1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73
74 #include <asm/cacheflush.h>
75
76 #include "fec.h"
77
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84 #define DRIVER_NAME "fec"
85
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88 #define FEC_ENET_RSEM_V 0x84
89 #define FEC_ENET_RSFL_V 16
90 #define FEC_ENET_RAEM_V 0x8
91 #define FEC_ENET_RAFL_V 0x8
92 #define FEC_ENET_OPD_V 0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
94
95 #define FEC_ENET_XDP_PASS 0
96 #define FEC_ENET_XDP_CONSUMED BIT(0)
97 #define FEC_ENET_XDP_TX BIT(1)
98 #define FEC_ENET_XDP_REDIR BIT(2)
99
100 struct fec_devinfo {
101 u32 quirks;
102 };
103
104 static const struct fec_devinfo fec_imx25_info = {
105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108
109 static const struct fec_devinfo fec_imx27_info = {
110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 FEC_QUIRK_HAS_MDIO_C45,
112 };
113
114 static const struct fec_devinfo fec_imx28_info = {
115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120
121 static const struct fec_devinfo fec_imx6q_info = {
122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128
129 static const struct fec_devinfo fec_mvf600_info = {
130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 FEC_QUIRK_HAS_MDIO_C45,
132 };
133
134 static const struct fec_devinfo fec_imx6x_info = {
135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 FEC_QUIRK_HAS_MDIO_C45,
142 };
143
144 static const struct fec_devinfo fec_imx6ul_info = {
145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 FEC_QUIRK_HAS_MDIO_C45,
151 };
152
153 static const struct fec_devinfo fec_imx8mq_info = {
154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 FEC_QUIRK_HAS_MDIO_C45,
162 };
163
164 static const struct fec_devinfo fec_imx8qm_info = {
165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173
174 static const struct fec_devinfo fec_s32v234_info = {
175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 FEC_QUIRK_HAS_MDIO_C45,
180 };
181
182 static struct platform_device_id fec_devtype[] = {
183 {
184 /* keep it for coldfire */
185 .name = DRIVER_NAME,
186 .driver_data = 0,
187 }, {
188 /* sentinel */
189 }
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192
193 static const struct of_device_id fec_dt_ids[] = {
194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 { /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211
212 #if defined(CONFIG_M5272)
213 /*
214 * Some hardware gets it MAC address out of local flash memory.
215 * if this is non-zero then assume it is the address to get MAC from.
216 */
217 #if defined(CONFIG_NETtel)
218 #define FEC_FLASHMAC 0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define FEC_FLASHMAC 0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define FEC_FLASHMAC 0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define FEC_FLASHMAC (0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC 0xffc0406b
227 #else
228 #define FEC_FLASHMAC 0
229 #endif
230 #endif /* CONFIG_M5272 */
231
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233 *
234 * 2048 byte skbufs are allocated. However, alignment requirements
235 * varies between FEC variants. Worst case is 64, so round down by 64.
236 */
237 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE 64
239
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS BIT(1)
242 #define FEC_RACC_PRODIS BIT(2)
243 #define FEC_RACC_SHIFT16 BIT(7)
244 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
248
249 /*
250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251 * size bits. Other FEC hardware does not, so we need to take that into
252 * account when setting it.
253 */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256 defined(CONFIG_ARM64)
257 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
258 #else
259 #define OPT_FRAME_SIZE 0
260 #endif
261
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST (1 << 30)
264 #define FEC_MMFR_ST_C45 (0)
265 #define FEC_MMFR_OP_READ (2 << 28)
266 #define FEC_MMFR_OP_READ_C45 (3 << 28)
267 #define FEC_MMFR_OP_WRITE (1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE (0)
269 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
271 #define FEC_MMFR_TA (2 << 16)
272 #define FEC_MMFR_DATA(v) (v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET BIT(0)
275 #define FEC_ECR_ETHEREN BIT(1)
276 #define FEC_ECR_MAGICEN BIT(2)
277 #define FEC_ECR_SLEEP BIT(3)
278 #define FEC_ECR_EN1588 BIT(4)
279 #define FEC_ECR_BYTESWP BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP BIT(0)
282 #define FEC_RCR_HALFDPX BIT(1)
283 #define FEC_RCR_MII BIT(2)
284 #define FEC_RCR_PROMISC BIT(3)
285 #define FEC_RCR_BC_REJ BIT(4)
286 #define FEC_RCR_FLOWCTL BIT(5)
287 #define FEC_RCR_RMII BIT(8)
288 #define FEC_RCR_10BASET BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD BIT(8)
291
292 #define FEC_MII_TIMEOUT 30000 /* us */
293
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296
297 #define FEC_PAUSE_FLAG_AUTONEG 0x1
298 #define FEC_PAUSE_FLAG_ENABLE 0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
302
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS 100
305 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306
307 #define IS_TSO_HEADER(txq, addr) \
308 ((addr >= txq->tso_hdrs_dma) && \
309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310
311 static int mii_cnt;
312
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 struct bufdesc_prop *bd)
315 {
316 return (bdp >= bd->last) ? bd->base
317 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 struct bufdesc_prop *bd)
322 {
323 return (bdp <= bd->base) ? bd->last
324 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 struct bufdesc_prop *bd)
329 {
330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 int entries;
336
337 entries = (((const char *)txq->dirty_tx -
338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339
340 return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 int i;
346 unsigned int *buf = bufaddr;
347
348 for (i = 0; i < len; i += 4, buf++)
349 swab32s(buf);
350 }
351
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 struct fec_enet_private *fep = netdev_priv(ndev);
355 struct bufdesc *bdp;
356 struct fec_enet_priv_tx_q *txq;
357 int index = 0;
358
359 netdev_info(ndev, "TX ring dump\n");
360 pr_info("Nr SC addr len SKB\n");
361
362 txq = fep->tx_queue[0];
363 bdp = txq->bd.base;
364
365 do {
366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 index,
368 bdp == txq->bd.cur ? 'S' : ' ',
369 bdp == txq->dirty_tx ? 'H' : ' ',
370 fec16_to_cpu(bdp->cbd_sc),
371 fec32_to_cpu(bdp->cbd_bufaddr),
372 fec16_to_cpu(bdp->cbd_datlen),
373 txq->tx_buf[index].buf_p);
374 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 index++;
376 } while (bdp != txq->bd.base);
377 }
378
379 /*
380 * Coldfire does not support DMA coherent allocations, and has historically used
381 * a band-aid with a manual flush in fec_enet_rx_queue.
382 */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 gfp_t gfp)
386 {
387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 dma_addr_t handle)
392 {
393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 gfp_t gfp)
398 {
399 return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 dma_addr_t handle)
404 {
405 dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408
409 struct fec_dma_devres {
410 size_t size;
411 void *vaddr;
412 dma_addr_t dma_handle;
413 };
414
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 struct fec_dma_devres *this = res;
418
419 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 gfp_t gfp)
424 {
425 struct fec_dma_devres *dr;
426 void *vaddr;
427
428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 if (!dr)
430 return NULL;
431 vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 if (!vaddr) {
433 devres_free(dr);
434 return NULL;
435 }
436 dr->vaddr = vaddr;
437 dr->dma_handle = *handle;
438 dr->size = size;
439 devres_add(dev, dr);
440 return vaddr;
441 }
442
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 /* Only run for packets requiring a checksum. */
452 if (skb->ip_summed != CHECKSUM_PARTIAL)
453 return 0;
454
455 if (unlikely(skb_cow_head(skb, 0)))
456 return -1;
457
458 if (is_ipv4_pkt(skb))
459 ip_hdr(skb)->check = 0;
460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461
462 return 0;
463 }
464
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 struct page_pool_params pp_params = {
471 .order = 0,
472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 .pool_size = size,
474 .nid = dev_to_node(&fep->pdev->dev),
475 .dev = &fep->pdev->dev,
476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 .offset = FEC_ENET_XDP_HEADROOM,
478 .max_len = FEC_ENET_RX_FRSIZE,
479 };
480 int err;
481
482 rxq->page_pool = page_pool_create(&pp_params);
483 if (IS_ERR(rxq->page_pool)) {
484 err = PTR_ERR(rxq->page_pool);
485 rxq->page_pool = NULL;
486 return err;
487 }
488
489 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 if (err < 0)
491 goto err_free_pp;
492
493 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 rxq->page_pool);
495 if (err)
496 goto err_unregister_rxq;
497
498 return 0;
499
500 err_unregister_rxq:
501 xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 page_pool_destroy(rxq->page_pool);
504 rxq->page_pool = NULL;
505 return err;
506 }
507
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 struct sk_buff *skb,
511 struct net_device *ndev)
512 {
513 struct fec_enet_private *fep = netdev_priv(ndev);
514 struct bufdesc *bdp = txq->bd.cur;
515 struct bufdesc_ex *ebdp;
516 int nr_frags = skb_shinfo(skb)->nr_frags;
517 int frag, frag_len;
518 unsigned short status;
519 unsigned int estatus = 0;
520 skb_frag_t *this_frag;
521 unsigned int index;
522 void *bufaddr;
523 dma_addr_t addr;
524 int i;
525
526 for (frag = 0; frag < nr_frags; frag++) {
527 this_frag = &skb_shinfo(skb)->frags[frag];
528 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 ebdp = (struct bufdesc_ex *)bdp;
530
531 status = fec16_to_cpu(bdp->cbd_sc);
532 status &= ~BD_ENET_TX_STATS;
533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535
536 /* Handle the last BD specially */
537 if (frag == nr_frags - 1) {
538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 if (fep->bufdesc_ex) {
540 estatus |= BD_ENET_TX_INT;
541 if (unlikely(skb_shinfo(skb)->tx_flags &
542 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 estatus |= BD_ENET_TX_TS;
544 }
545 }
546
547 if (fep->bufdesc_ex) {
548 if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 if (skb->ip_summed == CHECKSUM_PARTIAL)
551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552
553 ebdp->cbd_bdu = 0;
554 ebdp->cbd_esc = cpu_to_fec32(estatus);
555 }
556
557 bufaddr = skb_frag_address(this_frag);
558
559 index = fec_enet_get_bd_index(bdp, &txq->bd);
560 if (((unsigned long) bufaddr) & fep->tx_align ||
561 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 bufaddr = txq->tx_bounce[index];
564
565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 swap_buffer(bufaddr, frag_len);
567 }
568
569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 DMA_TO_DEVICE);
571 if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 if (net_ratelimit())
573 netdev_err(ndev, "Tx DMA memory map failed\n");
574 goto dma_mapping_error;
575 }
576
577 bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 /* Make sure the updates to rest of the descriptor are
580 * performed before transferring ownership.
581 */
582 wmb();
583 bdp->cbd_sc = cpu_to_fec16(status);
584 }
585
586 return bdp;
587 dma_mapping_error:
588 bdp = txq->bd.cur;
589 for (i = 0; i < frag; i++) {
590 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 }
594 return ERR_PTR(-ENOMEM);
595 }
596
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 struct sk_buff *skb, struct net_device *ndev)
599 {
600 struct fec_enet_private *fep = netdev_priv(ndev);
601 int nr_frags = skb_shinfo(skb)->nr_frags;
602 struct bufdesc *bdp, *last_bdp;
603 void *bufaddr;
604 dma_addr_t addr;
605 unsigned short status;
606 unsigned short buflen;
607 unsigned int estatus = 0;
608 unsigned int index;
609 int entries_free;
610
611 entries_free = fec_enet_get_free_txdesc_num(txq);
612 if (entries_free < MAX_SKB_FRAGS + 1) {
613 dev_kfree_skb_any(skb);
614 if (net_ratelimit())
615 netdev_err(ndev, "NOT enough BD for SG!\n");
616 return NETDEV_TX_OK;
617 }
618
619 /* Protocol checksum off-load for TCP and UDP. */
620 if (fec_enet_clear_csum(skb, ndev)) {
621 dev_kfree_skb_any(skb);
622 return NETDEV_TX_OK;
623 }
624
625 /* Fill in a Tx ring entry */
626 bdp = txq->bd.cur;
627 last_bdp = bdp;
628 status = fec16_to_cpu(bdp->cbd_sc);
629 status &= ~BD_ENET_TX_STATS;
630
631 /* Set buffer length and buffer pointer */
632 bufaddr = skb->data;
633 buflen = skb_headlen(skb);
634
635 index = fec_enet_get_bd_index(bdp, &txq->bd);
636 if (((unsigned long) bufaddr) & fep->tx_align ||
637 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 memcpy(txq->tx_bounce[index], skb->data, buflen);
639 bufaddr = txq->tx_bounce[index];
640
641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 swap_buffer(bufaddr, buflen);
643 }
644
645 /* Push the data cache so the CPM does not get stale memory data. */
646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 dev_kfree_skb_any(skb);
649 if (net_ratelimit())
650 netdev_err(ndev, "Tx DMA memory map failed\n");
651 return NETDEV_TX_OK;
652 }
653
654 if (nr_frags) {
655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 if (IS_ERR(last_bdp)) {
657 dma_unmap_single(&fep->pdev->dev, addr,
658 buflen, DMA_TO_DEVICE);
659 dev_kfree_skb_any(skb);
660 return NETDEV_TX_OK;
661 }
662 } else {
663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 if (fep->bufdesc_ex) {
665 estatus = BD_ENET_TX_INT;
666 if (unlikely(skb_shinfo(skb)->tx_flags &
667 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 estatus |= BD_ENET_TX_TS;
669 }
670 }
671 bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 bdp->cbd_datlen = cpu_to_fec16(buflen);
673
674 if (fep->bufdesc_ex) {
675
676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677
678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 fep->hwts_tx_en))
680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681
682 if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684
685 if (skb->ip_summed == CHECKSUM_PARTIAL)
686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687
688 ebdp->cbd_bdu = 0;
689 ebdp->cbd_esc = cpu_to_fec32(estatus);
690 }
691
692 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 /* Save skb pointer */
694 txq->tx_buf[index].buf_p = skb;
695
696 /* Make sure the updates to rest of the descriptor are performed before
697 * transferring ownership.
698 */
699 wmb();
700
701 /* Send it on its way. Tell FEC it's ready, interrupt when done,
702 * it's the last BD of the frame, and to put the CRC on the end.
703 */
704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 bdp->cbd_sc = cpu_to_fec16(status);
706
707 /* If this was the last BD in the ring, start at the beginning again. */
708 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709
710 skb_tx_timestamp(skb);
711
712 /* Make sure the update to bdp is performed before txq->bd.cur. */
713 wmb();
714 txq->bd.cur = bdp;
715
716 /* Trigger transmission start */
717 writel(0, txq->bd.reg_desc_active);
718
719 return 0;
720 }
721
722 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724 struct net_device *ndev,
725 struct bufdesc *bdp, int index, char *data,
726 int size, bool last_tcp, bool is_last)
727 {
728 struct fec_enet_private *fep = netdev_priv(ndev);
729 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730 unsigned short status;
731 unsigned int estatus = 0;
732 dma_addr_t addr;
733
734 status = fec16_to_cpu(bdp->cbd_sc);
735 status &= ~BD_ENET_TX_STATS;
736
737 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738
739 if (((unsigned long) data) & fep->tx_align ||
740 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741 memcpy(txq->tx_bounce[index], data, size);
742 data = txq->tx_bounce[index];
743
744 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745 swap_buffer(data, size);
746 }
747
748 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749 if (dma_mapping_error(&fep->pdev->dev, addr)) {
750 dev_kfree_skb_any(skb);
751 if (net_ratelimit())
752 netdev_err(ndev, "Tx DMA memory map failed\n");
753 return NETDEV_TX_OK;
754 }
755
756 bdp->cbd_datlen = cpu_to_fec16(size);
757 bdp->cbd_bufaddr = cpu_to_fec32(addr);
758
759 if (fep->bufdesc_ex) {
760 if (fep->quirks & FEC_QUIRK_HAS_AVB)
761 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762 if (skb->ip_summed == CHECKSUM_PARTIAL)
763 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764 ebdp->cbd_bdu = 0;
765 ebdp->cbd_esc = cpu_to_fec32(estatus);
766 }
767
768 /* Handle the last BD specially */
769 if (last_tcp)
770 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771 if (is_last) {
772 status |= BD_ENET_TX_INTR;
773 if (fep->bufdesc_ex)
774 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775 }
776
777 bdp->cbd_sc = cpu_to_fec16(status);
778
779 return 0;
780 }
781
782 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784 struct sk_buff *skb, struct net_device *ndev,
785 struct bufdesc *bdp, int index)
786 {
787 struct fec_enet_private *fep = netdev_priv(ndev);
788 int hdr_len = skb_tcp_all_headers(skb);
789 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790 void *bufaddr;
791 unsigned long dmabuf;
792 unsigned short status;
793 unsigned int estatus = 0;
794
795 status = fec16_to_cpu(bdp->cbd_sc);
796 status &= ~BD_ENET_TX_STATS;
797 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798
799 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801 if (((unsigned long)bufaddr) & fep->tx_align ||
802 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804 bufaddr = txq->tx_bounce[index];
805
806 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807 swap_buffer(bufaddr, hdr_len);
808
809 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810 hdr_len, DMA_TO_DEVICE);
811 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
812 dev_kfree_skb_any(skb);
813 if (net_ratelimit())
814 netdev_err(ndev, "Tx DMA memory map failed\n");
815 return NETDEV_TX_OK;
816 }
817 }
818
819 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821
822 if (fep->bufdesc_ex) {
823 if (fep->quirks & FEC_QUIRK_HAS_AVB)
824 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825 if (skb->ip_summed == CHECKSUM_PARTIAL)
826 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827 ebdp->cbd_bdu = 0;
828 ebdp->cbd_esc = cpu_to_fec32(estatus);
829 }
830
831 bdp->cbd_sc = cpu_to_fec16(status);
832
833 return 0;
834 }
835
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837 struct sk_buff *skb,
838 struct net_device *ndev)
839 {
840 struct fec_enet_private *fep = netdev_priv(ndev);
841 int hdr_len, total_len, data_left;
842 struct bufdesc *bdp = txq->bd.cur;
843 struct bufdesc *tmp_bdp;
844 struct bufdesc_ex *ebdp;
845 struct tso_t tso;
846 unsigned int index = 0;
847 int ret;
848
849 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
850 dev_kfree_skb_any(skb);
851 if (net_ratelimit())
852 netdev_err(ndev, "NOT enough BD for TSO!\n");
853 return NETDEV_TX_OK;
854 }
855
856 /* Protocol checksum off-load for TCP and UDP. */
857 if (fec_enet_clear_csum(skb, ndev)) {
858 dev_kfree_skb_any(skb);
859 return NETDEV_TX_OK;
860 }
861
862 /* Initialize the TSO handler, and prepare the first payload */
863 hdr_len = tso_start(skb, &tso);
864
865 total_len = skb->len - hdr_len;
866 while (total_len > 0) {
867 char *hdr;
868
869 index = fec_enet_get_bd_index(bdp, &txq->bd);
870 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
871 total_len -= data_left;
872
873 /* prepare packet headers: MAC + IP + TCP */
874 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
875 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
876 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
877 if (ret)
878 goto err_release;
879
880 while (data_left > 0) {
881 int size;
882
883 size = min_t(int, tso.size, data_left);
884 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
885 index = fec_enet_get_bd_index(bdp, &txq->bd);
886 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
887 bdp, index,
888 tso.data, size,
889 size == data_left,
890 total_len == 0);
891 if (ret)
892 goto err_release;
893
894 data_left -= size;
895 tso_build_data(skb, &tso, size);
896 }
897
898 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
899 }
900
901 /* Save skb pointer */
902 txq->tx_buf[index].buf_p = skb;
903
904 skb_tx_timestamp(skb);
905 txq->bd.cur = bdp;
906
907 /* Trigger transmission start */
908 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
909 !readl(txq->bd.reg_desc_active) ||
910 !readl(txq->bd.reg_desc_active) ||
911 !readl(txq->bd.reg_desc_active) ||
912 !readl(txq->bd.reg_desc_active))
913 writel(0, txq->bd.reg_desc_active);
914
915 return 0;
916
917 err_release:
918 /* Release all used data descriptors for TSO */
919 tmp_bdp = txq->bd.cur;
920
921 while (tmp_bdp != bdp) {
922 /* Unmap data buffers */
923 if (tmp_bdp->cbd_bufaddr &&
924 !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
925 dma_unmap_single(&fep->pdev->dev,
926 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
927 fec16_to_cpu(tmp_bdp->cbd_datlen),
928 DMA_TO_DEVICE);
929
930 /* Clear standard buffer descriptor fields */
931 tmp_bdp->cbd_sc = 0;
932 tmp_bdp->cbd_datlen = 0;
933 tmp_bdp->cbd_bufaddr = 0;
934
935 /* Handle extended descriptor if enabled */
936 if (fep->bufdesc_ex) {
937 ebdp = (struct bufdesc_ex *)tmp_bdp;
938 ebdp->cbd_esc = 0;
939 }
940
941 tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
942 }
943
944 dev_kfree_skb_any(skb);
945
946 return ret;
947 }
948
949 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)950 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
951 {
952 struct fec_enet_private *fep = netdev_priv(ndev);
953 int entries_free;
954 unsigned short queue;
955 struct fec_enet_priv_tx_q *txq;
956 struct netdev_queue *nq;
957 int ret;
958
959 queue = skb_get_queue_mapping(skb);
960 txq = fep->tx_queue[queue];
961 nq = netdev_get_tx_queue(ndev, queue);
962
963 if (skb_is_gso(skb))
964 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
965 else
966 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
967 if (ret)
968 return ret;
969
970 entries_free = fec_enet_get_free_txdesc_num(txq);
971 if (entries_free <= txq->tx_stop_threshold)
972 netif_tx_stop_queue(nq);
973
974 return NETDEV_TX_OK;
975 }
976
977 /* Init RX & TX buffer descriptors
978 */
fec_enet_bd_init(struct net_device * dev)979 static void fec_enet_bd_init(struct net_device *dev)
980 {
981 struct fec_enet_private *fep = netdev_priv(dev);
982 struct fec_enet_priv_tx_q *txq;
983 struct fec_enet_priv_rx_q *rxq;
984 struct bufdesc *bdp;
985 unsigned int i;
986 unsigned int q;
987
988 for (q = 0; q < fep->num_rx_queues; q++) {
989 /* Initialize the receive buffer descriptors. */
990 rxq = fep->rx_queue[q];
991 bdp = rxq->bd.base;
992
993 for (i = 0; i < rxq->bd.ring_size; i++) {
994
995 /* Initialize the BD for every fragment in the page. */
996 if (bdp->cbd_bufaddr)
997 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
998 else
999 bdp->cbd_sc = cpu_to_fec16(0);
1000 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1001 }
1002
1003 /* Set the last buffer to wrap */
1004 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1005 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006
1007 rxq->bd.cur = rxq->bd.base;
1008 }
1009
1010 for (q = 0; q < fep->num_tx_queues; q++) {
1011 /* ...and the same for transmit */
1012 txq = fep->tx_queue[q];
1013 bdp = txq->bd.base;
1014 txq->bd.cur = bdp;
1015
1016 for (i = 0; i < txq->bd.ring_size; i++) {
1017 /* Initialize the BD for every fragment in the page. */
1018 bdp->cbd_sc = cpu_to_fec16(0);
1019 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1020 if (bdp->cbd_bufaddr &&
1021 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1022 dma_unmap_single(&fep->pdev->dev,
1023 fec32_to_cpu(bdp->cbd_bufaddr),
1024 fec16_to_cpu(bdp->cbd_datlen),
1025 DMA_TO_DEVICE);
1026 if (txq->tx_buf[i].buf_p)
1027 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1028 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1029 if (bdp->cbd_bufaddr)
1030 dma_unmap_single(&fep->pdev->dev,
1031 fec32_to_cpu(bdp->cbd_bufaddr),
1032 fec16_to_cpu(bdp->cbd_datlen),
1033 DMA_TO_DEVICE);
1034
1035 if (txq->tx_buf[i].buf_p)
1036 xdp_return_frame(txq->tx_buf[i].buf_p);
1037 } else {
1038 struct page *page = txq->tx_buf[i].buf_p;
1039
1040 if (page)
1041 page_pool_put_page(page->pp, page, 0, false);
1042 }
1043
1044 txq->tx_buf[i].buf_p = NULL;
1045 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1046 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1047 bdp->cbd_bufaddr = cpu_to_fec32(0);
1048 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1049 }
1050
1051 /* Set the last buffer to wrap */
1052 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1053 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1054 txq->dirty_tx = bdp;
1055 }
1056 }
1057
fec_enet_active_rxring(struct net_device * ndev)1058 static void fec_enet_active_rxring(struct net_device *ndev)
1059 {
1060 struct fec_enet_private *fep = netdev_priv(ndev);
1061 int i;
1062
1063 for (i = 0; i < fep->num_rx_queues; i++)
1064 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1065 }
1066
fec_enet_enable_ring(struct net_device * ndev)1067 static void fec_enet_enable_ring(struct net_device *ndev)
1068 {
1069 struct fec_enet_private *fep = netdev_priv(ndev);
1070 struct fec_enet_priv_tx_q *txq;
1071 struct fec_enet_priv_rx_q *rxq;
1072 int i;
1073
1074 for (i = 0; i < fep->num_rx_queues; i++) {
1075 rxq = fep->rx_queue[i];
1076 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1077 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1078
1079 /* enable DMA1/2 */
1080 if (i)
1081 writel(RCMR_MATCHEN | RCMR_CMP(i),
1082 fep->hwp + FEC_RCMR(i));
1083 }
1084
1085 for (i = 0; i < fep->num_tx_queues; i++) {
1086 txq = fep->tx_queue[i];
1087 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1088
1089 /* enable DMA1/2 */
1090 if (i)
1091 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1092 fep->hwp + FEC_DMA_CFG(i));
1093 }
1094 }
1095
1096 /*
1097 * This function is called to start or restart the FEC during a link
1098 * change, transmit timeout, or to reconfigure the FEC. The network
1099 * packet processing for this device must be stopped before this call.
1100 */
1101 static void
fec_restart(struct net_device * ndev)1102 fec_restart(struct net_device *ndev)
1103 {
1104 struct fec_enet_private *fep = netdev_priv(ndev);
1105 u32 temp_mac[2];
1106 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1107 u32 ecntl = FEC_ECR_ETHEREN;
1108
1109 if (fep->bufdesc_ex)
1110 fec_ptp_save_state(fep);
1111
1112 /* Whack a reset. We should wait for this.
1113 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1114 * instead of reset MAC itself.
1115 */
1116 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1117 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1118 writel(0, fep->hwp + FEC_ECNTRL);
1119 } else {
1120 writel(1, fep->hwp + FEC_ECNTRL);
1121 udelay(10);
1122 }
1123
1124 /*
1125 * enet-mac reset will reset mac address registers too,
1126 * so need to reconfigure it.
1127 */
1128 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1129 writel((__force u32)cpu_to_be32(temp_mac[0]),
1130 fep->hwp + FEC_ADDR_LOW);
1131 writel((__force u32)cpu_to_be32(temp_mac[1]),
1132 fep->hwp + FEC_ADDR_HIGH);
1133
1134 /* Clear any outstanding interrupt, except MDIO. */
1135 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1136
1137 fec_enet_bd_init(ndev);
1138
1139 fec_enet_enable_ring(ndev);
1140
1141 /* Enable MII mode */
1142 if (fep->full_duplex == DUPLEX_FULL) {
1143 /* FD enable */
1144 writel(0x04, fep->hwp + FEC_X_CNTRL);
1145 } else {
1146 /* No Rcv on Xmit */
1147 rcntl |= 0x02;
1148 writel(0x0, fep->hwp + FEC_X_CNTRL);
1149 }
1150
1151 /* Set MII speed */
1152 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1153
1154 #if !defined(CONFIG_M5272)
1155 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1156 u32 val = readl(fep->hwp + FEC_RACC);
1157
1158 /* align IP header */
1159 val |= FEC_RACC_SHIFT16;
1160 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1161 /* set RX checksum */
1162 val |= FEC_RACC_OPTIONS;
1163 else
1164 val &= ~FEC_RACC_OPTIONS;
1165 writel(val, fep->hwp + FEC_RACC);
1166 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1167 }
1168 #endif
1169
1170 /*
1171 * The phy interface and speed need to get configured
1172 * differently on enet-mac.
1173 */
1174 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1175 /* Enable flow control and length check */
1176 rcntl |= 0x40000000 | 0x00000020;
1177
1178 /* RGMII, RMII or MII */
1179 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1180 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1181 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1182 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1183 rcntl |= (1 << 6);
1184 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1185 rcntl |= FEC_RCR_RMII;
1186 else
1187 rcntl &= ~FEC_RCR_RMII;
1188
1189 /* 1G, 100M or 10M */
1190 if (ndev->phydev) {
1191 if (ndev->phydev->speed == SPEED_1000)
1192 ecntl |= (1 << 5);
1193 else if (ndev->phydev->speed == SPEED_100)
1194 rcntl &= ~FEC_RCR_10BASET;
1195 else
1196 rcntl |= FEC_RCR_10BASET;
1197 }
1198 } else {
1199 #ifdef FEC_MIIGSK_ENR
1200 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1201 u32 cfgr;
1202 /* disable the gasket and wait */
1203 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1204 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1205 udelay(1);
1206
1207 /*
1208 * configure the gasket:
1209 * RMII, 50 MHz, no loopback, no echo
1210 * MII, 25 MHz, no loopback, no echo
1211 */
1212 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1213 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1214 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1215 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1216 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1217
1218 /* re-enable the gasket */
1219 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1220 }
1221 #endif
1222 }
1223
1224 #if !defined(CONFIG_M5272)
1225 /* enable pause frame*/
1226 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1227 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1228 ndev->phydev && ndev->phydev->pause)) {
1229 rcntl |= FEC_RCR_FLOWCTL;
1230
1231 /* set FIFO threshold parameter to reduce overrun */
1232 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1233 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1234 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1235 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1236
1237 /* OPD */
1238 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1239 } else {
1240 rcntl &= ~FEC_RCR_FLOWCTL;
1241 }
1242 #endif /* !defined(CONFIG_M5272) */
1243
1244 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1245
1246 /* Setup multicast filter. */
1247 set_multicast_list(ndev);
1248 #ifndef CONFIG_M5272
1249 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1250 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1251 #endif
1252
1253 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1254 /* enable ENET endian swap */
1255 ecntl |= FEC_ECR_BYTESWP;
1256 /* enable ENET store and forward mode */
1257 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1258 }
1259
1260 if (fep->bufdesc_ex)
1261 ecntl |= FEC_ECR_EN1588;
1262
1263 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1264 fep->rgmii_txc_dly)
1265 ecntl |= FEC_ENET_TXC_DLY;
1266 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1267 fep->rgmii_rxc_dly)
1268 ecntl |= FEC_ENET_RXC_DLY;
1269
1270 #ifndef CONFIG_M5272
1271 /* Enable the MIB statistic event counters */
1272 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1273 #endif
1274
1275 /* And last, enable the transmit and receive processing */
1276 writel(ecntl, fep->hwp + FEC_ECNTRL);
1277 fec_enet_active_rxring(ndev);
1278
1279 if (fep->bufdesc_ex) {
1280 fec_ptp_start_cyclecounter(ndev);
1281 fec_ptp_restore_state(fep);
1282 }
1283
1284 /* Enable interrupts we wish to service */
1285 if (fep->link)
1286 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1287 else
1288 writel(0, fep->hwp + FEC_IMASK);
1289
1290 /* Init the interrupt coalescing */
1291 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1292 fec_enet_itr_coal_set(ndev);
1293 }
1294
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1295 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1296 {
1297 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1298 of_machine_is_compatible("fsl,imx8qxp") ||
1299 of_machine_is_compatible("fsl,imx8dxl")))
1300 return 0;
1301
1302 return imx_scu_get_handle(&fep->ipc_handle);
1303 }
1304
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1305 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1306 {
1307 struct device_node *np = fep->pdev->dev.of_node;
1308 u32 rsrc_id, val;
1309 int idx;
1310
1311 if (!np || !fep->ipc_handle)
1312 return;
1313
1314 idx = of_alias_get_id(np, "ethernet");
1315 if (idx < 0)
1316 idx = 0;
1317 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1318
1319 val = enabled ? 1 : 0;
1320 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1321 }
1322
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1323 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1324 {
1325 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1326 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1327
1328 if (stop_gpr->gpr) {
1329 if (enabled)
1330 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1331 BIT(stop_gpr->bit),
1332 BIT(stop_gpr->bit));
1333 else
1334 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1335 BIT(stop_gpr->bit), 0);
1336 } else if (pdata && pdata->sleep_mode_enable) {
1337 pdata->sleep_mode_enable(enabled);
1338 } else {
1339 fec_enet_ipg_stop_set(fep, enabled);
1340 }
1341 }
1342
fec_irqs_disable(struct net_device * ndev)1343 static void fec_irqs_disable(struct net_device *ndev)
1344 {
1345 struct fec_enet_private *fep = netdev_priv(ndev);
1346
1347 writel(0, fep->hwp + FEC_IMASK);
1348 }
1349
fec_irqs_disable_except_wakeup(struct net_device * ndev)1350 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1351 {
1352 struct fec_enet_private *fep = netdev_priv(ndev);
1353
1354 writel(0, fep->hwp + FEC_IMASK);
1355 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1356 }
1357
1358 static void
fec_stop(struct net_device * ndev)1359 fec_stop(struct net_device *ndev)
1360 {
1361 struct fec_enet_private *fep = netdev_priv(ndev);
1362 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1363 u32 val;
1364
1365 /* We cannot expect a graceful transmit stop without link !!! */
1366 if (fep->link) {
1367 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1368 udelay(10);
1369 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1370 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1371 }
1372
1373 if (fep->bufdesc_ex)
1374 fec_ptp_save_state(fep);
1375
1376 /* Whack a reset. We should wait for this.
1377 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1378 * instead of reset MAC itself.
1379 */
1380 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1381 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1382 writel(0, fep->hwp + FEC_ECNTRL);
1383 } else {
1384 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1385 udelay(10);
1386 }
1387 } else {
1388 val = readl(fep->hwp + FEC_ECNTRL);
1389 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1390 writel(val, fep->hwp + FEC_ECNTRL);
1391 }
1392 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1393 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1394
1395 /* We have to keep ENET enabled to have MII interrupt stay working */
1396 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1397 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1398 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1399 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1400 }
1401
1402 if (fep->bufdesc_ex) {
1403 val = readl(fep->hwp + FEC_ECNTRL);
1404 val |= FEC_ECR_EN1588;
1405 writel(val, fep->hwp + FEC_ECNTRL);
1406
1407 fec_ptp_start_cyclecounter(ndev);
1408 fec_ptp_restore_state(fep);
1409 }
1410 }
1411
1412 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1413 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1414 {
1415 struct fec_enet_private *fep = netdev_priv(ndev);
1416
1417 fec_dump(ndev);
1418
1419 ndev->stats.tx_errors++;
1420
1421 schedule_work(&fep->tx_timeout_work);
1422 }
1423
fec_enet_timeout_work(struct work_struct * work)1424 static void fec_enet_timeout_work(struct work_struct *work)
1425 {
1426 struct fec_enet_private *fep =
1427 container_of(work, struct fec_enet_private, tx_timeout_work);
1428 struct net_device *ndev = fep->netdev;
1429
1430 rtnl_lock();
1431 if (netif_device_present(ndev) || netif_running(ndev)) {
1432 napi_disable(&fep->napi);
1433 netif_tx_lock_bh(ndev);
1434 fec_restart(ndev);
1435 netif_tx_wake_all_queues(ndev);
1436 netif_tx_unlock_bh(ndev);
1437 napi_enable(&fep->napi);
1438 }
1439 rtnl_unlock();
1440 }
1441
1442 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1443 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1444 struct skb_shared_hwtstamps *hwtstamps)
1445 {
1446 unsigned long flags;
1447 u64 ns;
1448
1449 spin_lock_irqsave(&fep->tmreg_lock, flags);
1450 ns = timecounter_cyc2time(&fep->tc, ts);
1451 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1452
1453 memset(hwtstamps, 0, sizeof(*hwtstamps));
1454 hwtstamps->hwtstamp = ns_to_ktime(ns);
1455 }
1456
1457 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1458 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1459 {
1460 struct fec_enet_private *fep;
1461 struct xdp_frame *xdpf;
1462 struct bufdesc *bdp;
1463 unsigned short status;
1464 struct sk_buff *skb;
1465 struct fec_enet_priv_tx_q *txq;
1466 struct netdev_queue *nq;
1467 int index = 0;
1468 int entries_free;
1469 struct page *page;
1470 int frame_len;
1471
1472 fep = netdev_priv(ndev);
1473
1474 txq = fep->tx_queue[queue_id];
1475 /* get next bdp of dirty_tx */
1476 nq = netdev_get_tx_queue(ndev, queue_id);
1477 bdp = txq->dirty_tx;
1478
1479 /* get next bdp of dirty_tx */
1480 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1481
1482 while (bdp != READ_ONCE(txq->bd.cur)) {
1483 /* Order the load of bd.cur and cbd_sc */
1484 rmb();
1485 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1486 if (status & BD_ENET_TX_READY)
1487 break;
1488
1489 index = fec_enet_get_bd_index(bdp, &txq->bd);
1490
1491 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1492 skb = txq->tx_buf[index].buf_p;
1493 if (bdp->cbd_bufaddr &&
1494 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1495 dma_unmap_single(&fep->pdev->dev,
1496 fec32_to_cpu(bdp->cbd_bufaddr),
1497 fec16_to_cpu(bdp->cbd_datlen),
1498 DMA_TO_DEVICE);
1499 bdp->cbd_bufaddr = cpu_to_fec32(0);
1500 if (!skb)
1501 goto tx_buf_done;
1502 } else {
1503 /* Tx processing cannot call any XDP (or page pool) APIs if
1504 * the "budget" is 0. Because NAPI is called with budget of
1505 * 0 (such as netpoll) indicates we may be in an IRQ context,
1506 * however, we can't use the page pool from IRQ context.
1507 */
1508 if (unlikely(!budget))
1509 break;
1510
1511 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1512 xdpf = txq->tx_buf[index].buf_p;
1513 if (bdp->cbd_bufaddr)
1514 dma_unmap_single(&fep->pdev->dev,
1515 fec32_to_cpu(bdp->cbd_bufaddr),
1516 fec16_to_cpu(bdp->cbd_datlen),
1517 DMA_TO_DEVICE);
1518 } else {
1519 page = txq->tx_buf[index].buf_p;
1520 }
1521
1522 bdp->cbd_bufaddr = cpu_to_fec32(0);
1523 if (unlikely(!txq->tx_buf[index].buf_p)) {
1524 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1525 goto tx_buf_done;
1526 }
1527
1528 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1529 }
1530
1531 /* Check for errors. */
1532 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1533 BD_ENET_TX_RL | BD_ENET_TX_UN |
1534 BD_ENET_TX_CSL)) {
1535 ndev->stats.tx_errors++;
1536 if (status & BD_ENET_TX_HB) /* No heartbeat */
1537 ndev->stats.tx_heartbeat_errors++;
1538 if (status & BD_ENET_TX_LC) /* Late collision */
1539 ndev->stats.tx_window_errors++;
1540 if (status & BD_ENET_TX_RL) /* Retrans limit */
1541 ndev->stats.tx_aborted_errors++;
1542 if (status & BD_ENET_TX_UN) /* Underrun */
1543 ndev->stats.tx_fifo_errors++;
1544 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1545 ndev->stats.tx_carrier_errors++;
1546 } else {
1547 ndev->stats.tx_packets++;
1548
1549 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1550 ndev->stats.tx_bytes += skb->len;
1551 else
1552 ndev->stats.tx_bytes += frame_len;
1553 }
1554
1555 /* Deferred means some collisions occurred during transmit,
1556 * but we eventually sent the packet OK.
1557 */
1558 if (status & BD_ENET_TX_DEF)
1559 ndev->stats.collisions++;
1560
1561 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1562 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1563 * are to time stamp the packet, so we still need to check time
1564 * stamping enabled flag.
1565 */
1566 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1567 fep->hwts_tx_en) && fep->bufdesc_ex) {
1568 struct skb_shared_hwtstamps shhwtstamps;
1569 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1570
1571 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1572 skb_tstamp_tx(skb, &shhwtstamps);
1573 }
1574
1575 /* Free the sk buffer associated with this last transmit */
1576 napi_consume_skb(skb, budget);
1577 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1578 xdp_return_frame_rx_napi(xdpf);
1579 } else { /* recycle pages of XDP_TX frames */
1580 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1581 page_pool_put_page(page->pp, page, 0, true);
1582 }
1583
1584 txq->tx_buf[index].buf_p = NULL;
1585 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1586 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1587
1588 tx_buf_done:
1589 /* Make sure the update to bdp and tx_buf are performed
1590 * before dirty_tx
1591 */
1592 wmb();
1593 txq->dirty_tx = bdp;
1594
1595 /* Update pointer to next buffer descriptor to be transmitted */
1596 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1597
1598 /* Since we have freed up a buffer, the ring is no longer full
1599 */
1600 if (netif_tx_queue_stopped(nq)) {
1601 entries_free = fec_enet_get_free_txdesc_num(txq);
1602 if (entries_free >= txq->tx_wake_threshold)
1603 netif_tx_wake_queue(nq);
1604 }
1605 }
1606
1607 /* ERR006358: Keep the transmitter going */
1608 if (bdp != txq->bd.cur &&
1609 readl(txq->bd.reg_desc_active) == 0)
1610 writel(0, txq->bd.reg_desc_active);
1611 }
1612
fec_enet_tx(struct net_device * ndev,int budget)1613 static void fec_enet_tx(struct net_device *ndev, int budget)
1614 {
1615 struct fec_enet_private *fep = netdev_priv(ndev);
1616 int i;
1617
1618 /* Make sure that AVB queues are processed first. */
1619 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1620 fec_enet_tx_queue(ndev, i, budget);
1621 }
1622
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1623 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1624 struct bufdesc *bdp, int index)
1625 {
1626 struct page *new_page;
1627 dma_addr_t phys_addr;
1628
1629 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1630 if (unlikely(!new_page))
1631 return -ENOMEM;
1632
1633 rxq->rx_skb_info[index].page = new_page;
1634 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1635 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1636 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1637
1638 return 0;
1639 }
1640
1641 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1642 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1643 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1644 {
1645 unsigned int sync, len = xdp->data_end - xdp->data;
1646 u32 ret = FEC_ENET_XDP_PASS;
1647 struct page *page;
1648 int err;
1649 u32 act;
1650
1651 act = bpf_prog_run_xdp(prog, xdp);
1652
1653 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1654 * max len CPU touch
1655 */
1656 sync = xdp->data_end - xdp->data;
1657 sync = max(sync, len);
1658
1659 switch (act) {
1660 case XDP_PASS:
1661 rxq->stats[RX_XDP_PASS]++;
1662 ret = FEC_ENET_XDP_PASS;
1663 break;
1664
1665 case XDP_REDIRECT:
1666 rxq->stats[RX_XDP_REDIRECT]++;
1667 err = xdp_do_redirect(fep->netdev, xdp, prog);
1668 if (unlikely(err))
1669 goto xdp_err;
1670
1671 ret = FEC_ENET_XDP_REDIR;
1672 break;
1673
1674 case XDP_TX:
1675 rxq->stats[RX_XDP_TX]++;
1676 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1677 if (unlikely(err)) {
1678 rxq->stats[RX_XDP_TX_ERRORS]++;
1679 goto xdp_err;
1680 }
1681
1682 ret = FEC_ENET_XDP_TX;
1683 break;
1684
1685 default:
1686 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1687 fallthrough;
1688
1689 case XDP_ABORTED:
1690 fallthrough; /* handle aborts by dropping packet */
1691
1692 case XDP_DROP:
1693 rxq->stats[RX_XDP_DROP]++;
1694 xdp_err:
1695 ret = FEC_ENET_XDP_CONSUMED;
1696 page = virt_to_head_page(xdp->data);
1697 page_pool_put_page(rxq->page_pool, page, sync, true);
1698 if (act != XDP_DROP)
1699 trace_xdp_exception(fep->netdev, prog, act);
1700 break;
1701 }
1702
1703 return ret;
1704 }
1705
1706 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1707 * When we update through the ring, if the next incoming buffer has
1708 * not been given to the system, we just set the empty indicator,
1709 * effectively tossing the packet.
1710 */
1711 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1712 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1713 {
1714 struct fec_enet_private *fep = netdev_priv(ndev);
1715 struct fec_enet_priv_rx_q *rxq;
1716 struct bufdesc *bdp;
1717 unsigned short status;
1718 struct sk_buff *skb;
1719 ushort pkt_len;
1720 __u8 *data;
1721 int pkt_received = 0;
1722 struct bufdesc_ex *ebdp = NULL;
1723 bool vlan_packet_rcvd = false;
1724 u16 vlan_tag;
1725 int index = 0;
1726 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1727 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1728 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1729 u32 data_start = FEC_ENET_XDP_HEADROOM;
1730 int cpu = smp_processor_id();
1731 struct xdp_buff xdp;
1732 struct page *page;
1733 __fec32 cbd_bufaddr;
1734 u32 sub_len = 4;
1735
1736 #if !defined(CONFIG_M5272)
1737 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1738 * FEC_RACC_SHIFT16 is set by default in the probe function.
1739 */
1740 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1741 data_start += 2;
1742 sub_len += 2;
1743 }
1744 #endif
1745
1746 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1747 /*
1748 * Hacky flush of all caches instead of using the DMA API for the TSO
1749 * headers.
1750 */
1751 flush_cache_all();
1752 #endif
1753 rxq = fep->rx_queue[queue_id];
1754
1755 /* First, grab all of the stats for the incoming packet.
1756 * These get messed up if we get called due to a busy condition.
1757 */
1758 bdp = rxq->bd.cur;
1759 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1760
1761 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1762
1763 if (pkt_received >= budget)
1764 break;
1765 pkt_received++;
1766
1767 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1768
1769 /* Check for errors. */
1770 status ^= BD_ENET_RX_LAST;
1771 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1772 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1773 BD_ENET_RX_CL)) {
1774 ndev->stats.rx_errors++;
1775 if (status & BD_ENET_RX_OV) {
1776 /* FIFO overrun */
1777 ndev->stats.rx_fifo_errors++;
1778 goto rx_processing_done;
1779 }
1780 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1781 | BD_ENET_RX_LAST)) {
1782 /* Frame too long or too short. */
1783 ndev->stats.rx_length_errors++;
1784 if (status & BD_ENET_RX_LAST)
1785 netdev_err(ndev, "rcv is not +last\n");
1786 }
1787 if (status & BD_ENET_RX_CR) /* CRC Error */
1788 ndev->stats.rx_crc_errors++;
1789 /* Report late collisions as a frame error. */
1790 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1791 ndev->stats.rx_frame_errors++;
1792 goto rx_processing_done;
1793 }
1794
1795 /* Process the incoming frame. */
1796 ndev->stats.rx_packets++;
1797 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1798 ndev->stats.rx_bytes += pkt_len;
1799
1800 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1801 page = rxq->rx_skb_info[index].page;
1802 cbd_bufaddr = bdp->cbd_bufaddr;
1803 if (fec_enet_update_cbd(rxq, bdp, index)) {
1804 ndev->stats.rx_dropped++;
1805 goto rx_processing_done;
1806 }
1807
1808 dma_sync_single_for_cpu(&fep->pdev->dev,
1809 fec32_to_cpu(cbd_bufaddr),
1810 pkt_len,
1811 DMA_FROM_DEVICE);
1812 prefetch(page_address(page));
1813
1814 if (xdp_prog) {
1815 xdp_buff_clear_frags_flag(&xdp);
1816 /* subtract 16bit shift and FCS */
1817 xdp_prepare_buff(&xdp, page_address(page),
1818 data_start, pkt_len - sub_len, false);
1819 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1820 xdp_result |= ret;
1821 if (ret != FEC_ENET_XDP_PASS)
1822 goto rx_processing_done;
1823 }
1824
1825 /* The packet length includes FCS, but we don't want to
1826 * include that when passing upstream as it messes up
1827 * bridging applications.
1828 */
1829 skb = build_skb(page_address(page), PAGE_SIZE);
1830 if (unlikely(!skb)) {
1831 page_pool_recycle_direct(rxq->page_pool, page);
1832 ndev->stats.rx_dropped++;
1833
1834 netdev_err_once(ndev, "build_skb failed!\n");
1835 goto rx_processing_done;
1836 }
1837
1838 skb_reserve(skb, data_start);
1839 skb_put(skb, pkt_len - sub_len);
1840 skb_mark_for_recycle(skb);
1841
1842 if (unlikely(need_swap)) {
1843 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1844 swap_buffer(data, pkt_len);
1845 }
1846 data = skb->data;
1847
1848 /* Extract the enhanced buffer descriptor */
1849 ebdp = NULL;
1850 if (fep->bufdesc_ex)
1851 ebdp = (struct bufdesc_ex *)bdp;
1852
1853 /* If this is a VLAN packet remove the VLAN Tag */
1854 vlan_packet_rcvd = false;
1855 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1856 fep->bufdesc_ex &&
1857 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1858 /* Push and remove the vlan tag */
1859 struct vlan_hdr *vlan_header =
1860 (struct vlan_hdr *) (data + ETH_HLEN);
1861 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1862
1863 vlan_packet_rcvd = true;
1864
1865 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1866 skb_pull(skb, VLAN_HLEN);
1867 }
1868
1869 skb->protocol = eth_type_trans(skb, ndev);
1870
1871 /* Get receive timestamp from the skb */
1872 if (fep->hwts_rx_en && fep->bufdesc_ex)
1873 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1874 skb_hwtstamps(skb));
1875
1876 if (fep->bufdesc_ex &&
1877 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1878 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1879 /* don't check it */
1880 skb->ip_summed = CHECKSUM_UNNECESSARY;
1881 } else {
1882 skb_checksum_none_assert(skb);
1883 }
1884 }
1885
1886 /* Handle received VLAN packets */
1887 if (vlan_packet_rcvd)
1888 __vlan_hwaccel_put_tag(skb,
1889 htons(ETH_P_8021Q),
1890 vlan_tag);
1891
1892 skb_record_rx_queue(skb, queue_id);
1893 napi_gro_receive(&fep->napi, skb);
1894
1895 rx_processing_done:
1896 /* Clear the status flags for this buffer */
1897 status &= ~BD_ENET_RX_STATS;
1898
1899 /* Mark the buffer empty */
1900 status |= BD_ENET_RX_EMPTY;
1901
1902 if (fep->bufdesc_ex) {
1903 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1904
1905 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1906 ebdp->cbd_prot = 0;
1907 ebdp->cbd_bdu = 0;
1908 }
1909 /* Make sure the updates to rest of the descriptor are
1910 * performed before transferring ownership.
1911 */
1912 wmb();
1913 bdp->cbd_sc = cpu_to_fec16(status);
1914
1915 /* Update BD pointer to next entry */
1916 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1917
1918 /* Doing this here will keep the FEC running while we process
1919 * incoming frames. On a heavily loaded network, we should be
1920 * able to keep up at the expense of system resources.
1921 */
1922 writel(0, rxq->bd.reg_desc_active);
1923 }
1924 rxq->bd.cur = bdp;
1925
1926 if (xdp_result & FEC_ENET_XDP_REDIR)
1927 xdp_do_flush();
1928
1929 return pkt_received;
1930 }
1931
fec_enet_rx(struct net_device * ndev,int budget)1932 static int fec_enet_rx(struct net_device *ndev, int budget)
1933 {
1934 struct fec_enet_private *fep = netdev_priv(ndev);
1935 int i, done = 0;
1936
1937 /* Make sure that AVB queues are processed first. */
1938 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1939 done += fec_enet_rx_queue(ndev, budget - done, i);
1940
1941 return done;
1942 }
1943
fec_enet_collect_events(struct fec_enet_private * fep)1944 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1945 {
1946 uint int_events;
1947
1948 int_events = readl(fep->hwp + FEC_IEVENT);
1949
1950 /* Don't clear MDIO events, we poll for those */
1951 int_events &= ~FEC_ENET_MII;
1952
1953 writel(int_events, fep->hwp + FEC_IEVENT);
1954
1955 return int_events != 0;
1956 }
1957
1958 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1959 fec_enet_interrupt(int irq, void *dev_id)
1960 {
1961 struct net_device *ndev = dev_id;
1962 struct fec_enet_private *fep = netdev_priv(ndev);
1963 irqreturn_t ret = IRQ_NONE;
1964
1965 if (fec_enet_collect_events(fep) && fep->link) {
1966 ret = IRQ_HANDLED;
1967
1968 if (napi_schedule_prep(&fep->napi)) {
1969 /* Disable interrupts */
1970 writel(0, fep->hwp + FEC_IMASK);
1971 __napi_schedule(&fep->napi);
1972 }
1973 }
1974
1975 return ret;
1976 }
1977
fec_enet_rx_napi(struct napi_struct * napi,int budget)1978 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1979 {
1980 struct net_device *ndev = napi->dev;
1981 struct fec_enet_private *fep = netdev_priv(ndev);
1982 int done = 0;
1983
1984 do {
1985 done += fec_enet_rx(ndev, budget - done);
1986 fec_enet_tx(ndev, budget);
1987 } while ((done < budget) && fec_enet_collect_events(fep));
1988
1989 if (done < budget) {
1990 napi_complete_done(napi, done);
1991 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1992 }
1993
1994 return done;
1995 }
1996
1997 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1998 static int fec_get_mac(struct net_device *ndev)
1999 {
2000 struct fec_enet_private *fep = netdev_priv(ndev);
2001 unsigned char *iap, tmpaddr[ETH_ALEN];
2002 int ret;
2003
2004 /*
2005 * try to get mac address in following order:
2006 *
2007 * 1) module parameter via kernel command line in form
2008 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2009 */
2010 iap = macaddr;
2011
2012 /*
2013 * 2) from device tree data
2014 */
2015 if (!is_valid_ether_addr(iap)) {
2016 struct device_node *np = fep->pdev->dev.of_node;
2017 if (np) {
2018 ret = of_get_mac_address(np, tmpaddr);
2019 if (!ret)
2020 iap = tmpaddr;
2021 else if (ret == -EPROBE_DEFER)
2022 return ret;
2023 }
2024 }
2025
2026 /*
2027 * 3) from flash or fuse (via platform data)
2028 */
2029 if (!is_valid_ether_addr(iap)) {
2030 #ifdef CONFIG_M5272
2031 if (FEC_FLASHMAC)
2032 iap = (unsigned char *)FEC_FLASHMAC;
2033 #else
2034 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2035
2036 if (pdata)
2037 iap = (unsigned char *)&pdata->mac;
2038 #endif
2039 }
2040
2041 /*
2042 * 4) FEC mac registers set by bootloader
2043 */
2044 if (!is_valid_ether_addr(iap)) {
2045 *((__be32 *) &tmpaddr[0]) =
2046 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2047 *((__be16 *) &tmpaddr[4]) =
2048 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2049 iap = &tmpaddr[0];
2050 }
2051
2052 /*
2053 * 5) random mac address
2054 */
2055 if (!is_valid_ether_addr(iap)) {
2056 /* Report it and use a random ethernet address instead */
2057 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2058 eth_hw_addr_random(ndev);
2059 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2060 ndev->dev_addr);
2061 return 0;
2062 }
2063
2064 /* Adjust MAC if using macaddr */
2065 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2066
2067 return 0;
2068 }
2069
2070 /* ------------------------------------------------------------------------- */
2071
2072 /*
2073 * Phy section
2074 */
2075
2076 /* LPI Sleep Ts count base on tx clk (clk_ref).
2077 * The lpi sleep cnt value = X us / (cycle_ns).
2078 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2079 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2080 {
2081 struct fec_enet_private *fep = netdev_priv(ndev);
2082
2083 return us * (fep->clk_ref_rate / 1000) / 1000;
2084 }
2085
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2086 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2087 bool enable)
2088 {
2089 struct fec_enet_private *fep = netdev_priv(ndev);
2090 unsigned int sleep_cycle, wake_cycle;
2091
2092 if (enable) {
2093 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2094 wake_cycle = sleep_cycle;
2095 } else {
2096 sleep_cycle = 0;
2097 wake_cycle = 0;
2098 }
2099
2100 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2101 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2102
2103 return 0;
2104 }
2105
fec_enet_adjust_link(struct net_device * ndev)2106 static void fec_enet_adjust_link(struct net_device *ndev)
2107 {
2108 struct fec_enet_private *fep = netdev_priv(ndev);
2109 struct phy_device *phy_dev = ndev->phydev;
2110 int status_change = 0;
2111
2112 /*
2113 * If the netdev is down, or is going down, we're not interested
2114 * in link state events, so just mark our idea of the link as down
2115 * and ignore the event.
2116 */
2117 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2118 fep->link = 0;
2119 } else if (phy_dev->link) {
2120 if (!fep->link) {
2121 fep->link = phy_dev->link;
2122 status_change = 1;
2123 }
2124
2125 if (fep->full_duplex != phy_dev->duplex) {
2126 fep->full_duplex = phy_dev->duplex;
2127 status_change = 1;
2128 }
2129
2130 if (phy_dev->speed != fep->speed) {
2131 fep->speed = phy_dev->speed;
2132 status_change = 1;
2133 }
2134
2135 /* if any of the above changed restart the FEC */
2136 if (status_change) {
2137 netif_stop_queue(ndev);
2138 napi_disable(&fep->napi);
2139 netif_tx_lock_bh(ndev);
2140 fec_restart(ndev);
2141 netif_tx_wake_all_queues(ndev);
2142 netif_tx_unlock_bh(ndev);
2143 napi_enable(&fep->napi);
2144 }
2145 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2146 fec_enet_eee_mode_set(ndev,
2147 phy_dev->eee_cfg.tx_lpi_timer,
2148 phy_dev->enable_tx_lpi);
2149 } else {
2150 if (fep->link) {
2151 netif_stop_queue(ndev);
2152 napi_disable(&fep->napi);
2153 netif_tx_lock_bh(ndev);
2154 fec_stop(ndev);
2155 netif_tx_unlock_bh(ndev);
2156 napi_enable(&fep->napi);
2157 fep->link = phy_dev->link;
2158 status_change = 1;
2159 }
2160 }
2161
2162 if (status_change)
2163 phy_print_status(phy_dev);
2164 }
2165
fec_enet_mdio_wait(struct fec_enet_private * fep)2166 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2167 {
2168 uint ievent;
2169 int ret;
2170
2171 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2172 ievent & FEC_ENET_MII, 2, 30000);
2173
2174 if (!ret)
2175 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2176
2177 return ret;
2178 }
2179
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2180 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2181 {
2182 struct fec_enet_private *fep = bus->priv;
2183 struct device *dev = &fep->pdev->dev;
2184 int ret = 0, frame_start, frame_addr, frame_op;
2185
2186 ret = pm_runtime_resume_and_get(dev);
2187 if (ret < 0)
2188 return ret;
2189
2190 /* C22 read */
2191 frame_op = FEC_MMFR_OP_READ;
2192 frame_start = FEC_MMFR_ST;
2193 frame_addr = regnum;
2194
2195 /* start a read op */
2196 writel(frame_start | frame_op |
2197 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2198 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2199
2200 /* wait for end of transfer */
2201 ret = fec_enet_mdio_wait(fep);
2202 if (ret) {
2203 netdev_err(fep->netdev, "MDIO read timeout\n");
2204 goto out;
2205 }
2206
2207 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2208
2209 out:
2210 pm_runtime_mark_last_busy(dev);
2211 pm_runtime_put_autosuspend(dev);
2212
2213 return ret;
2214 }
2215
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2216 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2217 int devad, int regnum)
2218 {
2219 struct fec_enet_private *fep = bus->priv;
2220 struct device *dev = &fep->pdev->dev;
2221 int ret = 0, frame_start, frame_op;
2222
2223 ret = pm_runtime_resume_and_get(dev);
2224 if (ret < 0)
2225 return ret;
2226
2227 frame_start = FEC_MMFR_ST_C45;
2228
2229 /* write address */
2230 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2231 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2232 FEC_MMFR_TA | (regnum & 0xFFFF),
2233 fep->hwp + FEC_MII_DATA);
2234
2235 /* wait for end of transfer */
2236 ret = fec_enet_mdio_wait(fep);
2237 if (ret) {
2238 netdev_err(fep->netdev, "MDIO address write timeout\n");
2239 goto out;
2240 }
2241
2242 frame_op = FEC_MMFR_OP_READ_C45;
2243
2244 /* start a read op */
2245 writel(frame_start | frame_op |
2246 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2247 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2248
2249 /* wait for end of transfer */
2250 ret = fec_enet_mdio_wait(fep);
2251 if (ret) {
2252 netdev_err(fep->netdev, "MDIO read timeout\n");
2253 goto out;
2254 }
2255
2256 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2257
2258 out:
2259 pm_runtime_mark_last_busy(dev);
2260 pm_runtime_put_autosuspend(dev);
2261
2262 return ret;
2263 }
2264
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2265 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2266 u16 value)
2267 {
2268 struct fec_enet_private *fep = bus->priv;
2269 struct device *dev = &fep->pdev->dev;
2270 int ret, frame_start, frame_addr;
2271
2272 ret = pm_runtime_resume_and_get(dev);
2273 if (ret < 0)
2274 return ret;
2275
2276 /* C22 write */
2277 frame_start = FEC_MMFR_ST;
2278 frame_addr = regnum;
2279
2280 /* start a write op */
2281 writel(frame_start | FEC_MMFR_OP_WRITE |
2282 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2283 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2284 fep->hwp + FEC_MII_DATA);
2285
2286 /* wait for end of transfer */
2287 ret = fec_enet_mdio_wait(fep);
2288 if (ret)
2289 netdev_err(fep->netdev, "MDIO write timeout\n");
2290
2291 pm_runtime_mark_last_busy(dev);
2292 pm_runtime_put_autosuspend(dev);
2293
2294 return ret;
2295 }
2296
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2297 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2298 int devad, int regnum, u16 value)
2299 {
2300 struct fec_enet_private *fep = bus->priv;
2301 struct device *dev = &fep->pdev->dev;
2302 int ret, frame_start;
2303
2304 ret = pm_runtime_resume_and_get(dev);
2305 if (ret < 0)
2306 return ret;
2307
2308 frame_start = FEC_MMFR_ST_C45;
2309
2310 /* write address */
2311 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2312 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2313 FEC_MMFR_TA | (regnum & 0xFFFF),
2314 fep->hwp + FEC_MII_DATA);
2315
2316 /* wait for end of transfer */
2317 ret = fec_enet_mdio_wait(fep);
2318 if (ret) {
2319 netdev_err(fep->netdev, "MDIO address write timeout\n");
2320 goto out;
2321 }
2322
2323 /* start a write op */
2324 writel(frame_start | FEC_MMFR_OP_WRITE |
2325 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2326 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2327 fep->hwp + FEC_MII_DATA);
2328
2329 /* wait for end of transfer */
2330 ret = fec_enet_mdio_wait(fep);
2331 if (ret)
2332 netdev_err(fep->netdev, "MDIO write timeout\n");
2333
2334 out:
2335 pm_runtime_mark_last_busy(dev);
2336 pm_runtime_put_autosuspend(dev);
2337
2338 return ret;
2339 }
2340
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2341 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2342 {
2343 struct fec_enet_private *fep = netdev_priv(ndev);
2344 struct phy_device *phy_dev = ndev->phydev;
2345
2346 if (phy_dev) {
2347 phy_reset_after_clk_enable(phy_dev);
2348 } else if (fep->phy_node) {
2349 /*
2350 * If the PHY still is not bound to the MAC, but there is
2351 * OF PHY node and a matching PHY device instance already,
2352 * use the OF PHY node to obtain the PHY device instance,
2353 * and then use that PHY device instance when triggering
2354 * the PHY reset.
2355 */
2356 phy_dev = of_phy_find_device(fep->phy_node);
2357 phy_reset_after_clk_enable(phy_dev);
2358 put_device(&phy_dev->mdio.dev);
2359 }
2360 }
2361
fec_enet_clk_enable(struct net_device * ndev,bool enable)2362 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2363 {
2364 struct fec_enet_private *fep = netdev_priv(ndev);
2365 int ret;
2366
2367 if (enable) {
2368 ret = clk_prepare_enable(fep->clk_enet_out);
2369 if (ret)
2370 return ret;
2371
2372 if (fep->clk_ptp) {
2373 mutex_lock(&fep->ptp_clk_mutex);
2374 ret = clk_prepare_enable(fep->clk_ptp);
2375 if (ret) {
2376 mutex_unlock(&fep->ptp_clk_mutex);
2377 goto failed_clk_ptp;
2378 } else {
2379 fep->ptp_clk_on = true;
2380 }
2381 mutex_unlock(&fep->ptp_clk_mutex);
2382 }
2383
2384 ret = clk_prepare_enable(fep->clk_ref);
2385 if (ret)
2386 goto failed_clk_ref;
2387
2388 ret = clk_prepare_enable(fep->clk_2x_txclk);
2389 if (ret)
2390 goto failed_clk_2x_txclk;
2391
2392 fec_enet_phy_reset_after_clk_enable(ndev);
2393 } else {
2394 clk_disable_unprepare(fep->clk_enet_out);
2395 if (fep->clk_ptp) {
2396 mutex_lock(&fep->ptp_clk_mutex);
2397 clk_disable_unprepare(fep->clk_ptp);
2398 fep->ptp_clk_on = false;
2399 mutex_unlock(&fep->ptp_clk_mutex);
2400 }
2401 clk_disable_unprepare(fep->clk_ref);
2402 clk_disable_unprepare(fep->clk_2x_txclk);
2403 }
2404
2405 return 0;
2406
2407 failed_clk_2x_txclk:
2408 if (fep->clk_ref)
2409 clk_disable_unprepare(fep->clk_ref);
2410 failed_clk_ref:
2411 if (fep->clk_ptp) {
2412 mutex_lock(&fep->ptp_clk_mutex);
2413 clk_disable_unprepare(fep->clk_ptp);
2414 fep->ptp_clk_on = false;
2415 mutex_unlock(&fep->ptp_clk_mutex);
2416 }
2417 failed_clk_ptp:
2418 clk_disable_unprepare(fep->clk_enet_out);
2419
2420 return ret;
2421 }
2422
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2423 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2424 struct device_node *np)
2425 {
2426 u32 rgmii_tx_delay, rgmii_rx_delay;
2427
2428 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2429 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2430 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2431 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2432 return -EINVAL;
2433 } else if (rgmii_tx_delay == 2000) {
2434 fep->rgmii_txc_dly = true;
2435 }
2436 }
2437
2438 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2439 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2440 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2441 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2442 return -EINVAL;
2443 } else if (rgmii_rx_delay == 2000) {
2444 fep->rgmii_rxc_dly = true;
2445 }
2446 }
2447
2448 return 0;
2449 }
2450
fec_enet_mii_probe(struct net_device * ndev)2451 static int fec_enet_mii_probe(struct net_device *ndev)
2452 {
2453 struct fec_enet_private *fep = netdev_priv(ndev);
2454 struct phy_device *phy_dev = NULL;
2455 char mdio_bus_id[MII_BUS_ID_SIZE];
2456 char phy_name[MII_BUS_ID_SIZE + 3];
2457 int phy_id;
2458 int dev_id = fep->dev_id;
2459
2460 if (fep->phy_node) {
2461 phy_dev = of_phy_connect(ndev, fep->phy_node,
2462 &fec_enet_adjust_link, 0,
2463 fep->phy_interface);
2464 if (!phy_dev) {
2465 netdev_err(ndev, "Unable to connect to phy\n");
2466 return -ENODEV;
2467 }
2468 } else {
2469 /* check for attached phy */
2470 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2471 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2472 continue;
2473 if (dev_id--)
2474 continue;
2475 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2476 break;
2477 }
2478
2479 if (phy_id >= PHY_MAX_ADDR) {
2480 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2481 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2482 phy_id = 0;
2483 }
2484
2485 snprintf(phy_name, sizeof(phy_name),
2486 PHY_ID_FMT, mdio_bus_id, phy_id);
2487 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2488 fep->phy_interface);
2489 }
2490
2491 if (IS_ERR(phy_dev)) {
2492 netdev_err(ndev, "could not attach to PHY\n");
2493 return PTR_ERR(phy_dev);
2494 }
2495
2496 /* mask with MAC supported features */
2497 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2498 phy_set_max_speed(phy_dev, 1000);
2499 phy_remove_link_mode(phy_dev,
2500 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2501 #if !defined(CONFIG_M5272)
2502 phy_support_sym_pause(phy_dev);
2503 #endif
2504 }
2505 else
2506 phy_set_max_speed(phy_dev, 100);
2507
2508 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2509 phy_support_eee(phy_dev);
2510
2511 fep->link = 0;
2512 fep->full_duplex = 0;
2513
2514 phy_attached_info(phy_dev);
2515
2516 return 0;
2517 }
2518
fec_enet_mii_init(struct platform_device * pdev)2519 static int fec_enet_mii_init(struct platform_device *pdev)
2520 {
2521 static struct mii_bus *fec0_mii_bus;
2522 struct net_device *ndev = platform_get_drvdata(pdev);
2523 struct fec_enet_private *fep = netdev_priv(ndev);
2524 bool suppress_preamble = false;
2525 struct phy_device *phydev;
2526 struct device_node *node;
2527 int err = -ENXIO;
2528 u32 mii_speed, holdtime;
2529 u32 bus_freq;
2530 int addr;
2531
2532 /*
2533 * The i.MX28 dual fec interfaces are not equal.
2534 * Here are the differences:
2535 *
2536 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2537 * - fec0 acts as the 1588 time master while fec1 is slave
2538 * - external phys can only be configured by fec0
2539 *
2540 * That is to say fec1 can not work independently. It only works
2541 * when fec0 is working. The reason behind this design is that the
2542 * second interface is added primarily for Switch mode.
2543 *
2544 * Because of the last point above, both phys are attached on fec0
2545 * mdio interface in board design, and need to be configured by
2546 * fec0 mii_bus.
2547 */
2548 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2549 /* fec1 uses fec0 mii_bus */
2550 if (mii_cnt && fec0_mii_bus) {
2551 fep->mii_bus = fec0_mii_bus;
2552 mii_cnt++;
2553 return 0;
2554 }
2555 return -ENOENT;
2556 }
2557
2558 bus_freq = 2500000; /* 2.5MHz by default */
2559 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2560 if (node) {
2561 of_property_read_u32(node, "clock-frequency", &bus_freq);
2562 suppress_preamble = of_property_read_bool(node,
2563 "suppress-preamble");
2564 }
2565
2566 /*
2567 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2568 *
2569 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2570 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2571 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2572 * document.
2573 */
2574 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2575 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2576 mii_speed--;
2577 if (mii_speed > 63) {
2578 dev_err(&pdev->dev,
2579 "fec clock (%lu) too fast to get right mii speed\n",
2580 clk_get_rate(fep->clk_ipg));
2581 err = -EINVAL;
2582 goto err_out;
2583 }
2584
2585 /*
2586 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2587 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2588 * versions are RAZ there, so just ignore the difference and write the
2589 * register always.
2590 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2591 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2592 * output.
2593 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2594 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2595 * holdtime cannot result in a value greater than 3.
2596 */
2597 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2598
2599 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2600
2601 if (suppress_preamble)
2602 fep->phy_speed |= BIT(7);
2603
2604 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2605 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2606 * MII event generation condition:
2607 * - writing MSCR:
2608 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2609 * mscr_reg_data_in[7:0] != 0
2610 * - writing MMFR:
2611 * - mscr[7:0]_not_zero
2612 */
2613 writel(0, fep->hwp + FEC_MII_DATA);
2614 }
2615
2616 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2617
2618 /* Clear any pending transaction complete indication */
2619 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2620
2621 fep->mii_bus = mdiobus_alloc();
2622 if (fep->mii_bus == NULL) {
2623 err = -ENOMEM;
2624 goto err_out;
2625 }
2626
2627 fep->mii_bus->name = "fec_enet_mii_bus";
2628 fep->mii_bus->read = fec_enet_mdio_read_c22;
2629 fep->mii_bus->write = fec_enet_mdio_write_c22;
2630 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2631 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2632 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2633 }
2634 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2635 pdev->name, fep->dev_id + 1);
2636 fep->mii_bus->priv = fep;
2637 fep->mii_bus->parent = &pdev->dev;
2638
2639 err = of_mdiobus_register(fep->mii_bus, node);
2640 if (err)
2641 goto err_out_free_mdiobus;
2642 of_node_put(node);
2643
2644 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2645 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2646 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2647 if (phydev)
2648 phydev->mac_managed_pm = true;
2649 }
2650
2651 mii_cnt++;
2652
2653 /* save fec0 mii_bus */
2654 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2655 fec0_mii_bus = fep->mii_bus;
2656
2657 return 0;
2658
2659 err_out_free_mdiobus:
2660 mdiobus_free(fep->mii_bus);
2661 err_out:
2662 of_node_put(node);
2663 return err;
2664 }
2665
fec_enet_mii_remove(struct fec_enet_private * fep)2666 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2667 {
2668 if (--mii_cnt == 0) {
2669 mdiobus_unregister(fep->mii_bus);
2670 mdiobus_free(fep->mii_bus);
2671 }
2672 }
2673
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2674 static void fec_enet_get_drvinfo(struct net_device *ndev,
2675 struct ethtool_drvinfo *info)
2676 {
2677 struct fec_enet_private *fep = netdev_priv(ndev);
2678
2679 strscpy(info->driver, fep->pdev->dev.driver->name,
2680 sizeof(info->driver));
2681 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2682 }
2683
fec_enet_get_regs_len(struct net_device * ndev)2684 static int fec_enet_get_regs_len(struct net_device *ndev)
2685 {
2686 struct fec_enet_private *fep = netdev_priv(ndev);
2687 struct resource *r;
2688 int s = 0;
2689
2690 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2691 if (r)
2692 s = resource_size(r);
2693
2694 return s;
2695 }
2696
2697 /* List of registers that can be safety be read to dump them with ethtool */
2698 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2699 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2700 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2701 static __u32 fec_enet_register_version = 2;
2702 static u32 fec_enet_register_offset[] = {
2703 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2704 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2705 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2706 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2707 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2708 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2709 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2710 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2711 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2712 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2713 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2714 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2715 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2716 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2717 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2718 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2719 RMON_T_P_GTE2048, RMON_T_OCTETS,
2720 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2721 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2722 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2723 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2724 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2725 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2726 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2727 RMON_R_P_GTE2048, RMON_R_OCTETS,
2728 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2729 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2730 };
2731 /* for i.MX6ul */
2732 static u32 fec_enet_register_offset_6ul[] = {
2733 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2734 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2735 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2736 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2737 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2738 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2739 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2740 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2741 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2742 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2743 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2744 RMON_T_P_GTE2048, RMON_T_OCTETS,
2745 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2746 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2747 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2748 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2749 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2750 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2751 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2752 RMON_R_P_GTE2048, RMON_R_OCTETS,
2753 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2754 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2755 };
2756 #else
2757 static __u32 fec_enet_register_version = 1;
2758 static u32 fec_enet_register_offset[] = {
2759 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2760 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2761 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2762 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2763 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2764 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2765 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2766 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2767 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2768 };
2769 #endif
2770
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2771 static void fec_enet_get_regs(struct net_device *ndev,
2772 struct ethtool_regs *regs, void *regbuf)
2773 {
2774 struct fec_enet_private *fep = netdev_priv(ndev);
2775 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2776 struct device *dev = &fep->pdev->dev;
2777 u32 *buf = (u32 *)regbuf;
2778 u32 i, off;
2779 int ret;
2780 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2781 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2782 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2783 u32 *reg_list;
2784 u32 reg_cnt;
2785
2786 if (!of_machine_is_compatible("fsl,imx6ul")) {
2787 reg_list = fec_enet_register_offset;
2788 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2789 } else {
2790 reg_list = fec_enet_register_offset_6ul;
2791 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2792 }
2793 #else
2794 /* coldfire */
2795 static u32 *reg_list = fec_enet_register_offset;
2796 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2797 #endif
2798 ret = pm_runtime_resume_and_get(dev);
2799 if (ret < 0)
2800 return;
2801
2802 regs->version = fec_enet_register_version;
2803
2804 memset(buf, 0, regs->len);
2805
2806 for (i = 0; i < reg_cnt; i++) {
2807 off = reg_list[i];
2808
2809 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2810 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2811 continue;
2812
2813 off >>= 2;
2814 buf[off] = readl(&theregs[off]);
2815 }
2816
2817 pm_runtime_mark_last_busy(dev);
2818 pm_runtime_put_autosuspend(dev);
2819 }
2820
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2821 static int fec_enet_get_ts_info(struct net_device *ndev,
2822 struct kernel_ethtool_ts_info *info)
2823 {
2824 struct fec_enet_private *fep = netdev_priv(ndev);
2825
2826 if (fep->bufdesc_ex) {
2827
2828 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2829 SOF_TIMESTAMPING_TX_HARDWARE |
2830 SOF_TIMESTAMPING_RX_HARDWARE |
2831 SOF_TIMESTAMPING_RAW_HARDWARE;
2832 if (fep->ptp_clock)
2833 info->phc_index = ptp_clock_index(fep->ptp_clock);
2834
2835 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2836 (1 << HWTSTAMP_TX_ON);
2837
2838 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2839 (1 << HWTSTAMP_FILTER_ALL);
2840 return 0;
2841 } else {
2842 return ethtool_op_get_ts_info(ndev, info);
2843 }
2844 }
2845
2846 #if !defined(CONFIG_M5272)
2847
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2848 static void fec_enet_get_pauseparam(struct net_device *ndev,
2849 struct ethtool_pauseparam *pause)
2850 {
2851 struct fec_enet_private *fep = netdev_priv(ndev);
2852
2853 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2854 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2855 pause->rx_pause = pause->tx_pause;
2856 }
2857
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2858 static int fec_enet_set_pauseparam(struct net_device *ndev,
2859 struct ethtool_pauseparam *pause)
2860 {
2861 struct fec_enet_private *fep = netdev_priv(ndev);
2862
2863 if (!ndev->phydev)
2864 return -ENODEV;
2865
2866 if (pause->tx_pause != pause->rx_pause) {
2867 netdev_info(ndev,
2868 "hardware only support enable/disable both tx and rx");
2869 return -EINVAL;
2870 }
2871
2872 fep->pause_flag = 0;
2873
2874 /* tx pause must be same as rx pause */
2875 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2876 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2877
2878 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2879 pause->autoneg);
2880
2881 if (pause->autoneg) {
2882 if (netif_running(ndev))
2883 fec_stop(ndev);
2884 phy_start_aneg(ndev->phydev);
2885 }
2886 if (netif_running(ndev)) {
2887 napi_disable(&fep->napi);
2888 netif_tx_lock_bh(ndev);
2889 fec_restart(ndev);
2890 netif_tx_wake_all_queues(ndev);
2891 netif_tx_unlock_bh(ndev);
2892 napi_enable(&fep->napi);
2893 }
2894
2895 return 0;
2896 }
2897
2898 static const struct fec_stat {
2899 char name[ETH_GSTRING_LEN];
2900 u16 offset;
2901 } fec_stats[] = {
2902 /* RMON TX */
2903 { "tx_dropped", RMON_T_DROP },
2904 { "tx_packets", RMON_T_PACKETS },
2905 { "tx_broadcast", RMON_T_BC_PKT },
2906 { "tx_multicast", RMON_T_MC_PKT },
2907 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2908 { "tx_undersize", RMON_T_UNDERSIZE },
2909 { "tx_oversize", RMON_T_OVERSIZE },
2910 { "tx_fragment", RMON_T_FRAG },
2911 { "tx_jabber", RMON_T_JAB },
2912 { "tx_collision", RMON_T_COL },
2913 { "tx_64byte", RMON_T_P64 },
2914 { "tx_65to127byte", RMON_T_P65TO127 },
2915 { "tx_128to255byte", RMON_T_P128TO255 },
2916 { "tx_256to511byte", RMON_T_P256TO511 },
2917 { "tx_512to1023byte", RMON_T_P512TO1023 },
2918 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2919 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2920 { "tx_octets", RMON_T_OCTETS },
2921
2922 /* IEEE TX */
2923 { "IEEE_tx_drop", IEEE_T_DROP },
2924 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2925 { "IEEE_tx_1col", IEEE_T_1COL },
2926 { "IEEE_tx_mcol", IEEE_T_MCOL },
2927 { "IEEE_tx_def", IEEE_T_DEF },
2928 { "IEEE_tx_lcol", IEEE_T_LCOL },
2929 { "IEEE_tx_excol", IEEE_T_EXCOL },
2930 { "IEEE_tx_macerr", IEEE_T_MACERR },
2931 { "IEEE_tx_cserr", IEEE_T_CSERR },
2932 { "IEEE_tx_sqe", IEEE_T_SQE },
2933 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2934 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2935
2936 /* RMON RX */
2937 { "rx_packets", RMON_R_PACKETS },
2938 { "rx_broadcast", RMON_R_BC_PKT },
2939 { "rx_multicast", RMON_R_MC_PKT },
2940 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2941 { "rx_undersize", RMON_R_UNDERSIZE },
2942 { "rx_oversize", RMON_R_OVERSIZE },
2943 { "rx_fragment", RMON_R_FRAG },
2944 { "rx_jabber", RMON_R_JAB },
2945 { "rx_64byte", RMON_R_P64 },
2946 { "rx_65to127byte", RMON_R_P65TO127 },
2947 { "rx_128to255byte", RMON_R_P128TO255 },
2948 { "rx_256to511byte", RMON_R_P256TO511 },
2949 { "rx_512to1023byte", RMON_R_P512TO1023 },
2950 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2951 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2952 { "rx_octets", RMON_R_OCTETS },
2953
2954 /* IEEE RX */
2955 { "IEEE_rx_drop", IEEE_R_DROP },
2956 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2957 { "IEEE_rx_crc", IEEE_R_CRC },
2958 { "IEEE_rx_align", IEEE_R_ALIGN },
2959 { "IEEE_rx_macerr", IEEE_R_MACERR },
2960 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2961 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2962 };
2963
2964 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2965
2966 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2967 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2968 "rx_xdp_pass", /* RX_XDP_PASS, */
2969 "rx_xdp_drop", /* RX_XDP_DROP, */
2970 "rx_xdp_tx", /* RX_XDP_TX, */
2971 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2972 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2973 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2974 };
2975
fec_enet_update_ethtool_stats(struct net_device * dev)2976 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2977 {
2978 struct fec_enet_private *fep = netdev_priv(dev);
2979 int i;
2980
2981 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2982 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2983 }
2984
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2985 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2986 {
2987 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2988 struct fec_enet_priv_rx_q *rxq;
2989 int i, j;
2990
2991 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2992 rxq = fep->rx_queue[i];
2993
2994 for (j = 0; j < XDP_STATS_TOTAL; j++)
2995 xdp_stats[j] += rxq->stats[j];
2996 }
2997
2998 memcpy(data, xdp_stats, sizeof(xdp_stats));
2999 }
3000
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3001 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3002 {
3003 #ifdef CONFIG_PAGE_POOL_STATS
3004 struct page_pool_stats stats = {};
3005 struct fec_enet_priv_rx_q *rxq;
3006 int i;
3007
3008 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3009 rxq = fep->rx_queue[i];
3010
3011 if (!rxq->page_pool)
3012 continue;
3013
3014 page_pool_get_stats(rxq->page_pool, &stats);
3015 }
3016
3017 page_pool_ethtool_stats_get(data, &stats);
3018 #endif
3019 }
3020
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3021 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3022 struct ethtool_stats *stats, u64 *data)
3023 {
3024 struct fec_enet_private *fep = netdev_priv(dev);
3025
3026 if (netif_running(dev))
3027 fec_enet_update_ethtool_stats(dev);
3028
3029 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3030 data += FEC_STATS_SIZE / sizeof(u64);
3031
3032 fec_enet_get_xdp_stats(fep, data);
3033 data += XDP_STATS_TOTAL;
3034
3035 fec_enet_page_pool_stats(fep, data);
3036 }
3037
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3038 static void fec_enet_get_strings(struct net_device *netdev,
3039 u32 stringset, u8 *data)
3040 {
3041 int i;
3042 switch (stringset) {
3043 case ETH_SS_STATS:
3044 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3045 ethtool_puts(&data, fec_stats[i].name);
3046 }
3047 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3048 ethtool_puts(&data, fec_xdp_stat_strs[i]);
3049 }
3050 page_pool_ethtool_stats_get_strings(data);
3051
3052 break;
3053 case ETH_SS_TEST:
3054 net_selftest_get_strings(data);
3055 break;
3056 }
3057 }
3058
fec_enet_get_sset_count(struct net_device * dev,int sset)3059 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3060 {
3061 int count;
3062
3063 switch (sset) {
3064 case ETH_SS_STATS:
3065 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3066 count += page_pool_ethtool_stats_get_count();
3067 return count;
3068
3069 case ETH_SS_TEST:
3070 return net_selftest_get_count();
3071 default:
3072 return -EOPNOTSUPP;
3073 }
3074 }
3075
fec_enet_clear_ethtool_stats(struct net_device * dev)3076 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3077 {
3078 struct fec_enet_private *fep = netdev_priv(dev);
3079 struct fec_enet_priv_rx_q *rxq;
3080 int i, j;
3081
3082 /* Disable MIB statistics counters */
3083 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3084
3085 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3086 writel(0, fep->hwp + fec_stats[i].offset);
3087
3088 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3089 rxq = fep->rx_queue[i];
3090 for (j = 0; j < XDP_STATS_TOTAL; j++)
3091 rxq->stats[j] = 0;
3092 }
3093
3094 /* Don't disable MIB statistics counters */
3095 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3096 }
3097
3098 #else /* !defined(CONFIG_M5272) */
3099 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3100 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3101 {
3102 }
3103
fec_enet_clear_ethtool_stats(struct net_device * dev)3104 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3105 {
3106 }
3107 #endif /* !defined(CONFIG_M5272) */
3108
3109 /* ITR clock source is enet system clock (clk_ahb).
3110 * TCTT unit is cycle_ns * 64 cycle
3111 * So, the ICTT value = X us / (cycle_ns * 64)
3112 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3113 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3114 {
3115 struct fec_enet_private *fep = netdev_priv(ndev);
3116
3117 return us * (fep->itr_clk_rate / 64000) / 1000;
3118 }
3119
3120 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3121 static void fec_enet_itr_coal_set(struct net_device *ndev)
3122 {
3123 struct fec_enet_private *fep = netdev_priv(ndev);
3124 int rx_itr, tx_itr;
3125
3126 /* Must be greater than zero to avoid unpredictable behavior */
3127 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3128 !fep->tx_time_itr || !fep->tx_pkts_itr)
3129 return;
3130
3131 /* Select enet system clock as Interrupt Coalescing
3132 * timer Clock Source
3133 */
3134 rx_itr = FEC_ITR_CLK_SEL;
3135 tx_itr = FEC_ITR_CLK_SEL;
3136
3137 /* set ICFT and ICTT */
3138 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3139 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3140 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3141 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3142
3143 rx_itr |= FEC_ITR_EN;
3144 tx_itr |= FEC_ITR_EN;
3145
3146 writel(tx_itr, fep->hwp + FEC_TXIC0);
3147 writel(rx_itr, fep->hwp + FEC_RXIC0);
3148 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3149 writel(tx_itr, fep->hwp + FEC_TXIC1);
3150 writel(rx_itr, fep->hwp + FEC_RXIC1);
3151 writel(tx_itr, fep->hwp + FEC_TXIC2);
3152 writel(rx_itr, fep->hwp + FEC_RXIC2);
3153 }
3154 }
3155
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3156 static int fec_enet_get_coalesce(struct net_device *ndev,
3157 struct ethtool_coalesce *ec,
3158 struct kernel_ethtool_coalesce *kernel_coal,
3159 struct netlink_ext_ack *extack)
3160 {
3161 struct fec_enet_private *fep = netdev_priv(ndev);
3162
3163 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3164 return -EOPNOTSUPP;
3165
3166 ec->rx_coalesce_usecs = fep->rx_time_itr;
3167 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3168
3169 ec->tx_coalesce_usecs = fep->tx_time_itr;
3170 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3171
3172 return 0;
3173 }
3174
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3175 static int fec_enet_set_coalesce(struct net_device *ndev,
3176 struct ethtool_coalesce *ec,
3177 struct kernel_ethtool_coalesce *kernel_coal,
3178 struct netlink_ext_ack *extack)
3179 {
3180 struct fec_enet_private *fep = netdev_priv(ndev);
3181 struct device *dev = &fep->pdev->dev;
3182 unsigned int cycle;
3183
3184 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3185 return -EOPNOTSUPP;
3186
3187 if (ec->rx_max_coalesced_frames > 255) {
3188 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3189 return -EINVAL;
3190 }
3191
3192 if (ec->tx_max_coalesced_frames > 255) {
3193 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3194 return -EINVAL;
3195 }
3196
3197 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3198 if (cycle > 0xFFFF) {
3199 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3200 return -EINVAL;
3201 }
3202
3203 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3204 if (cycle > 0xFFFF) {
3205 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3206 return -EINVAL;
3207 }
3208
3209 fep->rx_time_itr = ec->rx_coalesce_usecs;
3210 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3211
3212 fep->tx_time_itr = ec->tx_coalesce_usecs;
3213 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3214
3215 fec_enet_itr_coal_set(ndev);
3216
3217 return 0;
3218 }
3219
3220 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3221 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3222 {
3223 struct fec_enet_private *fep = netdev_priv(ndev);
3224
3225 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3226 return -EOPNOTSUPP;
3227
3228 if (!netif_running(ndev))
3229 return -ENETDOWN;
3230
3231 return phy_ethtool_get_eee(ndev->phydev, edata);
3232 }
3233
3234 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3235 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3236 {
3237 struct fec_enet_private *fep = netdev_priv(ndev);
3238
3239 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3240 return -EOPNOTSUPP;
3241
3242 if (!netif_running(ndev))
3243 return -ENETDOWN;
3244
3245 return phy_ethtool_set_eee(ndev->phydev, edata);
3246 }
3247
3248 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3249 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3250 {
3251 struct fec_enet_private *fep = netdev_priv(ndev);
3252
3253 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3254 wol->supported = WAKE_MAGIC;
3255 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3256 } else {
3257 wol->supported = wol->wolopts = 0;
3258 }
3259 }
3260
3261 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3262 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3263 {
3264 struct fec_enet_private *fep = netdev_priv(ndev);
3265
3266 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3267 return -EINVAL;
3268
3269 if (wol->wolopts & ~WAKE_MAGIC)
3270 return -EINVAL;
3271
3272 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3273 if (device_may_wakeup(&ndev->dev))
3274 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3275 else
3276 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3277
3278 return 0;
3279 }
3280
3281 static const struct ethtool_ops fec_enet_ethtool_ops = {
3282 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3283 ETHTOOL_COALESCE_MAX_FRAMES,
3284 .get_drvinfo = fec_enet_get_drvinfo,
3285 .get_regs_len = fec_enet_get_regs_len,
3286 .get_regs = fec_enet_get_regs,
3287 .nway_reset = phy_ethtool_nway_reset,
3288 .get_link = ethtool_op_get_link,
3289 .get_coalesce = fec_enet_get_coalesce,
3290 .set_coalesce = fec_enet_set_coalesce,
3291 #ifndef CONFIG_M5272
3292 .get_pauseparam = fec_enet_get_pauseparam,
3293 .set_pauseparam = fec_enet_set_pauseparam,
3294 .get_strings = fec_enet_get_strings,
3295 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3296 .get_sset_count = fec_enet_get_sset_count,
3297 #endif
3298 .get_ts_info = fec_enet_get_ts_info,
3299 .get_wol = fec_enet_get_wol,
3300 .set_wol = fec_enet_set_wol,
3301 .get_eee = fec_enet_get_eee,
3302 .set_eee = fec_enet_set_eee,
3303 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3304 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3305 .self_test = net_selftest,
3306 };
3307
fec_enet_free_buffers(struct net_device * ndev)3308 static void fec_enet_free_buffers(struct net_device *ndev)
3309 {
3310 struct fec_enet_private *fep = netdev_priv(ndev);
3311 unsigned int i;
3312 struct fec_enet_priv_tx_q *txq;
3313 struct fec_enet_priv_rx_q *rxq;
3314 unsigned int q;
3315
3316 for (q = 0; q < fep->num_rx_queues; q++) {
3317 rxq = fep->rx_queue[q];
3318 for (i = 0; i < rxq->bd.ring_size; i++)
3319 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3320
3321 for (i = 0; i < XDP_STATS_TOTAL; i++)
3322 rxq->stats[i] = 0;
3323
3324 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3325 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3326 page_pool_destroy(rxq->page_pool);
3327 rxq->page_pool = NULL;
3328 }
3329
3330 for (q = 0; q < fep->num_tx_queues; q++) {
3331 txq = fep->tx_queue[q];
3332 for (i = 0; i < txq->bd.ring_size; i++) {
3333 kfree(txq->tx_bounce[i]);
3334 txq->tx_bounce[i] = NULL;
3335
3336 if (!txq->tx_buf[i].buf_p) {
3337 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3338 continue;
3339 }
3340
3341 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3342 dev_kfree_skb(txq->tx_buf[i].buf_p);
3343 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3344 xdp_return_frame(txq->tx_buf[i].buf_p);
3345 } else {
3346 struct page *page = txq->tx_buf[i].buf_p;
3347
3348 page_pool_put_page(page->pp, page, 0, false);
3349 }
3350
3351 txq->tx_buf[i].buf_p = NULL;
3352 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3353 }
3354 }
3355 }
3356
fec_enet_free_queue(struct net_device * ndev)3357 static void fec_enet_free_queue(struct net_device *ndev)
3358 {
3359 struct fec_enet_private *fep = netdev_priv(ndev);
3360 int i;
3361 struct fec_enet_priv_tx_q *txq;
3362
3363 for (i = 0; i < fep->num_tx_queues; i++)
3364 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3365 txq = fep->tx_queue[i];
3366 fec_dma_free(&fep->pdev->dev,
3367 txq->bd.ring_size * TSO_HEADER_SIZE,
3368 txq->tso_hdrs, txq->tso_hdrs_dma);
3369 }
3370
3371 for (i = 0; i < fep->num_rx_queues; i++)
3372 kfree(fep->rx_queue[i]);
3373 for (i = 0; i < fep->num_tx_queues; i++)
3374 kfree(fep->tx_queue[i]);
3375 }
3376
fec_enet_alloc_queue(struct net_device * ndev)3377 static int fec_enet_alloc_queue(struct net_device *ndev)
3378 {
3379 struct fec_enet_private *fep = netdev_priv(ndev);
3380 int i;
3381 int ret = 0;
3382 struct fec_enet_priv_tx_q *txq;
3383
3384 for (i = 0; i < fep->num_tx_queues; i++) {
3385 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3386 if (!txq) {
3387 ret = -ENOMEM;
3388 goto alloc_failed;
3389 }
3390
3391 fep->tx_queue[i] = txq;
3392 txq->bd.ring_size = TX_RING_SIZE;
3393 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3394
3395 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3396 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3397
3398 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3399 txq->bd.ring_size * TSO_HEADER_SIZE,
3400 &txq->tso_hdrs_dma, GFP_KERNEL);
3401 if (!txq->tso_hdrs) {
3402 ret = -ENOMEM;
3403 goto alloc_failed;
3404 }
3405 }
3406
3407 for (i = 0; i < fep->num_rx_queues; i++) {
3408 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3409 GFP_KERNEL);
3410 if (!fep->rx_queue[i]) {
3411 ret = -ENOMEM;
3412 goto alloc_failed;
3413 }
3414
3415 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3416 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3417 }
3418 return ret;
3419
3420 alloc_failed:
3421 fec_enet_free_queue(ndev);
3422 return ret;
3423 }
3424
3425 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3426 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3427 {
3428 struct fec_enet_private *fep = netdev_priv(ndev);
3429 struct fec_enet_priv_rx_q *rxq;
3430 dma_addr_t phys_addr;
3431 struct bufdesc *bdp;
3432 struct page *page;
3433 int i, err;
3434
3435 rxq = fep->rx_queue[queue];
3436 bdp = rxq->bd.base;
3437
3438 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3439 if (err < 0) {
3440 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3441 return err;
3442 }
3443
3444 for (i = 0; i < rxq->bd.ring_size; i++) {
3445 page = page_pool_dev_alloc_pages(rxq->page_pool);
3446 if (!page)
3447 goto err_alloc;
3448
3449 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3450 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3451
3452 rxq->rx_skb_info[i].page = page;
3453 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3454 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3455
3456 if (fep->bufdesc_ex) {
3457 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3458 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3459 }
3460
3461 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3462 }
3463
3464 /* Set the last buffer to wrap. */
3465 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3466 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3467 return 0;
3468
3469 err_alloc:
3470 fec_enet_free_buffers(ndev);
3471 return -ENOMEM;
3472 }
3473
3474 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3475 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3476 {
3477 struct fec_enet_private *fep = netdev_priv(ndev);
3478 unsigned int i;
3479 struct bufdesc *bdp;
3480 struct fec_enet_priv_tx_q *txq;
3481
3482 txq = fep->tx_queue[queue];
3483 bdp = txq->bd.base;
3484 for (i = 0; i < txq->bd.ring_size; i++) {
3485 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3486 if (!txq->tx_bounce[i])
3487 goto err_alloc;
3488
3489 bdp->cbd_sc = cpu_to_fec16(0);
3490 bdp->cbd_bufaddr = cpu_to_fec32(0);
3491
3492 if (fep->bufdesc_ex) {
3493 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3494 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3495 }
3496
3497 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3498 }
3499
3500 /* Set the last buffer to wrap. */
3501 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3502 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3503
3504 return 0;
3505
3506 err_alloc:
3507 fec_enet_free_buffers(ndev);
3508 return -ENOMEM;
3509 }
3510
fec_enet_alloc_buffers(struct net_device * ndev)3511 static int fec_enet_alloc_buffers(struct net_device *ndev)
3512 {
3513 struct fec_enet_private *fep = netdev_priv(ndev);
3514 unsigned int i;
3515
3516 for (i = 0; i < fep->num_rx_queues; i++)
3517 if (fec_enet_alloc_rxq_buffers(ndev, i))
3518 return -ENOMEM;
3519
3520 for (i = 0; i < fep->num_tx_queues; i++)
3521 if (fec_enet_alloc_txq_buffers(ndev, i))
3522 return -ENOMEM;
3523 return 0;
3524 }
3525
3526 static int
fec_enet_open(struct net_device * ndev)3527 fec_enet_open(struct net_device *ndev)
3528 {
3529 struct fec_enet_private *fep = netdev_priv(ndev);
3530 int ret;
3531 bool reset_again;
3532
3533 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3534 if (ret < 0)
3535 return ret;
3536
3537 pinctrl_pm_select_default_state(&fep->pdev->dev);
3538 ret = fec_enet_clk_enable(ndev, true);
3539 if (ret)
3540 goto clk_enable;
3541
3542 /* During the first fec_enet_open call the PHY isn't probed at this
3543 * point. Therefore the phy_reset_after_clk_enable() call within
3544 * fec_enet_clk_enable() fails. As we need this reset in order to be
3545 * sure the PHY is working correctly we check if we need to reset again
3546 * later when the PHY is probed
3547 */
3548 if (ndev->phydev && ndev->phydev->drv)
3549 reset_again = false;
3550 else
3551 reset_again = true;
3552
3553 /* I should reset the ring buffers here, but I don't yet know
3554 * a simple way to do that.
3555 */
3556
3557 ret = fec_enet_alloc_buffers(ndev);
3558 if (ret)
3559 goto err_enet_alloc;
3560
3561 /* Init MAC prior to mii bus probe */
3562 fec_restart(ndev);
3563
3564 /* Call phy_reset_after_clk_enable() again if it failed during
3565 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3566 */
3567 if (reset_again)
3568 fec_enet_phy_reset_after_clk_enable(ndev);
3569
3570 /* Probe and connect to PHY when open the interface */
3571 ret = fec_enet_mii_probe(ndev);
3572 if (ret)
3573 goto err_enet_mii_probe;
3574
3575 if (fep->quirks & FEC_QUIRK_ERR006687)
3576 imx6q_cpuidle_fec_irqs_used();
3577
3578 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3579 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3580
3581 napi_enable(&fep->napi);
3582 phy_start(ndev->phydev);
3583 netif_tx_start_all_queues(ndev);
3584
3585 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3586 FEC_WOL_FLAG_ENABLE);
3587
3588 return 0;
3589
3590 err_enet_mii_probe:
3591 fec_enet_free_buffers(ndev);
3592 err_enet_alloc:
3593 fec_enet_clk_enable(ndev, false);
3594 clk_enable:
3595 pm_runtime_mark_last_busy(&fep->pdev->dev);
3596 pm_runtime_put_autosuspend(&fep->pdev->dev);
3597 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3598 return ret;
3599 }
3600
3601 static int
fec_enet_close(struct net_device * ndev)3602 fec_enet_close(struct net_device *ndev)
3603 {
3604 struct fec_enet_private *fep = netdev_priv(ndev);
3605
3606 phy_stop(ndev->phydev);
3607
3608 if (netif_device_present(ndev)) {
3609 napi_disable(&fep->napi);
3610 netif_tx_disable(ndev);
3611 fec_stop(ndev);
3612 }
3613
3614 phy_disconnect(ndev->phydev);
3615
3616 if (fep->quirks & FEC_QUIRK_ERR006687)
3617 imx6q_cpuidle_fec_irqs_unused();
3618
3619 fec_enet_update_ethtool_stats(ndev);
3620
3621 fec_enet_clk_enable(ndev, false);
3622 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3623 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3624
3625 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3626 pm_runtime_mark_last_busy(&fep->pdev->dev);
3627 pm_runtime_put_autosuspend(&fep->pdev->dev);
3628
3629 fec_enet_free_buffers(ndev);
3630
3631 return 0;
3632 }
3633
3634 /* Set or clear the multicast filter for this adaptor.
3635 * Skeleton taken from sunlance driver.
3636 * The CPM Ethernet implementation allows Multicast as well as individual
3637 * MAC address filtering. Some of the drivers check to make sure it is
3638 * a group multicast address, and discard those that are not. I guess I
3639 * will do the same for now, but just remove the test if you want
3640 * individual filtering as well (do the upper net layers want or support
3641 * this kind of feature?).
3642 */
3643
3644 #define FEC_HASH_BITS 6 /* #bits in hash */
3645
set_multicast_list(struct net_device * ndev)3646 static void set_multicast_list(struct net_device *ndev)
3647 {
3648 struct fec_enet_private *fep = netdev_priv(ndev);
3649 struct netdev_hw_addr *ha;
3650 unsigned int crc, tmp;
3651 unsigned char hash;
3652 unsigned int hash_high = 0, hash_low = 0;
3653
3654 if (ndev->flags & IFF_PROMISC) {
3655 tmp = readl(fep->hwp + FEC_R_CNTRL);
3656 tmp |= 0x8;
3657 writel(tmp, fep->hwp + FEC_R_CNTRL);
3658 return;
3659 }
3660
3661 tmp = readl(fep->hwp + FEC_R_CNTRL);
3662 tmp &= ~0x8;
3663 writel(tmp, fep->hwp + FEC_R_CNTRL);
3664
3665 if (ndev->flags & IFF_ALLMULTI) {
3666 /* Catch all multicast addresses, so set the
3667 * filter to all 1's
3668 */
3669 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3670 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3671
3672 return;
3673 }
3674
3675 /* Add the addresses in hash register */
3676 netdev_for_each_mc_addr(ha, ndev) {
3677 /* calculate crc32 value of mac address */
3678 crc = ether_crc_le(ndev->addr_len, ha->addr);
3679
3680 /* only upper 6 bits (FEC_HASH_BITS) are used
3681 * which point to specific bit in the hash registers
3682 */
3683 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3684
3685 if (hash > 31)
3686 hash_high |= 1 << (hash - 32);
3687 else
3688 hash_low |= 1 << hash;
3689 }
3690
3691 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3692 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3693 }
3694
3695 /* Set a MAC change in hardware. */
3696 static int
fec_set_mac_address(struct net_device * ndev,void * p)3697 fec_set_mac_address(struct net_device *ndev, void *p)
3698 {
3699 struct fec_enet_private *fep = netdev_priv(ndev);
3700 struct sockaddr *addr = p;
3701
3702 if (addr) {
3703 if (!is_valid_ether_addr(addr->sa_data))
3704 return -EADDRNOTAVAIL;
3705 eth_hw_addr_set(ndev, addr->sa_data);
3706 }
3707
3708 /* Add netif status check here to avoid system hang in below case:
3709 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3710 * After ethx down, fec all clocks are gated off and then register
3711 * access causes system hang.
3712 */
3713 if (!netif_running(ndev))
3714 return 0;
3715
3716 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3717 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3718 fep->hwp + FEC_ADDR_LOW);
3719 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3720 fep->hwp + FEC_ADDR_HIGH);
3721 return 0;
3722 }
3723
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3724 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3725 netdev_features_t features)
3726 {
3727 struct fec_enet_private *fep = netdev_priv(netdev);
3728 netdev_features_t changed = features ^ netdev->features;
3729
3730 netdev->features = features;
3731
3732 /* Receive checksum has been changed */
3733 if (changed & NETIF_F_RXCSUM) {
3734 if (features & NETIF_F_RXCSUM)
3735 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3736 else
3737 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3738 }
3739 }
3740
fec_set_features(struct net_device * netdev,netdev_features_t features)3741 static int fec_set_features(struct net_device *netdev,
3742 netdev_features_t features)
3743 {
3744 struct fec_enet_private *fep = netdev_priv(netdev);
3745 netdev_features_t changed = features ^ netdev->features;
3746
3747 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3748 napi_disable(&fep->napi);
3749 netif_tx_lock_bh(netdev);
3750 fec_stop(netdev);
3751 fec_enet_set_netdev_features(netdev, features);
3752 fec_restart(netdev);
3753 netif_tx_wake_all_queues(netdev);
3754 netif_tx_unlock_bh(netdev);
3755 napi_enable(&fep->napi);
3756 } else {
3757 fec_enet_set_netdev_features(netdev, features);
3758 }
3759
3760 return 0;
3761 }
3762
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3763 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3764 struct net_device *sb_dev)
3765 {
3766 struct fec_enet_private *fep = netdev_priv(ndev);
3767 u16 vlan_tag = 0;
3768
3769 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3770 return netdev_pick_tx(ndev, skb, NULL);
3771
3772 /* VLAN is present in the payload.*/
3773 if (eth_type_vlan(skb->protocol)) {
3774 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3775
3776 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3777 /* VLAN is present in the skb but not yet pushed in the payload.*/
3778 } else if (skb_vlan_tag_present(skb)) {
3779 vlan_tag = skb->vlan_tci;
3780 } else {
3781 return vlan_tag;
3782 }
3783
3784 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3785 }
3786
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3787 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3788 {
3789 struct fec_enet_private *fep = netdev_priv(dev);
3790 bool is_run = netif_running(dev);
3791 struct bpf_prog *old_prog;
3792
3793 switch (bpf->command) {
3794 case XDP_SETUP_PROG:
3795 /* No need to support the SoCs that require to
3796 * do the frame swap because the performance wouldn't be
3797 * better than the skb mode.
3798 */
3799 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3800 return -EOPNOTSUPP;
3801
3802 if (!bpf->prog)
3803 xdp_features_clear_redirect_target(dev);
3804
3805 if (is_run) {
3806 napi_disable(&fep->napi);
3807 netif_tx_disable(dev);
3808 }
3809
3810 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3811 if (old_prog)
3812 bpf_prog_put(old_prog);
3813
3814 fec_restart(dev);
3815
3816 if (is_run) {
3817 napi_enable(&fep->napi);
3818 netif_tx_start_all_queues(dev);
3819 }
3820
3821 if (bpf->prog)
3822 xdp_features_set_redirect_target(dev, false);
3823
3824 return 0;
3825
3826 case XDP_SETUP_XSK_POOL:
3827 return -EOPNOTSUPP;
3828
3829 default:
3830 return -EOPNOTSUPP;
3831 }
3832 }
3833
3834 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3835 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3836 {
3837 if (unlikely(index < 0))
3838 return 0;
3839
3840 return (index % fep->num_tx_queues);
3841 }
3842
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3843 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3844 struct fec_enet_priv_tx_q *txq,
3845 void *frame, u32 dma_sync_len,
3846 bool ndo_xmit)
3847 {
3848 unsigned int index, status, estatus;
3849 struct bufdesc *bdp;
3850 dma_addr_t dma_addr;
3851 int entries_free;
3852 u16 frame_len;
3853
3854 entries_free = fec_enet_get_free_txdesc_num(txq);
3855 if (entries_free < MAX_SKB_FRAGS + 1) {
3856 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3857 return -EBUSY;
3858 }
3859
3860 /* Fill in a Tx ring entry */
3861 bdp = txq->bd.cur;
3862 status = fec16_to_cpu(bdp->cbd_sc);
3863 status &= ~BD_ENET_TX_STATS;
3864
3865 index = fec_enet_get_bd_index(bdp, &txq->bd);
3866
3867 if (ndo_xmit) {
3868 struct xdp_frame *xdpf = frame;
3869
3870 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3871 xdpf->len, DMA_TO_DEVICE);
3872 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3873 return -ENOMEM;
3874
3875 frame_len = xdpf->len;
3876 txq->tx_buf[index].buf_p = xdpf;
3877 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3878 } else {
3879 struct xdp_buff *xdpb = frame;
3880 struct page *page;
3881
3882 page = virt_to_page(xdpb->data);
3883 dma_addr = page_pool_get_dma_addr(page) +
3884 (xdpb->data - xdpb->data_hard_start);
3885 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3886 dma_sync_len, DMA_BIDIRECTIONAL);
3887 frame_len = xdpb->data_end - xdpb->data;
3888 txq->tx_buf[index].buf_p = page;
3889 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3890 }
3891
3892 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3893 if (fep->bufdesc_ex)
3894 estatus = BD_ENET_TX_INT;
3895
3896 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3897 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3898
3899 if (fep->bufdesc_ex) {
3900 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3901
3902 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3903 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3904
3905 ebdp->cbd_bdu = 0;
3906 ebdp->cbd_esc = cpu_to_fec32(estatus);
3907 }
3908
3909 /* Make sure the updates to rest of the descriptor are performed before
3910 * transferring ownership.
3911 */
3912 dma_wmb();
3913
3914 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3915 * it's the last BD of the frame, and to put the CRC on the end.
3916 */
3917 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3918 bdp->cbd_sc = cpu_to_fec16(status);
3919
3920 /* If this was the last BD in the ring, start at the beginning again. */
3921 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3922
3923 /* Make sure the update to bdp are performed before txq->bd.cur. */
3924 dma_wmb();
3925
3926 txq->bd.cur = bdp;
3927
3928 /* Trigger transmission start */
3929 writel(0, txq->bd.reg_desc_active);
3930
3931 return 0;
3932 }
3933
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3934 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3935 int cpu, struct xdp_buff *xdp,
3936 u32 dma_sync_len)
3937 {
3938 struct fec_enet_priv_tx_q *txq;
3939 struct netdev_queue *nq;
3940 int queue, ret;
3941
3942 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3943 txq = fep->tx_queue[queue];
3944 nq = netdev_get_tx_queue(fep->netdev, queue);
3945
3946 __netif_tx_lock(nq, cpu);
3947
3948 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3949 txq_trans_cond_update(nq);
3950 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3951
3952 __netif_tx_unlock(nq);
3953
3954 return ret;
3955 }
3956
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3957 static int fec_enet_xdp_xmit(struct net_device *dev,
3958 int num_frames,
3959 struct xdp_frame **frames,
3960 u32 flags)
3961 {
3962 struct fec_enet_private *fep = netdev_priv(dev);
3963 struct fec_enet_priv_tx_q *txq;
3964 int cpu = smp_processor_id();
3965 unsigned int sent_frames = 0;
3966 struct netdev_queue *nq;
3967 unsigned int queue;
3968 int i;
3969
3970 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3971 txq = fep->tx_queue[queue];
3972 nq = netdev_get_tx_queue(fep->netdev, queue);
3973
3974 __netif_tx_lock(nq, cpu);
3975
3976 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3977 txq_trans_cond_update(nq);
3978 for (i = 0; i < num_frames; i++) {
3979 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3980 break;
3981 sent_frames++;
3982 }
3983
3984 __netif_tx_unlock(nq);
3985
3986 return sent_frames;
3987 }
3988
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3989 static int fec_hwtstamp_get(struct net_device *ndev,
3990 struct kernel_hwtstamp_config *config)
3991 {
3992 struct fec_enet_private *fep = netdev_priv(ndev);
3993
3994 if (!netif_running(ndev))
3995 return -EINVAL;
3996
3997 if (!fep->bufdesc_ex)
3998 return -EOPNOTSUPP;
3999
4000 fec_ptp_get(ndev, config);
4001
4002 return 0;
4003 }
4004
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4005 static int fec_hwtstamp_set(struct net_device *ndev,
4006 struct kernel_hwtstamp_config *config,
4007 struct netlink_ext_ack *extack)
4008 {
4009 struct fec_enet_private *fep = netdev_priv(ndev);
4010
4011 if (!netif_running(ndev))
4012 return -EINVAL;
4013
4014 if (!fep->bufdesc_ex)
4015 return -EOPNOTSUPP;
4016
4017 return fec_ptp_set(ndev, config, extack);
4018 }
4019
4020 static const struct net_device_ops fec_netdev_ops = {
4021 .ndo_open = fec_enet_open,
4022 .ndo_stop = fec_enet_close,
4023 .ndo_start_xmit = fec_enet_start_xmit,
4024 .ndo_select_queue = fec_enet_select_queue,
4025 .ndo_set_rx_mode = set_multicast_list,
4026 .ndo_validate_addr = eth_validate_addr,
4027 .ndo_tx_timeout = fec_timeout,
4028 .ndo_set_mac_address = fec_set_mac_address,
4029 .ndo_eth_ioctl = phy_do_ioctl_running,
4030 .ndo_set_features = fec_set_features,
4031 .ndo_bpf = fec_enet_bpf,
4032 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4033 .ndo_hwtstamp_get = fec_hwtstamp_get,
4034 .ndo_hwtstamp_set = fec_hwtstamp_set,
4035 };
4036
4037 static const unsigned short offset_des_active_rxq[] = {
4038 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4039 };
4040
4041 static const unsigned short offset_des_active_txq[] = {
4042 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4043 };
4044
4045 /*
4046 * XXX: We need to clean up on failure exits here.
4047 *
4048 */
fec_enet_init(struct net_device * ndev)4049 static int fec_enet_init(struct net_device *ndev)
4050 {
4051 struct fec_enet_private *fep = netdev_priv(ndev);
4052 struct bufdesc *cbd_base;
4053 dma_addr_t bd_dma;
4054 int bd_size;
4055 unsigned int i;
4056 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4057 sizeof(struct bufdesc);
4058 unsigned dsize_log2 = __fls(dsize);
4059 int ret;
4060
4061 WARN_ON(dsize != (1 << dsize_log2));
4062 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4063 fep->rx_align = 0xf;
4064 fep->tx_align = 0xf;
4065 #else
4066 fep->rx_align = 0x3;
4067 fep->tx_align = 0x3;
4068 #endif
4069 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4070 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4071 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4072 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4073
4074 /* Check mask of the streaming and coherent API */
4075 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4076 if (ret < 0) {
4077 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4078 return ret;
4079 }
4080
4081 ret = fec_enet_alloc_queue(ndev);
4082 if (ret)
4083 return ret;
4084
4085 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4086
4087 /* Allocate memory for buffer descriptors. */
4088 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4089 GFP_KERNEL);
4090 if (!cbd_base) {
4091 ret = -ENOMEM;
4092 goto free_queue_mem;
4093 }
4094
4095 /* Get the Ethernet address */
4096 ret = fec_get_mac(ndev);
4097 if (ret)
4098 goto free_queue_mem;
4099
4100 /* Set receive and transmit descriptor base. */
4101 for (i = 0; i < fep->num_rx_queues; i++) {
4102 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4103 unsigned size = dsize * rxq->bd.ring_size;
4104
4105 rxq->bd.qid = i;
4106 rxq->bd.base = cbd_base;
4107 rxq->bd.cur = cbd_base;
4108 rxq->bd.dma = bd_dma;
4109 rxq->bd.dsize = dsize;
4110 rxq->bd.dsize_log2 = dsize_log2;
4111 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4112 bd_dma += size;
4113 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4114 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4115 }
4116
4117 for (i = 0; i < fep->num_tx_queues; i++) {
4118 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4119 unsigned size = dsize * txq->bd.ring_size;
4120
4121 txq->bd.qid = i;
4122 txq->bd.base = cbd_base;
4123 txq->bd.cur = cbd_base;
4124 txq->bd.dma = bd_dma;
4125 txq->bd.dsize = dsize;
4126 txq->bd.dsize_log2 = dsize_log2;
4127 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4128 bd_dma += size;
4129 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4130 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4131 }
4132
4133
4134 /* The FEC Ethernet specific entries in the device structure */
4135 ndev->watchdog_timeo = TX_TIMEOUT;
4136 ndev->netdev_ops = &fec_netdev_ops;
4137 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4138
4139 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4140 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4141
4142 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4143 /* enable hw VLAN support */
4144 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4145
4146 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4147 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4148
4149 /* enable hw accelerator */
4150 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4151 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4152 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4153 }
4154
4155 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4156 fep->tx_align = 0;
4157 fep->rx_align = 0x3f;
4158 }
4159
4160 ndev->hw_features = ndev->features;
4161
4162 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4163 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4164 NETDEV_XDP_ACT_REDIRECT;
4165
4166 fec_restart(ndev);
4167
4168 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4169 fec_enet_clear_ethtool_stats(ndev);
4170 else
4171 fec_enet_update_ethtool_stats(ndev);
4172
4173 return 0;
4174
4175 free_queue_mem:
4176 fec_enet_free_queue(ndev);
4177 return ret;
4178 }
4179
fec_enet_deinit(struct net_device * ndev)4180 static void fec_enet_deinit(struct net_device *ndev)
4181 {
4182 struct fec_enet_private *fep = netdev_priv(ndev);
4183
4184 netif_napi_del(&fep->napi);
4185 fec_enet_free_queue(ndev);
4186 }
4187
4188 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4189 static int fec_reset_phy(struct platform_device *pdev)
4190 {
4191 struct gpio_desc *phy_reset;
4192 int msec = 1, phy_post_delay = 0;
4193 struct device_node *np = pdev->dev.of_node;
4194 int err;
4195
4196 if (!np)
4197 return 0;
4198
4199 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4200 /* A sane reset duration should not be longer than 1s */
4201 if (!err && msec > 1000)
4202 msec = 1;
4203
4204 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4205 /* valid reset duration should be less than 1s */
4206 if (!err && phy_post_delay > 1000)
4207 return -EINVAL;
4208
4209 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4210 GPIOD_OUT_HIGH);
4211 if (IS_ERR(phy_reset))
4212 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4213 "failed to get phy-reset-gpios\n");
4214
4215 if (!phy_reset)
4216 return 0;
4217
4218 if (msec > 20)
4219 msleep(msec);
4220 else
4221 usleep_range(msec * 1000, msec * 1000 + 1000);
4222
4223 gpiod_set_value_cansleep(phy_reset, 0);
4224
4225 if (!phy_post_delay)
4226 return 0;
4227
4228 if (phy_post_delay > 20)
4229 msleep(phy_post_delay);
4230 else
4231 usleep_range(phy_post_delay * 1000,
4232 phy_post_delay * 1000 + 1000);
4233
4234 return 0;
4235 }
4236 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4237 static int fec_reset_phy(struct platform_device *pdev)
4238 {
4239 /*
4240 * In case of platform probe, the reset has been done
4241 * by machine code.
4242 */
4243 return 0;
4244 }
4245 #endif /* CONFIG_OF */
4246
4247 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4248 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4249 {
4250 struct device_node *np = pdev->dev.of_node;
4251
4252 *num_tx = *num_rx = 1;
4253
4254 if (!np || !of_device_is_available(np))
4255 return;
4256
4257 /* parse the num of tx and rx queues */
4258 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4259
4260 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4261
4262 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4263 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4264 *num_tx);
4265 *num_tx = 1;
4266 return;
4267 }
4268
4269 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4270 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4271 *num_rx);
4272 *num_rx = 1;
4273 return;
4274 }
4275
4276 }
4277
fec_enet_get_irq_cnt(struct platform_device * pdev)4278 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4279 {
4280 int irq_cnt = platform_irq_count(pdev);
4281
4282 if (irq_cnt > FEC_IRQ_NUM)
4283 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4284 else if (irq_cnt == 2)
4285 irq_cnt = 1; /* last for pps */
4286 else if (irq_cnt <= 0)
4287 irq_cnt = 1; /* At least 1 irq is needed */
4288 return irq_cnt;
4289 }
4290
fec_enet_get_wakeup_irq(struct platform_device * pdev)4291 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4292 {
4293 struct net_device *ndev = platform_get_drvdata(pdev);
4294 struct fec_enet_private *fep = netdev_priv(ndev);
4295
4296 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4297 fep->wake_irq = fep->irq[2];
4298 else
4299 fep->wake_irq = fep->irq[0];
4300 }
4301
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4302 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4303 struct device_node *np)
4304 {
4305 struct device_node *gpr_np;
4306 u32 out_val[3];
4307 int ret = 0;
4308
4309 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4310 if (!gpr_np)
4311 return 0;
4312
4313 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4314 ARRAY_SIZE(out_val));
4315 if (ret) {
4316 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4317 goto out;
4318 }
4319
4320 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4321 if (IS_ERR(fep->stop_gpr.gpr)) {
4322 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4323 ret = PTR_ERR(fep->stop_gpr.gpr);
4324 fep->stop_gpr.gpr = NULL;
4325 goto out;
4326 }
4327
4328 fep->stop_gpr.reg = out_val[1];
4329 fep->stop_gpr.bit = out_val[2];
4330
4331 out:
4332 of_node_put(gpr_np);
4333
4334 return ret;
4335 }
4336
4337 static int
fec_probe(struct platform_device * pdev)4338 fec_probe(struct platform_device *pdev)
4339 {
4340 struct fec_enet_private *fep;
4341 struct fec_platform_data *pdata;
4342 phy_interface_t interface;
4343 struct net_device *ndev;
4344 int i, irq, ret = 0;
4345 static int dev_id;
4346 struct device_node *np = pdev->dev.of_node, *phy_node;
4347 int num_tx_qs;
4348 int num_rx_qs;
4349 char irq_name[8];
4350 int irq_cnt;
4351 const struct fec_devinfo *dev_info;
4352
4353 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4354
4355 /* Init network device */
4356 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4357 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4358 if (!ndev)
4359 return -ENOMEM;
4360
4361 SET_NETDEV_DEV(ndev, &pdev->dev);
4362
4363 /* setup board info structure */
4364 fep = netdev_priv(ndev);
4365
4366 dev_info = device_get_match_data(&pdev->dev);
4367 if (!dev_info)
4368 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4369 if (dev_info)
4370 fep->quirks = dev_info->quirks;
4371
4372 fep->netdev = ndev;
4373 fep->num_rx_queues = num_rx_qs;
4374 fep->num_tx_queues = num_tx_qs;
4375
4376 #if !defined(CONFIG_M5272)
4377 /* default enable pause frame auto negotiation */
4378 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4379 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4380 #endif
4381
4382 /* Select default pin state */
4383 pinctrl_pm_select_default_state(&pdev->dev);
4384
4385 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4386 if (IS_ERR(fep->hwp)) {
4387 ret = PTR_ERR(fep->hwp);
4388 goto failed_ioremap;
4389 }
4390
4391 fep->pdev = pdev;
4392 fep->dev_id = dev_id++;
4393
4394 platform_set_drvdata(pdev, ndev);
4395
4396 if ((of_machine_is_compatible("fsl,imx6q") ||
4397 of_machine_is_compatible("fsl,imx6dl")) &&
4398 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4399 fep->quirks |= FEC_QUIRK_ERR006687;
4400
4401 ret = fec_enet_ipc_handle_init(fep);
4402 if (ret)
4403 goto failed_ipc_init;
4404
4405 if (of_property_read_bool(np, "fsl,magic-packet"))
4406 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4407
4408 ret = fec_enet_init_stop_mode(fep, np);
4409 if (ret)
4410 goto failed_stop_mode;
4411
4412 phy_node = of_parse_phandle(np, "phy-handle", 0);
4413 if (!phy_node && of_phy_is_fixed_link(np)) {
4414 ret = of_phy_register_fixed_link(np);
4415 if (ret < 0) {
4416 dev_err(&pdev->dev,
4417 "broken fixed-link specification\n");
4418 goto failed_phy;
4419 }
4420 phy_node = of_node_get(np);
4421 }
4422 fep->phy_node = phy_node;
4423
4424 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4425 if (ret) {
4426 pdata = dev_get_platdata(&pdev->dev);
4427 if (pdata)
4428 fep->phy_interface = pdata->phy;
4429 else
4430 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4431 } else {
4432 fep->phy_interface = interface;
4433 }
4434
4435 ret = fec_enet_parse_rgmii_delay(fep, np);
4436 if (ret)
4437 goto failed_rgmii_delay;
4438
4439 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4440 if (IS_ERR(fep->clk_ipg)) {
4441 ret = PTR_ERR(fep->clk_ipg);
4442 goto failed_clk;
4443 }
4444
4445 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4446 if (IS_ERR(fep->clk_ahb)) {
4447 ret = PTR_ERR(fep->clk_ahb);
4448 goto failed_clk;
4449 }
4450
4451 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4452
4453 /* enet_out is optional, depends on board */
4454 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4455 if (IS_ERR(fep->clk_enet_out)) {
4456 ret = PTR_ERR(fep->clk_enet_out);
4457 goto failed_clk;
4458 }
4459
4460 fep->ptp_clk_on = false;
4461 mutex_init(&fep->ptp_clk_mutex);
4462
4463 /* clk_ref is optional, depends on board */
4464 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4465 if (IS_ERR(fep->clk_ref)) {
4466 ret = PTR_ERR(fep->clk_ref);
4467 goto failed_clk;
4468 }
4469 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4470
4471 /* clk_2x_txclk is optional, depends on board */
4472 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4473 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4474 if (IS_ERR(fep->clk_2x_txclk))
4475 fep->clk_2x_txclk = NULL;
4476 }
4477
4478 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4479 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4480 if (IS_ERR(fep->clk_ptp)) {
4481 fep->clk_ptp = NULL;
4482 fep->bufdesc_ex = false;
4483 }
4484
4485 ret = fec_enet_clk_enable(ndev, true);
4486 if (ret)
4487 goto failed_clk;
4488
4489 ret = clk_prepare_enable(fep->clk_ipg);
4490 if (ret)
4491 goto failed_clk_ipg;
4492 ret = clk_prepare_enable(fep->clk_ahb);
4493 if (ret)
4494 goto failed_clk_ahb;
4495
4496 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4497 if (!IS_ERR(fep->reg_phy)) {
4498 ret = regulator_enable(fep->reg_phy);
4499 if (ret) {
4500 dev_err(&pdev->dev,
4501 "Failed to enable phy regulator: %d\n", ret);
4502 goto failed_regulator;
4503 }
4504 } else {
4505 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4506 ret = -EPROBE_DEFER;
4507 goto failed_regulator;
4508 }
4509 fep->reg_phy = NULL;
4510 }
4511
4512 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4513 pm_runtime_use_autosuspend(&pdev->dev);
4514 pm_runtime_get_noresume(&pdev->dev);
4515 pm_runtime_set_active(&pdev->dev);
4516 pm_runtime_enable(&pdev->dev);
4517
4518 ret = fec_reset_phy(pdev);
4519 if (ret)
4520 goto failed_reset;
4521
4522 irq_cnt = fec_enet_get_irq_cnt(pdev);
4523 if (fep->bufdesc_ex)
4524 fec_ptp_init(pdev, irq_cnt);
4525
4526 ret = fec_enet_init(ndev);
4527 if (ret)
4528 goto failed_init;
4529
4530 for (i = 0; i < irq_cnt; i++) {
4531 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4532 irq = platform_get_irq_byname_optional(pdev, irq_name);
4533 if (irq < 0)
4534 irq = platform_get_irq(pdev, i);
4535 if (irq < 0) {
4536 ret = irq;
4537 goto failed_irq;
4538 }
4539 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4540 0, pdev->name, ndev);
4541 if (ret)
4542 goto failed_irq;
4543
4544 fep->irq[i] = irq;
4545 }
4546
4547 /* Decide which interrupt line is wakeup capable */
4548 fec_enet_get_wakeup_irq(pdev);
4549
4550 ret = fec_enet_mii_init(pdev);
4551 if (ret)
4552 goto failed_mii_init;
4553
4554 /* Carrier starts down, phylib will bring it up */
4555 netif_carrier_off(ndev);
4556 fec_enet_clk_enable(ndev, false);
4557 pinctrl_pm_select_sleep_state(&pdev->dev);
4558
4559 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4560
4561 ret = register_netdev(ndev);
4562 if (ret)
4563 goto failed_register;
4564
4565 device_init_wakeup(&ndev->dev, fep->wol_flag &
4566 FEC_WOL_HAS_MAGIC_PACKET);
4567
4568 if (fep->bufdesc_ex && fep->ptp_clock)
4569 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4570
4571 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4572
4573 pm_runtime_mark_last_busy(&pdev->dev);
4574 pm_runtime_put_autosuspend(&pdev->dev);
4575
4576 return 0;
4577
4578 failed_register:
4579 fec_enet_mii_remove(fep);
4580 failed_mii_init:
4581 failed_irq:
4582 fec_enet_deinit(ndev);
4583 failed_init:
4584 fec_ptp_stop(pdev);
4585 failed_reset:
4586 pm_runtime_put_noidle(&pdev->dev);
4587 pm_runtime_disable(&pdev->dev);
4588 if (fep->reg_phy)
4589 regulator_disable(fep->reg_phy);
4590 failed_regulator:
4591 clk_disable_unprepare(fep->clk_ahb);
4592 failed_clk_ahb:
4593 clk_disable_unprepare(fep->clk_ipg);
4594 failed_clk_ipg:
4595 fec_enet_clk_enable(ndev, false);
4596 failed_clk:
4597 failed_rgmii_delay:
4598 if (of_phy_is_fixed_link(np))
4599 of_phy_deregister_fixed_link(np);
4600 of_node_put(phy_node);
4601 failed_stop_mode:
4602 failed_ipc_init:
4603 failed_phy:
4604 dev_id--;
4605 failed_ioremap:
4606 free_netdev(ndev);
4607
4608 return ret;
4609 }
4610
4611 static void
fec_drv_remove(struct platform_device * pdev)4612 fec_drv_remove(struct platform_device *pdev)
4613 {
4614 struct net_device *ndev = platform_get_drvdata(pdev);
4615 struct fec_enet_private *fep = netdev_priv(ndev);
4616 struct device_node *np = pdev->dev.of_node;
4617 int ret;
4618
4619 ret = pm_runtime_get_sync(&pdev->dev);
4620 if (ret < 0)
4621 dev_err(&pdev->dev,
4622 "Failed to resume device in remove callback (%pe)\n",
4623 ERR_PTR(ret));
4624
4625 cancel_work_sync(&fep->tx_timeout_work);
4626 fec_ptp_stop(pdev);
4627 unregister_netdev(ndev);
4628 fec_enet_mii_remove(fep);
4629 if (fep->reg_phy)
4630 regulator_disable(fep->reg_phy);
4631
4632 if (of_phy_is_fixed_link(np))
4633 of_phy_deregister_fixed_link(np);
4634 of_node_put(fep->phy_node);
4635
4636 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4637 * disabling them again.
4638 */
4639 if (ret >= 0) {
4640 clk_disable_unprepare(fep->clk_ahb);
4641 clk_disable_unprepare(fep->clk_ipg);
4642 }
4643 pm_runtime_put_noidle(&pdev->dev);
4644 pm_runtime_disable(&pdev->dev);
4645
4646 fec_enet_deinit(ndev);
4647 free_netdev(ndev);
4648 }
4649
fec_suspend(struct device * dev)4650 static int fec_suspend(struct device *dev)
4651 {
4652 struct net_device *ndev = dev_get_drvdata(dev);
4653 struct fec_enet_private *fep = netdev_priv(ndev);
4654 int ret;
4655
4656 rtnl_lock();
4657 if (netif_running(ndev)) {
4658 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4659 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4660 phy_stop(ndev->phydev);
4661 napi_disable(&fep->napi);
4662 netif_tx_lock_bh(ndev);
4663 netif_device_detach(ndev);
4664 netif_tx_unlock_bh(ndev);
4665 fec_stop(ndev);
4666 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4667 fec_irqs_disable(ndev);
4668 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4669 } else {
4670 fec_irqs_disable_except_wakeup(ndev);
4671 if (fep->wake_irq > 0) {
4672 disable_irq(fep->wake_irq);
4673 enable_irq_wake(fep->wake_irq);
4674 }
4675 fec_enet_stop_mode(fep, true);
4676 }
4677 /* It's safe to disable clocks since interrupts are masked */
4678 fec_enet_clk_enable(ndev, false);
4679
4680 fep->rpm_active = !pm_runtime_status_suspended(dev);
4681 if (fep->rpm_active) {
4682 ret = pm_runtime_force_suspend(dev);
4683 if (ret < 0) {
4684 rtnl_unlock();
4685 return ret;
4686 }
4687 }
4688 }
4689 rtnl_unlock();
4690
4691 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4692 regulator_disable(fep->reg_phy);
4693
4694 /* SOC supply clock to phy, when clock is disabled, phy link down
4695 * SOC control phy regulator, when regulator is disabled, phy link down
4696 */
4697 if (fep->clk_enet_out || fep->reg_phy)
4698 fep->link = 0;
4699
4700 return 0;
4701 }
4702
fec_resume(struct device * dev)4703 static int fec_resume(struct device *dev)
4704 {
4705 struct net_device *ndev = dev_get_drvdata(dev);
4706 struct fec_enet_private *fep = netdev_priv(ndev);
4707 int ret;
4708 int val;
4709
4710 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4711 ret = regulator_enable(fep->reg_phy);
4712 if (ret)
4713 return ret;
4714 }
4715
4716 rtnl_lock();
4717 if (netif_running(ndev)) {
4718 if (fep->rpm_active)
4719 pm_runtime_force_resume(dev);
4720
4721 ret = fec_enet_clk_enable(ndev, true);
4722 if (ret) {
4723 rtnl_unlock();
4724 goto failed_clk;
4725 }
4726 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4727 fec_enet_stop_mode(fep, false);
4728 if (fep->wake_irq) {
4729 disable_irq_wake(fep->wake_irq);
4730 enable_irq(fep->wake_irq);
4731 }
4732
4733 val = readl(fep->hwp + FEC_ECNTRL);
4734 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4735 writel(val, fep->hwp + FEC_ECNTRL);
4736 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4737 } else {
4738 pinctrl_pm_select_default_state(&fep->pdev->dev);
4739 }
4740 fec_restart(ndev);
4741 netif_tx_lock_bh(ndev);
4742 netif_device_attach(ndev);
4743 netif_tx_unlock_bh(ndev);
4744 napi_enable(&fep->napi);
4745 phy_init_hw(ndev->phydev);
4746 phy_start(ndev->phydev);
4747 }
4748 rtnl_unlock();
4749
4750 return 0;
4751
4752 failed_clk:
4753 if (fep->reg_phy)
4754 regulator_disable(fep->reg_phy);
4755 return ret;
4756 }
4757
fec_runtime_suspend(struct device * dev)4758 static int fec_runtime_suspend(struct device *dev)
4759 {
4760 struct net_device *ndev = dev_get_drvdata(dev);
4761 struct fec_enet_private *fep = netdev_priv(ndev);
4762
4763 clk_disable_unprepare(fep->clk_ahb);
4764 clk_disable_unprepare(fep->clk_ipg);
4765
4766 return 0;
4767 }
4768
fec_runtime_resume(struct device * dev)4769 static int fec_runtime_resume(struct device *dev)
4770 {
4771 struct net_device *ndev = dev_get_drvdata(dev);
4772 struct fec_enet_private *fep = netdev_priv(ndev);
4773 int ret;
4774
4775 ret = clk_prepare_enable(fep->clk_ahb);
4776 if (ret)
4777 return ret;
4778 ret = clk_prepare_enable(fep->clk_ipg);
4779 if (ret)
4780 goto failed_clk_ipg;
4781
4782 return 0;
4783
4784 failed_clk_ipg:
4785 clk_disable_unprepare(fep->clk_ahb);
4786 return ret;
4787 }
4788
4789 static const struct dev_pm_ops fec_pm_ops = {
4790 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4791 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4792 };
4793
4794 static struct platform_driver fec_driver = {
4795 .driver = {
4796 .name = DRIVER_NAME,
4797 .pm = pm_ptr(&fec_pm_ops),
4798 .of_match_table = fec_dt_ids,
4799 .suppress_bind_attrs = true,
4800 },
4801 .id_table = fec_devtype,
4802 .probe = fec_probe,
4803 .remove = fec_drv_remove,
4804 };
4805
4806 module_platform_driver(fec_driver);
4807
4808 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4809 MODULE_LICENSE("GPL");
4810