xref: /freebsd/sys/netinet/tcp_subr.c (revision 5fb4b091e8352602894fc2b7284c8e1e3d8a8729)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipsec.h"
36 #include "opt_kern_tls.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/arb.h>
41 #include <sys/callout.h>
42 #include <sys/eventhandler.h>
43 #ifdef TCP_HHOOK
44 #include <sys/hhook.h>
45 #endif
46 #include <sys/kernel.h>
47 #ifdef TCP_HHOOK
48 #include <sys/khelp.h>
49 #endif
50 #ifdef KERN_TLS
51 #include <sys/ktls.h>
52 #endif
53 #include <sys/qmath.h>
54 #include <sys/stats.h>
55 #include <sys/sysctl.h>
56 #include <sys/jail.h>
57 #include <sys/malloc.h>
58 #include <sys/refcount.h>
59 #include <sys/mbuf.h>
60 #include <sys/priv.h>
61 #include <sys/sdt.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/protosw.h>
65 #include <sys/random.h>
66 
67 #include <vm/uma.h>
68 
69 #include <net/route.h>
70 #include <net/route/nhop.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_private.h>
74 #include <net/vnet.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_fib.h>
78 #include <netinet/in_kdtrace.h>
79 #include <netinet/in_pcb.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip_icmp.h>
84 #include <netinet/ip_var.h>
85 #ifdef INET6
86 #include <netinet/icmp6.h>
87 #include <netinet/ip6.h>
88 #include <netinet6/in6_fib.h>
89 #include <netinet6/in6_pcb.h>
90 #include <netinet6/ip6_var.h>
91 #include <netinet6/scope6_var.h>
92 #include <netinet6/nd6.h>
93 #endif
94 
95 #include <netinet/tcp.h>
96 #ifdef INVARIANTS
97 #define TCPSTATES
98 #endif
99 #include <netinet/tcp_fsm.h>
100 #include <netinet/tcp_seq.h>
101 #include <netinet/tcp_timer.h>
102 #include <netinet/tcp_var.h>
103 #include <netinet/tcp_ecn.h>
104 #include <netinet/tcp_log_buf.h>
105 #include <netinet/tcp_syncache.h>
106 #include <netinet/tcp_hpts.h>
107 #include <netinet/tcp_lro.h>
108 #include <netinet/cc/cc.h>
109 #include <netinet/tcpip.h>
110 #include <netinet/tcp_fastopen.h>
111 #include <netinet/tcp_accounting.h>
112 #ifdef TCP_OFFLOAD
113 #include <netinet/tcp_offload.h>
114 #endif
115 #include <netinet/udp.h>
116 #include <netinet/udp_var.h>
117 #ifdef INET6
118 #include <netinet6/tcp6_var.h>
119 #endif
120 
121 #include <netipsec/ipsec_support.h>
122 
123 #include <machine/in_cksum.h>
124 #include <crypto/siphash/siphash.h>
125 
126 #include <security/mac/mac_framework.h>
127 
128 #ifdef INET6
129 static ip6proto_ctlinput_t tcp6_ctlinput;
130 static udp_tun_icmp_t tcp6_ctlinput_viaudp;
131 #endif
132 
133 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
134 #ifdef INET6
135 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
136 #endif
137 
138 VNET_DEFINE(uint32_t, tcp_ack_war_time_window) = 1000;
139 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow,
140     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_ack_war_time_window), 0,
141    "Time interval in ms used to limit the number (ack_war_cnt) of challenge ACKs sent per TCP connection");
142 VNET_DEFINE(uint32_t, tcp_ack_war_cnt) = 5;
143 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt, CTLFLAG_VNET | CTLFLAG_RW,
144     &VNET_NAME(tcp_ack_war_cnt), 0,
145    "Maximum number of challenge ACKs sent per TCP connection during the time interval (ack_war_timewindow)");
146 
147 struct rwlock tcp_function_lock;
148 
149 static int
sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)150 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
151 {
152 	int error, new;
153 
154 	new = V_tcp_mssdflt;
155 	error = sysctl_handle_int(oidp, &new, 0, req);
156 	if (error == 0 && req->newptr) {
157 		if (new < TCP_MINMSS)
158 			error = EINVAL;
159 		else
160 			V_tcp_mssdflt = new;
161 	}
162 	return (error);
163 }
164 
165 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
166     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
167     &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I",
168     "Default TCP Maximum Segment Size");
169 
170 #ifdef INET6
171 static int
sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)172 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
173 {
174 	int error, new;
175 
176 	new = V_tcp_v6mssdflt;
177 	error = sysctl_handle_int(oidp, &new, 0, req);
178 	if (error == 0 && req->newptr) {
179 		if (new < TCP_MINMSS)
180 			error = EINVAL;
181 		else
182 			V_tcp_v6mssdflt = new;
183 	}
184 	return (error);
185 }
186 
187 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I",
190    "Default TCP Maximum Segment Size for IPv6");
191 #endif /* INET6 */
192 
193 /*
194  * Minimum MSS we accept and use. This prevents DoS attacks where
195  * we are forced to a ridiculous low MSS like 20 and send hundreds
196  * of packets instead of one. The effect scales with the available
197  * bandwidth and quickly saturates the CPU and network interface
198  * with packet generation and sending. Set to zero to disable MINMSS
199  * checking. This setting prevents us from sending too small packets.
200  */
201 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
203      &VNET_NAME(tcp_minmss), 0,
204     "Minimum TCP Maximum Segment Size");
205 
206 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
207 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_do_rfc1323), 0,
209     "Enable rfc1323 (high performance TCP) extensions");
210 
211 /*
212  * As of June 2021, several TCP stacks violate RFC 7323 from September 2014.
213  * Some stacks negotiate TS, but never send them after connection setup. Some
214  * stacks negotiate TS, but don't send them when sending keep-alive segments.
215  * These include modern widely deployed TCP stacks.
216  * Therefore tolerating violations for now...
217  */
218 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1;
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW,
220     &VNET_NAME(tcp_tolerate_missing_ts), 0,
221     "Tolerate missing TCP timestamps");
222 
223 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW,
225     &VNET_NAME(tcp_ts_offset_per_conn), 0,
226     "Initialize TCP timestamps per connection instead of per host pair");
227 
228 /* How many connections are pacing */
229 static volatile uint32_t number_of_tcp_connections_pacing = 0;
230 static uint32_t shadow_num_connections = 0;
231 static counter_u64_t tcp_pacing_failures;
232 static counter_u64_t tcp_dgp_failures;
233 static uint32_t shadow_tcp_pacing_dgp = 0;
234 static volatile uint32_t number_of_dgp_connections = 0;
235 
236 static int tcp_pacing_limit = 10000;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW,
238     &tcp_pacing_limit, 1000,
239     "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)");
240 
241 static int tcp_dgp_limit = -1;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, dgp_limit, CTLFLAG_RW,
243     &tcp_dgp_limit, -1,
244     "If the TCP stack does DGP, is there a limit (-1 = no, 0 = no dgp N = number of connections)");
245 
246 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD,
247     &shadow_num_connections, 0, "Number of TCP connections being paced");
248 
249 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD,
250     &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit");
251 
252 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, dgp_failures, CTLFLAG_RD,
253     &tcp_dgp_failures, "Number of times we failed to enable dgp to avoid exceeding the limit");
254 
255 static int	tcp_log_debug = 0;
256 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
257     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
258 
259 /*
260  * Target size of TCP PCB hash tables. Must be a power of two.
261  *
262  * Note that this can be overridden by the kernel environment
263  * variable net.inet.tcp.tcbhashsize
264  */
265 #ifndef TCBHASHSIZE
266 #define TCBHASHSIZE	0
267 #endif
268 static int	tcp_tcbhashsize = TCBHASHSIZE;
269 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
270     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
271 
272 static int	do_tcpdrain = 1;
273 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
274     "Enable tcp_drain routine for extra help when low on mbufs");
275 
276 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
277     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
278 
279 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1;
280 #define	V_icmp_may_rst			VNET(icmp_may_rst)
281 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
282     &VNET_NAME(icmp_may_rst), 0,
283     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
284 
285 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0;
286 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
287 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
288     &VNET_NAME(tcp_isn_reseed_interval), 0,
289     "Seconds between reseeding of ISN secret");
290 
291 static int	tcp_soreceive_stream;
292 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
293     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
294 
295 VNET_DEFINE(uma_zone_t, sack_hole_zone);
296 #define	V_sack_hole_zone		VNET(sack_hole_zone)
297 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0;	/* unlimited */
298 static int
sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)299 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)
300 {
301 	int error;
302 	uint32_t new;
303 
304 	new = V_tcp_map_entries_limit;
305 	error = sysctl_handle_int(oidp, &new, 0, req);
306 	if (error == 0 && req->newptr) {
307 		/* only allow "0" and value > minimum */
308 		if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT)
309 			error = EINVAL;
310 		else
311 			V_tcp_map_entries_limit = new;
312 	}
313 	return (error);
314 }
315 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit,
316     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
317     &VNET_NAME(tcp_map_entries_limit), 0,
318     &sysctl_net_inet_tcp_map_limit_check, "IU",
319     "Total sendmap entries limit");
320 
321 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0;	/* unlimited */
322 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW,
323      &VNET_NAME(tcp_map_split_limit), 0,
324     "Total sendmap split entries limit");
325 
326 #ifdef TCP_HHOOK
327 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
328 #endif
329 
330 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH
331 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]);
332 #define	V_ts_offset_secret	VNET(ts_offset_secret)
333 
334 static int	tcp_default_fb_init(struct tcpcb *tp, void **ptr);
335 static void	tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged);
336 static int	tcp_default_handoff_ok(struct tcpcb *tp);
337 static struct inpcb *tcp_notify(struct inpcb *, int);
338 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
339 static struct inpcb *tcp_mtudisc(struct inpcb *, int);
340 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int);
341 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
342 		    const void *ip4hdr, const void *ip6hdr);
343 static void	tcp_default_switch_failed(struct tcpcb *tp);
344 static ipproto_ctlinput_t	tcp_ctlinput;
345 static udp_tun_icmp_t		tcp_ctlinput_viaudp;
346 
347 static struct tcp_function_block tcp_def_funcblk = {
348 	.tfb_tcp_block_name = "freebsd",
349 	.tfb_tcp_output = tcp_default_output,
350 	.tfb_tcp_do_segment = tcp_do_segment,
351 	.tfb_tcp_ctloutput = tcp_default_ctloutput,
352 	.tfb_tcp_handoff_ok = tcp_default_handoff_ok,
353 	.tfb_tcp_fb_init = tcp_default_fb_init,
354 	.tfb_tcp_fb_fini = tcp_default_fb_fini,
355 	.tfb_switch_failed = tcp_default_switch_failed,
356 	.tfb_flags = TCP_FUNC_DEFAULT_OK,
357 };
358 
359 static int tcp_fb_cnt = 0;
360 struct tcp_funchead t_functions;
361 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk;
362 #define	V_tcp_func_set_ptr VNET(tcp_func_set_ptr)
363 
364 void
tcp_record_dsack(struct tcpcb * tp,tcp_seq start,tcp_seq end,int tlp)365 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp)
366 {
367 	TCPSTAT_INC(tcps_dsack_count);
368 	tp->t_dsack_pack++;
369 	if (tlp == 0) {
370 		if (SEQ_GT(end, start)) {
371 			tp->t_dsack_bytes += (end - start);
372 			TCPSTAT_ADD(tcps_dsack_bytes, (end - start));
373 		} else {
374 			tp->t_dsack_tlp_bytes += (start - end);
375 			TCPSTAT_ADD(tcps_dsack_bytes, (start - end));
376 		}
377 	} else {
378 		if (SEQ_GT(end, start)) {
379 			tp->t_dsack_bytes += (end - start);
380 			TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start));
381 		} else {
382 			tp->t_dsack_tlp_bytes += (start - end);
383 			TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end));
384 		}
385 	}
386 }
387 
388 static struct tcp_function_block *
find_tcp_functions_locked(struct tcp_function_set * fs)389 find_tcp_functions_locked(struct tcp_function_set *fs)
390 {
391 	struct tcp_function *f;
392 	struct tcp_function_block *blk = NULL;
393 
394 	rw_assert(&tcp_function_lock, RA_LOCKED);
395 	TAILQ_FOREACH(f, &t_functions, tf_next) {
396 		if (strcmp(f->tf_name, fs->function_set_name) == 0) {
397 			blk = f->tf_fb;
398 			break;
399 		}
400 	}
401 	return (blk);
402 }
403 
404 static struct tcp_function_block *
find_tcp_fb_locked(struct tcp_function_block * blk,struct tcp_function ** s)405 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
406 {
407 	struct tcp_function_block *rblk = NULL;
408 	struct tcp_function *f;
409 
410 	rw_assert(&tcp_function_lock, RA_LOCKED);
411 	TAILQ_FOREACH(f, &t_functions, tf_next) {
412 		if (f->tf_fb == blk) {
413 			rblk = blk;
414 			if (s) {
415 				*s = f;
416 			}
417 			break;
418 		}
419 	}
420 	return (rblk);
421 }
422 
423 struct tcp_function_block *
find_and_ref_tcp_functions(struct tcp_function_set * fs)424 find_and_ref_tcp_functions(struct tcp_function_set *fs)
425 {
426 	struct tcp_function_block *blk;
427 
428 	rw_rlock(&tcp_function_lock);
429 	blk = find_tcp_functions_locked(fs);
430 	if (blk)
431 		refcount_acquire(&blk->tfb_refcnt);
432 	rw_runlock(&tcp_function_lock);
433 	return (blk);
434 }
435 
436 struct tcp_function_block *
find_and_ref_tcp_fb(struct tcp_function_block * blk)437 find_and_ref_tcp_fb(struct tcp_function_block *blk)
438 {
439 	struct tcp_function_block *rblk;
440 
441 	rw_rlock(&tcp_function_lock);
442 	rblk = find_tcp_fb_locked(blk, NULL);
443 	if (rblk)
444 		refcount_acquire(&rblk->tfb_refcnt);
445 	rw_runlock(&tcp_function_lock);
446 	return (rblk);
447 }
448 
449 /* Find a matching alias for the given tcp_function_block. */
450 int
find_tcp_function_alias(struct tcp_function_block * blk,struct tcp_function_set * fs)451 find_tcp_function_alias(struct tcp_function_block *blk,
452     struct tcp_function_set *fs)
453 {
454 	struct tcp_function *f;
455 	int found;
456 
457 	found = 0;
458 	rw_rlock(&tcp_function_lock);
459 	TAILQ_FOREACH(f, &t_functions, tf_next) {
460 		if ((f->tf_fb == blk) &&
461 		    (strncmp(f->tf_name, blk->tfb_tcp_block_name,
462 		        TCP_FUNCTION_NAME_LEN_MAX) != 0)) {
463 			/* Matching function block with different name. */
464 			strncpy(fs->function_set_name, f->tf_name,
465 			    TCP_FUNCTION_NAME_LEN_MAX);
466 			found = 1;
467 			break;
468 		}
469 	}
470 	/* Null terminate the string appropriately. */
471 	if (found) {
472 		fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0';
473 	} else {
474 		fs->function_set_name[0] = '\0';
475 	}
476 	rw_runlock(&tcp_function_lock);
477 	return (found);
478 }
479 
480 static struct tcp_function_block *
find_and_ref_tcp_default_fb(void)481 find_and_ref_tcp_default_fb(void)
482 {
483 	struct tcp_function_block *rblk;
484 
485 	rw_rlock(&tcp_function_lock);
486 	rblk = V_tcp_func_set_ptr;
487 	refcount_acquire(&rblk->tfb_refcnt);
488 	rw_runlock(&tcp_function_lock);
489 	return (rblk);
490 }
491 
492 void
tcp_switch_back_to_default(struct tcpcb * tp)493 tcp_switch_back_to_default(struct tcpcb *tp)
494 {
495 	struct tcp_function_block *tfb;
496 	void *ptr = NULL;
497 
498 	KASSERT(tp->t_fb != &tcp_def_funcblk,
499 	    ("%s: called by the built-in default stack", __func__));
500 
501 	if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
502 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
503 
504 	/*
505 	 * Now, we'll find a new function block to use.
506 	 * Start by trying the current user-selected
507 	 * default, unless this stack is the user-selected
508 	 * default.
509 	 */
510 	tfb = find_and_ref_tcp_default_fb();
511 	if (tfb == tp->t_fb) {
512 		refcount_release(&tfb->tfb_refcnt);
513 		tfb = NULL;
514 	}
515 	/* Does the stack accept this connection? */
516 	if (tfb != NULL && (*tfb->tfb_tcp_handoff_ok)(tp)) {
517 		refcount_release(&tfb->tfb_refcnt);
518 		tfb = NULL;
519 	}
520 	/* Try to use that stack. */
521 	if (tfb != NULL) {
522 		/* Initialize the new stack. If it succeeds, we are done. */
523 		if (tfb->tfb_tcp_fb_init == NULL ||
524 		    (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) {
525 			/* Release the old stack */
526 			if (tp->t_fb->tfb_tcp_fb_fini != NULL)
527 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
528 			refcount_release(&tp->t_fb->tfb_refcnt);
529 			/* Now set in all the pointers */
530 			tp->t_fb = tfb;
531 			tp->t_fb_ptr = ptr;
532 			return;
533 		}
534 		/*
535 		 * Initialization failed. Release the reference count on
536 		 * the looked up default stack.
537 		 */
538 		refcount_release(&tfb->tfb_refcnt);
539 	}
540 
541 	/*
542 	 * If that wasn't feasible, use the built-in default
543 	 * stack which is not allowed to reject anyone.
544 	 */
545 	tfb = find_and_ref_tcp_fb(&tcp_def_funcblk);
546 	if (tfb == NULL) {
547 		/* there always should be a default */
548 		panic("Can't refer to tcp_def_funcblk");
549 	}
550 	if ((*tfb->tfb_tcp_handoff_ok)(tp)) {
551 		/* The default stack cannot say no */
552 		panic("Default stack rejects a new session?");
553 	}
554 	if (tfb->tfb_tcp_fb_init != NULL &&
555 	    (*tfb->tfb_tcp_fb_init)(tp, &ptr)) {
556 		/* The default stack cannot fail */
557 		panic("Default stack initialization failed");
558 	}
559 	/* Now release the old stack */
560 	if (tp->t_fb->tfb_tcp_fb_fini != NULL)
561 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
562 	refcount_release(&tp->t_fb->tfb_refcnt);
563 	/* And set in the pointers to the new */
564 	tp->t_fb = tfb;
565 	tp->t_fb_ptr = ptr;
566 }
567 
568 static bool
tcp_recv_udp_tunneled_packet(struct mbuf * m,int off,struct inpcb * inp,const struct sockaddr * sa,void * ctx)569 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp,
570     const struct sockaddr *sa, void *ctx)
571 {
572 	struct ip *iph;
573 #ifdef INET6
574 	struct ip6_hdr *ip6;
575 #endif
576 	struct udphdr *uh;
577 	struct tcphdr *th;
578 	int thlen;
579 	uint16_t port;
580 
581 	TCPSTAT_INC(tcps_tunneled_pkts);
582 	if ((m->m_flags & M_PKTHDR) == 0) {
583 		/* Can't handle one that is not a pkt hdr */
584 		TCPSTAT_INC(tcps_tunneled_errs);
585 		goto out;
586 	}
587 	thlen = sizeof(struct tcphdr);
588 	if (m->m_len < off + sizeof(struct udphdr) + thlen &&
589 	    (m =  m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) {
590 		TCPSTAT_INC(tcps_tunneled_errs);
591 		goto out;
592 	}
593 	iph = mtod(m, struct ip *);
594 	uh = (struct udphdr *)((caddr_t)iph + off);
595 	th = (struct tcphdr *)(uh + 1);
596 	thlen = th->th_off << 2;
597 	if (m->m_len < off + sizeof(struct udphdr) + thlen) {
598 		m =  m_pullup(m, off + sizeof(struct udphdr) + thlen);
599 		if (m == NULL) {
600 			TCPSTAT_INC(tcps_tunneled_errs);
601 			goto out;
602 		} else {
603 			iph = mtod(m, struct ip *);
604 			uh = (struct udphdr *)((caddr_t)iph + off);
605 			th = (struct tcphdr *)(uh + 1);
606 		}
607 	}
608 	m->m_pkthdr.tcp_tun_port = port = uh->uh_sport;
609 	bcopy(th, uh, m->m_len - off);
610 	m->m_len -= sizeof(struct udphdr);
611 	m->m_pkthdr.len -= sizeof(struct udphdr);
612 	/*
613 	 * We use the same algorithm for
614 	 * both UDP and TCP for c-sum. So
615 	 * the code in tcp_input will skip
616 	 * the checksum. So we do nothing
617 	 * with the flag (m->m_pkthdr.csum_flags).
618 	 */
619 	switch (iph->ip_v) {
620 #ifdef INET
621 	case IPVERSION:
622 		iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr));
623 		tcp_input_with_port(&m, &off, IPPROTO_TCP, port);
624 		break;
625 #endif
626 #ifdef INET6
627 	case IPV6_VERSION >> 4:
628 		ip6 = mtod(m, struct ip6_hdr *);
629 		ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr));
630 		tcp6_input_with_port(&m, &off, IPPROTO_TCP, port);
631 		break;
632 #endif
633 	default:
634 		goto out;
635 		break;
636 	}
637 	return (true);
638 out:
639 	m_freem(m);
640 
641 	return (true);
642 }
643 
644 static int
sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)645 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
646 {
647 	int error = ENOENT;
648 	struct tcp_function_set fs;
649 	struct tcp_function_block *blk;
650 
651 	memset(&fs, 0, sizeof(fs));
652 	rw_rlock(&tcp_function_lock);
653 	blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL);
654 	if (blk) {
655 		/* Found him */
656 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
657 		fs.pcbcnt = blk->tfb_refcnt;
658 	}
659 	rw_runlock(&tcp_function_lock);
660 	error = sysctl_handle_string(oidp, fs.function_set_name,
661 				     sizeof(fs.function_set_name), req);
662 
663 	/* Check for error or no change */
664 	if (error != 0 || req->newptr == NULL)
665 		return (error);
666 
667 	rw_wlock(&tcp_function_lock);
668 	blk = find_tcp_functions_locked(&fs);
669 	if ((blk == NULL) ||
670 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
671 		error = ENOENT;
672 		goto done;
673 	}
674 	if ((blk->tfb_flags & TCP_FUNC_DEFAULT_OK) == 0) {
675 		error = EINVAL;
676 		goto done;
677 	}
678 	V_tcp_func_set_ptr = blk;
679 done:
680 	rw_wunlock(&tcp_function_lock);
681 	return (error);
682 }
683 
684 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
685     CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
686     NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
687     "Set/get the default TCP functions");
688 
689 static int
sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)690 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
691 {
692 	int error, cnt, linesz;
693 	struct tcp_function *f;
694 	char *buffer, *cp;
695 	size_t bufsz, outsz;
696 	bool alias;
697 
698 	cnt = 0;
699 	rw_rlock(&tcp_function_lock);
700 	TAILQ_FOREACH(f, &t_functions, tf_next) {
701 		cnt++;
702 	}
703 	rw_runlock(&tcp_function_lock);
704 
705 	bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1;
706 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
707 
708 	error = 0;
709 	cp = buffer;
710 
711 	linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D',
712 	    "Alias", "PCB count");
713 	cp += linesz;
714 	bufsz -= linesz;
715 	outsz = linesz;
716 
717 	rw_rlock(&tcp_function_lock);
718 	TAILQ_FOREACH(f, &t_functions, tf_next) {
719 		alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name);
720 		linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n",
721 		    f->tf_fb->tfb_tcp_block_name,
722 		    (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ',
723 		    alias ? f->tf_name : "-",
724 		    f->tf_fb->tfb_refcnt);
725 		if (linesz >= bufsz) {
726 			error = EOVERFLOW;
727 			break;
728 		}
729 		cp += linesz;
730 		bufsz -= linesz;
731 		outsz += linesz;
732 	}
733 	rw_runlock(&tcp_function_lock);
734 	if (error == 0)
735 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
736 	free(buffer, M_TEMP);
737 	return (error);
738 }
739 
740 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
741     CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
742     NULL, 0, sysctl_net_inet_list_available, "A",
743     "list available TCP Function sets");
744 
745 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT;
746 
747 #ifdef INET
748 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL;
749 #define	V_udp4_tun_socket	VNET(udp4_tun_socket)
750 #endif
751 #ifdef INET6
752 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL;
753 #define	V_udp6_tun_socket	VNET(udp6_tun_socket)
754 #endif
755 
756 static struct sx tcpoudp_lock;
757 
758 static void
tcp_over_udp_stop(void)759 tcp_over_udp_stop(void)
760 {
761 
762 	sx_assert(&tcpoudp_lock, SA_XLOCKED);
763 
764 #ifdef INET
765 	if (V_udp4_tun_socket != NULL) {
766 		soclose(V_udp4_tun_socket);
767 		V_udp4_tun_socket = NULL;
768 	}
769 #endif
770 #ifdef INET6
771 	if (V_udp6_tun_socket != NULL) {
772 		soclose(V_udp6_tun_socket);
773 		V_udp6_tun_socket = NULL;
774 	}
775 #endif
776 }
777 
778 static int
tcp_over_udp_start(void)779 tcp_over_udp_start(void)
780 {
781 	uint16_t port;
782 	int ret;
783 #ifdef INET
784 	struct sockaddr_in sin;
785 #endif
786 #ifdef INET6
787 	struct sockaddr_in6 sin6;
788 #endif
789 
790 	sx_assert(&tcpoudp_lock, SA_XLOCKED);
791 
792 	port = V_tcp_udp_tunneling_port;
793 	if (ntohs(port) == 0) {
794 		/* Must have a port set */
795 		return (EINVAL);
796 	}
797 #ifdef INET
798 	if (V_udp4_tun_socket != NULL) {
799 		/* Already running -- must stop first */
800 		return (EALREADY);
801 	}
802 #endif
803 #ifdef INET6
804 	if (V_udp6_tun_socket != NULL) {
805 		/* Already running -- must stop first */
806 		return (EALREADY);
807 	}
808 #endif
809 #ifdef INET
810 	if ((ret = socreate(PF_INET, &V_udp4_tun_socket,
811 	    SOCK_DGRAM, IPPROTO_UDP,
812 	    curthread->td_ucred, curthread))) {
813 		tcp_over_udp_stop();
814 		return (ret);
815 	}
816 	/* Call the special UDP hook. */
817 	if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket,
818 	    tcp_recv_udp_tunneled_packet,
819 	    tcp_ctlinput_viaudp,
820 	    NULL))) {
821 		tcp_over_udp_stop();
822 		return (ret);
823 	}
824 	/* Ok, we have a socket, bind it to the port. */
825 	memset(&sin, 0, sizeof(struct sockaddr_in));
826 	sin.sin_len = sizeof(struct sockaddr_in);
827 	sin.sin_family = AF_INET;
828 	sin.sin_port = htons(port);
829 	if ((ret = sobind(V_udp4_tun_socket,
830 	    (struct sockaddr *)&sin, curthread))) {
831 		tcp_over_udp_stop();
832 		return (ret);
833 	}
834 #endif
835 #ifdef INET6
836 	if ((ret = socreate(PF_INET6, &V_udp6_tun_socket,
837 	    SOCK_DGRAM, IPPROTO_UDP,
838 	    curthread->td_ucred, curthread))) {
839 		tcp_over_udp_stop();
840 		return (ret);
841 	}
842 	/* Call the special UDP hook. */
843 	if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket,
844 	    tcp_recv_udp_tunneled_packet,
845 	    tcp6_ctlinput_viaudp,
846 	    NULL))) {
847 		tcp_over_udp_stop();
848 		return (ret);
849 	}
850 	/* Ok, we have a socket, bind it to the port. */
851 	memset(&sin6, 0, sizeof(struct sockaddr_in6));
852 	sin6.sin6_len = sizeof(struct sockaddr_in6);
853 	sin6.sin6_family = AF_INET6;
854 	sin6.sin6_port = htons(port);
855 	if ((ret = sobind(V_udp6_tun_socket,
856 	    (struct sockaddr *)&sin6, curthread))) {
857 		tcp_over_udp_stop();
858 		return (ret);
859 	}
860 #endif
861 	return (0);
862 }
863 
864 static int
sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS)865 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS)
866 {
867 	int error;
868 	uint32_t old, new;
869 
870 	old = V_tcp_udp_tunneling_port;
871 	new = old;
872 	error = sysctl_handle_int(oidp, &new, 0, req);
873 	if ((error == 0) &&
874 	    (req->newptr != NULL)) {
875 		if ((new < TCP_TUNNELING_PORT_MIN) ||
876 		    (new > TCP_TUNNELING_PORT_MAX)) {
877 			error = EINVAL;
878 		} else {
879 			sx_xlock(&tcpoudp_lock);
880 			V_tcp_udp_tunneling_port = new;
881 			if (old != 0) {
882 				tcp_over_udp_stop();
883 			}
884 			if (new != 0) {
885 				error = tcp_over_udp_start();
886 				if (error != 0) {
887 					V_tcp_udp_tunneling_port = 0;
888 				}
889 			}
890 			sx_xunlock(&tcpoudp_lock);
891 		}
892 	}
893 	return (error);
894 }
895 
896 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port,
897     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
898     &VNET_NAME(tcp_udp_tunneling_port),
899     0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU",
900     "Tunneling port for tcp over udp");
901 
902 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT;
903 
904 static int
sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS)905 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS)
906 {
907 	int error, new;
908 
909 	new = V_tcp_udp_tunneling_overhead;
910 	error = sysctl_handle_int(oidp, &new, 0, req);
911 	if (error == 0 && req->newptr) {
912 		if ((new < TCP_TUNNELING_OVERHEAD_MIN) ||
913 		    (new > TCP_TUNNELING_OVERHEAD_MAX))
914 			error = EINVAL;
915 		else
916 			V_tcp_udp_tunneling_overhead = new;
917 	}
918 	return (error);
919 }
920 
921 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead,
922     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
923     &VNET_NAME(tcp_udp_tunneling_overhead),
924     0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU",
925     "MSS reduction when using tcp over udp");
926 
927 /*
928  * Exports one (struct tcp_function_info) for each alias/name.
929  */
930 static int
sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)931 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)
932 {
933 	int cnt, error;
934 	struct tcp_function *f;
935 	struct tcp_function_info tfi;
936 
937 	/*
938 	 * We don't allow writes.
939 	 */
940 	if (req->newptr != NULL)
941 		return (EINVAL);
942 
943 	/*
944 	 * Wire the old buffer so we can directly copy the functions to
945 	 * user space without dropping the lock.
946 	 */
947 	if (req->oldptr != NULL) {
948 		error = sysctl_wire_old_buffer(req, 0);
949 		if (error)
950 			return (error);
951 	}
952 
953 	/*
954 	 * Walk the list and copy out matching entries. If INVARIANTS
955 	 * is compiled in, also walk the list to verify the length of
956 	 * the list matches what we have recorded.
957 	 */
958 	rw_rlock(&tcp_function_lock);
959 
960 	cnt = 0;
961 #ifndef INVARIANTS
962 	if (req->oldptr == NULL) {
963 		cnt = tcp_fb_cnt;
964 		goto skip_loop;
965 	}
966 #endif
967 	TAILQ_FOREACH(f, &t_functions, tf_next) {
968 #ifdef INVARIANTS
969 		cnt++;
970 #endif
971 		if (req->oldptr != NULL) {
972 			bzero(&tfi, sizeof(tfi));
973 			tfi.tfi_refcnt = f->tf_fb->tfb_refcnt;
974 			tfi.tfi_id = f->tf_fb->tfb_id;
975 			(void)strlcpy(tfi.tfi_alias, f->tf_name,
976 			    sizeof(tfi.tfi_alias));
977 			(void)strlcpy(tfi.tfi_name,
978 			    f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name));
979 			error = SYSCTL_OUT(req, &tfi, sizeof(tfi));
980 			/*
981 			 * Don't stop on error, as that is the
982 			 * mechanism we use to accumulate length
983 			 * information if the buffer was too short.
984 			 */
985 		}
986 	}
987 	KASSERT(cnt == tcp_fb_cnt,
988 	    ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt));
989 #ifndef INVARIANTS
990 skip_loop:
991 #endif
992 	rw_runlock(&tcp_function_lock);
993 	if (req->oldptr == NULL)
994 		error = SYSCTL_OUT(req, NULL,
995 		    (cnt + 1) * sizeof(struct tcp_function_info));
996 
997 	return (error);
998 }
999 
1000 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info,
1001 	    CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE,
1002 	    NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info",
1003 	    "List TCP function block name-to-ID mappings");
1004 
1005 /*
1006  * tfb_tcp_handoff_ok() function for the default stack.
1007  * Note that we'll basically try to take all comers.
1008  */
1009 static int
tcp_default_handoff_ok(struct tcpcb * tp)1010 tcp_default_handoff_ok(struct tcpcb *tp)
1011 {
1012 
1013 	return (0);
1014 }
1015 
1016 /*
1017  * tfb_tcp_fb_init() function for the default stack.
1018  *
1019  * This handles making sure we have appropriate timers set if you are
1020  * transitioning a socket that has some amount of setup done.
1021  *
1022  * The init() fuction from the default can *never* return non-zero i.e.
1023  * it is required to always succeed since it is the stack of last resort!
1024  */
1025 static int
tcp_default_fb_init(struct tcpcb * tp,void ** ptr)1026 tcp_default_fb_init(struct tcpcb *tp, void **ptr)
1027 {
1028 	struct socket *so = tptosocket(tp);
1029 	int rexmt;
1030 
1031 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1032 	/* We don't use the pointer */
1033 	*ptr = NULL;
1034 
1035 	KASSERT(tp->t_state < TCPS_TIME_WAIT,
1036 	    ("%s: connection %p in unexpected state %d", __func__, tp,
1037 	    tp->t_state));
1038 
1039 	/* Make sure we get no interesting mbuf queuing behavior */
1040 	/* All mbuf queue/ack compress flags should be off */
1041 	tcp_lro_features_off(tp);
1042 
1043 	/* Cancel the GP measurement in progress */
1044 	tp->t_flags &= ~TF_GPUTINPROG;
1045 	/* Validate the timers are not in usec, if they are convert */
1046 	tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
1047 	if ((tp->t_state == TCPS_SYN_SENT) ||
1048 	    (tp->t_state == TCPS_SYN_RECEIVED))
1049 		rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift];
1050 	else
1051 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
1052 	if (tp->t_rxtshift == 0)
1053 		tp->t_rxtcur = rexmt;
1054 	else
1055 		TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin,
1056 		    tcp_rexmit_max);
1057 
1058 	/*
1059 	 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't
1060 	 * know what to do for unexpected states (which includes TIME_WAIT).
1061 	 */
1062 	if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT)
1063 		return (0);
1064 
1065 	/*
1066 	 * Make sure some kind of transmission timer is set if there is
1067 	 * outstanding data.
1068 	 */
1069 	if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) ||
1070 	    tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) ||
1071 	    tcp_timer_active(tp, TT_PERSIST))) {
1072 		/*
1073 		 * If the session has established and it looks like it should
1074 		 * be in the persist state, set the persist timer. Otherwise,
1075 		 * set the retransmit timer.
1076 		 */
1077 		if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 &&
1078 		    (int32_t)(tp->snd_nxt - tp->snd_una) <
1079 		    (int32_t)sbavail(&so->so_snd))
1080 			tcp_setpersist(tp);
1081 		else
1082 			tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
1083 	}
1084 
1085 	/* All non-embryonic sessions get a keepalive timer. */
1086 	if (!tcp_timer_active(tp, TT_KEEP))
1087 		tcp_timer_activate(tp, TT_KEEP,
1088 		    TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) :
1089 		    TP_KEEPINIT(tp));
1090 
1091 	/*
1092 	 * Make sure critical variables are initialized
1093 	 * if transitioning while in Recovery.
1094 	 */
1095 	if IN_FASTRECOVERY(tp->t_flags) {
1096 		if (tp->sackhint.recover_fs == 0)
1097 			tp->sackhint.recover_fs = max(1,
1098 			    tp->snd_nxt - tp->snd_una);
1099 	}
1100 
1101 	return (0);
1102 }
1103 
1104 /*
1105  * tfb_tcp_fb_fini() function for the default stack.
1106  *
1107  * This changes state as necessary (or prudent) to prepare for another stack
1108  * to assume responsibility for the connection.
1109  */
1110 static void
tcp_default_fb_fini(struct tcpcb * tp,int tcb_is_purged)1111 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged)
1112 {
1113 
1114 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1115 
1116 #ifdef TCP_BLACKBOX
1117 	tcp_log_flowend(tp);
1118 #endif
1119 	tp->t_acktime = 0;
1120 	return;
1121 }
1122 
1123 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
1124 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
1125 
1126 static struct mtx isn_mtx;
1127 
1128 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
1129 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
1130 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
1131 
1132 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash");
1133 
1134 /*
1135  * Take a value and get the next power of 2 that doesn't overflow.
1136  * Used to size the tcp_inpcb hash buckets.
1137  */
1138 static int
maketcp_hashsize(int size)1139 maketcp_hashsize(int size)
1140 {
1141 	int hashsize;
1142 
1143 	/*
1144 	 * auto tune.
1145 	 * get the next power of 2 higher than maxsockets.
1146 	 */
1147 	hashsize = 1 << fls(size);
1148 	/* catch overflow, and just go one power of 2 smaller */
1149 	if (hashsize < size) {
1150 		hashsize = 1 << (fls(size) - 1);
1151 	}
1152 	return (hashsize);
1153 }
1154 
1155 static volatile int next_tcp_stack_id = 1;
1156 
1157 /*
1158  * Register a TCP function block with the name provided in the names
1159  * array.  (Note that this function does NOT automatically register
1160  * blk->tfb_tcp_block_name as a stack name.  Therefore, you should
1161  * explicitly include blk->tfb_tcp_block_name in the list of names if
1162  * you wish to register the stack with that name.)
1163  *
1164  * Either all name registrations will succeed or all will fail.  If
1165  * a name registration fails, the function will update the num_names
1166  * argument to point to the array index of the name that encountered
1167  * the failure.
1168  *
1169  * Returns 0 on success, or an error code on failure.
1170  */
1171 int
register_tcp_functions_as_names(struct tcp_function_block * blk,int wait,const char * names[],int * num_names)1172 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait,
1173     const char *names[], int *num_names)
1174 {
1175 	struct tcp_function *f[TCP_FUNCTION_NAME_NUM_MAX];
1176 	struct tcp_function_set fs;
1177 	int error, i, num_registered;
1178 
1179 	KASSERT(names != NULL, ("%s: Called with NULL name list", __func__));
1180 	KASSERT(*num_names > 0,
1181 	    ("%s: Called with non-positive length of name list", __func__));
1182 	KASSERT(rw_initialized(&tcp_function_lock),
1183 	    ("%s: called too early", __func__));
1184 
1185 	if (*num_names > TCP_FUNCTION_NAME_NUM_MAX) {
1186 		/* Too many names. */
1187 		*num_names = 0;
1188 		return (E2BIG);
1189 	}
1190 	if ((blk->tfb_tcp_output == NULL) ||
1191 	    (blk->tfb_tcp_do_segment == NULL) ||
1192 	    (blk->tfb_tcp_ctloutput == NULL) ||
1193 	    (blk->tfb_tcp_handoff_ok == NULL) ||
1194 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
1195 		/* These functions are required and a name is needed. */
1196 		*num_names = 0;
1197 		return (EINVAL);
1198 	}
1199 
1200 	for (i = 0; i < *num_names; i++) {
1201 		f[i] = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
1202 		if (f[i] == NULL) {
1203 			while (--i >= 0)
1204 				free(f[i], M_TCPFUNCTIONS);
1205 			*num_names = 0;
1206 			return (ENOMEM);
1207 		}
1208 	}
1209 
1210 	num_registered = 0;
1211 	rw_wlock(&tcp_function_lock);
1212 	if (find_tcp_fb_locked(blk, NULL) != NULL) {
1213 		/* A TCP function block can only be registered once. */
1214 		error = EALREADY;
1215 		goto cleanup;
1216 	}
1217 	if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) {
1218 		error = EINVAL;
1219 		goto cleanup;
1220 	}
1221 	refcount_init(&blk->tfb_refcnt, 0);
1222 	blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1);
1223 	for (i = 0; i < *num_names; i++) {
1224 		(void)strlcpy(fs.function_set_name, names[i],
1225 		    sizeof(fs.function_set_name));
1226 		if (find_tcp_functions_locked(&fs) != NULL) {
1227 			/* Duplicate name space not allowed */
1228 			error = EALREADY;
1229 			goto cleanup;
1230 		}
1231 		f[i]->tf_fb = blk;
1232 		(void)strlcpy(f[i]->tf_name, names[i], sizeof(f[i]->tf_name));
1233 		TAILQ_INSERT_TAIL(&t_functions, f[i], tf_next);
1234 		tcp_fb_cnt++;
1235 		num_registered++;
1236 	}
1237 	rw_wunlock(&tcp_function_lock);
1238 	return (0);
1239 
1240 cleanup:
1241 	/* Remove the entries just added. */
1242 	for (i = 0; i < *num_names; i++) {
1243 		if (i < num_registered) {
1244 			TAILQ_REMOVE(&t_functions, f[i], tf_next);
1245 			tcp_fb_cnt--;
1246 		}
1247 		f[i]->tf_fb = NULL;
1248 		free(f[i], M_TCPFUNCTIONS);
1249 	}
1250 	rw_wunlock(&tcp_function_lock);
1251 	*num_names = num_registered;
1252 	return (error);
1253 }
1254 
1255 /*
1256  * Register a TCP function block using the name provided in the name
1257  * argument.
1258  *
1259  * Returns 0 on success, or an error code on failure.
1260  */
1261 int
register_tcp_functions_as_name(struct tcp_function_block * blk,const char * name,int wait)1262 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name,
1263     int wait)
1264 {
1265 	const char *name_list[1];
1266 	int num_names, rv;
1267 
1268 	num_names = 1;
1269 	if (name != NULL)
1270 		name_list[0] = name;
1271 	else
1272 		name_list[0] = blk->tfb_tcp_block_name;
1273 	rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names);
1274 	return (rv);
1275 }
1276 
1277 /*
1278  * Register a TCP function block using the name defined in
1279  * blk->tfb_tcp_block_name.
1280  *
1281  * Returns 0 on success, or an error code on failure.
1282  */
1283 int
register_tcp_functions(struct tcp_function_block * blk,int wait)1284 register_tcp_functions(struct tcp_function_block *blk, int wait)
1285 {
1286 
1287 	return (register_tcp_functions_as_name(blk, NULL, wait));
1288 }
1289 
1290 /*
1291  * Deregister all names associated with a function block. This
1292  * functionally removes the function block from use within the system.
1293  *
1294  * When called with a true quiesce argument, mark the function block
1295  * as being removed so no more stacks will use it and determine
1296  * whether the removal would succeed.
1297  *
1298  * When called with a false quiesce argument, actually attempt the
1299  * removal.
1300  *
1301  * When called with a force argument, attempt to switch all TCBs to
1302  * use the default stack instead of returning EBUSY.
1303  *
1304  * Returns 0 on success (or if the removal would succeed), or an error
1305  * code on failure.
1306  */
1307 int
deregister_tcp_functions(struct tcp_function_block * blk,bool quiesce,bool force)1308 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce,
1309     bool force)
1310 {
1311 	struct tcp_function *f;
1312 	VNET_ITERATOR_DECL(vnet_iter);
1313 
1314 	if (blk == &tcp_def_funcblk) {
1315 		/* You can't un-register the default */
1316 		return (EPERM);
1317 	}
1318 	rw_wlock(&tcp_function_lock);
1319 	VNET_LIST_RLOCK_NOSLEEP();
1320 	VNET_FOREACH(vnet_iter) {
1321 		CURVNET_SET(vnet_iter);
1322 		if (blk == V_tcp_func_set_ptr) {
1323 			/* You can't free the current default in some vnet. */
1324 			CURVNET_RESTORE();
1325 			VNET_LIST_RUNLOCK_NOSLEEP();
1326 			rw_wunlock(&tcp_function_lock);
1327 			return (EBUSY);
1328 		}
1329 		CURVNET_RESTORE();
1330 	}
1331 	VNET_LIST_RUNLOCK_NOSLEEP();
1332 	/* Mark the block so no more stacks can use it. */
1333 	blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
1334 	/*
1335 	 * If TCBs are still attached to the stack, attempt to switch them
1336 	 * to the default stack.
1337 	 */
1338 	if (force && blk->tfb_refcnt) {
1339 		struct inpcb *inp;
1340 		struct tcpcb *tp;
1341 		VNET_ITERATOR_DECL(vnet_iter);
1342 
1343 		rw_wunlock(&tcp_function_lock);
1344 
1345 		VNET_LIST_RLOCK();
1346 		VNET_FOREACH(vnet_iter) {
1347 			CURVNET_SET(vnet_iter);
1348 			struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
1349 			    INPLOOKUP_WLOCKPCB);
1350 
1351 			while ((inp = inp_next(&inpi)) != NULL) {
1352 				tp = intotcpcb(inp);
1353 				if (tp == NULL || tp->t_fb != blk)
1354 					continue;
1355 				tcp_switch_back_to_default(tp);
1356 			}
1357 			CURVNET_RESTORE();
1358 		}
1359 		VNET_LIST_RUNLOCK();
1360 
1361 		rw_wlock(&tcp_function_lock);
1362 	}
1363 	if (blk->tfb_refcnt) {
1364 		/* TCBs still attached. */
1365 		rw_wunlock(&tcp_function_lock);
1366 		return (EBUSY);
1367 	}
1368 	if (quiesce) {
1369 		/* Skip removal. */
1370 		rw_wunlock(&tcp_function_lock);
1371 		return (0);
1372 	}
1373 	/* Remove any function names that map to this function block. */
1374 	while (find_tcp_fb_locked(blk, &f) != NULL) {
1375 		TAILQ_REMOVE(&t_functions, f, tf_next);
1376 		tcp_fb_cnt--;
1377 		f->tf_fb = NULL;
1378 		free(f, M_TCPFUNCTIONS);
1379 	}
1380 	rw_wunlock(&tcp_function_lock);
1381 	return (0);
1382 }
1383 
1384 static void
tcp_drain(void * ctx __unused,int flags __unused)1385 tcp_drain(void *ctx __unused, int flags __unused)
1386 {
1387 	struct epoch_tracker et;
1388 	VNET_ITERATOR_DECL(vnet_iter);
1389 
1390 	if (!do_tcpdrain)
1391 		return;
1392 
1393 	NET_EPOCH_ENTER(et);
1394 	VNET_LIST_RLOCK_NOSLEEP();
1395 	VNET_FOREACH(vnet_iter) {
1396 		CURVNET_SET(vnet_iter);
1397 		struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
1398 		    INPLOOKUP_WLOCKPCB);
1399 		struct inpcb *inpb;
1400 		struct tcpcb *tcpb;
1401 
1402 	/*
1403 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1404 	 * if there is one...
1405 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1406 	 *      reassembly queue should be flushed, but in a situation
1407 	 *	where we're really low on mbufs, this is potentially
1408 	 *	useful.
1409 	 */
1410 		while ((inpb = inp_next(&inpi)) != NULL) {
1411 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1412 				tcp_reass_flush(tcpb);
1413 				tcp_clean_sackreport(tcpb);
1414 #ifdef TCP_BLACKBOX
1415 				tcp_log_drain(tcpb);
1416 #endif
1417 			}
1418 		}
1419 		CURVNET_RESTORE();
1420 	}
1421 	VNET_LIST_RUNLOCK_NOSLEEP();
1422 	NET_EPOCH_EXIT(et);
1423 }
1424 
1425 static void
tcp_vnet_init(void * arg __unused)1426 tcp_vnet_init(void *arg __unused)
1427 {
1428 
1429 #ifdef TCP_HHOOK
1430 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
1431 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1432 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1433 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
1434 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1435 		printf("%s: WARNING: unable to register helper hook\n", __func__);
1436 #endif
1437 #ifdef STATS
1438 	if (tcp_stats_init())
1439 		printf("%s: WARNING: unable to initialise TCP stats\n",
1440 		    __func__);
1441 #endif
1442 	in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize,
1443 	    tcp_tcbhashsize);
1444 
1445 	syncache_init();
1446 	tcp_hc_init();
1447 
1448 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
1449 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
1450 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1451 
1452 	tcp_fastopen_init();
1453 
1454 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
1455 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
1456 
1457 	V_tcp_msl = TCPTV_MSL;
1458 	V_tcp_msl_local = TCPTV_MSL_LOCAL;
1459 	arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0);
1460 }
1461 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
1462     tcp_vnet_init, NULL);
1463 
1464 static void
tcp_init(void * arg __unused)1465 tcp_init(void *arg __unused)
1466 {
1467 	int hashsize;
1468 
1469 	tcp_reass_global_init();
1470 
1471 	/* XXX virtualize those below? */
1472 	tcp_delacktime = TCPTV_DELACK;
1473 	tcp_keepinit = TCPTV_KEEP_INIT;
1474 	tcp_keepidle = TCPTV_KEEP_IDLE;
1475 	tcp_keepintvl = TCPTV_KEEPINTVL;
1476 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
1477 	tcp_rexmit_initial = TCPTV_RTOBASE;
1478 	tcp_rexmit_min = TCPTV_MIN;
1479 	tcp_rexmit_max = TCPTV_REXMTMAX;
1480 	tcp_persmin = TCPTV_PERSMIN;
1481 	tcp_persmax = TCPTV_PERSMAX;
1482 	tcp_rexmit_slop = TCPTV_CPU_VAR;
1483 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
1484 
1485 	/* Setup the tcp function block list */
1486 	TAILQ_INIT(&t_functions);
1487 	rw_init(&tcp_function_lock, "tcp_func_lock");
1488 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
1489 	sx_init(&tcpoudp_lock, "TCP over UDP configuration");
1490 #ifdef TCP_BLACKBOX
1491 	/* Initialize the TCP logging data. */
1492 	tcp_log_init();
1493 #endif
1494 
1495 	if (tcp_soreceive_stream) {
1496 #ifdef INET
1497 		tcp_protosw.pr_soreceive = soreceive_stream;
1498 #endif
1499 #ifdef INET6
1500 		tcp6_protosw.pr_soreceive = soreceive_stream;
1501 #endif /* INET6 */
1502 	}
1503 
1504 #ifdef INET6
1505 	max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1506 #else /* INET6 */
1507 	max_protohdr_grow(sizeof(struct tcpiphdr));
1508 #endif /* INET6 */
1509 
1510 	ISN_LOCK_INIT();
1511 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
1512 		SHUTDOWN_PRI_DEFAULT);
1513 	EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
1514 	EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
1515 
1516 	tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK);
1517 	tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK);
1518 	tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK);
1519 	tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK);
1520 	tcp_extra_mbuf = counter_u64_alloc(M_WAITOK);
1521 	tcp_would_have_but = counter_u64_alloc(M_WAITOK);
1522 	tcp_comp_total = counter_u64_alloc(M_WAITOK);
1523 	tcp_uncomp_total = counter_u64_alloc(M_WAITOK);
1524 	tcp_bad_csums = counter_u64_alloc(M_WAITOK);
1525 	tcp_pacing_failures = counter_u64_alloc(M_WAITOK);
1526 	tcp_dgp_failures = counter_u64_alloc(M_WAITOK);
1527 
1528 	hashsize = tcp_tcbhashsize;
1529 	if (hashsize == 0) {
1530 		/*
1531 		 * Auto tune the hash size based on maxsockets.
1532 		 * A perfect hash would have a 1:1 mapping
1533 		 * (hashsize = maxsockets) however it's been
1534 		 * suggested that O(2) average is better.
1535 		 */
1536 		hashsize = maketcp_hashsize(maxsockets / 4);
1537 		/*
1538 		 * Our historical default is 512,
1539 		 * do not autotune lower than this.
1540 		 */
1541 		if (hashsize < 512)
1542 			hashsize = 512;
1543 		if (bootverbose)
1544 			printf("%s: %s auto tuned to %d\n", __func__,
1545 			    "net.inet.tcp.tcbhashsize", hashsize);
1546 	}
1547 	/*
1548 	 * We require a hashsize to be a power of two.
1549 	 * Previously if it was not a power of two we would just reset it
1550 	 * back to 512, which could be a nasty surprise if you did not notice
1551 	 * the error message.
1552 	 * Instead what we do is clip it to the closest power of two lower
1553 	 * than the specified hash value.
1554 	 */
1555 	if (!powerof2(hashsize)) {
1556 		int oldhashsize = hashsize;
1557 
1558 		hashsize = maketcp_hashsize(hashsize);
1559 		/* prevent absurdly low value */
1560 		if (hashsize < 16)
1561 			hashsize = 16;
1562 		printf("%s: WARNING: TCB hash size not a power of 2, "
1563 		    "clipped from %d to %d.\n", __func__, oldhashsize,
1564 		    hashsize);
1565 	}
1566 	tcp_tcbhashsize = hashsize;
1567 
1568 #ifdef INET
1569 	IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput);
1570 #endif
1571 #ifdef INET6
1572 	IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput);
1573 #endif
1574 }
1575 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL);
1576 
1577 #ifdef VIMAGE
1578 static void
tcp_destroy(void * unused __unused)1579 tcp_destroy(void *unused __unused)
1580 {
1581 #ifdef TCP_HHOOK
1582 	int error;
1583 #endif
1584 
1585 	tcp_hc_destroy();
1586 	syncache_destroy();
1587 	in_pcbinfo_destroy(&V_tcbinfo);
1588 	/* tcp_discardcb() clears the sack_holes up. */
1589 	uma_zdestroy(V_sack_hole_zone);
1590 
1591 	/*
1592 	 * Cannot free the zone until all tcpcbs are released as we attach
1593 	 * the allocations to them.
1594 	 */
1595 	tcp_fastopen_destroy();
1596 
1597 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
1598 	VNET_PCPUSTAT_FREE(tcpstat);
1599 
1600 #ifdef TCP_HHOOK
1601 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
1602 	if (error != 0) {
1603 		printf("%s: WARNING: unable to deregister helper hook "
1604 		    "type=%d, id=%d: error %d returned\n", __func__,
1605 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
1606 	}
1607 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
1608 	if (error != 0) {
1609 		printf("%s: WARNING: unable to deregister helper hook "
1610 		    "type=%d, id=%d: error %d returned\n", __func__,
1611 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
1612 	}
1613 #endif
1614 }
1615 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
1616 #endif
1617 
1618 void
tcp_fini(void * xtp)1619 tcp_fini(void *xtp)
1620 {
1621 
1622 }
1623 
1624 /*
1625  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
1626  * tcp_template used to store this data in mbufs, but we now recopy it out
1627  * of the tcpcb each time to conserve mbufs.
1628  */
1629 void
tcpip_fillheaders(struct inpcb * inp,uint16_t port,void * ip_ptr,void * tcp_ptr)1630 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr)
1631 {
1632 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
1633 
1634 	INP_WLOCK_ASSERT(inp);
1635 
1636 #ifdef INET6
1637 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1638 		struct ip6_hdr *ip6;
1639 
1640 		ip6 = (struct ip6_hdr *)ip_ptr;
1641 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
1642 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
1643 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
1644 			(IPV6_VERSION & IPV6_VERSION_MASK);
1645 		if (port == 0)
1646 			ip6->ip6_nxt = IPPROTO_TCP;
1647 		else
1648 			ip6->ip6_nxt = IPPROTO_UDP;
1649 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
1650 		ip6->ip6_src = inp->in6p_laddr;
1651 		ip6->ip6_dst = inp->in6p_faddr;
1652 	}
1653 #endif /* INET6 */
1654 #if defined(INET6) && defined(INET)
1655 	else
1656 #endif
1657 #ifdef INET
1658 	{
1659 		struct ip *ip;
1660 
1661 		ip = (struct ip *)ip_ptr;
1662 		ip->ip_v = IPVERSION;
1663 		ip->ip_hl = 5;
1664 		ip->ip_tos = inp->inp_ip_tos;
1665 		ip->ip_len = 0;
1666 		ip->ip_id = 0;
1667 		ip->ip_off = 0;
1668 		ip->ip_ttl = inp->inp_ip_ttl;
1669 		ip->ip_sum = 0;
1670 		if (port == 0)
1671 			ip->ip_p = IPPROTO_TCP;
1672 		else
1673 			ip->ip_p = IPPROTO_UDP;
1674 		ip->ip_src = inp->inp_laddr;
1675 		ip->ip_dst = inp->inp_faddr;
1676 	}
1677 #endif /* INET */
1678 	th->th_sport = inp->inp_lport;
1679 	th->th_dport = inp->inp_fport;
1680 	th->th_seq = 0;
1681 	th->th_ack = 0;
1682 	th->th_off = 5;
1683 	tcp_set_flags(th, 0);
1684 	th->th_win = 0;
1685 	th->th_urp = 0;
1686 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
1687 }
1688 
1689 /*
1690  * Create template to be used to send tcp packets on a connection.
1691  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
1692  * use for this function is in keepalives, which use tcp_respond.
1693  */
1694 struct tcptemp *
tcpip_maketemplate(struct inpcb * inp)1695 tcpip_maketemplate(struct inpcb *inp)
1696 {
1697 	struct tcptemp *t;
1698 
1699 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
1700 	if (t == NULL)
1701 		return (NULL);
1702 	tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t);
1703 	return (t);
1704 }
1705 
1706 /*
1707  * Send a single message to the TCP at address specified by
1708  * the given TCP/IP header.  If m == NULL, then we make a copy
1709  * of the tcpiphdr at th and send directly to the addressed host.
1710  * This is used to force keep alive messages out using the TCP
1711  * template for a connection.  If flags are given then we send
1712  * a message back to the TCP which originated the segment th,
1713  * and discard the mbuf containing it and any other attached mbufs.
1714  *
1715  * In any case the ack and sequence number of the transmitted
1716  * segment are as specified by the parameters.
1717  *
1718  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
1719  */
1720 
1721 void
tcp_respond(struct tcpcb * tp,void * ipgen,struct tcphdr * th,struct mbuf * m,tcp_seq ack,tcp_seq seq,uint16_t flags)1722 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
1723     tcp_seq ack, tcp_seq seq, uint16_t flags)
1724 {
1725 	struct tcpopt to;
1726 	struct inpcb *inp;
1727 	struct ip *ip;
1728 	struct mbuf *optm;
1729 	struct udphdr *uh = NULL;
1730 	struct tcphdr *nth;
1731 	struct tcp_log_buffer *lgb;
1732 	u_char *optp;
1733 #ifdef INET6
1734 	struct ip6_hdr *ip6;
1735 	int isipv6;
1736 #endif /* INET6 */
1737 	int optlen, tlen, win, ulen;
1738 	int ect = 0;
1739 	bool incl_opts;
1740 	uint16_t port;
1741 	int output_ret;
1742 #ifdef INVARIANTS
1743 	int thflags = tcp_get_flags(th);
1744 #endif
1745 
1746 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
1747 	NET_EPOCH_ASSERT();
1748 
1749 #ifdef INET6
1750 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
1751 	ip6 = ipgen;
1752 #endif /* INET6 */
1753 	ip = ipgen;
1754 
1755 	if (tp != NULL) {
1756 		inp = tptoinpcb(tp);
1757 		INP_LOCK_ASSERT(inp);
1758 	} else
1759 		inp = NULL;
1760 
1761 	if (m != NULL) {
1762 #ifdef INET6
1763 		if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP))
1764 			port = m->m_pkthdr.tcp_tun_port;
1765 		else
1766 #endif
1767 		if (ip && (ip->ip_p == IPPROTO_UDP))
1768 			port = m->m_pkthdr.tcp_tun_port;
1769 		else
1770 			port = 0;
1771 	} else
1772 		port = tp->t_port;
1773 
1774 	incl_opts = false;
1775 	win = 0;
1776 	if (tp != NULL) {
1777 		if (!(flags & TH_RST)) {
1778 			win = sbspace(&inp->inp_socket->so_rcv);
1779 			if (win > TCP_MAXWIN << tp->rcv_scale)
1780 				win = TCP_MAXWIN << tp->rcv_scale;
1781 		}
1782 		if ((tp->t_flags & TF_NOOPT) == 0)
1783 			incl_opts = true;
1784 	}
1785 	if (m == NULL) {
1786 		m = m_gethdr(M_NOWAIT, MT_DATA);
1787 		if (m == NULL)
1788 			return;
1789 		m->m_data += max_linkhdr;
1790 #ifdef INET6
1791 		if (isipv6) {
1792 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
1793 			      sizeof(struct ip6_hdr));
1794 			ip6 = mtod(m, struct ip6_hdr *);
1795 			nth = (struct tcphdr *)(ip6 + 1);
1796 			if (port) {
1797 				/* Insert a UDP header */
1798 				uh = (struct udphdr *)nth;
1799 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1800 				uh->uh_dport = port;
1801 				nth = (struct tcphdr *)(uh + 1);
1802 			}
1803 		} else
1804 #endif /* INET6 */
1805 		{
1806 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1807 			ip = mtod(m, struct ip *);
1808 			nth = (struct tcphdr *)(ip + 1);
1809 			if (port) {
1810 				/* Insert a UDP header */
1811 				uh = (struct udphdr *)nth;
1812 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1813 				uh->uh_dport = port;
1814 				nth = (struct tcphdr *)(uh + 1);
1815 			}
1816 		}
1817 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1818 		flags = TH_ACK;
1819 	} else if ((!M_WRITABLE(m)) || (port != 0)) {
1820 		struct mbuf *n;
1821 
1822 		/* Can't reuse 'm', allocate a new mbuf. */
1823 		n = m_gethdr(M_NOWAIT, MT_DATA);
1824 		if (n == NULL) {
1825 			m_freem(m);
1826 			return;
1827 		}
1828 
1829 		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
1830 			m_freem(m);
1831 			m_freem(n);
1832 			return;
1833 		}
1834 
1835 		n->m_data += max_linkhdr;
1836 		/* m_len is set later */
1837 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
1838 #ifdef INET6
1839 		if (isipv6) {
1840 			bcopy((caddr_t)ip6, mtod(n, caddr_t),
1841 			      sizeof(struct ip6_hdr));
1842 			ip6 = mtod(n, struct ip6_hdr *);
1843 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1844 			nth = (struct tcphdr *)(ip6 + 1);
1845 			if (port) {
1846 				/* Insert a UDP header */
1847 				uh = (struct udphdr *)nth;
1848 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1849 				uh->uh_dport = port;
1850 				nth = (struct tcphdr *)(uh + 1);
1851 			}
1852 		} else
1853 #endif /* INET6 */
1854 		{
1855 			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
1856 			ip = mtod(n, struct ip *);
1857 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1858 			nth = (struct tcphdr *)(ip + 1);
1859 			if (port) {
1860 				/* Insert a UDP header */
1861 				uh = (struct udphdr *)nth;
1862 				uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1863 				uh->uh_dport = port;
1864 				nth = (struct tcphdr *)(uh + 1);
1865 			}
1866 		}
1867 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1868 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1869 		th = nth;
1870 		m_freem(m);
1871 		m = n;
1872 	} else {
1873 		/*
1874 		 *  reuse the mbuf.
1875 		 * XXX MRT We inherit the FIB, which is lucky.
1876 		 */
1877 		m_freem(m->m_next);
1878 		m->m_next = NULL;
1879 		m->m_data = (caddr_t)ipgen;
1880 		/* clear any receive flags for proper bpf timestamping */
1881 		m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO);
1882 		/* m_len is set later */
1883 #ifdef INET6
1884 		if (isipv6) {
1885 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1886 			nth = (struct tcphdr *)(ip6 + 1);
1887 		} else
1888 #endif /* INET6 */
1889 		{
1890 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1891 			nth = (struct tcphdr *)(ip + 1);
1892 		}
1893 		if (th != nth) {
1894 			/*
1895 			 * this is usually a case when an extension header
1896 			 * exists between the IPv6 header and the
1897 			 * TCP header.
1898 			 */
1899 			nth->th_sport = th->th_sport;
1900 			nth->th_dport = th->th_dport;
1901 		}
1902 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1903 #undef xchg
1904 	}
1905 	tlen = 0;
1906 #ifdef INET6
1907 	if (isipv6)
1908 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
1909 #endif
1910 #if defined(INET) && defined(INET6)
1911 	else
1912 #endif
1913 #ifdef INET
1914 		tlen = sizeof (struct tcpiphdr);
1915 #endif
1916 	if (port)
1917 		tlen += sizeof (struct udphdr);
1918 #ifdef INVARIANTS
1919 	m->m_len = 0;
1920 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
1921 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
1922 	    m, tlen, (long)M_TRAILINGSPACE(m)));
1923 #endif
1924 	m->m_len = tlen;
1925 	to.to_flags = 0;
1926 	if (incl_opts) {
1927 		ect = tcp_ecn_output_established(tp, &flags, 0, false);
1928 		/* Make sure we have room. */
1929 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
1930 			m->m_next = m_get(M_NOWAIT, MT_DATA);
1931 			if (m->m_next) {
1932 				optp = mtod(m->m_next, u_char *);
1933 				optm = m->m_next;
1934 			} else
1935 				incl_opts = false;
1936 		} else {
1937 			optp = (u_char *) (nth + 1);
1938 			optm = m;
1939 		}
1940 	}
1941 	if (incl_opts) {
1942 		/* Timestamps. */
1943 		if (tp->t_flags & TF_RCVD_TSTMP) {
1944 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1945 			to.to_tsecr = tp->ts_recent;
1946 			to.to_flags |= TOF_TS;
1947 		}
1948 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1949 		/* TCP-MD5 (RFC2385). */
1950 		if (tp->t_flags & TF_SIGNATURE)
1951 			to.to_flags |= TOF_SIGNATURE;
1952 #endif
1953 		/* Add the options. */
1954 		tlen += optlen = tcp_addoptions(&to, optp);
1955 
1956 		/* Update m_len in the correct mbuf. */
1957 		optm->m_len += optlen;
1958 	} else
1959 		optlen = 0;
1960 #ifdef INET6
1961 	if (isipv6) {
1962 		if (uh) {
1963 			ulen = tlen - sizeof(struct ip6_hdr);
1964 			uh->uh_ulen = htons(ulen);
1965 		}
1966 		ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN);
1967 		ip6->ip6_vfc = IPV6_VERSION;
1968 		if (port)
1969 			ip6->ip6_nxt = IPPROTO_UDP;
1970 		else
1971 			ip6->ip6_nxt = IPPROTO_TCP;
1972 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1973 	}
1974 #endif
1975 #if defined(INET) && defined(INET6)
1976 	else
1977 #endif
1978 #ifdef INET
1979 	{
1980 		if (uh) {
1981 			ulen = tlen - sizeof(struct ip);
1982 			uh->uh_ulen = htons(ulen);
1983 		}
1984 		ip->ip_len = htons(tlen);
1985 		if (inp != NULL) {
1986 			ip->ip_tos = inp->inp_ip_tos & ~IPTOS_ECN_MASK;
1987 			ip->ip_ttl = inp->inp_ip_ttl;
1988 		} else {
1989 			ip->ip_tos = 0;
1990 			ip->ip_ttl = V_ip_defttl;
1991 		}
1992 		ip->ip_tos |= ect;
1993 		if (port) {
1994 			ip->ip_p = IPPROTO_UDP;
1995 		} else {
1996 			ip->ip_p = IPPROTO_TCP;
1997 		}
1998 		if (V_path_mtu_discovery)
1999 			ip->ip_off |= htons(IP_DF);
2000 	}
2001 #endif
2002 	m->m_pkthdr.len = tlen;
2003 	m->m_pkthdr.rcvif = NULL;
2004 #ifdef MAC
2005 	if (inp != NULL) {
2006 		/*
2007 		 * Packet is associated with a socket, so allow the
2008 		 * label of the response to reflect the socket label.
2009 		 */
2010 		INP_LOCK_ASSERT(inp);
2011 		mac_inpcb_create_mbuf(inp, m);
2012 	} else {
2013 		/*
2014 		 * Packet is not associated with a socket, so possibly
2015 		 * update the label in place.
2016 		 */
2017 		mac_netinet_tcp_reply(m);
2018 	}
2019 #endif
2020 	nth->th_seq = htonl(seq);
2021 	nth->th_ack = htonl(ack);
2022 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
2023 	tcp_set_flags(nth, flags);
2024 	if (tp && (flags & TH_RST)) {
2025 		/* Log the reset */
2026 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2027 	}
2028 	if (tp != NULL)
2029 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
2030 	else
2031 		nth->th_win = htons((u_short)win);
2032 	nth->th_urp = 0;
2033 
2034 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
2035 	if (to.to_flags & TOF_SIGNATURE) {
2036 		if (!TCPMD5_ENABLED() ||
2037 		    TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) {
2038 			m_freem(m);
2039 			return;
2040 		}
2041 	}
2042 #endif
2043 
2044 #ifdef INET6
2045 	if (isipv6) {
2046 		if (port) {
2047 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2048 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2049 			uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
2050 			nth->th_sum = 0;
2051 		} else {
2052 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2053 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2054 			nth->th_sum = in6_cksum_pseudo(ip6,
2055 			    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
2056 		}
2057 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2058 	}
2059 #endif /* INET6 */
2060 #if defined(INET6) && defined(INET)
2061 	else
2062 #endif
2063 #ifdef INET
2064 	{
2065 		if (port) {
2066 			uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2067 			    htons(ulen + IPPROTO_UDP));
2068 			m->m_pkthdr.csum_flags = CSUM_UDP;
2069 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2070 			nth->th_sum = 0;
2071 		} else {
2072 			m->m_pkthdr.csum_flags = CSUM_TCP;
2073 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2074 			nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2075 			    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
2076 		}
2077 	}
2078 #endif /* INET */
2079 	TCP_PROBE3(debug__output, tp, th, m);
2080 	if (flags & TH_RST)
2081 		TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth);
2082 	lgb = NULL;
2083 	if ((tp != NULL) && tcp_bblogging_on(tp)) {
2084 		if (INP_WLOCKED(inp)) {
2085 			union tcp_log_stackspecific log;
2086 			struct timeval tv;
2087 
2088 			memset(&log, 0, sizeof(log));
2089 			log.u_bbr.inhpts = tcp_in_hpts(tp);
2090 			log.u_bbr.flex8 = 4;
2091 			log.u_bbr.pkts_out = tp->t_maxseg;
2092 			log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2093 			log.u_bbr.delivered = 0;
2094 			lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT,
2095 			    ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv);
2096 		} else {
2097 			/*
2098 			 * We can not log the packet, since we only own the
2099 			 * read lock, but a write lock is needed. The read lock
2100 			 * is not upgraded to a write lock, since only getting
2101 			 * the read lock was done intentionally to improve the
2102 			 * handling of SYN flooding attacks.
2103 			 * This happens only for pure SYN segments received in
2104 			 * the initial CLOSED state, or received in a more
2105 			 * advanced state than listen and the UDP encapsulation
2106 			 * port is unexpected.
2107 			 * The incoming SYN segments do not really belong to
2108 			 * the TCP connection and the handling does not change
2109 			 * the state of the TCP connection. Therefore, the
2110 			 * sending of the RST segments is not logged. Please
2111 			 * note that also the incoming SYN segments are not
2112 			 * logged.
2113 			 *
2114 			 * The following code ensures that the above description
2115 			 * is and stays correct.
2116 			 */
2117 			KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN &&
2118 			    (tp->t_state == TCPS_CLOSED ||
2119 			    (tp->t_state > TCPS_LISTEN && tp->t_port != port)),
2120 			    ("%s: Logging of TCP segment with flags 0x%b and "
2121 			    "UDP encapsulation port %u skipped in state %s",
2122 			    __func__, thflags, PRINT_TH_FLAGS,
2123 			    ntohs(port), tcpstates[tp->t_state]));
2124 		}
2125 	}
2126 
2127 	if (flags & TH_ACK)
2128 		TCPSTAT_INC(tcps_sndacks);
2129 	else if (flags & (TH_SYN|TH_FIN|TH_RST))
2130 		TCPSTAT_INC(tcps_sndctrl);
2131 	TCPSTAT_INC(tcps_sndtotal);
2132 
2133 #ifdef INET6
2134 	if (isipv6) {
2135 		TCP_PROBE5(send, NULL, tp, ip6, tp, nth);
2136 		output_ret = ip6_output(m, inp ? inp->in6p_outputopts : NULL,
2137 		    NULL, 0, NULL, NULL, inp);
2138 	}
2139 #endif /* INET6 */
2140 #if defined(INET) && defined(INET6)
2141 	else
2142 #endif
2143 #ifdef INET
2144 	{
2145 		TCP_PROBE5(send, NULL, tp, ip, tp, nth);
2146 		output_ret = ip_output(m, NULL, NULL, 0, NULL, inp);
2147 	}
2148 #endif
2149 	if (lgb != NULL)
2150 		lgb->tlb_errno = output_ret;
2151 }
2152 
2153 /*
2154  * Send a challenge ack (no data, no SACK option), but not more than
2155  * V_tcp_ack_war_cnt per V_tcp_ack_war_time_window (per TCP connection).
2156  */
2157 void
tcp_send_challenge_ack(struct tcpcb * tp,struct tcphdr * th,struct mbuf * m)2158 tcp_send_challenge_ack(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m)
2159 {
2160 	sbintime_t now;
2161 	bool send_challenge_ack;
2162 
2163 	if (V_tcp_ack_war_time_window == 0 || V_tcp_ack_war_cnt == 0) {
2164 		/* ACK war protection is disabled. */
2165 		send_challenge_ack = true;
2166 	} else {
2167 		/* Start new epoch, if the previous one is already over. */
2168 		now = getsbinuptime();
2169 		if (tp->t_challenge_ack_end < now) {
2170 			tp->t_challenge_ack_cnt = 0;
2171 			tp->t_challenge_ack_end = now +
2172 			    V_tcp_ack_war_time_window * SBT_1MS;
2173 		}
2174 		/*
2175 		 * Send a challenge ACK, if less than tcp_ack_war_cnt have been
2176 		 * sent in the current epoch.
2177 		 */
2178 		if (tp->t_challenge_ack_cnt < V_tcp_ack_war_cnt) {
2179 			send_challenge_ack = true;
2180 			tp->t_challenge_ack_cnt++;
2181 		} else {
2182 			send_challenge_ack = false;
2183 		}
2184 	}
2185 	if (send_challenge_ack) {
2186 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2187 		    tp->snd_nxt, TH_ACK);
2188 		tp->last_ack_sent = tp->rcv_nxt;
2189 	}
2190 }
2191 
2192 /*
2193  * Create a new TCP control block, making an empty reassembly queue and hooking
2194  * it to the argument protocol control block.  The `inp' parameter must have
2195  * come from the zone allocator set up by tcpcbstor declaration.
2196  * The caller can provide a pointer to a tcpcb of the listener to inherit the
2197  * TCP function block from the listener.
2198  */
2199 struct tcpcb *
tcp_newtcpcb(struct inpcb * inp,struct tcpcb * listening_tcb)2200 tcp_newtcpcb(struct inpcb *inp, struct tcpcb *listening_tcb)
2201 {
2202 	struct tcpcb *tp = intotcpcb(inp);
2203 #ifdef INET6
2204 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2205 #endif /* INET6 */
2206 
2207 	/*
2208 	 * Historically allocation was done with M_ZERO.  There is a lot of
2209 	 * code that rely on that.  For now take safe approach and zero whole
2210 	 * tcpcb.  This definitely can be optimized.
2211 	 */
2212 	bzero(&tp->t_start_zero, t_zero_size);
2213 
2214 	/* Initialise cc_var struct for this tcpcb. */
2215 	tp->t_ccv.tp = tp;
2216 	rw_rlock(&tcp_function_lock);
2217 	if (listening_tcb != NULL) {
2218 		INP_LOCK_ASSERT(tptoinpcb(listening_tcb));
2219 		KASSERT(listening_tcb->t_fb != NULL,
2220 		    ("tcp_newtcpcb: listening_tcb->t_fb is NULL"));
2221 		if (listening_tcb->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) {
2222 			rw_runlock(&tcp_function_lock);
2223 			return (NULL);
2224 		}
2225 		tp->t_fb = listening_tcb->t_fb;
2226 	} else {
2227 		tp->t_fb = V_tcp_func_set_ptr;
2228 	}
2229 	refcount_acquire(&tp->t_fb->tfb_refcnt);
2230 	KASSERT((tp->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) == 0,
2231 	    ("tcp_newtcpcb: using TFB being removed"));
2232 	rw_runlock(&tcp_function_lock);
2233 	CC_LIST_RLOCK();
2234 	if (listening_tcb != NULL) {
2235 		if (CC_ALGO(listening_tcb)->flags & CC_MODULE_BEING_REMOVED) {
2236 			CC_LIST_RUNLOCK();
2237 			if (tp->t_fb->tfb_tcp_fb_fini)
2238 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2239 			refcount_release(&tp->t_fb->tfb_refcnt);
2240 			return (NULL);
2241 		}
2242 		CC_ALGO(tp) = CC_ALGO(listening_tcb);
2243 	} else
2244 		CC_ALGO(tp) = CC_DEFAULT_ALGO();
2245 	cc_refer(CC_ALGO(tp));
2246 	CC_LIST_RUNLOCK();
2247 	if (CC_ALGO(tp)->cb_init != NULL)
2248 		if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) {
2249 			cc_detach(tp);
2250 			if (tp->t_fb->tfb_tcp_fb_fini)
2251 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2252 			refcount_release(&tp->t_fb->tfb_refcnt);
2253 			return (NULL);
2254 		}
2255 
2256 #ifdef TCP_HHOOK
2257 	if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) {
2258 		if (CC_ALGO(tp)->cb_destroy != NULL)
2259 			CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2260 		CC_DATA(tp) = NULL;
2261 		cc_detach(tp);
2262 		if (tp->t_fb->tfb_tcp_fb_fini)
2263 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2264 		refcount_release(&tp->t_fb->tfb_refcnt);
2265 		return (NULL);
2266 	}
2267 #endif
2268 
2269 	TAILQ_INIT(&tp->t_segq);
2270 	STAILQ_INIT(&tp->t_inqueue);
2271 	tp->t_maxseg =
2272 #ifdef INET6
2273 		isipv6 ? V_tcp_v6mssdflt :
2274 #endif /* INET6 */
2275 		V_tcp_mssdflt;
2276 
2277 	/* All mbuf queue/ack compress flags should be off */
2278 	tcp_lro_features_off(tp);
2279 
2280 	tp->t_hpts_cpu = HPTS_CPU_NONE;
2281 	tp->t_lro_cpu = HPTS_CPU_NONE;
2282 
2283 	callout_init_rw(&tp->t_callout, &inp->inp_lock,
2284 	    CALLOUT_TRYLOCK | CALLOUT_RETURNUNLOCKED);
2285 	for (int i = 0; i < TT_N; i++)
2286 		tp->t_timers[i] = SBT_MAX;
2287 
2288 	switch (V_tcp_do_rfc1323) {
2289 		case 0:
2290 			break;
2291 		default:
2292 		case 1:
2293 			tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
2294 			break;
2295 		case 2:
2296 			tp->t_flags = TF_REQ_SCALE;
2297 			break;
2298 		case 3:
2299 			tp->t_flags = TF_REQ_TSTMP;
2300 			break;
2301 	}
2302 	if (V_tcp_do_sack)
2303 		tp->t_flags |= TF_SACK_PERMIT;
2304 	TAILQ_INIT(&tp->snd_holes);
2305 
2306 	/*
2307 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
2308 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
2309 	 * reasonable initial retransmit time.
2310 	 */
2311 	tp->t_srtt = TCPTV_SRTTBASE;
2312 	tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
2313 	tp->t_rttmin = tcp_rexmit_min;
2314 	tp->t_rxtcur = tcp_rexmit_initial;
2315 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2316 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2317 	tp->t_rcvtime = ticks;
2318 	/* We always start with ticks granularity */
2319 	tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
2320 	/*
2321 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
2322 	 * because the socket may be bound to an IPv6 wildcard address,
2323 	 * which may match an IPv4-mapped IPv6 address.
2324 	 */
2325 	inp->inp_ip_ttl = V_ip_defttl;
2326 #ifdef TCP_BLACKBOX
2327 	/* Initialize the per-TCPCB log data. */
2328 	tcp_log_tcpcbinit(tp);
2329 #endif
2330 	tp->t_pacing_rate = -1;
2331 	if (tp->t_fb->tfb_tcp_fb_init) {
2332 		if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) {
2333 			if (CC_ALGO(tp)->cb_destroy != NULL)
2334 				CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2335 			CC_DATA(tp) = NULL;
2336 			cc_detach(tp);
2337 #ifdef TCP_HHOOK
2338 			khelp_destroy_osd(&tp->t_osd);
2339 #endif
2340 			refcount_release(&tp->t_fb->tfb_refcnt);
2341 			return (NULL);
2342 		}
2343 	}
2344 #ifdef STATS
2345 	if (V_tcp_perconn_stats_enable == 1)
2346 		tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0);
2347 #endif
2348 	if (V_tcp_do_lrd)
2349 		tp->t_flags |= TF_LRD;
2350 
2351 	return (tp);
2352 }
2353 
2354 /*
2355  * Drop a TCP connection, reporting
2356  * the specified error.  If connection is synchronized,
2357  * then send a RST to peer.
2358  */
2359 struct tcpcb *
tcp_drop(struct tcpcb * tp,int errno)2360 tcp_drop(struct tcpcb *tp, int errno)
2361 {
2362 	struct socket *so = tptosocket(tp);
2363 
2364 	NET_EPOCH_ASSERT();
2365 	INP_WLOCK_ASSERT(tptoinpcb(tp));
2366 
2367 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
2368 		tcp_state_change(tp, TCPS_CLOSED);
2369 		/* Don't use tcp_output() here due to possible recursion. */
2370 		(void)tcp_output_nodrop(tp);
2371 		TCPSTAT_INC(tcps_drops);
2372 	} else
2373 		TCPSTAT_INC(tcps_conndrops);
2374 	if (errno == ETIMEDOUT && tp->t_softerror)
2375 		errno = tp->t_softerror;
2376 	so->so_error = errno;
2377 	return (tcp_close(tp));
2378 }
2379 
2380 void
tcp_discardcb(struct tcpcb * tp)2381 tcp_discardcb(struct tcpcb *tp)
2382 {
2383 	struct inpcb *inp = tptoinpcb(tp);
2384 	struct socket *so = tptosocket(tp);
2385 	struct mbuf *m;
2386 #ifdef INET6
2387 	bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2388 #endif
2389 
2390 	INP_WLOCK_ASSERT(inp);
2391 	MPASS(!callout_active(&tp->t_callout));
2392 	MPASS(TAILQ_EMPTY(&tp->snd_holes));
2393 
2394 	/* free the reassembly queue, if any */
2395 	tcp_reass_flush(tp);
2396 
2397 #ifdef TCP_OFFLOAD
2398 	/* Disconnect offload device, if any. */
2399 	if (tp->t_flags & TF_TOE)
2400 		tcp_offload_detach(tp);
2401 #endif
2402 
2403 	/* Allow the CC algorithm to clean up after itself. */
2404 	if (CC_ALGO(tp)->cb_destroy != NULL)
2405 		CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2406 	CC_DATA(tp) = NULL;
2407 	/* Detach from the CC algorithm */
2408 	cc_detach(tp);
2409 
2410 #ifdef TCP_HHOOK
2411 	khelp_destroy_osd(&tp->t_osd);
2412 #endif
2413 #ifdef STATS
2414 	stats_blob_destroy(tp->t_stats);
2415 #endif
2416 
2417 	CC_ALGO(tp) = NULL;
2418 	if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) {
2419 		struct mbuf *prev;
2420 
2421 		STAILQ_INIT(&tp->t_inqueue);
2422 		STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev)
2423 			m_freem(m);
2424 	}
2425 	TCPSTATES_DEC(tp->t_state);
2426 
2427 	if (tp->t_fb->tfb_tcp_fb_fini)
2428 		(*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2429 	MPASS(!tcp_in_hpts(tp));
2430 #ifdef TCP_BLACKBOX
2431 	tcp_log_tcpcbfini(tp);
2432 #endif
2433 
2434 	/*
2435 	 * If we got enough samples through the srtt filter,
2436 	 * save the rtt and rttvar in the routing entry.
2437 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
2438 	 * 4 samples is enough for the srtt filter to converge
2439 	 * to within enough % of the correct value; fewer samples
2440 	 * and we could save a bogus rtt. The danger is not high
2441 	 * as tcp quickly recovers from everything.
2442 	 * XXX: Works very well but needs some more statistics!
2443 	 *
2444 	 * XXXRRS: Updating must be after the stack fini() since
2445 	 * that may be converting some internal representation of
2446 	 * say srtt etc into the general one used by other stacks.
2447 	 */
2448 	if (tp->t_rttupdated >= 4) {
2449 		struct hc_metrics_lite metrics;
2450 		uint32_t ssthresh;
2451 
2452 		bzero(&metrics, sizeof(metrics));
2453 		/*
2454 		 * Update the ssthresh always when the conditions below
2455 		 * are satisfied. This gives us better new start value
2456 		 * for the congestion avoidance for new connections.
2457 		 * ssthresh is only set if packet loss occurred on a session.
2458 		 */
2459 		ssthresh = tp->snd_ssthresh;
2460 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
2461 			/*
2462 			 * convert the limit from user data bytes to
2463 			 * packets then to packet data bytes.
2464 			 */
2465 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
2466 			if (ssthresh < 2)
2467 				ssthresh = 2;
2468 			ssthresh *= (tp->t_maxseg +
2469 #ifdef INET6
2470 			    (isipv6 ? sizeof (struct ip6_hdr) +
2471 			    sizeof (struct tcphdr) :
2472 #endif
2473 			    sizeof (struct tcpiphdr)
2474 #ifdef INET6
2475 			    )
2476 #endif
2477 			    );
2478 		} else
2479 			ssthresh = 0;
2480 		metrics.hc_ssthresh = ssthresh;
2481 
2482 		metrics.hc_rtt = tp->t_srtt;
2483 		metrics.hc_rttvar = tp->t_rttvar;
2484 		metrics.hc_cwnd = tp->snd_cwnd;
2485 		metrics.hc_sendpipe = 0;
2486 		metrics.hc_recvpipe = 0;
2487 
2488 		tcp_hc_update(&inp->inp_inc, &metrics);
2489 	}
2490 
2491 	refcount_release(&tp->t_fb->tfb_refcnt);
2492 }
2493 
2494 /*
2495  * Attempt to close a TCP control block, marking it as dropped, and freeing
2496  * the socket if we hold the only reference.
2497  */
2498 struct tcpcb *
tcp_close(struct tcpcb * tp)2499 tcp_close(struct tcpcb *tp)
2500 {
2501 	struct inpcb *inp = tptoinpcb(tp);
2502 	struct socket *so = tptosocket(tp);
2503 
2504 	INP_WLOCK_ASSERT(inp);
2505 
2506 #ifdef TCP_OFFLOAD
2507 	if (tp->t_state == TCPS_LISTEN)
2508 		tcp_offload_listen_stop(tp);
2509 #endif
2510 	/*
2511 	 * This releases the TFO pending counter resource for TFO listen
2512 	 * sockets as well as passively-created TFO sockets that transition
2513 	 * from SYN_RECEIVED to CLOSED.
2514 	 */
2515 	if (tp->t_tfo_pending) {
2516 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2517 		tp->t_tfo_pending = NULL;
2518 	}
2519 	tcp_timer_stop(tp);
2520 	if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
2521 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
2522 	in_pcbdrop(inp);
2523 	TCPSTAT_INC(tcps_closed);
2524 	if (tp->t_state != TCPS_CLOSED)
2525 		tcp_state_change(tp, TCPS_CLOSED);
2526 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
2527 	tcp_free_sackholes(tp);
2528 	soisdisconnected(so);
2529 	if (inp->inp_flags & INP_SOCKREF) {
2530 		inp->inp_flags &= ~INP_SOCKREF;
2531 		INP_WUNLOCK(inp);
2532 		sorele(so);
2533 		return (NULL);
2534 	}
2535 	return (tp);
2536 }
2537 
2538 /*
2539  * Notify a tcp user of an asynchronous error;
2540  * store error as soft error, but wake up user
2541  * (for now, won't do anything until can select for soft error).
2542  *
2543  * Do not wake up user since there currently is no mechanism for
2544  * reporting soft errors (yet - a kqueue filter may be added).
2545  */
2546 static struct inpcb *
tcp_notify(struct inpcb * inp,int error)2547 tcp_notify(struct inpcb *inp, int error)
2548 {
2549 	struct tcpcb *tp;
2550 
2551 	INP_WLOCK_ASSERT(inp);
2552 
2553 	tp = intotcpcb(inp);
2554 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
2555 
2556 	/*
2557 	 * Ignore some errors if we are hooked up.
2558 	 * If connection hasn't completed, has retransmitted several times,
2559 	 * and receives a second error, give up now.  This is better
2560 	 * than waiting a long time to establish a connection that
2561 	 * can never complete.
2562 	 */
2563 	if (tp->t_state == TCPS_ESTABLISHED &&
2564 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
2565 	     error == EHOSTDOWN)) {
2566 		if (inp->inp_route.ro_nh) {
2567 			NH_FREE(inp->inp_route.ro_nh);
2568 			inp->inp_route.ro_nh = (struct nhop_object *)NULL;
2569 		}
2570 		return (inp);
2571 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
2572 	    tp->t_softerror) {
2573 		tp = tcp_drop(tp, error);
2574 		if (tp != NULL)
2575 			return (inp);
2576 		else
2577 			return (NULL);
2578 	} else {
2579 		tp->t_softerror = error;
2580 		return (inp);
2581 	}
2582 #if 0
2583 	wakeup( &so->so_timeo);
2584 	sorwakeup(so);
2585 	sowwakeup(so);
2586 #endif
2587 }
2588 
2589 static int
tcp_pcblist(SYSCTL_HANDLER_ARGS)2590 tcp_pcblist(SYSCTL_HANDLER_ARGS)
2591 {
2592 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
2593 	    INPLOOKUP_RLOCKPCB);
2594 	struct xinpgen xig;
2595 	struct inpcb *inp;
2596 	int error;
2597 
2598 	if (req->newptr != NULL)
2599 		return (EPERM);
2600 
2601 	if (req->oldptr == NULL) {
2602 		int n;
2603 
2604 		n = V_tcbinfo.ipi_count +
2605 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2606 		n += imax(n / 8, 10);
2607 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
2608 		return (0);
2609 	}
2610 
2611 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
2612 		return (error);
2613 
2614 	bzero(&xig, sizeof(xig));
2615 	xig.xig_len = sizeof xig;
2616 	xig.xig_count = V_tcbinfo.ipi_count +
2617 	    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2618 	xig.xig_gen = V_tcbinfo.ipi_gencnt;
2619 	xig.xig_sogen = so_gencnt;
2620 	error = SYSCTL_OUT(req, &xig, sizeof xig);
2621 	if (error)
2622 		return (error);
2623 
2624 	error = syncache_pcblist(req);
2625 	if (error)
2626 		return (error);
2627 
2628 	while ((inp = inp_next(&inpi)) != NULL) {
2629 		if (inp->inp_gencnt <= xig.xig_gen &&
2630 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
2631 			struct xtcpcb xt;
2632 
2633 			tcp_inptoxtp(inp, &xt);
2634 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2635 			if (error) {
2636 				INP_RUNLOCK(inp);
2637 				break;
2638 			} else
2639 				continue;
2640 		}
2641 	}
2642 
2643 	if (!error) {
2644 		/*
2645 		 * Give the user an updated idea of our state.
2646 		 * If the generation differs from what we told
2647 		 * her before, she knows that something happened
2648 		 * while we were processing this request, and it
2649 		 * might be necessary to retry.
2650 		 */
2651 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
2652 		xig.xig_sogen = so_gencnt;
2653 		xig.xig_count = V_tcbinfo.ipi_count +
2654 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2655 		error = SYSCTL_OUT(req, &xig, sizeof xig);
2656 	}
2657 
2658 	return (error);
2659 }
2660 
2661 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
2662     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2663     NULL, 0, tcp_pcblist, "S,xtcpcb",
2664     "List of active TCP connections");
2665 
2666 #define SND_TAG_STATUS_MAXLEN	128
2667 
2668 #ifdef KERN_TLS
2669 
2670 static struct sx ktlslist_lock;
2671 SX_SYSINIT(ktlslistlock, &ktlslist_lock, "ktlslist");
2672 static uint64_t ktls_glob_gen = 1;
2673 
2674 static int
tcp_ktlslist_locked(SYSCTL_HANDLER_ARGS,bool export_keys)2675 tcp_ktlslist_locked(SYSCTL_HANDLER_ARGS, bool export_keys)
2676 {
2677 	struct xinpgen xig;
2678 	struct inpcb *inp;
2679 	struct socket *so;
2680 	struct ktls_session *ksr, *kss;
2681 	char *buf;
2682 	struct xktls_session *xktls;
2683 	uint64_t ipi_gencnt;
2684 	size_t buflen, len, sz;
2685 	u_int cnt;
2686 	int error;
2687 	bool ek, p;
2688 
2689 	sx_assert(&ktlslist_lock, SA_XLOCKED);
2690 	if (req->newptr != NULL)
2691 		return (EPERM);
2692 
2693 	len = 0;
2694 	cnt = 0;
2695 	ipi_gencnt = V_tcbinfo.ipi_gencnt;
2696 	bzero(&xig, sizeof(xig));
2697 	xig.xig_len = sizeof(xig);
2698 	xig.xig_gen = ktls_glob_gen++;
2699 	xig.xig_sogen = so_gencnt;
2700 
2701 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
2702 	    INPLOOKUP_RLOCKPCB);
2703 	while ((inp = inp_next(&inpi)) != NULL) {
2704 		if (inp->inp_gencnt > ipi_gencnt ||
2705 		    cr_canseeinpcb(req->td->td_ucred, inp) != 0)
2706 			continue;
2707 
2708 		so = inp->inp_socket;
2709 		if (so != NULL && so->so_gencnt <= xig.xig_sogen) {
2710 			p = false;
2711 			ek = export_keys && cr_canexport_ktlskeys(
2712 			    req->td, inp);
2713 			ksr = so->so_rcv.sb_tls_info;
2714 			if (ksr != NULL) {
2715 				ksr->gen = xig.xig_gen;
2716 				p = true;
2717 				if (ek) {
2718 					sz = SIZE_T_MAX;
2719 					ktls_session_copy_keys(ksr,
2720 					    NULL, &sz);
2721 					len += sz;
2722 				}
2723 				if (ksr->snd_tag != NULL &&
2724 				    ksr->snd_tag->sw->snd_tag_status_str !=
2725 				    NULL) {
2726 					sz = SND_TAG_STATUS_MAXLEN;
2727 					ksr->snd_tag->sw->snd_tag_status_str(
2728 					    ksr->snd_tag, NULL, &sz);
2729 					len += sz;
2730 				}
2731 			}
2732 			kss = so->so_snd.sb_tls_info;
2733 			if (kss != NULL) {
2734 				kss->gen = xig.xig_gen;
2735 				p = true;
2736 				if (ek) {
2737 					sz = SIZE_T_MAX;
2738 					ktls_session_copy_keys(kss,
2739 					    NULL, &sz);
2740 					len += sz;
2741 				}
2742 				if (kss->snd_tag != NULL &&
2743 				    kss->snd_tag->sw->snd_tag_status_str !=
2744 				    NULL) {
2745 					sz = SND_TAG_STATUS_MAXLEN;
2746 					kss->snd_tag->sw->snd_tag_status_str(
2747 					    kss->snd_tag, NULL, &sz);
2748 					len += sz;
2749 				}
2750 			}
2751 			if (p) {
2752 				len += sizeof(*xktls);
2753 				len = roundup2(len, __alignof(struct
2754 				    xktls_session));
2755 			}
2756 		}
2757 	}
2758 	if (req->oldptr == NULL) {
2759 		len += 2 * sizeof(xig);
2760 		len += 3 * len / 4;
2761 		req->oldidx = len;
2762 		return (0);
2763 	}
2764 
2765 	if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
2766 		return (error);
2767 
2768 	error = SYSCTL_OUT(req, &xig, sizeof xig);
2769 	if (error != 0)
2770 		return (error);
2771 
2772 	buflen = roundup2(sizeof(*xktls) + 2 * TLS_MAX_PARAM_SIZE +
2773 	    2 * SND_TAG_STATUS_MAXLEN, __alignof(struct xktls_session));
2774 	buf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
2775 	struct inpcb_iterator inpi1 = INP_ALL_ITERATOR(&V_tcbinfo,
2776 	    INPLOOKUP_RLOCKPCB);
2777 	while ((inp = inp_next(&inpi1)) != NULL) {
2778 		if (inp->inp_gencnt > ipi_gencnt ||
2779 		    cr_canseeinpcb(req->td->td_ucred, inp) != 0)
2780 			continue;
2781 
2782 		so = inp->inp_socket;
2783 		if (so == NULL)
2784 			continue;
2785 
2786 		p = false;
2787 		ek = export_keys && cr_canexport_ktlskeys(req->td, inp);
2788 		ksr = so->so_rcv.sb_tls_info;
2789 		kss = so->so_snd.sb_tls_info;
2790 		xktls = (struct xktls_session *)buf;
2791 		if (ksr != NULL && ksr->gen == xig.xig_gen) {
2792 			p = true;
2793 			ktls_session_to_xktls_onedir(ksr, ek, &xktls->rcv);
2794 		}
2795 		if (kss != NULL && kss->gen == xig.xig_gen) {
2796 			p = true;
2797 			ktls_session_to_xktls_onedir(kss, ek, &xktls->snd);
2798 		}
2799 		if (!p)
2800 			continue;
2801 
2802 		xktls->inp_gencnt = inp->inp_gencnt;
2803 		xktls->so_pcb = (kvaddr_t)inp;
2804 		memcpy(&xktls->coninf, &inp->inp_inc, sizeof(xktls->coninf));
2805 		len = sizeof(*xktls);
2806 		if (ksr != NULL && ksr->gen == xig.xig_gen) {
2807 			if (ek) {
2808 				sz = buflen - len;
2809 				ktls_session_copy_keys(ksr, buf + len, &sz);
2810 				len += sz;
2811 			} else {
2812 				xktls->rcv.cipher_key_len = 0;
2813 				xktls->rcv.auth_key_len = 0;
2814 			}
2815 			if (ksr->snd_tag != NULL &&
2816 			    ksr->snd_tag->sw->snd_tag_status_str != NULL) {
2817 				sz = SND_TAG_STATUS_MAXLEN;
2818 				ksr->snd_tag->sw->snd_tag_status_str(
2819 				    ksr->snd_tag, buf + len, &sz);
2820 				len += sz;
2821 			}
2822 		}
2823 		if (kss != NULL && kss->gen == xig.xig_gen) {
2824 			if (ek) {
2825 				sz = buflen - len;
2826 				ktls_session_copy_keys(kss, buf + len, &sz);
2827 				len += sz;
2828 			} else {
2829 				xktls->snd.cipher_key_len = 0;
2830 				xktls->snd.auth_key_len = 0;
2831 			}
2832 			if (kss->snd_tag != NULL &&
2833 			    kss->snd_tag->sw->snd_tag_status_str != NULL) {
2834 				sz = SND_TAG_STATUS_MAXLEN;
2835 				kss->snd_tag->sw->snd_tag_status_str(
2836 				    kss->snd_tag, buf + len, &sz);
2837 				len += sz;
2838 			}
2839 		}
2840 		len = roundup2(len, __alignof(*xktls));
2841 		xktls->tsz = len;
2842 		xktls->fsz = sizeof(*xktls);
2843 
2844 		error = SYSCTL_OUT(req, xktls, len);
2845 		if (error != 0) {
2846 			INP_RUNLOCK(inp);
2847 			break;
2848 		}
2849 		cnt++;
2850 	}
2851 
2852 	if (error == 0) {
2853 		xig.xig_sogen = so_gencnt;
2854 		xig.xig_count = cnt;
2855 		error = SYSCTL_OUT(req, &xig, sizeof(xig));
2856 	}
2857 
2858 	zfree(buf, M_TEMP);
2859 	return (error);
2860 }
2861 
2862 static int
tcp_ktlslist1(SYSCTL_HANDLER_ARGS,bool export_keys)2863 tcp_ktlslist1(SYSCTL_HANDLER_ARGS, bool export_keys)
2864 {
2865 	int res;
2866 
2867 	sx_xlock(&ktlslist_lock);
2868 	res = tcp_ktlslist_locked(oidp, arg1, arg2, req, export_keys);
2869 	sx_xunlock(&ktlslist_lock);
2870 	return (res);
2871 }
2872 
2873 static int
tcp_ktlslist_nokeys(SYSCTL_HANDLER_ARGS)2874 tcp_ktlslist_nokeys(SYSCTL_HANDLER_ARGS)
2875 {
2876 	return (tcp_ktlslist1(oidp, arg1, arg2, req, false));
2877 }
2878 
2879 static int
tcp_ktlslist_wkeys(SYSCTL_HANDLER_ARGS)2880 tcp_ktlslist_wkeys(SYSCTL_HANDLER_ARGS)
2881 {
2882 	return (tcp_ktlslist1(oidp, arg1, arg2, req, true));
2883 }
2884 
2885 SYSCTL_PROC(_net_inet_tcp, TCPCTL_KTLSLIST, ktlslist,
2886     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2887     NULL, 0, tcp_ktlslist_nokeys, "S,xktls_session",
2888     "List of active kTLS sessions for TCP connections");
2889 SYSCTL_PROC(_net_inet_tcp, TCPCTL_KTLSLIST_WKEYS, ktlslist_wkeys,
2890     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2891     NULL, 0, tcp_ktlslist_wkeys, "S,xktls_session",
2892     "List of active kTLS sessions for TCP connections with keys");
2893 #endif /* KERN_TLS */
2894 
2895 #ifdef INET
2896 static int
tcp_getcred(SYSCTL_HANDLER_ARGS)2897 tcp_getcred(SYSCTL_HANDLER_ARGS)
2898 {
2899 	struct xucred xuc;
2900 	struct sockaddr_in addrs[2];
2901 	struct epoch_tracker et;
2902 	struct inpcb *inp;
2903 	int error;
2904 
2905 	if (req->newptr == NULL)
2906 		return (EINVAL);
2907 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2908 	if (error)
2909 		return (error);
2910 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2911 	if (error)
2912 		return (error);
2913 	NET_EPOCH_ENTER(et);
2914 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
2915 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
2916 	NET_EPOCH_EXIT(et);
2917 	if (inp != NULL) {
2918 		if (error == 0)
2919 			error = cr_canseeinpcb(req->td->td_ucred, inp);
2920 		if (error == 0)
2921 			cru2x(inp->inp_cred, &xuc);
2922 		INP_RUNLOCK(inp);
2923 	} else
2924 		error = ENOENT;
2925 	if (error == 0)
2926 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2927 	return (error);
2928 }
2929 
2930 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
2931     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
2932     0, 0, tcp_getcred, "S,xucred",
2933     "Get the xucred of a TCP connection");
2934 #endif /* INET */
2935 
2936 #ifdef INET6
2937 static int
tcp6_getcred(SYSCTL_HANDLER_ARGS)2938 tcp6_getcred(SYSCTL_HANDLER_ARGS)
2939 {
2940 	struct epoch_tracker et;
2941 	struct xucred xuc;
2942 	struct sockaddr_in6 addrs[2];
2943 	struct inpcb *inp;
2944 	int error;
2945 #ifdef INET
2946 	int mapped = 0;
2947 #endif
2948 
2949 	if (req->newptr == NULL)
2950 		return (EINVAL);
2951 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
2952 	if (error)
2953 		return (error);
2954 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
2955 	if (error)
2956 		return (error);
2957 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
2958 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
2959 		return (error);
2960 	}
2961 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
2962 #ifdef INET
2963 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
2964 			mapped = 1;
2965 		else
2966 #endif
2967 			return (EINVAL);
2968 	}
2969 
2970 	NET_EPOCH_ENTER(et);
2971 #ifdef INET
2972 	if (mapped == 1)
2973 		inp = in_pcblookup(&V_tcbinfo,
2974 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
2975 			addrs[1].sin6_port,
2976 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
2977 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
2978 	else
2979 #endif
2980 		inp = in6_pcblookup(&V_tcbinfo,
2981 			&addrs[1].sin6_addr, addrs[1].sin6_port,
2982 			&addrs[0].sin6_addr, addrs[0].sin6_port,
2983 			INPLOOKUP_RLOCKPCB, NULL);
2984 	NET_EPOCH_EXIT(et);
2985 	if (inp != NULL) {
2986 		if (error == 0)
2987 			error = cr_canseeinpcb(req->td->td_ucred, inp);
2988 		if (error == 0)
2989 			cru2x(inp->inp_cred, &xuc);
2990 		INP_RUNLOCK(inp);
2991 	} else
2992 		error = ENOENT;
2993 	if (error == 0)
2994 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2995 	return (error);
2996 }
2997 
2998 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
2999     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
3000     0, 0, tcp6_getcred, "S,xucred",
3001     "Get the xucred of a TCP6 connection");
3002 #endif /* INET6 */
3003 
3004 #ifdef INET
3005 /* Path MTU to try next when a fragmentation-needed message is received. */
3006 static inline int
tcp_next_pmtu(const struct icmp * icp,const struct ip * ip)3007 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip)
3008 {
3009 	int mtu = ntohs(icp->icmp_nextmtu);
3010 
3011 	/* If no alternative MTU was proposed, try the next smaller one. */
3012 	if (!mtu)
3013 		mtu = ip_next_mtu(ntohs(ip->ip_len), 1);
3014 	if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr))
3015 		mtu = V_tcp_minmss + sizeof(struct tcpiphdr);
3016 
3017 	return (mtu);
3018 }
3019 
3020 static void
tcp_ctlinput_with_port(struct icmp * icp,uint16_t port)3021 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port)
3022 {
3023 	struct ip *ip;
3024 	struct tcphdr *th;
3025 	struct inpcb *inp;
3026 	struct tcpcb *tp;
3027 	struct inpcb *(*notify)(struct inpcb *, int);
3028 	struct in_conninfo inc;
3029 	tcp_seq icmp_tcp_seq;
3030 	int errno, mtu;
3031 
3032 	errno = icmp_errmap(icp);
3033 	switch (errno) {
3034 	case 0:
3035 		return;
3036 	case EMSGSIZE:
3037 		notify = tcp_mtudisc_notify;
3038 		break;
3039 	case ECONNREFUSED:
3040 		if (V_icmp_may_rst)
3041 			notify = tcp_drop_syn_sent;
3042 		else
3043 			notify = tcp_notify;
3044 		break;
3045 	case EHOSTUNREACH:
3046 		if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED)
3047 			notify = tcp_drop_syn_sent;
3048 		else
3049 			notify = tcp_notify;
3050 		break;
3051 	default:
3052 		notify = tcp_notify;
3053 	}
3054 
3055 	ip = &icp->icmp_ip;
3056 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3057 	icmp_tcp_seq = th->th_seq;
3058 	inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src,
3059 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
3060 	if (inp != NULL)  {
3061 		tp = intotcpcb(inp);
3062 #ifdef TCP_OFFLOAD
3063 		if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
3064 			/*
3065 			 * MTU discovery for offloaded connections.  Let
3066 			 * the TOE driver verify seq# and process it.
3067 			 */
3068 			mtu = tcp_next_pmtu(icp, ip);
3069 			tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
3070 			goto out;
3071 		}
3072 #endif
3073 		if (tp->t_port != port)
3074 			goto out;
3075 		if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
3076 		    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
3077 			if (errno == EMSGSIZE) {
3078 				/*
3079 				 * MTU discovery: we got a needfrag and
3080 				 * will potentially try a lower MTU.
3081 				 */
3082 				mtu = tcp_next_pmtu(icp, ip);
3083 
3084 				/*
3085 				 * Only process the offered MTU if it
3086 				 * is smaller than the current one.
3087 				 */
3088 				if (mtu < tp->t_maxseg +
3089 				    sizeof(struct tcpiphdr)) {
3090 					bzero(&inc, sizeof(inc));
3091 					inc.inc_faddr = ip->ip_dst;
3092 					inc.inc_fibnum =
3093 					    inp->inp_inc.inc_fibnum;
3094 					tcp_hc_updatemtu(&inc, mtu);
3095 					inp = tcp_mtudisc(inp, mtu);
3096 				}
3097 			} else
3098 				inp = (*notify)(inp, errno);
3099 		}
3100 	} else {
3101 		bzero(&inc, sizeof(inc));
3102 		inc.inc_fport = th->th_dport;
3103 		inc.inc_lport = th->th_sport;
3104 		inc.inc_faddr = ip->ip_dst;
3105 		inc.inc_laddr = ip->ip_src;
3106 		syncache_unreach(&inc, icmp_tcp_seq, port);
3107 	}
3108 out:
3109 	if (inp != NULL)
3110 		INP_WUNLOCK(inp);
3111 }
3112 
3113 static void
tcp_ctlinput(struct icmp * icmp)3114 tcp_ctlinput(struct icmp *icmp)
3115 {
3116 	tcp_ctlinput_with_port(icmp, htons(0));
3117 }
3118 
3119 static void
tcp_ctlinput_viaudp(udp_tun_icmp_param_t param)3120 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param)
3121 {
3122 	/* Its a tunneled TCP over UDP icmp */
3123 	struct icmp *icmp = param.icmp;
3124 	struct ip *outer_ip, *inner_ip;
3125 	struct udphdr *udp;
3126 	struct tcphdr *th, ttemp;
3127 	int i_hlen, o_len;
3128 	uint16_t port;
3129 
3130 	outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip));
3131 	inner_ip = &icmp->icmp_ip;
3132 	i_hlen = inner_ip->ip_hl << 2;
3133 	o_len = ntohs(outer_ip->ip_len);
3134 	if (o_len <
3135 	    (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) {
3136 		/* Not enough data present */
3137 		return;
3138 	}
3139 	/* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */
3140 	udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen);
3141 	if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
3142 		return;
3143 	}
3144 	port = udp->uh_dport;
3145 	th = (struct tcphdr *)(udp + 1);
3146 	memcpy(&ttemp, th, sizeof(struct tcphdr));
3147 	memcpy(udp, &ttemp, sizeof(struct tcphdr));
3148 	/* Now adjust down the size of the outer IP header */
3149 	o_len -= sizeof(struct udphdr);
3150 	outer_ip->ip_len = htons(o_len);
3151 	/* Now call in to the normal handling code */
3152 	tcp_ctlinput_with_port(icmp, port);
3153 }
3154 #endif /* INET */
3155 
3156 #ifdef INET6
3157 static inline int
tcp6_next_pmtu(const struct icmp6_hdr * icmp6)3158 tcp6_next_pmtu(const struct icmp6_hdr *icmp6)
3159 {
3160 	int mtu = ntohl(icmp6->icmp6_mtu);
3161 
3162 	/*
3163 	 * If no alternative MTU was proposed, or the proposed MTU was too
3164 	 * small, set to the min.
3165 	 */
3166 	if (mtu < IPV6_MMTU)
3167 		mtu = IPV6_MMTU - 8;	/* XXXNP: what is the adjustment for? */
3168 	return (mtu);
3169 }
3170 
3171 static void
tcp6_ctlinput_with_port(struct ip6ctlparam * ip6cp,uint16_t port)3172 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port)
3173 {
3174 	struct in6_addr *dst;
3175 	struct inpcb *(*notify)(struct inpcb *, int);
3176 	struct ip6_hdr *ip6;
3177 	struct mbuf *m;
3178 	struct inpcb *inp;
3179 	struct tcpcb *tp;
3180 	struct icmp6_hdr *icmp6;
3181 	struct in_conninfo inc;
3182 	struct tcp_ports {
3183 		uint16_t th_sport;
3184 		uint16_t th_dport;
3185 	} t_ports;
3186 	tcp_seq icmp_tcp_seq;
3187 	unsigned int mtu;
3188 	unsigned int off;
3189 	int errno;
3190 
3191 	icmp6 = ip6cp->ip6c_icmp6;
3192 	m = ip6cp->ip6c_m;
3193 	ip6 = ip6cp->ip6c_ip6;
3194 	off = ip6cp->ip6c_off;
3195 	dst = &ip6cp->ip6c_finaldst->sin6_addr;
3196 
3197 	errno = icmp6_errmap(icmp6);
3198 	switch (errno) {
3199 	case 0:
3200 		return;
3201 	case EMSGSIZE:
3202 		notify = tcp_mtudisc_notify;
3203 		break;
3204 	case ECONNREFUSED:
3205 		if (V_icmp_may_rst)
3206 			notify = tcp_drop_syn_sent;
3207 		else
3208 			notify = tcp_notify;
3209 		break;
3210 	case EHOSTUNREACH:
3211 		/*
3212 		 * There are only four ICMPs that may reset connection:
3213 		 * - administratively prohibited
3214 		 * - port unreachable
3215 		 * - time exceeded in transit
3216 		 * - unknown next header
3217 		 */
3218 		if (V_icmp_may_rst &&
3219 		    ((icmp6->icmp6_type == ICMP6_DST_UNREACH &&
3220 		     (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN ||
3221 		      icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) ||
3222 		    (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED &&
3223 		      icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) ||
3224 		    (icmp6->icmp6_type == ICMP6_PARAM_PROB &&
3225 		      icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER)))
3226 			notify = tcp_drop_syn_sent;
3227 		else
3228 			notify = tcp_notify;
3229 		break;
3230 	default:
3231 		notify = tcp_notify;
3232 	}
3233 
3234 	/* Check if we can safely get the ports from the tcp hdr */
3235 	if (m == NULL ||
3236 	    (m->m_pkthdr.len <
3237 		(int32_t) (off + sizeof(struct tcp_ports)))) {
3238 		return;
3239 	}
3240 	bzero(&t_ports, sizeof(struct tcp_ports));
3241 	m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports);
3242 	inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport,
3243 	    &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL);
3244 	off += sizeof(struct tcp_ports);
3245 	if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) {
3246 		goto out;
3247 	}
3248 	m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq);
3249 	if (inp != NULL)  {
3250 		tp = intotcpcb(inp);
3251 #ifdef TCP_OFFLOAD
3252 		if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
3253 			/* MTU discovery for offloaded connections. */
3254 			mtu = tcp6_next_pmtu(icmp6);
3255 			tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
3256 			goto out;
3257 		}
3258 #endif
3259 		if (tp->t_port != port)
3260 			goto out;
3261 		if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
3262 		    SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
3263 			if (errno == EMSGSIZE) {
3264 				/*
3265 				 * MTU discovery:
3266 				 * If we got a needfrag set the MTU
3267 				 * in the route to the suggested new
3268 				 * value (if given) and then notify.
3269 				 */
3270 				mtu = tcp6_next_pmtu(icmp6);
3271 
3272 				bzero(&inc, sizeof(inc));
3273 				inc.inc_fibnum = M_GETFIB(m);
3274 				inc.inc_flags |= INC_ISIPV6;
3275 				inc.inc6_faddr = *dst;
3276 				if (in6_setscope(&inc.inc6_faddr,
3277 					m->m_pkthdr.rcvif, NULL))
3278 					goto out;
3279 				/*
3280 				 * Only process the offered MTU if it
3281 				 * is smaller than the current one.
3282 				 */
3283 				if (mtu < tp->t_maxseg +
3284 				    sizeof (struct tcphdr) +
3285 				    sizeof (struct ip6_hdr)) {
3286 					tcp_hc_updatemtu(&inc, mtu);
3287 					tcp_mtudisc(inp, mtu);
3288 					ICMP6STAT_INC(icp6s_pmtuchg);
3289 				}
3290 			} else
3291 				inp = (*notify)(inp, errno);
3292 		}
3293 	} else {
3294 		bzero(&inc, sizeof(inc));
3295 		inc.inc_fibnum = M_GETFIB(m);
3296 		inc.inc_flags |= INC_ISIPV6;
3297 		inc.inc_fport = t_ports.th_dport;
3298 		inc.inc_lport = t_ports.th_sport;
3299 		inc.inc6_faddr = *dst;
3300 		inc.inc6_laddr = ip6->ip6_src;
3301 		syncache_unreach(&inc, icmp_tcp_seq, port);
3302 	}
3303 out:
3304 	if (inp != NULL)
3305 		INP_WUNLOCK(inp);
3306 }
3307 
3308 static void
tcp6_ctlinput(struct ip6ctlparam * ctl)3309 tcp6_ctlinput(struct ip6ctlparam *ctl)
3310 {
3311 	tcp6_ctlinput_with_port(ctl, htons(0));
3312 }
3313 
3314 static void
tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param)3315 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param)
3316 {
3317 	struct ip6ctlparam *ip6cp = param.ip6cp;
3318 	struct mbuf *m;
3319 	struct udphdr *udp;
3320 	uint16_t port;
3321 
3322 	m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL);
3323 	if (m == NULL) {
3324 		return;
3325 	}
3326 	udp = mtod(m, struct udphdr *);
3327 	if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
3328 		return;
3329 	}
3330 	port = udp->uh_dport;
3331 	m_adj(m, sizeof(struct udphdr));
3332 	if ((m->m_flags & M_PKTHDR) == 0) {
3333 		ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr);
3334 	}
3335 	/* Now call in to the normal handling code */
3336 	tcp6_ctlinput_with_port(ip6cp, port);
3337 }
3338 
3339 #endif /* INET6 */
3340 
3341 static uint32_t
tcp_keyed_hash(struct in_conninfo * inc,u_char * key,u_int len)3342 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len)
3343 {
3344 	SIPHASH_CTX ctx;
3345 	uint32_t hash[2];
3346 
3347 	KASSERT(len >= SIPHASH_KEY_LENGTH,
3348 	    ("%s: keylen %u too short ", __func__, len));
3349 	SipHash24_Init(&ctx);
3350 	SipHash_SetKey(&ctx, (uint8_t *)key);
3351 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t));
3352 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t));
3353 	switch (inc->inc_flags & INC_ISIPV6) {
3354 #ifdef INET
3355 	case 0:
3356 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr));
3357 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr));
3358 		break;
3359 #endif
3360 #ifdef INET6
3361 	case INC_ISIPV6:
3362 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr));
3363 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr));
3364 		break;
3365 #endif
3366 	}
3367 	SipHash_Final((uint8_t *)hash, &ctx);
3368 
3369 	return (hash[0] ^ hash[1]);
3370 }
3371 
3372 uint32_t
tcp_new_ts_offset(struct in_conninfo * inc)3373 tcp_new_ts_offset(struct in_conninfo *inc)
3374 {
3375 	struct in_conninfo inc_store, *local_inc;
3376 
3377 	if (!V_tcp_ts_offset_per_conn) {
3378 		memcpy(&inc_store, inc, sizeof(struct in_conninfo));
3379 		inc_store.inc_lport = 0;
3380 		inc_store.inc_fport = 0;
3381 		local_inc = &inc_store;
3382 	} else {
3383 		local_inc = inc;
3384 	}
3385 	return (tcp_keyed_hash(local_inc, V_ts_offset_secret,
3386 	    sizeof(V_ts_offset_secret)));
3387 }
3388 
3389 /*
3390  * Following is where TCP initial sequence number generation occurs.
3391  *
3392  * There are two places where we must use initial sequence numbers:
3393  * 1.  In SYN-ACK packets.
3394  * 2.  In SYN packets.
3395  *
3396  * All ISNs for SYN-ACK packets are generated by the syncache.  See
3397  * tcp_syncache.c for details.
3398  *
3399  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
3400  * depends on this property.  In addition, these ISNs should be
3401  * unguessable so as to prevent connection hijacking.  To satisfy
3402  * the requirements of this situation, the algorithm outlined in
3403  * RFC 1948 is used, with only small modifications.
3404  *
3405  * Implementation details:
3406  *
3407  * Time is based off the system timer, and is corrected so that it
3408  * increases by one megabyte per second.  This allows for proper
3409  * recycling on high speed LANs while still leaving over an hour
3410  * before rollover.
3411  *
3412  * As reading the *exact* system time is too expensive to be done
3413  * whenever setting up a TCP connection, we increment the time
3414  * offset in two ways.  First, a small random positive increment
3415  * is added to isn_offset for each connection that is set up.
3416  * Second, the function tcp_isn_tick fires once per clock tick
3417  * and increments isn_offset as necessary so that sequence numbers
3418  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
3419  * random positive increments serve only to ensure that the same
3420  * exact sequence number is never sent out twice (as could otherwise
3421  * happen when a port is recycled in less than the system tick
3422  * interval.)
3423  *
3424  * net.inet.tcp.isn_reseed_interval controls the number of seconds
3425  * between seeding of isn_secret.  This is normally set to zero,
3426  * as reseeding should not be necessary.
3427  *
3428  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
3429  * isn_offset_old, and isn_ctx is performed using the ISN lock.  In
3430  * general, this means holding an exclusive (write) lock.
3431  */
3432 
3433 #define ISN_BYTES_PER_SECOND 1048576
3434 #define ISN_STATIC_INCREMENT 4096
3435 #define ISN_RANDOM_INCREMENT (4096 - 1)
3436 #define ISN_SECRET_LENGTH    SIPHASH_KEY_LENGTH
3437 
3438 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]);
3439 VNET_DEFINE_STATIC(int, isn_last);
3440 VNET_DEFINE_STATIC(int, isn_last_reseed);
3441 VNET_DEFINE_STATIC(u_int32_t, isn_offset);
3442 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old);
3443 
3444 #define	V_isn_secret			VNET(isn_secret)
3445 #define	V_isn_last			VNET(isn_last)
3446 #define	V_isn_last_reseed		VNET(isn_last_reseed)
3447 #define	V_isn_offset			VNET(isn_offset)
3448 #define	V_isn_offset_old		VNET(isn_offset_old)
3449 
3450 tcp_seq
tcp_new_isn(struct in_conninfo * inc)3451 tcp_new_isn(struct in_conninfo *inc)
3452 {
3453 	tcp_seq new_isn;
3454 	u_int32_t projected_offset;
3455 
3456 	ISN_LOCK();
3457 	/* Seed if this is the first use, reseed if requested. */
3458 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
3459 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
3460 		< (u_int)ticks))) {
3461 		arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0);
3462 		V_isn_last_reseed = ticks;
3463 	}
3464 
3465 	/* Compute the hash and return the ISN. */
3466 	new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret,
3467 	    sizeof(V_isn_secret));
3468 	V_isn_offset += ISN_STATIC_INCREMENT +
3469 		(arc4random() & ISN_RANDOM_INCREMENT);
3470 	if (ticks != V_isn_last) {
3471 		projected_offset = V_isn_offset_old +
3472 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
3473 		if (SEQ_GT(projected_offset, V_isn_offset))
3474 			V_isn_offset = projected_offset;
3475 		V_isn_offset_old = V_isn_offset;
3476 		V_isn_last = ticks;
3477 	}
3478 	new_isn += V_isn_offset;
3479 	ISN_UNLOCK();
3480 	return (new_isn);
3481 }
3482 
3483 /*
3484  * When a specific ICMP unreachable message is received and the
3485  * connection state is SYN-SENT, drop the connection.  This behavior
3486  * is controlled by the icmp_may_rst sysctl.
3487  */
3488 static struct inpcb *
tcp_drop_syn_sent(struct inpcb * inp,int errno)3489 tcp_drop_syn_sent(struct inpcb *inp, int errno)
3490 {
3491 	struct tcpcb *tp;
3492 
3493 	NET_EPOCH_ASSERT();
3494 	INP_WLOCK_ASSERT(inp);
3495 
3496 	tp = intotcpcb(inp);
3497 	if (tp->t_state != TCPS_SYN_SENT)
3498 		return (inp);
3499 
3500 	if (tp->t_flags & TF_FASTOPEN)
3501 		tcp_fastopen_disable_path(tp);
3502 
3503 	tp = tcp_drop(tp, errno);
3504 	if (tp != NULL)
3505 		return (inp);
3506 	else
3507 		return (NULL);
3508 }
3509 
3510 /*
3511  * When `need fragmentation' ICMP is received, update our idea of the MSS
3512  * based on the new value. Also nudge TCP to send something, since we
3513  * know the packet we just sent was dropped.
3514  * This duplicates some code in the tcp_mss() function in tcp_input.c.
3515  */
3516 static struct inpcb *
tcp_mtudisc_notify(struct inpcb * inp,int error)3517 tcp_mtudisc_notify(struct inpcb *inp, int error)
3518 {
3519 
3520 	return (tcp_mtudisc(inp, -1));
3521 }
3522 
3523 static struct inpcb *
tcp_mtudisc(struct inpcb * inp,int mtuoffer)3524 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
3525 {
3526 	struct tcpcb *tp;
3527 	struct socket *so;
3528 
3529 	INP_WLOCK_ASSERT(inp);
3530 
3531 	tp = intotcpcb(inp);
3532 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
3533 
3534 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
3535 
3536 	so = inp->inp_socket;
3537 	SOCK_SENDBUF_LOCK(so);
3538 	/* If the mss is larger than the socket buffer, decrease the mss. */
3539 	if (so->so_snd.sb_hiwat < tp->t_maxseg) {
3540 		tp->t_maxseg = so->so_snd.sb_hiwat;
3541 		if (tp->t_maxseg < V_tcp_mssdflt) {
3542 			/*
3543 			 * The MSS is so small we should not process incoming
3544 			 * SACK's since we are subject to attack in such a
3545 			 * case.
3546 			 */
3547 			tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3548 		} else {
3549 			tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3550 		}
3551 	}
3552 	SOCK_SENDBUF_UNLOCK(so);
3553 
3554 	TCPSTAT_INC(tcps_mturesent);
3555 	tp->t_rtttime = 0;
3556 	tp->snd_nxt = tp->snd_una;
3557 	tcp_free_sackholes(tp);
3558 	tp->snd_recover = tp->snd_max;
3559 	if (tp->t_flags & TF_SACK_PERMIT)
3560 		EXIT_FASTRECOVERY(tp->t_flags);
3561 	if (tp->t_fb->tfb_tcp_mtu_chg != NULL) {
3562 		/*
3563 		 * Conceptually the snd_nxt setting
3564 		 * and freeing sack holes should
3565 		 * be done by the default stacks
3566 		 * own tfb_tcp_mtu_chg().
3567 		 */
3568 		tp->t_fb->tfb_tcp_mtu_chg(tp);
3569 	}
3570 	if (tcp_output(tp) < 0)
3571 		return (NULL);
3572 	else
3573 		return (inp);
3574 }
3575 
3576 #ifdef INET
3577 /*
3578  * Look-up the routing entry to the peer of this inpcb.  If no route
3579  * is found and it cannot be allocated, then return 0.  This routine
3580  * is called by TCP routines that access the rmx structure and by
3581  * tcp_mss_update to get the peer/interface MTU.
3582  */
3583 uint32_t
tcp_maxmtu(struct in_conninfo * inc,struct tcp_ifcap * cap)3584 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
3585 {
3586 	struct nhop_object *nh;
3587 	struct ifnet *ifp;
3588 	uint32_t maxmtu = 0;
3589 
3590 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
3591 
3592 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
3593 		nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0);
3594 		if (nh == NULL)
3595 			return (0);
3596 
3597 		ifp = nh->nh_ifp;
3598 		maxmtu = nh->nh_mtu;
3599 
3600 		/* Report additional interface capabilities. */
3601 		if (cap != NULL) {
3602 			if (ifp->if_capenable & IFCAP_TSO4 &&
3603 			    ifp->if_hwassist & CSUM_TSO) {
3604 				cap->ifcap |= CSUM_TSO;
3605 				cap->tsomax = ifp->if_hw_tsomax;
3606 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
3607 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
3608 				/* XXXKIB IFCAP2_IPSEC_OFFLOAD_TSO */
3609 				cap->ipsec_tso =  (ifp->if_capenable2 &
3610 				    IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD)) != 0;
3611 			}
3612 		}
3613 	}
3614 	return (maxmtu);
3615 }
3616 #endif /* INET */
3617 
3618 #ifdef INET6
3619 uint32_t
tcp_maxmtu6(struct in_conninfo * inc,struct tcp_ifcap * cap)3620 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
3621 {
3622 	struct nhop_object *nh;
3623 	struct in6_addr dst6;
3624 	uint32_t scopeid;
3625 	struct ifnet *ifp;
3626 	uint32_t maxmtu = 0;
3627 
3628 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
3629 
3630 	if (inc->inc_flags & INC_IPV6MINMTU)
3631 		return (IPV6_MMTU);
3632 
3633 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
3634 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
3635 		nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0);
3636 		if (nh == NULL)
3637 			return (0);
3638 
3639 		ifp = nh->nh_ifp;
3640 		maxmtu = nh->nh_mtu;
3641 
3642 		/* Report additional interface capabilities. */
3643 		if (cap != NULL) {
3644 			if (ifp->if_capenable & IFCAP_TSO6 &&
3645 			    ifp->if_hwassist & CSUM_TSO) {
3646 				cap->ifcap |= CSUM_TSO;
3647 				cap->tsomax = ifp->if_hw_tsomax;
3648 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
3649 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
3650 				cap->ipsec_tso = false; /* XXXKIB */
3651 			}
3652 		}
3653 	}
3654 
3655 	return (maxmtu);
3656 }
3657 
3658 /*
3659  * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack.
3660  *
3661  * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag.
3662  * The right place to do that is ip6_setpktopt() that has just been
3663  * executed.  By the way it just filled ip6po_minmtu for us.
3664  */
3665 void
tcp6_use_min_mtu(struct tcpcb * tp)3666 tcp6_use_min_mtu(struct tcpcb *tp)
3667 {
3668 	struct inpcb *inp = tptoinpcb(tp);
3669 
3670 	INP_WLOCK_ASSERT(inp);
3671 	/*
3672 	 * In case of the IPV6_USE_MIN_MTU socket
3673 	 * option, the INC_IPV6MINMTU flag to announce
3674 	 * a corresponding MSS during the initial
3675 	 * handshake.  If the TCP connection is not in
3676 	 * the front states, just reduce the MSS being
3677 	 * used.  This avoids the sending of TCP
3678 	 * segments which will be fragmented at the
3679 	 * IPv6 layer.
3680 	 */
3681 	inp->inp_inc.inc_flags |= INC_IPV6MINMTU;
3682 	if ((tp->t_state >= TCPS_SYN_SENT) &&
3683 	    (inp->inp_inc.inc_flags & INC_ISIPV6)) {
3684 		struct ip6_pktopts *opt;
3685 
3686 		opt = inp->in6p_outputopts;
3687 		if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL &&
3688 		    tp->t_maxseg > TCP6_MSS) {
3689 			tp->t_maxseg = TCP6_MSS;
3690 			if (tp->t_maxseg < V_tcp_mssdflt) {
3691 				/*
3692 				 * The MSS is so small we should not process incoming
3693 				 * SACK's since we are subject to attack in such a
3694 				 * case.
3695 				 */
3696 				tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3697 			} else {
3698 				tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3699 			}
3700 		}
3701 	}
3702 }
3703 #endif /* INET6 */
3704 
3705 /*
3706  * Calculate effective SMSS per RFC5681 definition for a given TCP
3707  * connection at its current state, taking into account SACK and etc.
3708  */
3709 u_int
tcp_maxseg(const struct tcpcb * tp)3710 tcp_maxseg(const struct tcpcb *tp)
3711 {
3712 	u_int optlen;
3713 
3714 	if (tp->t_flags & TF_NOOPT)
3715 		return (tp->t_maxseg);
3716 
3717 	/*
3718 	 * Here we have a simplified code from tcp_addoptions(),
3719 	 * without a proper loop, and having most of paddings hardcoded.
3720 	 * We might make mistakes with padding here in some edge cases,
3721 	 * but this is harmless, since result of tcp_maxseg() is used
3722 	 * only in cwnd and ssthresh estimations.
3723 	 */
3724 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3725 		if (tp->t_flags & TF_RCVD_TSTMP)
3726 			optlen = TCPOLEN_TSTAMP_APPA;
3727 		else
3728 			optlen = 0;
3729 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3730 		if (tp->t_flags & TF_SIGNATURE)
3731 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3732 #endif
3733 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
3734 			optlen += TCPOLEN_SACKHDR;
3735 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
3736 			optlen = PADTCPOLEN(optlen);
3737 		}
3738 	} else {
3739 		if (tp->t_flags & TF_REQ_TSTMP)
3740 			optlen = TCPOLEN_TSTAMP_APPA;
3741 		else
3742 			optlen = PADTCPOLEN(TCPOLEN_MAXSEG);
3743 		if (tp->t_flags & TF_REQ_SCALE)
3744 			optlen += PADTCPOLEN(TCPOLEN_WINDOW);
3745 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3746 		if (tp->t_flags & TF_SIGNATURE)
3747 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3748 #endif
3749 		if (tp->t_flags & TF_SACK_PERMIT)
3750 			optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED);
3751 	}
3752 	optlen = min(optlen, TCP_MAXOLEN);
3753 	return (tp->t_maxseg - optlen);
3754 }
3755 
3756 
3757 u_int
tcp_fixed_maxseg(const struct tcpcb * tp)3758 tcp_fixed_maxseg(const struct tcpcb *tp)
3759 {
3760 	int optlen;
3761 
3762 	if (tp->t_flags & TF_NOOPT)
3763 		return (tp->t_maxseg);
3764 
3765 	/*
3766 	 * Here we have a simplified code from tcp_addoptions(),
3767 	 * without a proper loop, and having most of paddings hardcoded.
3768 	 * We only consider fixed options that we would send every
3769 	 * time I.e. SACK is not considered. This is important
3770 	 * for cc modules to figure out what the modulo of the
3771 	 * cwnd should be.
3772 	 */
3773 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3774 		if (tp->t_flags & TF_RCVD_TSTMP)
3775 			optlen = TCPOLEN_TSTAMP_APPA;
3776 		else
3777 			optlen = 0;
3778 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3779 		if (tp->t_flags & TF_SIGNATURE)
3780 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3781 #endif
3782 	} else {
3783 		if (tp->t_flags & TF_REQ_TSTMP)
3784 			optlen = TCPOLEN_TSTAMP_APPA;
3785 		else
3786 			optlen = PADTCPOLEN(TCPOLEN_MAXSEG);
3787 		if (tp->t_flags & TF_REQ_SCALE)
3788 			optlen += PADTCPOLEN(TCPOLEN_WINDOW);
3789 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3790 		if (tp->t_flags & TF_SIGNATURE)
3791 			optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3792 #endif
3793 		if (tp->t_flags & TF_SACK_PERMIT)
3794 			optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED);
3795 	}
3796 	optlen = min(optlen, TCP_MAXOLEN);
3797 	return (tp->t_maxseg - optlen);
3798 }
3799 
3800 
3801 
3802 static int
sysctl_drop(SYSCTL_HANDLER_ARGS)3803 sysctl_drop(SYSCTL_HANDLER_ARGS)
3804 {
3805 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
3806 	struct sockaddr_storage addrs[2];
3807 	struct inpcb *inp;
3808 	struct tcpcb *tp;
3809 #ifdef INET
3810 	struct sockaddr_in *fin = NULL, *lin = NULL;
3811 #endif
3812 	struct epoch_tracker et;
3813 #ifdef INET6
3814 	struct sockaddr_in6 *fin6, *lin6;
3815 #endif
3816 	int error;
3817 
3818 	inp = NULL;
3819 #ifdef INET6
3820 	fin6 = lin6 = NULL;
3821 #endif
3822 	error = 0;
3823 
3824 	if (req->oldptr != NULL || req->oldlen != 0)
3825 		return (EINVAL);
3826 	if (req->newptr == NULL)
3827 		return (EPERM);
3828 	if (req->newlen < sizeof(addrs))
3829 		return (ENOMEM);
3830 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3831 	if (error)
3832 		return (error);
3833 
3834 	switch (addrs[0].ss_family) {
3835 #ifdef INET6
3836 	case AF_INET6:
3837 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3838 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3839 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3840 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
3841 			return (EINVAL);
3842 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3843 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3844 				return (EINVAL);
3845 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3846 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3847 #ifdef INET
3848 			fin = (struct sockaddr_in *)&addrs[0];
3849 			lin = (struct sockaddr_in *)&addrs[1];
3850 #endif
3851 			break;
3852 		}
3853 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
3854 		if (error)
3855 			return (error);
3856 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
3857 		if (error)
3858 			return (error);
3859 		break;
3860 #endif
3861 #ifdef INET
3862 	case AF_INET:
3863 		fin = (struct sockaddr_in *)&addrs[0];
3864 		lin = (struct sockaddr_in *)&addrs[1];
3865 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
3866 		    lin->sin_len != sizeof(struct sockaddr_in))
3867 			return (EINVAL);
3868 		break;
3869 #endif
3870 	default:
3871 		return (EINVAL);
3872 	}
3873 	NET_EPOCH_ENTER(et);
3874 	switch (addrs[0].ss_family) {
3875 #ifdef INET6
3876 	case AF_INET6:
3877 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3878 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3879 		    INPLOOKUP_WLOCKPCB, NULL);
3880 		break;
3881 #endif
3882 #ifdef INET
3883 	case AF_INET:
3884 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
3885 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
3886 		break;
3887 #endif
3888 	}
3889 	if (inp != NULL) {
3890 		if (!SOLISTENING(inp->inp_socket)) {
3891 			tp = intotcpcb(inp);
3892 			tp = tcp_drop(tp, ECONNABORTED);
3893 			if (tp != NULL)
3894 				INP_WUNLOCK(inp);
3895 		} else
3896 			INP_WUNLOCK(inp);
3897 	} else
3898 		error = ESRCH;
3899 	NET_EPOCH_EXIT(et);
3900 	return (error);
3901 }
3902 
3903 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
3904     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3905     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "",
3906     "Drop TCP connection");
3907 
3908 static int
tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS)3909 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS)
3910 {
3911 	return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo,
3912 	    &tcp_ctloutput_set));
3913 }
3914 
3915 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt,
3916     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3917     CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "",
3918     "Set socket option for TCP endpoint");
3919 
3920 #ifdef KERN_TLS
3921 static int
sysctl_switch_tls(SYSCTL_HANDLER_ARGS)3922 sysctl_switch_tls(SYSCTL_HANDLER_ARGS)
3923 {
3924 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
3925 	struct sockaddr_storage addrs[2];
3926 	struct inpcb *inp;
3927 #ifdef INET
3928 	struct sockaddr_in *fin = NULL, *lin = NULL;
3929 #endif
3930 	struct epoch_tracker et;
3931 #ifdef INET6
3932 	struct sockaddr_in6 *fin6, *lin6;
3933 #endif
3934 	int error;
3935 
3936 	inp = NULL;
3937 #ifdef INET6
3938 	fin6 = lin6 = NULL;
3939 #endif
3940 	error = 0;
3941 
3942 	if (req->oldptr != NULL || req->oldlen != 0)
3943 		return (EINVAL);
3944 	if (req->newptr == NULL)
3945 		return (EPERM);
3946 	if (req->newlen < sizeof(addrs))
3947 		return (ENOMEM);
3948 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3949 	if (error)
3950 		return (error);
3951 
3952 	switch (addrs[0].ss_family) {
3953 #ifdef INET6
3954 	case AF_INET6:
3955 		fin6 = (struct sockaddr_in6 *)&addrs[0];
3956 		lin6 = (struct sockaddr_in6 *)&addrs[1];
3957 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3958 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
3959 			return (EINVAL);
3960 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3961 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3962 				return (EINVAL);
3963 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3964 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3965 #ifdef INET
3966 			fin = (struct sockaddr_in *)&addrs[0];
3967 			lin = (struct sockaddr_in *)&addrs[1];
3968 #endif
3969 			break;
3970 		}
3971 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
3972 		if (error)
3973 			return (error);
3974 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
3975 		if (error)
3976 			return (error);
3977 		break;
3978 #endif
3979 #ifdef INET
3980 	case AF_INET:
3981 		fin = (struct sockaddr_in *)&addrs[0];
3982 		lin = (struct sockaddr_in *)&addrs[1];
3983 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
3984 		    lin->sin_len != sizeof(struct sockaddr_in))
3985 			return (EINVAL);
3986 		break;
3987 #endif
3988 	default:
3989 		return (EINVAL);
3990 	}
3991 	NET_EPOCH_ENTER(et);
3992 	switch (addrs[0].ss_family) {
3993 #ifdef INET6
3994 	case AF_INET6:
3995 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3996 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3997 		    INPLOOKUP_WLOCKPCB, NULL);
3998 		break;
3999 #endif
4000 #ifdef INET
4001 	case AF_INET:
4002 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
4003 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
4004 		break;
4005 #endif
4006 	}
4007 	NET_EPOCH_EXIT(et);
4008 	if (inp != NULL) {
4009 		struct socket *so;
4010 
4011 		so = inp->inp_socket;
4012 		soref(so);
4013 		error = ktls_set_tx_mode(so,
4014 		    arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET);
4015 		INP_WUNLOCK(inp);
4016 		sorele(so);
4017 	} else
4018 		error = ESRCH;
4019 	return (error);
4020 }
4021 
4022 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls,
4023     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
4024     CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "",
4025     "Switch TCP connection to SW TLS");
4026 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls,
4027     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
4028     CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "",
4029     "Switch TCP connection to ifnet TLS");
4030 #endif
4031 
4032 /*
4033  * Generate a standardized TCP log line for use throughout the
4034  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
4035  * allow use in the interrupt context.
4036  *
4037  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
4038  * NB: The function may return NULL if memory allocation failed.
4039  *
4040  * Due to header inclusion and ordering limitations the struct ip
4041  * and ip6_hdr pointers have to be passed as void pointers.
4042  */
4043 char *
tcp_log_vain(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4044 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4045     const void *ip6hdr)
4046 {
4047 
4048 	/* Is logging enabled? */
4049 	if (V_tcp_log_in_vain == 0)
4050 		return (NULL);
4051 
4052 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
4053 }
4054 
4055 char *
tcp_log_addrs(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4056 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4057     const void *ip6hdr)
4058 {
4059 
4060 	/* Is logging enabled? */
4061 	if (tcp_log_debug == 0)
4062 		return (NULL);
4063 
4064 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
4065 }
4066 
4067 static char *
tcp_log_addr(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4068 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4069     const void *ip6hdr)
4070 {
4071 	char *s, *sp;
4072 	size_t size;
4073 #ifdef INET
4074 	const struct ip *ip = (const struct ip *)ip4hdr;
4075 #endif
4076 #ifdef INET6
4077 	const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr;
4078 #endif /* INET6 */
4079 
4080 	/*
4081 	 * The log line looks like this:
4082 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
4083 	 */
4084 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
4085 	    sizeof(PRINT_TH_FLAGS) + 1 +
4086 #ifdef INET6
4087 	    2 * INET6_ADDRSTRLEN;
4088 #else
4089 	    2 * INET_ADDRSTRLEN;
4090 #endif /* INET6 */
4091 
4092 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
4093 	if (s == NULL)
4094 		return (NULL);
4095 
4096 	strcat(s, "TCP: [");
4097 	sp = s + strlen(s);
4098 
4099 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
4100 		inet_ntoa_r(inc->inc_faddr, sp);
4101 		sp = s + strlen(s);
4102 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
4103 		sp = s + strlen(s);
4104 		inet_ntoa_r(inc->inc_laddr, sp);
4105 		sp = s + strlen(s);
4106 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
4107 #ifdef INET6
4108 	} else if (inc) {
4109 		ip6_sprintf(sp, &inc->inc6_faddr);
4110 		sp = s + strlen(s);
4111 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
4112 		sp = s + strlen(s);
4113 		ip6_sprintf(sp, &inc->inc6_laddr);
4114 		sp = s + strlen(s);
4115 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
4116 	} else if (ip6 && th) {
4117 		ip6_sprintf(sp, &ip6->ip6_src);
4118 		sp = s + strlen(s);
4119 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
4120 		sp = s + strlen(s);
4121 		ip6_sprintf(sp, &ip6->ip6_dst);
4122 		sp = s + strlen(s);
4123 		sprintf(sp, "]:%i", ntohs(th->th_dport));
4124 #endif /* INET6 */
4125 #ifdef INET
4126 	} else if (ip && th) {
4127 		inet_ntoa_r(ip->ip_src, sp);
4128 		sp = s + strlen(s);
4129 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
4130 		sp = s + strlen(s);
4131 		inet_ntoa_r(ip->ip_dst, sp);
4132 		sp = s + strlen(s);
4133 		sprintf(sp, "]:%i", ntohs(th->th_dport));
4134 #endif /* INET */
4135 	} else {
4136 		free(s, M_TCPLOG);
4137 		return (NULL);
4138 	}
4139 	sp = s + strlen(s);
4140 	if (th)
4141 		sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS);
4142 	if (*(s + size - 1) != '\0')
4143 		panic("%s: string too long", __func__);
4144 	return (s);
4145 }
4146 
4147 /*
4148  * A subroutine which makes it easy to track TCP state changes with DTrace.
4149  * This function shouldn't be called for t_state initializations that don't
4150  * correspond to actual TCP state transitions.
4151  */
4152 void
tcp_state_change(struct tcpcb * tp,int newstate)4153 tcp_state_change(struct tcpcb *tp, int newstate)
4154 {
4155 #if defined(KDTRACE_HOOKS)
4156 	int pstate = tp->t_state;
4157 #endif
4158 
4159 	TCPSTATES_DEC(tp->t_state);
4160 	TCPSTATES_INC(newstate);
4161 	tp->t_state = newstate;
4162 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
4163 }
4164 
4165 /*
4166  * Create an external-format (``xtcpcb'') structure using the information in
4167  * the kernel-format tcpcb structure pointed to by tp.  This is done to
4168  * reduce the spew of irrelevant information over this interface, to isolate
4169  * user code from changes in the kernel structure, and potentially to provide
4170  * information-hiding if we decide that some of this information should be
4171  * hidden from users.
4172  */
4173 void
tcp_inptoxtp(const struct inpcb * inp,struct xtcpcb * xt)4174 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt)
4175 {
4176 	struct tcpcb *tp = intotcpcb(inp);
4177 	sbintime_t now;
4178 
4179 	bzero(xt, sizeof(*xt));
4180 	xt->t_state = tp->t_state;
4181 	xt->t_logstate = tcp_get_bblog_state(tp);
4182 	xt->t_flags = tp->t_flags;
4183 	xt->t_sndzerowin = tp->t_sndzerowin;
4184 	xt->t_sndrexmitpack = tp->t_sndrexmitpack;
4185 	xt->t_rcvoopack = tp->t_rcvoopack;
4186 	xt->t_rcv_wnd = tp->rcv_wnd;
4187 	xt->t_snd_wnd = tp->snd_wnd;
4188 	xt->t_snd_cwnd = tp->snd_cwnd;
4189 	xt->t_snd_ssthresh = tp->snd_ssthresh;
4190 	xt->t_dsack_bytes = tp->t_dsack_bytes;
4191 	xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes;
4192 	xt->t_dsack_pack = tp->t_dsack_pack;
4193 	xt->t_maxseg = tp->t_maxseg;
4194 	xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 +
4195 		     (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0;
4196 
4197 	now = getsbinuptime();
4198 #define	COPYTIMER(which,where)	do {					\
4199 	if (tp->t_timers[which] != SBT_MAX)				\
4200 		xt->where = (tp->t_timers[which] - now) / SBT_1MS;	\
4201 	else								\
4202 		xt->where = 0;						\
4203 } while (0)
4204 	COPYTIMER(TT_DELACK, tt_delack);
4205 	COPYTIMER(TT_REXMT, tt_rexmt);
4206 	COPYTIMER(TT_PERSIST, tt_persist);
4207 	COPYTIMER(TT_KEEP, tt_keep);
4208 	COPYTIMER(TT_2MSL, tt_2msl);
4209 #undef COPYTIMER
4210 	xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz;
4211 
4212 	xt->xt_encaps_port = tp->t_port;
4213 	bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack,
4214 	    TCP_FUNCTION_NAME_LEN_MAX);
4215 	bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX);
4216 #ifdef TCP_BLACKBOX
4217 	(void)tcp_log_get_id(tp, xt->xt_logid);
4218 #endif
4219 
4220 	xt->xt_len = sizeof(struct xtcpcb);
4221 	in_pcbtoxinpcb(inp, &xt->xt_inp);
4222 }
4223 
4224 void
tcp_log_end_status(struct tcpcb * tp,uint8_t status)4225 tcp_log_end_status(struct tcpcb *tp, uint8_t status)
4226 {
4227 	uint32_t bit, i;
4228 
4229 	if ((tp == NULL) ||
4230 	    (status > TCP_EI_STATUS_MAX_VALUE) ||
4231 	    (status == 0)) {
4232 		/* Invalid */
4233 		return;
4234 	}
4235 	if (status > (sizeof(uint32_t) * 8)) {
4236 		/* Should this be a KASSERT? */
4237 		return;
4238 	}
4239 	bit = 1U << (status - 1);
4240 	if (bit & tp->t_end_info_status) {
4241 		/* already logged */
4242 		return;
4243 	}
4244 	for (i = 0; i < TCP_END_BYTE_INFO; i++) {
4245 		if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) {
4246 			tp->t_end_info_bytes[i] = status;
4247 			tp->t_end_info_status |= bit;
4248 			break;
4249 		}
4250 	}
4251 }
4252 
4253 int
tcp_can_enable_pacing(void)4254 tcp_can_enable_pacing(void)
4255 {
4256 
4257 	if ((tcp_pacing_limit == -1) ||
4258 	    (tcp_pacing_limit > number_of_tcp_connections_pacing)) {
4259 		atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1);
4260 		shadow_num_connections = number_of_tcp_connections_pacing;
4261 		return (1);
4262 	} else {
4263 		counter_u64_add(tcp_pacing_failures, 1);
4264 		return (0);
4265 	}
4266 }
4267 
4268 int
tcp_incr_dgp_pacing_cnt(void)4269 tcp_incr_dgp_pacing_cnt(void)
4270 {
4271 	if ((tcp_dgp_limit == -1) ||
4272 	    (tcp_dgp_limit > number_of_dgp_connections)) {
4273 		atomic_fetchadd_int(&number_of_dgp_connections, 1);
4274 		shadow_tcp_pacing_dgp = number_of_dgp_connections;
4275 		return (1);
4276 	} else {
4277 		counter_u64_add(tcp_dgp_failures, 1);
4278 		return (0);
4279 	}
4280 }
4281 
4282 static uint8_t tcp_dgp_warning = 0;
4283 
4284 void
tcp_dec_dgp_pacing_cnt(void)4285 tcp_dec_dgp_pacing_cnt(void)
4286 {
4287 	uint32_t ret;
4288 
4289 	ret = atomic_fetchadd_int(&number_of_dgp_connections, -1);
4290 	shadow_tcp_pacing_dgp = number_of_dgp_connections;
4291 	KASSERT(ret != 0, ("number_of_dgp_connections -1 would cause wrap?"));
4292 	if (ret == 0) {
4293 		if (tcp_dgp_limit != -1) {
4294 			printf("Warning all DGP is now disabled, count decrements invalidly!\n");
4295 			tcp_dgp_limit = 0;
4296 			tcp_dgp_warning = 1;
4297 		} else if (tcp_dgp_warning == 0) {
4298 			printf("Warning DGP pacing is invalid, invalid decrement\n");
4299 			tcp_dgp_warning = 1;
4300 		}
4301 	}
4302 
4303 }
4304 
4305 static uint8_t tcp_pacing_warning = 0;
4306 
4307 void
tcp_decrement_paced_conn(void)4308 tcp_decrement_paced_conn(void)
4309 {
4310 	uint32_t ret;
4311 
4312 	ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1);
4313 	shadow_num_connections = number_of_tcp_connections_pacing;
4314 	KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?"));
4315 	if (ret == 0) {
4316 		if (tcp_pacing_limit != -1) {
4317 			printf("Warning all pacing is now disabled, count decrements invalidly!\n");
4318 			tcp_pacing_limit = 0;
4319 		} else if (tcp_pacing_warning == 0) {
4320 			printf("Warning pacing count is invalid, invalid decrement\n");
4321 			tcp_pacing_warning = 1;
4322 		}
4323 	}
4324 }
4325 
4326 static void
tcp_default_switch_failed(struct tcpcb * tp)4327 tcp_default_switch_failed(struct tcpcb *tp)
4328 {
4329 	/*
4330 	 * If a switch fails we only need to
4331 	 * care about two things:
4332 	 * a) The t_flags2
4333 	 * and
4334 	 * b) The timer granularity.
4335 	 * Timeouts, at least for now, don't use the
4336 	 * old callout system in the other stacks so
4337 	 * those are hopefully safe.
4338 	 */
4339 	tcp_lro_features_off(tp);
4340 	tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
4341 }
4342 
4343 #ifdef TCP_ACCOUNTING
4344 int
tcp_do_ack_accounting(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to,uint32_t tiwin,int mss)4345 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss)
4346 {
4347 	if (SEQ_LT(th->th_ack, tp->snd_una)) {
4348 		/* Do we have a SACK? */
4349 		if (to->to_flags & TOF_SACK) {
4350 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4351 				tp->tcp_cnt_counters[ACK_SACK]++;
4352 			}
4353 			return (ACK_SACK);
4354 		} else {
4355 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4356 				tp->tcp_cnt_counters[ACK_BEHIND]++;
4357 			}
4358 			return (ACK_BEHIND);
4359 		}
4360 	} else if (th->th_ack == tp->snd_una) {
4361 		/* Do we have a SACK? */
4362 		if (to->to_flags & TOF_SACK) {
4363 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4364 				tp->tcp_cnt_counters[ACK_SACK]++;
4365 			}
4366 			return (ACK_SACK);
4367 		} else if (tiwin != tp->snd_wnd) {
4368 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4369 				tp->tcp_cnt_counters[ACK_RWND]++;
4370 			}
4371 			return (ACK_RWND);
4372 		} else {
4373 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4374 				tp->tcp_cnt_counters[ACK_DUPACK]++;
4375 			}
4376 			return (ACK_DUPACK);
4377 		}
4378 	} else {
4379 		if (!SEQ_GT(th->th_ack, tp->snd_max)) {
4380 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4381 				tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss);
4382 			}
4383 		}
4384 		if (to->to_flags & TOF_SACK) {
4385 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4386 				tp->tcp_cnt_counters[ACK_CUMACK_SACK]++;
4387 			}
4388 			return (ACK_CUMACK_SACK);
4389 		} else {
4390 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4391 				tp->tcp_cnt_counters[ACK_CUMACK]++;
4392 			}
4393 			return (ACK_CUMACK);
4394 		}
4395 	}
4396 }
4397 #endif
4398 
4399 void
tcp_change_time_units(struct tcpcb * tp,int granularity)4400 tcp_change_time_units(struct tcpcb *tp, int granularity)
4401 {
4402 	if (tp->t_tmr_granularity == granularity) {
4403 		/* We are there */
4404 		return;
4405 	}
4406 	if (granularity == TCP_TMR_GRANULARITY_USEC) {
4407 		KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS),
4408 			("Granularity is not TICKS its %u in tp:%p",
4409 			 tp->t_tmr_granularity, tp));
4410 		tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
4411 		if (tp->t_srtt > 1) {
4412 			uint32_t val, frac;
4413 
4414 			val = tp->t_srtt >> TCP_RTT_SHIFT;
4415 			frac = tp->t_srtt & 0x1f;
4416 			tp->t_srtt = TICKS_2_USEC(val);
4417 			/*
4418 			 * frac is the fractional part of the srtt (if any)
4419 			 * but its in ticks and every bit represents
4420 			 * 1/32nd of a hz.
4421 			 */
4422 			if (frac) {
4423 				if (hz == 1000) {
4424 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
4425 				} else {
4426 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
4427 				}
4428 				tp->t_srtt += frac;
4429 			}
4430 		}
4431 		if (tp->t_rttvar) {
4432 			uint32_t val, frac;
4433 
4434 			val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
4435 			frac = tp->t_rttvar & 0x1f;
4436 			tp->t_rttvar = TICKS_2_USEC(val);
4437 			/*
4438 			 * frac is the fractional part of the srtt (if any)
4439 			 * but its in ticks and every bit represents
4440 			 * 1/32nd of a hz.
4441 			 */
4442 			if (frac) {
4443 				if (hz == 1000) {
4444 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
4445 				} else {
4446 					frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
4447 				}
4448 				tp->t_rttvar += frac;
4449 			}
4450 		}
4451 		tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC;
4452 	} else if (granularity == TCP_TMR_GRANULARITY_TICKS) {
4453 		/* Convert back to ticks, with  */
4454 		KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC),
4455 			("Granularity is not USEC its %u in tp:%p",
4456 			 tp->t_tmr_granularity, tp));
4457 		if (tp->t_srtt > 1) {
4458 			uint32_t val, frac;
4459 
4460 			val = USEC_2_TICKS(tp->t_srtt);
4461 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
4462 			tp->t_srtt = val << TCP_RTT_SHIFT;
4463 			/*
4464 			 * frac is the fractional part here is left
4465 			 * over from converting to hz and shifting.
4466 			 * We need to convert this to the 5 bit
4467 			 * remainder.
4468 			 */
4469 			if (frac) {
4470 				if (hz == 1000) {
4471 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
4472 				} else {
4473 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
4474 				}
4475 				tp->t_srtt += frac;
4476 			}
4477 		}
4478 		if (tp->t_rttvar) {
4479 			uint32_t val, frac;
4480 
4481 			val = USEC_2_TICKS(tp->t_rttvar);
4482 			frac = tp->t_rttvar % (HPTS_USEC_IN_SEC / hz);
4483 			tp->t_rttvar = val <<  TCP_RTTVAR_SHIFT;
4484 			/*
4485 			 * frac is the fractional part here is left
4486 			 * over from converting to hz and shifting.
4487 			 * We need to convert this to the 4 bit
4488 			 * remainder.
4489 			 */
4490 			if (frac) {
4491 				if (hz == 1000) {
4492 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTTVAR_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
4493 				} else {
4494 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTTVAR_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
4495 				}
4496 				tp->t_rttvar += frac;
4497 			}
4498 		}
4499 		tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
4500 		tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
4501 	}
4502 #ifdef INVARIANTS
4503 	else {
4504 		panic("Unknown granularity:%d tp:%p",
4505 		      granularity, tp);
4506 	}
4507 #endif
4508 }
4509 
4510 void
tcp_handle_orphaned_packets(struct tcpcb * tp)4511 tcp_handle_orphaned_packets(struct tcpcb *tp)
4512 {
4513 	struct mbuf *save, *m, *prev;
4514 	/*
4515 	 * Called when a stack switch is occuring from the fini()
4516 	 * of the old stack. We assue the init() as already been
4517 	 * run of the new stack and it has set the t_flags2 to
4518 	 * what it supports. This function will then deal with any
4519 	 * differences i.e. cleanup packets that maybe queued that
4520 	 * the newstack does not support.
4521 	 */
4522 
4523 	if (tp->t_flags2 & TF2_MBUF_L_ACKS)
4524 		return;
4525 	if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 &&
4526 	    !STAILQ_EMPTY(&tp->t_inqueue)) {
4527 		/*
4528 		 * It is unsafe to process the packets since a
4529 		 * reset may be lurking in them (its rare but it
4530 		 * can occur). If we were to find a RST, then we
4531 		 * would end up dropping the connection and the
4532 		 * INP lock, so when we return the caller (tcp_usrreq)
4533 		 * will blow up when it trys to unlock the inp.
4534 		 * This new stack does not do any fancy LRO features
4535 		 * so all we can do is toss the packets.
4536 		 */
4537 		m = STAILQ_FIRST(&tp->t_inqueue);
4538 		STAILQ_INIT(&tp->t_inqueue);
4539 		STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save)
4540 			m_freem(m);
4541 	} else {
4542 		/*
4543 		 * Here we have a stack that does mbuf queuing but
4544 		 * does not support compressed ack's. We must
4545 		 * walk all the mbufs and discard any compressed acks.
4546 		 */
4547 		STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) {
4548 			if (m->m_flags & M_ACKCMP) {
4549 				if (m == STAILQ_FIRST(&tp->t_inqueue))
4550 					STAILQ_REMOVE_HEAD(&tp->t_inqueue,
4551 					    m_stailqpkt);
4552 				else
4553 					STAILQ_REMOVE_AFTER(&tp->t_inqueue,
4554 					    prev, m_stailqpkt);
4555 				m_freem(m);
4556 			} else
4557 				prev = m;
4558 		}
4559 	}
4560 }
4561 
4562 #ifdef TCP_REQUEST_TRK
4563 uint32_t
tcp_estimate_tls_overhead(struct socket * so,uint64_t tls_usr_bytes)4564 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes)
4565 {
4566 #ifdef KERN_TLS
4567 	struct ktls_session *tls;
4568 	uint32_t rec_oh, records;
4569 
4570 	tls = so->so_snd.sb_tls_info;
4571 	if (tls == NULL)
4572 	    return (0);
4573 
4574 	rec_oh = tls->params.tls_hlen + tls->params.tls_tlen;
4575 	records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len);
4576 	return (records * rec_oh);
4577 #else
4578 	return (0);
4579 #endif
4580 }
4581 
4582 extern uint32_t tcp_stale_entry_time;
4583 uint32_t tcp_stale_entry_time = 250000;
4584 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW,
4585     &tcp_stale_entry_time, 250000, "Time that a tcpreq entry without a sendfile ages out");
4586 
4587 void
tcp_req_log_req_info(struct tcpcb * tp,struct tcp_sendfile_track * req,uint16_t slot,uint8_t val,uint64_t offset,uint64_t nbytes)4588 tcp_req_log_req_info(struct tcpcb *tp, struct tcp_sendfile_track *req,
4589     uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes)
4590 {
4591 	if (tcp_bblogging_on(tp)) {
4592 		union tcp_log_stackspecific log;
4593 		struct timeval tv;
4594 
4595 		memset(&log, 0, sizeof(log));
4596 		log.u_bbr.inhpts = tcp_in_hpts(tp);
4597 		log.u_bbr.flex8 = val;
4598 		log.u_bbr.rttProp = req->timestamp;
4599 		log.u_bbr.delRate = req->start;
4600 		log.u_bbr.cur_del_rate = req->end;
4601 		log.u_bbr.flex1 = req->start_seq;
4602 		log.u_bbr.flex2 = req->end_seq;
4603 		log.u_bbr.flex3 = req->flags;
4604 		log.u_bbr.flex4 = ((req->localtime >> 32) & 0x00000000ffffffff);
4605 		log.u_bbr.flex5 = (req->localtime & 0x00000000ffffffff);
4606 		log.u_bbr.flex7 = slot;
4607 		log.u_bbr.bw_inuse = offset;
4608 		/* nbytes = flex6 | epoch */
4609 		log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff);
4610 		log.u_bbr.epoch = (nbytes & 0x00000000ffffffff);
4611 		/* cspr =  lt_epoch | pkts_out */
4612 		log.u_bbr.lt_epoch = ((req->cspr >> 32) & 0x00000000ffffffff);
4613 		log.u_bbr.pkts_out |= (req->cspr & 0x00000000ffffffff);
4614 		log.u_bbr.applimited = tp->t_tcpreq_closed;
4615 		log.u_bbr.applimited <<= 8;
4616 		log.u_bbr.applimited |= tp->t_tcpreq_open;
4617 		log.u_bbr.applimited <<= 8;
4618 		log.u_bbr.applimited |= tp->t_tcpreq_req;
4619 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4620 		TCP_LOG_EVENTP(tp, NULL,
4621 		    &tptosocket(tp)->so_rcv,
4622 		    &tptosocket(tp)->so_snd,
4623 		    TCP_LOG_REQ_T, 0,
4624 		    0, &log, false, &tv);
4625 	}
4626 }
4627 
4628 void
tcp_req_free_a_slot(struct tcpcb * tp,struct tcp_sendfile_track * ent)4629 tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent)
4630 {
4631 	if (tp->t_tcpreq_req > 0)
4632 		tp->t_tcpreq_req--;
4633 	if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
4634 		if (tp->t_tcpreq_open > 0)
4635 			tp->t_tcpreq_open--;
4636 	} else {
4637 		if (tp->t_tcpreq_closed > 0)
4638 			tp->t_tcpreq_closed--;
4639 	}
4640 	ent->flags = TCP_TRK_TRACK_FLG_EMPTY;
4641 }
4642 
4643 static void
tcp_req_check_for_stale_entries(struct tcpcb * tp,uint64_t ts,int rm_oldest)4644 tcp_req_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest)
4645 {
4646 	struct tcp_sendfile_track *ent;
4647 	uint64_t time_delta, oldest_delta;
4648 	int i, oldest, oldest_set = 0, cnt_rm = 0;
4649 
4650 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4651 		ent = &tp->t_tcpreq_info[i];
4652 		if (ent->flags != TCP_TRK_TRACK_FLG_USED) {
4653 			/*
4654 			 * We only care about closed end ranges
4655 			 * that are allocated and have no sendfile
4656 			 * ever touching them. They would be in
4657 			 * state USED.
4658 			 */
4659 			continue;
4660 		}
4661 		if (ts >= ent->localtime)
4662 			time_delta = ts - ent->localtime;
4663 		else
4664 			time_delta = 0;
4665 		if (time_delta &&
4666 		    ((oldest_delta < time_delta) || (oldest_set == 0))) {
4667 			oldest_set = 1;
4668 			oldest = i;
4669 			oldest_delta = time_delta;
4670 		}
4671 		if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) {
4672 			/*
4673 			 * No sendfile in a our time-limit
4674 			 * time to purge it.
4675 			 */
4676 			cnt_rm++;
4677 			tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
4678 					      time_delta, 0);
4679 			tcp_req_free_a_slot(tp, ent);
4680 		}
4681 	}
4682 	if ((cnt_rm == 0) && rm_oldest && oldest_set) {
4683 		ent = &tp->t_tcpreq_info[oldest];
4684 		tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
4685 				      oldest_delta, 1);
4686 		tcp_req_free_a_slot(tp, ent);
4687 	}
4688 }
4689 
4690 int
tcp_req_check_for_comp(struct tcpcb * tp,tcp_seq ack_point)4691 tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point)
4692 {
4693 	int i, ret = 0;
4694 	struct tcp_sendfile_track *ent;
4695 
4696 	/* Clean up any old closed end requests that are now completed */
4697 	if (tp->t_tcpreq_req == 0)
4698 		return (0);
4699 	if (tp->t_tcpreq_closed == 0)
4700 		return (0);
4701 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4702 		ent = &tp->t_tcpreq_info[i];
4703 		/* Skip empty ones */
4704 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4705 			continue;
4706 		/* Skip open ones */
4707 		if (ent->flags & TCP_TRK_TRACK_FLG_OPEN)
4708 			continue;
4709 		if (SEQ_GEQ(ack_point, ent->end_seq)) {
4710 			/* We are past it -- free it */
4711 			tcp_req_log_req_info(tp, ent,
4712 					      i, TCP_TRK_REQ_LOG_FREED, 0, 0);
4713 			tcp_req_free_a_slot(tp, ent);
4714 			ret++;
4715 		}
4716 	}
4717 	return (ret);
4718 }
4719 
4720 int
tcp_req_is_entry_comp(struct tcpcb * tp,struct tcp_sendfile_track * ent,tcp_seq ack_point)4721 tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point)
4722 {
4723 	if (tp->t_tcpreq_req == 0)
4724 		return (-1);
4725 	if (tp->t_tcpreq_closed == 0)
4726 		return (-1);
4727 	if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4728 		return (-1);
4729 	if (SEQ_GEQ(ack_point, ent->end_seq)) {
4730 		return (1);
4731 	}
4732 	return (0);
4733 }
4734 
4735 struct tcp_sendfile_track *
tcp_req_find_a_req_that_is_completed_by(struct tcpcb * tp,tcp_seq th_ack,int * ip)4736 tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip)
4737 {
4738 	/*
4739 	 * Given an ack point (th_ack) walk through our entries and
4740 	 * return the first one found that th_ack goes past the
4741 	 * end_seq.
4742 	 */
4743 	struct tcp_sendfile_track *ent;
4744 	int i;
4745 
4746 	if (tp->t_tcpreq_req == 0) {
4747 		/* none open */
4748 		return (NULL);
4749 	}
4750 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4751 		ent = &tp->t_tcpreq_info[i];
4752 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4753 			continue;
4754 		if ((ent->flags & TCP_TRK_TRACK_FLG_OPEN) == 0) {
4755 			if (SEQ_GEQ(th_ack, ent->end_seq)) {
4756 				*ip = i;
4757 				return (ent);
4758 			}
4759 		}
4760 	}
4761 	return (NULL);
4762 }
4763 
4764 struct tcp_sendfile_track *
tcp_req_find_req_for_seq(struct tcpcb * tp,tcp_seq seq)4765 tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq)
4766 {
4767 	struct tcp_sendfile_track *ent;
4768 	int i;
4769 
4770 	if (tp->t_tcpreq_req == 0) {
4771 		/* none open */
4772 		return (NULL);
4773 	}
4774 	for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4775 		ent = &tp->t_tcpreq_info[i];
4776 		tcp_req_log_req_info(tp, ent, i, TCP_TRK_REQ_LOG_SEARCH,
4777 				      (uint64_t)seq, 0);
4778 		if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) {
4779 			continue;
4780 		}
4781 		if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
4782 			/*
4783 			 * An open end request only needs to
4784 			 * match the beginning seq or be
4785 			 * all we have (once we keep going on
4786 			 * a open end request we may have a seq
4787 			 * wrap).
4788 			 */
4789 			if ((SEQ_GEQ(seq, ent->start_seq)) ||
4790 			    (tp->t_tcpreq_closed == 0))
4791 				return (ent);
4792 		} else {
4793 			/*
4794 			 * For this one we need to
4795 			 * be a bit more careful if its
4796 			 * completed at least.
4797 			 */
4798 			if ((SEQ_GEQ(seq, ent->start_seq)) &&
4799 			    (SEQ_LT(seq, ent->end_seq))) {
4800 				return (ent);
4801 			}
4802 		}
4803 	}
4804 	return (NULL);
4805 }
4806 
4807 /* Should this be in its own file tcp_req.c ? */
4808 struct tcp_sendfile_track *
tcp_req_alloc_req_full(struct tcpcb * tp,struct tcp_snd_req * req,uint64_t ts,int rec_dups)4809 tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups)
4810 {
4811 	struct tcp_sendfile_track *fil;
4812 	int i, allocated;
4813 
4814 	/* In case the stack does not check for completions do so now */
4815 	tcp_req_check_for_comp(tp, tp->snd_una);
4816 	/* Check for stale entries */
4817 	if (tp->t_tcpreq_req)
4818 		tcp_req_check_for_stale_entries(tp, ts,
4819 		    (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ));
4820 	/* Check to see if this is a duplicate of one not started */
4821 	if (tp->t_tcpreq_req) {
4822 		for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
4823 			fil = &tp->t_tcpreq_info[i];
4824 			if ((fil->flags & TCP_TRK_TRACK_FLG_USED) == 0)
4825 				continue;
4826 			if ((fil->timestamp == req->timestamp) &&
4827 			    (fil->start == req->start) &&
4828 			    ((fil->flags & TCP_TRK_TRACK_FLG_OPEN) ||
4829 			     (fil->end == req->end))) {
4830 				/*
4831 				 * We already have this request
4832 				 * and it has not been started with sendfile.
4833 				 * This probably means the user was returned
4834 				 * a 4xx of some sort and its going to age
4835 				 * out, lets not duplicate it.
4836 				 */
4837 				return (fil);
4838 			}
4839 		}
4840 	}
4841 	/* Ok if there is no room at the inn we are in trouble */
4842 	if (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ) {
4843 		tcp_trace_point(tp, TCP_TP_REQ_LOG_FAIL);
4844 		for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4845 			tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i],
4846 			    i, TCP_TRK_REQ_LOG_ALLOCFAIL, 0, 0);
4847 		}
4848 		return (NULL);
4849 	}
4850 	for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
4851 		fil = &tp->t_tcpreq_info[i];
4852 		if (fil->flags == TCP_TRK_TRACK_FLG_EMPTY) {
4853 			allocated = 1;
4854 			fil->flags = TCP_TRK_TRACK_FLG_USED;
4855 			fil->timestamp = req->timestamp;
4856 			fil->playout_ms = req->playout_ms;
4857 			fil->localtime = ts;
4858 			fil->start = req->start;
4859 			if (req->flags & TCP_LOG_HTTPD_RANGE_END) {
4860 				fil->end = req->end;
4861 			} else {
4862 				fil->end = 0;
4863 				fil->flags |= TCP_TRK_TRACK_FLG_OPEN;
4864 			}
4865 			/*
4866 			 * We can set the min boundaries to the TCP Sequence space,
4867 			 * but it might be found to be further up when sendfile
4868 			 * actually runs on this range (if it ever does).
4869 			 */
4870 			fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc;
4871 			fil->start_seq = tp->snd_una +
4872 			    tptosocket(tp)->so_snd.sb_ccc;
4873 			if (req->flags & TCP_LOG_HTTPD_RANGE_END)
4874 				fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start)));
4875 			else
4876 				fil->end_seq = 0;
4877 			if (tptosocket(tp)->so_snd.sb_tls_info) {
4878 				/*
4879 				 * This session is doing TLS. Take a swag guess
4880 				 * at the overhead.
4881 				 */
4882 				fil->end_seq += tcp_estimate_tls_overhead(
4883 				    tptosocket(tp), (fil->end - fil->start));
4884 			}
4885 			tp->t_tcpreq_req++;
4886 			if (fil->flags & TCP_TRK_TRACK_FLG_OPEN)
4887 				tp->t_tcpreq_open++;
4888 			else
4889 				tp->t_tcpreq_closed++;
4890 			tcp_req_log_req_info(tp, fil, i,
4891 			    TCP_TRK_REQ_LOG_NEW, 0, 0);
4892 			break;
4893 		} else
4894 			fil = NULL;
4895 	}
4896 	return (fil);
4897 }
4898 
4899 void
tcp_req_alloc_req(struct tcpcb * tp,union tcp_log_userdata * user,uint64_t ts)4900 tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts)
4901 {
4902 	(void)tcp_req_alloc_req_full(tp, &user->tcp_req, ts, 1);
4903 }
4904 #endif
4905 
4906 void
tcp_log_socket_option(struct tcpcb * tp,uint32_t option_num,uint32_t option_val,int err)4907 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err)
4908 {
4909 	if (tcp_bblogging_on(tp)) {
4910 		struct tcp_log_buffer *l;
4911 
4912 		l = tcp_log_event(tp, NULL,
4913 		        &tptosocket(tp)->so_rcv,
4914 		        &tptosocket(tp)->so_snd,
4915 		        TCP_LOG_SOCKET_OPT,
4916 		        err, 0, NULL, 1,
4917 		        NULL, NULL, 0, NULL);
4918 		if (l) {
4919 			l->tlb_flex1 = option_num;
4920 			l->tlb_flex2 = option_val;
4921 		}
4922 	}
4923 }
4924 
4925 uint32_t
tcp_get_srtt(struct tcpcb * tp,int granularity)4926 tcp_get_srtt(struct tcpcb *tp, int granularity)
4927 {
4928 	uint32_t srtt;
4929 
4930 	KASSERT(granularity == TCP_TMR_GRANULARITY_USEC ||
4931 	    granularity == TCP_TMR_GRANULARITY_TICKS,
4932 	    ("%s: called with unexpected granularity %d", __func__,
4933 	    granularity));
4934 
4935 	srtt = tp->t_srtt;
4936 
4937 	/*
4938 	 * We only support two granularities. If the stored granularity
4939 	 * does not match the granularity requested by the caller,
4940 	 * convert the stored value to the requested unit of granularity.
4941 	 */
4942 	if (tp->t_tmr_granularity != granularity) {
4943 		if (granularity == TCP_TMR_GRANULARITY_USEC)
4944 			srtt = TICKS_2_USEC(srtt);
4945 		else
4946 			srtt = USEC_2_TICKS(srtt);
4947 	}
4948 
4949 	/*
4950 	 * If the srtt is stored with ticks granularity, we need to
4951 	 * unshift to get the actual value. We do this after the
4952 	 * conversion above (if one was necessary) in order to maximize
4953 	 * precision.
4954 	 */
4955 	if (tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS)
4956 		srtt = srtt >> TCP_RTT_SHIFT;
4957 
4958 	return (srtt);
4959 }
4960 
4961 void
tcp_account_for_send(struct tcpcb * tp,uint32_t len,uint8_t is_rxt,uint8_t is_tlp,bool hw_tls)4962 tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt,
4963     uint8_t is_tlp, bool hw_tls)
4964 {
4965 
4966 	if (is_tlp) {
4967 		tp->t_sndtlppack++;
4968 		tp->t_sndtlpbyte += len;
4969 	}
4970 	/* To get total bytes sent you must add t_snd_rxt_bytes to t_sndbytes */
4971 	if (is_rxt)
4972 		tp->t_snd_rxt_bytes += len;
4973 	else
4974 		tp->t_sndbytes += len;
4975 
4976 #ifdef KERN_TLS
4977 	if (hw_tls && is_rxt && len != 0) {
4978 		uint64_t rexmit_percent;
4979 
4980 		rexmit_percent = (1000ULL * tp->t_snd_rxt_bytes) /
4981 		    (10ULL * (tp->t_snd_rxt_bytes + tp->t_sndbytes));
4982 		if (rexmit_percent > ktls_ifnet_max_rexmit_pct)
4983 			ktls_disable_ifnet(tp);
4984 	}
4985 #endif
4986 }
4987