xref: /linux/drivers/gpu/drm/tegra/sor.c (revision e70140ba0d2b1a30467d4af6bcfe761327b9ec95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 NVIDIA Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/debugfs.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/reset.h>
16 
17 #include <soc/tegra/pmc.h>
18 
19 #include <drm/display/drm_dp_helper.h>
20 #include <drm/display/drm_scdc_helper.h>
21 #include <drm/drm_atomic_helper.h>
22 #include <drm/drm_debugfs.h>
23 #include <drm/drm_edid.h>
24 #include <drm/drm_eld.h>
25 #include <drm/drm_file.h>
26 #include <drm/drm_panel.h>
27 #include <drm/drm_simple_kms_helper.h>
28 
29 #include "dc.h"
30 #include "dp.h"
31 #include "drm.h"
32 #include "hda.h"
33 #include "sor.h"
34 #include "trace.h"
35 
36 #define SOR_REKEY 0x38
37 
38 struct tegra_sor_hdmi_settings {
39 	unsigned long frequency;
40 
41 	u8 vcocap;
42 	u8 filter;
43 	u8 ichpmp;
44 	u8 loadadj;
45 	u8 tmds_termadj;
46 	u8 tx_pu_value;
47 	u8 bg_temp_coef;
48 	u8 bg_vref_level;
49 	u8 avdd10_level;
50 	u8 avdd14_level;
51 	u8 sparepll;
52 
53 	u8 drive_current[4];
54 	u8 preemphasis[4];
55 };
56 
57 #if 1
58 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
59 	{
60 		.frequency = 54000000,
61 		.vcocap = 0x0,
62 		.filter = 0x0,
63 		.ichpmp = 0x1,
64 		.loadadj = 0x3,
65 		.tmds_termadj = 0x9,
66 		.tx_pu_value = 0x10,
67 		.bg_temp_coef = 0x3,
68 		.bg_vref_level = 0x8,
69 		.avdd10_level = 0x4,
70 		.avdd14_level = 0x4,
71 		.sparepll = 0x0,
72 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
73 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
74 	}, {
75 		.frequency = 75000000,
76 		.vcocap = 0x3,
77 		.filter = 0x0,
78 		.ichpmp = 0x1,
79 		.loadadj = 0x3,
80 		.tmds_termadj = 0x9,
81 		.tx_pu_value = 0x40,
82 		.bg_temp_coef = 0x3,
83 		.bg_vref_level = 0x8,
84 		.avdd10_level = 0x4,
85 		.avdd14_level = 0x4,
86 		.sparepll = 0x0,
87 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
88 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
89 	}, {
90 		.frequency = 150000000,
91 		.vcocap = 0x3,
92 		.filter = 0x0,
93 		.ichpmp = 0x1,
94 		.loadadj = 0x3,
95 		.tmds_termadj = 0x9,
96 		.tx_pu_value = 0x66,
97 		.bg_temp_coef = 0x3,
98 		.bg_vref_level = 0x8,
99 		.avdd10_level = 0x4,
100 		.avdd14_level = 0x4,
101 		.sparepll = 0x0,
102 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
103 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
104 	}, {
105 		.frequency = 300000000,
106 		.vcocap = 0x3,
107 		.filter = 0x0,
108 		.ichpmp = 0x1,
109 		.loadadj = 0x3,
110 		.tmds_termadj = 0x9,
111 		.tx_pu_value = 0x66,
112 		.bg_temp_coef = 0x3,
113 		.bg_vref_level = 0xa,
114 		.avdd10_level = 0x4,
115 		.avdd14_level = 0x4,
116 		.sparepll = 0x0,
117 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
118 		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
119 	}, {
120 		.frequency = 600000000,
121 		.vcocap = 0x3,
122 		.filter = 0x0,
123 		.ichpmp = 0x1,
124 		.loadadj = 0x3,
125 		.tmds_termadj = 0x9,
126 		.tx_pu_value = 0x66,
127 		.bg_temp_coef = 0x3,
128 		.bg_vref_level = 0x8,
129 		.avdd10_level = 0x4,
130 		.avdd14_level = 0x4,
131 		.sparepll = 0x0,
132 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
133 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
134 	},
135 };
136 #else
137 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
138 	{
139 		.frequency = 75000000,
140 		.vcocap = 0x3,
141 		.filter = 0x0,
142 		.ichpmp = 0x1,
143 		.loadadj = 0x3,
144 		.tmds_termadj = 0x9,
145 		.tx_pu_value = 0x40,
146 		.bg_temp_coef = 0x3,
147 		.bg_vref_level = 0x8,
148 		.avdd10_level = 0x4,
149 		.avdd14_level = 0x4,
150 		.sparepll = 0x0,
151 		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
152 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
153 	}, {
154 		.frequency = 150000000,
155 		.vcocap = 0x3,
156 		.filter = 0x0,
157 		.ichpmp = 0x1,
158 		.loadadj = 0x3,
159 		.tmds_termadj = 0x9,
160 		.tx_pu_value = 0x66,
161 		.bg_temp_coef = 0x3,
162 		.bg_vref_level = 0x8,
163 		.avdd10_level = 0x4,
164 		.avdd14_level = 0x4,
165 		.sparepll = 0x0,
166 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
167 		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
168 	}, {
169 		.frequency = 300000000,
170 		.vcocap = 0x3,
171 		.filter = 0x0,
172 		.ichpmp = 0x6,
173 		.loadadj = 0x3,
174 		.tmds_termadj = 0x9,
175 		.tx_pu_value = 0x66,
176 		.bg_temp_coef = 0x3,
177 		.bg_vref_level = 0xf,
178 		.avdd10_level = 0x4,
179 		.avdd14_level = 0x4,
180 		.sparepll = 0x0,
181 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
182 		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
183 	}, {
184 		.frequency = 600000000,
185 		.vcocap = 0x3,
186 		.filter = 0x0,
187 		.ichpmp = 0xa,
188 		.loadadj = 0x3,
189 		.tmds_termadj = 0xb,
190 		.tx_pu_value = 0x66,
191 		.bg_temp_coef = 0x3,
192 		.bg_vref_level = 0xe,
193 		.avdd10_level = 0x4,
194 		.avdd14_level = 0x4,
195 		.sparepll = 0x0,
196 		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
197 		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
198 	},
199 };
200 #endif
201 
202 static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
203 	{
204 		.frequency = 54000000,
205 		.vcocap = 0,
206 		.filter = 5,
207 		.ichpmp = 5,
208 		.loadadj = 3,
209 		.tmds_termadj = 0xf,
210 		.tx_pu_value = 0,
211 		.bg_temp_coef = 3,
212 		.bg_vref_level = 8,
213 		.avdd10_level = 4,
214 		.avdd14_level = 4,
215 		.sparepll = 0x54,
216 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
217 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
218 	}, {
219 		.frequency = 75000000,
220 		.vcocap = 1,
221 		.filter = 5,
222 		.ichpmp = 5,
223 		.loadadj = 3,
224 		.tmds_termadj = 0xf,
225 		.tx_pu_value = 0,
226 		.bg_temp_coef = 3,
227 		.bg_vref_level = 8,
228 		.avdd10_level = 4,
229 		.avdd14_level = 4,
230 		.sparepll = 0x44,
231 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
232 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
233 	}, {
234 		.frequency = 150000000,
235 		.vcocap = 3,
236 		.filter = 5,
237 		.ichpmp = 5,
238 		.loadadj = 3,
239 		.tmds_termadj = 15,
240 		.tx_pu_value = 0x66 /* 0 */,
241 		.bg_temp_coef = 3,
242 		.bg_vref_level = 8,
243 		.avdd10_level = 4,
244 		.avdd14_level = 4,
245 		.sparepll = 0x00, /* 0x34 */
246 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
247 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
248 	}, {
249 		.frequency = 300000000,
250 		.vcocap = 3,
251 		.filter = 5,
252 		.ichpmp = 5,
253 		.loadadj = 3,
254 		.tmds_termadj = 15,
255 		.tx_pu_value = 64,
256 		.bg_temp_coef = 3,
257 		.bg_vref_level = 8,
258 		.avdd10_level = 4,
259 		.avdd14_level = 4,
260 		.sparepll = 0x34,
261 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
262 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
263 	}, {
264 		.frequency = 600000000,
265 		.vcocap = 3,
266 		.filter = 5,
267 		.ichpmp = 5,
268 		.loadadj = 3,
269 		.tmds_termadj = 12,
270 		.tx_pu_value = 96,
271 		.bg_temp_coef = 3,
272 		.bg_vref_level = 8,
273 		.avdd10_level = 4,
274 		.avdd14_level = 4,
275 		.sparepll = 0x34,
276 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
277 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
278 	}
279 };
280 
281 static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
282 	{
283 		.frequency = 54000000,
284 		.vcocap = 0,
285 		.filter = 5,
286 		.ichpmp = 5,
287 		.loadadj = 3,
288 		.tmds_termadj = 0xf,
289 		.tx_pu_value = 0,
290 		.bg_temp_coef = 3,
291 		.bg_vref_level = 8,
292 		.avdd10_level = 4,
293 		.avdd14_level = 4,
294 		.sparepll = 0x54,
295 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
296 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
297 	}, {
298 		.frequency = 75000000,
299 		.vcocap = 1,
300 		.filter = 5,
301 		.ichpmp = 5,
302 		.loadadj = 3,
303 		.tmds_termadj = 0xf,
304 		.tx_pu_value = 0,
305 		.bg_temp_coef = 3,
306 		.bg_vref_level = 8,
307 		.avdd10_level = 4,
308 		.avdd14_level = 4,
309 		.sparepll = 0x44,
310 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
311 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
312 	}, {
313 		.frequency = 150000000,
314 		.vcocap = 3,
315 		.filter = 5,
316 		.ichpmp = 5,
317 		.loadadj = 3,
318 		.tmds_termadj = 15,
319 		.tx_pu_value = 0x66 /* 0 */,
320 		.bg_temp_coef = 3,
321 		.bg_vref_level = 8,
322 		.avdd10_level = 4,
323 		.avdd14_level = 4,
324 		.sparepll = 0x00, /* 0x34 */
325 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
326 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
327 	}, {
328 		.frequency = 300000000,
329 		.vcocap = 3,
330 		.filter = 5,
331 		.ichpmp = 5,
332 		.loadadj = 3,
333 		.tmds_termadj = 15,
334 		.tx_pu_value = 64,
335 		.bg_temp_coef = 3,
336 		.bg_vref_level = 8,
337 		.avdd10_level = 4,
338 		.avdd14_level = 4,
339 		.sparepll = 0x34,
340 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
341 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
342 	}, {
343 		.frequency = 600000000,
344 		.vcocap = 3,
345 		.filter = 5,
346 		.ichpmp = 5,
347 		.loadadj = 3,
348 		.tmds_termadj = 12,
349 		.tx_pu_value = 96,
350 		.bg_temp_coef = 3,
351 		.bg_vref_level = 8,
352 		.avdd10_level = 4,
353 		.avdd14_level = 4,
354 		.sparepll = 0x34,
355 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
356 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
357 	}
358 };
359 
360 struct tegra_sor_regs {
361 	unsigned int head_state0;
362 	unsigned int head_state1;
363 	unsigned int head_state2;
364 	unsigned int head_state3;
365 	unsigned int head_state4;
366 	unsigned int head_state5;
367 	unsigned int pll0;
368 	unsigned int pll1;
369 	unsigned int pll2;
370 	unsigned int pll3;
371 	unsigned int dp_padctl0;
372 	unsigned int dp_padctl2;
373 };
374 
375 struct tegra_sor_soc {
376 	bool supports_lvds;
377 	bool supports_hdmi;
378 	bool supports_dp;
379 	bool supports_audio;
380 	bool supports_hdcp;
381 
382 	const struct tegra_sor_regs *regs;
383 	bool has_nvdisplay;
384 
385 	const struct tegra_sor_hdmi_settings *settings;
386 	unsigned int num_settings;
387 
388 	const u8 *xbar_cfg;
389 	const u8 *lane_map;
390 
391 	const u8 (*voltage_swing)[4][4];
392 	const u8 (*pre_emphasis)[4][4];
393 	const u8 (*post_cursor)[4][4];
394 	const u8 (*tx_pu)[4][4];
395 };
396 
397 struct tegra_sor;
398 
399 struct tegra_sor_ops {
400 	const char *name;
401 	int (*probe)(struct tegra_sor *sor);
402 	void (*audio_enable)(struct tegra_sor *sor);
403 	void (*audio_disable)(struct tegra_sor *sor);
404 };
405 
406 struct tegra_sor {
407 	struct host1x_client client;
408 	struct tegra_output output;
409 	struct device *dev;
410 
411 	const struct tegra_sor_soc *soc;
412 	void __iomem *regs;
413 	unsigned int index;
414 	unsigned int irq;
415 
416 	struct reset_control *rst;
417 	struct clk *clk_parent;
418 	struct clk *clk_safe;
419 	struct clk *clk_out;
420 	struct clk *clk_pad;
421 	struct clk *clk_dp;
422 	struct clk *clk;
423 
424 	u8 xbar_cfg[5];
425 
426 	struct drm_dp_link link;
427 	struct drm_dp_aux *aux;
428 
429 	struct drm_info_list *debugfs_files;
430 
431 	const struct tegra_sor_ops *ops;
432 	enum tegra_io_pad pad;
433 
434 	/* for HDMI 2.0 */
435 	struct tegra_sor_hdmi_settings *settings;
436 	unsigned int num_settings;
437 
438 	struct regulator *avdd_io_supply;
439 	struct regulator *vdd_pll_supply;
440 	struct regulator *hdmi_supply;
441 
442 	struct delayed_work scdc;
443 	bool scdc_enabled;
444 
445 	struct tegra_hda_format format;
446 };
447 
448 struct tegra_sor_state {
449 	struct drm_connector_state base;
450 
451 	unsigned int link_speed;
452 	unsigned long pclk;
453 	unsigned int bpc;
454 };
455 
456 static inline struct tegra_sor_state *
to_sor_state(struct drm_connector_state * state)457 to_sor_state(struct drm_connector_state *state)
458 {
459 	return container_of(state, struct tegra_sor_state, base);
460 }
461 
462 struct tegra_sor_config {
463 	u32 bits_per_pixel;
464 
465 	u32 active_polarity;
466 	u32 active_count;
467 	u32 tu_size;
468 	u32 active_frac;
469 	u32 watermark;
470 
471 	u32 hblank_symbols;
472 	u32 vblank_symbols;
473 };
474 
475 static inline struct tegra_sor *
host1x_client_to_sor(struct host1x_client * client)476 host1x_client_to_sor(struct host1x_client *client)
477 {
478 	return container_of(client, struct tegra_sor, client);
479 }
480 
to_sor(struct tegra_output * output)481 static inline struct tegra_sor *to_sor(struct tegra_output *output)
482 {
483 	return container_of(output, struct tegra_sor, output);
484 }
485 
tegra_sor_readl(struct tegra_sor * sor,unsigned int offset)486 static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
487 {
488 	u32 value = readl(sor->regs + (offset << 2));
489 
490 	trace_sor_readl(sor->dev, offset, value);
491 
492 	return value;
493 }
494 
tegra_sor_writel(struct tegra_sor * sor,u32 value,unsigned int offset)495 static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
496 				    unsigned int offset)
497 {
498 	trace_sor_writel(sor->dev, offset, value);
499 	writel(value, sor->regs + (offset << 2));
500 }
501 
tegra_sor_set_parent_clock(struct tegra_sor * sor,struct clk * parent)502 static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
503 {
504 	int err;
505 
506 	clk_disable_unprepare(sor->clk);
507 
508 	err = clk_set_parent(sor->clk_out, parent);
509 	if (err < 0)
510 		return err;
511 
512 	err = clk_prepare_enable(sor->clk);
513 	if (err < 0)
514 		return err;
515 
516 	return 0;
517 }
518 
519 struct tegra_clk_sor_pad {
520 	struct clk_hw hw;
521 	struct tegra_sor *sor;
522 };
523 
to_pad(struct clk_hw * hw)524 static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
525 {
526 	return container_of(hw, struct tegra_clk_sor_pad, hw);
527 }
528 
529 static const char * const tegra_clk_sor_pad_parents[2][2] = {
530 	{ "pll_d_out0", "pll_dp" },
531 	{ "pll_d2_out0", "pll_dp" },
532 };
533 
534 /*
535  * Implementing ->set_parent() here isn't really required because the parent
536  * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
537  * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
538  * Tegra186 and later SoC generations where the BPMP implements this clock
539  * and doesn't expose the mux via the common clock framework.
540  */
541 
tegra_clk_sor_pad_set_parent(struct clk_hw * hw,u8 index)542 static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
543 {
544 	struct tegra_clk_sor_pad *pad = to_pad(hw);
545 	struct tegra_sor *sor = pad->sor;
546 	u32 value;
547 
548 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
549 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
550 
551 	switch (index) {
552 	case 0:
553 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
554 		break;
555 
556 	case 1:
557 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
558 		break;
559 	}
560 
561 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
562 
563 	return 0;
564 }
565 
tegra_clk_sor_pad_get_parent(struct clk_hw * hw)566 static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
567 {
568 	struct tegra_clk_sor_pad *pad = to_pad(hw);
569 	struct tegra_sor *sor = pad->sor;
570 	u8 parent = U8_MAX;
571 	u32 value;
572 
573 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
574 
575 	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
576 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
577 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
578 		parent = 0;
579 		break;
580 
581 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
582 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
583 		parent = 1;
584 		break;
585 	}
586 
587 	return parent;
588 }
589 
590 static const struct clk_ops tegra_clk_sor_pad_ops = {
591 	.determine_rate = clk_hw_determine_rate_no_reparent,
592 	.set_parent = tegra_clk_sor_pad_set_parent,
593 	.get_parent = tegra_clk_sor_pad_get_parent,
594 };
595 
tegra_clk_sor_pad_register(struct tegra_sor * sor,const char * name)596 static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
597 					      const char *name)
598 {
599 	struct tegra_clk_sor_pad *pad;
600 	struct clk_init_data init;
601 	struct clk *clk;
602 
603 	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
604 	if (!pad)
605 		return ERR_PTR(-ENOMEM);
606 
607 	pad->sor = sor;
608 
609 	init.name = name;
610 	init.flags = 0;
611 	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
612 	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
613 	init.ops = &tegra_clk_sor_pad_ops;
614 
615 	pad->hw.init = &init;
616 
617 	clk = devm_clk_register(sor->dev, &pad->hw);
618 
619 	return clk;
620 }
621 
tegra_sor_filter_rates(struct tegra_sor * sor)622 static void tegra_sor_filter_rates(struct tegra_sor *sor)
623 {
624 	struct drm_dp_link *link = &sor->link;
625 	unsigned int i;
626 
627 	/* Tegra only supports RBR, HBR and HBR2 */
628 	for (i = 0; i < link->num_rates; i++) {
629 		switch (link->rates[i]) {
630 		case 1620000:
631 		case 2700000:
632 		case 5400000:
633 			break;
634 
635 		default:
636 			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
637 				      link->rates[i]);
638 			link->rates[i] = 0;
639 			break;
640 		}
641 	}
642 
643 	drm_dp_link_update_rates(link);
644 }
645 
tegra_sor_power_up_lanes(struct tegra_sor * sor,unsigned int lanes)646 static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
647 {
648 	unsigned long timeout;
649 	u32 value;
650 
651 	/*
652 	 * Clear or set the PD_TXD bit corresponding to each lane, depending
653 	 * on whether it is used or not.
654 	 */
655 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
656 
657 	if (lanes <= 2)
658 		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
659 			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
660 	else
661 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
662 			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
663 
664 	if (lanes <= 1)
665 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
666 	else
667 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
668 
669 	if (lanes == 0)
670 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
671 	else
672 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
673 
674 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
675 
676 	/* start lane sequencer */
677 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
678 		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
679 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
680 
681 	timeout = jiffies + msecs_to_jiffies(250);
682 
683 	while (time_before(jiffies, timeout)) {
684 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
685 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
686 			break;
687 
688 		usleep_range(250, 1000);
689 	}
690 
691 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
692 		return -ETIMEDOUT;
693 
694 	return 0;
695 }
696 
tegra_sor_power_down_lanes(struct tegra_sor * sor)697 static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
698 {
699 	unsigned long timeout;
700 	u32 value;
701 
702 	/* power down all lanes */
703 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
704 	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
705 		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
706 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
707 
708 	/* start lane sequencer */
709 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
710 		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
711 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
712 
713 	timeout = jiffies + msecs_to_jiffies(250);
714 
715 	while (time_before(jiffies, timeout)) {
716 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
717 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
718 			break;
719 
720 		usleep_range(25, 100);
721 	}
722 
723 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
724 		return -ETIMEDOUT;
725 
726 	return 0;
727 }
728 
tegra_sor_dp_precharge(struct tegra_sor * sor,unsigned int lanes)729 static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
730 {
731 	u32 value;
732 
733 	/* pre-charge all used lanes */
734 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
735 
736 	if (lanes <= 2)
737 		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
738 			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
739 	else
740 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
741 			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
742 
743 	if (lanes <= 1)
744 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
745 	else
746 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
747 
748 	if (lanes == 0)
749 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
750 	else
751 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
752 
753 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
754 
755 	usleep_range(15, 100);
756 
757 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
758 	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
759 		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
760 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
761 }
762 
tegra_sor_dp_term_calibrate(struct tegra_sor * sor)763 static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
764 {
765 	u32 mask = 0x08, adj = 0, value;
766 
767 	/* enable pad calibration logic */
768 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
769 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
770 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
771 
772 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
773 	value |= SOR_PLL1_TMDS_TERM;
774 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
775 
776 	while (mask) {
777 		adj |= mask;
778 
779 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
780 		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
781 		value |= SOR_PLL1_TMDS_TERMADJ(adj);
782 		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
783 
784 		usleep_range(100, 200);
785 
786 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
787 		if (value & SOR_PLL1_TERM_COMPOUT)
788 			adj &= ~mask;
789 
790 		mask >>= 1;
791 	}
792 
793 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
794 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
795 	value |= SOR_PLL1_TMDS_TERMADJ(adj);
796 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
797 
798 	/* disable pad calibration logic */
799 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
800 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
801 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
802 }
803 
tegra_sor_dp_link_apply_training(struct drm_dp_link * link)804 static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
805 {
806 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
807 	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
808 	const struct tegra_sor_soc *soc = sor->soc;
809 	u32 pattern = 0, tx_pu = 0, value;
810 	unsigned int i;
811 
812 	for (value = 0, i = 0; i < link->lanes; i++) {
813 		u8 vs = link->train.request.voltage_swing[i];
814 		u8 pe = link->train.request.pre_emphasis[i];
815 		u8 pc = link->train.request.post_cursor[i];
816 		u8 shift = sor->soc->lane_map[i] << 3;
817 
818 		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
819 		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
820 		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
821 
822 		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
823 			tx_pu = sor->soc->tx_pu[pc][vs][pe];
824 
825 		switch (link->train.pattern) {
826 		case DP_TRAINING_PATTERN_DISABLE:
827 			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
828 				SOR_DP_TPG_PATTERN_NONE;
829 			break;
830 
831 		case DP_TRAINING_PATTERN_1:
832 			value = SOR_DP_TPG_SCRAMBLER_NONE |
833 				SOR_DP_TPG_PATTERN_TRAIN1;
834 			break;
835 
836 		case DP_TRAINING_PATTERN_2:
837 			value = SOR_DP_TPG_SCRAMBLER_NONE |
838 				SOR_DP_TPG_PATTERN_TRAIN2;
839 			break;
840 
841 		case DP_TRAINING_PATTERN_3:
842 			value = SOR_DP_TPG_SCRAMBLER_NONE |
843 				SOR_DP_TPG_PATTERN_TRAIN3;
844 			break;
845 
846 		default:
847 			return -EINVAL;
848 		}
849 
850 		if (link->caps.channel_coding)
851 			value |= SOR_DP_TPG_CHANNEL_CODING;
852 
853 		pattern = pattern << 8 | value;
854 	}
855 
856 	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
857 	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
858 
859 	if (link->caps.tps3_supported)
860 		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
861 
862 	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
863 
864 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
865 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
866 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
867 	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
868 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
869 
870 	usleep_range(20, 100);
871 
872 	return 0;
873 }
874 
tegra_sor_dp_link_configure(struct drm_dp_link * link)875 static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
876 {
877 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
878 	unsigned int rate, lanes;
879 	u32 value;
880 	int err;
881 
882 	rate = drm_dp_link_rate_to_bw_code(link->rate);
883 	lanes = link->lanes;
884 
885 	/* configure link speed and lane count */
886 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
887 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
888 	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
889 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
890 
891 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
892 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
893 	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
894 
895 	if (link->caps.enhanced_framing)
896 		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
897 
898 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
899 
900 	usleep_range(400, 1000);
901 
902 	/* configure load pulse position adjustment */
903 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
904 	value &= ~SOR_PLL1_LOADADJ_MASK;
905 
906 	switch (rate) {
907 	case DP_LINK_BW_1_62:
908 		value |= SOR_PLL1_LOADADJ(0x3);
909 		break;
910 
911 	case DP_LINK_BW_2_7:
912 		value |= SOR_PLL1_LOADADJ(0x4);
913 		break;
914 
915 	case DP_LINK_BW_5_4:
916 		value |= SOR_PLL1_LOADADJ(0x6);
917 		break;
918 	}
919 
920 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
921 
922 	/* use alternate scrambler reset for eDP */
923 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
924 
925 	if (link->edp == 0)
926 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
927 	else
928 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
929 
930 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
931 
932 	err = tegra_sor_power_down_lanes(sor);
933 	if (err < 0) {
934 		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
935 		return err;
936 	}
937 
938 	/* power up and pre-charge lanes */
939 	err = tegra_sor_power_up_lanes(sor, lanes);
940 	if (err < 0) {
941 		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
942 			lanes, (lanes != 1) ? "s" : "", err);
943 		return err;
944 	}
945 
946 	tegra_sor_dp_precharge(sor, lanes);
947 
948 	return 0;
949 }
950 
951 static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
952 	.apply_training = tegra_sor_dp_link_apply_training,
953 	.configure = tegra_sor_dp_link_configure,
954 };
955 
tegra_sor_super_update(struct tegra_sor * sor)956 static void tegra_sor_super_update(struct tegra_sor *sor)
957 {
958 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
959 	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
960 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
961 }
962 
tegra_sor_update(struct tegra_sor * sor)963 static void tegra_sor_update(struct tegra_sor *sor)
964 {
965 	tegra_sor_writel(sor, 0, SOR_STATE0);
966 	tegra_sor_writel(sor, 1, SOR_STATE0);
967 	tegra_sor_writel(sor, 0, SOR_STATE0);
968 }
969 
tegra_sor_setup_pwm(struct tegra_sor * sor,unsigned long timeout)970 static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
971 {
972 	u32 value;
973 
974 	value = tegra_sor_readl(sor, SOR_PWM_DIV);
975 	value &= ~SOR_PWM_DIV_MASK;
976 	value |= 0x400; /* period */
977 	tegra_sor_writel(sor, value, SOR_PWM_DIV);
978 
979 	value = tegra_sor_readl(sor, SOR_PWM_CTL);
980 	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
981 	value |= 0x400; /* duty cycle */
982 	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
983 	value |= SOR_PWM_CTL_TRIGGER;
984 	tegra_sor_writel(sor, value, SOR_PWM_CTL);
985 
986 	timeout = jiffies + msecs_to_jiffies(timeout);
987 
988 	while (time_before(jiffies, timeout)) {
989 		value = tegra_sor_readl(sor, SOR_PWM_CTL);
990 		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
991 			return 0;
992 
993 		usleep_range(25, 100);
994 	}
995 
996 	return -ETIMEDOUT;
997 }
998 
tegra_sor_attach(struct tegra_sor * sor)999 static int tegra_sor_attach(struct tegra_sor *sor)
1000 {
1001 	unsigned long value, timeout;
1002 
1003 	/* wake up in normal mode */
1004 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1005 	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1006 	value |= SOR_SUPER_STATE_MODE_NORMAL;
1007 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1008 	tegra_sor_super_update(sor);
1009 
1010 	/* attach */
1011 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1012 	value |= SOR_SUPER_STATE_ATTACHED;
1013 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1014 	tegra_sor_super_update(sor);
1015 
1016 	timeout = jiffies + msecs_to_jiffies(250);
1017 
1018 	while (time_before(jiffies, timeout)) {
1019 		value = tegra_sor_readl(sor, SOR_TEST);
1020 		if ((value & SOR_TEST_ATTACHED) != 0)
1021 			return 0;
1022 
1023 		usleep_range(25, 100);
1024 	}
1025 
1026 	return -ETIMEDOUT;
1027 }
1028 
tegra_sor_wakeup(struct tegra_sor * sor)1029 static int tegra_sor_wakeup(struct tegra_sor *sor)
1030 {
1031 	unsigned long value, timeout;
1032 
1033 	timeout = jiffies + msecs_to_jiffies(250);
1034 
1035 	/* wait for head to wake up */
1036 	while (time_before(jiffies, timeout)) {
1037 		value = tegra_sor_readl(sor, SOR_TEST);
1038 		value &= SOR_TEST_HEAD_MODE_MASK;
1039 
1040 		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1041 			return 0;
1042 
1043 		usleep_range(25, 100);
1044 	}
1045 
1046 	return -ETIMEDOUT;
1047 }
1048 
tegra_sor_power_up(struct tegra_sor * sor,unsigned long timeout)1049 static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1050 {
1051 	u32 value;
1052 
1053 	value = tegra_sor_readl(sor, SOR_PWR);
1054 	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1055 	tegra_sor_writel(sor, value, SOR_PWR);
1056 
1057 	timeout = jiffies + msecs_to_jiffies(timeout);
1058 
1059 	while (time_before(jiffies, timeout)) {
1060 		value = tegra_sor_readl(sor, SOR_PWR);
1061 		if ((value & SOR_PWR_TRIGGER) == 0)
1062 			return 0;
1063 
1064 		usleep_range(25, 100);
1065 	}
1066 
1067 	return -ETIMEDOUT;
1068 }
1069 
1070 struct tegra_sor_params {
1071 	/* number of link clocks per line */
1072 	unsigned int num_clocks;
1073 	/* ratio between input and output */
1074 	u64 ratio;
1075 	/* precision factor */
1076 	u64 precision;
1077 
1078 	unsigned int active_polarity;
1079 	unsigned int active_count;
1080 	unsigned int active_frac;
1081 	unsigned int tu_size;
1082 	unsigned int error;
1083 };
1084 
tegra_sor_compute_params(struct tegra_sor * sor,struct tegra_sor_params * params,unsigned int tu_size)1085 static int tegra_sor_compute_params(struct tegra_sor *sor,
1086 				    struct tegra_sor_params *params,
1087 				    unsigned int tu_size)
1088 {
1089 	u64 active_sym, active_count, frac, approx;
1090 	u32 active_polarity, active_frac = 0;
1091 	const u64 f = params->precision;
1092 	s64 error;
1093 
1094 	active_sym = params->ratio * tu_size;
1095 	active_count = div_u64(active_sym, f) * f;
1096 	frac = active_sym - active_count;
1097 
1098 	/* fraction < 0.5 */
1099 	if (frac >= (f / 2)) {
1100 		active_polarity = 1;
1101 		frac = f - frac;
1102 	} else {
1103 		active_polarity = 0;
1104 	}
1105 
1106 	if (frac != 0) {
1107 		frac = div_u64(f * f,  frac); /* 1/fraction */
1108 		if (frac <= (15 * f)) {
1109 			active_frac = div_u64(frac, f);
1110 
1111 			/* round up */
1112 			if (active_polarity)
1113 				active_frac++;
1114 		} else {
1115 			active_frac = active_polarity ? 1 : 15;
1116 		}
1117 	}
1118 
1119 	if (active_frac == 1)
1120 		active_polarity = 0;
1121 
1122 	if (active_polarity == 1) {
1123 		if (active_frac) {
1124 			approx = active_count + (active_frac * (f - 1)) * f;
1125 			approx = div_u64(approx, active_frac * f);
1126 		} else {
1127 			approx = active_count + f;
1128 		}
1129 	} else {
1130 		if (active_frac)
1131 			approx = active_count + div_u64(f, active_frac);
1132 		else
1133 			approx = active_count;
1134 	}
1135 
1136 	error = div_s64(active_sym - approx, tu_size);
1137 	error *= params->num_clocks;
1138 
1139 	if (error <= 0 && abs(error) < params->error) {
1140 		params->active_count = div_u64(active_count, f);
1141 		params->active_polarity = active_polarity;
1142 		params->active_frac = active_frac;
1143 		params->error = abs(error);
1144 		params->tu_size = tu_size;
1145 
1146 		if (error == 0)
1147 			return true;
1148 	}
1149 
1150 	return false;
1151 }
1152 
tegra_sor_compute_config(struct tegra_sor * sor,const struct drm_display_mode * mode,struct tegra_sor_config * config,struct drm_dp_link * link)1153 static int tegra_sor_compute_config(struct tegra_sor *sor,
1154 				    const struct drm_display_mode *mode,
1155 				    struct tegra_sor_config *config,
1156 				    struct drm_dp_link *link)
1157 {
1158 	const u64 f = 100000, link_rate = link->rate * 1000;
1159 	const u64 pclk = (u64)mode->clock * 1000;
1160 	u64 input, output, watermark, num;
1161 	struct tegra_sor_params params;
1162 	u32 num_syms_per_line;
1163 	unsigned int i;
1164 
1165 	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1166 		return -EINVAL;
1167 
1168 	input = pclk * config->bits_per_pixel;
1169 	output = link_rate * 8 * link->lanes;
1170 
1171 	if (input >= output)
1172 		return -ERANGE;
1173 
1174 	memset(&params, 0, sizeof(params));
1175 	params.ratio = div64_u64(input * f, output);
1176 	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1177 	params.precision = f;
1178 	params.error = 64 * f;
1179 	params.tu_size = 64;
1180 
1181 	for (i = params.tu_size; i >= 32; i--)
1182 		if (tegra_sor_compute_params(sor, &params, i))
1183 			break;
1184 
1185 	if (params.active_frac == 0) {
1186 		config->active_polarity = 0;
1187 		config->active_count = params.active_count;
1188 
1189 		if (!params.active_polarity)
1190 			config->active_count--;
1191 
1192 		config->tu_size = params.tu_size;
1193 		config->active_frac = 1;
1194 	} else {
1195 		config->active_polarity = params.active_polarity;
1196 		config->active_count = params.active_count;
1197 		config->active_frac = params.active_frac;
1198 		config->tu_size = params.tu_size;
1199 	}
1200 
1201 	dev_dbg(sor->dev,
1202 		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1203 		config->active_polarity, config->active_count,
1204 		config->tu_size, config->active_frac);
1205 
1206 	watermark = params.ratio * config->tu_size * (f - params.ratio);
1207 	watermark = div_u64(watermark, f);
1208 
1209 	watermark = div_u64(watermark + params.error, f);
1210 	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1211 	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1212 			    (link->lanes * 8);
1213 
1214 	if (config->watermark > 30) {
1215 		config->watermark = 30;
1216 		dev_err(sor->dev,
1217 			"unable to compute TU size, forcing watermark to %u\n",
1218 			config->watermark);
1219 	} else if (config->watermark > num_syms_per_line) {
1220 		config->watermark = num_syms_per_line;
1221 		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1222 			config->watermark);
1223 	}
1224 
1225 	/* compute the number of symbols per horizontal blanking interval */
1226 	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1227 	config->hblank_symbols = div_u64(num, pclk);
1228 
1229 	if (link->caps.enhanced_framing)
1230 		config->hblank_symbols -= 3;
1231 
1232 	config->hblank_symbols -= 12 / link->lanes;
1233 
1234 	/* compute the number of symbols per vertical blanking interval */
1235 	num = (mode->hdisplay - 25) * link_rate;
1236 	config->vblank_symbols = div_u64(num, pclk);
1237 	config->vblank_symbols -= 36 / link->lanes + 4;
1238 
1239 	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1240 		config->vblank_symbols);
1241 
1242 	return 0;
1243 }
1244 
tegra_sor_apply_config(struct tegra_sor * sor,const struct tegra_sor_config * config)1245 static void tegra_sor_apply_config(struct tegra_sor *sor,
1246 				   const struct tegra_sor_config *config)
1247 {
1248 	u32 value;
1249 
1250 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1251 	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1252 	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1253 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1254 
1255 	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1256 	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1257 	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1258 
1259 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1260 	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1261 
1262 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1263 	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1264 
1265 	if (config->active_polarity)
1266 		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1267 	else
1268 		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1269 
1270 	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1271 	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1272 	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1273 
1274 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1275 	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1276 	value |= config->hblank_symbols & 0xffff;
1277 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1278 
1279 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1280 	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1281 	value |= config->vblank_symbols & 0xffff;
1282 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1283 }
1284 
tegra_sor_mode_set(struct tegra_sor * sor,const struct drm_display_mode * mode,struct tegra_sor_state * state)1285 static void tegra_sor_mode_set(struct tegra_sor *sor,
1286 			       const struct drm_display_mode *mode,
1287 			       struct tegra_sor_state *state)
1288 {
1289 	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1290 	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1291 	u32 value;
1292 
1293 	value = tegra_sor_readl(sor, SOR_STATE1);
1294 	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1295 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1296 	value &= ~SOR_STATE_ASY_OWNER_MASK;
1297 
1298 	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1299 		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1300 
1301 	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1302 		value &= ~SOR_STATE_ASY_HSYNCPOL;
1303 
1304 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1305 		value |= SOR_STATE_ASY_HSYNCPOL;
1306 
1307 	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1308 		value &= ~SOR_STATE_ASY_VSYNCPOL;
1309 
1310 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1311 		value |= SOR_STATE_ASY_VSYNCPOL;
1312 
1313 	switch (state->bpc) {
1314 	case 16:
1315 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1316 		break;
1317 
1318 	case 12:
1319 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1320 		break;
1321 
1322 	case 10:
1323 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1324 		break;
1325 
1326 	case 8:
1327 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1328 		break;
1329 
1330 	case 6:
1331 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1332 		break;
1333 
1334 	default:
1335 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1336 		break;
1337 	}
1338 
1339 	tegra_sor_writel(sor, value, SOR_STATE1);
1340 
1341 	/*
1342 	 * TODO: The video timing programming below doesn't seem to match the
1343 	 * register definitions.
1344 	 */
1345 
1346 	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1347 	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1348 
1349 	/* sync end = sync width - 1 */
1350 	vse = mode->vsync_end - mode->vsync_start - 1;
1351 	hse = mode->hsync_end - mode->hsync_start - 1;
1352 
1353 	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1354 	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1355 
1356 	/* blank end = sync end + back porch */
1357 	vbe = vse + (mode->vtotal - mode->vsync_end);
1358 	hbe = hse + (mode->htotal - mode->hsync_end);
1359 
1360 	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1361 	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1362 
1363 	/* blank start = blank end + active */
1364 	vbs = vbe + mode->vdisplay;
1365 	hbs = hbe + mode->hdisplay;
1366 
1367 	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1368 	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1369 
1370 	/* XXX interlacing support */
1371 	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1372 }
1373 
tegra_sor_detach(struct tegra_sor * sor)1374 static int tegra_sor_detach(struct tegra_sor *sor)
1375 {
1376 	unsigned long value, timeout;
1377 
1378 	/* switch to safe mode */
1379 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1380 	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1381 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1382 	tegra_sor_super_update(sor);
1383 
1384 	timeout = jiffies + msecs_to_jiffies(250);
1385 
1386 	while (time_before(jiffies, timeout)) {
1387 		value = tegra_sor_readl(sor, SOR_PWR);
1388 		if (value & SOR_PWR_MODE_SAFE)
1389 			break;
1390 	}
1391 
1392 	if ((value & SOR_PWR_MODE_SAFE) == 0)
1393 		return -ETIMEDOUT;
1394 
1395 	/* go to sleep */
1396 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1397 	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1398 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1399 	tegra_sor_super_update(sor);
1400 
1401 	/* detach */
1402 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1403 	value &= ~SOR_SUPER_STATE_ATTACHED;
1404 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1405 	tegra_sor_super_update(sor);
1406 
1407 	timeout = jiffies + msecs_to_jiffies(250);
1408 
1409 	while (time_before(jiffies, timeout)) {
1410 		value = tegra_sor_readl(sor, SOR_TEST);
1411 		if ((value & SOR_TEST_ATTACHED) == 0)
1412 			break;
1413 
1414 		usleep_range(25, 100);
1415 	}
1416 
1417 	if ((value & SOR_TEST_ATTACHED) != 0)
1418 		return -ETIMEDOUT;
1419 
1420 	return 0;
1421 }
1422 
tegra_sor_power_down(struct tegra_sor * sor)1423 static int tegra_sor_power_down(struct tegra_sor *sor)
1424 {
1425 	unsigned long value, timeout;
1426 	int err;
1427 
1428 	value = tegra_sor_readl(sor, SOR_PWR);
1429 	value &= ~SOR_PWR_NORMAL_STATE_PU;
1430 	value |= SOR_PWR_TRIGGER;
1431 	tegra_sor_writel(sor, value, SOR_PWR);
1432 
1433 	timeout = jiffies + msecs_to_jiffies(250);
1434 
1435 	while (time_before(jiffies, timeout)) {
1436 		value = tegra_sor_readl(sor, SOR_PWR);
1437 		if ((value & SOR_PWR_TRIGGER) == 0)
1438 			return 0;
1439 
1440 		usleep_range(25, 100);
1441 	}
1442 
1443 	if ((value & SOR_PWR_TRIGGER) != 0)
1444 		return -ETIMEDOUT;
1445 
1446 	/* switch to safe parent clock */
1447 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1448 	if (err < 0) {
1449 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1450 		return err;
1451 	}
1452 
1453 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1454 	value |= SOR_PLL2_PORT_POWERDOWN;
1455 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1456 
1457 	usleep_range(20, 100);
1458 
1459 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1460 	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1461 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1462 
1463 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1464 	value |= SOR_PLL2_SEQ_PLLCAPPD;
1465 	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1466 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1467 
1468 	usleep_range(20, 100);
1469 
1470 	return 0;
1471 }
1472 
tegra_sor_crc_wait(struct tegra_sor * sor,unsigned long timeout)1473 static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1474 {
1475 	u32 value;
1476 
1477 	timeout = jiffies + msecs_to_jiffies(timeout);
1478 
1479 	while (time_before(jiffies, timeout)) {
1480 		value = tegra_sor_readl(sor, SOR_CRCA);
1481 		if (value & SOR_CRCA_VALID)
1482 			return 0;
1483 
1484 		usleep_range(100, 200);
1485 	}
1486 
1487 	return -ETIMEDOUT;
1488 }
1489 
tegra_sor_show_crc(struct seq_file * s,void * data)1490 static int tegra_sor_show_crc(struct seq_file *s, void *data)
1491 {
1492 	struct drm_info_node *node = s->private;
1493 	struct tegra_sor *sor = node->info_ent->data;
1494 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1495 	struct drm_device *drm = node->minor->dev;
1496 	int err = 0;
1497 	u32 value;
1498 
1499 	drm_modeset_lock_all(drm);
1500 
1501 	if (!crtc || !crtc->state->active) {
1502 		err = -EBUSY;
1503 		goto unlock;
1504 	}
1505 
1506 	value = tegra_sor_readl(sor, SOR_STATE1);
1507 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1508 	tegra_sor_writel(sor, value, SOR_STATE1);
1509 
1510 	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1511 	value |= SOR_CRC_CNTRL_ENABLE;
1512 	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1513 
1514 	value = tegra_sor_readl(sor, SOR_TEST);
1515 	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1516 	tegra_sor_writel(sor, value, SOR_TEST);
1517 
1518 	err = tegra_sor_crc_wait(sor, 100);
1519 	if (err < 0)
1520 		goto unlock;
1521 
1522 	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1523 	value = tegra_sor_readl(sor, SOR_CRCB);
1524 
1525 	seq_printf(s, "%08x\n", value);
1526 
1527 unlock:
1528 	drm_modeset_unlock_all(drm);
1529 	return err;
1530 }
1531 
1532 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1533 
1534 static const struct debugfs_reg32 tegra_sor_regs[] = {
1535 	DEBUGFS_REG32(SOR_CTXSW),
1536 	DEBUGFS_REG32(SOR_SUPER_STATE0),
1537 	DEBUGFS_REG32(SOR_SUPER_STATE1),
1538 	DEBUGFS_REG32(SOR_STATE0),
1539 	DEBUGFS_REG32(SOR_STATE1),
1540 	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1541 	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1542 	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1543 	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1544 	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1545 	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1546 	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1547 	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1548 	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1549 	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1550 	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1551 	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1552 	DEBUGFS_REG32(SOR_CRC_CNTRL),
1553 	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1554 	DEBUGFS_REG32(SOR_CLK_CNTRL),
1555 	DEBUGFS_REG32(SOR_CAP),
1556 	DEBUGFS_REG32(SOR_PWR),
1557 	DEBUGFS_REG32(SOR_TEST),
1558 	DEBUGFS_REG32(SOR_PLL0),
1559 	DEBUGFS_REG32(SOR_PLL1),
1560 	DEBUGFS_REG32(SOR_PLL2),
1561 	DEBUGFS_REG32(SOR_PLL3),
1562 	DEBUGFS_REG32(SOR_CSTM),
1563 	DEBUGFS_REG32(SOR_LVDS),
1564 	DEBUGFS_REG32(SOR_CRCA),
1565 	DEBUGFS_REG32(SOR_CRCB),
1566 	DEBUGFS_REG32(SOR_BLANK),
1567 	DEBUGFS_REG32(SOR_SEQ_CTL),
1568 	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1569 	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1570 	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1571 	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1572 	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1573 	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1574 	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1575 	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1576 	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1577 	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1578 	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1579 	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1580 	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1581 	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1582 	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1583 	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1584 	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1585 	DEBUGFS_REG32(SOR_PWM_DIV),
1586 	DEBUGFS_REG32(SOR_PWM_CTL),
1587 	DEBUGFS_REG32(SOR_VCRC_A0),
1588 	DEBUGFS_REG32(SOR_VCRC_A1),
1589 	DEBUGFS_REG32(SOR_VCRC_B0),
1590 	DEBUGFS_REG32(SOR_VCRC_B1),
1591 	DEBUGFS_REG32(SOR_CCRC_A0),
1592 	DEBUGFS_REG32(SOR_CCRC_A1),
1593 	DEBUGFS_REG32(SOR_CCRC_B0),
1594 	DEBUGFS_REG32(SOR_CCRC_B1),
1595 	DEBUGFS_REG32(SOR_EDATA_A0),
1596 	DEBUGFS_REG32(SOR_EDATA_A1),
1597 	DEBUGFS_REG32(SOR_EDATA_B0),
1598 	DEBUGFS_REG32(SOR_EDATA_B1),
1599 	DEBUGFS_REG32(SOR_COUNT_A0),
1600 	DEBUGFS_REG32(SOR_COUNT_A1),
1601 	DEBUGFS_REG32(SOR_COUNT_B0),
1602 	DEBUGFS_REG32(SOR_COUNT_B1),
1603 	DEBUGFS_REG32(SOR_DEBUG_A0),
1604 	DEBUGFS_REG32(SOR_DEBUG_A1),
1605 	DEBUGFS_REG32(SOR_DEBUG_B0),
1606 	DEBUGFS_REG32(SOR_DEBUG_B1),
1607 	DEBUGFS_REG32(SOR_TRIG),
1608 	DEBUGFS_REG32(SOR_MSCHECK),
1609 	DEBUGFS_REG32(SOR_XBAR_CTRL),
1610 	DEBUGFS_REG32(SOR_XBAR_POL),
1611 	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1612 	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1613 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1614 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1615 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1616 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1617 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1618 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1619 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1620 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1621 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1622 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1623 	DEBUGFS_REG32(SOR_DP_CONFIG0),
1624 	DEBUGFS_REG32(SOR_DP_CONFIG1),
1625 	DEBUGFS_REG32(SOR_DP_MN0),
1626 	DEBUGFS_REG32(SOR_DP_MN1),
1627 	DEBUGFS_REG32(SOR_DP_PADCTL0),
1628 	DEBUGFS_REG32(SOR_DP_PADCTL1),
1629 	DEBUGFS_REG32(SOR_DP_PADCTL2),
1630 	DEBUGFS_REG32(SOR_DP_DEBUG0),
1631 	DEBUGFS_REG32(SOR_DP_DEBUG1),
1632 	DEBUGFS_REG32(SOR_DP_SPARE0),
1633 	DEBUGFS_REG32(SOR_DP_SPARE1),
1634 	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1635 	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1636 	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1637 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1638 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1639 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1640 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1641 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1642 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1643 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1644 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1645 	DEBUGFS_REG32(SOR_DP_TPG),
1646 	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1647 	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1648 	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1649 	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1650 };
1651 
tegra_sor_show_regs(struct seq_file * s,void * data)1652 static int tegra_sor_show_regs(struct seq_file *s, void *data)
1653 {
1654 	struct drm_info_node *node = s->private;
1655 	struct tegra_sor *sor = node->info_ent->data;
1656 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1657 	struct drm_device *drm = node->minor->dev;
1658 	unsigned int i;
1659 	int err = 0;
1660 
1661 	drm_modeset_lock_all(drm);
1662 
1663 	if (!crtc || !crtc->state->active) {
1664 		err = -EBUSY;
1665 		goto unlock;
1666 	}
1667 
1668 	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1669 		unsigned int offset = tegra_sor_regs[i].offset;
1670 
1671 		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1672 			   offset, tegra_sor_readl(sor, offset));
1673 	}
1674 
1675 unlock:
1676 	drm_modeset_unlock_all(drm);
1677 	return err;
1678 }
1679 
1680 static const struct drm_info_list debugfs_files[] = {
1681 	{ "crc", tegra_sor_show_crc, 0, NULL },
1682 	{ "regs", tegra_sor_show_regs, 0, NULL },
1683 };
1684 
tegra_sor_late_register(struct drm_connector * connector)1685 static int tegra_sor_late_register(struct drm_connector *connector)
1686 {
1687 	struct tegra_output *output = connector_to_output(connector);
1688 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1689 	struct drm_minor *minor = connector->dev->primary;
1690 	struct dentry *root = connector->debugfs_entry;
1691 	struct tegra_sor *sor = to_sor(output);
1692 
1693 	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1694 				     GFP_KERNEL);
1695 	if (!sor->debugfs_files)
1696 		return -ENOMEM;
1697 
1698 	for (i = 0; i < count; i++)
1699 		sor->debugfs_files[i].data = sor;
1700 
1701 	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1702 
1703 	return 0;
1704 }
1705 
tegra_sor_early_unregister(struct drm_connector * connector)1706 static void tegra_sor_early_unregister(struct drm_connector *connector)
1707 {
1708 	struct tegra_output *output = connector_to_output(connector);
1709 	unsigned int count = ARRAY_SIZE(debugfs_files);
1710 	struct tegra_sor *sor = to_sor(output);
1711 
1712 	drm_debugfs_remove_files(sor->debugfs_files, count,
1713 				 connector->debugfs_entry,
1714 				 connector->dev->primary);
1715 	kfree(sor->debugfs_files);
1716 	sor->debugfs_files = NULL;
1717 }
1718 
tegra_sor_connector_reset(struct drm_connector * connector)1719 static void tegra_sor_connector_reset(struct drm_connector *connector)
1720 {
1721 	struct tegra_sor_state *state;
1722 
1723 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1724 	if (!state)
1725 		return;
1726 
1727 	if (connector->state) {
1728 		__drm_atomic_helper_connector_destroy_state(connector->state);
1729 		kfree(connector->state);
1730 	}
1731 
1732 	__drm_atomic_helper_connector_reset(connector, &state->base);
1733 }
1734 
1735 static enum drm_connector_status
tegra_sor_connector_detect(struct drm_connector * connector,bool force)1736 tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1737 {
1738 	struct tegra_output *output = connector_to_output(connector);
1739 	struct tegra_sor *sor = to_sor(output);
1740 
1741 	if (sor->aux)
1742 		return drm_dp_aux_detect(sor->aux);
1743 
1744 	return tegra_output_connector_detect(connector, force);
1745 }
1746 
1747 static struct drm_connector_state *
tegra_sor_connector_duplicate_state(struct drm_connector * connector)1748 tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1749 {
1750 	struct tegra_sor_state *state = to_sor_state(connector->state);
1751 	struct tegra_sor_state *copy;
1752 
1753 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1754 	if (!copy)
1755 		return NULL;
1756 
1757 	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1758 
1759 	return &copy->base;
1760 }
1761 
1762 static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1763 	.reset = tegra_sor_connector_reset,
1764 	.detect = tegra_sor_connector_detect,
1765 	.fill_modes = drm_helper_probe_single_connector_modes,
1766 	.destroy = tegra_output_connector_destroy,
1767 	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1768 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1769 	.late_register = tegra_sor_late_register,
1770 	.early_unregister = tegra_sor_early_unregister,
1771 };
1772 
tegra_sor_connector_get_modes(struct drm_connector * connector)1773 static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1774 {
1775 	struct tegra_output *output = connector_to_output(connector);
1776 	struct tegra_sor *sor = to_sor(output);
1777 	int err;
1778 
1779 	if (sor->aux)
1780 		drm_dp_aux_enable(sor->aux);
1781 
1782 	err = tegra_output_connector_get_modes(connector);
1783 
1784 	if (sor->aux)
1785 		drm_dp_aux_disable(sor->aux);
1786 
1787 	return err;
1788 }
1789 
1790 static enum drm_mode_status
tegra_sor_connector_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1791 tegra_sor_connector_mode_valid(struct drm_connector *connector,
1792 			       struct drm_display_mode *mode)
1793 {
1794 	return MODE_OK;
1795 }
1796 
1797 static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1798 	.get_modes = tegra_sor_connector_get_modes,
1799 	.mode_valid = tegra_sor_connector_mode_valid,
1800 };
1801 
1802 static int
tegra_sor_encoder_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1803 tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1804 			       struct drm_crtc_state *crtc_state,
1805 			       struct drm_connector_state *conn_state)
1806 {
1807 	struct tegra_output *output = encoder_to_output(encoder);
1808 	struct tegra_sor_state *state = to_sor_state(conn_state);
1809 	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1810 	unsigned long pclk = crtc_state->mode.clock * 1000;
1811 	struct tegra_sor *sor = to_sor(output);
1812 	struct drm_display_info *info;
1813 	int err;
1814 
1815 	info = &output->connector.display_info;
1816 
1817 	/*
1818 	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1819 	 * the pixel clock must be corrected accordingly.
1820 	 */
1821 	if (pclk >= 340000000) {
1822 		state->link_speed = 20;
1823 		state->pclk = pclk / 2;
1824 	} else {
1825 		state->link_speed = 10;
1826 		state->pclk = pclk;
1827 	}
1828 
1829 	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1830 					 pclk, 0);
1831 	if (err < 0) {
1832 		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1833 		return err;
1834 	}
1835 
1836 	switch (info->bpc) {
1837 	case 8:
1838 	case 6:
1839 		state->bpc = info->bpc;
1840 		break;
1841 
1842 	default:
1843 		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1844 		state->bpc = 8;
1845 		break;
1846 	}
1847 
1848 	return 0;
1849 }
1850 
tegra_sor_hdmi_subpack(const u8 * ptr,size_t size)1851 static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1852 {
1853 	u32 value = 0;
1854 	size_t i;
1855 
1856 	for (i = size; i > 0; i--)
1857 		value = (value << 8) | ptr[i - 1];
1858 
1859 	return value;
1860 }
1861 
tegra_sor_hdmi_write_infopack(struct tegra_sor * sor,const void * data,size_t size)1862 static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1863 					  const void *data, size_t size)
1864 {
1865 	const u8 *ptr = data;
1866 	unsigned long offset;
1867 	size_t i, j;
1868 	u32 value;
1869 
1870 	switch (ptr[0]) {
1871 	case HDMI_INFOFRAME_TYPE_AVI:
1872 		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1873 		break;
1874 
1875 	case HDMI_INFOFRAME_TYPE_AUDIO:
1876 		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1877 		break;
1878 
1879 	case HDMI_INFOFRAME_TYPE_VENDOR:
1880 		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1881 		break;
1882 
1883 	default:
1884 		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1885 			ptr[0]);
1886 		return;
1887 	}
1888 
1889 	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1890 		INFOFRAME_HEADER_VERSION(ptr[1]) |
1891 		INFOFRAME_HEADER_LEN(ptr[2]);
1892 	tegra_sor_writel(sor, value, offset);
1893 	offset++;
1894 
1895 	/*
1896 	 * Each subpack contains 7 bytes, divided into:
1897 	 * - subpack_low: bytes 0 - 3
1898 	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1899 	 */
1900 	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1901 		size_t rem = size - i, num = min_t(size_t, rem, 4);
1902 
1903 		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1904 		tegra_sor_writel(sor, value, offset++);
1905 
1906 		num = min_t(size_t, rem - num, 3);
1907 
1908 		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1909 		tegra_sor_writel(sor, value, offset++);
1910 	}
1911 }
1912 
1913 static int
tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor * sor,const struct drm_display_mode * mode)1914 tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1915 				   const struct drm_display_mode *mode)
1916 {
1917 	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1918 	struct hdmi_avi_infoframe frame;
1919 	u32 value;
1920 	int err;
1921 
1922 	/* disable AVI infoframe */
1923 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1924 	value &= ~INFOFRAME_CTRL_SINGLE;
1925 	value &= ~INFOFRAME_CTRL_OTHER;
1926 	value &= ~INFOFRAME_CTRL_ENABLE;
1927 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1928 
1929 	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1930 						       &sor->output.connector, mode);
1931 	if (err < 0) {
1932 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1933 		return err;
1934 	}
1935 
1936 	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1937 	if (err < 0) {
1938 		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1939 		return err;
1940 	}
1941 
1942 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1943 
1944 	/* enable AVI infoframe */
1945 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1946 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1947 	value |= INFOFRAME_CTRL_ENABLE;
1948 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1949 
1950 	return 0;
1951 }
1952 
tegra_sor_write_eld(struct tegra_sor * sor)1953 static void tegra_sor_write_eld(struct tegra_sor *sor)
1954 {
1955 	size_t length = drm_eld_size(sor->output.connector.eld), i;
1956 
1957 	for (i = 0; i < length; i++)
1958 		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1959 				 SOR_AUDIO_HDA_ELD_BUFWR);
1960 
1961 	/*
1962 	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1963 	 * the HDA codec driver will check that each byte read from the buffer
1964 	 * is valid. Therefore every byte must be written, even if no 96 bytes
1965 	 * were parsed from EDID.
1966 	 */
1967 	for (i = length; i < 96; i++)
1968 		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1969 }
1970 
tegra_sor_audio_prepare(struct tegra_sor * sor)1971 static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1972 {
1973 	u32 value;
1974 
1975 	/*
1976 	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1977 	 * is used for interoperability between the HDA codec driver and the
1978 	 * HDMI/DP driver.
1979 	 */
1980 	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1981 	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1982 	tegra_sor_writel(sor, value, SOR_INT_MASK);
1983 
1984 	tegra_sor_write_eld(sor);
1985 
1986 	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1987 	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1988 }
1989 
tegra_sor_audio_unprepare(struct tegra_sor * sor)1990 static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1991 {
1992 	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1993 	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1994 	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1995 }
1996 
tegra_sor_audio_enable(struct tegra_sor * sor)1997 static void tegra_sor_audio_enable(struct tegra_sor *sor)
1998 {
1999 	u32 value;
2000 
2001 	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
2002 
2003 	/* select HDA audio input */
2004 	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2005 	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2006 
2007 	/* inject null samples */
2008 	if (sor->format.channels != 2)
2009 		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2010 	else
2011 		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2012 
2013 	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2014 
2015 	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2016 
2017 	/* enable advertising HBR capability */
2018 	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2019 }
2020 
tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor * sor)2021 static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2022 {
2023 	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2024 	struct hdmi_audio_infoframe frame;
2025 	u32 value;
2026 	int err;
2027 
2028 	err = hdmi_audio_infoframe_init(&frame);
2029 	if (err < 0) {
2030 		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2031 		return err;
2032 	}
2033 
2034 	frame.channels = sor->format.channels;
2035 
2036 	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2037 	if (err < 0) {
2038 		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2039 		return err;
2040 	}
2041 
2042 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2043 
2044 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2045 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2046 	value |= INFOFRAME_CTRL_ENABLE;
2047 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2048 
2049 	return 0;
2050 }
2051 
tegra_sor_hdmi_audio_enable(struct tegra_sor * sor)2052 static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2053 {
2054 	u32 value;
2055 
2056 	tegra_sor_audio_enable(sor);
2057 
2058 	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2059 
2060 	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2061 		SOR_HDMI_SPARE_CTS_RESET(1) |
2062 		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2063 	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2064 
2065 	/* enable HW CTS */
2066 	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2067 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2068 
2069 	/* allow packet to be sent */
2070 	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2071 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2072 
2073 	/* reset N counter and enable lookup */
2074 	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2075 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2076 
2077 	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2078 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2079 	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2080 
2081 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2082 	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2083 
2084 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2085 	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2086 
2087 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2088 	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2089 
2090 	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2091 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2092 	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2093 
2094 	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2095 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2096 	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2097 
2098 	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2099 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2100 	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2101 
2102 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2103 	value &= ~SOR_HDMI_AUDIO_N_RESET;
2104 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2105 
2106 	tegra_sor_hdmi_enable_audio_infoframe(sor);
2107 }
2108 
tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor * sor)2109 static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2110 {
2111 	u32 value;
2112 
2113 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2114 	value &= ~INFOFRAME_CTRL_ENABLE;
2115 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2116 }
2117 
tegra_sor_hdmi_audio_disable(struct tegra_sor * sor)2118 static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2119 {
2120 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2121 }
2122 
2123 static struct tegra_sor_hdmi_settings *
tegra_sor_hdmi_find_settings(struct tegra_sor * sor,unsigned long frequency)2124 tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2125 {
2126 	unsigned int i;
2127 
2128 	for (i = 0; i < sor->num_settings; i++)
2129 		if (frequency <= sor->settings[i].frequency)
2130 			return &sor->settings[i];
2131 
2132 	return NULL;
2133 }
2134 
tegra_sor_hdmi_disable_scrambling(struct tegra_sor * sor)2135 static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2136 {
2137 	u32 value;
2138 
2139 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2140 	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2141 	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2142 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2143 }
2144 
tegra_sor_hdmi_scdc_disable(struct tegra_sor * sor)2145 static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2146 {
2147 	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, false);
2148 	drm_scdc_set_scrambling(&sor->output.connector, false);
2149 
2150 	tegra_sor_hdmi_disable_scrambling(sor);
2151 }
2152 
tegra_sor_hdmi_scdc_stop(struct tegra_sor * sor)2153 static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2154 {
2155 	if (sor->scdc_enabled) {
2156 		cancel_delayed_work_sync(&sor->scdc);
2157 		tegra_sor_hdmi_scdc_disable(sor);
2158 	}
2159 }
2160 
tegra_sor_hdmi_enable_scrambling(struct tegra_sor * sor)2161 static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2162 {
2163 	u32 value;
2164 
2165 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2166 	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2167 	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2168 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2169 }
2170 
tegra_sor_hdmi_scdc_enable(struct tegra_sor * sor)2171 static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2172 {
2173 	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, true);
2174 	drm_scdc_set_scrambling(&sor->output.connector, true);
2175 
2176 	tegra_sor_hdmi_enable_scrambling(sor);
2177 }
2178 
tegra_sor_hdmi_scdc_work(struct work_struct * work)2179 static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2180 {
2181 	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2182 
2183 	if (!drm_scdc_get_scrambling_status(&sor->output.connector)) {
2184 		DRM_DEBUG_KMS("SCDC not scrambled\n");
2185 		tegra_sor_hdmi_scdc_enable(sor);
2186 	}
2187 
2188 	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2189 }
2190 
tegra_sor_hdmi_scdc_start(struct tegra_sor * sor)2191 static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2192 {
2193 	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2194 	struct drm_display_mode *mode;
2195 
2196 	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2197 
2198 	if (mode->clock >= 340000 && scdc->supported) {
2199 		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2200 		tegra_sor_hdmi_scdc_enable(sor);
2201 		sor->scdc_enabled = true;
2202 	}
2203 }
2204 
tegra_sor_hdmi_disable(struct drm_encoder * encoder)2205 static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2206 {
2207 	struct tegra_output *output = encoder_to_output(encoder);
2208 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2209 	struct tegra_sor *sor = to_sor(output);
2210 	u32 value;
2211 	int err;
2212 
2213 	tegra_sor_audio_unprepare(sor);
2214 	tegra_sor_hdmi_scdc_stop(sor);
2215 
2216 	err = tegra_sor_detach(sor);
2217 	if (err < 0)
2218 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2219 
2220 	tegra_sor_writel(sor, 0, SOR_STATE1);
2221 	tegra_sor_update(sor);
2222 
2223 	/* disable display to SOR clock */
2224 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2225 
2226 	if (!sor->soc->has_nvdisplay)
2227 		value &= ~SOR1_TIMING_CYA;
2228 
2229 	value &= ~SOR_ENABLE(sor->index);
2230 
2231 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2232 
2233 	tegra_dc_commit(dc);
2234 
2235 	err = tegra_sor_power_down(sor);
2236 	if (err < 0)
2237 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2238 
2239 	err = tegra_io_pad_power_disable(sor->pad);
2240 	if (err < 0)
2241 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2242 
2243 	host1x_client_suspend(&sor->client);
2244 }
2245 
tegra_sor_hdmi_enable(struct drm_encoder * encoder)2246 static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2247 {
2248 	struct tegra_output *output = encoder_to_output(encoder);
2249 	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2250 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2251 	struct tegra_sor_hdmi_settings *settings;
2252 	struct tegra_sor *sor = to_sor(output);
2253 	struct tegra_sor_state *state;
2254 	struct drm_display_mode *mode;
2255 	unsigned long rate, pclk;
2256 	unsigned int div, i;
2257 	u32 value;
2258 	int err;
2259 
2260 	state = to_sor_state(output->connector.state);
2261 	mode = &encoder->crtc->state->adjusted_mode;
2262 	pclk = mode->clock * 1000;
2263 
2264 	err = host1x_client_resume(&sor->client);
2265 	if (err < 0) {
2266 		dev_err(sor->dev, "failed to resume: %d\n", err);
2267 		return;
2268 	}
2269 
2270 	/* switch to safe parent clock */
2271 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2272 	if (err < 0) {
2273 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2274 		return;
2275 	}
2276 
2277 	div = clk_get_rate(sor->clk) / 1000000 * 4;
2278 
2279 	err = tegra_io_pad_power_enable(sor->pad);
2280 	if (err < 0)
2281 		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2282 
2283 	usleep_range(20, 100);
2284 
2285 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2286 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2287 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2288 
2289 	usleep_range(20, 100);
2290 
2291 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2292 	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2293 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2294 
2295 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2296 	value &= ~SOR_PLL0_VCOPD;
2297 	value &= ~SOR_PLL0_PWR;
2298 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2299 
2300 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2301 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2302 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2303 
2304 	usleep_range(200, 400);
2305 
2306 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2307 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2308 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2309 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2310 
2311 	usleep_range(20, 100);
2312 
2313 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2314 	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2315 		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2316 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2317 
2318 	while (true) {
2319 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2320 		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2321 			break;
2322 
2323 		usleep_range(250, 1000);
2324 	}
2325 
2326 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2327 		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2328 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2329 
2330 	while (true) {
2331 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2332 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2333 			break;
2334 
2335 		usleep_range(250, 1000);
2336 	}
2337 
2338 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2339 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2340 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2341 
2342 	if (mode->clock < 340000) {
2343 		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2344 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2345 	} else {
2346 		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2347 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2348 	}
2349 
2350 	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2351 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2352 
2353 	/* SOR pad PLL stabilization time */
2354 	usleep_range(250, 1000);
2355 
2356 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2357 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2358 	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2359 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2360 
2361 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2362 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2363 	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2364 	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2365 	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2366 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2367 
2368 	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2369 		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2370 	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2371 
2372 	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2373 		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2374 	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2375 	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2376 
2377 	if (!sor->soc->has_nvdisplay) {
2378 		/* program the reference clock */
2379 		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2380 		tegra_sor_writel(sor, value, SOR_REFCLK);
2381 	}
2382 
2383 	/* XXX not in TRM */
2384 	for (value = 0, i = 0; i < 5; i++)
2385 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2386 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2387 
2388 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2389 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2390 
2391 	/*
2392 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2393 	 * do this because Tegra186 and later don't support clk_set_parent()
2394 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2395 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2396 	 */
2397 #if 0
2398 	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2399 	if (err < 0) {
2400 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2401 			err);
2402 		return;
2403 	}
2404 #endif
2405 
2406 	/* switch the SOR clock to the pad clock */
2407 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2408 	if (err < 0) {
2409 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2410 			err);
2411 		return;
2412 	}
2413 
2414 	/* switch the output clock to the parent pixel clock */
2415 	err = clk_set_parent(sor->clk, sor->clk_parent);
2416 	if (err < 0) {
2417 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2418 			err);
2419 		return;
2420 	}
2421 
2422 	/* adjust clock rate for HDMI 2.0 modes */
2423 	rate = clk_get_rate(sor->clk_parent);
2424 
2425 	if (mode->clock >= 340000)
2426 		rate /= 2;
2427 
2428 	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2429 
2430 	clk_set_rate(sor->clk, rate);
2431 
2432 	if (!sor->soc->has_nvdisplay) {
2433 		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2434 
2435 		/* XXX is this the proper check? */
2436 		if (mode->clock < 75000)
2437 			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2438 
2439 		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2440 	}
2441 
2442 	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2443 
2444 	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2445 		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2446 	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2447 
2448 	if (!dc->soc->has_nvdisplay) {
2449 		/* H_PULSE2 setup */
2450 		pulse_start = h_ref_to_sync +
2451 			      (mode->hsync_end - mode->hsync_start) +
2452 			      (mode->htotal - mode->hsync_end) - 10;
2453 
2454 		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2455 			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2456 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2457 
2458 		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2459 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2460 
2461 		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2462 		value |= H_PULSE2_ENABLE;
2463 		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2464 	}
2465 
2466 	/* infoframe setup */
2467 	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2468 	if (err < 0)
2469 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2470 
2471 	/* XXX HDMI audio support not implemented yet */
2472 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2473 
2474 	/* use single TMDS protocol */
2475 	value = tegra_sor_readl(sor, SOR_STATE1);
2476 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2477 	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2478 	tegra_sor_writel(sor, value, SOR_STATE1);
2479 
2480 	/* power up pad calibration */
2481 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2482 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2483 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2484 
2485 	/* production settings */
2486 	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2487 	if (!settings) {
2488 		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2489 			mode->clock * 1000);
2490 		return;
2491 	}
2492 
2493 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2494 	value &= ~SOR_PLL0_ICHPMP_MASK;
2495 	value &= ~SOR_PLL0_FILTER_MASK;
2496 	value &= ~SOR_PLL0_VCOCAP_MASK;
2497 	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2498 	value |= SOR_PLL0_FILTER(settings->filter);
2499 	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2500 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2501 
2502 	/* XXX not in TRM */
2503 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2504 	value &= ~SOR_PLL1_LOADADJ_MASK;
2505 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2506 	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2507 	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2508 	value |= SOR_PLL1_TMDS_TERM;
2509 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2510 
2511 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2512 	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2513 	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2514 	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2515 	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2516 	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2517 	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2518 	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2519 	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2520 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2521 
2522 	value = settings->drive_current[3] << 24 |
2523 		settings->drive_current[2] << 16 |
2524 		settings->drive_current[1] <<  8 |
2525 		settings->drive_current[0] <<  0;
2526 	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2527 
2528 	value = settings->preemphasis[3] << 24 |
2529 		settings->preemphasis[2] << 16 |
2530 		settings->preemphasis[1] <<  8 |
2531 		settings->preemphasis[0] <<  0;
2532 	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2533 
2534 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2535 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2536 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2537 	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2538 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2539 
2540 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2541 	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2542 	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2543 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2544 
2545 	/* power down pad calibration */
2546 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2547 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2548 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2549 
2550 	if (!dc->soc->has_nvdisplay) {
2551 		/* miscellaneous display controller settings */
2552 		value = VSYNC_H_POSITION(1);
2553 		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2554 	}
2555 
2556 	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2557 	value &= ~DITHER_CONTROL_MASK;
2558 	value &= ~BASE_COLOR_SIZE_MASK;
2559 
2560 	switch (state->bpc) {
2561 	case 6:
2562 		value |= BASE_COLOR_SIZE_666;
2563 		break;
2564 
2565 	case 8:
2566 		value |= BASE_COLOR_SIZE_888;
2567 		break;
2568 
2569 	case 10:
2570 		value |= BASE_COLOR_SIZE_101010;
2571 		break;
2572 
2573 	case 12:
2574 		value |= BASE_COLOR_SIZE_121212;
2575 		break;
2576 
2577 	default:
2578 		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2579 		value |= BASE_COLOR_SIZE_888;
2580 		break;
2581 	}
2582 
2583 	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2584 
2585 	/* XXX set display head owner */
2586 	value = tegra_sor_readl(sor, SOR_STATE1);
2587 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2588 	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2589 	tegra_sor_writel(sor, value, SOR_STATE1);
2590 
2591 	err = tegra_sor_power_up(sor, 250);
2592 	if (err < 0)
2593 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2594 
2595 	/* configure dynamic range of output */
2596 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2597 	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2598 	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2599 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2600 
2601 	/* configure colorspace */
2602 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2603 	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2604 	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2605 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2606 
2607 	tegra_sor_mode_set(sor, mode, state);
2608 
2609 	tegra_sor_update(sor);
2610 
2611 	/* program preamble timing in SOR (XXX) */
2612 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2613 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2614 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2615 
2616 	err = tegra_sor_attach(sor);
2617 	if (err < 0)
2618 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2619 
2620 	/* enable display to SOR clock and generate HDMI preamble */
2621 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2622 
2623 	if (!sor->soc->has_nvdisplay)
2624 		value |= SOR1_TIMING_CYA;
2625 
2626 	value |= SOR_ENABLE(sor->index);
2627 
2628 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2629 
2630 	if (dc->soc->has_nvdisplay) {
2631 		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2632 		value &= ~PROTOCOL_MASK;
2633 		value |= PROTOCOL_SINGLE_TMDS_A;
2634 		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2635 	}
2636 
2637 	tegra_dc_commit(dc);
2638 
2639 	err = tegra_sor_wakeup(sor);
2640 	if (err < 0)
2641 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2642 
2643 	tegra_sor_hdmi_scdc_start(sor);
2644 	tegra_sor_audio_prepare(sor);
2645 }
2646 
2647 static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2648 	.disable = tegra_sor_hdmi_disable,
2649 	.enable = tegra_sor_hdmi_enable,
2650 	.atomic_check = tegra_sor_encoder_atomic_check,
2651 };
2652 
tegra_sor_dp_disable(struct drm_encoder * encoder)2653 static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2654 {
2655 	struct tegra_output *output = encoder_to_output(encoder);
2656 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2657 	struct tegra_sor *sor = to_sor(output);
2658 	u32 value;
2659 	int err;
2660 
2661 	if (output->panel)
2662 		drm_panel_disable(output->panel);
2663 
2664 	/*
2665 	 * Do not attempt to power down a DP link if we're not connected since
2666 	 * the AUX transactions would just be timing out.
2667 	 */
2668 	if (output->connector.status != connector_status_disconnected) {
2669 		err = drm_dp_link_power_down(sor->aux, &sor->link);
2670 		if (err < 0)
2671 			dev_err(sor->dev, "failed to power down link: %d\n",
2672 				err);
2673 	}
2674 
2675 	err = tegra_sor_detach(sor);
2676 	if (err < 0)
2677 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2678 
2679 	tegra_sor_writel(sor, 0, SOR_STATE1);
2680 	tegra_sor_update(sor);
2681 
2682 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2683 	value &= ~SOR_ENABLE(sor->index);
2684 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2685 	tegra_dc_commit(dc);
2686 
2687 	value = tegra_sor_readl(sor, SOR_STATE1);
2688 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2689 	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2690 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2691 	tegra_sor_writel(sor, value, SOR_STATE1);
2692 	tegra_sor_update(sor);
2693 
2694 	/* switch to safe parent clock */
2695 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2696 	if (err < 0)
2697 		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2698 
2699 	err = tegra_sor_power_down(sor);
2700 	if (err < 0)
2701 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2702 
2703 	err = tegra_io_pad_power_disable(sor->pad);
2704 	if (err < 0)
2705 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2706 
2707 	err = drm_dp_aux_disable(sor->aux);
2708 	if (err < 0)
2709 		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2710 
2711 	if (output->panel)
2712 		drm_panel_unprepare(output->panel);
2713 
2714 	host1x_client_suspend(&sor->client);
2715 }
2716 
tegra_sor_dp_enable(struct drm_encoder * encoder)2717 static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2718 {
2719 	struct tegra_output *output = encoder_to_output(encoder);
2720 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2721 	struct tegra_sor *sor = to_sor(output);
2722 	struct tegra_sor_config config;
2723 	struct tegra_sor_state *state;
2724 	struct drm_display_mode *mode;
2725 	struct drm_display_info *info;
2726 	unsigned int i;
2727 	u32 value;
2728 	int err;
2729 
2730 	state = to_sor_state(output->connector.state);
2731 	mode = &encoder->crtc->state->adjusted_mode;
2732 	info = &output->connector.display_info;
2733 
2734 	err = host1x_client_resume(&sor->client);
2735 	if (err < 0) {
2736 		dev_err(sor->dev, "failed to resume: %d\n", err);
2737 		return;
2738 	}
2739 
2740 	/* switch to safe parent clock */
2741 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2742 	if (err < 0)
2743 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2744 
2745 	err = tegra_io_pad_power_enable(sor->pad);
2746 	if (err < 0)
2747 		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2748 
2749 	usleep_range(20, 100);
2750 
2751 	err = drm_dp_aux_enable(sor->aux);
2752 	if (err < 0)
2753 		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2754 
2755 	err = drm_dp_link_probe(sor->aux, &sor->link);
2756 	if (err < 0)
2757 		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2758 
2759 	tegra_sor_filter_rates(sor);
2760 
2761 	err = drm_dp_link_choose(&sor->link, mode, info);
2762 	if (err < 0)
2763 		dev_err(sor->dev, "failed to choose link: %d\n", err);
2764 
2765 	if (output->panel)
2766 		drm_panel_prepare(output->panel);
2767 
2768 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2769 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2770 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2771 
2772 	usleep_range(20, 40);
2773 
2774 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2775 	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2776 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2777 
2778 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2779 	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2780 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2781 
2782 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2783 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2784 	value |= SOR_PLL2_SEQ_PLLCAPPD;
2785 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2786 
2787 	usleep_range(200, 400);
2788 
2789 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2790 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2791 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2792 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2793 
2794 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2795 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2796 
2797 	if (output->panel)
2798 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2799 	else
2800 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2801 
2802 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2803 
2804 	usleep_range(200, 400);
2805 
2806 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2807 	/* XXX not in TRM */
2808 	if (output->panel)
2809 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2810 	else
2811 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2812 
2813 	value |= SOR_DP_SPARE_SEQ_ENABLE;
2814 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2815 
2816 	/* XXX not in TRM */
2817 	tegra_sor_writel(sor, 0, SOR_LVDS);
2818 
2819 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2820 	value &= ~SOR_PLL0_ICHPMP_MASK;
2821 	value &= ~SOR_PLL0_VCOCAP_MASK;
2822 	value |= SOR_PLL0_ICHPMP(0x1);
2823 	value |= SOR_PLL0_VCOCAP(0x3);
2824 	value |= SOR_PLL0_RESISTOR_EXT;
2825 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2826 
2827 	/* XXX not in TRM */
2828 	for (value = 0, i = 0; i < 5; i++)
2829 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2830 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2831 
2832 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2833 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2834 
2835 	/*
2836 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2837 	 * do this because Tegra186 and later don't support clk_set_parent()
2838 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2839 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2840 	 */
2841 #if 0
2842 	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2843 	if (err < 0) {
2844 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2845 			err);
2846 		return;
2847 	}
2848 #endif
2849 
2850 	/* switch the SOR clock to the pad clock */
2851 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2852 	if (err < 0) {
2853 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2854 			err);
2855 		return;
2856 	}
2857 
2858 	/* switch the output clock to the parent pixel clock */
2859 	err = clk_set_parent(sor->clk, sor->clk_parent);
2860 	if (err < 0) {
2861 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2862 			err);
2863 		return;
2864 	}
2865 
2866 	/* use DP-A protocol */
2867 	value = tegra_sor_readl(sor, SOR_STATE1);
2868 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2869 	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2870 	tegra_sor_writel(sor, value, SOR_STATE1);
2871 
2872 	/* enable port */
2873 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2874 	value |= SOR_DP_LINKCTL_ENABLE;
2875 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2876 
2877 	tegra_sor_dp_term_calibrate(sor);
2878 
2879 	err = drm_dp_link_train(&sor->link);
2880 	if (err < 0)
2881 		dev_err(sor->dev, "link training failed: %d\n", err);
2882 	else
2883 		dev_dbg(sor->dev, "link training succeeded\n");
2884 
2885 	err = drm_dp_link_power_up(sor->aux, &sor->link);
2886 	if (err < 0)
2887 		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2888 
2889 	/* compute configuration */
2890 	memset(&config, 0, sizeof(config));
2891 	config.bits_per_pixel = state->bpc * 3;
2892 
2893 	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2894 	if (err < 0)
2895 		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2896 
2897 	tegra_sor_apply_config(sor, &config);
2898 	tegra_sor_mode_set(sor, mode, state);
2899 
2900 	if (output->panel) {
2901 		/* CSTM (LVDS, link A/B, upper) */
2902 		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2903 			SOR_CSTM_UPPER;
2904 		tegra_sor_writel(sor, value, SOR_CSTM);
2905 
2906 		/* PWM setup */
2907 		err = tegra_sor_setup_pwm(sor, 250);
2908 		if (err < 0)
2909 			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2910 	}
2911 
2912 	tegra_sor_update(sor);
2913 
2914 	err = tegra_sor_power_up(sor, 250);
2915 	if (err < 0)
2916 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2917 
2918 	/* attach and wake up */
2919 	err = tegra_sor_attach(sor);
2920 	if (err < 0)
2921 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2922 
2923 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2924 	value |= SOR_ENABLE(sor->index);
2925 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2926 
2927 	tegra_dc_commit(dc);
2928 
2929 	err = tegra_sor_wakeup(sor);
2930 	if (err < 0)
2931 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2932 
2933 	if (output->panel)
2934 		drm_panel_enable(output->panel);
2935 }
2936 
2937 static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2938 	.disable = tegra_sor_dp_disable,
2939 	.enable = tegra_sor_dp_enable,
2940 	.atomic_check = tegra_sor_encoder_atomic_check,
2941 };
2942 
tegra_sor_disable_regulator(void * data)2943 static void tegra_sor_disable_regulator(void *data)
2944 {
2945 	struct regulator *reg = data;
2946 
2947 	regulator_disable(reg);
2948 }
2949 
tegra_sor_enable_regulator(struct tegra_sor * sor,struct regulator * reg)2950 static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2951 {
2952 	int err;
2953 
2954 	err = regulator_enable(reg);
2955 	if (err)
2956 		return err;
2957 
2958 	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2959 }
2960 
tegra_sor_hdmi_probe(struct tegra_sor * sor)2961 static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2962 {
2963 	int err;
2964 
2965 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2966 	if (IS_ERR(sor->avdd_io_supply))
2967 		return dev_err_probe(sor->dev, PTR_ERR(sor->avdd_io_supply),
2968 				     "cannot get AVDD I/O supply\n");
2969 
2970 	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2971 	if (err < 0) {
2972 		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2973 			err);
2974 		return err;
2975 	}
2976 
2977 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2978 	if (IS_ERR(sor->vdd_pll_supply))
2979 		return dev_err_probe(sor->dev, PTR_ERR(sor->vdd_pll_supply),
2980 				     "cannot get VDD PLL supply\n");
2981 
2982 	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2983 	if (err < 0) {
2984 		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2985 			err);
2986 		return err;
2987 	}
2988 
2989 	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2990 	if (IS_ERR(sor->hdmi_supply))
2991 		return dev_err_probe(sor->dev, PTR_ERR(sor->hdmi_supply),
2992 				     "cannot get HDMI supply\n");
2993 
2994 	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
2995 	if (err < 0) {
2996 		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2997 		return err;
2998 	}
2999 
3000 	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3001 
3002 	return 0;
3003 }
3004 
3005 static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3006 	.name = "HDMI",
3007 	.probe = tegra_sor_hdmi_probe,
3008 	.audio_enable = tegra_sor_hdmi_audio_enable,
3009 	.audio_disable = tegra_sor_hdmi_audio_disable,
3010 };
3011 
tegra_sor_dp_probe(struct tegra_sor * sor)3012 static int tegra_sor_dp_probe(struct tegra_sor *sor)
3013 {
3014 	int err;
3015 
3016 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3017 	if (IS_ERR(sor->avdd_io_supply))
3018 		return PTR_ERR(sor->avdd_io_supply);
3019 
3020 	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3021 	if (err < 0)
3022 		return err;
3023 
3024 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3025 	if (IS_ERR(sor->vdd_pll_supply))
3026 		return PTR_ERR(sor->vdd_pll_supply);
3027 
3028 	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3029 	if (err < 0)
3030 		return err;
3031 
3032 	return 0;
3033 }
3034 
3035 static const struct tegra_sor_ops tegra_sor_dp_ops = {
3036 	.name = "DP",
3037 	.probe = tegra_sor_dp_probe,
3038 };
3039 
tegra_sor_init(struct host1x_client * client)3040 static int tegra_sor_init(struct host1x_client *client)
3041 {
3042 	struct drm_device *drm = dev_get_drvdata(client->host);
3043 	const struct drm_encoder_helper_funcs *helpers = NULL;
3044 	struct tegra_sor *sor = host1x_client_to_sor(client);
3045 	int connector = DRM_MODE_CONNECTOR_Unknown;
3046 	int encoder = DRM_MODE_ENCODER_NONE;
3047 	int err;
3048 
3049 	if (!sor->aux) {
3050 		if (sor->ops == &tegra_sor_hdmi_ops) {
3051 			connector = DRM_MODE_CONNECTOR_HDMIA;
3052 			encoder = DRM_MODE_ENCODER_TMDS;
3053 			helpers = &tegra_sor_hdmi_helpers;
3054 		} else if (sor->soc->supports_lvds) {
3055 			connector = DRM_MODE_CONNECTOR_LVDS;
3056 			encoder = DRM_MODE_ENCODER_LVDS;
3057 		}
3058 	} else {
3059 		if (sor->output.panel) {
3060 			connector = DRM_MODE_CONNECTOR_eDP;
3061 			encoder = DRM_MODE_ENCODER_TMDS;
3062 			helpers = &tegra_sor_dp_helpers;
3063 		} else {
3064 			connector = DRM_MODE_CONNECTOR_DisplayPort;
3065 			encoder = DRM_MODE_ENCODER_TMDS;
3066 			helpers = &tegra_sor_dp_helpers;
3067 		}
3068 
3069 		sor->link.ops = &tegra_sor_dp_link_ops;
3070 		sor->link.aux = sor->aux;
3071 	}
3072 
3073 	sor->output.dev = sor->dev;
3074 
3075 	drm_connector_init_with_ddc(drm, &sor->output.connector,
3076 				    &tegra_sor_connector_funcs,
3077 				    connector,
3078 				    sor->output.ddc);
3079 	drm_connector_helper_add(&sor->output.connector,
3080 				 &tegra_sor_connector_helper_funcs);
3081 	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3082 
3083 	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3084 	drm_encoder_helper_add(&sor->output.encoder, helpers);
3085 
3086 	drm_connector_attach_encoder(&sor->output.connector,
3087 					  &sor->output.encoder);
3088 	drm_connector_register(&sor->output.connector);
3089 
3090 	err = tegra_output_init(drm, &sor->output);
3091 	if (err < 0) {
3092 		dev_err(client->dev, "failed to initialize output: %d\n", err);
3093 		return err;
3094 	}
3095 
3096 	tegra_output_find_possible_crtcs(&sor->output, drm);
3097 
3098 	if (sor->aux) {
3099 		err = drm_dp_aux_attach(sor->aux, &sor->output);
3100 		if (err < 0) {
3101 			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3102 			return err;
3103 		}
3104 	}
3105 
3106 	/*
3107 	 * XXX: Remove this reset once proper hand-over from firmware to
3108 	 * kernel is possible.
3109 	 */
3110 	if (sor->rst) {
3111 		err = pm_runtime_resume_and_get(sor->dev);
3112 		if (err < 0) {
3113 			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3114 			return err;
3115 		}
3116 
3117 		err = reset_control_acquire(sor->rst);
3118 		if (err < 0) {
3119 			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3120 				err);
3121 			goto rpm_put;
3122 		}
3123 
3124 		err = reset_control_assert(sor->rst);
3125 		if (err < 0) {
3126 			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3127 				err);
3128 			goto rpm_put;
3129 		}
3130 	}
3131 
3132 	err = clk_prepare_enable(sor->clk);
3133 	if (err < 0) {
3134 		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3135 		goto rpm_put;
3136 	}
3137 
3138 	usleep_range(1000, 3000);
3139 
3140 	if (sor->rst) {
3141 		err = reset_control_deassert(sor->rst);
3142 		if (err < 0) {
3143 			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3144 				err);
3145 			clk_disable_unprepare(sor->clk);
3146 			goto rpm_put;
3147 		}
3148 
3149 		reset_control_release(sor->rst);
3150 		pm_runtime_put(sor->dev);
3151 	}
3152 
3153 	err = clk_prepare_enable(sor->clk_safe);
3154 	if (err < 0) {
3155 		clk_disable_unprepare(sor->clk);
3156 		return err;
3157 	}
3158 
3159 	err = clk_prepare_enable(sor->clk_dp);
3160 	if (err < 0) {
3161 		clk_disable_unprepare(sor->clk_safe);
3162 		clk_disable_unprepare(sor->clk);
3163 		return err;
3164 	}
3165 
3166 	return 0;
3167 
3168 rpm_put:
3169 	if (sor->rst)
3170 		pm_runtime_put(sor->dev);
3171 
3172 	return err;
3173 }
3174 
tegra_sor_exit(struct host1x_client * client)3175 static int tegra_sor_exit(struct host1x_client *client)
3176 {
3177 	struct tegra_sor *sor = host1x_client_to_sor(client);
3178 	int err;
3179 
3180 	tegra_output_exit(&sor->output);
3181 
3182 	if (sor->aux) {
3183 		err = drm_dp_aux_detach(sor->aux);
3184 		if (err < 0) {
3185 			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3186 			return err;
3187 		}
3188 	}
3189 
3190 	clk_disable_unprepare(sor->clk_safe);
3191 	clk_disable_unprepare(sor->clk_dp);
3192 	clk_disable_unprepare(sor->clk);
3193 
3194 	return 0;
3195 }
3196 
tegra_sor_runtime_suspend(struct host1x_client * client)3197 static int tegra_sor_runtime_suspend(struct host1x_client *client)
3198 {
3199 	struct tegra_sor *sor = host1x_client_to_sor(client);
3200 	struct device *dev = client->dev;
3201 	int err;
3202 
3203 	if (sor->rst) {
3204 		err = reset_control_assert(sor->rst);
3205 		if (err < 0) {
3206 			dev_err(dev, "failed to assert reset: %d\n", err);
3207 			return err;
3208 		}
3209 
3210 		reset_control_release(sor->rst);
3211 	}
3212 
3213 	usleep_range(1000, 2000);
3214 
3215 	clk_disable_unprepare(sor->clk);
3216 	pm_runtime_put_sync(dev);
3217 
3218 	return 0;
3219 }
3220 
tegra_sor_runtime_resume(struct host1x_client * client)3221 static int tegra_sor_runtime_resume(struct host1x_client *client)
3222 {
3223 	struct tegra_sor *sor = host1x_client_to_sor(client);
3224 	struct device *dev = client->dev;
3225 	int err;
3226 
3227 	err = pm_runtime_resume_and_get(dev);
3228 	if (err < 0) {
3229 		dev_err(dev, "failed to get runtime PM: %d\n", err);
3230 		return err;
3231 	}
3232 
3233 	err = clk_prepare_enable(sor->clk);
3234 	if (err < 0) {
3235 		dev_err(dev, "failed to enable clock: %d\n", err);
3236 		goto put_rpm;
3237 	}
3238 
3239 	usleep_range(1000, 2000);
3240 
3241 	if (sor->rst) {
3242 		err = reset_control_acquire(sor->rst);
3243 		if (err < 0) {
3244 			dev_err(dev, "failed to acquire reset: %d\n", err);
3245 			goto disable_clk;
3246 		}
3247 
3248 		err = reset_control_deassert(sor->rst);
3249 		if (err < 0) {
3250 			dev_err(dev, "failed to deassert reset: %d\n", err);
3251 			goto release_reset;
3252 		}
3253 	}
3254 
3255 	return 0;
3256 
3257 release_reset:
3258 	reset_control_release(sor->rst);
3259 disable_clk:
3260 	clk_disable_unprepare(sor->clk);
3261 put_rpm:
3262 	pm_runtime_put_sync(dev);
3263 	return err;
3264 }
3265 
3266 static const struct host1x_client_ops sor_client_ops = {
3267 	.init = tegra_sor_init,
3268 	.exit = tegra_sor_exit,
3269 	.suspend = tegra_sor_runtime_suspend,
3270 	.resume = tegra_sor_runtime_resume,
3271 };
3272 
3273 static const u8 tegra124_sor_xbar_cfg[5] = {
3274 	0, 1, 2, 3, 4
3275 };
3276 
3277 static const struct tegra_sor_regs tegra124_sor_regs = {
3278 	.head_state0 = 0x05,
3279 	.head_state1 = 0x07,
3280 	.head_state2 = 0x09,
3281 	.head_state3 = 0x0b,
3282 	.head_state4 = 0x0d,
3283 	.head_state5 = 0x0f,
3284 	.pll0 = 0x17,
3285 	.pll1 = 0x18,
3286 	.pll2 = 0x19,
3287 	.pll3 = 0x1a,
3288 	.dp_padctl0 = 0x5c,
3289 	.dp_padctl2 = 0x73,
3290 };
3291 
3292 /* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3293 static const u8 tegra124_sor_lane_map[4] = {
3294 	2, 1, 0, 3,
3295 };
3296 
3297 static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3298 	{
3299 		{ 0x13, 0x19, 0x1e, 0x28 },
3300 		{ 0x1e, 0x25, 0x2d, },
3301 		{ 0x28, 0x32, },
3302 		{ 0x3c, },
3303 	}, {
3304 		{ 0x12, 0x17, 0x1b, 0x25 },
3305 		{ 0x1c, 0x23, 0x2a, },
3306 		{ 0x25, 0x2f, },
3307 		{ 0x39, }
3308 	}, {
3309 		{ 0x12, 0x16, 0x1a, 0x22 },
3310 		{ 0x1b, 0x20, 0x27, },
3311 		{ 0x24, 0x2d, },
3312 		{ 0x36, },
3313 	}, {
3314 		{ 0x11, 0x14, 0x17, 0x1f },
3315 		{ 0x19, 0x1e, 0x24, },
3316 		{ 0x22, 0x2a, },
3317 		{ 0x32, },
3318 	},
3319 };
3320 
3321 static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3322 	{
3323 		{ 0x00, 0x09, 0x13, 0x25 },
3324 		{ 0x00, 0x0f, 0x1e, },
3325 		{ 0x00, 0x14, },
3326 		{ 0x00, },
3327 	}, {
3328 		{ 0x00, 0x0a, 0x14, 0x28 },
3329 		{ 0x00, 0x0f, 0x1e, },
3330 		{ 0x00, 0x14, },
3331 		{ 0x00 },
3332 	}, {
3333 		{ 0x00, 0x0a, 0x14, 0x28 },
3334 		{ 0x00, 0x0f, 0x1e, },
3335 		{ 0x00, 0x14, },
3336 		{ 0x00, },
3337 	}, {
3338 		{ 0x00, 0x0a, 0x14, 0x28 },
3339 		{ 0x00, 0x0f, 0x1e, },
3340 		{ 0x00, 0x14, },
3341 		{ 0x00, },
3342 	},
3343 };
3344 
3345 static const u8 tegra124_sor_post_cursor[4][4][4] = {
3346 	{
3347 		{ 0x00, 0x00, 0x00, 0x00 },
3348 		{ 0x00, 0x00, 0x00, },
3349 		{ 0x00, 0x00, },
3350 		{ 0x00, },
3351 	}, {
3352 		{ 0x02, 0x02, 0x04, 0x05 },
3353 		{ 0x02, 0x04, 0x05, },
3354 		{ 0x04, 0x05, },
3355 		{ 0x05, },
3356 	}, {
3357 		{ 0x04, 0x05, 0x08, 0x0b },
3358 		{ 0x05, 0x09, 0x0b, },
3359 		{ 0x08, 0x0a, },
3360 		{ 0x0b, },
3361 	}, {
3362 		{ 0x05, 0x09, 0x0b, 0x12 },
3363 		{ 0x09, 0x0d, 0x12, },
3364 		{ 0x0b, 0x0f, },
3365 		{ 0x12, },
3366 	},
3367 };
3368 
3369 static const u8 tegra124_sor_tx_pu[4][4][4] = {
3370 	{
3371 		{ 0x20, 0x30, 0x40, 0x60 },
3372 		{ 0x30, 0x40, 0x60, },
3373 		{ 0x40, 0x60, },
3374 		{ 0x60, },
3375 	}, {
3376 		{ 0x20, 0x20, 0x30, 0x50 },
3377 		{ 0x30, 0x40, 0x50, },
3378 		{ 0x40, 0x50, },
3379 		{ 0x60, },
3380 	}, {
3381 		{ 0x20, 0x20, 0x30, 0x40, },
3382 		{ 0x30, 0x30, 0x40, },
3383 		{ 0x40, 0x50, },
3384 		{ 0x60, },
3385 	}, {
3386 		{ 0x20, 0x20, 0x20, 0x40, },
3387 		{ 0x30, 0x30, 0x40, },
3388 		{ 0x40, 0x40, },
3389 		{ 0x60, },
3390 	},
3391 };
3392 
3393 static const struct tegra_sor_soc tegra124_sor = {
3394 	.supports_lvds = true,
3395 	.supports_hdmi = false,
3396 	.supports_dp = true,
3397 	.supports_audio = false,
3398 	.supports_hdcp = false,
3399 	.regs = &tegra124_sor_regs,
3400 	.has_nvdisplay = false,
3401 	.xbar_cfg = tegra124_sor_xbar_cfg,
3402 	.lane_map = tegra124_sor_lane_map,
3403 	.voltage_swing = tegra124_sor_voltage_swing,
3404 	.pre_emphasis = tegra124_sor_pre_emphasis,
3405 	.post_cursor = tegra124_sor_post_cursor,
3406 	.tx_pu = tegra124_sor_tx_pu,
3407 };
3408 
3409 static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3410 	{
3411 		{ 0x00, 0x08, 0x12, 0x24 },
3412 		{ 0x01, 0x0e, 0x1d, },
3413 		{ 0x01, 0x13, },
3414 		{ 0x00, },
3415 	}, {
3416 		{ 0x00, 0x08, 0x12, 0x24 },
3417 		{ 0x00, 0x0e, 0x1d, },
3418 		{ 0x00, 0x13, },
3419 		{ 0x00 },
3420 	}, {
3421 		{ 0x00, 0x08, 0x12, 0x24 },
3422 		{ 0x00, 0x0e, 0x1d, },
3423 		{ 0x00, 0x13, },
3424 		{ 0x00, },
3425 	}, {
3426 		{ 0x00, 0x08, 0x12, 0x24 },
3427 		{ 0x00, 0x0e, 0x1d, },
3428 		{ 0x00, 0x13, },
3429 		{ 0x00, },
3430 	},
3431 };
3432 
3433 static const struct tegra_sor_soc tegra132_sor = {
3434 	.supports_lvds = true,
3435 	.supports_hdmi = false,
3436 	.supports_dp = true,
3437 	.supports_audio = false,
3438 	.supports_hdcp = false,
3439 	.regs = &tegra124_sor_regs,
3440 	.has_nvdisplay = false,
3441 	.xbar_cfg = tegra124_sor_xbar_cfg,
3442 	.lane_map = tegra124_sor_lane_map,
3443 	.voltage_swing = tegra124_sor_voltage_swing,
3444 	.pre_emphasis = tegra132_sor_pre_emphasis,
3445 	.post_cursor = tegra124_sor_post_cursor,
3446 	.tx_pu = tegra124_sor_tx_pu,
3447 };
3448 
3449 static const struct tegra_sor_regs tegra210_sor_regs = {
3450 	.head_state0 = 0x05,
3451 	.head_state1 = 0x07,
3452 	.head_state2 = 0x09,
3453 	.head_state3 = 0x0b,
3454 	.head_state4 = 0x0d,
3455 	.head_state5 = 0x0f,
3456 	.pll0 = 0x17,
3457 	.pll1 = 0x18,
3458 	.pll2 = 0x19,
3459 	.pll3 = 0x1a,
3460 	.dp_padctl0 = 0x5c,
3461 	.dp_padctl2 = 0x73,
3462 };
3463 
3464 static const u8 tegra210_sor_xbar_cfg[5] = {
3465 	2, 1, 0, 3, 4
3466 };
3467 
3468 static const u8 tegra210_sor_lane_map[4] = {
3469 	0, 1, 2, 3,
3470 };
3471 
3472 static const struct tegra_sor_soc tegra210_sor = {
3473 	.supports_lvds = false,
3474 	.supports_hdmi = false,
3475 	.supports_dp = true,
3476 	.supports_audio = false,
3477 	.supports_hdcp = false,
3478 
3479 	.regs = &tegra210_sor_regs,
3480 	.has_nvdisplay = false,
3481 
3482 	.xbar_cfg = tegra210_sor_xbar_cfg,
3483 	.lane_map = tegra210_sor_lane_map,
3484 	.voltage_swing = tegra124_sor_voltage_swing,
3485 	.pre_emphasis = tegra124_sor_pre_emphasis,
3486 	.post_cursor = tegra124_sor_post_cursor,
3487 	.tx_pu = tegra124_sor_tx_pu,
3488 };
3489 
3490 static const struct tegra_sor_soc tegra210_sor1 = {
3491 	.supports_lvds = false,
3492 	.supports_hdmi = true,
3493 	.supports_dp = true,
3494 	.supports_audio = true,
3495 	.supports_hdcp = true,
3496 
3497 	.regs = &tegra210_sor_regs,
3498 	.has_nvdisplay = false,
3499 
3500 	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3501 	.settings = tegra210_sor_hdmi_defaults,
3502 	.xbar_cfg = tegra210_sor_xbar_cfg,
3503 	.lane_map = tegra210_sor_lane_map,
3504 	.voltage_swing = tegra124_sor_voltage_swing,
3505 	.pre_emphasis = tegra124_sor_pre_emphasis,
3506 	.post_cursor = tegra124_sor_post_cursor,
3507 	.tx_pu = tegra124_sor_tx_pu,
3508 };
3509 
3510 static const struct tegra_sor_regs tegra186_sor_regs = {
3511 	.head_state0 = 0x151,
3512 	.head_state1 = 0x154,
3513 	.head_state2 = 0x157,
3514 	.head_state3 = 0x15a,
3515 	.head_state4 = 0x15d,
3516 	.head_state5 = 0x160,
3517 	.pll0 = 0x163,
3518 	.pll1 = 0x164,
3519 	.pll2 = 0x165,
3520 	.pll3 = 0x166,
3521 	.dp_padctl0 = 0x168,
3522 	.dp_padctl2 = 0x16a,
3523 };
3524 
3525 static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3526 	{
3527 		{ 0x13, 0x19, 0x1e, 0x28 },
3528 		{ 0x1e, 0x25, 0x2d, },
3529 		{ 0x28, 0x32, },
3530 		{ 0x39, },
3531 	}, {
3532 		{ 0x12, 0x16, 0x1b, 0x25 },
3533 		{ 0x1c, 0x23, 0x2a, },
3534 		{ 0x25, 0x2f, },
3535 		{ 0x37, }
3536 	}, {
3537 		{ 0x12, 0x16, 0x1a, 0x22 },
3538 		{ 0x1b, 0x20, 0x27, },
3539 		{ 0x24, 0x2d, },
3540 		{ 0x35, },
3541 	}, {
3542 		{ 0x11, 0x14, 0x17, 0x1f },
3543 		{ 0x19, 0x1e, 0x24, },
3544 		{ 0x22, 0x2a, },
3545 		{ 0x32, },
3546 	},
3547 };
3548 
3549 static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3550 	{
3551 		{ 0x00, 0x08, 0x12, 0x24 },
3552 		{ 0x01, 0x0e, 0x1d, },
3553 		{ 0x01, 0x13, },
3554 		{ 0x00, },
3555 	}, {
3556 		{ 0x00, 0x08, 0x12, 0x24 },
3557 		{ 0x00, 0x0e, 0x1d, },
3558 		{ 0x00, 0x13, },
3559 		{ 0x00 },
3560 	}, {
3561 		{ 0x00, 0x08, 0x14, 0x24 },
3562 		{ 0x00, 0x0e, 0x1d, },
3563 		{ 0x00, 0x13, },
3564 		{ 0x00, },
3565 	}, {
3566 		{ 0x00, 0x08, 0x12, 0x24 },
3567 		{ 0x00, 0x0e, 0x1d, },
3568 		{ 0x00, 0x13, },
3569 		{ 0x00, },
3570 	},
3571 };
3572 
3573 static const struct tegra_sor_soc tegra186_sor = {
3574 	.supports_lvds = false,
3575 	.supports_hdmi = true,
3576 	.supports_dp = true,
3577 	.supports_audio = true,
3578 	.supports_hdcp = true,
3579 
3580 	.regs = &tegra186_sor_regs,
3581 	.has_nvdisplay = true,
3582 
3583 	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3584 	.settings = tegra186_sor_hdmi_defaults,
3585 	.xbar_cfg = tegra124_sor_xbar_cfg,
3586 	.lane_map = tegra124_sor_lane_map,
3587 	.voltage_swing = tegra186_sor_voltage_swing,
3588 	.pre_emphasis = tegra186_sor_pre_emphasis,
3589 	.post_cursor = tegra124_sor_post_cursor,
3590 	.tx_pu = tegra124_sor_tx_pu,
3591 };
3592 
3593 static const struct tegra_sor_regs tegra194_sor_regs = {
3594 	.head_state0 = 0x151,
3595 	.head_state1 = 0x155,
3596 	.head_state2 = 0x159,
3597 	.head_state3 = 0x15d,
3598 	.head_state4 = 0x161,
3599 	.head_state5 = 0x165,
3600 	.pll0 = 0x169,
3601 	.pll1 = 0x16a,
3602 	.pll2 = 0x16b,
3603 	.pll3 = 0x16c,
3604 	.dp_padctl0 = 0x16e,
3605 	.dp_padctl2 = 0x16f,
3606 };
3607 
3608 static const struct tegra_sor_soc tegra194_sor = {
3609 	.supports_lvds = false,
3610 	.supports_hdmi = true,
3611 	.supports_dp = true,
3612 	.supports_audio = true,
3613 	.supports_hdcp = true,
3614 
3615 	.regs = &tegra194_sor_regs,
3616 	.has_nvdisplay = true,
3617 
3618 	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3619 	.settings = tegra194_sor_hdmi_defaults,
3620 
3621 	.xbar_cfg = tegra210_sor_xbar_cfg,
3622 	.lane_map = tegra124_sor_lane_map,
3623 	.voltage_swing = tegra186_sor_voltage_swing,
3624 	.pre_emphasis = tegra186_sor_pre_emphasis,
3625 	.post_cursor = tegra124_sor_post_cursor,
3626 	.tx_pu = tegra124_sor_tx_pu,
3627 };
3628 
3629 static const struct of_device_id tegra_sor_of_match[] = {
3630 	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3631 	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3632 	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3633 	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3634 	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3635 	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3636 	{ },
3637 };
3638 MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3639 
tegra_sor_parse_dt(struct tegra_sor * sor)3640 static int tegra_sor_parse_dt(struct tegra_sor *sor)
3641 {
3642 	struct device_node *np = sor->dev->of_node;
3643 	u32 xbar_cfg[5];
3644 	unsigned int i;
3645 	u32 value;
3646 	int err;
3647 
3648 	if (sor->soc->has_nvdisplay) {
3649 		err = of_property_read_u32(np, "nvidia,interface", &value);
3650 		if (err < 0)
3651 			return err;
3652 
3653 		sor->index = value;
3654 
3655 		/*
3656 		 * override the default that we already set for Tegra210 and
3657 		 * earlier
3658 		 */
3659 		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3660 	} else {
3661 		if (!sor->soc->supports_audio)
3662 			sor->index = 0;
3663 		else
3664 			sor->index = 1;
3665 	}
3666 
3667 	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3668 	if (err < 0) {
3669 		/* fall back to default per-SoC XBAR configuration */
3670 		for (i = 0; i < 5; i++)
3671 			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3672 	} else {
3673 		/* copy cells to SOR XBAR configuration */
3674 		for (i = 0; i < 5; i++)
3675 			sor->xbar_cfg[i] = xbar_cfg[i];
3676 	}
3677 
3678 	return 0;
3679 }
3680 
tegra_sor_irq(int irq,void * data)3681 static irqreturn_t tegra_sor_irq(int irq, void *data)
3682 {
3683 	struct tegra_sor *sor = data;
3684 	u32 value;
3685 
3686 	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3687 	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3688 
3689 	if (value & SOR_INT_CODEC_SCRATCH0) {
3690 		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3691 
3692 		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3693 			unsigned int format;
3694 
3695 			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3696 
3697 			tegra_hda_parse_format(format, &sor->format);
3698 
3699 			if (sor->ops->audio_enable)
3700 				sor->ops->audio_enable(sor);
3701 		} else {
3702 			if (sor->ops->audio_disable)
3703 				sor->ops->audio_disable(sor);
3704 		}
3705 	}
3706 
3707 	return IRQ_HANDLED;
3708 }
3709 
tegra_sor_probe(struct platform_device * pdev)3710 static int tegra_sor_probe(struct platform_device *pdev)
3711 {
3712 	struct device_node *np;
3713 	struct tegra_sor *sor;
3714 	int err;
3715 
3716 	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3717 	if (!sor)
3718 		return -ENOMEM;
3719 
3720 	sor->soc = of_device_get_match_data(&pdev->dev);
3721 	sor->output.dev = sor->dev = &pdev->dev;
3722 
3723 	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3724 				     sor->soc->num_settings *
3725 					sizeof(*sor->settings),
3726 				     GFP_KERNEL);
3727 	if (!sor->settings)
3728 		return -ENOMEM;
3729 
3730 	sor->num_settings = sor->soc->num_settings;
3731 
3732 	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3733 	if (np) {
3734 		sor->aux = drm_dp_aux_find_by_of_node(np);
3735 		of_node_put(np);
3736 
3737 		if (!sor->aux)
3738 			return -EPROBE_DEFER;
3739 
3740 		if (get_device(sor->aux->dev))
3741 			sor->output.ddc = &sor->aux->ddc;
3742 	}
3743 
3744 	if (!sor->aux) {
3745 		if (sor->soc->supports_hdmi) {
3746 			sor->ops = &tegra_sor_hdmi_ops;
3747 			sor->pad = TEGRA_IO_PAD_HDMI;
3748 		} else if (sor->soc->supports_lvds) {
3749 			dev_err(&pdev->dev, "LVDS not supported yet\n");
3750 			return -ENODEV;
3751 		} else {
3752 			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3753 			return -ENODEV;
3754 		}
3755 	} else {
3756 		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3757 		/*
3758 		 * No need to keep this around since we only use it as a check
3759 		 * to see if a panel is connected (eDP) or not (DP).
3760 		 */
3761 		of_node_put(np);
3762 
3763 		sor->ops = &tegra_sor_dp_ops;
3764 		sor->pad = TEGRA_IO_PAD_LVDS;
3765 	}
3766 
3767 	err = tegra_sor_parse_dt(sor);
3768 	if (err < 0)
3769 		goto put_aux;
3770 
3771 	err = tegra_output_probe(&sor->output);
3772 	if (err < 0) {
3773 		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3774 		goto put_aux;
3775 	}
3776 
3777 	if (sor->ops && sor->ops->probe) {
3778 		err = sor->ops->probe(sor);
3779 		if (err < 0) {
3780 			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3781 				sor->ops->name, err);
3782 			goto remove;
3783 		}
3784 	}
3785 
3786 	sor->regs = devm_platform_ioremap_resource(pdev, 0);
3787 	if (IS_ERR(sor->regs)) {
3788 		err = PTR_ERR(sor->regs);
3789 		goto remove;
3790 	}
3791 
3792 	err = platform_get_irq(pdev, 0);
3793 	if (err < 0)
3794 		goto remove;
3795 
3796 	sor->irq = err;
3797 
3798 	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3799 			       dev_name(sor->dev), sor);
3800 	if (err < 0) {
3801 		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3802 		goto remove;
3803 	}
3804 
3805 	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3806 	if (IS_ERR(sor->rst)) {
3807 		err = PTR_ERR(sor->rst);
3808 
3809 		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3810 			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3811 				err);
3812 			goto remove;
3813 		}
3814 
3815 		/*
3816 		 * At this point, the reset control is most likely being used
3817 		 * by the generic power domain implementation. With any luck
3818 		 * the power domain will have taken care of resetting the SOR
3819 		 * and we don't have to do anything.
3820 		 */
3821 		sor->rst = NULL;
3822 	}
3823 
3824 	sor->clk = devm_clk_get(&pdev->dev, NULL);
3825 	if (IS_ERR(sor->clk)) {
3826 		err = PTR_ERR(sor->clk);
3827 		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3828 		goto remove;
3829 	}
3830 
3831 	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3832 		struct device_node *np = pdev->dev.of_node;
3833 		const char *name;
3834 
3835 		/*
3836 		 * For backwards compatibility with Tegra210 device trees,
3837 		 * fall back to the old clock name "source" if the new "out"
3838 		 * clock is not available.
3839 		 */
3840 		if (of_property_match_string(np, "clock-names", "out") < 0)
3841 			name = "source";
3842 		else
3843 			name = "out";
3844 
3845 		sor->clk_out = devm_clk_get(&pdev->dev, name);
3846 		if (IS_ERR(sor->clk_out)) {
3847 			err = PTR_ERR(sor->clk_out);
3848 			dev_err(sor->dev, "failed to get %s clock: %d\n",
3849 				name, err);
3850 			goto remove;
3851 		}
3852 	} else {
3853 		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3854 		sor->clk_out = sor->clk;
3855 	}
3856 
3857 	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3858 	if (IS_ERR(sor->clk_parent)) {
3859 		err = PTR_ERR(sor->clk_parent);
3860 		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3861 		goto remove;
3862 	}
3863 
3864 	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3865 	if (IS_ERR(sor->clk_safe)) {
3866 		err = PTR_ERR(sor->clk_safe);
3867 		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3868 		goto remove;
3869 	}
3870 
3871 	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3872 	if (IS_ERR(sor->clk_dp)) {
3873 		err = PTR_ERR(sor->clk_dp);
3874 		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3875 		goto remove;
3876 	}
3877 
3878 	/*
3879 	 * Starting with Tegra186, the BPMP provides an implementation for
3880 	 * the pad output clock, so we have to look it up from device tree.
3881 	 */
3882 	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3883 	if (IS_ERR(sor->clk_pad)) {
3884 		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3885 			err = PTR_ERR(sor->clk_pad);
3886 			goto remove;
3887 		}
3888 
3889 		/*
3890 		 * If the pad output clock is not available, then we assume
3891 		 * we're on Tegra210 or earlier and have to provide our own
3892 		 * implementation.
3893 		 */
3894 		sor->clk_pad = NULL;
3895 	}
3896 
3897 	/*
3898 	 * The bootloader may have set up the SOR such that it's module clock
3899 	 * is sourced by one of the display PLLs. However, that doesn't work
3900 	 * without properly having set up other bits of the SOR.
3901 	 */
3902 	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3903 	if (err < 0) {
3904 		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3905 		goto remove;
3906 	}
3907 
3908 	platform_set_drvdata(pdev, sor);
3909 	pm_runtime_enable(&pdev->dev);
3910 
3911 	host1x_client_init(&sor->client);
3912 	sor->client.ops = &sor_client_ops;
3913 	sor->client.dev = &pdev->dev;
3914 
3915 	/*
3916 	 * On Tegra210 and earlier, provide our own implementation for the
3917 	 * pad output clock.
3918 	 */
3919 	if (!sor->clk_pad) {
3920 		char *name;
3921 
3922 		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3923 				      sor->index);
3924 		if (!name) {
3925 			err = -ENOMEM;
3926 			goto uninit;
3927 		}
3928 
3929 		err = host1x_client_resume(&sor->client);
3930 		if (err < 0) {
3931 			dev_err(sor->dev, "failed to resume: %d\n", err);
3932 			goto uninit;
3933 		}
3934 
3935 		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3936 		host1x_client_suspend(&sor->client);
3937 	}
3938 
3939 	if (IS_ERR(sor->clk_pad)) {
3940 		err = PTR_ERR(sor->clk_pad);
3941 		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3942 			err);
3943 		goto uninit;
3944 	}
3945 
3946 	err = __host1x_client_register(&sor->client);
3947 	if (err < 0) {
3948 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3949 			err);
3950 		goto uninit;
3951 	}
3952 
3953 	return 0;
3954 
3955 uninit:
3956 	host1x_client_exit(&sor->client);
3957 	pm_runtime_disable(&pdev->dev);
3958 remove:
3959 	if (sor->aux)
3960 		sor->output.ddc = NULL;
3961 
3962 	tegra_output_remove(&sor->output);
3963 put_aux:
3964 	if (sor->aux)
3965 		put_device(sor->aux->dev);
3966 
3967 	return err;
3968 }
3969 
tegra_sor_remove(struct platform_device * pdev)3970 static void tegra_sor_remove(struct platform_device *pdev)
3971 {
3972 	struct tegra_sor *sor = platform_get_drvdata(pdev);
3973 
3974 	host1x_client_unregister(&sor->client);
3975 
3976 	pm_runtime_disable(&pdev->dev);
3977 
3978 	if (sor->aux) {
3979 		put_device(sor->aux->dev);
3980 		sor->output.ddc = NULL;
3981 	}
3982 
3983 	tegra_output_remove(&sor->output);
3984 }
3985 
tegra_sor_suspend(struct device * dev)3986 static int __maybe_unused tegra_sor_suspend(struct device *dev)
3987 {
3988 	struct tegra_sor *sor = dev_get_drvdata(dev);
3989 	int err;
3990 
3991 	err = tegra_output_suspend(&sor->output);
3992 	if (err < 0) {
3993 		dev_err(dev, "failed to suspend output: %d\n", err);
3994 		return err;
3995 	}
3996 
3997 	if (sor->hdmi_supply) {
3998 		err = regulator_disable(sor->hdmi_supply);
3999 		if (err < 0) {
4000 			tegra_output_resume(&sor->output);
4001 			return err;
4002 		}
4003 	}
4004 
4005 	return 0;
4006 }
4007 
tegra_sor_resume(struct device * dev)4008 static int __maybe_unused tegra_sor_resume(struct device *dev)
4009 {
4010 	struct tegra_sor *sor = dev_get_drvdata(dev);
4011 	int err;
4012 
4013 	if (sor->hdmi_supply) {
4014 		err = regulator_enable(sor->hdmi_supply);
4015 		if (err < 0)
4016 			return err;
4017 	}
4018 
4019 	err = tegra_output_resume(&sor->output);
4020 	if (err < 0) {
4021 		dev_err(dev, "failed to resume output: %d\n", err);
4022 
4023 		if (sor->hdmi_supply)
4024 			regulator_disable(sor->hdmi_supply);
4025 
4026 		return err;
4027 	}
4028 
4029 	return 0;
4030 }
4031 
4032 static const struct dev_pm_ops tegra_sor_pm_ops = {
4033 	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4034 };
4035 
4036 struct platform_driver tegra_sor_driver = {
4037 	.driver = {
4038 		.name = "tegra-sor",
4039 		.of_match_table = tegra_sor_of_match,
4040 		.pm = &tegra_sor_pm_ops,
4041 	},
4042 	.probe = tegra_sor_probe,
4043 	.remove = tegra_sor_remove,
4044 };
4045