1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7 *
8 * This code is derived from the Stanford/CMU enet packet filter,
9 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11 * Berkeley Laboratory.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 #include "opt_bpf.h"
40 #include "opt_netgraph.h"
41
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/fcntl.h>
46 #include <sys/jail.h>
47 #include <sys/ktr.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/mutex.h>
52 #include <sys/time.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/filio.h>
57 #include <sys/sockio.h>
58 #include <sys/ttycom.h>
59 #include <sys/uio.h>
60 #include <sys/sysent.h>
61 #include <sys/systm.h>
62
63 #include <sys/event.h>
64 #include <sys/file.h>
65 #include <sys/poll.h>
66 #include <sys/proc.h>
67
68 #include <sys/socket.h>
69
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_private.h>
73 #include <net/if_vlan_var.h>
74 #include <net/if_dl.h>
75 #include <net/bpf.h>
76 #include <net/bpf_buffer.h>
77 #ifdef BPF_JITTER
78 #include <net/bpf_jitter.h>
79 #endif
80 #include <net/bpf_zerocopy.h>
81 #include <net/bpfdesc.h>
82 #include <net/route.h>
83 #include <net/vnet.h>
84
85 #include <netinet/in.h>
86 #include <netinet/if_ether.h>
87 #include <sys/kernel.h>
88 #include <sys/sysctl.h>
89
90 #include <net80211/ieee80211_freebsd.h>
91
92 #include <security/mac/mac_framework.h>
93
94 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
95
96 static const struct bpfd_list dead_bpf_if = CK_LIST_HEAD_INITIALIZER();
97
98 struct bpf_if {
99 struct bpfd_list bif_dlist; /* list of all interfaces */
100 LIST_ENTRY(bpf_if) bif_next; /* descriptor list */
101 u_int bif_dlt; /* link layer type */
102 u_int bif_hdrlen; /* length of link header */
103 struct bpfd_list bif_wlist; /* writer-only list */
104 struct ifnet *bif_ifp; /* corresponding interface */
105 struct bpf_if **bif_bpf; /* Pointer to pointer to us */
106 volatile u_int bif_refcnt;
107 struct epoch_context epoch_ctx;
108 };
109
110 /* See bpf_peers_present() in bpf.h. */
111 _Static_assert(offsetof(struct bpf_if, bif_dlist) == 0,
112 "bpf_if shall start with bif_dlist");
113
114 struct bpf_program_buffer {
115 struct epoch_context epoch_ctx;
116 #ifdef BPF_JITTER
117 bpf_jit_filter *func;
118 #endif
119 void *buffer[0];
120 };
121
122 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
123
124 #define PRINET 26 /* interruptible */
125 #define BPF_PRIO_MAX 7
126
127 #define SIZEOF_BPF_HDR(type) \
128 (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
129
130 #ifdef COMPAT_FREEBSD32
131 #include <sys/mount.h>
132 #include <compat/freebsd32/freebsd32.h>
133 #define BPF_ALIGNMENT32 sizeof(int32_t)
134 #define BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
135
136 #ifndef BURN_BRIDGES
137 /*
138 * 32-bit version of structure prepended to each packet. We use this header
139 * instead of the standard one for 32-bit streams. We mark the a stream as
140 * 32-bit the first time we see a 32-bit compat ioctl request.
141 */
142 struct bpf_hdr32 {
143 struct timeval32 bh_tstamp; /* time stamp */
144 uint32_t bh_caplen; /* length of captured portion */
145 uint32_t bh_datalen; /* original length of packet */
146 uint16_t bh_hdrlen; /* length of bpf header (this struct
147 plus alignment padding) */
148 };
149 #endif
150
151 struct bpf_program32 {
152 u_int bf_len;
153 uint32_t bf_insns;
154 };
155
156 struct bpf_dltlist32 {
157 u_int bfl_len;
158 u_int bfl_list;
159 };
160
161 #define BIOCSETF32 _IOW('B', 103, struct bpf_program32)
162 #define BIOCSRTIMEOUT32 _IOW('B', 109, struct timeval32)
163 #define BIOCGRTIMEOUT32 _IOR('B', 110, struct timeval32)
164 #define BIOCGDLTLIST32 _IOWR('B', 121, struct bpf_dltlist32)
165 #define BIOCSETWF32 _IOW('B', 123, struct bpf_program32)
166 #define BIOCSETFNR32 _IOW('B', 130, struct bpf_program32)
167 #endif
168
169 #define BPF_LOCK() sx_xlock(&bpf_sx)
170 #define BPF_UNLOCK() sx_xunlock(&bpf_sx)
171 #define BPF_LOCK_ASSERT() sx_assert(&bpf_sx, SA_XLOCKED)
172 /*
173 * bpf_iflist is a list of BPF interface structures, each corresponding to a
174 * specific DLT. The same network interface might have several BPF interface
175 * structures registered by different layers in the stack (i.e., 802.11
176 * frames, ethernet frames, etc).
177 */
178 LIST_HEAD(bpf_iflist, bpf_if);
179 static struct bpf_iflist bpf_iflist = LIST_HEAD_INITIALIZER();
180 static struct sx bpf_sx; /* bpf global lock */
181
182 static void bpfif_ref(struct bpf_if *);
183 static void bpfif_rele(struct bpf_if *);
184
185 static void bpfd_ref(struct bpf_d *);
186 static void bpfd_rele(struct bpf_d *);
187 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
188 static void bpf_detachd(struct bpf_d *, bool);
189 static void bpfd_free(epoch_context_t);
190 static int bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
191 struct sockaddr *, int *, struct bpf_d *);
192 static int bpf_setif(struct bpf_d *, struct ifreq *);
193 static void bpf_timed_out(void *);
194 static __inline void
195 bpf_wakeup(struct bpf_d *);
196 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
197 void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
198 struct bintime *);
199 static void reset_d(struct bpf_d *);
200 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
201 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
202 static int bpf_setdlt(struct bpf_d *, u_int);
203 static void filt_bpfdetach(struct knote *);
204 static int filt_bpfread(struct knote *, long);
205 static int filt_bpfwrite(struct knote *, long);
206 static void bpf_drvinit(void *);
207 static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
208
209 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
210 "bpf sysctl");
211 int bpf_maxinsns = BPF_MAXINSNS;
212 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
213 &bpf_maxinsns, 0, "Maximum bpf program instructions");
214 static int bpf_zerocopy_enable = 0;
215 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
216 &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
217 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
218 bpf_stats_sysctl, "bpf statistics portal");
219
220 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
221 #define V_bpf_optimize_writers VNET(bpf_optimize_writers)
222 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
223 &VNET_NAME(bpf_optimize_writers), 0,
224 "Do not send packets until BPF program is set");
225
226 static d_open_t bpfopen;
227 static d_read_t bpfread;
228 static d_write_t bpfwrite;
229 static d_ioctl_t bpfioctl;
230 static d_poll_t bpfpoll;
231 static d_kqfilter_t bpfkqfilter;
232
233 static struct cdevsw bpf_cdevsw = {
234 .d_version = D_VERSION,
235 .d_open = bpfopen,
236 .d_read = bpfread,
237 .d_write = bpfwrite,
238 .d_ioctl = bpfioctl,
239 .d_poll = bpfpoll,
240 .d_name = "bpf",
241 .d_kqfilter = bpfkqfilter,
242 };
243
244 static const struct filterops bpfread_filtops = {
245 .f_isfd = 1,
246 .f_detach = filt_bpfdetach,
247 .f_event = filt_bpfread,
248 .f_copy = knote_triv_copy,
249 };
250
251 static const struct filterops bpfwrite_filtops = {
252 .f_isfd = 1,
253 .f_detach = filt_bpfdetach,
254 .f_event = filt_bpfwrite,
255 .f_copy = knote_triv_copy,
256 };
257
258 /*
259 * LOCKING MODEL USED BY BPF
260 *
261 * Locks:
262 * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
263 * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
264 * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
265 * structure fields used by bpf_*tap* code.
266 *
267 * Lock order: global lock, then descriptor lock.
268 *
269 * There are several possible consumers:
270 *
271 * 1. The kernel registers interface pointer with bpfattach().
272 * Each call allocates new bpf_if structure, references ifnet pointer
273 * and links bpf_if into bpf_iflist chain. This is protected with global
274 * lock.
275 *
276 * 2. An userland application uses ioctl() call to bpf_d descriptor.
277 * All such call are serialized with global lock. BPF filters can be
278 * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
279 * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
280 * filter pointers, even if change will happen during bpf_tap execution.
281 * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
282 *
283 * 3. An userland application can write packets into bpf_d descriptor.
284 * There we need to be sure, that ifnet won't disappear during bpfwrite().
285 *
286 * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
287 * bif_dlist is protected with net_epoch_preempt section. So, it should
288 * be safe to make access to bpf_d descriptor inside the section.
289 *
290 * 5. The kernel invokes bpfdetach() on interface destroying. All lists
291 * are modified with global lock held and actual free() is done using
292 * NET_EPOCH_CALL().
293 */
294
295 static void
bpfif_free(epoch_context_t ctx)296 bpfif_free(epoch_context_t ctx)
297 {
298 struct bpf_if *bp;
299
300 bp = __containerof(ctx, struct bpf_if, epoch_ctx);
301 if_rele(bp->bif_ifp);
302 free(bp, M_BPF);
303 }
304
305 static void
bpfif_ref(struct bpf_if * bp)306 bpfif_ref(struct bpf_if *bp)
307 {
308
309 refcount_acquire(&bp->bif_refcnt);
310 }
311
312 static void
bpfif_rele(struct bpf_if * bp)313 bpfif_rele(struct bpf_if *bp)
314 {
315
316 if (!refcount_release(&bp->bif_refcnt))
317 return;
318 NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
319 }
320
321 static void
bpfd_ref(struct bpf_d * d)322 bpfd_ref(struct bpf_d *d)
323 {
324
325 refcount_acquire(&d->bd_refcnt);
326 }
327
328 static void
bpfd_rele(struct bpf_d * d)329 bpfd_rele(struct bpf_d *d)
330 {
331
332 if (!refcount_release(&d->bd_refcnt))
333 return;
334 NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
335 }
336
337 static struct bpf_program_buffer*
bpf_program_buffer_alloc(size_t size,int flags)338 bpf_program_buffer_alloc(size_t size, int flags)
339 {
340
341 return (malloc(sizeof(struct bpf_program_buffer) + size,
342 M_BPF, flags));
343 }
344
345 static void
bpf_program_buffer_free(epoch_context_t ctx)346 bpf_program_buffer_free(epoch_context_t ctx)
347 {
348 struct bpf_program_buffer *ptr;
349
350 ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
351 #ifdef BPF_JITTER
352 if (ptr->func != NULL)
353 bpf_destroy_jit_filter(ptr->func);
354 #endif
355 free(ptr, M_BPF);
356 }
357
358 /*
359 * Wrapper functions for various buffering methods. If the set of buffer
360 * modes expands, we will probably want to introduce a switch data structure
361 * similar to protosw, et.
362 */
363 static void
bpf_append_bytes(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)364 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
365 u_int len)
366 {
367
368 BPFD_LOCK_ASSERT(d);
369
370 switch (d->bd_bufmode) {
371 case BPF_BUFMODE_BUFFER:
372 return (bpf_buffer_append_bytes(d, buf, offset, src, len));
373
374 case BPF_BUFMODE_ZBUF:
375 counter_u64_add(d->bd_zcopy, 1);
376 return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
377
378 default:
379 panic("bpf_buf_append_bytes");
380 }
381 }
382
383 static void
bpf_append_mbuf(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)384 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
385 u_int len)
386 {
387
388 BPFD_LOCK_ASSERT(d);
389
390 switch (d->bd_bufmode) {
391 case BPF_BUFMODE_BUFFER:
392 return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
393
394 case BPF_BUFMODE_ZBUF:
395 counter_u64_add(d->bd_zcopy, 1);
396 return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
397
398 default:
399 panic("bpf_buf_append_mbuf");
400 }
401 }
402
403 /*
404 * This function gets called when the free buffer is re-assigned.
405 */
406 static void
bpf_buf_reclaimed(struct bpf_d * d)407 bpf_buf_reclaimed(struct bpf_d *d)
408 {
409
410 BPFD_LOCK_ASSERT(d);
411
412 switch (d->bd_bufmode) {
413 case BPF_BUFMODE_BUFFER:
414 return;
415
416 case BPF_BUFMODE_ZBUF:
417 bpf_zerocopy_buf_reclaimed(d);
418 return;
419
420 default:
421 panic("bpf_buf_reclaimed");
422 }
423 }
424
425 /*
426 * If the buffer mechanism has a way to decide that a held buffer can be made
427 * free, then it is exposed via the bpf_canfreebuf() interface. (1) is
428 * returned if the buffer can be discarded, (0) is returned if it cannot.
429 */
430 static int
bpf_canfreebuf(struct bpf_d * d)431 bpf_canfreebuf(struct bpf_d *d)
432 {
433
434 BPFD_LOCK_ASSERT(d);
435
436 switch (d->bd_bufmode) {
437 case BPF_BUFMODE_ZBUF:
438 return (bpf_zerocopy_canfreebuf(d));
439 }
440 return (0);
441 }
442
443 /*
444 * Allow the buffer model to indicate that the current store buffer is
445 * immutable, regardless of the appearance of space. Return (1) if the
446 * buffer is writable, and (0) if not.
447 */
448 static int
bpf_canwritebuf(struct bpf_d * d)449 bpf_canwritebuf(struct bpf_d *d)
450 {
451 BPFD_LOCK_ASSERT(d);
452
453 switch (d->bd_bufmode) {
454 case BPF_BUFMODE_ZBUF:
455 return (bpf_zerocopy_canwritebuf(d));
456 }
457 return (1);
458 }
459
460 /*
461 * Notify buffer model that an attempt to write to the store buffer has
462 * resulted in a dropped packet, in which case the buffer may be considered
463 * full.
464 */
465 static void
bpf_buffull(struct bpf_d * d)466 bpf_buffull(struct bpf_d *d)
467 {
468
469 BPFD_LOCK_ASSERT(d);
470
471 switch (d->bd_bufmode) {
472 case BPF_BUFMODE_ZBUF:
473 bpf_zerocopy_buffull(d);
474 break;
475 }
476 }
477
478 /*
479 * Notify the buffer model that a buffer has moved into the hold position.
480 */
481 void
bpf_bufheld(struct bpf_d * d)482 bpf_bufheld(struct bpf_d *d)
483 {
484
485 BPFD_LOCK_ASSERT(d);
486
487 switch (d->bd_bufmode) {
488 case BPF_BUFMODE_ZBUF:
489 bpf_zerocopy_bufheld(d);
490 break;
491 }
492 }
493
494 static void
bpf_free(struct bpf_d * d)495 bpf_free(struct bpf_d *d)
496 {
497
498 switch (d->bd_bufmode) {
499 case BPF_BUFMODE_BUFFER:
500 return (bpf_buffer_free(d));
501
502 case BPF_BUFMODE_ZBUF:
503 return (bpf_zerocopy_free(d));
504
505 default:
506 panic("bpf_buf_free");
507 }
508 }
509
510 static int
bpf_uiomove(struct bpf_d * d,caddr_t buf,u_int len,struct uio * uio)511 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
512 {
513
514 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
515 return (EOPNOTSUPP);
516 return (bpf_buffer_uiomove(d, buf, len, uio));
517 }
518
519 static int
bpf_ioctl_sblen(struct bpf_d * d,u_int * i)520 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
521 {
522
523 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
524 return (EOPNOTSUPP);
525 return (bpf_buffer_ioctl_sblen(d, i));
526 }
527
528 static int
bpf_ioctl_getzmax(struct thread * td,struct bpf_d * d,size_t * i)529 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
530 {
531
532 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
533 return (EOPNOTSUPP);
534 return (bpf_zerocopy_ioctl_getzmax(td, d, i));
535 }
536
537 static int
bpf_ioctl_rotzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)538 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
539 {
540
541 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
542 return (EOPNOTSUPP);
543 return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
544 }
545
546 static int
bpf_ioctl_setzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)547 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
548 {
549
550 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
551 return (EOPNOTSUPP);
552 return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
553 }
554
555 /*
556 * General BPF functions.
557 */
558 static int
bpf_movein(struct uio * uio,int linktype,struct ifnet * ifp,struct mbuf ** mp,struct sockaddr * sockp,int * hdrlen,struct bpf_d * d)559 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
560 struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
561 {
562 const struct ieee80211_bpf_params *p;
563 struct ether_header *eh;
564 struct mbuf *m;
565 int error;
566 int len;
567 int hlen;
568 int slen;
569
570 /*
571 * Build a sockaddr based on the data link layer type.
572 * We do this at this level because the ethernet header
573 * is copied directly into the data field of the sockaddr.
574 * In the case of SLIP, there is no header and the packet
575 * is forwarded as is.
576 * Also, we are careful to leave room at the front of the mbuf
577 * for the link level header.
578 */
579 switch (linktype) {
580 case DLT_SLIP:
581 sockp->sa_family = AF_INET;
582 hlen = 0;
583 break;
584
585 case DLT_EN10MB:
586 sockp->sa_family = AF_UNSPEC;
587 /* XXX Would MAXLINKHDR be better? */
588 hlen = ETHER_HDR_LEN;
589 break;
590
591 case DLT_FDDI:
592 sockp->sa_family = AF_IMPLINK;
593 hlen = 0;
594 break;
595
596 case DLT_RAW:
597 sockp->sa_family = AF_UNSPEC;
598 hlen = 0;
599 break;
600
601 case DLT_NULL:
602 /*
603 * null interface types require a 4 byte pseudo header which
604 * corresponds to the address family of the packet.
605 */
606 sockp->sa_family = AF_UNSPEC;
607 hlen = 4;
608 break;
609
610 case DLT_ATM_RFC1483:
611 /*
612 * en atm driver requires 4-byte atm pseudo header.
613 * though it isn't standard, vpi:vci needs to be
614 * specified anyway.
615 */
616 sockp->sa_family = AF_UNSPEC;
617 hlen = 12; /* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
618 break;
619
620 case DLT_PPP:
621 sockp->sa_family = AF_UNSPEC;
622 hlen = 4; /* This should match PPP_HDRLEN */
623 break;
624
625 case DLT_IEEE802_11: /* IEEE 802.11 wireless */
626 sockp->sa_family = AF_IEEE80211;
627 hlen = 0;
628 break;
629
630 case DLT_IEEE802_11_RADIO: /* IEEE 802.11 wireless w/ phy params */
631 sockp->sa_family = AF_IEEE80211;
632 sockp->sa_len = 12; /* XXX != 0 */
633 hlen = sizeof(struct ieee80211_bpf_params);
634 break;
635
636 default:
637 return (EIO);
638 }
639
640 len = uio->uio_resid;
641 if (len < hlen || len - hlen > ifp->if_mtu)
642 return (EMSGSIZE);
643
644 /* Allocate a mbuf, up to MJUM16BYTES bytes, for our write. */
645 m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
646 if (m == NULL)
647 return (EIO);
648 m->m_pkthdr.len = m->m_len = len;
649 *mp = m;
650
651 error = uiomove(mtod(m, u_char *), len, uio);
652 if (error)
653 goto bad;
654
655 slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
656 if (slen == 0) {
657 error = EPERM;
658 goto bad;
659 }
660
661 /* Check for multicast destination */
662 switch (linktype) {
663 case DLT_EN10MB:
664 eh = mtod(m, struct ether_header *);
665 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
666 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
667 ETHER_ADDR_LEN) == 0)
668 m->m_flags |= M_BCAST;
669 else
670 m->m_flags |= M_MCAST;
671 }
672 if (!(d->bd_flags & BPFD_HDRCMPLT)) {
673 memcpy(eh->ether_shost, IF_LLADDR(ifp),
674 sizeof(eh->ether_shost));
675 }
676 break;
677 }
678
679 /*
680 * Make room for link header, and copy it to sockaddr
681 */
682 if (hlen != 0) {
683 if (sockp->sa_family == AF_IEEE80211) {
684 /*
685 * Collect true length from the parameter header
686 * NB: sockp is known to be zero'd so if we do a
687 * short copy unspecified parameters will be
688 * zero.
689 * NB: packet may not be aligned after stripping
690 * bpf params
691 * XXX check ibp_vers
692 */
693 p = mtod(m, const struct ieee80211_bpf_params *);
694 hlen = p->ibp_len;
695 if (hlen > sizeof(sockp->sa_data)) {
696 error = EINVAL;
697 goto bad;
698 }
699 }
700 bcopy(mtod(m, const void *), sockp->sa_data, hlen);
701 }
702 *hdrlen = hlen;
703
704 return (0);
705 bad:
706 m_freem(m);
707 return (error);
708 }
709
710 /*
711 * Attach descriptor to the bpf interface, i.e. make d listen on bp,
712 * then reset its buffers and counters with reset_d().
713 */
714 static void
bpf_attachd(struct bpf_d * d,struct bpf_if * bp)715 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
716 {
717 int op_w;
718
719 BPF_LOCK_ASSERT();
720
721 /*
722 * Save sysctl value to protect from sysctl change
723 * between reads
724 */
725 op_w = V_bpf_optimize_writers || d->bd_writer;
726
727 if (d->bd_bif != NULL)
728 bpf_detachd(d, false);
729 /*
730 * Point d at bp, and add d to the interface's list.
731 * Since there are many applications using BPF for
732 * sending raw packets only (dhcpd, cdpd are good examples)
733 * we can delay adding d to the list of active listeners until
734 * some filter is configured.
735 */
736
737 BPFD_LOCK(d);
738 /*
739 * Hold reference to bpif while descriptor uses this interface.
740 */
741 bpfif_ref(bp);
742 d->bd_bif = bp;
743 if (op_w != 0) {
744 /* Add to writers-only list */
745 CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
746 /*
747 * We decrement bd_writer on every filter set operation.
748 * First BIOCSETF is done by pcap_open_live() to set up
749 * snap length. After that appliation usually sets its own
750 * filter.
751 */
752 d->bd_writer = 2;
753 } else
754 CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
755
756 reset_d(d);
757
758 /* Trigger EVFILT_WRITE events. */
759 bpf_wakeup(d);
760
761 BPFD_UNLOCK(d);
762
763 CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
764 __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
765
766 if (op_w == 0)
767 EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
768 }
769
770 /*
771 * Check if we need to upgrade our descriptor @d from write-only mode.
772 */
773 static int
bpf_check_upgrade(u_long cmd,struct bpf_d * d,struct bpf_insn * fcode,int flen)774 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
775 int flen)
776 {
777 int is_snap, need_upgrade;
778
779 /*
780 * Check if we've already upgraded or new filter is empty.
781 */
782 if (d->bd_writer == 0 || fcode == NULL)
783 return (0);
784
785 need_upgrade = 0;
786
787 /*
788 * Check if cmd looks like snaplen setting from
789 * pcap_bpf.c:pcap_open_live().
790 * Note we're not checking .k value here:
791 * while pcap_open_live() definitely sets to non-zero value,
792 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
793 * do not consider upgrading immediately
794 */
795 if (cmd == BIOCSETF && flen == 1 &&
796 fcode[0].code == (BPF_RET | BPF_K))
797 is_snap = 1;
798 else
799 is_snap = 0;
800
801 if (is_snap == 0) {
802 /*
803 * We're setting first filter and it doesn't look like
804 * setting snaplen. We're probably using bpf directly.
805 * Upgrade immediately.
806 */
807 need_upgrade = 1;
808 } else {
809 /*
810 * Do not require upgrade by first BIOCSETF
811 * (used to set snaplen) by pcap_open_live().
812 */
813
814 if (--d->bd_writer == 0) {
815 /*
816 * First snaplen filter has already
817 * been set. This is probably catch-all
818 * filter
819 */
820 need_upgrade = 1;
821 }
822 }
823
824 CTR5(KTR_NET,
825 "%s: filter function set by pid %d, "
826 "bd_writer counter %d, snap %d upgrade %d",
827 __func__, d->bd_pid, d->bd_writer,
828 is_snap, need_upgrade);
829
830 return (need_upgrade);
831 }
832
833 /*
834 * Detach a file from its interface.
835 */
836 static void
bpf_detachd(struct bpf_d * d,bool detached_ifp)837 bpf_detachd(struct bpf_d *d, bool detached_ifp)
838 {
839 struct bpf_if *bp;
840 struct ifnet *ifp;
841 int error;
842
843 BPF_LOCK_ASSERT();
844 CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
845
846 /* Check if descriptor is attached */
847 if ((bp = d->bd_bif) == NULL)
848 return;
849
850 BPFD_LOCK(d);
851 /* Remove d from the interface's descriptor list. */
852 CK_LIST_REMOVE(d, bd_next);
853 /* Save bd_writer value */
854 error = d->bd_writer;
855 ifp = bp->bif_ifp;
856 d->bd_bif = NULL;
857 if (detached_ifp) {
858 /*
859 * Notify descriptor as it's detached, so that any
860 * sleepers wake up and get ENXIO.
861 */
862 bpf_wakeup(d);
863 }
864 BPFD_UNLOCK(d);
865
866 /* Call event handler iff d is attached */
867 if (error == 0)
868 EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
869
870 /*
871 * Check if this descriptor had requested promiscuous mode.
872 * If so and ifnet is not detached, turn it off.
873 */
874 if (d->bd_promisc && !detached_ifp) {
875 d->bd_promisc = 0;
876 CURVNET_SET(ifp->if_vnet);
877 error = ifpromisc(ifp, 0);
878 CURVNET_RESTORE();
879 if (error != 0 && error != ENXIO) {
880 /*
881 * ENXIO can happen if a pccard is unplugged
882 * Something is really wrong if we were able to put
883 * the driver into promiscuous mode, but can't
884 * take it out.
885 */
886 if_printf(bp->bif_ifp,
887 "bpf_detach: ifpromisc failed (%d)\n", error);
888 }
889 }
890 bpfif_rele(bp);
891 }
892
893 /*
894 * Close the descriptor by detaching it from its interface,
895 * deallocating its buffers, and marking it free.
896 */
897 static void
bpf_dtor(void * data)898 bpf_dtor(void *data)
899 {
900 struct bpf_d *d = data;
901
902 BPFD_LOCK(d);
903 if (d->bd_state == BPF_WAITING)
904 callout_stop(&d->bd_callout);
905 d->bd_state = BPF_IDLE;
906 BPFD_UNLOCK(d);
907 funsetown(&d->bd_sigio);
908 BPF_LOCK();
909 bpf_detachd(d, false);
910 BPF_UNLOCK();
911 #ifdef MAC
912 mac_bpfdesc_destroy(d);
913 #endif /* MAC */
914 seldrain(&d->bd_sel);
915 knlist_destroy(&d->bd_sel.si_note);
916 callout_drain(&d->bd_callout);
917 bpfd_rele(d);
918 }
919
920 /*
921 * Open ethernet device. Returns ENXIO for illegal minor device number,
922 * EBUSY if file is open by another process.
923 */
924 /* ARGSUSED */
925 static int
bpfopen(struct cdev * dev,int flags,int fmt,struct thread * td)926 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
927 {
928 struct bpf_d *d;
929 int error;
930
931 d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
932 error = devfs_set_cdevpriv(d, bpf_dtor);
933 if (error != 0) {
934 free(d, M_BPF);
935 return (error);
936 }
937
938 /* Setup counters */
939 d->bd_rcount = counter_u64_alloc(M_WAITOK);
940 d->bd_dcount = counter_u64_alloc(M_WAITOK);
941 d->bd_fcount = counter_u64_alloc(M_WAITOK);
942 d->bd_wcount = counter_u64_alloc(M_WAITOK);
943 d->bd_wfcount = counter_u64_alloc(M_WAITOK);
944 d->bd_wdcount = counter_u64_alloc(M_WAITOK);
945 d->bd_zcopy = counter_u64_alloc(M_WAITOK);
946
947 /*
948 * For historical reasons, perform a one-time initialization call to
949 * the buffer routines, even though we're not yet committed to a
950 * particular buffer method.
951 */
952 bpf_buffer_init(d);
953 if ((flags & FREAD) == 0)
954 d->bd_writer = 2;
955 d->bd_bufmode = BPF_BUFMODE_BUFFER;
956 d->bd_sig = SIGIO;
957 d->bd_direction = BPF_D_INOUT;
958 refcount_init(&d->bd_refcnt, 1);
959 BPF_PID_REFRESH(d, td);
960 #ifdef MAC
961 mac_bpfdesc_init(d);
962 mac_bpfdesc_create(td->td_ucred, d);
963 #endif
964 mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
965 callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
966 knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
967
968 /* Disable VLAN pcp tagging. */
969 d->bd_pcp = 0;
970
971 return (0);
972 }
973
974 /*
975 * bpfread - read next chunk of packets from buffers
976 */
977 static int
bpfread(struct cdev * dev,struct uio * uio,int ioflag)978 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
979 {
980 struct bpf_d *d;
981 int error;
982 int non_block;
983 int timed_out;
984
985 error = devfs_get_cdevpriv((void **)&d);
986 if (error != 0)
987 return (error);
988
989 /*
990 * Restrict application to use a buffer the same size as
991 * as kernel buffers.
992 */
993 if (uio->uio_resid != d->bd_bufsize)
994 return (EINVAL);
995
996 non_block = ((ioflag & O_NONBLOCK) != 0);
997
998 BPFD_LOCK(d);
999 BPF_PID_REFRESH_CUR(d);
1000 if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1001 BPFD_UNLOCK(d);
1002 return (EOPNOTSUPP);
1003 }
1004 if (d->bd_state == BPF_WAITING)
1005 callout_stop(&d->bd_callout);
1006 timed_out = (d->bd_state == BPF_TIMED_OUT);
1007 d->bd_state = BPF_IDLE;
1008 while (d->bd_flags & BPFD_HBUF_INUSE) {
1009 error = mtx_sleep(&d->bd_hbuf, &d->bd_lock, PRINET | PCATCH,
1010 "bd_hbuf", 0);
1011 if (error != 0) {
1012 BPFD_UNLOCK(d);
1013 return (error);
1014 }
1015 }
1016 /*
1017 * If the hold buffer is empty, then do a timed sleep, which
1018 * ends when the timeout expires or when enough packets
1019 * have arrived to fill the store buffer.
1020 */
1021 while (d->bd_hbuf == NULL) {
1022 if (d->bd_slen != 0) {
1023 /*
1024 * A packet(s) either arrived since the previous
1025 * read or arrived while we were asleep.
1026 */
1027 if ((d->bd_flags & BPFD_IMMEDIATE) || non_block ||
1028 timed_out) {
1029 /*
1030 * Rotate the buffers and return what's here
1031 * if we are in immediate mode, non-blocking
1032 * flag is set, or this descriptor timed out.
1033 */
1034 ROTATE_BUFFERS(d);
1035 break;
1036 }
1037 }
1038
1039 /*
1040 * No data is available, check to see if the bpf device
1041 * is still pointed at a real interface. If not, return
1042 * ENXIO so that the userland process knows to rebind
1043 * it before using it again.
1044 */
1045 if (d->bd_bif == NULL) {
1046 BPFD_UNLOCK(d);
1047 return (ENXIO);
1048 }
1049
1050 if (non_block) {
1051 BPFD_UNLOCK(d);
1052 return (EWOULDBLOCK);
1053 }
1054 error = msleep(d, &d->bd_lock, PRINET | PCATCH,
1055 "bpf", d->bd_rtout);
1056 if (error == EINTR || error == ERESTART) {
1057 BPFD_UNLOCK(d);
1058 return (error);
1059 }
1060 if (error == EWOULDBLOCK) {
1061 /*
1062 * On a timeout, return what's in the buffer,
1063 * which may be nothing. If there is something
1064 * in the store buffer, we can rotate the buffers.
1065 */
1066 if (d->bd_hbuf)
1067 /*
1068 * We filled up the buffer in between
1069 * getting the timeout and arriving
1070 * here, so we don't need to rotate.
1071 */
1072 break;
1073
1074 if (d->bd_slen == 0) {
1075 BPFD_UNLOCK(d);
1076 return (0);
1077 }
1078 ROTATE_BUFFERS(d);
1079 break;
1080 }
1081 }
1082 /*
1083 * At this point, we know we have something in the hold slot.
1084 */
1085 d->bd_flags |= BPFD_HBUF_INUSE;
1086 BPFD_UNLOCK(d);
1087
1088 /*
1089 * Move data from hold buffer into user space.
1090 * We know the entire buffer is transferred since
1091 * we checked above that the read buffer is bpf_bufsize bytes.
1092 *
1093 * We do not have to worry about simultaneous reads because
1094 * we waited for sole access to the hold buffer above.
1095 */
1096 error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1097
1098 BPFD_LOCK(d);
1099 if (d->bd_flags & BPFD_HBUF_INUSE) {
1100 KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1101 d->bd_fbuf = d->bd_hbuf;
1102 d->bd_hbuf = NULL;
1103 d->bd_hlen = 0;
1104 bpf_buf_reclaimed(d);
1105 d->bd_flags &= ~BPFD_HBUF_INUSE;
1106 wakeup(&d->bd_hbuf);
1107 }
1108 BPFD_UNLOCK(d);
1109
1110 return (error);
1111 }
1112
1113 /*
1114 * If there are processes sleeping on this descriptor, wake them up.
1115 */
1116 static __inline void
bpf_wakeup(struct bpf_d * d)1117 bpf_wakeup(struct bpf_d *d)
1118 {
1119
1120 BPFD_LOCK_ASSERT(d);
1121 if (d->bd_state == BPF_WAITING) {
1122 callout_stop(&d->bd_callout);
1123 d->bd_state = BPF_IDLE;
1124 }
1125 wakeup(d);
1126 if ((d->bd_flags & BPFD_ASYNC) && d->bd_sig && d->bd_sigio)
1127 pgsigio(&d->bd_sigio, d->bd_sig, 0);
1128
1129 selwakeuppri(&d->bd_sel, PRINET);
1130 KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1131 }
1132
1133 static void
bpf_timed_out(void * arg)1134 bpf_timed_out(void *arg)
1135 {
1136 struct bpf_d *d = (struct bpf_d *)arg;
1137
1138 BPFD_LOCK_ASSERT(d);
1139
1140 if (callout_pending(&d->bd_callout) ||
1141 !callout_active(&d->bd_callout))
1142 return;
1143 if (d->bd_state == BPF_WAITING) {
1144 d->bd_state = BPF_TIMED_OUT;
1145 if (d->bd_slen != 0)
1146 bpf_wakeup(d);
1147 }
1148 }
1149
1150 static int
bpf_ready(struct bpf_d * d)1151 bpf_ready(struct bpf_d *d)
1152 {
1153
1154 BPFD_LOCK_ASSERT(d);
1155
1156 if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1157 return (1);
1158 if (((d->bd_flags & BPFD_IMMEDIATE) || d->bd_state == BPF_TIMED_OUT) &&
1159 d->bd_slen != 0)
1160 return (1);
1161 return (0);
1162 }
1163
1164 static int
bpfwrite(struct cdev * dev,struct uio * uio,int ioflag)1165 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1166 {
1167 struct route ro;
1168 struct sockaddr dst;
1169 struct epoch_tracker et;
1170 struct bpf_if *bp;
1171 struct bpf_d *d;
1172 struct ifnet *ifp;
1173 struct mbuf *m, *mc;
1174 int error, hlen;
1175
1176 error = devfs_get_cdevpriv((void **)&d);
1177 if (error != 0)
1178 return (error);
1179
1180 NET_EPOCH_ENTER(et);
1181 BPFD_LOCK(d);
1182 BPF_PID_REFRESH_CUR(d);
1183 counter_u64_add(d->bd_wcount, 1);
1184 if ((bp = d->bd_bif) == NULL) {
1185 error = ENXIO;
1186 goto out_locked;
1187 }
1188
1189 ifp = bp->bif_ifp;
1190 if ((ifp->if_flags & IFF_UP) == 0) {
1191 error = ENETDOWN;
1192 goto out_locked;
1193 }
1194
1195 if (uio->uio_resid == 0)
1196 goto out_locked;
1197
1198 bzero(&dst, sizeof(dst));
1199 m = NULL;
1200 hlen = 0;
1201
1202 /*
1203 * Take extra reference, unlock d and exit from epoch section,
1204 * since bpf_movein() can sleep.
1205 */
1206 bpfd_ref(d);
1207 NET_EPOCH_EXIT(et);
1208 BPFD_UNLOCK(d);
1209
1210 error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1211 &m, &dst, &hlen, d);
1212
1213 if (error != 0) {
1214 counter_u64_add(d->bd_wdcount, 1);
1215 bpfd_rele(d);
1216 return (error);
1217 }
1218
1219 BPFD_LOCK(d);
1220 /*
1221 * Check that descriptor is still attached to the interface.
1222 * This can happen on bpfdetach(). To avoid access to detached
1223 * ifnet, free mbuf and return ENXIO.
1224 */
1225 if (d->bd_bif == NULL) {
1226 counter_u64_add(d->bd_wdcount, 1);
1227 BPFD_UNLOCK(d);
1228 bpfd_rele(d);
1229 m_freem(m);
1230 return (ENXIO);
1231 }
1232 counter_u64_add(d->bd_wfcount, 1);
1233 if (d->bd_flags & BPFD_HDRCMPLT)
1234 dst.sa_family = pseudo_AF_HDRCMPLT;
1235
1236 if (d->bd_flags & BPFD_FEEDBACK) {
1237 mc = m_dup(m, M_NOWAIT);
1238 if (mc != NULL)
1239 mc->m_pkthdr.rcvif = ifp;
1240 /* Set M_PROMISC for outgoing packets to be discarded. */
1241 if (d->bd_direction == BPF_D_INOUT)
1242 m->m_flags |= M_PROMISC;
1243 } else
1244 mc = NULL;
1245
1246 m->m_pkthdr.len -= hlen;
1247 m->m_len -= hlen;
1248 m->m_data += hlen; /* XXX */
1249
1250 CURVNET_SET(ifp->if_vnet);
1251 #ifdef MAC
1252 mac_bpfdesc_create_mbuf(d, m);
1253 if (mc != NULL)
1254 mac_bpfdesc_create_mbuf(d, mc);
1255 #endif
1256
1257 bzero(&ro, sizeof(ro));
1258 if (hlen != 0) {
1259 ro.ro_prepend = (u_char *)&dst.sa_data;
1260 ro.ro_plen = hlen;
1261 ro.ro_flags = RT_HAS_HEADER;
1262 }
1263
1264 if (d->bd_pcp != 0)
1265 vlan_set_pcp(m, d->bd_pcp);
1266
1267 /* Avoid possible recursion on BPFD_LOCK(). */
1268 NET_EPOCH_ENTER(et);
1269 BPFD_UNLOCK(d);
1270 error = (*ifp->if_output)(ifp, m, &dst, &ro);
1271 if (error)
1272 counter_u64_add(d->bd_wdcount, 1);
1273
1274 if (mc != NULL) {
1275 if (error == 0)
1276 (*ifp->if_input)(ifp, mc);
1277 else
1278 m_freem(mc);
1279 }
1280 NET_EPOCH_EXIT(et);
1281 CURVNET_RESTORE();
1282 bpfd_rele(d);
1283 return (error);
1284
1285 out_locked:
1286 counter_u64_add(d->bd_wdcount, 1);
1287 NET_EPOCH_EXIT(et);
1288 BPFD_UNLOCK(d);
1289 return (error);
1290 }
1291
1292 /*
1293 * Reset a descriptor by flushing its packet buffer and clearing the receive
1294 * and drop counts. This is doable for kernel-only buffers, but with
1295 * zero-copy buffers, we can't write to (or rotate) buffers that are
1296 * currently owned by userspace. It would be nice if we could encapsulate
1297 * this logic in the buffer code rather than here.
1298 */
1299 static void
reset_d(struct bpf_d * d)1300 reset_d(struct bpf_d *d)
1301 {
1302
1303 BPFD_LOCK_ASSERT(d);
1304
1305 while (d->bd_flags & BPFD_HBUF_INUSE)
1306 mtx_sleep(&d->bd_hbuf, &d->bd_lock, PRINET, "bd_hbuf", 0);
1307 if ((d->bd_hbuf != NULL) &&
1308 (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1309 /* Free the hold buffer. */
1310 d->bd_fbuf = d->bd_hbuf;
1311 d->bd_hbuf = NULL;
1312 d->bd_hlen = 0;
1313 bpf_buf_reclaimed(d);
1314 }
1315 if (bpf_canwritebuf(d))
1316 d->bd_slen = 0;
1317 counter_u64_zero(d->bd_rcount);
1318 counter_u64_zero(d->bd_dcount);
1319 counter_u64_zero(d->bd_fcount);
1320 counter_u64_zero(d->bd_wcount);
1321 counter_u64_zero(d->bd_wfcount);
1322 counter_u64_zero(d->bd_wdcount);
1323 counter_u64_zero(d->bd_zcopy);
1324 }
1325
1326 /*
1327 * FIONREAD Check for read packet available.
1328 * BIOCGBLEN Get buffer len [for read()].
1329 * BIOCSETF Set read filter.
1330 * BIOCSETFNR Set read filter without resetting descriptor.
1331 * BIOCSETWF Set write filter.
1332 * BIOCFLUSH Flush read packet buffer.
1333 * BIOCPROMISC Put interface into promiscuous mode.
1334 * BIOCGDLT Get link layer type.
1335 * BIOCGETIF Get interface name.
1336 * BIOCSETIF Set interface.
1337 * BIOCSRTIMEOUT Set read timeout.
1338 * BIOCGRTIMEOUT Get read timeout.
1339 * BIOCGSTATS Get packet stats.
1340 * BIOCIMMEDIATE Set immediate mode.
1341 * BIOCVERSION Get filter language version.
1342 * BIOCGHDRCMPLT Get "header already complete" flag
1343 * BIOCSHDRCMPLT Set "header already complete" flag
1344 * BIOCGDIRECTION Get packet direction flag
1345 * BIOCSDIRECTION Set packet direction flag
1346 * BIOCGTSTAMP Get time stamp format and resolution.
1347 * BIOCSTSTAMP Set time stamp format and resolution.
1348 * BIOCLOCK Set "locked" flag
1349 * BIOCFEEDBACK Set packet feedback mode.
1350 * BIOCSETZBUF Set current zero-copy buffer locations.
1351 * BIOCGETZMAX Get maximum zero-copy buffer size.
1352 * BIOCROTZBUF Force rotation of zero-copy buffer
1353 * BIOCSETBUFMODE Set buffer mode.
1354 * BIOCGETBUFMODE Get current buffer mode.
1355 * BIOCSETVLANPCP Set VLAN PCP tag.
1356 */
1357 /* ARGSUSED */
1358 static int
bpfioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flags,struct thread * td)1359 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1360 struct thread *td)
1361 {
1362 struct bpf_d *d;
1363 int error;
1364
1365 error = devfs_get_cdevpriv((void **)&d);
1366 if (error != 0)
1367 return (error);
1368
1369 /*
1370 * Refresh PID associated with this descriptor.
1371 */
1372 BPFD_LOCK(d);
1373 BPF_PID_REFRESH(d, td);
1374 if (d->bd_state == BPF_WAITING)
1375 callout_stop(&d->bd_callout);
1376 d->bd_state = BPF_IDLE;
1377 BPFD_UNLOCK(d);
1378
1379 if (d->bd_flags & BPFD_LOCKED) {
1380 switch (cmd) {
1381 case BIOCGBLEN:
1382 case BIOCFLUSH:
1383 case BIOCGDLT:
1384 case BIOCGDLTLIST:
1385 #ifdef COMPAT_FREEBSD32
1386 case BIOCGDLTLIST32:
1387 #endif
1388 case BIOCGETIF:
1389 case BIOCGRTIMEOUT:
1390 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1391 case BIOCGRTIMEOUT32:
1392 #endif
1393 case BIOCGSTATS:
1394 case BIOCVERSION:
1395 case BIOCGRSIG:
1396 case BIOCGHDRCMPLT:
1397 case BIOCSTSTAMP:
1398 case BIOCFEEDBACK:
1399 case FIONREAD:
1400 case BIOCLOCK:
1401 case BIOCSRTIMEOUT:
1402 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1403 case BIOCSRTIMEOUT32:
1404 #endif
1405 case BIOCIMMEDIATE:
1406 case TIOCGPGRP:
1407 case BIOCROTZBUF:
1408 break;
1409 default:
1410 return (EPERM);
1411 }
1412 }
1413 #ifdef COMPAT_FREEBSD32
1414 /*
1415 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1416 * that it will get 32-bit packet headers.
1417 */
1418 switch (cmd) {
1419 case BIOCSETF32:
1420 case BIOCSETFNR32:
1421 case BIOCSETWF32:
1422 case BIOCGDLTLIST32:
1423 case BIOCGRTIMEOUT32:
1424 case BIOCSRTIMEOUT32:
1425 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1426 BPFD_LOCK(d);
1427 d->bd_compat32 = 1;
1428 BPFD_UNLOCK(d);
1429 }
1430 }
1431 #endif
1432
1433 CURVNET_SET(TD_TO_VNET(td));
1434 switch (cmd) {
1435 default:
1436 error = EINVAL;
1437 break;
1438
1439 /*
1440 * Check for read packet available.
1441 */
1442 case FIONREAD:
1443 {
1444 int n;
1445
1446 BPFD_LOCK(d);
1447 n = d->bd_slen;
1448 while (d->bd_flags & BPFD_HBUF_INUSE)
1449 mtx_sleep(&d->bd_hbuf, &d->bd_lock,
1450 PRINET, "bd_hbuf", 0);
1451 if (d->bd_hbuf)
1452 n += d->bd_hlen;
1453 BPFD_UNLOCK(d);
1454
1455 *(int *)addr = n;
1456 break;
1457 }
1458
1459 /*
1460 * Get buffer len [for read()].
1461 */
1462 case BIOCGBLEN:
1463 BPFD_LOCK(d);
1464 *(u_int *)addr = d->bd_bufsize;
1465 BPFD_UNLOCK(d);
1466 break;
1467
1468 /*
1469 * Set buffer length.
1470 */
1471 case BIOCSBLEN:
1472 error = bpf_ioctl_sblen(d, (u_int *)addr);
1473 break;
1474
1475 /*
1476 * Set link layer read filter.
1477 */
1478 case BIOCSETF:
1479 case BIOCSETFNR:
1480 case BIOCSETWF:
1481 #ifdef COMPAT_FREEBSD32
1482 case BIOCSETF32:
1483 case BIOCSETFNR32:
1484 case BIOCSETWF32:
1485 #endif
1486 error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1487 break;
1488
1489 /*
1490 * Flush read packet buffer.
1491 */
1492 case BIOCFLUSH:
1493 BPFD_LOCK(d);
1494 reset_d(d);
1495 BPFD_UNLOCK(d);
1496 break;
1497
1498 /*
1499 * Put interface into promiscuous mode.
1500 */
1501 case BIOCPROMISC:
1502 BPF_LOCK();
1503 if (d->bd_bif == NULL) {
1504 /*
1505 * No interface attached yet.
1506 */
1507 error = EINVAL;
1508 } else if (d->bd_promisc == 0) {
1509 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1510 if (error == 0)
1511 d->bd_promisc = 1;
1512 }
1513 BPF_UNLOCK();
1514 break;
1515
1516 /*
1517 * Get current data link type.
1518 */
1519 case BIOCGDLT:
1520 BPF_LOCK();
1521 if (d->bd_bif == NULL)
1522 error = EINVAL;
1523 else
1524 *(u_int *)addr = d->bd_bif->bif_dlt;
1525 BPF_UNLOCK();
1526 break;
1527
1528 /*
1529 * Get a list of supported data link types.
1530 */
1531 #ifdef COMPAT_FREEBSD32
1532 case BIOCGDLTLIST32:
1533 {
1534 struct bpf_dltlist32 *list32;
1535 struct bpf_dltlist dltlist;
1536
1537 list32 = (struct bpf_dltlist32 *)addr;
1538 dltlist.bfl_len = list32->bfl_len;
1539 dltlist.bfl_list = PTRIN(list32->bfl_list);
1540 BPF_LOCK();
1541 if (d->bd_bif == NULL)
1542 error = EINVAL;
1543 else {
1544 error = bpf_getdltlist(d, &dltlist);
1545 if (error == 0)
1546 list32->bfl_len = dltlist.bfl_len;
1547 }
1548 BPF_UNLOCK();
1549 break;
1550 }
1551 #endif
1552
1553 case BIOCGDLTLIST:
1554 BPF_LOCK();
1555 if (d->bd_bif == NULL)
1556 error = EINVAL;
1557 else
1558 error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1559 BPF_UNLOCK();
1560 break;
1561
1562 /*
1563 * Set data link type.
1564 */
1565 case BIOCSDLT:
1566 BPF_LOCK();
1567 if (d->bd_bif == NULL)
1568 error = EINVAL;
1569 else
1570 error = bpf_setdlt(d, *(u_int *)addr);
1571 BPF_UNLOCK();
1572 break;
1573
1574 /*
1575 * Get interface name.
1576 */
1577 case BIOCGETIF:
1578 BPF_LOCK();
1579 if (d->bd_bif == NULL)
1580 error = EINVAL;
1581 else {
1582 struct ifnet *const ifp = d->bd_bif->bif_ifp;
1583 struct ifreq *const ifr = (struct ifreq *)addr;
1584
1585 strlcpy(ifr->ifr_name, ifp->if_xname,
1586 sizeof(ifr->ifr_name));
1587 }
1588 BPF_UNLOCK();
1589 break;
1590
1591 /*
1592 * Set interface.
1593 */
1594 case BIOCSETIF:
1595 /*
1596 * Behavior here depends on the buffering model. If we're
1597 * using kernel memory buffers, then we can allocate them here.
1598 * If we're using zero-copy, then the user process must have
1599 * registered buffers by the time we get here.
1600 */
1601 BPFD_LOCK(d);
1602 if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1603 d->bd_sbuf == NULL) {
1604 u_int size;
1605
1606 size = d->bd_bufsize;
1607 BPFD_UNLOCK(d);
1608 error = bpf_buffer_ioctl_sblen(d, &size);
1609 if (error != 0)
1610 break;
1611 } else
1612 BPFD_UNLOCK(d);
1613 BPF_LOCK();
1614 error = bpf_setif(d, (struct ifreq *)addr);
1615 BPF_UNLOCK();
1616 break;
1617
1618 /*
1619 * Set read timeout.
1620 */
1621 case BIOCSRTIMEOUT:
1622 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1623 case BIOCSRTIMEOUT32:
1624 #endif
1625 {
1626 struct timeval *tv = (struct timeval *)addr;
1627 #if defined(COMPAT_FREEBSD32)
1628 struct timeval32 *tv32;
1629 struct timeval tv64;
1630
1631 if (cmd == BIOCSRTIMEOUT32) {
1632 tv32 = (struct timeval32 *)addr;
1633 tv = &tv64;
1634 tv->tv_sec = tv32->tv_sec;
1635 tv->tv_usec = tv32->tv_usec;
1636 } else
1637 #endif
1638 tv = (struct timeval *)addr;
1639
1640 /*
1641 * Subtract 1 tick from tvtohz() since this isn't
1642 * a one-shot timer.
1643 */
1644 if ((error = itimerfix(tv)) == 0)
1645 d->bd_rtout = tvtohz(tv) - 1;
1646 break;
1647 }
1648
1649 /*
1650 * Get read timeout.
1651 */
1652 case BIOCGRTIMEOUT:
1653 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1654 case BIOCGRTIMEOUT32:
1655 #endif
1656 {
1657 struct timeval *tv;
1658 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1659 struct timeval32 *tv32;
1660 struct timeval tv64;
1661
1662 if (cmd == BIOCGRTIMEOUT32)
1663 tv = &tv64;
1664 else
1665 #endif
1666 tv = (struct timeval *)addr;
1667
1668 tv->tv_sec = d->bd_rtout / hz;
1669 tv->tv_usec = (d->bd_rtout % hz) * tick;
1670 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1671 if (cmd == BIOCGRTIMEOUT32) {
1672 tv32 = (struct timeval32 *)addr;
1673 tv32->tv_sec = tv->tv_sec;
1674 tv32->tv_usec = tv->tv_usec;
1675 }
1676 #endif
1677
1678 break;
1679 }
1680
1681 /*
1682 * Get packet stats.
1683 */
1684 case BIOCGSTATS:
1685 {
1686 struct bpf_stat *bs = (struct bpf_stat *)addr;
1687
1688 /* XXXCSJP overflow */
1689 bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1690 bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1691 break;
1692 }
1693
1694 /*
1695 * Set immediate mode.
1696 */
1697 case BIOCIMMEDIATE:
1698 BPFD_LOCK(d);
1699 d->bd_flags |= *(u_int *)addr ? BPFD_IMMEDIATE : 0;
1700 BPFD_UNLOCK(d);
1701 break;
1702
1703 case BIOCVERSION:
1704 {
1705 struct bpf_version *bv = (struct bpf_version *)addr;
1706
1707 bv->bv_major = BPF_MAJOR_VERSION;
1708 bv->bv_minor = BPF_MINOR_VERSION;
1709 break;
1710 }
1711
1712 /*
1713 * Get "header already complete" flag
1714 */
1715 case BIOCGHDRCMPLT:
1716 BPFD_LOCK(d);
1717 *(u_int *)addr = d->bd_flags & BPFD_HDRCMPLT ? 1 : 0;
1718 BPFD_UNLOCK(d);
1719 break;
1720
1721 /*
1722 * Set "header already complete" flag
1723 */
1724 case BIOCSHDRCMPLT:
1725 BPFD_LOCK(d);
1726 d->bd_flags |= *(u_int *)addr ? BPFD_HDRCMPLT : 0;
1727 BPFD_UNLOCK(d);
1728 break;
1729
1730 /*
1731 * Get packet direction flag
1732 */
1733 case BIOCGDIRECTION:
1734 BPFD_LOCK(d);
1735 *(u_int *)addr = d->bd_direction;
1736 BPFD_UNLOCK(d);
1737 break;
1738
1739 /*
1740 * Set packet direction flag
1741 */
1742 case BIOCSDIRECTION:
1743 {
1744 u_int direction;
1745
1746 direction = *(u_int *)addr;
1747 switch (direction) {
1748 case BPF_D_IN:
1749 case BPF_D_INOUT:
1750 case BPF_D_OUT:
1751 BPFD_LOCK(d);
1752 d->bd_direction = direction;
1753 BPFD_UNLOCK(d);
1754 break;
1755 default:
1756 error = EINVAL;
1757 }
1758 }
1759 break;
1760
1761 /*
1762 * Get packet timestamp format and resolution.
1763 */
1764 case BIOCGTSTAMP:
1765 BPFD_LOCK(d);
1766 *(u_int *)addr = d->bd_tstamp;
1767 BPFD_UNLOCK(d);
1768 break;
1769
1770 /*
1771 * Set packet timestamp format and resolution.
1772 */
1773 case BIOCSTSTAMP:
1774 {
1775 u_int func;
1776
1777 func = *(u_int *)addr;
1778 if (BPF_T_VALID(func))
1779 d->bd_tstamp = func;
1780 else
1781 error = EINVAL;
1782 }
1783 break;
1784
1785 case BIOCFEEDBACK:
1786 BPFD_LOCK(d);
1787 d->bd_flags |= *(u_int *)addr ? BPFD_FEEDBACK : 0;
1788 BPFD_UNLOCK(d);
1789 break;
1790
1791 case BIOCLOCK:
1792 BPFD_LOCK(d);
1793 d->bd_flags |= BPFD_LOCKED;
1794 BPFD_UNLOCK(d);
1795 break;
1796
1797 case FIONBIO: /* Non-blocking I/O */
1798 break;
1799
1800 case FIOASYNC: /* Send signal on receive packets */
1801 BPFD_LOCK(d);
1802 d->bd_flags |= *(u_int *)addr ? BPFD_ASYNC : 0;
1803 BPFD_UNLOCK(d);
1804 break;
1805
1806 case FIOSETOWN:
1807 /*
1808 * XXX: Add some sort of locking here?
1809 * fsetown() can sleep.
1810 */
1811 error = fsetown(*(int *)addr, &d->bd_sigio);
1812 break;
1813
1814 case FIOGETOWN:
1815 BPFD_LOCK(d);
1816 *(int *)addr = fgetown(&d->bd_sigio);
1817 BPFD_UNLOCK(d);
1818 break;
1819
1820 /* This is deprecated, FIOSETOWN should be used instead. */
1821 case TIOCSPGRP:
1822 error = fsetown(-(*(int *)addr), &d->bd_sigio);
1823 break;
1824
1825 /* This is deprecated, FIOGETOWN should be used instead. */
1826 case TIOCGPGRP:
1827 *(int *)addr = -fgetown(&d->bd_sigio);
1828 break;
1829
1830 case BIOCSRSIG: /* Set receive signal */
1831 {
1832 u_int sig;
1833
1834 sig = *(u_int *)addr;
1835
1836 if (sig >= NSIG)
1837 error = EINVAL;
1838 else {
1839 BPFD_LOCK(d);
1840 d->bd_sig = sig;
1841 BPFD_UNLOCK(d);
1842 }
1843 break;
1844 }
1845 case BIOCGRSIG:
1846 BPFD_LOCK(d);
1847 *(u_int *)addr = d->bd_sig;
1848 BPFD_UNLOCK(d);
1849 break;
1850
1851 case BIOCGETBUFMODE:
1852 BPFD_LOCK(d);
1853 *(u_int *)addr = d->bd_bufmode;
1854 BPFD_UNLOCK(d);
1855 break;
1856
1857 case BIOCSETBUFMODE:
1858 /*
1859 * Allow the buffering mode to be changed as long as we
1860 * haven't yet committed to a particular mode. Our
1861 * definition of commitment, for now, is whether or not a
1862 * buffer has been allocated or an interface attached, since
1863 * that's the point where things get tricky.
1864 */
1865 switch (*(u_int *)addr) {
1866 case BPF_BUFMODE_BUFFER:
1867 break;
1868
1869 case BPF_BUFMODE_ZBUF:
1870 if (bpf_zerocopy_enable)
1871 break;
1872 /* FALLSTHROUGH */
1873
1874 default:
1875 CURVNET_RESTORE();
1876 return (EINVAL);
1877 }
1878
1879 BPFD_LOCK(d);
1880 if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1881 d->bd_fbuf != NULL || d->bd_bif != NULL) {
1882 BPFD_UNLOCK(d);
1883 CURVNET_RESTORE();
1884 return (EBUSY);
1885 }
1886 d->bd_bufmode = *(u_int *)addr;
1887 BPFD_UNLOCK(d);
1888 break;
1889
1890 case BIOCGETZMAX:
1891 error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1892 break;
1893
1894 case BIOCSETZBUF:
1895 error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1896 break;
1897
1898 case BIOCROTZBUF:
1899 error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1900 break;
1901
1902 case BIOCSETVLANPCP:
1903 {
1904 u_int pcp;
1905
1906 pcp = *(u_int *)addr;
1907 if (pcp > BPF_PRIO_MAX || pcp < 0) {
1908 error = EINVAL;
1909 break;
1910 }
1911 d->bd_pcp = pcp;
1912 break;
1913 }
1914 }
1915 CURVNET_RESTORE();
1916 return (error);
1917 }
1918
1919 /*
1920 * Set d's packet filter program to fp. If this file already has a filter,
1921 * free it and replace it. Returns EINVAL for bogus requests.
1922 *
1923 * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1924 * calls.
1925 */
1926 static int
bpf_setf(struct bpf_d * d,struct bpf_program * fp,u_long cmd)1927 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1928 {
1929 #ifdef COMPAT_FREEBSD32
1930 struct bpf_program fp_swab;
1931 struct bpf_program32 *fp32;
1932 #endif
1933 struct bpf_program_buffer *fcode;
1934 struct bpf_insn *filter;
1935 #ifdef BPF_JITTER
1936 bpf_jit_filter *jfunc;
1937 #endif
1938 size_t size;
1939 u_int flen;
1940 bool track_event;
1941
1942 #ifdef COMPAT_FREEBSD32
1943 switch (cmd) {
1944 case BIOCSETF32:
1945 case BIOCSETWF32:
1946 case BIOCSETFNR32:
1947 fp32 = (struct bpf_program32 *)fp;
1948 fp_swab.bf_len = fp32->bf_len;
1949 fp_swab.bf_insns =
1950 (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1951 fp = &fp_swab;
1952 switch (cmd) {
1953 case BIOCSETF32:
1954 cmd = BIOCSETF;
1955 break;
1956 case BIOCSETWF32:
1957 cmd = BIOCSETWF;
1958 break;
1959 }
1960 break;
1961 }
1962 #endif
1963
1964 filter = NULL;
1965 #ifdef BPF_JITTER
1966 jfunc = NULL;
1967 #endif
1968 /*
1969 * Check new filter validness before acquiring any locks.
1970 * Allocate memory for new filter, if needed.
1971 */
1972 flen = fp->bf_len;
1973 if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1974 return (EINVAL);
1975 size = flen * sizeof(*fp->bf_insns);
1976 if (size > 0) {
1977 /* We're setting up new filter. Copy and check actual data. */
1978 fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1979 filter = (struct bpf_insn *)fcode->buffer;
1980 if (copyin(fp->bf_insns, filter, size) != 0 ||
1981 !bpf_validate(filter, flen)) {
1982 free(fcode, M_BPF);
1983 return (EINVAL);
1984 }
1985 #ifdef BPF_JITTER
1986 if (cmd != BIOCSETWF) {
1987 /*
1988 * Filter is copied inside fcode and is
1989 * perfectly valid.
1990 */
1991 jfunc = bpf_jitter(filter, flen);
1992 }
1993 #endif
1994 }
1995
1996 track_event = false;
1997 fcode = NULL;
1998
1999 BPF_LOCK();
2000 BPFD_LOCK(d);
2001 /* Set up new filter. */
2002 if (cmd == BIOCSETWF) {
2003 if (d->bd_wfilter != NULL) {
2004 fcode = __containerof((void *)d->bd_wfilter,
2005 struct bpf_program_buffer, buffer);
2006 #ifdef BPF_JITTER
2007 fcode->func = NULL;
2008 #endif
2009 }
2010 d->bd_wfilter = filter;
2011 } else {
2012 if (d->bd_rfilter != NULL) {
2013 fcode = __containerof((void *)d->bd_rfilter,
2014 struct bpf_program_buffer, buffer);
2015 #ifdef BPF_JITTER
2016 fcode->func = d->bd_bfilter;
2017 #endif
2018 }
2019 d->bd_rfilter = filter;
2020 #ifdef BPF_JITTER
2021 d->bd_bfilter = jfunc;
2022 #endif
2023 if (cmd == BIOCSETF)
2024 reset_d(d);
2025
2026 if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2027 /*
2028 * Filter can be set several times without
2029 * specifying interface. In this case just mark d
2030 * as reader.
2031 */
2032 d->bd_writer = 0;
2033 if (d->bd_bif != NULL) {
2034 /*
2035 * Remove descriptor from writers-only list
2036 * and add it to active readers list.
2037 */
2038 CK_LIST_REMOVE(d, bd_next);
2039 CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2040 d, bd_next);
2041 CTR2(KTR_NET,
2042 "%s: upgrade required by pid %d",
2043 __func__, d->bd_pid);
2044 track_event = true;
2045 }
2046 }
2047 }
2048 BPFD_UNLOCK(d);
2049
2050 if (fcode != NULL)
2051 NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2052
2053 if (track_event)
2054 EVENTHANDLER_INVOKE(bpf_track,
2055 d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2056
2057 BPF_UNLOCK();
2058 return (0);
2059 }
2060
2061 /*
2062 * Detach a file from its current interface (if attached at all) and attach
2063 * to the interface indicated by the name stored in ifr.
2064 * Return an errno or 0.
2065 */
2066 static int
bpf_setif(struct bpf_d * d,struct ifreq * ifr)2067 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2068 {
2069 struct bpf_if *bp;
2070 struct ifnet *theywant;
2071
2072 BPF_LOCK_ASSERT();
2073
2074 theywant = ifunit(ifr->ifr_name);
2075 if (theywant == NULL)
2076 return (ENXIO);
2077 /*
2078 * Look through attached interfaces for the named one.
2079 */
2080 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2081 if (bp->bif_ifp == theywant &&
2082 bp->bif_bpf == &theywant->if_bpf)
2083 break;
2084 }
2085 if (bp == NULL)
2086 return (ENXIO);
2087
2088 MPASS(bp == theywant->if_bpf);
2089 /*
2090 * At this point, we expect the buffer is already allocated. If not,
2091 * return an error.
2092 */
2093 switch (d->bd_bufmode) {
2094 case BPF_BUFMODE_BUFFER:
2095 case BPF_BUFMODE_ZBUF:
2096 if (d->bd_sbuf == NULL)
2097 return (EINVAL);
2098 break;
2099
2100 default:
2101 panic("bpf_setif: bufmode %d", d->bd_bufmode);
2102 }
2103 if (bp != d->bd_bif)
2104 bpf_attachd(d, bp);
2105 else {
2106 BPFD_LOCK(d);
2107 reset_d(d);
2108 BPFD_UNLOCK(d);
2109 }
2110 return (0);
2111 }
2112
2113 /*
2114 * Support for select() and poll() system calls
2115 *
2116 * Return true iff the specific operation will not block indefinitely.
2117 * Otherwise, return false but make a note that a selwakeup() must be done.
2118 */
2119 static int
bpfpoll(struct cdev * dev,int events,struct thread * td)2120 bpfpoll(struct cdev *dev, int events, struct thread *td)
2121 {
2122 struct bpf_d *d;
2123 int revents;
2124
2125 if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2126 return (events &
2127 (POLLHUP | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM));
2128
2129 /*
2130 * Refresh PID associated with this descriptor.
2131 */
2132 revents = events & (POLLOUT | POLLWRNORM);
2133 BPFD_LOCK(d);
2134 BPF_PID_REFRESH(d, td);
2135 if (events & (POLLIN | POLLRDNORM)) {
2136 if (bpf_ready(d))
2137 revents |= events & (POLLIN | POLLRDNORM);
2138 else {
2139 selrecord(td, &d->bd_sel);
2140 /* Start the read timeout if necessary. */
2141 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2142 callout_reset(&d->bd_callout, d->bd_rtout,
2143 bpf_timed_out, d);
2144 d->bd_state = BPF_WAITING;
2145 }
2146 }
2147 }
2148 BPFD_UNLOCK(d);
2149 return (revents);
2150 }
2151
2152 /*
2153 * Support for kevent() system call. Register EVFILT_READ filters and
2154 * reject all others.
2155 */
2156 int
bpfkqfilter(struct cdev * dev,struct knote * kn)2157 bpfkqfilter(struct cdev *dev, struct knote *kn)
2158 {
2159 struct bpf_d *d;
2160
2161 if (devfs_get_cdevpriv((void **)&d) != 0)
2162 return (1);
2163
2164 switch (kn->kn_filter) {
2165 case EVFILT_READ:
2166 kn->kn_fop = &bpfread_filtops;
2167 break;
2168
2169 case EVFILT_WRITE:
2170 kn->kn_fop = &bpfwrite_filtops;
2171 break;
2172
2173 default:
2174 return (1);
2175 }
2176
2177 /*
2178 * Refresh PID associated with this descriptor.
2179 */
2180 BPFD_LOCK(d);
2181 BPF_PID_REFRESH_CUR(d);
2182 kn->kn_hook = d;
2183 knlist_add(&d->bd_sel.si_note, kn, 1);
2184 BPFD_UNLOCK(d);
2185
2186 return (0);
2187 }
2188
2189 static void
filt_bpfdetach(struct knote * kn)2190 filt_bpfdetach(struct knote *kn)
2191 {
2192 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2193
2194 knlist_remove(&d->bd_sel.si_note, kn, 0);
2195 }
2196
2197 static int
filt_bpfread(struct knote * kn,long hint)2198 filt_bpfread(struct knote *kn, long hint)
2199 {
2200 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2201 int ready;
2202
2203 BPFD_LOCK_ASSERT(d);
2204 ready = bpf_ready(d);
2205 if (ready) {
2206 kn->kn_data = d->bd_slen;
2207 /*
2208 * Ignore the hold buffer if it is being copied to user space.
2209 */
2210 if (!(d->bd_flags & BPFD_HBUF_INUSE) && d->bd_hbuf)
2211 kn->kn_data += d->bd_hlen;
2212 } else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2213 callout_reset(&d->bd_callout, d->bd_rtout,
2214 bpf_timed_out, d);
2215 d->bd_state = BPF_WAITING;
2216 }
2217
2218 return (ready);
2219 }
2220
2221 static int
filt_bpfwrite(struct knote * kn,long hint)2222 filt_bpfwrite(struct knote *kn, long hint)
2223 {
2224 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2225
2226 BPFD_LOCK_ASSERT(d);
2227
2228 if (d->bd_bif == NULL) {
2229 kn->kn_data = 0;
2230 return (0);
2231 } else {
2232 kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2233 return (1);
2234 }
2235 }
2236
2237 #define BPF_TSTAMP_NONE 0
2238 #define BPF_TSTAMP_FAST 1
2239 #define BPF_TSTAMP_NORMAL 2
2240 #define BPF_TSTAMP_EXTERN 3
2241
2242 static int
bpf_ts_quality(int tstype)2243 bpf_ts_quality(int tstype)
2244 {
2245
2246 if (tstype == BPF_T_NONE)
2247 return (BPF_TSTAMP_NONE);
2248 if ((tstype & BPF_T_FAST) != 0)
2249 return (BPF_TSTAMP_FAST);
2250
2251 return (BPF_TSTAMP_NORMAL);
2252 }
2253
2254 static int
bpf_gettime(struct bintime * bt,int tstype,struct mbuf * m)2255 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2256 {
2257 struct timespec ts;
2258 struct m_tag *tag;
2259 int quality;
2260
2261 quality = bpf_ts_quality(tstype);
2262 if (quality == BPF_TSTAMP_NONE)
2263 return (quality);
2264
2265 if (m != NULL) {
2266 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2267 mbuf_tstmp2timespec(m, &ts);
2268 timespec2bintime(&ts, bt);
2269 return (BPF_TSTAMP_EXTERN);
2270 }
2271 tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2272 if (tag != NULL) {
2273 *bt = *(struct bintime *)(tag + 1);
2274 return (BPF_TSTAMP_EXTERN);
2275 }
2276 }
2277 if (quality == BPF_TSTAMP_NORMAL)
2278 binuptime(bt);
2279 else
2280 getbinuptime(bt);
2281
2282 return (quality);
2283 }
2284
2285 /*
2286 * Incoming linkage from device drivers. Process the packet pkt, of length
2287 * pktlen, which is stored in a contiguous buffer. The packet is parsed
2288 * by each process' filter, and if accepted, stashed into the corresponding
2289 * buffer.
2290 */
2291 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)2292 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2293 {
2294 struct epoch_tracker et;
2295 struct bintime bt;
2296 struct bpf_d *d;
2297 #ifdef BPF_JITTER
2298 bpf_jit_filter *bf;
2299 #endif
2300 u_int slen;
2301 int gottime;
2302
2303 gottime = BPF_TSTAMP_NONE;
2304 NET_EPOCH_ENTER(et);
2305 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2306 counter_u64_add(d->bd_rcount, 1);
2307 /*
2308 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2309 * is no way for the caller to indiciate to us whether this
2310 * packet is inbound or outbound. In the bpf_mtap() routines,
2311 * we use the interface pointers on the mbuf to figure it out.
2312 */
2313 #ifdef BPF_JITTER
2314 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2315 if (bf != NULL)
2316 slen = (*(bf->func))(pkt, pktlen, pktlen);
2317 else
2318 #endif
2319 slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2320 if (slen != 0) {
2321 /*
2322 * Filter matches. Let's to acquire write lock.
2323 */
2324 BPFD_LOCK(d);
2325 counter_u64_add(d->bd_fcount, 1);
2326 if (gottime < bpf_ts_quality(d->bd_tstamp))
2327 gottime = bpf_gettime(&bt, d->bd_tstamp,
2328 NULL);
2329 #ifdef MAC
2330 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2331 #endif
2332 catchpacket(d, pkt, pktlen, slen,
2333 bpf_append_bytes, &bt);
2334 BPFD_UNLOCK(d);
2335 }
2336 }
2337 NET_EPOCH_EXIT(et);
2338 }
2339
2340 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)2341 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2342 {
2343 if (bpf_peers_present(ifp->if_bpf))
2344 bpf_tap(ifp->if_bpf, pkt, pktlen);
2345 }
2346
2347 #define BPF_CHECK_DIRECTION(d, r, i) \
2348 (((d)->bd_direction == BPF_D_IN && (r) != (i)) || \
2349 ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2350
2351 /*
2352 * Incoming linkage from device drivers, when packet is in an mbuf chain.
2353 * Locking model is explained in bpf_tap().
2354 */
2355 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)2356 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2357 {
2358 struct epoch_tracker et;
2359 struct bintime bt;
2360 struct bpf_d *d;
2361 #ifdef BPF_JITTER
2362 bpf_jit_filter *bf;
2363 #endif
2364 u_int pktlen, slen;
2365 int gottime;
2366
2367 /* Skip outgoing duplicate packets. */
2368 if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2369 m->m_flags &= ~M_PROMISC;
2370 return;
2371 }
2372
2373 pktlen = m_length(m, NULL);
2374 gottime = BPF_TSTAMP_NONE;
2375
2376 NET_EPOCH_ENTER(et);
2377 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2378 if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2379 continue;
2380 counter_u64_add(d->bd_rcount, 1);
2381 #ifdef BPF_JITTER
2382 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2383 /* XXX We cannot handle multiple mbufs. */
2384 if (bf != NULL && m->m_next == NULL)
2385 slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2386 pktlen);
2387 else
2388 #endif
2389 slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2390 if (slen != 0) {
2391 BPFD_LOCK(d);
2392
2393 counter_u64_add(d->bd_fcount, 1);
2394 if (gottime < bpf_ts_quality(d->bd_tstamp))
2395 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2396 #ifdef MAC
2397 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2398 #endif
2399 catchpacket(d, (u_char *)m, pktlen, slen,
2400 bpf_append_mbuf, &bt);
2401 BPFD_UNLOCK(d);
2402 }
2403 }
2404 NET_EPOCH_EXIT(et);
2405 }
2406
2407 void
bpf_mtap_if(if_t ifp,struct mbuf * m)2408 bpf_mtap_if(if_t ifp, struct mbuf *m)
2409 {
2410 if (bpf_peers_present(ifp->if_bpf)) {
2411 M_ASSERTVALID(m);
2412 bpf_mtap(ifp->if_bpf, m);
2413 }
2414 }
2415
2416 /*
2417 * Incoming linkage from device drivers, when packet is in
2418 * an mbuf chain and to be prepended by a contiguous header.
2419 */
2420 void
bpf_mtap2(struct bpf_if * bp,void * data,u_int dlen,struct mbuf * m)2421 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2422 {
2423 struct epoch_tracker et;
2424 struct bintime bt;
2425 struct mbuf mb;
2426 struct bpf_d *d;
2427 u_int pktlen, slen;
2428 int gottime;
2429
2430 /* Skip outgoing duplicate packets. */
2431 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2432 m->m_flags &= ~M_PROMISC;
2433 return;
2434 }
2435
2436 pktlen = m_length(m, NULL);
2437 /*
2438 * Craft on-stack mbuf suitable for passing to bpf_filter.
2439 * Note that we cut corners here; we only setup what's
2440 * absolutely needed--this mbuf should never go anywhere else.
2441 */
2442 mb.m_flags = 0;
2443 mb.m_next = m;
2444 mb.m_data = data;
2445 mb.m_len = dlen;
2446 pktlen += dlen;
2447
2448 gottime = BPF_TSTAMP_NONE;
2449
2450 NET_EPOCH_ENTER(et);
2451 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2452 if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2453 continue;
2454 counter_u64_add(d->bd_rcount, 1);
2455 slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2456 if (slen != 0) {
2457 BPFD_LOCK(d);
2458
2459 counter_u64_add(d->bd_fcount, 1);
2460 if (gottime < bpf_ts_quality(d->bd_tstamp))
2461 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2462 #ifdef MAC
2463 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2464 #endif
2465 catchpacket(d, (u_char *)&mb, pktlen, slen,
2466 bpf_append_mbuf, &bt);
2467 BPFD_UNLOCK(d);
2468 }
2469 }
2470 NET_EPOCH_EXIT(et);
2471 }
2472
2473 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)2474 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2475 {
2476 if (bpf_peers_present(ifp->if_bpf)) {
2477 M_ASSERTVALID(m);
2478 bpf_mtap2(ifp->if_bpf, data, dlen, m);
2479 }
2480 }
2481
2482 #undef BPF_CHECK_DIRECTION
2483 #undef BPF_TSTAMP_NONE
2484 #undef BPF_TSTAMP_FAST
2485 #undef BPF_TSTAMP_NORMAL
2486 #undef BPF_TSTAMP_EXTERN
2487
2488 static int
bpf_hdrlen(struct bpf_d * d)2489 bpf_hdrlen(struct bpf_d *d)
2490 {
2491 int hdrlen;
2492
2493 hdrlen = d->bd_bif->bif_hdrlen;
2494 #ifndef BURN_BRIDGES
2495 if (d->bd_tstamp == BPF_T_NONE ||
2496 BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2497 #ifdef COMPAT_FREEBSD32
2498 if (d->bd_compat32)
2499 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2500 else
2501 #endif
2502 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2503 else
2504 #endif
2505 hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2506 #ifdef COMPAT_FREEBSD32
2507 if (d->bd_compat32)
2508 hdrlen = BPF_WORDALIGN32(hdrlen);
2509 else
2510 #endif
2511 hdrlen = BPF_WORDALIGN(hdrlen);
2512
2513 return (hdrlen - d->bd_bif->bif_hdrlen);
2514 }
2515
2516 static void
bpf_bintime2ts(struct bintime * bt,struct bpf_ts * ts,int tstype)2517 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2518 {
2519 struct bintime bt2, boottimebin;
2520 struct timeval tsm;
2521 struct timespec tsn;
2522
2523 if ((tstype & BPF_T_MONOTONIC) == 0) {
2524 bt2 = *bt;
2525 getboottimebin(&boottimebin);
2526 bintime_add(&bt2, &boottimebin);
2527 bt = &bt2;
2528 }
2529 switch (BPF_T_FORMAT(tstype)) {
2530 case BPF_T_MICROTIME:
2531 bintime2timeval(bt, &tsm);
2532 ts->bt_sec = tsm.tv_sec;
2533 ts->bt_frac = tsm.tv_usec;
2534 break;
2535 case BPF_T_NANOTIME:
2536 bintime2timespec(bt, &tsn);
2537 ts->bt_sec = tsn.tv_sec;
2538 ts->bt_frac = tsn.tv_nsec;
2539 break;
2540 case BPF_T_BINTIME:
2541 ts->bt_sec = bt->sec;
2542 ts->bt_frac = bt->frac;
2543 break;
2544 }
2545 }
2546
2547 /*
2548 * Move the packet data from interface memory (pkt) into the
2549 * store buffer. "cpfn" is the routine called to do the actual data
2550 * transfer. bcopy is passed in to copy contiguous chunks, while
2551 * bpf_append_mbuf is passed in to copy mbuf chains. In the latter case,
2552 * pkt is really an mbuf.
2553 */
2554 static void
catchpacket(struct bpf_d * d,u_char * pkt,u_int pktlen,u_int snaplen,void (* cpfn)(struct bpf_d *,caddr_t,u_int,void *,u_int),struct bintime * bt)2555 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2556 void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2557 struct bintime *bt)
2558 {
2559 static char zeroes[BPF_ALIGNMENT];
2560 struct bpf_xhdr hdr;
2561 #ifndef BURN_BRIDGES
2562 struct bpf_hdr hdr_old;
2563 #ifdef COMPAT_FREEBSD32
2564 struct bpf_hdr32 hdr32_old;
2565 #endif
2566 #endif
2567 int caplen, curlen, hdrlen, pad, totlen;
2568 int do_wakeup = 0;
2569 int do_timestamp;
2570 int tstype;
2571
2572 BPFD_LOCK_ASSERT(d);
2573 if (d->bd_bif == NULL) {
2574 /* Descriptor was detached in concurrent thread */
2575 counter_u64_add(d->bd_dcount, 1);
2576 return;
2577 }
2578
2579 /*
2580 * Detect whether user space has released a buffer back to us, and if
2581 * so, move it from being a hold buffer to a free buffer. This may
2582 * not be the best place to do it (for example, we might only want to
2583 * run this check if we need the space), but for now it's a reliable
2584 * spot to do it.
2585 */
2586 if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2587 d->bd_fbuf = d->bd_hbuf;
2588 d->bd_hbuf = NULL;
2589 d->bd_hlen = 0;
2590 bpf_buf_reclaimed(d);
2591 }
2592
2593 /*
2594 * Figure out how many bytes to move. If the packet is
2595 * greater or equal to the snapshot length, transfer that
2596 * much. Otherwise, transfer the whole packet (unless
2597 * we hit the buffer size limit).
2598 */
2599 hdrlen = bpf_hdrlen(d);
2600 totlen = hdrlen + min(snaplen, pktlen);
2601 if (totlen > d->bd_bufsize)
2602 totlen = d->bd_bufsize;
2603
2604 /*
2605 * Round up the end of the previous packet to the next longword.
2606 *
2607 * Drop the packet if there's no room and no hope of room
2608 * If the packet would overflow the storage buffer or the storage
2609 * buffer is considered immutable by the buffer model, try to rotate
2610 * the buffer and wakeup pending processes.
2611 */
2612 #ifdef COMPAT_FREEBSD32
2613 if (d->bd_compat32)
2614 curlen = BPF_WORDALIGN32(d->bd_slen);
2615 else
2616 #endif
2617 curlen = BPF_WORDALIGN(d->bd_slen);
2618 if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2619 if (d->bd_fbuf == NULL) {
2620 /*
2621 * There's no room in the store buffer, and no
2622 * prospect of room, so drop the packet. Notify the
2623 * buffer model.
2624 */
2625 bpf_buffull(d);
2626 counter_u64_add(d->bd_dcount, 1);
2627 return;
2628 }
2629 KASSERT(!(d->bd_flags & BPFD_HBUF_INUSE),
2630 ("hold buffer is in use"));
2631 ROTATE_BUFFERS(d);
2632 do_wakeup = 1;
2633 curlen = 0;
2634 } else {
2635 if ((d->bd_flags & BPFD_IMMEDIATE) ||
2636 d->bd_state == BPF_TIMED_OUT) {
2637 /*
2638 * Immediate mode is set, or the read timeout has
2639 * already expired during a select call. A packet
2640 * arrived, so the reader should be woken up.
2641 */
2642 do_wakeup = 1;
2643 }
2644 pad = curlen - d->bd_slen;
2645 KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2646 ("%s: invalid pad byte count %d", __func__, pad));
2647 if (pad > 0) {
2648 /* Zero pad bytes. */
2649 bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2650 pad);
2651 }
2652 }
2653
2654 caplen = totlen - hdrlen;
2655 tstype = d->bd_tstamp;
2656 do_timestamp = tstype != BPF_T_NONE;
2657 #ifndef BURN_BRIDGES
2658 if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2659 struct bpf_ts ts;
2660 if (do_timestamp)
2661 bpf_bintime2ts(bt, &ts, tstype);
2662 #ifdef COMPAT_FREEBSD32
2663 if (d->bd_compat32) {
2664 bzero(&hdr32_old, sizeof(hdr32_old));
2665 if (do_timestamp) {
2666 hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2667 hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2668 }
2669 hdr32_old.bh_datalen = pktlen;
2670 hdr32_old.bh_hdrlen = hdrlen;
2671 hdr32_old.bh_caplen = caplen;
2672 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2673 sizeof(hdr32_old));
2674 goto copy;
2675 }
2676 #endif
2677 bzero(&hdr_old, sizeof(hdr_old));
2678 if (do_timestamp) {
2679 hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2680 hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2681 }
2682 hdr_old.bh_datalen = pktlen;
2683 hdr_old.bh_hdrlen = hdrlen;
2684 hdr_old.bh_caplen = caplen;
2685 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2686 sizeof(hdr_old));
2687 goto copy;
2688 }
2689 #endif
2690
2691 /*
2692 * Append the bpf header. Note we append the actual header size, but
2693 * move forward the length of the header plus padding.
2694 */
2695 bzero(&hdr, sizeof(hdr));
2696 if (do_timestamp)
2697 bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2698 hdr.bh_datalen = pktlen;
2699 hdr.bh_hdrlen = hdrlen;
2700 hdr.bh_caplen = caplen;
2701 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2702
2703 /*
2704 * Copy the packet data into the store buffer and update its length.
2705 */
2706 #ifndef BURN_BRIDGES
2707 copy:
2708 #endif
2709 (*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2710 d->bd_slen = curlen + totlen;
2711
2712 if (do_wakeup)
2713 bpf_wakeup(d);
2714 }
2715
2716 /*
2717 * Free buffers currently in use by a descriptor.
2718 * Called on close.
2719 */
2720 static void
bpfd_free(epoch_context_t ctx)2721 bpfd_free(epoch_context_t ctx)
2722 {
2723 struct bpf_d *d;
2724 struct bpf_program_buffer *p;
2725
2726 /*
2727 * We don't need to lock out interrupts since this descriptor has
2728 * been detached from its interface and it yet hasn't been marked
2729 * free.
2730 */
2731 d = __containerof(ctx, struct bpf_d, epoch_ctx);
2732 bpf_free(d);
2733 if (d->bd_rfilter != NULL) {
2734 p = __containerof((void *)d->bd_rfilter,
2735 struct bpf_program_buffer, buffer);
2736 #ifdef BPF_JITTER
2737 p->func = d->bd_bfilter;
2738 #endif
2739 bpf_program_buffer_free(&p->epoch_ctx);
2740 }
2741 if (d->bd_wfilter != NULL) {
2742 p = __containerof((void *)d->bd_wfilter,
2743 struct bpf_program_buffer, buffer);
2744 #ifdef BPF_JITTER
2745 p->func = NULL;
2746 #endif
2747 bpf_program_buffer_free(&p->epoch_ctx);
2748 }
2749
2750 mtx_destroy(&d->bd_lock);
2751 counter_u64_free(d->bd_rcount);
2752 counter_u64_free(d->bd_dcount);
2753 counter_u64_free(d->bd_fcount);
2754 counter_u64_free(d->bd_wcount);
2755 counter_u64_free(d->bd_wfcount);
2756 counter_u64_free(d->bd_wdcount);
2757 counter_u64_free(d->bd_zcopy);
2758 free(d, M_BPF);
2759 }
2760
2761 /*
2762 * Attach an interface to bpf. dlt is the link layer type; hdrlen is the
2763 * fixed size of the link header (variable length headers not yet supported).
2764 */
2765 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)2766 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2767 {
2768
2769 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2770 }
2771
2772 /*
2773 * Attach an interface to bpf. ifp is a pointer to the structure
2774 * defining the interface to be attached, dlt is the link layer type,
2775 * and hdrlen is the fixed size of the link header (variable length
2776 * headers are not yet supporrted).
2777 */
2778 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)2779 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2780 struct bpf_if **driverp)
2781 {
2782 struct bpf_if *bp;
2783
2784 KASSERT(*driverp == NULL,
2785 ("bpfattach2: driverp already initialized"));
2786
2787 bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2788
2789 CK_LIST_INIT(&bp->bif_dlist);
2790 CK_LIST_INIT(&bp->bif_wlist);
2791 bp->bif_ifp = ifp;
2792 bp->bif_dlt = dlt;
2793 bp->bif_hdrlen = hdrlen;
2794 bp->bif_bpf = driverp;
2795 refcount_init(&bp->bif_refcnt, 1);
2796 *driverp = bp;
2797 /*
2798 * Reference ifnet pointer, so it won't freed until
2799 * we release it.
2800 */
2801 if_ref(ifp);
2802 BPF_LOCK();
2803 LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2804 BPF_UNLOCK();
2805
2806 if (bootverbose && IS_DEFAULT_VNET(curvnet))
2807 if_printf(ifp, "bpf attached\n");
2808 }
2809
2810 #ifdef VIMAGE
2811 /*
2812 * Detach descriptors on interface's vmove event.
2813 */
2814 void
bpf_ifdetach(struct ifnet * ifp)2815 bpf_ifdetach(struct ifnet *ifp)
2816 {
2817 struct bpf_if *bp;
2818 struct bpf_d *d;
2819
2820 BPF_LOCK();
2821 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2822 if (bp->bif_ifp != ifp)
2823 continue;
2824
2825 /* Detach common descriptors */
2826 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2827 bpf_detachd(d, true);
2828 }
2829
2830 /* Detach writer-only descriptors */
2831 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2832 bpf_detachd(d, true);
2833 }
2834 }
2835 BPF_UNLOCK();
2836 }
2837 #endif
2838
2839 /*
2840 * Detach bpf from an interface. This involves detaching each descriptor
2841 * associated with the interface. Notify each descriptor as it's detached
2842 * so that any sleepers wake up and get ENXIO.
2843 */
2844 void
bpfdetach(struct ifnet * ifp)2845 bpfdetach(struct ifnet *ifp)
2846 {
2847 struct bpf_if *bp, *bp_temp;
2848 struct bpf_d *d;
2849
2850 BPF_LOCK();
2851 /* Find all bpf_if struct's which reference ifp and detach them. */
2852 LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2853 if (ifp != bp->bif_ifp)
2854 continue;
2855
2856 LIST_REMOVE(bp, bif_next);
2857 *bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if);
2858
2859 CTR4(KTR_NET,
2860 "%s: sheduling free for encap %d (%p) for if %p",
2861 __func__, bp->bif_dlt, bp, ifp);
2862
2863 /* Detach common descriptors */
2864 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2865 bpf_detachd(d, true);
2866 }
2867
2868 /* Detach writer-only descriptors */
2869 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2870 bpf_detachd(d, true);
2871 }
2872 bpfif_rele(bp);
2873 }
2874 BPF_UNLOCK();
2875 }
2876
2877 bool
bpf_peers_present_if(struct ifnet * ifp)2878 bpf_peers_present_if(struct ifnet *ifp)
2879 {
2880 return (bpf_peers_present(ifp->if_bpf));
2881 }
2882
2883 /*
2884 * Get a list of available data link type of the interface.
2885 */
2886 static int
bpf_getdltlist(struct bpf_d * d,struct bpf_dltlist * bfl)2887 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2888 {
2889 struct ifnet *ifp;
2890 struct bpf_if *bp;
2891 u_int *lst;
2892 int error, n, n1;
2893
2894 BPF_LOCK_ASSERT();
2895
2896 ifp = d->bd_bif->bif_ifp;
2897 n1 = 0;
2898 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2899 if (bp->bif_ifp == ifp)
2900 n1++;
2901 }
2902 if (bfl->bfl_list == NULL) {
2903 bfl->bfl_len = n1;
2904 return (0);
2905 }
2906 if (n1 > bfl->bfl_len)
2907 return (ENOMEM);
2908
2909 lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2910 n = 0;
2911 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2912 if (bp->bif_ifp != ifp)
2913 continue;
2914 lst[n++] = bp->bif_dlt;
2915 }
2916 error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2917 free(lst, M_TEMP);
2918 bfl->bfl_len = n;
2919 return (error);
2920 }
2921
2922 /*
2923 * Set the data link type of a BPF instance.
2924 */
2925 static int
bpf_setdlt(struct bpf_d * d,u_int dlt)2926 bpf_setdlt(struct bpf_d *d, u_int dlt)
2927 {
2928 int error, opromisc;
2929 struct ifnet *ifp;
2930 struct bpf_if *bp;
2931
2932 BPF_LOCK_ASSERT();
2933 MPASS(d->bd_bif != NULL);
2934
2935 /*
2936 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2937 * changed while we hold global lock.
2938 */
2939 if (d->bd_bif->bif_dlt == dlt)
2940 return (0);
2941
2942 ifp = d->bd_bif->bif_ifp;
2943 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2944 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2945 break;
2946 }
2947 if (bp == NULL)
2948 return (EINVAL);
2949
2950 opromisc = d->bd_promisc;
2951 bpf_attachd(d, bp);
2952 if (opromisc) {
2953 error = ifpromisc(bp->bif_ifp, 1);
2954 if (error)
2955 if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2956 __func__, error);
2957 else
2958 d->bd_promisc = 1;
2959 }
2960 return (0);
2961 }
2962
2963 static void
bpf_drvinit(void * unused)2964 bpf_drvinit(void *unused)
2965 {
2966 struct cdev *dev;
2967
2968 sx_init(&bpf_sx, "bpf global lock");
2969 dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2970 /* For compatibility */
2971 make_dev_alias(dev, "bpf0");
2972 }
2973
2974 /*
2975 * Zero out the various packet counters associated with all of the bpf
2976 * descriptors. At some point, we will probably want to get a bit more
2977 * granular and allow the user to specify descriptors to be zeroed.
2978 */
2979 static void
bpf_zero_counters(void)2980 bpf_zero_counters(void)
2981 {
2982 struct bpf_if *bp;
2983 struct bpf_d *bd;
2984
2985 BPF_LOCK();
2986 /*
2987 * We are protected by global lock here, interfaces and
2988 * descriptors can not be deleted while we hold it.
2989 */
2990 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2991 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2992 counter_u64_zero(bd->bd_rcount);
2993 counter_u64_zero(bd->bd_dcount);
2994 counter_u64_zero(bd->bd_fcount);
2995 counter_u64_zero(bd->bd_wcount);
2996 counter_u64_zero(bd->bd_wfcount);
2997 counter_u64_zero(bd->bd_zcopy);
2998 }
2999 }
3000 BPF_UNLOCK();
3001 }
3002
3003 /*
3004 * Fill filter statistics
3005 */
3006 static void
bpfstats_fill_xbpf(struct xbpf_d * d,struct bpf_d * bd)3007 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3008 {
3009
3010 BPF_LOCK_ASSERT();
3011 bzero(d, sizeof(*d));
3012 d->bd_structsize = sizeof(*d);
3013 d->bd_immediate = bd->bd_flags & BPFD_IMMEDIATE ? 1 : 0;
3014 d->bd_promisc = bd->bd_promisc;
3015 d->bd_hdrcmplt = bd->bd_flags & BPFD_HDRCMPLT ? 1 : 0;
3016 d->bd_direction = bd->bd_direction;
3017 d->bd_feedback = bd->bd_flags & BPFD_FEEDBACK ? 1 : 0;
3018 d->bd_async = bd->bd_flags & BPFD_ASYNC ? 1 : 0;
3019 d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3020 d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3021 d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3022 d->bd_sig = bd->bd_sig;
3023 d->bd_slen = bd->bd_slen;
3024 d->bd_hlen = bd->bd_hlen;
3025 d->bd_bufsize = bd->bd_bufsize;
3026 d->bd_pid = bd->bd_pid;
3027 strlcpy(d->bd_ifname,
3028 bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3029 d->bd_locked = bd->bd_flags & BPFD_LOCKED ? 1 : 0;
3030 d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3031 d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3032 d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3033 d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3034 d->bd_bufmode = bd->bd_bufmode;
3035 }
3036
3037 /*
3038 * Handle `netstat -B' stats request
3039 */
3040 static int
bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)3041 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3042 {
3043 static const struct xbpf_d zerostats;
3044 struct xbpf_d *xbdbuf, *xbd, tempstats;
3045 u_int bpfd_cnt, index;
3046 int error;
3047 struct bpf_if *bp;
3048 struct bpf_d *bd;
3049
3050 /*
3051 * XXX This is not technically correct. It is possible for non
3052 * privileged users to open bpf devices. It would make sense
3053 * if the users who opened the devices were able to retrieve
3054 * the statistics for them, too.
3055 */
3056 error = priv_check(req->td, PRIV_NET_BPF);
3057 if (error)
3058 return (error);
3059 /*
3060 * Check to see if the user is requesting that the counters be
3061 * zeroed out. Explicitly check that the supplied data is zeroed,
3062 * as we aren't allowing the user to set the counters currently.
3063 */
3064 if (req->newptr != NULL) {
3065 if (req->newlen != sizeof(tempstats))
3066 return (EINVAL);
3067 memset(&tempstats, 0, sizeof(tempstats));
3068 error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3069 if (error)
3070 return (error);
3071 if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3072 return (EINVAL);
3073 bpf_zero_counters();
3074 return (0);
3075 }
3076 bpfd_cnt = 0;
3077 BPF_LOCK();
3078 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3079 CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next)
3080 bpfd_cnt++;
3081 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next)
3082 bpfd_cnt++;
3083 }
3084 if (bpfd_cnt == 0 || req->oldptr == NULL) {
3085 BPF_UNLOCK();
3086 return (SYSCTL_OUT(req, 0, bpfd_cnt * sizeof(*xbd)));
3087 }
3088 if (req->oldlen < bpfd_cnt * sizeof(*xbd)) {
3089 BPF_UNLOCK();
3090 return (ENOMEM);
3091 }
3092 xbdbuf = malloc(bpfd_cnt * sizeof(*xbd), M_BPF, M_WAITOK);
3093 index = 0;
3094 LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3095 /* Send writers-only first */
3096 CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3097 MPASS(index <= bpfd_cnt);
3098 xbd = &xbdbuf[index++];
3099 bpfstats_fill_xbpf(xbd, bd);
3100 }
3101 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3102 MPASS(index <= bpfd_cnt);
3103 xbd = &xbdbuf[index++];
3104 bpfstats_fill_xbpf(xbd, bd);
3105 }
3106 }
3107 BPF_UNLOCK();
3108 error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3109 free(xbdbuf, M_BPF);
3110 return (error);
3111 }
3112
3113 SYSINIT(bpfdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, bpf_drvinit, NULL);
3114
3115 #else /* !DEV_BPF && !NETGRAPH_BPF */
3116
3117 /*
3118 * NOP stubs to allow bpf-using drivers to load and function.
3119 *
3120 * A 'better' implementation would allow the core bpf functionality
3121 * to be loaded at runtime.
3122 */
3123
3124 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)3125 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3126 {
3127 }
3128
3129 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)3130 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3131 {
3132 }
3133
3134 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)3135 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3136 {
3137 }
3138
3139 void
bpf_mtap_if(if_t ifp,struct mbuf * m)3140 bpf_mtap_if(if_t ifp, struct mbuf *m)
3141 {
3142 }
3143
3144 void
bpf_mtap2(struct bpf_if * bp,void * d,u_int l,struct mbuf * m)3145 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3146 {
3147 }
3148
3149 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)3150 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3151 {
3152 }
3153
3154 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)3155 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3156 {
3157
3158 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3159 }
3160
3161 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)3162 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3163 {
3164
3165 *driverp = __DECONST(struct bpf_if *, &dead_bpf_if);
3166 }
3167
3168 void
bpfdetach(struct ifnet * ifp)3169 bpfdetach(struct ifnet *ifp)
3170 {
3171 }
3172
3173 bool
bpf_peers_present_if(struct ifnet * ifp)3174 bpf_peers_present_if(struct ifnet *ifp)
3175 {
3176 return (false);
3177 }
3178
3179 u_int
bpf_filter(const struct bpf_insn * pc,u_char * p,u_int wirelen,u_int buflen)3180 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3181 {
3182 return (-1); /* "no filter" behaviour */
3183 }
3184
3185 int
bpf_validate(const struct bpf_insn * f,int len)3186 bpf_validate(const struct bpf_insn *f, int len)
3187 {
3188 return (0); /* false */
3189 }
3190
3191 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3192