xref: /freebsd/sys/arm64/vmm/vmm_arm64.c (revision 3041b636463d521e3c2bbea7673da6afceec34e5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/mman.h>
36 #include <sys/pcpu.h>
37 #include <sys/proc.h>
38 #include <sys/sysctl.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/vmem.h>
42 
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_extern.h>
46 #include <vm/vm_map.h>
47 #include <vm/vm_page.h>
48 #include <vm/vm_param.h>
49 
50 #include <machine/armreg.h>
51 #include <machine/vm.h>
52 #include <machine/cpufunc.h>
53 #include <machine/cpu.h>
54 #include <machine/machdep.h>
55 #include <machine/vmm.h>
56 #include <machine/vmm_dev.h>
57 #include <machine/atomic.h>
58 #include <machine/hypervisor.h>
59 #include <machine/pmap.h>
60 
61 #include "mmu.h"
62 #include "arm64.h"
63 #include "hyp.h"
64 #include "reset.h"
65 #include "io/vgic.h"
66 #include "io/vgic_v3.h"
67 #include "io/vtimer.h"
68 #include "vmm_handlers.h"
69 #include "vmm_stat.h"
70 
71 #define	HANDLED		1
72 #define	UNHANDLED	0
73 
74 /* Number of bits in an EL2 virtual address */
75 #define	EL2_VIRT_BITS	48
76 CTASSERT((1ul << EL2_VIRT_BITS) >= HYP_VM_MAX_ADDRESS);
77 
78 /* TODO: Move the host hypctx off the stack */
79 #define	VMM_STACK_PAGES	4
80 #define	VMM_STACK_SIZE	(VMM_STACK_PAGES * PAGE_SIZE)
81 
82 static int vmm_pmap_levels, vmm_virt_bits, vmm_max_ipa_bits;
83 
84 /* Register values passed to arm_setup_vectors to set in the hypervisor */
85 struct vmm_init_regs {
86 	uint64_t tcr_el2;
87 	uint64_t vtcr_el2;
88 };
89 
90 MALLOC_DEFINE(M_HYP, "ARM VMM HYP", "ARM VMM HYP");
91 
92 extern char hyp_init_vectors[];
93 extern char hyp_vectors[];
94 extern char hyp_stub_vectors[];
95 
96 static vm_paddr_t hyp_code_base;
97 static size_t hyp_code_len;
98 
99 static char *stack[MAXCPU];
100 static vm_offset_t stack_hyp_va[MAXCPU];
101 
102 static vmem_t *el2_mem_alloc;
103 
104 static void arm_setup_vectors(void *arg);
105 
106 DPCPU_DEFINE_STATIC(struct hypctx *, vcpu);
107 
108 static inline void
arm64_set_active_vcpu(struct hypctx * hypctx)109 arm64_set_active_vcpu(struct hypctx *hypctx)
110 {
111 	DPCPU_SET(vcpu, hypctx);
112 }
113 
114 struct hypctx *
arm64_get_active_vcpu(void)115 arm64_get_active_vcpu(void)
116 {
117 	return (DPCPU_GET(vcpu));
118 }
119 
120 static void
arm_setup_vectors(void * arg)121 arm_setup_vectors(void *arg)
122 {
123 	struct vmm_init_regs *el2_regs;
124 	uintptr_t stack_top;
125 	uint32_t sctlr_el2;
126 	register_t daif;
127 
128 	el2_regs = arg;
129 	arm64_set_active_vcpu(NULL);
130 
131 	/*
132 	 * Configure the system control register for EL2:
133 	 *
134 	 * SCTLR_EL2_M: MMU on
135 	 * SCTLR_EL2_C: Data cacheability not affected
136 	 * SCTLR_EL2_I: Instruction cacheability not affected
137 	 * SCTLR_EL2_A: Instruction alignment check
138 	 * SCTLR_EL2_SA: Stack pointer alignment check
139 	 * SCTLR_EL2_WXN: Treat writable memory as execute never
140 	 * ~SCTLR_EL2_EE: Data accesses are little-endian
141 	 */
142 	sctlr_el2 = SCTLR_EL2_RES1;
143 	sctlr_el2 |= SCTLR_EL2_M | SCTLR_EL2_C | SCTLR_EL2_I;
144 	sctlr_el2 |= SCTLR_EL2_A | SCTLR_EL2_SA;
145 	sctlr_el2 |= SCTLR_EL2_WXN;
146 	sctlr_el2 &= ~SCTLR_EL2_EE;
147 
148 	daif = intr_disable();
149 
150 	if (in_vhe()) {
151 		WRITE_SPECIALREG(vtcr_el2, el2_regs->vtcr_el2);
152 	} else {
153 		/*
154 		 * Install the temporary vectors which will be responsible for
155 		 * initializing the VMM when we next trap into EL2.
156 		 *
157 		 * x0: the exception vector table responsible for hypervisor
158 		 * initialization on the next call.
159 		 */
160 		vmm_call_hyp(vtophys(&vmm_hyp_code));
161 
162 		/* Create and map the hypervisor stack */
163 		stack_top = stack_hyp_va[PCPU_GET(cpuid)] + VMM_STACK_SIZE;
164 
165 		/* Special call to initialize EL2 */
166 		vmm_call_hyp(vmmpmap_to_ttbr0(), stack_top, el2_regs->tcr_el2,
167 		    sctlr_el2, el2_regs->vtcr_el2);
168 	}
169 
170 	intr_restore(daif);
171 }
172 
173 static void
arm_teardown_vectors(void * arg)174 arm_teardown_vectors(void *arg)
175 {
176 	register_t daif;
177 
178 	/*
179 	 * vmm_cleanup() will disable the MMU. For the next few instructions,
180 	 * before the hardware disables the MMU, one of the following is
181 	 * possible:
182 	 *
183 	 * a. The instruction addresses are fetched with the MMU disabled,
184 	 * and they must represent the actual physical addresses. This will work
185 	 * because we call the vmm_cleanup() function by its physical address.
186 	 *
187 	 * b. The instruction addresses are fetched using the old translation
188 	 * tables. This will work because we have an identity mapping in place
189 	 * in the translation tables and vmm_cleanup() is called by its physical
190 	 * address.
191 	 */
192 	daif = intr_disable();
193 	/* TODO: Invalidate the cache */
194 	vmm_call_hyp(HYP_CLEANUP, vtophys(hyp_stub_vectors));
195 	intr_restore(daif);
196 
197 	arm64_set_active_vcpu(NULL);
198 }
199 
200 static uint64_t
vmm_vtcr_el2_sl(u_int levels)201 vmm_vtcr_el2_sl(u_int levels)
202 {
203 #if PAGE_SIZE == PAGE_SIZE_4K
204 	switch (levels) {
205 	case 2:
206 		return (VTCR_EL2_SL0_4K_LVL2);
207 	case 3:
208 		return (VTCR_EL2_SL0_4K_LVL1);
209 	case 4:
210 		return (VTCR_EL2_SL0_4K_LVL0);
211 	default:
212 		panic("%s: Invalid number of page table levels %u", __func__,
213 		    levels);
214 	}
215 #elif PAGE_SIZE == PAGE_SIZE_16K
216 	switch (levels) {
217 	case 2:
218 		return (VTCR_EL2_SL0_16K_LVL2);
219 	case 3:
220 		return (VTCR_EL2_SL0_16K_LVL1);
221 	case 4:
222 		return (VTCR_EL2_SL0_16K_LVL0);
223 	default:
224 		panic("%s: Invalid number of page table levels %u", __func__,
225 		    levels);
226 	}
227 #else
228 #error Unsupported page size
229 #endif
230 }
231 
232 int
vmmops_modinit(int ipinum)233 vmmops_modinit(int ipinum)
234 {
235 	struct vmm_init_regs el2_regs;
236 	vm_offset_t next_hyp_va;
237 	vm_paddr_t vmm_base;
238 	uint64_t id_aa64mmfr0_el1, pa_range_bits, pa_range_field;
239 	uint64_t cnthctl_el2;
240 	int cpu, i;
241 	bool rv __diagused;
242 
243 	if (!has_hyp()) {
244 		printf(
245 		    "vmm: Processor doesn't have support for virtualization\n");
246 		return (ENXIO);
247 	}
248 
249 	if (!vgic_present()) {
250 		printf("vmm: No vgic found\n");
251 		return (ENODEV);
252 	}
253 
254 	if (!get_kernel_reg(ID_AA64MMFR0_EL1, &id_aa64mmfr0_el1)) {
255 		printf("vmm: Unable to read ID_AA64MMFR0_EL1\n");
256 		return (ENXIO);
257 	}
258 	pa_range_field = ID_AA64MMFR0_PARange_VAL(id_aa64mmfr0_el1);
259 	/*
260 	 * Use 3 levels to give us up to 39 bits with 4k pages, or
261 	 * 47 bits with 16k pages.
262 	 */
263 	/* TODO: Check the number of levels for 64k pages */
264 	vmm_pmap_levels = 3;
265 	switch (pa_range_field) {
266 	case ID_AA64MMFR0_PARange_4G:
267 		printf("vmm: Not enough physical address bits\n");
268 		return (ENXIO);
269 	case ID_AA64MMFR0_PARange_64G:
270 		vmm_virt_bits = 36;
271 #if PAGE_SIZE == PAGE_SIZE_16K
272 		vmm_pmap_levels = 2;
273 #endif
274 		break;
275 	default:
276 		vmm_virt_bits = 39;
277 		break;
278 	}
279 	pa_range_bits = pa_range_field >> ID_AA64MMFR0_PARange_SHIFT;
280 
281 	if (!in_vhe()) {
282 		/* Initialise the EL2 MMU */
283 		if (!vmmpmap_init()) {
284 			printf("vmm: Failed to init the EL2 MMU\n");
285 			return (ENOMEM);
286 		}
287 	}
288 
289 	/* Set up the stage 2 pmap callbacks */
290 	MPASS(pmap_clean_stage2_tlbi == NULL);
291 	pmap_clean_stage2_tlbi = vmm_clean_s2_tlbi;
292 	pmap_stage2_invalidate_range = vmm_s2_tlbi_range;
293 	pmap_stage2_invalidate_all = vmm_s2_tlbi_all;
294 
295 	if (!in_vhe()) {
296 		/*
297 		 * Create an allocator for the virtual address space used by
298 		 * EL2. EL2 code is identity-mapped; the allocator is used to
299 		 * find space for VM structures.
300 		 */
301 		el2_mem_alloc = vmem_create("VMM EL2", 0, 0, PAGE_SIZE, 0,
302 		    M_WAITOK);
303 
304 		/* Create the mappings for the hypervisor translation table. */
305 		hyp_code_len = round_page(&vmm_hyp_code_end - &vmm_hyp_code);
306 
307 		/* We need an physical identity mapping for when we activate the MMU */
308 		hyp_code_base = vmm_base = vtophys(&vmm_hyp_code);
309 		rv = vmmpmap_enter(vmm_base, hyp_code_len, vmm_base,
310 		    VM_PROT_READ | VM_PROT_EXECUTE);
311 		MPASS(rv);
312 
313 		next_hyp_va = roundup2(vmm_base + hyp_code_len, L2_SIZE);
314 
315 		/* Create a per-CPU hypervisor stack */
316 		CPU_FOREACH(cpu) {
317 			stack[cpu] = malloc(VMM_STACK_SIZE, M_HYP, M_WAITOK | M_ZERO);
318 			stack_hyp_va[cpu] = next_hyp_va;
319 
320 			for (i = 0; i < VMM_STACK_PAGES; i++) {
321 				rv = vmmpmap_enter(stack_hyp_va[cpu] + ptoa(i),
322 				    PAGE_SIZE, vtophys(stack[cpu] + ptoa(i)),
323 				    VM_PROT_READ | VM_PROT_WRITE);
324 				MPASS(rv);
325 			}
326 			next_hyp_va += L2_SIZE;
327 		}
328 
329 		el2_regs.tcr_el2 = TCR_EL2_RES1;
330 		el2_regs.tcr_el2 |= min(pa_range_bits << TCR_EL2_PS_SHIFT,
331 		    TCR_EL2_PS_52BITS);
332 		el2_regs.tcr_el2 |= TCR_EL2_T0SZ(64 - EL2_VIRT_BITS);
333 		el2_regs.tcr_el2 |= TCR_EL2_IRGN0_WBWA | TCR_EL2_ORGN0_WBWA;
334 #if PAGE_SIZE == PAGE_SIZE_4K
335 		el2_regs.tcr_el2 |= TCR_EL2_TG0_4K;
336 #elif PAGE_SIZE == PAGE_SIZE_16K
337 		el2_regs.tcr_el2 |= TCR_EL2_TG0_16K;
338 #else
339 #error Unsupported page size
340 #endif
341 #ifdef SMP
342 		el2_regs.tcr_el2 |= TCR_EL2_SH0_IS;
343 #endif
344 	}
345 
346 	switch (pa_range_bits << TCR_EL2_PS_SHIFT) {
347 	case TCR_EL2_PS_32BITS:
348 		vmm_max_ipa_bits = 32;
349 		break;
350 	case TCR_EL2_PS_36BITS:
351 		vmm_max_ipa_bits = 36;
352 		break;
353 	case TCR_EL2_PS_40BITS:
354 		vmm_max_ipa_bits = 40;
355 		break;
356 	case TCR_EL2_PS_42BITS:
357 		vmm_max_ipa_bits = 42;
358 		break;
359 	case TCR_EL2_PS_44BITS:
360 		vmm_max_ipa_bits = 44;
361 		break;
362 	case TCR_EL2_PS_48BITS:
363 		vmm_max_ipa_bits = 48;
364 		break;
365 	case TCR_EL2_PS_52BITS:
366 	default:
367 		vmm_max_ipa_bits = 52;
368 		break;
369 	}
370 
371 	/*
372 	 * Configure the Stage 2 translation control register:
373 	 *
374 	 * VTCR_IRGN0_WBWA: Translation table walks access inner cacheable
375 	 * normal memory
376 	 * VTCR_ORGN0_WBWA: Translation table walks access outer cacheable
377 	 * normal memory
378 	 * VTCR_EL2_TG0_4K/16K: Stage 2 uses the same page size as the kernel
379 	 * VTCR_EL2_SL0_4K_LVL1: Stage 2 uses concatenated level 1 tables
380 	 * VTCR_EL2_SH0_IS: Memory associated with Stage 2 walks is inner
381 	 * shareable
382 	 */
383 	el2_regs.vtcr_el2 = VTCR_EL2_RES1;
384 	el2_regs.vtcr_el2 |= VTCR_EL2_IRGN0_WBWA | VTCR_EL2_ORGN0_WBWA;
385 	el2_regs.vtcr_el2 |= VTCR_EL2_T0SZ(64 - vmm_virt_bits);
386 	el2_regs.vtcr_el2 |= vmm_vtcr_el2_sl(vmm_pmap_levels);
387 #if PAGE_SIZE == PAGE_SIZE_4K
388 	el2_regs.vtcr_el2 |= VTCR_EL2_TG0_4K;
389 #elif PAGE_SIZE == PAGE_SIZE_16K
390 	el2_regs.vtcr_el2 |= VTCR_EL2_TG0_16K;
391 #else
392 #error Unsupported page size
393 #endif
394 #ifdef SMP
395 	el2_regs.vtcr_el2 |= VTCR_EL2_SH0_IS;
396 #endif
397 	/*
398 	 * If FEAT_LPA2 is enabled in the host then we need to enable it here
399 	 * so the page tables created by pmap.c are correct. The meaning of
400 	 * the shareability field changes to become address bits when this
401 	 * is set.
402 	 */
403 	if ((READ_SPECIALREG(tcr_el1) & TCR_DS) != 0) {
404 		el2_regs.vtcr_el2 |= VTCR_EL2_DS;
405 		el2_regs.vtcr_el2 |=
406 		    min(pa_range_bits << VTCR_EL2_PS_SHIFT, VTCR_EL2_PS_52BIT);
407 	} else {
408 		el2_regs.vtcr_el2 |=
409 		    min(pa_range_bits << VTCR_EL2_PS_SHIFT, VTCR_EL2_PS_48BIT);
410 	}
411 
412 	smp_rendezvous(NULL, arm_setup_vectors, NULL, &el2_regs);
413 
414 	if (!in_vhe()) {
415 		/* Add memory to the vmem allocator (checking there is space) */
416 		if (vmm_base > (L2_SIZE + PAGE_SIZE)) {
417 			/*
418 			 * Ensure there is an L2 block before the vmm code to check
419 			 * for buffer overflows on earlier data. Include the PAGE_SIZE
420 			 * of the minimum we can allocate.
421 			 */
422 			vmm_base -= L2_SIZE + PAGE_SIZE;
423 			vmm_base = rounddown2(vmm_base, L2_SIZE);
424 
425 			/*
426 			 * Check there is memory before the vmm code to add.
427 			 *
428 			 * Reserve the L2 block at address 0 so NULL dereference will
429 			 * raise an exception.
430 			 */
431 			if (vmm_base > L2_SIZE)
432 				vmem_add(el2_mem_alloc, L2_SIZE, vmm_base - L2_SIZE,
433 				    M_WAITOK);
434 		}
435 
436 		/*
437 		 * Add the memory after the stacks. There is most of an L2 block
438 		 * between the last stack and the first allocation so this should
439 		 * be safe without adding more padding.
440 		 */
441 		if (next_hyp_va < HYP_VM_MAX_ADDRESS - PAGE_SIZE)
442 			vmem_add(el2_mem_alloc, next_hyp_va,
443 			    HYP_VM_MAX_ADDRESS - next_hyp_va, M_WAITOK);
444 	}
445 	cnthctl_el2 = vmm_read_reg(HYP_REG_CNTHCTL);
446 
447 	vgic_init();
448 	vtimer_init(cnthctl_el2);
449 
450 	return (0);
451 }
452 
453 int
vmmops_modcleanup(void)454 vmmops_modcleanup(void)
455 {
456 	int cpu;
457 
458 	if (!in_vhe()) {
459 		smp_rendezvous(NULL, arm_teardown_vectors, NULL, NULL);
460 
461 		CPU_FOREACH(cpu) {
462 			vmmpmap_remove(stack_hyp_va[cpu],
463 			    VMM_STACK_PAGES * PAGE_SIZE, false);
464 		}
465 
466 		vmmpmap_remove(hyp_code_base, hyp_code_len, false);
467 	}
468 
469 	vtimer_cleanup();
470 
471 	if (!in_vhe()) {
472 		vmmpmap_fini();
473 
474 		CPU_FOREACH(cpu)
475 			free(stack[cpu], M_HYP);
476 	}
477 
478 	pmap_clean_stage2_tlbi = NULL;
479 	pmap_stage2_invalidate_range = NULL;
480 	pmap_stage2_invalidate_all = NULL;
481 
482 	return (0);
483 }
484 
485 static vm_size_t
el2_hyp_size(struct vm * vm)486 el2_hyp_size(struct vm *vm)
487 {
488 	return (round_page(sizeof(struct hyp) +
489 	    sizeof(struct hypctx *) * vm_get_maxcpus(vm)));
490 }
491 
492 static vm_size_t
el2_hypctx_size(void)493 el2_hypctx_size(void)
494 {
495 	return (round_page(sizeof(struct hypctx)));
496 }
497 
498 static vm_offset_t
el2_map_enter(vm_offset_t data,vm_size_t size,vm_prot_t prot)499 el2_map_enter(vm_offset_t data, vm_size_t size, vm_prot_t prot)
500 {
501 	vmem_addr_t addr;
502 	int err __diagused;
503 	bool rv __diagused;
504 
505 	err = vmem_alloc(el2_mem_alloc, size, M_NEXTFIT | M_WAITOK, &addr);
506 	MPASS(err == 0);
507 	rv = vmmpmap_enter(addr, size, vtophys(data), prot);
508 	MPASS(rv);
509 
510 	return (addr);
511 }
512 
513 void *
vmmops_init(struct vm * vm,pmap_t pmap)514 vmmops_init(struct vm *vm, pmap_t pmap)
515 {
516 	struct hyp *hyp;
517 	vm_size_t size;
518 
519 	size = el2_hyp_size(vm);
520 	hyp = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
521 
522 	hyp->vm = vm;
523 	hyp->vgic_attached = false;
524 
525 	vtimer_vminit(hyp);
526 	vgic_vminit(hyp);
527 
528 	if (!in_vhe())
529 		hyp->el2_addr = el2_map_enter((vm_offset_t)hyp, size,
530 		    VM_PROT_READ | VM_PROT_WRITE);
531 
532 	return (hyp);
533 }
534 
535 void *
vmmops_vcpu_init(void * vmi,struct vcpu * vcpu1,int vcpuid)536 vmmops_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
537 {
538 	struct hyp *hyp = vmi;
539 	struct hypctx *hypctx;
540 	vm_size_t size;
541 
542 	size = el2_hypctx_size();
543 	hypctx = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
544 
545 	KASSERT(vcpuid >= 0 && vcpuid < vm_get_maxcpus(hyp->vm),
546 	    ("%s: Invalid vcpuid %d", __func__, vcpuid));
547 	hyp->ctx[vcpuid] = hypctx;
548 
549 	hypctx->hyp = hyp;
550 	hypctx->vcpu = vcpu1;
551 
552 	reset_vm_el01_regs(hypctx);
553 	reset_vm_el2_regs(hypctx);
554 
555 	vtimer_cpuinit(hypctx);
556 	vgic_cpuinit(hypctx);
557 
558 	if (!in_vhe())
559 		hypctx->el2_addr = el2_map_enter((vm_offset_t)hypctx, size,
560 		    VM_PROT_READ | VM_PROT_WRITE);
561 
562 	return (hypctx);
563 }
564 
565 static int
arm_vmm_pinit(pmap_t pmap)566 arm_vmm_pinit(pmap_t pmap)
567 {
568 
569 	pmap_pinit_stage(pmap, PM_STAGE2, vmm_pmap_levels);
570 	return (1);
571 }
572 
573 struct vmspace *
vmmops_vmspace_alloc(vm_offset_t min,vm_offset_t max)574 vmmops_vmspace_alloc(vm_offset_t min, vm_offset_t max)
575 {
576 	return (vmspace_alloc(min, max, arm_vmm_pinit));
577 }
578 
579 void
vmmops_vmspace_free(struct vmspace * vmspace)580 vmmops_vmspace_free(struct vmspace *vmspace)
581 {
582 
583 	pmap_remove_pages(vmspace_pmap(vmspace));
584 	vmspace_free(vmspace);
585 }
586 
587 static inline void
arm64_print_hyp_regs(struct vm_exit * vme)588 arm64_print_hyp_regs(struct vm_exit *vme)
589 {
590 	printf("esr_el2:   0x%016lx\n", vme->u.hyp.esr_el2);
591 	printf("far_el2:   0x%016lx\n", vme->u.hyp.far_el2);
592 	printf("hpfar_el2: 0x%016lx\n", vme->u.hyp.hpfar_el2);
593 	printf("elr_el2:   0x%016lx\n", vme->pc);
594 }
595 
596 static void
arm64_gen_inst_emul_data(struct hypctx * hypctx,uint32_t esr_iss,struct vm_exit * vme_ret)597 arm64_gen_inst_emul_data(struct hypctx *hypctx, uint32_t esr_iss,
598     struct vm_exit *vme_ret)
599 {
600 	struct vm_guest_paging *paging;
601 	struct vie *vie;
602 	uint32_t esr_sas, reg_num;
603 
604 	/*
605 	 * Get the page address from HPFAR_EL2.
606 	 */
607 	vme_ret->u.inst_emul.gpa =
608 	    HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
609 	/* Bits [11:0] are the same as bits [11:0] from the virtual address. */
610 	vme_ret->u.inst_emul.gpa += hypctx->exit_info.far_el2 &
611 	    FAR_EL2_HPFAR_PAGE_MASK;
612 
613 	esr_sas = (esr_iss & ISS_DATA_SAS_MASK) >> ISS_DATA_SAS_SHIFT;
614 	reg_num = (esr_iss & ISS_DATA_SRT_MASK) >> ISS_DATA_SRT_SHIFT;
615 
616 	vie = &vme_ret->u.inst_emul.vie;
617 	vie->access_size = 1 << esr_sas;
618 	vie->sign_extend = (esr_iss & ISS_DATA_SSE) ? 1 : 0;
619 	vie->dir = (esr_iss & ISS_DATA_WnR) ? VM_DIR_WRITE : VM_DIR_READ;
620 	vie->reg = reg_num;
621 
622 	paging = &vme_ret->u.inst_emul.paging;
623 	paging->ttbr0_addr = hypctx->ttbr0_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
624 	paging->ttbr1_addr = hypctx->ttbr1_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
625 	paging->tcr_el1 = hypctx->tcr_el1;
626 	paging->tcr2_el1 = hypctx->tcr2_el1;
627 	paging->flags = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
628 	if ((hypctx->sctlr_el1 & SCTLR_M) != 0)
629 		paging->flags |= VM_GP_MMU_ENABLED;
630 }
631 
632 static void
arm64_gen_reg_emul_data(uint32_t esr_iss,struct vm_exit * vme_ret)633 arm64_gen_reg_emul_data(uint32_t esr_iss, struct vm_exit *vme_ret)
634 {
635 	uint32_t reg_num;
636 	struct vre *vre;
637 
638 	/* u.hyp member will be replaced by u.reg_emul */
639 	vre = &vme_ret->u.reg_emul.vre;
640 
641 	vre->inst_syndrome = esr_iss;
642 	/* ARMv8 Architecture Manual, p. D7-2273: 1 means read */
643 	vre->dir = (esr_iss & ISS_MSR_DIR) ? VM_DIR_READ : VM_DIR_WRITE;
644 	reg_num = ISS_MSR_Rt(esr_iss);
645 	vre->reg = reg_num;
646 }
647 
648 void
raise_data_insn_abort(struct hypctx * hypctx,uint64_t far,bool dabort,int fsc)649 raise_data_insn_abort(struct hypctx *hypctx, uint64_t far, bool dabort, int fsc)
650 {
651 	uint64_t esr;
652 
653 	if ((hypctx->tf.tf_spsr & PSR_M_MASK) == PSR_M_EL0t)
654 		esr = EXCP_INSN_ABORT_L << ESR_ELx_EC_SHIFT;
655 	else
656 		esr = EXCP_INSN_ABORT << ESR_ELx_EC_SHIFT;
657 	/* Set the bit that changes from insn -> data abort */
658 	if (dabort)
659 		esr |= EXCP_DATA_ABORT_L << ESR_ELx_EC_SHIFT;
660 	/* Set the IL bit if set by hardware */
661 	esr |= hypctx->tf.tf_esr & ESR_ELx_IL;
662 
663 	vmmops_exception(hypctx, esr | fsc, far);
664 }
665 
666 static int
handle_el1_sync_excp(struct hypctx * hypctx,struct vm_exit * vme_ret,pmap_t pmap)667 handle_el1_sync_excp(struct hypctx *hypctx, struct vm_exit *vme_ret,
668     pmap_t pmap)
669 {
670 	uint64_t gpa;
671 	uint32_t esr_ec, esr_iss;
672 
673 	esr_ec = ESR_ELx_EXCEPTION(hypctx->tf.tf_esr);
674 	esr_iss = hypctx->tf.tf_esr & ESR_ELx_ISS_MASK;
675 
676 	switch (esr_ec) {
677 	case EXCP_UNKNOWN:
678 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNKNOWN, 1);
679 		arm64_print_hyp_regs(vme_ret);
680 		vme_ret->exitcode = VM_EXITCODE_HYP;
681 		break;
682 	case EXCP_TRAP_WFI_WFE:
683 		if ((hypctx->tf.tf_esr & 0x3) == 0) { /* WFI */
684 			vmm_stat_incr(hypctx->vcpu, VMEXIT_WFI, 1);
685 			vme_ret->exitcode = VM_EXITCODE_WFI;
686 		} else {
687 			vmm_stat_incr(hypctx->vcpu, VMEXIT_WFE, 1);
688 			vme_ret->exitcode = VM_EXITCODE_HYP;
689 		}
690 		break;
691 	case EXCP_HVC:
692 		vmm_stat_incr(hypctx->vcpu, VMEXIT_HVC, 1);
693 		vme_ret->exitcode = VM_EXITCODE_HVC;
694 		break;
695 	case EXCP_MSR:
696 		vmm_stat_incr(hypctx->vcpu, VMEXIT_MSR, 1);
697 		arm64_gen_reg_emul_data(esr_iss, vme_ret);
698 		vme_ret->exitcode = VM_EXITCODE_REG_EMUL;
699 		break;
700 	case EXCP_BRK:
701 		vmm_stat_incr(hypctx->vcpu, VMEXIT_BRK, 1);
702 		vme_ret->exitcode = VM_EXITCODE_BRK;
703 		break;
704 	case EXCP_SOFTSTP_EL0:
705 		vmm_stat_incr(hypctx->vcpu, VMEXIT_SS, 1);
706 		vme_ret->exitcode = VM_EXITCODE_SS;
707 		break;
708 	case EXCP_INSN_ABORT_L:
709 	case EXCP_DATA_ABORT_L:
710 		vmm_stat_incr(hypctx->vcpu, esr_ec == EXCP_DATA_ABORT_L ?
711 		    VMEXIT_DATA_ABORT : VMEXIT_INSN_ABORT, 1);
712 		switch (hypctx->tf.tf_esr & ISS_DATA_DFSC_MASK) {
713 		case ISS_DATA_DFSC_TF_L0:
714 		case ISS_DATA_DFSC_TF_L1:
715 		case ISS_DATA_DFSC_TF_L2:
716 		case ISS_DATA_DFSC_TF_L3:
717 		case ISS_DATA_DFSC_AFF_L1:
718 		case ISS_DATA_DFSC_AFF_L2:
719 		case ISS_DATA_DFSC_AFF_L3:
720 		case ISS_DATA_DFSC_PF_L1:
721 		case ISS_DATA_DFSC_PF_L2:
722 		case ISS_DATA_DFSC_PF_L3:
723 			gpa = HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
724 			/* Check the IPA is valid */
725 			if (gpa >= (1ul << vmm_max_ipa_bits)) {
726 				raise_data_insn_abort(hypctx,
727 				    hypctx->exit_info.far_el2,
728 				    esr_ec == EXCP_DATA_ABORT_L,
729 				    ISS_DATA_DFSC_ASF_L0);
730 				vme_ret->inst_length = 0;
731 				return (HANDLED);
732 			}
733 
734 			if (vm_mem_allocated(hypctx->vcpu, gpa)) {
735 				vme_ret->exitcode = VM_EXITCODE_PAGING;
736 				vme_ret->inst_length = 0;
737 				vme_ret->u.paging.esr = hypctx->tf.tf_esr;
738 				vme_ret->u.paging.gpa = gpa;
739 			} else if (esr_ec == EXCP_INSN_ABORT_L) {
740 				/*
741 				 * Raise an external abort. Device memory is
742 				 * not executable
743 				 */
744 				raise_data_insn_abort(hypctx,
745 				    hypctx->exit_info.far_el2, false,
746 				    ISS_DATA_DFSC_EXT);
747 				vme_ret->inst_length = 0;
748 				return (HANDLED);
749 			} else {
750 				arm64_gen_inst_emul_data(hypctx, esr_iss,
751 				    vme_ret);
752 				vme_ret->exitcode = VM_EXITCODE_INST_EMUL;
753 			}
754 			break;
755 		default:
756 			arm64_print_hyp_regs(vme_ret);
757 			vme_ret->exitcode = VM_EXITCODE_HYP;
758 			break;
759 		}
760 
761 		break;
762 
763 	default:
764 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_SYNC, 1);
765 		arm64_print_hyp_regs(vme_ret);
766 		vme_ret->exitcode = VM_EXITCODE_HYP;
767 		break;
768 	}
769 
770 	/* We don't don't do any instruction emulation here */
771 	return (UNHANDLED);
772 }
773 
774 static int
arm64_handle_world_switch(struct hypctx * hypctx,int excp_type,struct vm_exit * vme,pmap_t pmap)775 arm64_handle_world_switch(struct hypctx *hypctx, int excp_type,
776     struct vm_exit *vme, pmap_t pmap)
777 {
778 	int handled;
779 
780 	switch (excp_type) {
781 	case EXCP_TYPE_EL1_SYNC:
782 		/* The exit code will be set by handle_el1_sync_excp(). */
783 		handled = handle_el1_sync_excp(hypctx, vme, pmap);
784 		break;
785 
786 	case EXCP_TYPE_EL1_IRQ:
787 	case EXCP_TYPE_EL1_FIQ:
788 		/* The host kernel will handle IRQs and FIQs. */
789 		vmm_stat_incr(hypctx->vcpu,
790 		    excp_type == EXCP_TYPE_EL1_IRQ ? VMEXIT_IRQ : VMEXIT_FIQ,1);
791 		vme->exitcode = VM_EXITCODE_BOGUS;
792 		handled = UNHANDLED;
793 		break;
794 
795 	case EXCP_TYPE_EL1_ERROR:
796 	case EXCP_TYPE_EL2_SYNC:
797 	case EXCP_TYPE_EL2_IRQ:
798 	case EXCP_TYPE_EL2_FIQ:
799 	case EXCP_TYPE_EL2_ERROR:
800 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_EL2, 1);
801 		vme->exitcode = VM_EXITCODE_BOGUS;
802 		handled = UNHANDLED;
803 		break;
804 
805 	default:
806 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED, 1);
807 		vme->exitcode = VM_EXITCODE_BOGUS;
808 		handled = UNHANDLED;
809 		break;
810 	}
811 
812 	return (handled);
813 }
814 
815 static void
ptp_release(void ** cookie)816 ptp_release(void **cookie)
817 {
818 	if (*cookie != NULL) {
819 		vm_gpa_release(*cookie);
820 		*cookie = NULL;
821 	}
822 }
823 
824 static void *
ptp_hold(struct vcpu * vcpu,vm_paddr_t ptpphys,size_t len,void ** cookie)825 ptp_hold(struct vcpu *vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
826 {
827 	void *ptr;
828 
829 	ptp_release(cookie);
830 	ptr = vm_gpa_hold(vcpu, ptpphys, len, VM_PROT_RW, cookie);
831 	return (ptr);
832 }
833 
834 /* log2 of the number of bytes in a page table entry */
835 #define	PTE_SHIFT	3
836 int
vmmops_gla2gpa(void * vcpui,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * is_fault)837 vmmops_gla2gpa(void *vcpui, struct vm_guest_paging *paging, uint64_t gla,
838     int prot, uint64_t *gpa, int *is_fault)
839 {
840 	struct hypctx *hypctx;
841 	void *cookie;
842 	uint64_t mask, *ptep, pte, pte_addr;
843 	int address_bits, granule_shift, ia_bits, levels, pte_shift, tsz;
844 	bool is_el0;
845 
846 	/* Check if the MMU is off */
847 	if ((paging->flags & VM_GP_MMU_ENABLED) == 0) {
848 		*is_fault = 0;
849 		*gpa = gla;
850 		return (0);
851 	}
852 
853 	is_el0 = (paging->flags & PSR_M_MASK) == PSR_M_EL0t;
854 
855 	if (ADDR_IS_KERNEL(gla)) {
856 		/* If address translation is disabled raise an exception */
857 		if ((paging->tcr_el1 & TCR_EPD1) != 0) {
858 			*is_fault = 1;
859 			return (0);
860 		}
861 		if (is_el0 && (paging->tcr_el1 & TCR_E0PD1) != 0) {
862 			*is_fault = 1;
863 			return (0);
864 		}
865 		pte_addr = paging->ttbr1_addr;
866 		tsz = (paging->tcr_el1 & TCR_T1SZ_MASK) >> TCR_T1SZ_SHIFT;
867 		/* Clear the top byte if TBI is on */
868 		if ((paging->tcr_el1 & TCR_TBI1) != 0)
869 			gla |= (0xfful << 56);
870 		switch (paging->tcr_el1 & TCR_TG1_MASK) {
871 		case TCR_TG1_4K:
872 			granule_shift = PAGE_SHIFT_4K;
873 			break;
874 		case TCR_TG1_16K:
875 			granule_shift = PAGE_SHIFT_16K;
876 			break;
877 		case TCR_TG1_64K:
878 			granule_shift = PAGE_SHIFT_64K;
879 			break;
880 		default:
881 			*is_fault = 1;
882 			return (EINVAL);
883 		}
884 	} else {
885 		/* If address translation is disabled raise an exception */
886 		if ((paging->tcr_el1 & TCR_EPD0) != 0) {
887 			*is_fault = 1;
888 			return (0);
889 		}
890 		if (is_el0 && (paging->tcr_el1 & TCR_E0PD0) != 0) {
891 			*is_fault = 1;
892 			return (0);
893 		}
894 		pte_addr = paging->ttbr0_addr;
895 		tsz = (paging->tcr_el1 & TCR_T0SZ_MASK) >> TCR_T0SZ_SHIFT;
896 		/* Clear the top byte if TBI is on */
897 		if ((paging->tcr_el1 & TCR_TBI0) != 0)
898 			gla &= ~(0xfful << 56);
899 		switch (paging->tcr_el1 & TCR_TG0_MASK) {
900 		case TCR_TG0_4K:
901 			granule_shift = PAGE_SHIFT_4K;
902 			break;
903 		case TCR_TG0_16K:
904 			granule_shift = PAGE_SHIFT_16K;
905 			break;
906 		case TCR_TG0_64K:
907 			granule_shift = PAGE_SHIFT_64K;
908 			break;
909 		default:
910 			*is_fault = 1;
911 			return (EINVAL);
912 		}
913 	}
914 
915 	/*
916 	 * TODO: Support FEAT_TTST for smaller tsz values and FEAT_LPA2
917 	 * for larger values.
918 	 */
919 	switch (granule_shift) {
920 	case PAGE_SHIFT_4K:
921 	case PAGE_SHIFT_16K:
922 		/*
923 		 * See "Table D8-11 4KB granule, determining stage 1 initial
924 		 * lookup level" and "Table D8-21 16KB granule, determining
925 		 * stage 1 initial lookup level" from the "Arm Architecture
926 		 * Reference Manual for A-Profile architecture" revision I.a
927 		 * for the minimum and maximum values.
928 		 *
929 		 * TODO: Support less than 16 when FEAT_LPA2 is implemented
930 		 * and TCR_EL1.DS == 1
931 		 * TODO: Support more than 39 when FEAT_TTST is implemented
932 		 */
933 		if (tsz < 16 || tsz > 39) {
934 			*is_fault = 1;
935 			return (EINVAL);
936 		}
937 		break;
938 	case PAGE_SHIFT_64K:
939 	/* TODO: Support 64k granule. It will probably work, but is untested */
940 	default:
941 		*is_fault = 1;
942 		return (EINVAL);
943 	}
944 
945 	/*
946 	 * Calculate the input address bits. These are 64 bit in an address
947 	 * with the top tsz bits being all 0 or all 1.
948 	  */
949 	ia_bits = 64 - tsz;
950 
951 	/*
952 	 * Calculate the number of address bits used in the page table
953 	 * calculation. This is ia_bits minus the bottom granule_shift
954 	 * bits that are passed to the output address.
955 	 */
956 	address_bits = ia_bits - granule_shift;
957 
958 	/*
959 	 * Calculate the number of levels. Each level uses
960 	 * granule_shift - PTE_SHIFT bits of the input address.
961 	 * This is because the table is 1 << granule_shift and each
962 	 * entry is 1 << PTE_SHIFT bytes.
963 	 */
964 	levels = howmany(address_bits, granule_shift - PTE_SHIFT);
965 
966 	/* Mask of the upper unused bits in the virtual address */
967 	gla &= (1ul << ia_bits) - 1;
968 	hypctx = (struct hypctx *)vcpui;
969 	cookie = NULL;
970 	/* TODO: Check if the level supports block descriptors */
971 	for (;levels > 0; levels--) {
972 		int idx;
973 
974 		pte_shift = (levels - 1) * (granule_shift - PTE_SHIFT) +
975 		    granule_shift;
976 		idx = (gla >> pte_shift) &
977 		    ((1ul << (granule_shift - PTE_SHIFT)) - 1);
978 		while (idx > PAGE_SIZE / sizeof(pte)) {
979 			idx -= PAGE_SIZE / sizeof(pte);
980 			pte_addr += PAGE_SIZE;
981 		}
982 
983 		ptep = ptp_hold(hypctx->vcpu, pte_addr, PAGE_SIZE, &cookie);
984 		if (ptep == NULL)
985 			goto error;
986 		pte = ptep[idx];
987 
988 		/* Calculate the level we are looking at */
989 		switch (levels) {
990 		default:
991 			goto fault;
992 		/* TODO: Level -1 when FEAT_LPA2 is implemented */
993 		case 4: /* Level 0 */
994 			if ((pte & ATTR_DESCR_MASK) != L0_TABLE)
995 				goto fault;
996 			/* FALLTHROUGH */
997 		case 3: /* Level 1 */
998 		case 2: /* Level 2 */
999 			switch (pte & ATTR_DESCR_MASK) {
1000 			/* Use L1 macro as all levels are the same */
1001 			case L1_TABLE:
1002 				/* Check if EL0 can access this address space */
1003 				if (is_el0 &&
1004 				    (pte & TATTR_AP_TABLE_NO_EL0) != 0)
1005 					goto fault;
1006 				/* Check if the address space is writable */
1007 				if ((prot & PROT_WRITE) != 0 &&
1008 				    (pte & TATTR_AP_TABLE_RO) != 0)
1009 					goto fault;
1010 				if ((prot & PROT_EXEC) != 0) {
1011 					/* Check the table exec attribute */
1012 					if ((is_el0 &&
1013 					    (pte & TATTR_UXN_TABLE) != 0) ||
1014 					    (!is_el0 &&
1015 					     (pte & TATTR_PXN_TABLE) != 0))
1016 						goto fault;
1017 				}
1018 				pte_addr = pte & ~ATTR_MASK;
1019 				break;
1020 			case L1_BLOCK:
1021 				goto done;
1022 			default:
1023 				goto fault;
1024 			}
1025 			break;
1026 		case 1: /* Level 3 */
1027 			if ((pte & ATTR_DESCR_MASK) == L3_PAGE)
1028 				goto done;
1029 			goto fault;
1030 		}
1031 	}
1032 
1033 done:
1034 	/* Check if EL0 has access to the block/page */
1035 	if (is_el0 && (pte & ATTR_S1_AP(ATTR_S1_AP_USER)) == 0)
1036 		goto fault;
1037 	if ((prot & PROT_WRITE) != 0 && (pte & ATTR_S1_AP_RW_BIT) != 0)
1038 		goto fault;
1039 	if ((prot & PROT_EXEC) != 0) {
1040 		if ((is_el0 && (pte & ATTR_S1_UXN) != 0) ||
1041 		    (!is_el0 && (pte & ATTR_S1_PXN) != 0))
1042 			goto fault;
1043 	}
1044 	mask = (1ul << pte_shift) - 1;
1045 	*gpa = (pte & ~ATTR_MASK) | (gla & mask);
1046 	*is_fault = 0;
1047 	ptp_release(&cookie);
1048 	return (0);
1049 
1050 error:
1051 	ptp_release(&cookie);
1052 	return (EFAULT);
1053 fault:
1054 	*is_fault = 1;
1055 	ptp_release(&cookie);
1056 	return (0);
1057 }
1058 
1059 int
vmmops_run(void * vcpui,register_t pc,pmap_t pmap,struct vm_eventinfo * evinfo)1060 vmmops_run(void *vcpui, register_t pc, pmap_t pmap, struct vm_eventinfo *evinfo)
1061 {
1062 	uint64_t excp_type;
1063 	int handled;
1064 	register_t daif;
1065 	struct hyp *hyp;
1066 	struct hypctx *hypctx;
1067 	struct vcpu *vcpu;
1068 	struct vm_exit *vme;
1069 	int mode;
1070 
1071 	hypctx = (struct hypctx *)vcpui;
1072 	hyp = hypctx->hyp;
1073 	vcpu = hypctx->vcpu;
1074 	vme = vm_exitinfo(vcpu);
1075 
1076 	hypctx->tf.tf_elr = (uint64_t)pc;
1077 
1078 	for (;;) {
1079 		if (hypctx->has_exception) {
1080 			hypctx->has_exception = false;
1081 			hypctx->elr_el1 = hypctx->tf.tf_elr;
1082 
1083 			mode = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
1084 
1085 			if (mode == PSR_M_EL1t) {
1086 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x0;
1087 			} else if (mode == PSR_M_EL1h) {
1088 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x200;
1089 			} else if ((mode & PSR_M_32) == PSR_M_64) {
1090 				/* 64-bit EL0 */
1091 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x400;
1092 			} else {
1093 				/* 32-bit EL0 */
1094 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x600;
1095 			}
1096 
1097 			/* Set the new spsr */
1098 			hypctx->spsr_el1 = hypctx->tf.tf_spsr;
1099 
1100 			/* Set the new cpsr */
1101 			hypctx->tf.tf_spsr = hypctx->spsr_el1 & PSR_FLAGS;
1102 			hypctx->tf.tf_spsr |= PSR_DAIF | PSR_M_EL1h;
1103 
1104 			/*
1105 			 * Update fields that may change on exeption entry
1106 			 * based on how sctlr_el1 is configured.
1107 			 */
1108 			if ((hypctx->sctlr_el1 & SCTLR_SPAN) == 0)
1109 				hypctx->tf.tf_spsr |= PSR_PAN;
1110 			if ((hypctx->sctlr_el1 & SCTLR_DSSBS) == 0)
1111 				hypctx->tf.tf_spsr &= ~PSR_SSBS;
1112 			else
1113 				hypctx->tf.tf_spsr |= PSR_SSBS;
1114 		}
1115 
1116 		daif = intr_disable();
1117 
1118 		/* Check if the vcpu is suspended */
1119 		if (vcpu_suspended(evinfo)) {
1120 			intr_restore(daif);
1121 			vm_exit_suspended(vcpu, pc);
1122 			break;
1123 		}
1124 
1125 		if (vcpu_debugged(vcpu)) {
1126 			intr_restore(daif);
1127 			vm_exit_debug(vcpu, pc);
1128 			break;
1129 		}
1130 
1131 		/* Activate the stage2 pmap so the vmid is valid */
1132 		pmap_activate_vm(pmap);
1133 		hyp->vttbr_el2 = pmap_to_ttbr0(pmap);
1134 
1135 		/*
1136 		 * TODO: What happens if a timer interrupt is asserted exactly
1137 		 * here, but for the previous VM?
1138 		 */
1139 		arm64_set_active_vcpu(hypctx);
1140 		vgic_flush_hwstate(hypctx);
1141 
1142 		/* Call into EL2 to switch to the guest */
1143 		excp_type = vmm_enter_guest(hyp, hypctx);
1144 
1145 		vgic_sync_hwstate(hypctx);
1146 		vtimer_sync_hwstate(hypctx);
1147 
1148 		/*
1149 		 * Deactivate the stage2 pmap.
1150 		 */
1151 		PCPU_SET(curvmpmap, NULL);
1152 		intr_restore(daif);
1153 
1154 		vmm_stat_incr(vcpu, VMEXIT_COUNT, 1);
1155 		if (excp_type == EXCP_TYPE_MAINT_IRQ)
1156 			continue;
1157 
1158 		vme->pc = hypctx->tf.tf_elr;
1159 		vme->inst_length = INSN_SIZE;
1160 		vme->u.hyp.exception_nr = excp_type;
1161 		vme->u.hyp.esr_el2 = hypctx->tf.tf_esr;
1162 		vme->u.hyp.far_el2 = hypctx->exit_info.far_el2;
1163 		vme->u.hyp.hpfar_el2 = hypctx->exit_info.hpfar_el2;
1164 
1165 		handled = arm64_handle_world_switch(hypctx, excp_type, vme,
1166 		    pmap);
1167 		if (handled == UNHANDLED)
1168 			/* Exit loop to emulate instruction. */
1169 			break;
1170 		else
1171 			/* Resume guest execution from the next instruction. */
1172 			hypctx->tf.tf_elr += vme->inst_length;
1173 	}
1174 
1175 	return (0);
1176 }
1177 
1178 static void
arm_pcpu_vmcleanup(void * arg)1179 arm_pcpu_vmcleanup(void *arg)
1180 {
1181 	struct hyp *hyp;
1182 	int i, maxcpus;
1183 
1184 	hyp = arg;
1185 	maxcpus = vm_get_maxcpus(hyp->vm);
1186 	for (i = 0; i < maxcpus; i++) {
1187 		if (arm64_get_active_vcpu() == hyp->ctx[i]) {
1188 			arm64_set_active_vcpu(NULL);
1189 			break;
1190 		}
1191 	}
1192 }
1193 
1194 void
vmmops_vcpu_cleanup(void * vcpui)1195 vmmops_vcpu_cleanup(void *vcpui)
1196 {
1197 	struct hypctx *hypctx = vcpui;
1198 
1199 	vtimer_cpucleanup(hypctx);
1200 	vgic_cpucleanup(hypctx);
1201 
1202 	if (!in_vhe())
1203 		vmmpmap_remove(hypctx->el2_addr, el2_hypctx_size(), true);
1204 
1205 	free(hypctx, M_HYP);
1206 }
1207 
1208 void
vmmops_cleanup(void * vmi)1209 vmmops_cleanup(void *vmi)
1210 {
1211 	struct hyp *hyp = vmi;
1212 
1213 	vtimer_vmcleanup(hyp);
1214 	vgic_vmcleanup(hyp);
1215 
1216 	smp_rendezvous(NULL, arm_pcpu_vmcleanup, NULL, hyp);
1217 
1218 	if (!in_vhe())
1219 		vmmpmap_remove(hyp->el2_addr, el2_hyp_size(hyp->vm), true);
1220 
1221 	free(hyp, M_HYP);
1222 }
1223 
1224 /*
1225  * Return register value. Registers have different sizes and an explicit cast
1226  * must be made to ensure proper conversion.
1227  */
1228 static uint64_t *
hypctx_regptr(struct hypctx * hypctx,int reg)1229 hypctx_regptr(struct hypctx *hypctx, int reg)
1230 {
1231 	switch (reg) {
1232 	case VM_REG_GUEST_X0 ... VM_REG_GUEST_X29:
1233 		return (&hypctx->tf.tf_x[reg]);
1234 	case VM_REG_GUEST_LR:
1235 		return (&hypctx->tf.tf_lr);
1236 	case VM_REG_GUEST_SP:
1237 		return (&hypctx->tf.tf_sp);
1238 	case VM_REG_GUEST_CPSR:
1239 		return (&hypctx->tf.tf_spsr);
1240 	case VM_REG_GUEST_PC:
1241 		return (&hypctx->tf.tf_elr);
1242 	case VM_REG_GUEST_SCTLR_EL1:
1243 		return (&hypctx->sctlr_el1);
1244 	case VM_REG_GUEST_TTBR0_EL1:
1245 		return (&hypctx->ttbr0_el1);
1246 	case VM_REG_GUEST_TTBR1_EL1:
1247 		return (&hypctx->ttbr1_el1);
1248 	case VM_REG_GUEST_TCR_EL1:
1249 		return (&hypctx->tcr_el1);
1250 	case VM_REG_GUEST_TCR2_EL1:
1251 		return (&hypctx->tcr2_el1);
1252 	default:
1253 		break;
1254 	}
1255 	return (NULL);
1256 }
1257 
1258 int
vmmops_getreg(void * vcpui,int reg,uint64_t * retval)1259 vmmops_getreg(void *vcpui, int reg, uint64_t *retval)
1260 {
1261 	uint64_t *regp;
1262 	int running, hostcpu;
1263 	struct hypctx *hypctx = vcpui;
1264 
1265 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1266 	if (running && hostcpu != curcpu)
1267 		panic("arm_getreg: %s%d is running", vm_name(hypctx->hyp->vm),
1268 		    vcpu_vcpuid(hypctx->vcpu));
1269 
1270 	regp = hypctx_regptr(hypctx, reg);
1271 	if (regp == NULL)
1272 		return (EINVAL);
1273 
1274 	*retval = *regp;
1275 	return (0);
1276 }
1277 
1278 int
vmmops_setreg(void * vcpui,int reg,uint64_t val)1279 vmmops_setreg(void *vcpui, int reg, uint64_t val)
1280 {
1281 	uint64_t *regp;
1282 	struct hypctx *hypctx = vcpui;
1283 	int running, hostcpu;
1284 
1285 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1286 	if (running && hostcpu != curcpu)
1287 		panic("arm_setreg: %s%d is running", vm_name(hypctx->hyp->vm),
1288 		    vcpu_vcpuid(hypctx->vcpu));
1289 
1290 	regp = hypctx_regptr(hypctx, reg);
1291 	if (regp == NULL)
1292 		return (EINVAL);
1293 
1294 	*regp = val;
1295 	return (0);
1296 }
1297 
1298 int
vmmops_exception(void * vcpui,uint64_t esr,uint64_t far)1299 vmmops_exception(void *vcpui, uint64_t esr, uint64_t far)
1300 {
1301 	struct hypctx *hypctx = vcpui;
1302 	int running, hostcpu;
1303 
1304 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1305 	if (running && hostcpu != curcpu)
1306 		panic("%s: %s%d is running", __func__, vm_name(hypctx->hyp->vm),
1307 		    vcpu_vcpuid(hypctx->vcpu));
1308 
1309 	hypctx->far_el1 = far;
1310 	hypctx->esr_el1 = esr;
1311 	hypctx->has_exception = true;
1312 
1313 	return (0);
1314 }
1315 
1316 int
vmmops_getcap(void * vcpui,int num,int * retval)1317 vmmops_getcap(void *vcpui, int num, int *retval)
1318 {
1319 	struct hypctx *hypctx = vcpui;
1320 	int ret;
1321 
1322 	ret = ENOENT;
1323 
1324 	switch (num) {
1325 	case VM_CAP_UNRESTRICTED_GUEST:
1326 		*retval = 1;
1327 		ret = 0;
1328 		break;
1329 	case VM_CAP_BRK_EXIT:
1330 	case VM_CAP_SS_EXIT:
1331 	case VM_CAP_MASK_HWINTR:
1332 		*retval = (hypctx->setcaps & (1ul << num)) != 0;
1333 		break;
1334 	default:
1335 		break;
1336 	}
1337 
1338 	return (ret);
1339 }
1340 
1341 int
vmmops_setcap(void * vcpui,int num,int val)1342 vmmops_setcap(void *vcpui, int num, int val)
1343 {
1344 	struct hypctx *hypctx = vcpui;
1345 	int ret;
1346 
1347 	ret = 0;
1348 
1349 	switch (num) {
1350 	case VM_CAP_BRK_EXIT:
1351 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1352 			break;
1353 		if (val != 0)
1354 			hypctx->mdcr_el2 |= MDCR_EL2_TDE;
1355 		else
1356 			hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
1357 		break;
1358 	case VM_CAP_SS_EXIT:
1359 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1360 			break;
1361 
1362 		if (val != 0) {
1363 			hypctx->debug_spsr |= (hypctx->tf.tf_spsr & PSR_SS);
1364 			hypctx->debug_mdscr |= hypctx->mdscr_el1 &
1365 			    (MDSCR_SS | MDSCR_KDE);
1366 
1367 			hypctx->tf.tf_spsr |= PSR_SS;
1368 			hypctx->mdscr_el1 |= MDSCR_SS | MDSCR_KDE;
1369 			hypctx->mdcr_el2 |= MDCR_EL2_TDE;
1370 		} else {
1371 			hypctx->tf.tf_spsr &= ~PSR_SS;
1372 			hypctx->tf.tf_spsr |= hypctx->debug_spsr;
1373 			hypctx->debug_spsr &= ~PSR_SS;
1374 			hypctx->mdscr_el1 &= ~(MDSCR_SS | MDSCR_KDE);
1375 			hypctx->mdscr_el1 |= hypctx->debug_mdscr;
1376 			hypctx->debug_mdscr &= ~(MDSCR_SS | MDSCR_KDE);
1377 			hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
1378 		}
1379 		break;
1380 	case VM_CAP_MASK_HWINTR:
1381 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1382 			break;
1383 
1384 		if (val != 0) {
1385 			hypctx->debug_spsr |= (hypctx->tf.tf_spsr &
1386 			    (PSR_I | PSR_F));
1387 			hypctx->tf.tf_spsr |= PSR_I | PSR_F;
1388 		} else {
1389 			hypctx->tf.tf_spsr &= ~(PSR_I | PSR_F);
1390 			hypctx->tf.tf_spsr |= (hypctx->debug_spsr &
1391 			    (PSR_I | PSR_F));
1392 			hypctx->debug_spsr &= ~(PSR_I | PSR_F);
1393 		}
1394 		break;
1395 	default:
1396 		ret = ENOENT;
1397 		break;
1398 	}
1399 
1400 	if (ret == 0) {
1401 		if (val == 0)
1402 			hypctx->setcaps &= ~(1ul << num);
1403 		else
1404 			hypctx->setcaps |= (1ul << num);
1405 	}
1406 
1407 	return (ret);
1408 }
1409