1 /* 2 * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the Apache License 2.0 (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 #include <stdio.h> 11 #include <string.h> 12 #include <openssl/x509.h> 13 #include <openssl/x509v3.h> 14 #include <openssl/pem.h> 15 #include <openssl/err.h> 16 #include "internal/nelem.h" 17 18 #include "testutil.h" 19 20 static const char *infile; 21 22 static int test_pathlen(void) 23 { 24 X509 *x = NULL; 25 BIO *b = NULL; 26 long pathlen; 27 int ret = 0; 28 29 if (!TEST_ptr(b = BIO_new_file(infile, "r")) 30 || !TEST_ptr(x = PEM_read_bio_X509(b, NULL, NULL, NULL)) 31 || !TEST_int_eq(pathlen = X509_get_pathlen(x), 6)) 32 goto end; 33 34 ret = 1; 35 36 end: 37 BIO_free(b); 38 X509_free(x); 39 return ret; 40 } 41 42 #ifndef OPENSSL_NO_RFC3779 43 static int test_asid(void) 44 { 45 ASN1_INTEGER *val1 = NULL, *val2 = NULL; 46 ASIdentifiers *asid1 = ASIdentifiers_new(), *asid2 = ASIdentifiers_new(), 47 *asid3 = ASIdentifiers_new(), *asid4 = ASIdentifiers_new(); 48 int testresult = 0; 49 50 if (!TEST_ptr(asid1) 51 || !TEST_ptr(asid2) 52 || !TEST_ptr(asid3)) 53 goto err; 54 55 if (!TEST_ptr(val1 = ASN1_INTEGER_new()) 56 || !TEST_true(ASN1_INTEGER_set_int64(val1, 64496))) 57 goto err; 58 59 if (!TEST_true(X509v3_asid_add_id_or_range(asid1, V3_ASID_ASNUM, val1, NULL))) 60 goto err; 61 62 val1 = NULL; 63 if (!TEST_ptr(val2 = ASN1_INTEGER_new()) 64 || !TEST_true(ASN1_INTEGER_set_int64(val2, 64497))) 65 goto err; 66 67 if (!TEST_true(X509v3_asid_add_id_or_range(asid2, V3_ASID_ASNUM, val2, NULL))) 68 goto err; 69 70 val2 = NULL; 71 if (!TEST_ptr(val1 = ASN1_INTEGER_new()) 72 || !TEST_true(ASN1_INTEGER_set_int64(val1, 64496)) 73 || !TEST_ptr(val2 = ASN1_INTEGER_new()) 74 || !TEST_true(ASN1_INTEGER_set_int64(val2, 64497))) 75 goto err; 76 77 /* 78 * Just tests V3_ASID_ASNUM for now. Could be extended at some point to also 79 * test V3_ASID_RDI if we think it is worth it. 80 */ 81 if (!TEST_true(X509v3_asid_add_id_or_range(asid3, V3_ASID_ASNUM, val1, val2))) 82 goto err; 83 val1 = val2 = NULL; 84 85 /* Actual subsets */ 86 if (!TEST_true(X509v3_asid_subset(NULL, NULL)) 87 || !TEST_true(X509v3_asid_subset(NULL, asid1)) 88 || !TEST_true(X509v3_asid_subset(asid1, asid1)) 89 || !TEST_true(X509v3_asid_subset(asid2, asid2)) 90 || !TEST_true(X509v3_asid_subset(asid1, asid3)) 91 || !TEST_true(X509v3_asid_subset(asid2, asid3)) 92 || !TEST_true(X509v3_asid_subset(asid3, asid3)) 93 || !TEST_true(X509v3_asid_subset(asid4, asid1)) 94 || !TEST_true(X509v3_asid_subset(asid4, asid2)) 95 || !TEST_true(X509v3_asid_subset(asid4, asid3))) 96 goto err; 97 98 /* Not subsets */ 99 if (!TEST_false(X509v3_asid_subset(asid1, NULL)) 100 || !TEST_false(X509v3_asid_subset(asid1, asid2)) 101 || !TEST_false(X509v3_asid_subset(asid2, asid1)) 102 || !TEST_false(X509v3_asid_subset(asid3, asid1)) 103 || !TEST_false(X509v3_asid_subset(asid3, asid2)) 104 || !TEST_false(X509v3_asid_subset(asid1, asid4)) 105 || !TEST_false(X509v3_asid_subset(asid2, asid4)) 106 || !TEST_false(X509v3_asid_subset(asid3, asid4))) 107 goto err; 108 109 testresult = 1; 110 err: 111 ASN1_INTEGER_free(val1); 112 ASN1_INTEGER_free(val2); 113 ASIdentifiers_free(asid1); 114 ASIdentifiers_free(asid2); 115 ASIdentifiers_free(asid3); 116 ASIdentifiers_free(asid4); 117 return testresult; 118 } 119 120 static struct ip_ranges_st { 121 const unsigned int afi; 122 const char *ip1; 123 const char *ip2; 124 int rorp; 125 } ranges[] = { 126 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.1", IPAddressOrRange_addressPrefix}, 127 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.2", IPAddressOrRange_addressRange}, 128 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.3", IPAddressOrRange_addressPrefix}, 129 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.254", IPAddressOrRange_addressRange}, 130 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.255", IPAddressOrRange_addressPrefix}, 131 { IANA_AFI_IPV4, "192.168.0.1", "192.168.0.255", IPAddressOrRange_addressRange}, 132 { IANA_AFI_IPV4, "192.168.0.1", "192.168.0.1", IPAddressOrRange_addressPrefix}, 133 { IANA_AFI_IPV4, "192.168.0.0", "192.168.255.255", IPAddressOrRange_addressPrefix}, 134 { IANA_AFI_IPV4, "192.168.1.0", "192.168.255.255", IPAddressOrRange_addressRange}, 135 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::1", IPAddressOrRange_addressPrefix}, 136 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::2", IPAddressOrRange_addressRange}, 137 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::3", IPAddressOrRange_addressPrefix}, 138 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::fffe", IPAddressOrRange_addressRange}, 139 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::ffff", IPAddressOrRange_addressPrefix}, 140 { IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::ffff", IPAddressOrRange_addressRange}, 141 { IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::1", IPAddressOrRange_addressPrefix}, 142 { IANA_AFI_IPV6, "2001:0db8::0:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressPrefix}, 143 { IANA_AFI_IPV6, "2001:0db8::1:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressRange} 144 }; 145 146 static int check_addr(IPAddrBlocks *addr, int type) 147 { 148 IPAddressFamily *fam; 149 IPAddressOrRange *aorr; 150 151 if (!TEST_int_eq(sk_IPAddressFamily_num(addr), 1)) 152 return 0; 153 154 fam = sk_IPAddressFamily_value(addr, 0); 155 if (!TEST_ptr(fam)) 156 return 0; 157 158 if (!TEST_int_eq(fam->ipAddressChoice->type, IPAddressChoice_addressesOrRanges)) 159 return 0; 160 161 if (!TEST_int_eq(sk_IPAddressOrRange_num(fam->ipAddressChoice->u.addressesOrRanges), 1)) 162 return 0; 163 164 aorr = sk_IPAddressOrRange_value(fam->ipAddressChoice->u.addressesOrRanges, 0); 165 if (!TEST_ptr(aorr)) 166 return 0; 167 168 if (!TEST_int_eq(aorr->type, type)) 169 return 0; 170 171 return 1; 172 } 173 174 static int test_addr_ranges(void) 175 { 176 IPAddrBlocks *addr = NULL; 177 ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL; 178 size_t i; 179 int testresult = 0; 180 181 for (i = 0; i < OSSL_NELEM(ranges); i++) { 182 addr = sk_IPAddressFamily_new_null(); 183 if (!TEST_ptr(addr)) 184 goto end; 185 /* 186 * Has the side effect of installing the comparison function onto the 187 * stack. 188 */ 189 if (!TEST_true(X509v3_addr_canonize(addr))) 190 goto end; 191 192 ip1 = a2i_IPADDRESS(ranges[i].ip1); 193 if (!TEST_ptr(ip1)) 194 goto end; 195 if (!TEST_true(ip1->length == 4 || ip1->length == 16)) 196 goto end; 197 ip2 = a2i_IPADDRESS(ranges[i].ip2); 198 if (!TEST_ptr(ip2)) 199 goto end; 200 if (!TEST_int_eq(ip2->length, ip1->length)) 201 goto end; 202 if (!TEST_true(memcmp(ip1->data, ip2->data, ip1->length) <= 0)) 203 goto end; 204 205 if (!TEST_true(X509v3_addr_add_range(addr, ranges[i].afi, NULL, ip1->data, ip2->data))) 206 goto end; 207 208 if (!TEST_true(X509v3_addr_is_canonical(addr))) 209 goto end; 210 211 if (!check_addr(addr, ranges[i].rorp)) 212 goto end; 213 214 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); 215 addr = NULL; 216 ASN1_OCTET_STRING_free(ip1); 217 ASN1_OCTET_STRING_free(ip2); 218 ip1 = ip2 = NULL; 219 } 220 221 testresult = 1; 222 end: 223 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); 224 ASN1_OCTET_STRING_free(ip1); 225 ASN1_OCTET_STRING_free(ip2); 226 return testresult; 227 } 228 229 static int test_addr_fam_len(void) 230 { 231 int testresult = 0; 232 IPAddrBlocks *addr = NULL; 233 IPAddressFamily *f1 = NULL; 234 ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL; 235 unsigned char key[6]; 236 unsigned int keylen; 237 unsigned afi = IANA_AFI_IPV4; 238 239 /* Create the IPAddrBlocks with a good IPAddressFamily */ 240 addr = sk_IPAddressFamily_new_null(); 241 if (!TEST_ptr(addr)) 242 goto end; 243 ip1 = a2i_IPADDRESS(ranges[0].ip1); 244 if (!TEST_ptr(ip1)) 245 goto end; 246 ip2 = a2i_IPADDRESS(ranges[0].ip2); 247 if (!TEST_ptr(ip2)) 248 goto end; 249 if (!TEST_true(X509v3_addr_add_range(addr, ranges[0].afi, NULL, ip1->data, ip2->data))) 250 goto end; 251 if (!TEST_true(X509v3_addr_is_canonical(addr))) 252 goto end; 253 254 /* Create our malformed IPAddressFamily */ 255 key[0] = (afi >> 8) & 0xFF; 256 key[1] = afi & 0xFF; 257 key[2] = 0xD; 258 key[3] = 0xE; 259 key[4] = 0xA; 260 key[5] = 0xD; 261 keylen = 6; 262 if ((f1 = IPAddressFamily_new()) == NULL) 263 goto end; 264 if (f1->ipAddressChoice == NULL && 265 (f1->ipAddressChoice = IPAddressChoice_new()) == NULL) 266 goto end; 267 if (f1->addressFamily == NULL && 268 (f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL) 269 goto end; 270 if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen)) 271 goto end; 272 273 /* Push and transfer memory ownership to stack */ 274 if (!sk_IPAddressFamily_push(addr, f1)) 275 goto end; 276 f1 = NULL; 277 278 /* Shouldn't be able to canonize this as the len is > 3*/ 279 if (!TEST_false(X509v3_addr_canonize(addr))) 280 goto end; 281 282 /* Pop and free the new stack element */ 283 IPAddressFamily_free(sk_IPAddressFamily_pop(addr)); 284 285 /* Create a well-formed IPAddressFamily */ 286 key[0] = (afi >> 8) & 0xFF; 287 key[1] = afi & 0xFF; 288 key[2] = 0x1; 289 keylen = 3; 290 if ((f1 = IPAddressFamily_new()) == NULL) 291 goto end; 292 if (f1->ipAddressChoice == NULL && 293 (f1->ipAddressChoice = IPAddressChoice_new()) == NULL) 294 goto end; 295 if (f1->addressFamily == NULL && 296 (f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL) 297 goto end; 298 if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen)) 299 goto end; 300 301 /* Mark this as inheritance so we skip some of the is_canonize checks */ 302 f1->ipAddressChoice->type = IPAddressChoice_inherit; 303 304 /* Push and transfer memory ownership to stack */ 305 if (!sk_IPAddressFamily_push(addr, f1)) 306 goto end; 307 f1 = NULL; 308 309 /* Should be able to canonize now */ 310 if (!TEST_true(X509v3_addr_canonize(addr))) 311 goto end; 312 313 testresult = 1; 314 end: 315 /* Free stack and any memory owned by detached element */ 316 IPAddressFamily_free(f1); 317 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); 318 319 ASN1_OCTET_STRING_free(ip1); 320 ASN1_OCTET_STRING_free(ip2); 321 return testresult; 322 } 323 324 static struct extvalues_st { 325 const char *value; 326 int pass; 327 } extvalues[] = { 328 /* No prefix is ok */ 329 { "sbgp-ipAddrBlock = IPv4:192.0.0.1\n", 1 }, 330 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/0\n", 1 }, 331 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/1\n", 1 }, 332 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/32\n", 1 }, 333 /* Prefix is too long */ 334 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/33\n", 0 }, 335 /* Unreasonably large prefix */ 336 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/12341234\n", 0 }, 337 /* Invalid IP addresses */ 338 { "sbgp-ipAddrBlock = IPv4:192.0.0\n", 0 }, 339 { "sbgp-ipAddrBlock = IPv4:256.0.0.0\n", 0 }, 340 { "sbgp-ipAddrBlock = IPv4:-1.0.0.0\n", 0 }, 341 { "sbgp-ipAddrBlock = IPv4:192.0.0.0.0\n", 0 }, 342 { "sbgp-ipAddrBlock = IPv3:192.0.0.0\n", 0 }, 343 344 /* IPv6 */ 345 /* No prefix is ok */ 346 { "sbgp-ipAddrBlock = IPv6:2001:db8::\n", 1 }, 347 { "sbgp-ipAddrBlock = IPv6:2001::db8\n", 1 }, 348 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000\n", 1 }, 349 { "sbgp-ipAddrBlock = IPv6:2001:db8::/0\n", 1 }, 350 { "sbgp-ipAddrBlock = IPv6:2001:db8::/1\n", 1 }, 351 { "sbgp-ipAddrBlock = IPv6:2001:db8::/32\n", 1 }, 352 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000/32\n", 1 }, 353 { "sbgp-ipAddrBlock = IPv6:2001:db8::/128\n", 1 }, 354 /* Prefix is too long */ 355 { "sbgp-ipAddrBlock = IPv6:2001:db8::/129\n", 0 }, 356 /* Unreasonably large prefix */ 357 { "sbgp-ipAddrBlock = IPv6:2001:db8::/12341234\n", 0 }, 358 /* Invalid IP addresses */ 359 /* Not enough blocks of numbers */ 360 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000\n", 0 }, 361 /* Too many blocks of numbers */ 362 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000:0000\n", 0 }, 363 /* First value too large */ 364 { "sbgp-ipAddrBlock = IPv6:1ffff:0db8:0000:0000:0000:0000:0000:0000\n", 0 }, 365 /* First value with invalid characters */ 366 { "sbgp-ipAddrBlock = IPv6:fffg:0db8:0000:0000:0000:0000:0000:0000\n", 0 }, 367 /* First value is negative */ 368 { "sbgp-ipAddrBlock = IPv6:-1:0db8:0000:0000:0000:0000:0000:0000\n", 0 } 369 }; 370 371 static int test_ext_syntax(void) 372 { 373 size_t i; 374 int testresult = 1; 375 376 for (i = 0; i < OSSL_NELEM(extvalues); i++) { 377 X509V3_CTX ctx; 378 BIO *extbio = BIO_new_mem_buf(extvalues[i].value, 379 strlen(extvalues[i].value)); 380 CONF *conf; 381 long eline; 382 383 if (!TEST_ptr(extbio)) 384 return 0 ; 385 386 conf = NCONF_new_ex(NULL, NULL); 387 if (!TEST_ptr(conf)) { 388 BIO_free(extbio); 389 return 0; 390 } 391 if (!TEST_long_gt(NCONF_load_bio(conf, extbio, &eline), 0)) { 392 testresult = 0; 393 } else { 394 X509V3_set_ctx_test(&ctx); 395 X509V3_set_nconf(&ctx, conf); 396 397 if (extvalues[i].pass) { 398 if (!TEST_true(X509V3_EXT_add_nconf(conf, &ctx, "default", 399 NULL))) { 400 TEST_info("Value: %s", extvalues[i].value); 401 testresult = 0; 402 } 403 } else { 404 ERR_set_mark(); 405 if (!TEST_false(X509V3_EXT_add_nconf(conf, &ctx, "default", 406 NULL))) { 407 testresult = 0; 408 TEST_info("Value: %s", extvalues[i].value); 409 ERR_clear_last_mark(); 410 } else { 411 ERR_pop_to_mark(); 412 } 413 } 414 } 415 BIO_free(extbio); 416 NCONF_free(conf); 417 } 418 419 return testresult; 420 } 421 422 static int test_addr_subset(void) 423 { 424 int i; 425 int ret = 0; 426 IPAddrBlocks *addrEmpty = NULL; 427 IPAddrBlocks *addr[3] = { NULL, NULL }; 428 ASN1_OCTET_STRING *ip1[3] = { NULL, NULL }; 429 ASN1_OCTET_STRING *ip2[3] = { NULL, NULL }; 430 int sz = OSSL_NELEM(addr); 431 432 for (i = 0; i < sz; ++i) { 433 /* Create the IPAddrBlocks with a good IPAddressFamily */ 434 if (!TEST_ptr(addr[i] = sk_IPAddressFamily_new_null()) 435 || !TEST_ptr(ip1[i] = a2i_IPADDRESS(ranges[i].ip1)) 436 || !TEST_ptr(ip2[i] = a2i_IPADDRESS(ranges[i].ip2)) 437 || !TEST_true(X509v3_addr_add_range(addr[i], ranges[i].afi, NULL, 438 ip1[i]->data, ip2[i]->data))) 439 goto end; 440 } 441 442 ret = TEST_ptr(addrEmpty = sk_IPAddressFamily_new_null()) 443 && TEST_true(X509v3_addr_subset(NULL, NULL)) 444 && TEST_true(X509v3_addr_subset(NULL, addr[0])) 445 && TEST_true(X509v3_addr_subset(addrEmpty, addr[0])) 446 && TEST_true(X509v3_addr_subset(addr[0], addr[0])) 447 && TEST_true(X509v3_addr_subset(addr[0], addr[1])) 448 && TEST_true(X509v3_addr_subset(addr[0], addr[2])) 449 && TEST_true(X509v3_addr_subset(addr[1], addr[2])) 450 && TEST_false(X509v3_addr_subset(addr[0], NULL)) 451 && TEST_false(X509v3_addr_subset(addr[1], addr[0])) 452 && TEST_false(X509v3_addr_subset(addr[2], addr[1])) 453 && TEST_false(X509v3_addr_subset(addr[0], addrEmpty)); 454 end: 455 sk_IPAddressFamily_pop_free(addrEmpty, IPAddressFamily_free); 456 for (i = 0; i < sz; ++i) { 457 sk_IPAddressFamily_pop_free(addr[i], IPAddressFamily_free); 458 ASN1_OCTET_STRING_free(ip1[i]); 459 ASN1_OCTET_STRING_free(ip2[i]); 460 } 461 return ret; 462 } 463 464 #endif /* OPENSSL_NO_RFC3779 */ 465 466 OPT_TEST_DECLARE_USAGE("cert.pem\n") 467 468 int setup_tests(void) 469 { 470 if (!test_skip_common_options()) { 471 TEST_error("Error parsing test options\n"); 472 return 0; 473 } 474 475 if (!TEST_ptr(infile = test_get_argument(0))) 476 return 0; 477 478 ADD_TEST(test_pathlen); 479 #ifndef OPENSSL_NO_RFC3779 480 ADD_TEST(test_asid); 481 ADD_TEST(test_addr_ranges); 482 ADD_TEST(test_ext_syntax); 483 ADD_TEST(test_addr_fam_len); 484 ADD_TEST(test_addr_subset); 485 #endif /* OPENSSL_NO_RFC3779 */ 486 return 1; 487 } 488