsave/xrstor.
193 */
194 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
195 64, NULL, NULL, NULL, NULL, NULL, 0);
196 #else
197 /*
198 * Allocate thread structures from static_arena. This prevents
199 * issues where a thread tries to relocate its own thread
200 * structure and touches it after the mapping has been suspended.
201 */
202 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
203 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
204
205 lwp_stk_cache_init();
206
207 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
208 0, NULL, NULL, NULL, NULL, NULL, 0);
209 #endif
210
211 turnstile_cache = kmem_cache_create("turnstile_cache",
212 sizeof (turnstile_t), 0,
213 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
214
215 label_init();
216 cred_init();
217
218 /*
219 * Initialize various resource management facilities.
220 */
221 rctl_init();
222 cpucaps_init();
223 /*
224 * Zone_init() should be called before project_init() so that project ID
225 * for the first project is initialized correctly.
226 */
227 zone_init();
228 project_init();
229 brand_init();
230 kiconv_init();
231 task_init();
232 tcache_init();
233 pool_init();
234
235 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
236
237 /*
238 * Originally, we had two parameters to set default stack
239 * size: one for lwp's (lwp_default_stksize), and one for
240 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
241 * Now we have a third parameter that overrides both if it is
242 * set to a legal stack size, called default_stksize.
243 */
244
245 if (default_stksize == 0) {
246 default_stksize = DEFAULTSTKSZ;
247 } else if (default_stksize % PAGESIZE != 0 ||
248 default_stksize > MAX_STKSIZE ||
249 default_stksize < MIN_STKSIZE) {
250 cmn_err(CE_WARN, "Illegal stack size. Using %d",
251 (int)DEFAULTSTKSZ);
252 default_stksize = DEFAULTSTKSZ;
253 } else {
254 lwp_default_stksize = default_stksize;
255 }
256
257 if (lwp_default_stksize == 0) {
258 lwp_default_stksize = default_stksize;
259 } else if (lwp_default_stksize % PAGESIZE != 0 ||
260 lwp_default_stksize > MAX_STKSIZE ||
261 lwp_default_stksize < MIN_STKSIZE) {
262 cmn_err(CE_WARN, "Illegal stack size. Using %d",
263 default_stksize);
264 lwp_default_stksize = default_stksize;
265 }
266
267 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
268 lwp_default_stksize,
269 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
270
271 segkp_thread = segkp_cache_init(segkp, t_cache_sz,
272 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
273
274 (void) getcid(sys_name, &syscid);
275 curthread->t_cid = syscid; /* current thread is t0 */
276
277 /*
278 * Set up the first CPU's idle thread.
279 * It runs whenever the CPU has nothing worthwhile to do.
280 */
281 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
282 cpu->cpu_idle_thread = tp;
283 tp->t_preempt = 1;
284 tp->t_disp_queue = cpu->cpu_disp;
285 ASSERT(tp->t_disp_queue != NULL);
286 tp->t_bound_cpu = cpu;
287 tp->t_affinitycnt = 1;
288
289 /*
290 * Registering a thread in the callback table is usually
291 * done in the initialization code of the thread. In this
292 * case, we do it right after thread creation to avoid
293 * blocking idle thread while registering itself. It also
294 * avoids the possibility of reregistration in case a CPU
295 * restarts its idle thread.
296 */
297 CALLB_CPR_INIT_SAFE(tp, "idle");
298
299 /*
300 * Create the thread_reaper daemon. From this point on, exited
301 * threads will get reaped.
302 */
303 (void) thread_create(NULL, 0, (void (*)())thread_reaper,
304 NULL, 0, &p0, TS_RUN, minclsyspri);
305
306 /*
307 * Finish initializing the kernel memory allocator now that
308 * thread_create() is available.
309 */
310 kmem_thread_init();
311
312 if (boothowto & RB_DEBUG)
313 kdi_dvec_thravail();
314 }
315
316 /*
317 * Create a thread.
318 *
319 * thread_create() blocks for memory if necessary. It never fails.
320 *
321 * If stk is NULL, the thread is created at the base of the stack
322 * and cannot be swapped.
323 */
324 kthread_t *
thread_create(caddr_t stk,size_t stksize,void (* proc)(),void * arg,size_t len,proc_t * pp,int state,pri_t pri)325 thread_create(
326 caddr_t stk,
327 size_t stksize,
328 void (*proc)(),
329 void *arg,
330 size_t len,
331 proc_t *pp,
332 int state,
333 pri_t pri)
334 {
335 kthread_t *t;
336 extern struct classfuncs sys_classfuncs;
337 turnstile_t *ts;
338
339 /*
340 * Every thread keeps a turnstile around in case it needs to block.
341 * The only reason the turnstile is not simply part of the thread
342 * structure is that we may have to break the association whenever
343 * more than one thread blocks on a given synchronization object.
344 * From a memory-management standpoint, turnstiles are like the
345 * "attached mblks" that hang off dblks in the streams allocator.
346 */
347 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
348
349 if (stk == NULL) {
350 /*
351 * alloc both thread and stack in segkp chunk
352 */
353
354 if (stksize < default_stksize)
355 stksize = default_stksize;
356
357 if (stksize == default_stksize) {
358 stk = (caddr_t)segkp_cache_get(segkp_thread);
359 } else {
360 stksize = roundup(stksize, PAGESIZE);
361 stk = (caddr_t)segkp_get(segkp, stksize,
362 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
363 }
364
365 ASSERT(stk != NULL);
366
367 /*
368 * The machine-dependent mutex code may require that
369 * thread pointers (since they may be used for mutex owner
370 * fields) have certain alignment requirements.
371 * PTR24_ALIGN is the size of the alignment quanta.
372 * XXX - assumes stack grows toward low addresses.
373 */
374 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
375 cmn_err(CE_PANIC, "thread_create: proposed stack size"
376 " too small to hold thread.");
377 #ifdef STACK_GROWTH_DOWN
378 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
379 stksize &= -PTR24_ALIGN; /* make thread aligned */
380 t = (kthread_t *)(stk + stksize);
381 bzero(t, sizeof (kthread_t));
382 if (audit_active)
383 audit_thread_create(t);
384 t->t_stk = stk + stksize;
385 t->t_stkbase = stk;
386 #else /* stack grows to larger addresses */
387 stksize -= SA(sizeof (kthread_t));
388 t = (kthread_t *)(stk);
389 bzero(t, sizeof (kthread_t));
390 t->t_stk = stk + sizeof (kthread_t);
391 t->t_stkbase = stk + stksize + sizeof (kthread_t);
392 #endif /* STACK_GROWTH_DOWN */
393 t->t_flag |= T_TALLOCSTK;
394 t->t_swap = stk;
395 } else {
396 t = kmem_cache_alloc(thread_cache, KM_SLEEP);
397 bzero(t, sizeof (kthread_t));
398 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
399 if (audit_active)
400 audit_thread_create(t);
401 /*
402 * Initialize t_stk to the kernel stack pointer to use
403 * upon entry to the kernel
404 */
405 #ifdef STACK_GROWTH_DOWN
406 t->t_stk = stk + stksize;
407 t->t_stkbase = stk;
408 #else
409 t->t_stk = stk; /* 3b2-like */
410 t->t_stkbase = stk + stksize;
411 #endif /* STACK_GROWTH_DOWN */
412 }
413
414 if (kmem_stackinfo != 0) {
415 stkinfo_begin(t);
416 }
417
418 t->t_ts = ts;
419
420 /*
421 * p_cred could be NULL if it thread_create is called before cred_init
422 * is called in main.
423 */
424 mutex_enter(&pp->p_crlock);
425 if (pp->p_cred)
426 crhold(t->t_cred = pp->p_cred);
427 mutex_exit(&pp->p_crlock);
428 t->t_start = gethrestime_sec();
429 t->t_startpc = proc;
430 t->t_procp = pp;
431 t->t_clfuncs = &sys_classfuncs.thread;
432 t->t_cid = syscid;
433 t->t_pri = pri;
434 t->t_stime = ddi_get_lbolt();
435 t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
436 t->t_bind_cpu = PBIND_NONE;
437 t->t_bindflag = (uchar_t)default_binding_mode;
438 t->t_bind_pset = PS_NONE;
439 t->t_plockp = &pp->p_lock;
440 t->t_copyops = NULL;
441 t->t_taskq = NULL;
442 t->t_anttime = 0;
443 t->t_hatdepth = 0;
444
445 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */
446
447 CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
448 LOCK_INIT_CLEAR(&t->t_lock);
449
450 /*
451 * Callers who give us a NULL proc must do their own
452 * stack initialization. e.g. lwp_create()
453 */
454 if (proc != NULL) {
455 t->t_stk = thread_stk_init(t->t_stk);
456 thread_load(t, proc, arg, len);
457 }
458
459 /*
460 * Put a hold on project0. If this thread is actually in a
461 * different project, then t_proj will be changed later in
462 * lwp_create(). All kernel-only threads must be in project 0.
463 */
464 t->t_proj = project_hold(proj0p);
465
466 lgrp_affinity_init(&t->t_lgrp_affinity);
467
468 mutex_enter(&pidlock);
469 nthread++;
470 t->t_did = next_t_id++;
471 t->t_prev = curthread->t_prev;
472 t->t_next = curthread;
473
474 /*
475 * Add the thread to the list of all threads, and initialize
476 * its t_cpu pointer. We need to block preemption since
477 * cpu_offline walks the thread list looking for threads
478 * with t_cpu pointing to the CPU being offlined. We want
479 * to make sure that the list is consistent and that if t_cpu
480 * is set, the thread is on the list.
481 */
482 kpreempt_disable();
483 curthread->t_prev->t_next = t;
484 curthread->t_prev = t;
485
486 /*
487 * We'll always create in the default partition since that's where
488 * kernel threads go (we'll change this later if needed, in
489 * lwp_create()).
490 */
491 t->t_cpupart = &cp_default;
492
493 /*
494 * For now, affiliate this thread with the root lgroup.
495 * Since the kernel does not (presently) allocate its memory
496 * in a locality aware fashion, the root is an appropriate home.
497 * If this thread is later associated with an lwp, it will have
498 * its lgroup re-assigned at that time.
499 */
500 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
501
502 /*
503 * If the current CPU is in the default cpupart, use it. Otherwise,
504 * pick one that is; before entering the dispatcher code, we'll
505 * make sure to keep the invariant that ->t_cpu is set. (In fact, we
506 * rely on this, in ht_should_run(), in the call tree of
507 * disp_lowpri_cpu().)
508 */
509 if (CPU->cpu_part == &cp_default) {
510 t->t_cpu = CPU;
511 } else {
512 t->t_cpu = cp_default.cp_cpulist;
513 t->t_cpu = disp_lowpri_cpu(t->t_cpu, t, t->t_pri);
514 }
515
516 t->t_disp_queue = t->t_cpu->cpu_disp;
517 kpreempt_enable();
518
519 /*
520 * Initialize thread state and the dispatcher lock pointer.
521 * Need to hold onto pidlock to block allthreads walkers until
522 * the state is set.
523 */
524 switch (state) {
525 case TS_RUN:
526 curthread->t_oldspl = splhigh(); /* get dispatcher spl */
527 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
528 CL_SETRUN(t);
529 thread_unlock(t);
530 break;
531
532 case TS_ONPROC:
533 THREAD_ONPROC(t, t->t_cpu);
534 break;
535
536 case TS_FREE:
537 /*
538 * Free state will be used for intr threads.
539 * The interrupt routine must set the thread dispatcher
540 * lock pointer (t_lockp) if starting on a CPU
541 * other than the current one.
542 */
543 THREAD_FREEINTR(t, CPU);
544 break;
545
546 case TS_STOPPED:
547 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
548 break;
549
550 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */
551 cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
552 }
553 mutex_exit(&pidlock);
554 return (t);
555 }
556
557 /*
558 * Move thread to project0 and take care of project reference counters.
559 */
560 void
thread_rele(kthread_t * t)561 thread_rele(kthread_t *t)
562 {
563 kproject_t *kpj;
564
565 thread_lock(t);
566
567 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
568 kpj = ttoproj(t);
569 t->t_proj = proj0p;
570
571 thread_unlock(t);
572
573 if (kpj != proj0p) {
574 project_rele(kpj);
575 (void) project_hold(proj0p);
576 }
577 }
578
579 void
thread_exit(void)580 thread_exit(void)
581 {
582 kthread_t *t = curthread;
583
584 if ((t->t_proc_flag & TP_ZTHREAD) != 0)
585 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
586
587 tsd_exit(); /* Clean up this thread's TSD */
588
589 kcpc_passivate(); /* clean up performance counter state */
590
591 /*
592 * No kernel thread should have called poll() without arranging
593 * calling pollcleanup() here.
594 */
595 ASSERT(t->t_pollstate == NULL);
596 ASSERT(t->t_schedctl == NULL);
597 if (t->t_door)
598 door_slam(); /* in case thread did an upcall */
599
600 thread_rele(t);
601 t->t_preempt++;
602
603 /*
604 * remove thread from the all threads list so that
605 * death-row can use the same pointers.
606 */
607 mutex_enter(&pidlock);
608 t->t_next->t_prev = t->t_prev;
609 t->t_prev->t_next = t->t_next;
610 ASSERT(allthreads != t); /* t0 never exits */
611 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */
612 mutex_exit(&pidlock);
613
614 if (t->t_ctx != NULL)
615 exitctx(t);
616 if (t->t_procp->p_pctx != NULL)
617 exitpctx(t->t_procp);
618
619 if (kmem_stackinfo != 0) {
620 stkinfo_end(t);
621 }
622
623 t->t_state = TS_ZOMB; /* set zombie thread */
624
625 swtch_from_zombie(); /* give up the CPU */
626 /* NOTREACHED */
627 }
628
629 /*
630 * Check to see if the specified thread is active (defined as being on
631 * the thread list). This is certainly a slow way to do this; if there's
632 * ever a reason to speed it up, we could maintain a hash table of active
633 * threads indexed by their t_did.
634 */
635 static kthread_t *
did_to_thread(kt_did_t tid)636 did_to_thread(kt_did_t tid)
637 {
638 kthread_t *t;
639
640 ASSERT(MUTEX_HELD(&pidlock));
641 for (t = curthread->t_next; t != curthread; t = t->t_next) {
642 if (t->t_did == tid)
643 break;
644 }
645 if (t->t_did == tid)
646 return (t);
647 else
648 return (NULL);
649 }
650
651 /*
652 * Wait for specified thread to exit. Returns immediately if the thread
653 * could not be found, meaning that it has either already exited or never
654 * existed.
655 */
656 void
thread_join(kt_did_t tid)657 thread_join(kt_did_t tid)
658 {
659 kthread_t *t;
660
661 ASSERT(tid != curthread->t_did);
662 ASSERT(tid != t0.t_did);
663
664 mutex_enter(&pidlock);
665 /*
666 * Make sure we check that the thread is on the thread list
667 * before blocking on it; otherwise we could end up blocking on
668 * a cv that's already been freed. In other words, don't cache
669 * the thread pointer across calls to cv_wait.
670 *
671 * The choice of loop invariant means that whenever a thread
672 * is taken off the allthreads list, a cv_broadcast must be
673 * performed on that thread's t_joincv to wake up any waiters.
674 * The broadcast doesn't have to happen right away, but it
675 * shouldn't be postponed indefinitely (e.g., by doing it in
676 * thread_free which may only be executed when the deathrow
677 * queue is processed.
678 */
679 while (t = did_to_thread(tid))
680 cv_wait(&t->t_joincv, &pidlock);
681 mutex_exit(&pidlock);
682 }
683
684 void
thread_free_prevent(kthread_t * t)685 thread_free_prevent(kthread_t *t)
686 {
687 kmutex_t *lp;
688
689 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
690 mutex_enter(lp);
691 }
692
693 void
thread_free_allow(kthread_t * t)694 thread_free_allow(kthread_t *t)
695 {
696 kmutex_t *lp;
697
698 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
699 mutex_exit(lp);
700 }
701
702 static void
thread_free_barrier(kthread_t * t)703 thread_free_barrier(kthread_t *t)
704 {
705 kmutex_t *lp;
706
707 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
708 mutex_enter(lp);
709 mutex_exit(lp);
710 }
711
712 void
thread_free(kthread_t * t)713 thread_free(kthread_t *t)
714 {
715 boolean_t allocstk = (t->t_flag & T_TALLOCSTK);
716 klwp_t *lwp = t->t_lwp;
717 caddr_t swap = t->t_swap;
718
719 ASSERT(t != &t0 && t->t_state == TS_FREE);
720 ASSERT(t->t_door == NULL);
721 ASSERT(t->t_schedctl == NULL);
722 ASSERT(t->t_pollstate == NULL);
723
724 t->t_pri = 0;
725 t->t_pc = 0;
726 t->t_sp = 0;
727 t->t_wchan0 = NULL;
728 t->t_wchan = NULL;
729 if (t->t_cred != NULL) {
730 crfree(t->t_cred);
731 t->t_cred = 0;
732 }
733 if (t->t_pdmsg) {
734 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
735 t->t_pdmsg = NULL;
736 }
737 if (audit_active)
738 audit_thread_free(t);
739 if (t->t_cldata) {
740 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
741 }
742 if (t->t_rprof != NULL) {
743 kmem_free(t->t_rprof, sizeof (*t->t_rprof));
744 t->t_rprof = NULL;
745 }
746 t->t_lockp = NULL; /* nothing should try to lock this thread now */
747 if (lwp)
748 lwp_freeregs(lwp, 0);
749 if (t->t_ctx)
750 freectx(t, 0);
751 t->t_stk = NULL;
752 if (lwp)
753 lwp_stk_fini(lwp);
754 lock_clear(&t->t_lock);
755
756 if (t->t_ts->ts_waiters > 0)
757 panic("thread_free: turnstile still active");
758
759 kmem_cache_free(turnstile_cache, t->t_ts);
760
761 free_afd(&t->t_activefd);
762
763 /*
764 * Barrier for the tick accounting code. The tick accounting code
765 * holds this lock to keep the thread from going away while it's
766 * looking at it.
767 */
768 thread_free_barrier(t);
769
770 ASSERT(ttoproj(t) == proj0p);
771 project_rele(ttoproj(t));
772
773 lgrp_affinity_free(&t->t_lgrp_affinity);
774
775 mutex_enter(&pidlock);
776 nthread--;
777 mutex_exit(&pidlock);
778
779 if (t->t_name != NULL) {
780 kmem_free(t->t_name, THREAD_NAME_MAX);
781 t->t_name = NULL;
782 }
783
784 /*
785 * Free thread, lwp and stack. This needs to be done carefully, since
786 * if T_TALLOCSTK is set, the thread is part of the stack.
787 */
788 t->t_lwp = NULL;
789 t->t_swap = NULL;
790
791 if (swap) {
792 segkp_release(segkp, swap);
793 }
794 if (lwp) {
795 kmem_cache_free(lwp_cache, lwp);
796 }
797 if (!allocstk) {
798 kmem_cache_free(thread_cache, t);
799 }
800 }
801
802 /*
803 * Removes threads associated with the given zone from a deathrow queue.
804 * tp is a pointer to the head of the deathrow queue, and countp is a
805 * pointer to the current deathrow count. Returns a linked list of
806 * threads removed from the list.
807 */
808 static kthread_t *
thread_zone_cleanup(kthread_t ** tp,int * countp,zoneid_t zoneid)809 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
810 {
811 kthread_t *tmp, *list = NULL;
812 cred_t *cr;
813
814 ASSERT(MUTEX_HELD(&reaplock));
815 while (*tp != NULL) {
816 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
817 tmp = *tp;
818 *tp = tmp->t_forw;
819 tmp->t_forw = list;
820 list = tmp;
821 (*countp)--;
822 } else {
823 tp = &(*tp)->t_forw;
824 }
825 }
826 return (list);
827 }
828
829 static void
thread_reap_list(kthread_t * t)830 thread_reap_list(kthread_t *t)
831 {
832 kthread_t *next;
833
834 while (t != NULL) {
835 next = t->t_forw;
836 thread_free(t);
837 t = next;
838 }
839 }
840
841 /* ARGSUSED */
842 static void
thread_zone_destroy(zoneid_t zoneid,void * unused)843 thread_zone_destroy(zoneid_t zoneid, void *unused)
844 {
845 kthread_t *t, *l;
846
847 mutex_enter(&reaplock);
848 /*
849 * Pull threads and lwps associated with zone off deathrow lists.
850 */
851 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
852 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
853 mutex_exit(&reaplock);
854
855 /*
856 * Guard against race condition in mutex_owner_running:
857 * thread=owner(mutex)
858 * <interrupt>
859 * thread exits mutex
860 * thread exits
861 * thread reaped
862 * thread struct freed
863 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
864 * A cross call to all cpus will cause the interrupt handler
865 * to reset the PC if it is in mutex_owner_running, refreshing
866 * stale thread pointers.
867 */
868 mutex_sync(); /* sync with mutex code */
869
870 /*
871 * Reap threads
872 */
873 thread_reap_list(t);
874
875 /*
876 * Reap lwps
877 */
878 thread_reap_list(l);
879 }
880
881 /*
882 * cleanup zombie threads that are on deathrow.
883 */
884 void
thread_reaper()885 thread_reaper()
886 {
887 kthread_t *t, *l;
888 callb_cpr_t cprinfo;
889
890 /*
891 * Register callback to clean up threads when zone is destroyed.
892 */
893 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
894
895 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
896 for (;;) {
897 mutex_enter(&reaplock);
898 while (thread_deathrow == NULL && lwp_deathrow == NULL) {
899 CALLB_CPR_SAFE_BEGIN(&cprinfo);
900 cv_wait(&reaper_cv, &reaplock);
901 CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
902 }
903 /*
904 * mutex_sync() needs to be called when reaping, but
905 * not too often. We limit reaping rate to once
906 * per second. Reaplimit is max rate at which threads can
907 * be freed. Does not impact thread destruction/creation.
908 */
909 t = thread_deathrow;
910 l = lwp_deathrow;
911 thread_deathrow = NULL;
912 lwp_deathrow = NULL;
913 thread_reapcnt = 0;
914 lwp_reapcnt = 0;
915 mutex_exit(&reaplock);
916
917 /*
918 * Guard against race condition in mutex_owner_running:
919 * thread=owner(mutex)
920 * <interrupt>
921 * thread exits mutex
922 * thread exits
923 * thread reaped
924 * thread struct freed
925 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
926 * A cross call to all cpus will cause the interrupt handler
927 * to reset the PC if it is in mutex_owner_running, refreshing
928 * stale thread pointers.
929 */
930 mutex_sync(); /* sync with mutex code */
931 /*
932 * Reap threads
933 */
934 thread_reap_list(t);
935
936 /*
937 * Reap lwps
938 */
939 thread_reap_list(l);
940 delay(hz);
941 }
942 }
943
944 /*
945 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
946 * thread_deathrow. The thread's state is changed already TS_FREE to indicate
947 * that is reapable. The thread already holds the reaplock, and was already
948 * freed.
949 */
950 void
reapq_move_lq_to_tq(kthread_t * t)951 reapq_move_lq_to_tq(kthread_t *t)
952 {
953 ASSERT(t->t_state == TS_FREE);
954 ASSERT(MUTEX_HELD(&reaplock));
955 t->t_forw = thread_deathrow;
956 thread_deathrow = t;
957 thread_reapcnt++;
958 if (lwp_reapcnt + thread_reapcnt > reaplimit)
959 cv_signal(&reaper_cv); /* wake the reaper */
960 }
961
962 /*
963 * This is called by resume() to put a zombie thread onto deathrow.
964 * The thread's state is changed to TS_FREE to indicate that is reapable.
965 * This is called from the idle thread so it must not block - just spin.
966 */
967 void
reapq_add(kthread_t * t)968 reapq_add(kthread_t *t)
969 {
970 mutex_enter(&reaplock);
971
972 /*
973 * lwp_deathrow contains threads with lwp linkage and
974 * swappable thread stacks which have the default stacksize.
975 * These threads' lwps and stacks may be reused by lwp_create().
976 *
977 * Anything else goes on thread_deathrow(), where it will eventually
978 * be thread_free()d.
979 */
980 if (t->t_flag & T_LWPREUSE) {
981 ASSERT(ttolwp(t) != NULL);
982 t->t_forw = lwp_deathrow;
983 lwp_deathrow = t;
984 lwp_reapcnt++;
985 } else {
986 t->t_forw = thread_deathrow;
987 thread_deathrow = t;
988 thread_reapcnt++;
989 }
990 if (lwp_reapcnt + thread_reapcnt > reaplimit)
991 cv_signal(&reaper_cv); /* wake the reaper */
992 t->t_state = TS_FREE;
993 lock_clear(&t->t_lock);
994
995 /*
996 * Before we return, we need to grab and drop the thread lock for
997 * the dead thread. At this point, the current thread is the idle
998 * thread, and the dead thread's CPU lock points to the current
999 * CPU -- and we must grab and drop the lock to synchronize with
1000 * a racing thread walking a blocking chain that the zombie thread
1001 * was recently in. By this point, that blocking chain is (by
1002 * definition) stale: the dead thread is not holding any locks, and
1003 * is therefore not in any blocking chains -- but if we do not regrab
1004 * our lock before freeing the dead thread's data structures, the
1005 * thread walking the (stale) blocking chain will die on memory
1006 * corruption when it attempts to drop the dead thread's lock. We
1007 * only need do this once because there is no way for the dead thread
1008 * to ever again be on a blocking chain: once we have grabbed and
1009 * dropped the thread lock, we are guaranteed that anyone that could
1010 * have seen this thread in a blocking chain can no longer see it.
1011 */
1012 thread_lock(t);
1013 thread_unlock(t);
1014
1015 mutex_exit(&reaplock);
1016 }
1017
1018 static struct ctxop *
ctxop_find_by_tmpl(kthread_t * t,const struct ctxop_template * ct,void * arg)1019 ctxop_find_by_tmpl(kthread_t *t, const struct ctxop_template *ct, void *arg)
1020 {
1021 struct ctxop *ctx, *head;
1022
1023 ASSERT(MUTEX_HELD(&t->t_ctx_lock));
1024 ASSERT(curthread->t_preempt > 0);
1025
1026 if (t->t_ctx == NULL) {
1027 return (NULL);
1028 }
1029
1030 ctx = head = t->t_ctx;
1031 do {
1032 if (ctx->save_op == ct->ct_save &&
1033 ctx->restore_op == ct->ct_restore &&
1034 ctx->fork_op == ct->ct_fork &&
1035 ctx->lwp_create_op == ct->ct_lwp_create &&
1036 ctx->exit_op == ct->ct_exit &&
1037 ctx->free_op == ct->ct_free &&
1038 ctx->arg == arg) {
1039 return (ctx);
1040 }
1041
1042 ctx = ctx->next;
1043 } while (ctx != head);
1044
1045 return (NULL);
1046 }
1047
1048 static void
ctxop_detach_chain(kthread_t * t,struct ctxop * ctx)1049 ctxop_detach_chain(kthread_t *t, struct ctxop *ctx)
1050 {
1051 ASSERT(t != NULL);
1052 ASSERT(t->t_ctx != NULL);
1053 ASSERT(ctx != NULL);
1054 ASSERT(ctx->next != NULL && ctx->prev != NULL);
1055
1056 ctx->prev->next = ctx->next;
1057 ctx->next->prev = ctx->prev;
1058 if (ctx->next == ctx) {
1059 /* last remaining item */
1060 t->t_ctx = NULL;
1061 } else if (ctx == t->t_ctx) {
1062 /* fix up head of list */
1063 t->t_ctx = ctx->next;
1064 }
1065 ctx->next = ctx->prev = NULL;
1066 }
1067
1068 struct ctxop *
ctxop_allocate(const struct ctxop_template * ct,void * arg)1069 ctxop_allocate(const struct ctxop_template *ct, void *arg)
1070 {
1071 struct ctxop *ctx;
1072
1073 /*
1074 * No changes have been made to the interface yet, so we expect all
1075 * callers to use the original revision.
1076 */
1077 VERIFY3U(ct->ct_rev, ==, CTXOP_TPL_REV);
1078
1079 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1080 ctx->save_op = ct->ct_save;
1081 ctx->restore_op = ct->ct_restore;
1082 ctx->fork_op = ct->ct_fork;
1083 ctx->lwp_create_op = ct->ct_lwp_create;
1084 ctx->exit_op = ct->ct_exit;
1085 ctx->free_op = ct->ct_free;
1086 ctx->arg = arg;
1087 ctx->save_ts = 0;
1088 ctx->restore_ts = 0;
1089 ctx->next = ctx->prev = NULL;
1090
1091 return (ctx);
1092 }
1093
1094 void
ctxop_free(struct ctxop * ctx)1095 ctxop_free(struct ctxop *ctx)
1096 {
1097 if (ctx->free_op != NULL)
1098 (ctx->free_op)(ctx->arg, 0);
1099
1100 kmem_free(ctx, sizeof (struct ctxop));
1101 }
1102
1103 void
ctxop_attach(kthread_t * t,struct ctxop * ctx)1104 ctxop_attach(kthread_t *t, struct ctxop *ctx)
1105 {
1106 ASSERT(ctx->next == NULL && ctx->prev == NULL);
1107
1108 /*
1109 * Keep ctxops in a doubly-linked list to allow traversal in both
1110 * directions. Using only the newest-to-oldest ordering was adequate
1111 * previously, but reversing the order for restore_op actions is
1112 * necessary if later-added ctxops depends on earlier ones.
1113 *
1114 * One example of such a dependency: Hypervisor software handling the
1115 * guest FPU expects that it save FPU state prior to host FPU handling
1116 * and consequently handle the guest logic _after_ the host FPU has
1117 * been restored.
1118 *
1119 * The t_ctx member points to the most recently added ctxop or is NULL
1120 * if no ctxops are associated with the thread. The 'next' pointers
1121 * form a loop of the ctxops in newest-to-oldest order. The 'prev'
1122 * pointers form a loop in the reverse direction, where t_ctx->prev is
1123 * the oldest entry associated with the thread.
1124 *
1125 * The protection of kpreempt_disable is required to safely perform the
1126 * list insertion, since there are inconsistent states between some of
1127 * the pointer assignments.
1128 */
1129 kpreempt_disable();
1130 if (t->t_ctx == NULL) {
1131 ctx->next = ctx;
1132 ctx->prev = ctx;
1133 } else {
1134 struct ctxop *head = t->t_ctx, *tail = t->t_ctx->prev;
1135
1136 ctx->next = head;
1137 ctx->prev = tail;
1138 head->prev = ctx;
1139 tail->next = ctx;
1140 }
1141 t->t_ctx = ctx;
1142 kpreempt_enable();
1143 }
1144
1145 void
ctxop_detach(kthread_t * t,struct ctxop * ctx)1146 ctxop_detach(kthread_t *t, struct ctxop *ctx)
1147 {
1148 /*
1149 * The incoming kthread_t (which is the thread for which the
1150 * context ops will be detached) should be one of the following:
1151 *
1152 * a) the current thread,
1153 *
1154 * b) a thread of a process that's being forked (SIDL),
1155 *
1156 * c) a thread that belongs to the same process as the current
1157 * thread and for which the current thread is the agent thread,
1158 *
1159 * d) a thread that is TS_STOPPED which is indicative of it
1160 * being (if curthread is not an agent) a thread being created
1161 * as part of an lwp creation.
1162 */
1163 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1164 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1165
1166 /*
1167 * Serialize modifications to t->t_ctx to prevent the agent thread
1168 * and the target thread from racing with each other during lwp exit.
1169 */
1170 mutex_enter(&t->t_ctx_lock);
1171 kpreempt_disable();
1172
1173 VERIFY(t->t_ctx != NULL);
1174
1175 #ifdef DEBUG
1176 /* Check that provided `ctx` is actually present in the t_ctx chain */
1177 struct ctxop *head, *cur;
1178 head = cur = t->t_ctx;
1179 for (;;) {
1180 if (cur == ctx) {
1181 break;
1182 }
1183 cur = cur->next;
1184 /* If we wrap, having not found `ctx`, this assert will fail */
1185 ASSERT3P(cur, !=, head);
1186 }
1187 #endif /* DEBUG */
1188
1189 ctxop_detach_chain(t, ctx);
1190
1191 mutex_exit(&t->t_ctx_lock);
1192 kpreempt_enable();
1193 }
1194
1195 void
ctxop_install(kthread_t * t,const struct ctxop_template * ct,void * arg)1196 ctxop_install(kthread_t *t, const struct ctxop_template *ct, void *arg)
1197 {
1198 ctxop_attach(t, ctxop_allocate(ct, arg));
1199 }
1200
1201 int
ctxop_remove(kthread_t * t,const struct ctxop_template * ct,void * arg)1202 ctxop_remove(kthread_t *t, const struct ctxop_template *ct, void *arg)
1203 {
1204 struct ctxop *ctx;
1205
1206 /*
1207 * ctxop_remove() shares the same requirements for the acted-upon thread
1208 * as ctxop_detach()
1209 */
1210 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1211 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1212
1213 /*
1214 * Serialize modifications to t->t_ctx to prevent the agent thread
1215 * and the target thread from racing with each other during lwp exit.
1216 */
1217 mutex_enter(&t->t_ctx_lock);
1218 kpreempt_disable();
1219
1220 ctx = ctxop_find_by_tmpl(t, ct, arg);
1221 if (ctx != NULL) {
1222 ctxop_detach_chain(t, ctx);
1223 ctxop_free(ctx);
1224 }
1225
1226 mutex_exit(&t->t_ctx_lock);
1227 kpreempt_enable();
1228
1229 if (ctx != NULL) {
1230 return (1);
1231 }
1232 return (0);
1233 }
1234
1235 void
savectx(kthread_t * t)1236 savectx(kthread_t *t)
1237 {
1238 ASSERT(t == curthread);
1239
1240 if (t->t_ctx != NULL) {
1241 struct ctxop *ctx, *head;
1242
1243 /* Forward traversal */
1244 ctx = head = t->t_ctx;
1245 do {
1246 if (ctx->save_op != NULL) {
1247 ctx->save_ts = gethrtime_unscaled();
1248 (ctx->save_op)(ctx->arg);
1249 }
1250 ctx = ctx->next;
1251 } while (ctx != head);
1252 }
1253 }
1254
1255 void
restorectx(kthread_t * t)1256 restorectx(kthread_t *t)
1257 {
1258 ASSERT(t == curthread);
1259
1260 if (t->t_ctx != NULL) {
1261 struct ctxop *ctx, *tail;
1262
1263 /* Backward traversal (starting at the tail) */
1264 ctx = tail = t->t_ctx->prev;
1265 do {
1266 if (ctx->restore_op != NULL) {
1267 ctx->restore_ts = gethrtime_unscaled();
1268 (ctx->restore_op)(ctx->arg);
1269 }
1270 ctx = ctx->prev;
1271 } while (ctx != tail);
1272 }
1273 }
1274
1275 void
forkctx(kthread_t * t,kthread_t * ct)1276 forkctx(kthread_t *t, kthread_t *ct)
1277 {
1278 if (t->t_ctx != NULL) {
1279 struct ctxop *ctx, *head;
1280
1281 /* Forward traversal */
1282 ctx = head = t->t_ctx;
1283 do {
1284 if (ctx->fork_op != NULL) {
1285 (ctx->fork_op)(t, ct);
1286 }
1287 ctx = ctx->next;
1288 } while (ctx != head);
1289 }
1290 }
1291
1292 /*
1293 * Note that this operator is only invoked via the _lwp_create
1294 * system call. The system may have other reasons to create lwps
1295 * e.g. the agent lwp or the doors unreferenced lwp.
1296 */
1297 void
lwp_createctx(kthread_t * t,kthread_t * ct)1298 lwp_createctx(kthread_t *t, kthread_t *ct)
1299 {
1300 if (t->t_ctx != NULL) {
1301 struct ctxop *ctx, *head;
1302
1303 /* Forward traversal */
1304 ctx = head = t->t_ctx;
1305 do {
1306 if (ctx->lwp_create_op != NULL) {
1307 (ctx->lwp_create_op)(t, ct);
1308 }
1309 ctx = ctx->next;
1310 } while (ctx != head);
1311 }
1312 }
1313
1314 /*
1315 * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1316 * needed when the thread/LWP leaves the processor for the last time. This
1317 * routine is not intended to deal with freeing memory; freectx() is used for
1318 * that purpose during thread_free(). This routine is provided to allow for
1319 * clean-up that can't wait until thread_free().
1320 */
1321 void
exitctx(kthread_t * t)1322 exitctx(kthread_t *t)
1323 {
1324 if (t->t_ctx != NULL) {
1325 struct ctxop *ctx, *head;
1326
1327 /* Forward traversal */
1328 ctx = head = t->t_ctx;
1329 do {
1330 if (ctx->exit_op != NULL) {
1331 (ctx->exit_op)(t);
1332 }
1333 ctx = ctx->next;
1334 } while (ctx != head);
1335 }
1336 }
1337
1338 /*
1339 * freectx is called from thread_free() and exec() to get
1340 * rid of old thread context ops.
1341 */
1342 void
freectx(kthread_t * t,int isexec)1343 freectx(kthread_t *t, int isexec)
1344 {
1345 kpreempt_disable();
1346 if (t->t_ctx != NULL) {
1347 struct ctxop *ctx, *head;
1348
1349 ctx = head = t->t_ctx;
1350 t->t_ctx = NULL;
1351 do {
1352 struct ctxop *next = ctx->next;
1353
1354 if (ctx->free_op != NULL) {
1355 (ctx->free_op)(ctx->arg, isexec);
1356 }
1357 kmem_free(ctx, sizeof (struct ctxop));
1358 ctx = next;
1359 } while (ctx != head);
1360 }
1361 kpreempt_enable();
1362 }
1363
1364 /*
1365 * freectx_ctx is called from lwp_create() when lwp is reused from
1366 * lwp_deathrow and its thread structure is added to thread_deathrow.
1367 * The thread structure to which this ctx was attached may be already
1368 * freed by the thread reaper so free_op implementations shouldn't rely
1369 * on thread structure to which this ctx was attached still being around.
1370 */
1371 void
freectx_ctx(struct ctxop * ctx)1372 freectx_ctx(struct ctxop *ctx)
1373 {
1374 struct ctxop *head = ctx;
1375
1376 ASSERT(ctx != NULL);
1377
1378 kpreempt_disable();
1379
1380 head = ctx;
1381 do {
1382 struct ctxop *next = ctx->next;
1383
1384 if (ctx->free_op != NULL) {
1385 (ctx->free_op)(ctx->arg, 0);
1386 }
1387 kmem_free(ctx, sizeof (struct ctxop));
1388 ctx = next;
1389 } while (ctx != head);
1390 kpreempt_enable();
1391 }
1392
1393 /*
1394 * Set the thread running; arrange for it to be swapped in if necessary.
1395 */
1396 void
setrun_locked(kthread_t * t)1397 setrun_locked(kthread_t *t)
1398 {
1399 ASSERT(THREAD_LOCK_HELD(t));
1400 if (t->t_state == TS_SLEEP) {
1401 /*
1402 * Take off sleep queue.
1403 */
1404 SOBJ_UNSLEEP(t->t_sobj_ops, t);
1405 } else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1406 /*
1407 * Already on dispatcher queue.
1408 */
1409 return;
1410 } else if (t->t_state == TS_WAIT) {
1411 waitq_setrun(t);
1412 } else if (t->t_state == TS_STOPPED) {
1413 /*
1414 * All of the sending of SIGCONT (TC_XSTART) and /proc
1415 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1416 * requested that the thread be run.
1417 * Just calling setrun() is not sufficient to set a stopped
1418 * thread running. TP_TXSTART is always set if the thread
1419 * is not stopped by a jobcontrol stop signal.
1420 * TP_TPSTART is always set if /proc is not controlling it.
1421 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1422 * The thread won't be stopped unless one of these
1423 * three mechanisms did it.
1424 *
1425 * These flags must be set before calling setrun_locked(t).
1426 * They can't be passed as arguments because the streams
1427 * code calls setrun() indirectly and the mechanism for
1428 * doing so admits only one argument. Note that the
1429 * thread must be locked in order to change t_schedflags.
1430 */
1431 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1432 return;
1433 /*
1434 * Process is no longer stopped (a thread is running).
1435 */
1436 t->t_whystop = 0;
1437 t->t_whatstop = 0;
1438 /*
1439 * Strictly speaking, we do not have to clear these
1440 * flags here; they are cleared on entry to stop().
1441 * However, they are confusing when doing kernel
1442 * debugging or when they are revealed by ps(1).
1443 */
1444 t->t_schedflag &= ~TS_ALLSTART;
1445 THREAD_TRANSITION(t); /* drop stopped-thread lock */
1446 ASSERT(t->t_lockp == &transition_lock);
1447 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1448 /*
1449 * Let the class put the process on the dispatcher queue.
1450 */
1451 CL_SETRUN(t);
1452 }
1453 }
1454
1455 void
setrun(kthread_t * t)1456 setrun(kthread_t *t)
1457 {
1458 thread_lock(t);
1459 setrun_locked(t);
1460 thread_unlock(t);
1461 }
1462
1463 /*
1464 * Unpin an interrupted thread.
1465 * When an interrupt occurs, the interrupt is handled on the stack
1466 * of an interrupt thread, taken from a pool linked to the CPU structure.
1467 *
1468 * When swtch() is switching away from an interrupt thread because it
1469 * blocked or was preempted, this routine is called to complete the
1470 * saving of the interrupted thread state, and returns the interrupted
1471 * thread pointer so it may be resumed.
1472 *
1473 * Called by swtch() only at high spl.
1474 */
1475 kthread_t *
thread_unpin()1476 thread_unpin()
1477 {
1478 kthread_t *t = curthread; /* current thread */
1479 kthread_t *itp; /* interrupted thread */
1480 int i; /* interrupt level */
1481 extern int intr_passivate();
1482
1483 ASSERT(t->t_intr != NULL);
1484
1485 itp = t->t_intr; /* interrupted thread */
1486 t->t_intr = NULL; /* clear interrupt ptr */
1487
1488 smt_end_intr();
1489
1490 /*
1491 * Get state from interrupt thread for the one
1492 * it interrupted.
1493 */
1494
1495 i = intr_passivate(t, itp);
1496
1497 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1498 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1499 i, t, t, itp, itp);
1500
1501 /*
1502 * Dissociate the current thread from the interrupted thread's LWP.
1503 */
1504 t->t_lwp = NULL;
1505
1506 /*
1507 * Interrupt handlers above the level that spinlocks block must
1508 * not block.
1509 */
1510 #if DEBUG
1511 if (i < 0 || i > LOCK_LEVEL)
1512 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1513 #endif
1514
1515 /*
1516 * Compute the CPU's base interrupt level based on the active
1517 * interrupts.
1518 */
1519 ASSERT(CPU->cpu_intr_actv & (1 << i));
1520 set_base_spl();
1521
1522 return (itp);
1523 }
1524
1525 /*
1526 * Create and initialize an interrupt thread.
1527 * Returns non-zero on error.
1528 * Called at spl7() or better.
1529 */
1530 void
thread_create_intr(struct cpu * cp)1531 thread_create_intr(struct cpu *cp)
1532 {
1533 kthread_t *tp;
1534
1535 tp = thread_create(NULL, 0,
1536 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1537
1538 /*
1539 * Set the thread in the TS_FREE state. The state will change
1540 * to TS_ONPROC only while the interrupt is active. Think of these
1541 * as being on a private free list for the CPU. Being TS_FREE keeps
1542 * inactive interrupt threads out of debugger thread lists.
1543 *
1544 * We cannot call thread_create with TS_FREE because of the current
1545 * checks there for ONPROC. Fix this when thread_create takes flags.
1546 */
1547 THREAD_FREEINTR(tp, cp);
1548
1549 /*
1550 * Nobody should ever reference the credentials of an interrupt
1551 * thread so make it NULL to catch any such references.
1552 */
1553 tp->t_cred = NULL;
1554 tp->t_flag |= T_INTR_THREAD;
1555 tp->t_cpu = cp;
1556 tp->t_bound_cpu = cp;
1557 tp->t_disp_queue = cp->cpu_disp;
1558 tp->t_affinitycnt = 1;
1559 tp->t_preempt = 1;
1560
1561 /*
1562 * Don't make a user-requested binding on this thread so that
1563 * the processor can be offlined.
1564 */
1565 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */
1566 tp->t_bind_pset = PS_NONE;
1567
1568 #if defined(__x86)
1569 tp->t_stk -= STACK_ALIGN;
1570 *(tp->t_stk) = 0; /* terminate intr thread stack */
1571 #endif
1572
1573 /*
1574 * Link onto CPU's interrupt pool.
1575 */
1576 tp->t_link = cp->cpu_intr_thread;
1577 cp->cpu_intr_thread = tp;
1578 }
1579
1580 /*
1581 * TSD -- THREAD SPECIFIC DATA
1582 */
1583 static kmutex_t tsd_mutex; /* linked list spin lock */
1584 static uint_t tsd_nkeys; /* size of destructor array */
1585 /* per-key destructor funcs */
1586 static void (**tsd_destructor)(void *);
1587 /* list of tsd_thread's */
1588 static struct tsd_thread *tsd_list;
1589
1590 /*
1591 * Default destructor
1592 * Needed because NULL destructor means that the key is unused
1593 */
1594 /* ARGSUSED */
1595 void
tsd_defaultdestructor(void * value)1596 tsd_defaultdestructor(void *value)
1597 {}
1598
1599 /*
1600 * Create a key (index into per thread array)
1601 * Locks out tsd_create, tsd_destroy, and tsd_exit
1602 * May allocate memory with lock held
1603 */
1604 void
tsd_create(uint_t * keyp,void (* destructor)(void *))1605 tsd_create(uint_t *keyp, void (*destructor)(void *))
1606 {
1607 int i;
1608 uint_t nkeys;
1609
1610 /*
1611 * if key is allocated, do nothing
1612 */
1613 mutex_enter(&tsd_mutex);
1614 if (*keyp) {
1615 mutex_exit(&tsd_mutex);
1616 return;
1617 }
1618 /*
1619 * find an unused key
1620 */
1621 if (destructor == NULL)
1622 destructor = tsd_defaultdestructor;
1623
1624 for (i = 0; i < tsd_nkeys; ++i)
1625 if (tsd_destructor[i] == NULL)
1626 break;
1627
1628 /*
1629 * if no unused keys, increase the size of the destructor array
1630 */
1631 if (i == tsd_nkeys) {
1632 if ((nkeys = (tsd_nkeys << 1)) == 0)
1633 nkeys = 1;
1634 tsd_destructor =
1635 (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1636 (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1637 (size_t)(nkeys * sizeof (void (*)(void *))));
1638 tsd_nkeys = nkeys;
1639 }
1640
1641 /*
1642 * allocate the next available unused key
1643 */
1644 tsd_destructor[i] = destructor;
1645 *keyp = i + 1;
1646 mutex_exit(&tsd_mutex);
1647 }
1648
1649 /*
1650 * Destroy a key -- this is for unloadable modules
1651 *
1652 * Assumes that the caller is preventing tsd_set and tsd_get
1653 * Locks out tsd_create, tsd_destroy, and tsd_exit
1654 * May free memory with lock held
1655 */
1656 void
tsd_destroy(uint_t * keyp)1657 tsd_destroy(uint_t *keyp)
1658 {
1659 uint_t key;
1660 struct tsd_thread *tsd;
1661
1662 /*
1663 * protect the key namespace and our destructor lists
1664 */
1665 mutex_enter(&tsd_mutex);
1666 key = *keyp;
1667 *keyp = 0;
1668
1669 ASSERT(key <= tsd_nkeys);
1670
1671 /*
1672 * if the key is valid
1673 */
1674 if (key != 0) {
1675 uint_t k = key - 1;
1676 /*
1677 * for every thread with TSD, call key's destructor
1678 */
1679 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1680 /*
1681 * no TSD for key in this thread
1682 */
1683 if (key > tsd->ts_nkeys)
1684 continue;
1685 /*
1686 * call destructor for key
1687 */
1688 if (tsd->ts_value[k] && tsd_destructor[k])
1689 (*tsd_destructor[k])(tsd->ts_value[k]);
1690 /*
1691 * reset value for key
1692 */
1693 tsd->ts_value[k] = NULL;
1694 }
1695 /*
1696 * actually free the key (NULL destructor == unused)
1697 */
1698 tsd_destructor[k] = NULL;
1699 }
1700
1701 mutex_exit(&tsd_mutex);
1702 }
1703
1704 /*
1705 * Quickly return the per thread value that was stored with the specified key
1706 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1707 */
1708 void *
tsd_get(uint_t key)1709 tsd_get(uint_t key)
1710 {
1711 return (tsd_agent_get(curthread, key));
1712 }
1713
1714 /*
1715 * Set a per thread value indexed with the specified key
1716 */
1717 int
tsd_set(uint_t key,void * value)1718 tsd_set(uint_t key, void *value)
1719 {
1720 return (tsd_agent_set(curthread, key, value));
1721 }
1722
1723 /*
1724 * Like tsd_get(), except that the agent lwp can get the tsd of
1725 * another thread in the same process (the agent thread only runs when the
1726 * process is completely stopped by /proc), or syslwp is creating a new lwp.
1727 */
1728 void *
tsd_agent_get(kthread_t * t,uint_t key)1729 tsd_agent_get(kthread_t *t, uint_t key)
1730 {
1731 struct tsd_thread *tsd = t->t_tsd;
1732
1733 ASSERT(t == curthread ||
1734 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1735
1736 if (key && tsd != NULL && key <= tsd->ts_nkeys)
1737 return (tsd->ts_value[key - 1]);
1738 return (NULL);
1739 }
1740
1741 /*
1742 * Like tsd_set(), except that the agent lwp can set the tsd of
1743 * another thread in the same process, or syslwp can set the tsd
1744 * of a thread it's in the middle of creating.
1745 *
1746 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1747 * May lock out tsd_destroy (and tsd_create), may allocate memory with
1748 * lock held
1749 */
1750 int
tsd_agent_set(kthread_t * t,uint_t key,void * value)1751 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1752 {
1753 struct tsd_thread *tsd = t->t_tsd;
1754
1755 ASSERT(t == curthread ||
1756 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1757
1758 if (key == 0)
1759 return (EINVAL);
1760 if (tsd == NULL)
1761 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1762 if (key <= tsd->ts_nkeys) {
1763 tsd->ts_value[key - 1] = value;
1764 return (0);
1765 }
1766
1767 ASSERT(key <= tsd_nkeys);
1768
1769 /*
1770 * lock out tsd_destroy()
1771 */
1772 mutex_enter(&tsd_mutex);
1773 if (tsd->ts_nkeys == 0) {
1774 /*
1775 * Link onto list of threads with TSD
1776 */
1777 if ((tsd->ts_next = tsd_list) != NULL)
1778 tsd_list->ts_prev = tsd;
1779 tsd_list = tsd;
1780 }
1781
1782 /*
1783 * Allocate thread local storage and set the value for key
1784 */
1785 tsd->ts_value = tsd_realloc(tsd->ts_value,
1786 tsd->ts_nkeys * sizeof (void *),
1787 key * sizeof (void *));
1788 tsd->ts_nkeys = key;
1789 tsd->ts_value[key - 1] = value;
1790 mutex_exit(&tsd_mutex);
1791
1792 return (0);
1793 }
1794
1795
1796 /*
1797 * Return the per thread value that was stored with the specified key
1798 * If necessary, create the key and the value
1799 * Assumes the caller is protecting *keyp from tsd_destroy
1800 */
1801 void *
tsd_getcreate(uint_t * keyp,void (* destroy)(void *),void * (* allocate)(void))1802 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1803 {
1804 void *value;
1805 uint_t key = *keyp;
1806 struct tsd_thread *tsd = curthread->t_tsd;
1807
1808 if (tsd == NULL)
1809 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1810 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1811 return (value);
1812 if (key == 0)
1813 tsd_create(keyp, destroy);
1814 (void) tsd_set(*keyp, value = (*allocate)());
1815
1816 return (value);
1817 }
1818
1819 /*
1820 * Called from thread_exit() to run the destructor function for each tsd
1821 * Locks out tsd_create and tsd_destroy
1822 * Assumes that the destructor *DOES NOT* use tsd
1823 */
1824 void
tsd_exit(void)1825 tsd_exit(void)
1826 {
1827 int i;
1828 struct tsd_thread *tsd = curthread->t_tsd;
1829
1830 if (tsd == NULL)
1831 return;
1832
1833 if (tsd->ts_nkeys == 0) {
1834 kmem_free(tsd, sizeof (*tsd));
1835 curthread->t_tsd = NULL;
1836 return;
1837 }
1838
1839 /*
1840 * lock out tsd_create and tsd_destroy, call
1841 * the destructor, and mark the value as destroyed.
1842 */
1843 mutex_enter(&tsd_mutex);
1844
1845 for (i = 0; i < tsd->ts_nkeys; i++) {
1846 if (tsd->ts_value[i] && tsd_destructor[i])
1847 (*tsd_destructor[i])(tsd->ts_value[i]);
1848 tsd->ts_value[i] = NULL;
1849 }
1850
1851 /*
1852 * remove from linked list of threads with TSD
1853 */
1854 if (tsd->ts_next)
1855 tsd->ts_next->ts_prev = tsd->ts_prev;
1856 if (tsd->ts_prev)
1857 tsd->ts_prev->ts_next = tsd->ts_next;
1858 if (tsd_list == tsd)
1859 tsd_list = tsd->ts_next;
1860
1861 mutex_exit(&tsd_mutex);
1862
1863 /*
1864 * free up the TSD
1865 */
1866 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1867 kmem_free(tsd, sizeof (struct tsd_thread));
1868 curthread->t_tsd = NULL;
1869 }
1870
1871 /*
1872 * realloc
1873 */
1874 static void *
tsd_realloc(void * old,size_t osize,size_t nsize)1875 tsd_realloc(void *old, size_t osize, size_t nsize)
1876 {
1877 void *new;
1878
1879 new = kmem_zalloc(nsize, KM_SLEEP);
1880 if (old) {
1881 bcopy(old, new, osize);
1882 kmem_free(old, osize);
1883 }
1884 return (new);
1885 }
1886
1887 /*
1888 * Return non-zero if an interrupt is being serviced.
1889 */
1890 int
servicing_interrupt()1891 servicing_interrupt()
1892 {
1893 int onintr = 0;
1894
1895 /* Are we an interrupt thread */
1896 if (curthread->t_flag & T_INTR_THREAD)
1897 return (1);
1898 /* Are we servicing a high level interrupt? */
1899 if (CPU_ON_INTR(CPU)) {
1900 kpreempt_disable();
1901 onintr = CPU_ON_INTR(CPU);
1902 kpreempt_enable();
1903 }
1904 return (onintr);
1905 }
1906
1907
1908 /*
1909 * Change the dispatch priority of a thread in the system.
1910 * Used when raising or lowering a thread's priority.
1911 * (E.g., priority inheritance)
1912 *
1913 * Since threads are queued according to their priority, we
1914 * we must check the thread's state to determine whether it
1915 * is on a queue somewhere. If it is, we've got to:
1916 *
1917 * o Dequeue the thread.
1918 * o Change its effective priority.
1919 * o Enqueue the thread.
1920 *
1921 * Assumptions: The thread whose priority we wish to change
1922 * must be locked before we call thread_change_(e)pri().
1923 * The thread_change(e)pri() function doesn't drop the thread
1924 * lock--that must be done by its caller.
1925 */
1926 void
thread_change_epri(kthread_t * t,pri_t disp_pri)1927 thread_change_epri(kthread_t *t, pri_t disp_pri)
1928 {
1929 uint_t state;
1930
1931 ASSERT(THREAD_LOCK_HELD(t));
1932
1933 /*
1934 * If the inherited priority hasn't actually changed,
1935 * just return.
1936 */
1937 if (t->t_epri == disp_pri)
1938 return;
1939
1940 state = t->t_state;
1941
1942 /*
1943 * If it's not on a queue, change the priority with impunity.
1944 */
1945 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1946 t->t_epri = disp_pri;
1947 if (state == TS_ONPROC) {
1948 cpu_t *cp = t->t_disp_queue->disp_cpu;
1949
1950 if (t == cp->cpu_dispthread)
1951 cp->cpu_dispatch_pri = DISP_PRIO(t);
1952 }
1953 } else if (state == TS_SLEEP) {
1954 /*
1955 * Take the thread out of its sleep queue.
1956 * Change the inherited priority.
1957 * Re-enqueue the thread.
1958 * Each synchronization object exports a function
1959 * to do this in an appropriate manner.
1960 */
1961 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1962 } else if (state == TS_WAIT) {
1963 /*
1964 * Re-enqueue a thread on the wait queue if its
1965 * effective priority needs to change.
1966 */
1967 if (disp_pri != t->t_epri)
1968 waitq_change_pri(t, disp_pri);
1969 } else {
1970 /*
1971 * The thread is on a run queue.
1972 * Note: setbackdq() may not put the thread
1973 * back on the same run queue where it originally
1974 * resided.
1975 */
1976 (void) dispdeq(t);
1977 t->t_epri = disp_pri;
1978 setbackdq(t);
1979 }
1980 schedctl_set_cidpri(t);
1981 }
1982
1983 /*
1984 * Function: Change the t_pri field of a thread.
1985 * Side Effects: Adjust the thread ordering on a run queue
1986 * or sleep queue, if necessary.
1987 * Returns: 1 if the thread was on a run queue, else 0.
1988 */
1989 int
thread_change_pri(kthread_t * t,pri_t disp_pri,int front)1990 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1991 {
1992 uint_t state;
1993 int on_rq = 0;
1994
1995 ASSERT(THREAD_LOCK_HELD(t));
1996
1997 state = t->t_state;
1998 THREAD_WILLCHANGE_PRI(t, disp_pri);
1999
2000 /*
2001 * If it's not on a queue, change the priority with impunity.
2002 */
2003 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
2004 t->t_pri = disp_pri;
2005
2006 if (state == TS_ONPROC) {
2007 cpu_t *cp = t->t_disp_queue->disp_cpu;
2008
2009 if (t == cp->cpu_dispthread)
2010 cp->cpu_dispatch_pri = DISP_PRIO(t);
2011 }
2012 } else if (state == TS_SLEEP) {
2013 /*
2014 * If the priority has changed, take the thread out of
2015 * its sleep queue and change the priority.
2016 * Re-enqueue the thread.
2017 * Each synchronization object exports a function
2018 * to do this in an appropriate manner.
2019 */
2020 if (disp_pri != t->t_pri)
2021 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
2022 } else if (state == TS_WAIT) {
2023 /*
2024 * Re-enqueue a thread on the wait queue if its
2025 * priority needs to change.
2026 */
2027 if (disp_pri != t->t_pri)
2028 waitq_change_pri(t, disp_pri);
2029 } else {
2030 /*
2031 * The thread is on a run queue.
2032 * Note: setbackdq() may not put the thread
2033 * back on the same run queue where it originally
2034 * resided.
2035 *
2036 * We still requeue the thread even if the priority
2037 * is unchanged to preserve round-robin (and other)
2038 * effects between threads of the same priority.
2039 */
2040 on_rq = dispdeq(t);
2041 ASSERT(on_rq);
2042 t->t_pri = disp_pri;
2043 if (front) {
2044 setfrontdq(t);
2045 } else {
2046 setbackdq(t);
2047 }
2048 }
2049 schedctl_set_cidpri(t);
2050 return (on_rq);
2051 }
2052
2053 /*
2054 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
2055 * specific pattern.
2056 */
2057 static void
stkinfo_begin(kthread_t * t)2058 stkinfo_begin(kthread_t *t)
2059 {
2060 caddr_t start; /* stack start */
2061 caddr_t end; /* stack end */
2062 uint64_t *ptr; /* pattern pointer */
2063
2064 /*
2065 * Stack grows up or down, see thread_create(),
2066 * compute stack memory area start and end (start < end).
2067 */
2068 if (t->t_stk > t->t_stkbase) {
2069 /* stack grows down */
2070 start = t->t_stkbase;
2071 end = t->t_stk;
2072 } else {
2073 /* stack grows up */
2074 start = t->t_stk;
2075 end = t->t_stkbase;
2076 }
2077
2078 /*
2079 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
2080 * alignement for start and end in stack area boundaries
2081 * (protection against corrupt t_stkbase/t_stk data).
2082 */
2083 if ((((uintptr_t)start) & 0x7) != 0) {
2084 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
2085 }
2086 end = (caddr_t)(((uintptr_t)end) & (~0x7));
2087
2088 if ((end <= start) || (end - start) > (1024 * 1024)) {
2089 /* negative or stack size > 1 meg, assume bogus */
2090 return;
2091 }
2092
2093 /* fill stack area with a pattern (instead of zeros) */
2094 ptr = (uint64_t *)((void *)start);
2095 while (ptr < (uint64_t *)((void *)end)) {
2096 *ptr++ = KMEM_STKINFO_PATTERN;
2097 }
2098 }
2099
2100
2101 /*
2102 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
2103 * compute the percentage of kernel stack really used, and set in the log
2104 * if it's the latest highest percentage.
2105 */
2106 static void
stkinfo_end(kthread_t * t)2107 stkinfo_end(kthread_t *t)
2108 {
2109 caddr_t start; /* stack start */
2110 caddr_t end; /* stack end */
2111 uint64_t *ptr; /* pattern pointer */
2112 size_t stksz; /* stack size */
2113 size_t smallest = 0;
2114 size_t percent = 0;
2115 uint_t index = 0;
2116 uint_t i;
2117 static size_t smallest_percent = (size_t)-1;
2118 static uint_t full = 0;
2119
2120 /* create the stackinfo log, if doesn't already exist */
2121 mutex_enter(&kmem_stkinfo_lock);
2122 if (kmem_stkinfo_log == NULL) {
2123 kmem_stkinfo_log = (kmem_stkinfo_t *)
2124 kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
2125 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
2126 if (kmem_stkinfo_log == NULL) {
2127 mutex_exit(&kmem_stkinfo_lock);
2128 return;
2129 }
2130 }
2131 mutex_exit(&kmem_stkinfo_lock);
2132
2133 /*
2134 * Stack grows up or down, see thread_create(),
2135 * compute stack memory area start and end (start < end).
2136 */
2137 if (t->t_stk > t->t_stkbase) {
2138 /* stack grows down */
2139 start = t->t_stkbase;
2140 end = t->t_stk;
2141 } else {
2142 /* stack grows up */
2143 start = t->t_stk;
2144 end = t->t_stkbase;
2145 }
2146
2147 /* stack size as found in kthread_t */
2148 stksz = end - start;
2149
2150 /*
2151 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
2152 * alignement for start and end in stack area boundaries
2153 * (protection against corrupt t_stkbase/t_stk data).
2154 */
2155 if ((((uintptr_t)start) & 0x7) != 0) {
2156 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
2157 }
2158 end = (caddr_t)(((uintptr_t)end) & (~0x7));
2159
2160 if ((end <= start) || (end - start) > (1024 * 1024)) {
2161 /* negative or stack size > 1 meg, assume bogus */
2162 return;
2163 }
2164
2165 /* search until no pattern in the stack */
2166 if (t->t_stk > t->t_stkbase) {
2167 /* stack grows down */
2168 #if defined(__x86)
2169 /*
2170 * 6 longs are pushed on stack, see thread_load(). Skip
2171 * them, so if kthread has never run, percent is zero.
2172 * 8 bytes alignement is preserved for a 32 bit kernel,
2173 * 6 x 4 = 24, 24 is a multiple of 8.
2174 *
2175 */
2176 end -= (6 * sizeof (long));
2177 #endif
2178 ptr = (uint64_t *)((void *)start);
2179 while (ptr < (uint64_t *)((void *)end)) {
2180 if (*ptr != KMEM_STKINFO_PATTERN) {
2181 percent = stkinfo_percent(end,
2182 start, (caddr_t)ptr);
2183 break;
2184 }
2185 ptr++;
2186 }
2187 } else {
2188 /* stack grows up */
2189 ptr = (uint64_t *)((void *)end);
2190 ptr--;
2191 while (ptr >= (uint64_t *)((void *)start)) {
2192 if (*ptr != KMEM_STKINFO_PATTERN) {
2193 percent = stkinfo_percent(start,
2194 end, (caddr_t)ptr);
2195 break;
2196 }
2197 ptr--;
2198 }
2199 }
2200
2201 DTRACE_PROBE3(stack__usage, kthread_t *, t,
2202 size_t, stksz, size_t, percent);
2203
2204 if (percent == 0) {
2205 return;
2206 }
2207
2208 mutex_enter(&kmem_stkinfo_lock);
2209 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2210 /*
2211 * The log is full and already contains the highest values
2212 */
2213 mutex_exit(&kmem_stkinfo_lock);
2214 return;
2215 }
2216
2217 /* keep a log of the highest used stack */
2218 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2219 if (kmem_stkinfo_log[i].percent == 0) {
2220 index = i;
2221 full++;
2222 break;
2223 }
2224 if (smallest == 0) {
2225 smallest = kmem_stkinfo_log[i].percent;
2226 index = i;
2227 continue;
2228 }
2229 if (kmem_stkinfo_log[i].percent < smallest) {
2230 smallest = kmem_stkinfo_log[i].percent;
2231 index = i;
2232 }
2233 }
2234
2235 if (percent >= kmem_stkinfo_log[index].percent) {
2236 kmem_stkinfo_log[index].kthread = (caddr_t)t;
2237 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2238 kmem_stkinfo_log[index].start = start;
2239 kmem_stkinfo_log[index].stksz = stksz;
2240 kmem_stkinfo_log[index].percent = percent;
2241 kmem_stkinfo_log[index].t_tid = t->t_tid;
2242 kmem_stkinfo_log[index].cmd[0] = '\0';
2243 if (t->t_tid != 0) {
2244 stksz = strlen((t->t_procp)->p_user.u_comm);
2245 if (stksz >= KMEM_STKINFO_STR_SIZE) {
2246 stksz = KMEM_STKINFO_STR_SIZE - 1;
2247 kmem_stkinfo_log[index].cmd[stksz] = '\0';
2248 } else {
2249 stksz += 1;
2250 }
2251 (void) memcpy(kmem_stkinfo_log[index].cmd,
2252 (t->t_procp)->p_user.u_comm, stksz);
2253 }
2254 if (percent < smallest_percent) {
2255 smallest_percent = percent;
2256 }
2257 }
2258 mutex_exit(&kmem_stkinfo_lock);
2259 }
2260
2261 /*
2262 * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2263 */
2264 static size_t
stkinfo_percent(caddr_t t_stk,caddr_t t_stkbase,caddr_t sp)2265 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2266 {
2267 size_t percent;
2268 size_t s;
2269
2270 if (t_stk > t_stkbase) {
2271 /* stack grows down */
2272 if (sp > t_stk) {
2273 return (0);
2274 }
2275 if (sp < t_stkbase) {
2276 return (100);
2277 }
2278 percent = t_stk - sp + 1;
2279 s = t_stk - t_stkbase + 1;
2280 } else {
2281 /* stack grows up */
2282 if (sp < t_stk) {
2283 return (0);
2284 }
2285 if (sp > t_stkbase) {
2286 return (100);
2287 }
2288 percent = sp - t_stk + 1;
2289 s = t_stkbase - t_stk + 1;
2290 }
2291 percent = ((100 * percent) / s) + 1;
2292 if (percent > 100) {
2293 percent = 100;
2294 }
2295 return (percent);
2296 }
2297
2298 /*
2299 * NOTE: This will silently truncate a name > THREAD_NAME_MAX - 1 characters
2300 * long. It is expected that callers (acting on behalf of userland clients)
2301 * will perform any required checks to return the correct error semantics.
2302 * It is also expected callers on behalf of userland clients have done
2303 * any necessary permission checks.
2304 */
2305 int
thread_setname(kthread_t * t,const char * name)2306 thread_setname(kthread_t *t, const char *name)
2307 {
2308 char *buf = NULL;
2309
2310 /*
2311 * We optimistically assume that a thread's name will only be set
2312 * once and so allocate memory in preparation of setting t_name.
2313 * If it turns out a name has already been set, we just discard (free)
2314 * the buffer we just allocated and reuse the current buffer
2315 * (as all should be THREAD_NAME_MAX large).
2316 *
2317 * Such an arrangement means over the lifetime of a kthread_t, t_name
2318 * is either NULL or has one value (the address of the buffer holding
2319 * the current thread name). The assumption is that most kthread_t
2320 * instances will not have a name assigned, so dynamically allocating
2321 * the memory should minimize the footprint of this feature, but by
2322 * having the buffer persist for the life of the thread, it simplifies
2323 * usage in highly constrained situations (e.g. dtrace).
2324 */
2325 if (name != NULL && name[0] != '\0') {
2326 for (size_t i = 0; name[i] != '\0'; i++) {
2327 if (!isprint(name[i]))
2328 return (EINVAL);
2329 }
2330
2331 buf = kmem_zalloc(THREAD_NAME_MAX, KM_SLEEP);
2332 (void) strlcpy(buf, name, THREAD_NAME_MAX);
2333 }
2334
2335 mutex_enter(&ttoproc(t)->p_lock);
2336 if (t->t_name == NULL) {
2337 t->t_name = buf;
2338 } else {
2339 if (buf != NULL) {
2340 (void) strlcpy(t->t_name, name, THREAD_NAME_MAX);
2341 kmem_free(buf, THREAD_NAME_MAX);
2342 } else {
2343 bzero(t->t_name, THREAD_NAME_MAX);
2344 }
2345 }
2346 mutex_exit(&ttoproc(t)->p_lock);
2347 return (0);
2348 }
2349
2350 int
thread_vsetname(kthread_t * t,const char * fmt,...)2351 thread_vsetname(kthread_t *t, const char *fmt, ...)
2352 {
2353 char name[THREAD_NAME_MAX];
2354 va_list va;
2355 int rc;
2356
2357 va_start(va, fmt);
2358 rc = vsnprintf(name, sizeof (name), fmt, va);
2359 va_end(va);
2360
2361 if (rc < 0)
2362 return (EINVAL);
2363
2364 if (rc >= sizeof (name))
2365 return (ENAMETOOLONG);
2366
2367 return (thread_setname(t, name));
2368 }
2369