xref: /freebsd/contrib/arm-optimized-routines/math/tgamma128.c (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 /*
2  * Implementation of the true gamma function (as opposed to lgamma)
3  * for 128-bit long double.
4  *
5  * Copyright (c) 2006-2024, Arm Limited.
6  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
7  */
8 
9 /*
10  * This module implements the float128 gamma function under the name
11  * tgamma128. It's expected to be suitable for integration into system
12  * maths libraries under the standard name tgammal, if long double is
13  * 128-bit. Such a library will probably want to check the error
14  * handling and optimize the initial process of extracting the
15  * exponent, which is done here by simple and portable (but
16  * potentially slower) methods.
17  */
18 
19 #include <float.h>
20 #include <math.h>
21 #include <stdbool.h>
22 #include <stddef.h>
23 
24 /* Only binary128 format is supported.  */
25 #if LDBL_MANT_DIG == 113
26 
27 #include "tgamma128.h"
28 
29 #define lenof(x) (sizeof(x)/sizeof(*(x)))
30 
31 /*
32  * Helper routine to evaluate a polynomial via Horner's rule
33  */
poly(const long double * coeffs,size_t n,long double x)34 static long double poly(const long double *coeffs, size_t n, long double x)
35 {
36     long double result = coeffs[--n];
37 
38     while (n > 0)
39         result = (result * x) + coeffs[--n];
40 
41     return result;
42 }
43 
44 /*
45  * Compute sin(pi*x) / pi, for use in the reflection formula that
46  * relates gamma(-x) and gamma(x).
47  */
sin_pi_x_over_pi(long double x)48 static long double sin_pi_x_over_pi(long double x)
49 {
50     int quo;
51     long double fracpart = remquol(x, 0.5L, &quo);
52 
53     long double sign = 1.0L;
54     if (quo & 2)
55         sign = -sign;
56     quo &= 1;
57 
58     if (quo == 0 && fabsl(fracpart) < 0x1.p-58L) {
59         /* For numbers this size, sin(pi*x) is so close to pi*x that
60          * sin(pi*x)/pi is indistinguishable from x in float128 */
61         return sign * fracpart;
62     }
63 
64     if (quo == 0) {
65         return sign * sinl(pi*fracpart) / pi;
66     } else {
67         return sign * cosl(pi*fracpart) / pi;
68     }
69 }
70 
71 /* Return tgamma(x) on the assumption that x >= 8. */
tgamma_large(long double x,bool negative,long double negadjust)72 static long double tgamma_large(long double x,
73                                 bool negative, long double negadjust)
74 {
75     /*
76      * In this range we compute gamma(x) as x^(x-1/2) * e^-x * K,
77      * where K is a correction factor computed as a polynomial in 1/x.
78      *
79      * (Vaguely inspired by the form of the Lanczos approximation, but
80      * I tried the Lanczos approximation itself and it suffers badly
81      * from big cancellation leading to loss of significance.)
82      */
83     long double t = 1/x;
84     long double p = poly(coeffs_large, lenof(coeffs_large), t);
85 
86     /*
87      * To avoid overflow in cases where x^(x-0.5) does overflow
88      * but gamma(x) does not, we split x^(x-0.5) in half and
89      * multiply back up _after_ multiplying the shrinking factor
90      * of exp(-(x-0.5)).
91      *
92      * Note that computing x-0.5 and (x-0.5)/2 is exact for the
93      * relevant range of x, so the only sources of error are pow
94      * and exp themselves, plus the multiplications.
95      */
96     long double powhalf = powl(x, (x-0.5L)/2.0L);
97     long double expret = expl(-(x-0.5L));
98 
99     if (!negative) {
100         return (expret * powhalf) * powhalf * p;
101     } else {
102         /*
103          * Apply the reflection formula as commented below, but
104          * carefully: negadjust has magnitude less than 1, so it can
105          * turn a case where gamma(+x) would overflow into a case
106          * where gamma(-x) doesn't underflow. Not only that, but the
107          * FP format has greater range in the tiny domain due to
108          * denormals. For both reasons, it's not good enough to
109          * compute the positive result and then adjust it.
110          */
111         long double ret = 1 / ((expret * powhalf) * (x * negadjust) * p);
112         return ret / powhalf;
113     }
114 }
115 
116 /* Return tgamma(x) on the assumption that 0 <= x < 1/32. */
tgamma_tiny(long double x,bool negative,long double negadjust)117 static long double tgamma_tiny(long double x,
118                                bool negative, long double negadjust)
119 {
120     /*
121      * For x near zero, we use a polynomial approximation to
122      * g = 1/(x*gamma(x)), and then return 1/(g*x).
123      */
124     long double g = poly(coeffs_tiny, lenof(coeffs_tiny), x);
125     if (!negative)
126         return 1.0L / (g*x);
127     else
128         return g / negadjust;
129 }
130 
131 /* Return tgamma(x) on the assumption that 0 <= x < 2^-113. */
tgamma_ultratiny(long double x,bool negative,long double negadjust)132 static long double tgamma_ultratiny(long double x, bool negative,
133                                     long double negadjust)
134 {
135     /* On this interval, gamma can't even be distinguished from 1/x,
136      * so we skip the polynomial evaluation in tgamma_tiny, partly to
137      * save time and partly to avoid the tiny intermediate values
138      * setting the underflow exception flag. */
139     if (!negative)
140         return 1.0L / x;
141     else
142         return 1.0L / negadjust;
143 }
144 
145 /* Return tgamma(x) on the assumption that 1 <= x <= 2. */
tgamma_central(long double x)146 static long double tgamma_central(long double x)
147 {
148     /*
149      * In this central interval, our strategy is to finding the
150      * difference between x and the point where gamma has a minimum,
151      * and approximate based on that.
152      */
153 
154     /* The difference between the input x and the minimum x. The first
155      * subtraction is expected to be exact, since x and min_hi have
156      * the same exponent (unless x=2, in which case it will still be
157      * exact). */
158     long double t = (x - min_x_hi) - min_x_lo;
159 
160     /*
161      * Now use two different polynomials for the intervals [1,m] and
162      * [m,2].
163      */
164     long double p;
165     if (t < 0)
166         p = poly(coeffs_central_neg, lenof(coeffs_central_neg), -t);
167     else
168         p = poly(coeffs_central_pos, lenof(coeffs_central_pos), t);
169 
170     return (min_y_lo + p * (t*t)) + min_y_hi;
171 }
172 
tgamma128(long double x)173 long double tgamma128(long double x)
174 {
175     /*
176      * Start by extracting the number's sign and exponent, and ruling
177      * out cases of non-normalized numbers.
178      *
179      * For an implementation integrated into a system libm, it would
180      * almost certainly be quicker to do this by direct bitwise access
181      * to the input float128 value, using whatever is the local idiom
182      * for knowing its endianness.
183      *
184      * Integration into a system libc may also need to worry about
185      * setting errno, if that's the locally preferred way to report
186      * math.h errors.
187      */
188     int sign = signbit(x);
189     int exponent;
190     switch (fpclassify(x)) {
191       case FP_NAN:
192         return x+x; /* propagate QNaN, make SNaN throw an exception */
193       case FP_ZERO:
194         return 1/x; /* divide by zero on purpose to indicate a pole */
195       case FP_INFINITE:
196         if (sign) {
197             return x-x; /* gamma(-inf) has indeterminate sign, so provoke an
198                          * IEEE invalid operation exception to indicate that */
199         }
200         return x;     /* but gamma(+inf) is just +inf with no error */
201       case FP_SUBNORMAL:
202         exponent = -16384;
203         break;
204       default:
205         frexpl(x, &exponent);
206         exponent--;
207         break;
208     }
209 
210     bool negative = false;
211     long double negadjust = 0.0L;
212 
213     if (sign) {
214         /*
215          * Euler's reflection formula is
216          *
217          *    gamma(1-x) gamma(x) = pi/sin(pi*x)
218          *
219          *                        pi
220          * => gamma(x) = --------------------
221          *               gamma(1-x) sin(pi*x)
222          *
223          * But computing 1-x is going to lose a lot of accuracy when x
224          * is very small, so instead we transform using the recurrence
225          * gamma(t+1)=t gamma(t). Setting t=-x, this gives us
226          * gamma(1-x) = -x gamma(-x), so we now have
227          *
228          *                         pi
229          *    gamma(x) = ----------------------
230          *               -x gamma(-x) sin(pi*x)
231          *
232          * which relates gamma(x) to gamma(-x), which is much nicer,
233          * since x can be turned into -x without rounding.
234          */
235         negadjust = sin_pi_x_over_pi(x);
236         negative = true;
237         x = -x;
238 
239         /*
240          * Now the ultimate answer we want is
241          *
242          *    1 / (gamma(x) * x * negadjust)
243          *
244          * where x is the positive value we've just turned it into.
245          *
246          * For some of the cases below, we'll compute gamma(x)
247          * normally and then compute this adjusted value afterwards.
248          * But for others, we can implement the reciprocal operation
249          * in this formula by _avoiding_ an inversion that the
250          * sub-case was going to do anyway.
251          */
252 
253         if (negadjust == 0) {
254             /*
255              * Special case for negative integers. Applying the
256              * reflection formula would cause division by zero, but
257              * standards would prefer we treat this error case as an
258              * invalid operation and return NaN instead. (Possibly
259              * because otherwise you'd have to decide which sign of
260              * infinity to return, and unlike the x=0 case, there's no
261              * sign of zero available to disambiguate.)
262              */
263             return negadjust / negadjust;
264         }
265     }
266 
267     /*
268      * Split the positive domain into various cases. For cases where
269      * we do the negative-number adjustment the usual way, we'll leave
270      * the answer in 'g' and drop out of the if statement.
271      */
272     long double g;
273 
274     if (exponent >= 11) {
275         /*
276          * gamma of any positive value this large overflows, and gamma
277          * of any negative value underflows.
278          */
279         if (!negative) {
280             long double huge = 0x1p+12288L;
281             return huge * huge; /* provoke an overflow */
282         } else {
283             long double tiny = 0x1p-12288L;
284             return tiny * tiny * negadjust; /* underflow, of the right sign */
285         }
286     } else if (exponent >= 3) {
287         /* Negative-number adjustment happens inside here */
288         return tgamma_large(x, negative, negadjust);
289     } else if (exponent < -113) {
290         /* Negative-number adjustment happens inside here */
291         return tgamma_ultratiny(x, negative, negadjust);
292     } else if (exponent < -5) {
293         /* Negative-number adjustment happens inside here */
294         return tgamma_tiny(x, negative, negadjust);
295     } else if (exponent == 0) {
296         g = tgamma_central(x);
297     } else if (exponent < 0) {
298         /*
299          * For x in [1/32,1) we range-reduce upwards to the interval
300          * [1,2), using the inverse of the normal recurrence formula:
301          * gamma(x) = gamma(x+1)/x.
302          */
303         g = tgamma_central(1+x) / x;
304     } else {
305         /*
306          * For x in [2,8) we range-reduce downwards to the interval
307          * [1,2) by repeated application of the recurrence formula.
308          *
309          * Actually multiplying (x-1) by (x-2) by (x-3) and so on
310          * would introduce multiple ULPs of rounding error. We can get
311          * better accuracy by writing x = (k+1/2) + t, where k is an
312          * integer and |t|<1/2, and expanding out the obvious factor
313          * (x-1)(x-2)...(x-k+1) as a polynomial in t.
314          */
315         long double mult;
316         int i = x;
317         if (i == 2) { /* x in [2,3) */
318             mult = (x-1);
319         } else {
320             long double t = x - (i + 0.5L);
321             switch (i) {
322                 /* E.g. for x=3.5+t, we want
323                  * (x-1)(x-2) = (2.5+t)(1.5+t) = 3.75 + 4t + t^2 */
324               case 3:
325                 mult = 3.75L+t*(4.0L+t);
326                 break;
327               case 4:
328                 mult = 13.125L+t*(17.75L+t*(7.5L+t));
329                 break;
330               case 5:
331                 mult = 59.0625L+t*(93.0L+t*(51.50L+t*(12.0L+t)));
332                 break;
333               case 6:
334                 mult = 324.84375L+t*(570.5625L+t*(376.250L+t*(
335                     117.5L+t*(17.5L+t))));
336                 break;
337               case 7:
338                 mult = 2111.484375L+t*(4033.5L+t*(3016.1875L+t*(
339                     1140.0L+t*(231.25L+t*(24.0L+t)))));
340                 break;
341 	    default:
342 	        __builtin_unreachable();
343             }
344         }
345 
346         g = tgamma_central(x - (i-1)) * mult;
347     }
348 
349     if (!negative) {
350         /* Positive domain: return g unmodified */
351         return g;
352     } else {
353         /* Negative domain: apply the reflection formula as commented above */
354         return 1.0L / (g * x * negadjust);
355     }
356 }
357 
358 #endif
359