xref: /freebsd/sys/dev/sound/pcm/feeder_volume.c (revision 4918fc2e238b581aaf1f63e20003d5fa957f0b09)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
30 
31 #ifdef _KERNEL
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_snd.h"
34 #endif
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pcm/pcm.h>
37 #include "feeder_if.h"
38 
39 #define SND_USE_FXDIV
40 #include "snd_fxdiv_gen.h"
41 #endif
42 
43 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
44 
45 #define FEEDVOLUME_CALC8(s, v)	(SND_VOL_CALC_SAMPLE((intpcm_t)		\
46 				 (s) << 8, v) >> 8)
47 #define FEEDVOLUME_CALC16(s, v)	SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
48 #define FEEDVOLUME_CALC24(s, v)	SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
49 #define FEEDVOLUME_CALC32(s, v)	SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
50 
51 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN)				\
52 static void								\
53 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix,			\
54     uint32_t channels, uint8_t *dst, uint32_t count)			\
55 {									\
56 	intpcm##BIT##_t v;						\
57 	intpcm_t x;							\
58 	uint32_t i;							\
59 									\
60 	dst += count * PCM_##BIT##_BPS * channels;			\
61 	do {								\
62 		i = channels;						\
63 		do {							\
64 			dst -= PCM_##BIT##_BPS;				\
65 			i--;						\
66 			x = pcm_sample_read_calc(dst,			\
67 			    AFMT_##SIGN##BIT##_##ENDIAN);		\
68 			v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]);	\
69 			x = pcm_clamp_calc(v,				\
70 			    AFMT_##SIGN##BIT##_##ENDIAN);		\
71 			pcm_sample_write(dst, x,			\
72 			    AFMT_##SIGN##BIT##_##ENDIAN);		\
73 		} while (i != 0);					\
74 	} while (--count != 0);						\
75 }
76 
77 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
78 FEEDVOLUME_DECLARE(S, 16, LE)
79 FEEDVOLUME_DECLARE(S, 32, LE)
80 #endif
81 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
82 FEEDVOLUME_DECLARE(S, 16, BE)
83 FEEDVOLUME_DECLARE(S, 32, BE)
84 #endif
85 #ifdef SND_FEEDER_MULTIFORMAT
86 FEEDVOLUME_DECLARE(S,  8, NE)
87 FEEDVOLUME_DECLARE(S, 24, LE)
88 FEEDVOLUME_DECLARE(S, 24, BE)
89 FEEDVOLUME_DECLARE(U,  8, NE)
90 FEEDVOLUME_DECLARE(U, 16, LE)
91 FEEDVOLUME_DECLARE(U, 24, LE)
92 FEEDVOLUME_DECLARE(U, 32, LE)
93 FEEDVOLUME_DECLARE(U, 16, BE)
94 FEEDVOLUME_DECLARE(U, 24, BE)
95 FEEDVOLUME_DECLARE(U, 32, BE)
96 #endif
97 
98 struct feed_volume_info {
99 	uint32_t bps, channels;
100 	feed_volume_t apply;
101 	int volume_class;
102 	int state;
103 	int matrix[SND_CHN_MAX];
104 };
105 
106 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN)				\
107 	{								\
108 		AFMT_##SIGN##BIT##_##ENDIAN,				\
109 		feed_volume_##SIGN##BIT##ENDIAN				\
110 	}
111 
112 static const struct {
113 	uint32_t format;
114 	feed_volume_t apply;
115 } feed_volume_info_tab[] = {
116 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
117 	FEEDVOLUME_ENTRY(S, 16, LE),
118 	FEEDVOLUME_ENTRY(S, 32, LE),
119 #endif
120 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
121 	FEEDVOLUME_ENTRY(S, 16, BE),
122 	FEEDVOLUME_ENTRY(S, 32, BE),
123 #endif
124 #ifdef SND_FEEDER_MULTIFORMAT
125 	FEEDVOLUME_ENTRY(S,  8, NE),
126 	FEEDVOLUME_ENTRY(S, 24, LE),
127 	FEEDVOLUME_ENTRY(S, 24, BE),
128 	FEEDVOLUME_ENTRY(U,  8, NE),
129 	FEEDVOLUME_ENTRY(U, 16, LE),
130 	FEEDVOLUME_ENTRY(U, 24, LE),
131 	FEEDVOLUME_ENTRY(U, 32, LE),
132 	FEEDVOLUME_ENTRY(U, 16, BE),
133 	FEEDVOLUME_ENTRY(U, 24, BE),
134 	FEEDVOLUME_ENTRY(U, 32, BE)
135 #endif
136 };
137 
138 #define FEEDVOLUME_TAB_SIZE	((int32_t)				\
139 				 (sizeof(feed_volume_info_tab) /	\
140 				  sizeof(feed_volume_info_tab[0])))
141 
142 static int
feed_volume_init(struct pcm_feeder * f)143 feed_volume_init(struct pcm_feeder *f)
144 {
145 	struct feed_volume_info *info;
146 	struct pcmchan_matrix *m;
147 	uint32_t i;
148 	int ret;
149 
150 	if (f->desc->in != f->desc->out ||
151 	    AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
152 		return (EINVAL);
153 
154 	for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
155 		if (AFMT_ENCODING(f->desc->in) ==
156 		    feed_volume_info_tab[i].format) {
157 			info = malloc(sizeof(*info), M_DEVBUF,
158 			    M_NOWAIT | M_ZERO);
159 			if (info == NULL)
160 				return (ENOMEM);
161 
162 			info->bps = AFMT_BPS(f->desc->in);
163 			info->channels = AFMT_CHANNEL(f->desc->in);
164 			info->apply = feed_volume_info_tab[i].apply;
165 			info->volume_class = SND_VOL_C_PCM;
166 			info->state = FEEDVOLUME_ENABLE;
167 
168 			f->data = info;
169 			m = feeder_matrix_default_channel_map(info->channels);
170 			if (m == NULL) {
171 				free(info, M_DEVBUF);
172 				return (EINVAL);
173 			}
174 
175 			ret = feeder_volume_apply_matrix(f, m);
176 			if (ret != 0)
177 				free(info, M_DEVBUF);
178 
179 			return (ret);
180 		}
181 	}
182 
183 	return (EINVAL);
184 }
185 
186 static int
feed_volume_free(struct pcm_feeder * f)187 feed_volume_free(struct pcm_feeder *f)
188 {
189 	struct feed_volume_info *info;
190 
191 	info = f->data;
192 	if (info != NULL)
193 		free(info, M_DEVBUF);
194 
195 	f->data = NULL;
196 
197 	return (0);
198 }
199 
200 static int
feed_volume_set(struct pcm_feeder * f,int what,int value)201 feed_volume_set(struct pcm_feeder *f, int what, int value)
202 {
203 	struct feed_volume_info *info;
204 	struct pcmchan_matrix *m;
205 	int ret;
206 
207 	info = f->data;
208 	ret = 0;
209 
210 	switch (what) {
211 	case FEEDVOLUME_CLASS:
212 		if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
213 			return (EINVAL);
214 		info->volume_class = value;
215 		break;
216 	case FEEDVOLUME_CHANNELS:
217 		if (value < SND_CHN_MIN || value > SND_CHN_MAX)
218 			return (EINVAL);
219 		m = feeder_matrix_default_channel_map(value);
220 		if (m == NULL)
221 			return (EINVAL);
222 		ret = feeder_volume_apply_matrix(f, m);
223 		break;
224 	case FEEDVOLUME_STATE:
225 		if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
226 			return (EINVAL);
227 		info->state = value;
228 		break;
229 	default:
230 		return (EINVAL);
231 		break;
232 	}
233 
234 	return (ret);
235 }
236 
237 static int
feed_volume_feed(struct pcm_feeder * f,struct pcm_channel * c,uint8_t * b,uint32_t count,void * source)238 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
239     uint32_t count, void *source)
240 {
241 	int temp_vol[SND_CHN_T_VOL_MAX];
242 	struct feed_volume_info *info;
243 	uint32_t j, align;
244 	int i, *matrix;
245 	uint8_t *dst;
246 	const int16_t *vol;
247 	const int8_t *muted;
248 
249 	/*
250 	 * Fetch filter data operation.
251 	 */
252 	info = f->data;
253 
254 	if (info->state == FEEDVOLUME_BYPASS)
255 		return (FEEDER_FEED(f->source, c, b, count, source));
256 
257 	vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
258 	muted = c->muted[SND_VOL_C_VAL(info->volume_class)];
259 	matrix = info->matrix;
260 
261 	/*
262 	 * First, let see if we really need to apply gain at all.
263 	 */
264 	j = 0;
265 	i = info->channels;
266 	while (i--) {
267 		if (vol[matrix[i]] != SND_VOL_FLAT ||
268 		    muted[matrix[i]] != 0) {
269 			j = 1;
270 			break;
271 		}
272 	}
273 
274 	/* Nope, just bypass entirely. */
275 	if (j == 0)
276 		return (FEEDER_FEED(f->source, c, b, count, source));
277 
278 	/* Check if any controls are muted. */
279 	for (j = 0; j != SND_CHN_T_VOL_MAX; j++)
280 		temp_vol[j] = muted[j] ? 0 : vol[j];
281 
282 	dst = b;
283 	align = info->bps * info->channels;
284 
285 	do {
286 		if (count < align)
287 			break;
288 
289 		j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
290 		    align);
291 		if (j == 0)
292 			break;
293 
294 		info->apply(temp_vol, matrix, info->channels, dst, j);
295 
296 		j *= align;
297 		dst += j;
298 		count -= j;
299 
300 	} while (count != 0);
301 
302 	return (dst - b);
303 }
304 
305 static struct pcm_feederdesc feeder_volume_desc[] = {
306 	{ FEEDER_VOLUME, 0, 0, 0, 0 },
307 	{ 0, 0, 0, 0, 0 }
308 };
309 
310 static kobj_method_t feeder_volume_methods[] = {
311 	KOBJMETHOD(feeder_init,		feed_volume_init),
312 	KOBJMETHOD(feeder_free,		feed_volume_free),
313 	KOBJMETHOD(feeder_set,		feed_volume_set),
314 	KOBJMETHOD(feeder_feed,		feed_volume_feed),
315 	KOBJMETHOD_END
316 };
317 
318 FEEDER_DECLARE(feeder_volume, NULL);
319 
320 /* Extern */
321 
322 /*
323  * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
324  *                               to feeder_volume matrix structure. There are
325  *                               possibilites that feeder_volume be inserted
326  *                               before or after feeder_matrix, which in this
327  *                               case feeder_volume must be in a good terms
328  *                               with _current_ matrix.
329  */
330 int
feeder_volume_apply_matrix(struct pcm_feeder * f,struct pcmchan_matrix * m)331 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
332 {
333 	struct feed_volume_info *info;
334 	uint32_t i;
335 
336 	if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
337 	    f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
338 	    m->channels > SND_CHN_MAX)
339 		return (EINVAL);
340 
341 	info = f->data;
342 
343 	for (i = 0; i < nitems(info->matrix); i++) {
344 		if (i < m->channels)
345 			info->matrix[i] = m->map[i].type;
346 		else
347 			info->matrix[i] = SND_CHN_T_FL;
348 	}
349 
350 	info->channels = m->channels;
351 
352 	return (0);
353 }
354