1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2007-2008,2010
7 * Swinburne University of Technology, Melbourne, Australia.
8 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9 * Copyright (c) 2010 The FreeBSD Foundation
10 * Copyright (c) 2010-2011 Juniper Networks, Inc.
11 * All rights reserved.
12 *
13 * Portions of this software were developed at the Centre for Advanced Internet
14 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15 * James Healy and David Hayes, made possible in part by a grant from the Cisco
16 * University Research Program Fund at Community Foundation Silicon Valley.
17 *
18 * Portions of this software were developed at the Centre for Advanced
19 * Internet Architectures, Swinburne University of Technology, Melbourne,
20 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21 *
22 * Portions of this software were developed by Robert N. M. Watson under
23 * contract to Juniper Networks, Inc.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. Neither the name of the University nor the names of its contributors
34 * may be used to endorse or promote products derived from this software
35 * without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
48 */
49
50 #include <sys/cdefs.h>
51 #include "opt_inet.h"
52 #include "opt_inet6.h"
53 #include "opt_ipsec.h"
54 #include "opt_rss.h"
55
56 #include <sys/param.h>
57 #include <sys/arb.h>
58 #include <sys/kernel.h>
59 #ifdef TCP_HHOOK
60 #include <sys/hhook.h>
61 #endif
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h> /* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/qmath.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 #include <sys/stats.h>
75
76 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
77
78 #include <vm/uma.h>
79
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #define TCPSTATES /* for logging */
87
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_rss.h>
92 #include <netinet/in_systm.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
95 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
96 #include <netinet/ip_var.h>
97 #include <netinet/ip_options.h>
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_rss.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #include <netinet6/nd6.h>
105 #include <netinet/tcp.h>
106 #include <netinet/tcp_fsm.h>
107 #include <netinet/tcp_seq.h>
108 #include <netinet/tcp_timer.h>
109 #include <netinet/tcp_var.h>
110 #include <netinet/tcp_log_buf.h>
111 #include <netinet6/tcp6_var.h>
112 #include <netinet/tcpip.h>
113 #include <netinet/cc/cc.h>
114 #include <netinet/tcp_fastopen.h>
115 #ifdef TCPPCAP
116 #include <netinet/tcp_pcap.h>
117 #endif
118 #include <netinet/tcp_syncache.h>
119 #ifdef TCP_OFFLOAD
120 #include <netinet/tcp_offload.h>
121 #endif
122 #include <netinet/tcp_ecn.h>
123 #include <netinet/udp.h>
124
125 #include <netipsec/ipsec_support.h>
126
127 #include <machine/in_cksum.h>
128
129 #include <security/mac/mac_framework.h>
130
131 const int tcprexmtthresh = 3;
132
133 VNET_DEFINE(int, tcp_log_in_vain) = 0;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
135 &VNET_NAME(tcp_log_in_vain), 0,
136 "Log all incoming TCP segments to closed ports");
137
138 VNET_DEFINE(int, tcp_bind_all_fibs) = 1;
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN,
140 &VNET_NAME(tcp_bind_all_fibs), 0,
141 "Bound sockets receive traffic from all FIBs");
142
143 VNET_DEFINE(int, blackhole) = 0;
144 #define V_blackhole VNET(blackhole)
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
146 &VNET_NAME(blackhole), 0,
147 "Do not send RST on segments to closed ports");
148
149 VNET_DEFINE(bool, blackhole_local) = false;
150 #define V_blackhole_local VNET(blackhole_local)
151 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
152 CTLFLAG_RW, &VNET_NAME(blackhole_local), false,
153 "Enforce net.inet.tcp.blackhole for locally originated packets");
154
155 VNET_DEFINE(int, tcp_delack_enabled) = 1;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
157 &VNET_NAME(tcp_delack_enabled), 0,
158 "Delay ACK to try and piggyback it onto a data packet");
159
160 VNET_DEFINE(int, drop_synfin) = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
162 &VNET_NAME(drop_synfin), 0,
163 "Drop TCP packets with SYN+FIN set");
164
165 VNET_DEFINE(int, tcp_do_prr) = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW,
167 &VNET_NAME(tcp_do_prr), 1,
168 "Enable Proportional Rate Reduction per RFC 6937");
169
170 VNET_DEFINE(int, tcp_do_newcwv) = 0;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
172 &VNET_NAME(tcp_do_newcwv), 0,
173 "Enable New Congestion Window Validation per RFC7661");
174
175 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
177 &VNET_NAME(tcp_do_rfc3042), 0,
178 "Enable RFC 3042 (Limited Transmit)");
179
180 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
182 &VNET_NAME(tcp_do_rfc3390), 0,
183 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
184
185 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
187 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
188 "Slow-start flight size (initial congestion window) in number of segments");
189
190 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
192 &VNET_NAME(tcp_do_rfc3465), 0,
193 "Enable RFC 3465 (Appropriate Byte Counting)");
194
195 VNET_DEFINE(int, tcp_abc_l_var) = 2;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
197 &VNET_NAME(tcp_abc_l_var), 2,
198 "Cap the max cwnd increment during slow-start to this number of segments");
199
200 VNET_DEFINE(int, tcp_insecure_syn) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
202 &VNET_NAME(tcp_insecure_syn), 0,
203 "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
204
205 VNET_DEFINE(int, tcp_insecure_rst) = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
207 &VNET_NAME(tcp_insecure_rst), 0,
208 "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
209
210 VNET_DEFINE(int, tcp_insecure_ack) = 0;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_ack, CTLFLAG_VNET | CTLFLAG_RW,
212 &VNET_NAME(tcp_insecure_ack), 0,
213 "Follow RFC793 criteria for validating SEG.ACK");
214
215 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
216 #define V_tcp_recvspace VNET(tcp_recvspace)
217 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
218 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
219
220 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
222 &VNET_NAME(tcp_do_autorcvbuf), 0,
223 "Enable automatic receive buffer sizing");
224
225 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
227 &VNET_NAME(tcp_autorcvbuf_max), 0,
228 "Max size of automatic receive buffer");
229
230 VNET_DEFINE(struct inpcbinfo, tcbinfo);
231
232 /*
233 * TCP statistics are stored in an array of counter(9)s, which size matches
234 * size of struct tcpstat. TCP running connection count is a regular array.
235 */
236 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
237 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
238 tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
239 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
240 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
241 CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
242 "TCP connection counts by TCP state");
243
244 /*
245 * Kernel module interface for updating tcpstat. The first argument is an index
246 * into tcpstat treated as an array.
247 */
248 void
kmod_tcpstat_add(int statnum,int val)249 kmod_tcpstat_add(int statnum, int val)
250 {
251
252 counter_u64_add(VNET(tcpstat)[statnum], val);
253 }
254
255 /*
256 * Make sure that we only start a SACK loss recovery when
257 * receiving a duplicate ACK with a SACK block, and also
258 * complete SACK loss recovery in case the other end
259 * reneges.
260 */
261 static bool inline
tcp_is_sack_recovery(struct tcpcb * tp,struct tcpopt * to)262 tcp_is_sack_recovery(struct tcpcb *tp, struct tcpopt *to)
263 {
264 return ((tp->t_flags & TF_SACK_PERMIT) &&
265 ((to->to_flags & TOF_SACK) ||
266 (!TAILQ_EMPTY(&tp->snd_holes))));
267 }
268
269 #ifdef TCP_HHOOK
270 /*
271 * Wrapper for the TCP established input helper hook.
272 */
273 void
hhook_run_tcp_est_in(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to)274 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
275 {
276 struct tcp_hhook_data hhook_data;
277
278 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
279 hhook_data.tp = tp;
280 hhook_data.th = th;
281 hhook_data.to = to;
282
283 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
284 &tp->t_osd);
285 }
286 }
287 #endif
288
289 /*
290 * CC wrapper hook functions
291 */
292 void
cc_ack_received(struct tcpcb * tp,struct tcphdr * th,uint16_t nsegs,uint16_t type)293 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
294 uint16_t type)
295 {
296 #ifdef STATS
297 int32_t gput;
298 #endif
299
300 INP_WLOCK_ASSERT(tptoinpcb(tp));
301
302 tp->t_ccv.nsegs = nsegs;
303 tp->t_ccv.bytes_this_ack = BYTES_THIS_ACK(tp, th);
304 if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
305 (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
306 (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
307 tp->t_ccv.flags |= CCF_CWND_LIMITED;
308 else
309 tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
310
311 if (type == CC_ACK) {
312 #ifdef STATS
313 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
314 ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
315 if (!IN_RECOVERY(tp->t_flags))
316 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
317 tp->t_ccv.bytes_this_ack / (tcp_maxseg(tp) * nsegs));
318 if ((tp->t_flags & TF_GPUTINPROG) &&
319 SEQ_GEQ(th->th_ack, tp->gput_ack)) {
320 /*
321 * Compute goodput in bits per millisecond.
322 */
323 gput = (((int64_t)SEQ_SUB(th->th_ack, tp->gput_seq)) << 3) /
324 max(1, tcp_ts_getticks() - tp->gput_ts);
325 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
326 gput);
327 /*
328 * XXXLAS: This is a temporary hack, and should be
329 * chained off VOI_TCP_GPUT when stats(9) grows an API
330 * to deal with chained VOIs.
331 */
332 if (tp->t_stats_gput_prev > 0)
333 stats_voi_update_abs_s32(tp->t_stats,
334 VOI_TCP_GPUT_ND,
335 ((gput - tp->t_stats_gput_prev) * 100) /
336 tp->t_stats_gput_prev);
337 tp->t_flags &= ~TF_GPUTINPROG;
338 tp->t_stats_gput_prev = gput;
339 }
340 #endif /* STATS */
341 if (tp->snd_cwnd > tp->snd_ssthresh) {
342 tp->t_bytes_acked += tp->t_ccv.bytes_this_ack;
343 if (tp->t_bytes_acked >= tp->snd_cwnd) {
344 tp->t_bytes_acked -= tp->snd_cwnd;
345 tp->t_ccv.flags |= CCF_ABC_SENTAWND;
346 }
347 } else {
348 tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
349 tp->t_bytes_acked = 0;
350 }
351 }
352
353 if (CC_ALGO(tp)->ack_received != NULL) {
354 /* XXXLAS: Find a way to live without this */
355 tp->t_ccv.curack = th->th_ack;
356 CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
357 }
358 #ifdef STATS
359 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
360 #endif
361 }
362
363 void
cc_conn_init(struct tcpcb * tp)364 cc_conn_init(struct tcpcb *tp)
365 {
366 struct hc_metrics_lite metrics;
367 struct inpcb *inp = tptoinpcb(tp);
368 u_int maxseg;
369 int rtt;
370
371 INP_WLOCK_ASSERT(inp);
372
373 tcp_hc_get(&inp->inp_inc, &metrics);
374 maxseg = tcp_maxseg(tp);
375
376 if (tp->t_srtt == 0 && (rtt = metrics.hc_rtt)) {
377 tp->t_srtt = rtt;
378 TCPSTAT_INC(tcps_usedrtt);
379 if (metrics.hc_rttvar) {
380 tp->t_rttvar = metrics.hc_rttvar;
381 TCPSTAT_INC(tcps_usedrttvar);
382 } else {
383 /* default variation is +- 1 rtt */
384 tp->t_rttvar =
385 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
386 }
387 TCPT_RANGESET(tp->t_rxtcur,
388 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
389 tp->t_rttmin, TCPTV_REXMTMAX);
390 }
391 if (metrics.hc_ssthresh) {
392 /*
393 * There's some sort of gateway or interface
394 * buffer limit on the path. Use this to set
395 * the slow start threshold, but set the
396 * threshold to no less than 2*mss.
397 */
398 tp->snd_ssthresh = max(2 * maxseg, metrics.hc_ssthresh);
399 TCPSTAT_INC(tcps_usedssthresh);
400 }
401
402 /*
403 * Set the initial slow-start flight size.
404 *
405 * If a SYN or SYN/ACK was lost and retransmitted, we have to
406 * reduce the initial CWND to one segment as congestion is likely
407 * requiring us to be cautious.
408 */
409 if (tp->snd_cwnd == 1)
410 tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */
411 else
412 tp->snd_cwnd = tcp_compute_initwnd(maxseg);
413
414 if (CC_ALGO(tp)->conn_init != NULL)
415 CC_ALGO(tp)->conn_init(&tp->t_ccv);
416 }
417
418 void inline
cc_cong_signal(struct tcpcb * tp,struct tcphdr * th,uint32_t type)419 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
420 {
421 INP_WLOCK_ASSERT(tptoinpcb(tp));
422
423 #ifdef STATS
424 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
425 #endif
426
427 switch(type) {
428 case CC_NDUPACK:
429 if (!IN_FASTRECOVERY(tp->t_flags)) {
430 tp->snd_recover = tp->snd_max;
431 if (tp->t_flags2 & TF2_ECN_PERMIT)
432 tp->t_flags2 |= TF2_ECN_SND_CWR;
433 }
434 break;
435 case CC_ECN:
436 if (!IN_CONGRECOVERY(tp->t_flags) ||
437 /*
438 * Allow ECN reaction on ACK to CWR, if
439 * that data segment was also CE marked.
440 */
441 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
442 EXIT_CONGRECOVERY(tp->t_flags);
443 TCPSTAT_INC(tcps_ecn_rcwnd);
444 tp->snd_recover = tp->snd_max + 1;
445 if (tp->t_flags2 & TF2_ECN_PERMIT)
446 tp->t_flags2 |= TF2_ECN_SND_CWR;
447 }
448 break;
449 case CC_RTO:
450 tp->t_dupacks = 0;
451 tp->t_bytes_acked = 0;
452 EXIT_RECOVERY(tp->t_flags);
453 if (tp->t_flags2 & TF2_ECN_PERMIT)
454 tp->t_flags2 |= TF2_ECN_SND_CWR;
455 break;
456 case CC_RTO_ERR:
457 TCPSTAT_INC(tcps_sndrexmitbad);
458 /* RTO was unnecessary, so reset everything. */
459 tp->snd_cwnd = tp->snd_cwnd_prev;
460 tp->snd_ssthresh = tp->snd_ssthresh_prev;
461 tp->snd_recover = tp->snd_recover_prev;
462 if (tp->t_flags & TF_WASFRECOVERY)
463 ENTER_FASTRECOVERY(tp->t_flags);
464 if (tp->t_flags & TF_WASCRECOVERY)
465 ENTER_CONGRECOVERY(tp->t_flags);
466 tp->snd_nxt = tp->snd_max;
467 tp->t_flags &= ~TF_PREVVALID;
468 tp->t_badrxtwin = 0;
469 break;
470 }
471 if (SEQ_LT(tp->snd_fack, tp->snd_una) ||
472 SEQ_GT(tp->snd_fack, tp->snd_max)) {
473 tp->snd_fack = tp->snd_una;
474 }
475
476 if (CC_ALGO(tp)->cong_signal != NULL) {
477 if (th != NULL)
478 tp->t_ccv.curack = th->th_ack;
479 CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
480 }
481 }
482
483 void inline
cc_post_recovery(struct tcpcb * tp,struct tcphdr * th)484 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
485 {
486 INP_WLOCK_ASSERT(tptoinpcb(tp));
487
488 if (CC_ALGO(tp)->post_recovery != NULL) {
489 if (SEQ_LT(tp->snd_fack, th->th_ack) ||
490 SEQ_GT(tp->snd_fack, tp->snd_max)) {
491 tp->snd_fack = th->th_ack;
492 }
493 tp->t_ccv.curack = th->th_ack;
494 CC_ALGO(tp)->post_recovery(&tp->t_ccv);
495 }
496 EXIT_RECOVERY(tp->t_flags);
497
498 tp->t_bytes_acked = 0;
499 tp->sackhint.delivered_data = 0;
500 tp->sackhint.prr_delivered = 0;
501 tp->sackhint.prr_out = 0;
502 }
503
504 /*
505 * Indicate whether this ack should be delayed. We can delay the ack if
506 * following conditions are met:
507 * - There is no delayed ack timer in progress.
508 * - Our last ack wasn't a 0-sized window. We never want to delay
509 * the ack that opens up a 0-sized window.
510 * - LRO wasn't used for this segment. We make sure by checking that the
511 * segment size is not larger than the MSS.
512 */
513 #define DELAY_ACK(tp, tlen) \
514 ((!tcp_timer_active(tp, TT_DELACK) && \
515 (tp->t_flags & TF_RXWIN0SENT) == 0) && \
516 (tlen <= tp->t_maxseg) && \
517 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
518
519 void inline
cc_ecnpkt_handler_flags(struct tcpcb * tp,uint16_t flags,uint8_t iptos)520 cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos)
521 {
522 INP_WLOCK_ASSERT(tptoinpcb(tp));
523
524 if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
525 switch (iptos & IPTOS_ECN_MASK) {
526 case IPTOS_ECN_CE:
527 tp->t_ccv.flags |= CCF_IPHDR_CE;
528 break;
529 case IPTOS_ECN_ECT0:
530 /* FALLTHROUGH */
531 case IPTOS_ECN_ECT1:
532 /* FALLTHROUGH */
533 case IPTOS_ECN_NOTECT:
534 tp->t_ccv.flags &= ~CCF_IPHDR_CE;
535 break;
536 }
537
538 if (flags & TH_CWR)
539 tp->t_ccv.flags |= CCF_TCPHDR_CWR;
540 else
541 tp->t_ccv.flags &= ~CCF_TCPHDR_CWR;
542
543 CC_ALGO(tp)->ecnpkt_handler(&tp->t_ccv);
544
545 if (tp->t_ccv.flags & CCF_ACKNOW) {
546 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
547 tp->t_flags |= TF_ACKNOW;
548 }
549 }
550 }
551
552 void inline
cc_ecnpkt_handler(struct tcpcb * tp,struct tcphdr * th,uint8_t iptos)553 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
554 {
555 cc_ecnpkt_handler_flags(tp, tcp_get_flags(th), iptos);
556 }
557
558 /*
559 * TCP input handling is split into multiple parts:
560 * tcp6_input is a thin wrapper around tcp_input for the extended
561 * ip6_protox[] call format in ip6_input
562 * tcp_input handles primary segment validation, inpcb lookup and
563 * SYN processing on listen sockets
564 * tcp_do_segment processes the ACK and text of the segment for
565 * establishing, established and closing connections
566 */
567 #ifdef INET6
568 int
tcp6_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)569 tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
570 {
571 struct mbuf *m;
572 struct in6_ifaddr *ia6;
573 struct ip6_hdr *ip6;
574
575 m = *mp;
576 if (m->m_len < *offp + sizeof(struct tcphdr)) {
577 m = m_pullup(m, *offp + sizeof(struct tcphdr));
578 if (m == NULL) {
579 *mp = m;
580 TCPSTAT_INC(tcps_rcvshort);
581 return (IPPROTO_DONE);
582 }
583 }
584
585 /*
586 * draft-itojun-ipv6-tcp-to-anycast
587 * better place to put this in?
588 */
589 ip6 = mtod(m, struct ip6_hdr *);
590 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
591 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
592 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
593 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
594 *mp = NULL;
595 return (IPPROTO_DONE);
596 }
597
598 *mp = m;
599 return (tcp_input_with_port(mp, offp, proto, port));
600 }
601
602 int
tcp6_input(struct mbuf ** mp,int * offp,int proto)603 tcp6_input(struct mbuf **mp, int *offp, int proto)
604 {
605
606 return(tcp6_input_with_port(mp, offp, proto, 0));
607 }
608 #endif /* INET6 */
609
610 int
tcp_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)611 tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
612 {
613 struct mbuf *m = *mp;
614 struct tcphdr *th = NULL;
615 struct ip *ip = NULL;
616 struct inpcb *inp = NULL;
617 struct tcpcb *tp = NULL;
618 struct socket *so = NULL;
619 u_char *optp = NULL;
620 int off0;
621 int optlen = 0;
622 #ifdef INET
623 int len;
624 uint8_t ipttl;
625 #endif
626 int tlen = 0, off;
627 int drop_hdrlen;
628 int thflags;
629 int rstreason = 0; /* For badport_bandlim accounting purposes */
630 int lookupflag;
631 uint8_t iptos;
632 struct m_tag *fwd_tag = NULL;
633 #ifdef INET6
634 struct ip6_hdr *ip6 = NULL;
635 int isipv6;
636 #else
637 const void *ip6 = NULL;
638 #endif /* INET6 */
639 struct tcpopt to; /* options in this segment */
640 char *s = NULL; /* address and port logging */
641
642 NET_EPOCH_ASSERT();
643
644 #ifdef INET6
645 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
646 #endif
647
648 off0 = *offp;
649 m = *mp;
650 *mp = NULL;
651 to.to_flags = 0;
652 TCPSTAT_INC(tcps_rcvtotal);
653
654 m->m_pkthdr.tcp_tun_port = port;
655 #ifdef INET6
656 if (isipv6) {
657 ip6 = mtod(m, struct ip6_hdr *);
658 th = (struct tcphdr *)((caddr_t)ip6 + off0);
659 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
660 if (port)
661 goto skip6_csum;
662 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
663 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
664 th->th_sum = m->m_pkthdr.csum_data;
665 else
666 th->th_sum = in6_cksum_pseudo(ip6, tlen,
667 IPPROTO_TCP, m->m_pkthdr.csum_data);
668 th->th_sum ^= 0xffff;
669 } else
670 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
671 if (th->th_sum) {
672 TCPSTAT_INC(tcps_rcvbadsum);
673 goto drop;
674 }
675 skip6_csum:
676 /*
677 * Be proactive about unspecified IPv6 address in source.
678 * As we use all-zero to indicate unbounded/unconnected pcb,
679 * unspecified IPv6 address can be used to confuse us.
680 *
681 * Note that packets with unspecified IPv6 destination is
682 * already dropped in ip6_input.
683 */
684 KASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst),
685 ("%s: unspecified destination v6 address", __func__));
686 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
687 IP6STAT_INC(ip6s_badscope); /* XXX */
688 goto drop;
689 }
690 iptos = IPV6_TRAFFIC_CLASS(ip6);
691 }
692 #endif
693 #if defined(INET) && defined(INET6)
694 else
695 #endif
696 #ifdef INET
697 {
698 /*
699 * Get IP and TCP header together in first mbuf.
700 * Note: IP leaves IP header in first mbuf.
701 */
702 if (off0 > sizeof (struct ip)) {
703 ip_stripoptions(m);
704 off0 = sizeof(struct ip);
705 }
706 if (m->m_len < sizeof (struct tcpiphdr)) {
707 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
708 == NULL) {
709 TCPSTAT_INC(tcps_rcvshort);
710 return (IPPROTO_DONE);
711 }
712 }
713 ip = mtod(m, struct ip *);
714 th = (struct tcphdr *)((caddr_t)ip + off0);
715 tlen = ntohs(ip->ip_len) - off0;
716
717 iptos = ip->ip_tos;
718 if (port)
719 goto skip_csum;
720 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
721 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
722 th->th_sum = m->m_pkthdr.csum_data;
723 else
724 th->th_sum = in_pseudo(ip->ip_src.s_addr,
725 ip->ip_dst.s_addr,
726 htonl(m->m_pkthdr.csum_data + tlen +
727 IPPROTO_TCP));
728 th->th_sum ^= 0xffff;
729 } else {
730 struct ipovly *ipov = (struct ipovly *)ip;
731
732 /*
733 * Checksum extended TCP header and data.
734 */
735 len = off0 + tlen;
736 ipttl = ip->ip_ttl;
737 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
738 ipov->ih_len = htons(tlen);
739 th->th_sum = in_cksum(m, len);
740 /* Reset length for SDT probes. */
741 ip->ip_len = htons(len);
742 /* Reset TOS bits */
743 ip->ip_tos = iptos;
744 /* Re-initialization for later version check */
745 ip->ip_ttl = ipttl;
746 ip->ip_v = IPVERSION;
747 ip->ip_hl = off0 >> 2;
748 }
749 skip_csum:
750 if (th->th_sum && (port == 0)) {
751 TCPSTAT_INC(tcps_rcvbadsum);
752 goto drop;
753 }
754 KASSERT(ip->ip_dst.s_addr != INADDR_ANY,
755 ("%s: unspecified destination v4 address", __func__));
756 if (__predict_false(ip->ip_src.s_addr == INADDR_ANY)) {
757 IPSTAT_INC(ips_badaddr);
758 goto drop;
759 }
760 }
761 #endif /* INET */
762
763 /*
764 * Check that TCP offset makes sense,
765 * pull out TCP options and adjust length. XXX
766 */
767 off = th->th_off << 2;
768 if (off < sizeof (struct tcphdr) || off > tlen) {
769 TCPSTAT_INC(tcps_rcvbadoff);
770 goto drop;
771 }
772 tlen -= off; /* tlen is used instead of ti->ti_len */
773 if (off > sizeof (struct tcphdr)) {
774 #ifdef INET6
775 if (isipv6) {
776 if (m->m_len < off0 + off) {
777 m = m_pullup(m, off0 + off);
778 if (m == NULL) {
779 TCPSTAT_INC(tcps_rcvshort);
780 return (IPPROTO_DONE);
781 }
782 }
783 ip6 = mtod(m, struct ip6_hdr *);
784 th = (struct tcphdr *)((caddr_t)ip6 + off0);
785 }
786 #endif
787 #if defined(INET) && defined(INET6)
788 else
789 #endif
790 #ifdef INET
791 {
792 if (m->m_len < sizeof(struct ip) + off) {
793 if ((m = m_pullup(m, sizeof (struct ip) + off))
794 == NULL) {
795 TCPSTAT_INC(tcps_rcvshort);
796 return (IPPROTO_DONE);
797 }
798 ip = mtod(m, struct ip *);
799 th = (struct tcphdr *)((caddr_t)ip + off0);
800 }
801 }
802 #endif
803 optlen = off - sizeof (struct tcphdr);
804 optp = (u_char *)(th + 1);
805 }
806 thflags = tcp_get_flags(th);
807
808 /*
809 * Convert TCP protocol specific fields to host format.
810 */
811 tcp_fields_to_host(th);
812
813 /*
814 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
815 */
816 drop_hdrlen = off0 + off;
817
818 /*
819 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
820 */
821 if (
822 #ifdef INET6
823 (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
824 #ifdef INET
825 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
826 #endif
827 #endif
828 #if defined(INET) && !defined(INET6)
829 (m->m_flags & M_IP_NEXTHOP)
830 #endif
831 )
832 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
833
834 /*
835 * For initial SYN packets we don't need write lock on matching
836 * PCB, be it a listening one or a synchronized one. The packet
837 * shall not modify its state.
838 */
839 lookupflag = INPLOOKUP_WILDCARD |
840 ((thflags & (TH_ACK|TH_SYN)) == TH_SYN ?
841 INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB) |
842 (V_tcp_bind_all_fibs ? 0 : INPLOOKUP_FIB);
843 findpcb:
844 tp = NULL;
845 #ifdef INET6
846 if (isipv6 && fwd_tag != NULL) {
847 struct sockaddr_in6 *next_hop6;
848
849 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
850 /*
851 * Transparently forwarded. Pretend to be the destination.
852 * Already got one like this?
853 */
854 inp = in6_pcblookup_mbuf(&V_tcbinfo,
855 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
856 lookupflag & ~INPLOOKUP_WILDCARD, m->m_pkthdr.rcvif, m);
857 if (!inp) {
858 /*
859 * It's new. Try to find the ambushing socket.
860 * Because we've rewritten the destination address,
861 * any hardware-generated hash is ignored.
862 */
863 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
864 th->th_sport, &next_hop6->sin6_addr,
865 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
866 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
867 }
868 } else if (isipv6) {
869 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
870 th->th_sport, &ip6->ip6_dst, th->th_dport, lookupflag,
871 m->m_pkthdr.rcvif, m);
872 }
873 #endif /* INET6 */
874 #if defined(INET6) && defined(INET)
875 else
876 #endif
877 #ifdef INET
878 if (fwd_tag != NULL) {
879 struct sockaddr_in *next_hop;
880
881 next_hop = (struct sockaddr_in *)(fwd_tag+1);
882 /*
883 * Transparently forwarded. Pretend to be the destination.
884 * already got one like this?
885 */
886 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
887 ip->ip_dst, th->th_dport, lookupflag & ~INPLOOKUP_WILDCARD,
888 m->m_pkthdr.rcvif, m);
889 if (!inp) {
890 /*
891 * It's new. Try to find the ambushing socket.
892 * Because we've rewritten the destination address,
893 * any hardware-generated hash is ignored.
894 */
895 inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
896 th->th_sport, next_hop->sin_addr,
897 next_hop->sin_port ? ntohs(next_hop->sin_port) :
898 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
899 }
900 } else
901 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
902 th->th_sport, ip->ip_dst, th->th_dport, lookupflag,
903 m->m_pkthdr.rcvif, m);
904 #endif /* INET */
905
906 /*
907 * If the INPCB does not exist then all data in the incoming
908 * segment is discarded and an appropriate RST is sent back.
909 * XXX MRT Send RST using which routing table?
910 */
911 if (inp == NULL) {
912 if (rstreason != 0) {
913 /* We came here after second (safety) lookup. */
914 MPASS((lookupflag & INPLOOKUP_WILDCARD) == 0);
915 goto dropwithreset;
916 }
917 /*
918 * Log communication attempts to ports that are not
919 * in use.
920 */
921 if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
922 V_tcp_log_in_vain == 2) {
923 if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
924 log(LOG_INFO, "%s; %s: Connection attempt "
925 "to closed port\n", s, __func__);
926 }
927 rstreason = BANDLIM_RST_CLOSEDPORT;
928 goto dropwithreset;
929 }
930 INP_LOCK_ASSERT(inp);
931
932 if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
933 !SOLISTENING(inp->inp_socket)) {
934 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
935 inp->inp_flowid = m->m_pkthdr.flowid;
936 inp->inp_flowtype = M_HASHTYPE_GET(m);
937 #ifdef RSS
938 } else {
939 /* assign flowid by software RSS hash */
940 #ifdef INET6
941 if (isipv6) {
942 rss_proto_software_hash_v6(&inp->in6p_faddr,
943 &inp->in6p_laddr,
944 inp->inp_fport,
945 inp->inp_lport,
946 IPPROTO_TCP,
947 &inp->inp_flowid,
948 &inp->inp_flowtype);
949 } else
950 #endif /* INET6 */
951 {
952 rss_proto_software_hash_v4(inp->inp_faddr,
953 inp->inp_laddr,
954 inp->inp_fport,
955 inp->inp_lport,
956 IPPROTO_TCP,
957 &inp->inp_flowid,
958 &inp->inp_flowtype);
959 }
960 #endif /* RSS */
961 }
962 }
963 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
964 #ifdef INET6
965 if (isipv6 && IPSEC_ENABLED(ipv6) &&
966 IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
967 goto dropunlock;
968 }
969 #ifdef INET
970 else
971 #endif
972 #endif /* INET6 */
973 #ifdef INET
974 if (IPSEC_ENABLED(ipv4) &&
975 IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
976 goto dropunlock;
977 }
978 #endif /* INET */
979 #endif /* IPSEC */
980
981 /*
982 * Check the minimum TTL for socket.
983 */
984 if (inp->inp_ip_minttl != 0) {
985 #ifdef INET6
986 if (isipv6) {
987 if (inp->inp_ip_minttl > ip6->ip6_hlim)
988 goto dropunlock;
989 } else
990 #endif
991 if (inp->inp_ip_minttl > ip->ip_ttl)
992 goto dropunlock;
993 }
994
995 tp = intotcpcb(inp);
996 switch (tp->t_state) {
997 case TCPS_TIME_WAIT:
998 /*
999 * A previous connection in TIMEWAIT state is supposed to catch
1000 * stray or duplicate segments arriving late. If this segment
1001 * was a legitimate new connection attempt, the old INPCB gets
1002 * removed and we can try again to find a listening socket.
1003 */
1004 tcp_dooptions(&to, optp, optlen,
1005 (thflags & TH_SYN) ? TO_SYN : 0);
1006 /*
1007 * tcp_twcheck unlocks the inp always, and frees the m if fails.
1008 */
1009 if (tcp_twcheck(inp, &to, th, m, tlen))
1010 goto findpcb;
1011 return (IPPROTO_DONE);
1012 case TCPS_CLOSED:
1013 /*
1014 * The TCPCB may no longer exist if the connection is winding
1015 * down or it is in the CLOSED state. Either way we drop the
1016 * segment and send an appropriate response.
1017 */
1018 rstreason = BANDLIM_RST_CLOSEDPORT;
1019 goto dropwithreset;
1020 }
1021
1022 if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) {
1023 rstreason = BANDLIM_RST_CLOSEDPORT;
1024 goto dropwithreset;
1025 }
1026
1027 #ifdef TCP_OFFLOAD
1028 if (tp->t_flags & TF_TOE) {
1029 tcp_offload_input(tp, m);
1030 m = NULL; /* consumed by the TOE driver */
1031 goto dropunlock;
1032 }
1033 #endif
1034
1035 #ifdef MAC
1036 if (mac_inpcb_check_deliver(inp, m))
1037 goto dropunlock;
1038 #endif
1039 so = inp->inp_socket;
1040 KASSERT(so != NULL, ("%s: so == NULL", __func__));
1041 /*
1042 * When the socket is accepting connections (the INPCB is in LISTEN
1043 * state) we look into the SYN cache if this is a new connection
1044 * attempt or the completion of a previous one.
1045 */
1046 KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so),
1047 ("%s: so accepting but tp %p not listening", __func__, tp));
1048 if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) {
1049 struct in_conninfo inc;
1050
1051 bzero(&inc, sizeof(inc));
1052 #ifdef INET6
1053 if (isipv6) {
1054 inc.inc_flags |= INC_ISIPV6;
1055 if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1056 inc.inc_flags |= INC_IPV6MINMTU;
1057 inc.inc6_faddr = ip6->ip6_src;
1058 inc.inc6_laddr = ip6->ip6_dst;
1059 } else
1060 #endif
1061 {
1062 inc.inc_faddr = ip->ip_src;
1063 inc.inc_laddr = ip->ip_dst;
1064 }
1065 inc.inc_fport = th->th_sport;
1066 inc.inc_lport = th->th_dport;
1067 inc.inc_fibnum = so->so_fibnum;
1068
1069 /*
1070 * Check for an existing connection attempt in syncache if
1071 * the flag is only ACK. A successful lookup creates a new
1072 * socket appended to the listen queue in SYN_RECEIVED state.
1073 */
1074 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1075 /*
1076 * Parse the TCP options here because
1077 * syncookies need access to the reflected
1078 * timestamp.
1079 */
1080 tcp_dooptions(&to, optp, optlen, 0);
1081 /*
1082 * NB: syncache_expand() doesn't unlock inp.
1083 */
1084 rstreason = syncache_expand(&inc, &to, th, &so, m, port);
1085 if (rstreason < 0) {
1086 /*
1087 * A failing TCP MD5 signature comparison
1088 * must result in the segment being dropped
1089 * and must not produce any response back
1090 * to the sender.
1091 */
1092 goto dropunlock;
1093 } else if (rstreason == 0) {
1094 /*
1095 * No syncache entry, or ACK was not for our
1096 * SYN/ACK. Do our protection against double
1097 * ACK. If peer sent us 2 ACKs, then for the
1098 * first one syncache_expand() successfully
1099 * converted syncache entry into a socket,
1100 * while we were waiting on the inpcb lock. We
1101 * don't want to sent RST for the second ACK,
1102 * so we perform second lookup without wildcard
1103 * match, hoping to find the new socket. If
1104 * the ACK is stray indeed, rstreason would
1105 * hint the above code that the lookup was a
1106 * second attempt.
1107 *
1108 * NB: syncache did its own logging
1109 * of the failure cause.
1110 */
1111 INP_WUNLOCK(inp);
1112 rstreason = BANDLIM_RST_OPENPORT;
1113 lookupflag &= ~INPLOOKUP_WILDCARD;
1114 goto findpcb;
1115 }
1116 tfo_socket_result:
1117 if (so == NULL) {
1118 /*
1119 * We completed the 3-way handshake
1120 * but could not allocate a socket
1121 * either due to memory shortage,
1122 * listen queue length limits or
1123 * global socket limits. Send RST
1124 * or wait and have the remote end
1125 * retransmit the ACK for another
1126 * try.
1127 */
1128 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1129 log(LOG_DEBUG, "%s; %s: Listen socket: "
1130 "Socket allocation failed due to "
1131 "limits or memory shortage, %s\n",
1132 s, __func__,
1133 V_tcp_sc_rst_sock_fail ?
1134 "sending RST" : "try again");
1135 if (V_tcp_sc_rst_sock_fail) {
1136 rstreason = BANDLIM_UNLIMITED;
1137 goto dropwithreset;
1138 } else
1139 goto dropunlock;
1140 }
1141 /*
1142 * Socket is created in state SYN_RECEIVED.
1143 * Unlock the listen socket, lock the newly
1144 * created socket and update the tp variable.
1145 * If we came here via jump to tfo_socket_result,
1146 * then listening socket is read-locked.
1147 */
1148 INP_UNLOCK(inp); /* listen socket */
1149 inp = sotoinpcb(so);
1150 /*
1151 * New connection inpcb is already locked by
1152 * syncache_expand().
1153 */
1154 INP_WLOCK_ASSERT(inp);
1155 tp = intotcpcb(inp);
1156 KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1157 ("%s: ", __func__));
1158 /*
1159 * Process the segment and the data it
1160 * contains. tcp_do_segment() consumes
1161 * the mbuf chain and unlocks the inpcb.
1162 */
1163 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1164 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen,
1165 tlen, iptos);
1166 return (IPPROTO_DONE);
1167 }
1168 /*
1169 * Segment flag validation for new connection attempts:
1170 *
1171 * Our (SYN|ACK) response was rejected.
1172 * Check with syncache and remove entry to prevent
1173 * retransmits.
1174 *
1175 * NB: syncache_chkrst does its own logging of failure
1176 * causes.
1177 */
1178 if (thflags & TH_RST) {
1179 syncache_chkrst(&inc, th, m, port);
1180 goto dropunlock;
1181 }
1182 /*
1183 * We can't do anything without SYN.
1184 */
1185 if ((thflags & TH_SYN) == 0) {
1186 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1187 log(LOG_DEBUG, "%s; %s: Listen socket: "
1188 "SYN is missing, segment ignored\n",
1189 s, __func__);
1190 TCPSTAT_INC(tcps_badsyn);
1191 goto dropunlock;
1192 }
1193 /*
1194 * (SYN|ACK) is bogus on a listen socket.
1195 */
1196 if (thflags & TH_ACK) {
1197 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1198 log(LOG_DEBUG, "%s; %s: Listen socket: "
1199 "SYN|ACK invalid, segment rejected\n",
1200 s, __func__);
1201 syncache_badack(&inc, port); /* XXX: Not needed! */
1202 TCPSTAT_INC(tcps_badsyn);
1203 rstreason = BANDLIM_RST_OPENPORT;
1204 goto dropwithreset;
1205 }
1206 /*
1207 * If the drop_synfin option is enabled, drop all
1208 * segments with both the SYN and FIN bits set.
1209 * This prevents e.g. nmap from identifying the
1210 * TCP/IP stack.
1211 * XXX: Poor reasoning. nmap has other methods
1212 * and is constantly refining its stack detection
1213 * strategies.
1214 * XXX: This is a violation of the TCP specification
1215 * and was used by RFC1644.
1216 */
1217 if ((thflags & TH_FIN) && V_drop_synfin) {
1218 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1219 log(LOG_DEBUG, "%s; %s: Listen socket: "
1220 "SYN|FIN segment ignored (based on "
1221 "sysctl setting)\n", s, __func__);
1222 TCPSTAT_INC(tcps_badsyn);
1223 goto dropunlock;
1224 }
1225 /*
1226 * Segment's flags are (SYN) or (SYN|FIN).
1227 *
1228 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1229 * as they do not affect the state of the TCP FSM.
1230 * The data pointed to by TH_URG and th_urp is ignored.
1231 */
1232 KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1233 ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1234 KASSERT(thflags & (TH_SYN),
1235 ("%s: Listen socket: TH_SYN not set", __func__));
1236 INP_RLOCK_ASSERT(inp);
1237 #ifdef INET6
1238 /*
1239 * If deprecated address is forbidden,
1240 * we do not accept SYN to deprecated interface
1241 * address to prevent any new inbound connection from
1242 * getting established.
1243 * When we do not accept SYN, we send a TCP RST,
1244 * with deprecated source address (instead of dropping
1245 * it). We compromise it as it is much better for peer
1246 * to send a RST, and RST will be the final packet
1247 * for the exchange.
1248 *
1249 * If we do not forbid deprecated addresses, we accept
1250 * the SYN packet. RFC2462 does not suggest dropping
1251 * SYN in this case.
1252 * If we decipher RFC2462 5.5.4, it says like this:
1253 * 1. use of deprecated addr with existing
1254 * communication is okay - "SHOULD continue to be
1255 * used"
1256 * 2. use of it with new communication:
1257 * (2a) "SHOULD NOT be used if alternate address
1258 * with sufficient scope is available"
1259 * (2b) nothing mentioned otherwise.
1260 * Here we fall into (2b) case as we have no choice in
1261 * our source address selection - we must obey the peer.
1262 *
1263 * The wording in RFC2462 is confusing, and there are
1264 * multiple description text for deprecated address
1265 * handling - worse, they are not exactly the same.
1266 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1267 */
1268 if (isipv6 && !V_ip6_use_deprecated) {
1269 struct in6_ifaddr *ia6;
1270
1271 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
1272 if (ia6 != NULL &&
1273 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1274 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1275 log(LOG_DEBUG, "%s; %s: Listen socket: "
1276 "Connection attempt to deprecated "
1277 "IPv6 address rejected\n",
1278 s, __func__);
1279 rstreason = BANDLIM_RST_OPENPORT;
1280 goto dropwithreset;
1281 }
1282 }
1283 #endif /* INET6 */
1284 /*
1285 * Basic sanity checks on incoming SYN requests:
1286 * Don't respond if the destination is a link layer
1287 * broadcast according to RFC1122 4.2.3.10, p. 104.
1288 * If it is from this socket it must be forged.
1289 * Don't respond if the source or destination is a
1290 * global or subnet broad- or multicast address.
1291 * Note that it is quite possible to receive unicast
1292 * link-layer packets with a broadcast IP address. Use
1293 * in_broadcast() to find them.
1294 */
1295 if (m->m_flags & (M_BCAST|M_MCAST)) {
1296 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1297 log(LOG_DEBUG, "%s; %s: Listen socket: "
1298 "Connection attempt from broad- or multicast "
1299 "link layer address ignored\n", s, __func__);
1300 goto dropunlock;
1301 }
1302 #ifdef INET6
1303 if (isipv6) {
1304 if (th->th_dport == th->th_sport &&
1305 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1306 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1307 log(LOG_DEBUG, "%s; %s: Listen socket: "
1308 "Connection attempt to/from self "
1309 "ignored\n", s, __func__);
1310 goto dropunlock;
1311 }
1312 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1313 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1314 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1315 log(LOG_DEBUG, "%s; %s: Listen socket: "
1316 "Connection attempt from/to multicast "
1317 "address ignored\n", s, __func__);
1318 goto dropunlock;
1319 }
1320 }
1321 #endif
1322 #if defined(INET) && defined(INET6)
1323 else
1324 #endif
1325 #ifdef INET
1326 {
1327 if (th->th_dport == th->th_sport &&
1328 ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1329 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1330 log(LOG_DEBUG, "%s; %s: Listen socket: "
1331 "Connection attempt from/to self "
1332 "ignored\n", s, __func__);
1333 goto dropunlock;
1334 }
1335 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1336 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1337 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1338 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1339 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1340 log(LOG_DEBUG, "%s; %s: Listen socket: "
1341 "Connection attempt from/to broad- "
1342 "or multicast address ignored\n",
1343 s, __func__);
1344 goto dropunlock;
1345 }
1346 }
1347 #endif
1348 /*
1349 * SYN appears to be valid. Create compressed TCP state
1350 * for syncache.
1351 */
1352 TCP_PROBE3(debug__input, tp, th, m);
1353 tcp_dooptions(&to, optp, optlen, TO_SYN);
1354 if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL,
1355 iptos, port)) != NULL)
1356 goto tfo_socket_result;
1357
1358 /*
1359 * Entry added to syncache and mbuf consumed.
1360 * Only the listen socket is unlocked by syncache_add().
1361 */
1362 return (IPPROTO_DONE);
1363 }
1364 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1365 if (tp->t_flags & TF_SIGNATURE) {
1366 tcp_dooptions(&to, optp, optlen, thflags);
1367 if ((to.to_flags & TOF_SIGNATURE) == 0) {
1368 TCPSTAT_INC(tcps_sig_err_nosigopt);
1369 goto dropunlock;
1370 }
1371 if (!TCPMD5_ENABLED() ||
1372 TCPMD5_INPUT(m, th, to.to_signature) != 0)
1373 goto dropunlock;
1374 }
1375 #endif
1376 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1377
1378 /*
1379 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1380 * state. tcp_do_segment() always consumes the mbuf chain, unlocks
1381 * the inpcb, and unlocks pcbinfo.
1382 *
1383 * XXXGL: in case of a pure SYN arriving on existing connection
1384 * TCP stacks won't need to modify the PCB, they would either drop
1385 * the segment silently, or send a challenge ACK. However, we try
1386 * to upgrade the lock, because calling convention for stacks is
1387 * write-lock on PCB. If upgrade fails, drop the SYN.
1388 */
1389 if ((lookupflag & INPLOOKUP_RLOCKPCB) && INP_TRY_UPGRADE(inp) == 0)
1390 goto dropunlock;
1391
1392 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, tlen, iptos);
1393 return (IPPROTO_DONE);
1394
1395 dropwithreset:
1396 /*
1397 * When blackholing do not respond with a RST but
1398 * completely ignore the segment and drop it.
1399 */
1400 if (((rstreason == BANDLIM_RST_OPENPORT && V_blackhole == 3) ||
1401 (rstreason == BANDLIM_RST_CLOSEDPORT &&
1402 ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole > 1))) &&
1403 (V_blackhole_local || (
1404 #ifdef INET6
1405 isipv6 ? !in6_localaddr(&ip6->ip6_src) :
1406 #endif
1407 #ifdef INET
1408 !in_localip(ip->ip_src)
1409 #else
1410 true
1411 #endif
1412 )))
1413 goto dropunlock;
1414 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1415 tcp_dropwithreset(m, th, tp, tlen, rstreason);
1416 m = NULL; /* mbuf chain got consumed. */
1417
1418 dropunlock:
1419 if (m != NULL)
1420 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1421
1422 if (inp != NULL)
1423 INP_UNLOCK(inp);
1424
1425 drop:
1426 if (s != NULL)
1427 free(s, M_TCPLOG);
1428 if (m != NULL)
1429 m_freem(m);
1430 return (IPPROTO_DONE);
1431 }
1432
1433 /*
1434 * Automatic sizing of receive socket buffer. Often the send
1435 * buffer size is not optimally adjusted to the actual network
1436 * conditions at hand (delay bandwidth product). Setting the
1437 * buffer size too small limits throughput on links with high
1438 * bandwidth and high delay (eg. trans-continental/oceanic links).
1439 *
1440 * On the receive side the socket buffer memory is only rarely
1441 * used to any significant extent. This allows us to be much
1442 * more aggressive in scaling the receive socket buffer. For
1443 * the case that the buffer space is actually used to a large
1444 * extent and we run out of kernel memory we can simply drop
1445 * the new segments; TCP on the sender will just retransmit it
1446 * later. Setting the buffer size too big may only consume too
1447 * much kernel memory if the application doesn't read() from
1448 * the socket or packet loss or reordering makes use of the
1449 * reassembly queue.
1450 *
1451 * The criteria to step up the receive buffer one notch are:
1452 * 1. Application has not set receive buffer size with
1453 * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1454 * 2. the number of bytes received during 1/2 of an sRTT
1455 * is at least 3/8 of the current socket buffer size.
1456 * 3. receive buffer size has not hit maximal automatic size;
1457 *
1458 * If all of the criteria are met we increaset the socket buffer
1459 * by a 1/2 (bounded by the max). This allows us to keep ahead
1460 * of slow-start but also makes it so our peer never gets limited
1461 * by our rwnd which we then open up causing a burst.
1462 *
1463 * This algorithm does two steps per RTT at most and only if
1464 * we receive a bulk stream w/o packet losses or reorderings.
1465 * Shrinking the buffer during idle times is not necessary as
1466 * it doesn't consume any memory when idle.
1467 *
1468 * TODO: Only step up if the application is actually serving
1469 * the buffer to better manage the socket buffer resources.
1470 */
1471 int
tcp_autorcvbuf(struct mbuf * m,struct tcphdr * th,struct socket * so,struct tcpcb * tp,int tlen)1472 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1473 struct tcpcb *tp, int tlen)
1474 {
1475 int newsize = 0;
1476
1477 if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1478 tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1479 TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1480 ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1481 if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1482 so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1483 newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1484 }
1485 TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1486
1487 /* Start over with next RTT. */
1488 tp->rfbuf_ts = 0;
1489 tp->rfbuf_cnt = 0;
1490 } else {
1491 tp->rfbuf_cnt += tlen; /* add up */
1492 }
1493 return (newsize);
1494 }
1495
1496 int
tcp_input(struct mbuf ** mp,int * offp,int proto)1497 tcp_input(struct mbuf **mp, int *offp, int proto)
1498 {
1499 return(tcp_input_with_port(mp, offp, proto, 0));
1500 }
1501
1502 static void
tcp_handle_wakeup(struct tcpcb * tp)1503 tcp_handle_wakeup(struct tcpcb *tp)
1504 {
1505
1506 INP_WLOCK_ASSERT(tptoinpcb(tp));
1507
1508 if (tp->t_flags & TF_WAKESOR) {
1509 struct socket *so = tptosocket(tp);
1510
1511 tp->t_flags &= ~TF_WAKESOR;
1512 SOCK_RECVBUF_LOCK_ASSERT(so);
1513 sorwakeup_locked(so);
1514 }
1515 }
1516
1517 void
tcp_do_segment(struct tcpcb * tp,struct mbuf * m,struct tcphdr * th,int drop_hdrlen,int tlen,uint8_t iptos)1518 tcp_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
1519 int drop_hdrlen, int tlen, uint8_t iptos)
1520 {
1521 uint16_t thflags;
1522 int acked, ourfinisacked, needoutput = 0;
1523 sackstatus_t sack_changed;
1524 int rstreason, todrop, win, incforsyn = 0;
1525 uint32_t tiwin;
1526 uint16_t nsegs;
1527 char *s;
1528 struct inpcb *inp = tptoinpcb(tp);
1529 struct socket *so = tptosocket(tp);
1530 struct in_conninfo *inc = &inp->inp_inc;
1531 struct mbuf *mfree;
1532 struct tcpopt to;
1533 int tfo_syn;
1534 u_int maxseg = 0;
1535
1536 thflags = tcp_get_flags(th);
1537 tp->sackhint.last_sack_ack = 0;
1538 sack_changed = SACK_NOCHANGE;
1539 nsegs = max(1, m->m_pkthdr.lro_nsegs);
1540
1541 NET_EPOCH_ASSERT();
1542 INP_WLOCK_ASSERT(inp);
1543 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1544 __func__));
1545 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1546 __func__));
1547
1548 #ifdef TCPPCAP
1549 /* Save segment, if requested. */
1550 tcp_pcap_add(th, m, &(tp->t_inpkts));
1551 #endif
1552 TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1553 tlen, NULL, true);
1554
1555 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1556 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1557 log(LOG_DEBUG, "%s; %s: "
1558 "SYN|FIN segment ignored (based on "
1559 "sysctl setting)\n", s, __func__);
1560 free(s, M_TCPLOG);
1561 }
1562 goto drop;
1563 }
1564
1565 /*
1566 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1567 * check SEQ.ACK first.
1568 */
1569 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1570 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1571 rstreason = BANDLIM_UNLIMITED;
1572 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1573 goto dropwithreset;
1574 }
1575
1576 /*
1577 * Segment received on connection.
1578 * Reset idle time and keep-alive timer.
1579 * XXX: This should be done after segment
1580 * validation to ignore broken/spoofed segs.
1581 */
1582 if (tp->t_idle_reduce &&
1583 (tp->snd_max == tp->snd_una) &&
1584 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
1585 cc_after_idle(tp);
1586 tp->t_rcvtime = ticks;
1587
1588 if (thflags & TH_FIN)
1589 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
1590 /*
1591 * Scale up the window into a 32-bit value.
1592 * For the SYN_SENT state the scale is zero.
1593 */
1594 tiwin = th->th_win << tp->snd_scale;
1595 #ifdef STATS
1596 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1597 #endif
1598
1599 /*
1600 * TCP ECN processing.
1601 */
1602 if (tcp_ecn_input_segment(tp, thflags, tlen,
1603 tcp_packets_this_ack(tp, th->th_ack),
1604 iptos))
1605 cc_cong_signal(tp, th, CC_ECN);
1606
1607 /*
1608 * Parse options on any incoming segment.
1609 */
1610 tcp_dooptions(&to, (u_char *)(th + 1),
1611 (th->th_off << 2) - sizeof(struct tcphdr),
1612 (thflags & TH_SYN) ? TO_SYN : 0);
1613 if (tp->t_flags2 & TF2_PROC_SACK_PROHIBIT) {
1614 /*
1615 * We don't look at sack's from the
1616 * peer because the MSS is too small which
1617 * can subject us to an attack.
1618 */
1619 to.to_flags &= ~TOF_SACK;
1620 }
1621 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1622 if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1623 (to.to_flags & TOF_SIGNATURE) == 0) {
1624 TCPSTAT_INC(tcps_sig_err_sigopt);
1625 /* XXX: should drop? */
1626 }
1627 #endif
1628 /*
1629 * If echoed timestamp is later than the current time,
1630 * fall back to non RFC1323 RTT calculation. Normalize
1631 * timestamp if syncookies were used when this connection
1632 * was established.
1633 */
1634 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1635 to.to_tsecr -= tp->ts_offset;
1636 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) {
1637 to.to_tsecr = 0;
1638 } else if (tp->t_rxtshift == 1 &&
1639 tp->t_flags & TF_PREVVALID &&
1640 tp->t_badrxtwin != 0 &&
1641 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) {
1642 cc_cong_signal(tp, th, CC_RTO_ERR);
1643 }
1644 }
1645 /*
1646 * Process options only when we get SYN/ACK back. The SYN case
1647 * for incoming connections is handled in tcp_syncache.
1648 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1649 * or <SYN,ACK>) segment itself is never scaled.
1650 * XXX this is traditional behavior, may need to be cleaned up.
1651 */
1652 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1653 /* Handle parallel SYN for ECN */
1654 tcp_ecn_input_parallel_syn(tp, thflags, iptos);
1655 if ((to.to_flags & TOF_SCALE) &&
1656 (tp->t_flags & TF_REQ_SCALE) &&
1657 !(tp->t_flags & TF_NOOPT)) {
1658 tp->t_flags |= TF_RCVD_SCALE;
1659 tp->snd_scale = to.to_wscale;
1660 } else {
1661 tp->t_flags &= ~TF_REQ_SCALE;
1662 }
1663 /*
1664 * Initial send window. It will be updated with
1665 * the next incoming segment to the scaled value.
1666 */
1667 tp->snd_wnd = th->th_win;
1668 if ((to.to_flags & TOF_TS) &&
1669 (tp->t_flags & TF_REQ_TSTMP) &&
1670 !(tp->t_flags & TF_NOOPT)) {
1671 tp->t_flags |= TF_RCVD_TSTMP;
1672 tp->ts_recent = to.to_tsval;
1673 tp->ts_recent_age = tcp_ts_getticks();
1674 } else {
1675 tp->t_flags &= ~TF_REQ_TSTMP;
1676 }
1677 if (to.to_flags & TOF_MSS) {
1678 tcp_mss(tp, to.to_mss);
1679 }
1680 if ((tp->t_flags & TF_SACK_PERMIT) &&
1681 (!(to.to_flags & TOF_SACKPERM) ||
1682 (tp->t_flags & TF_NOOPT))) {
1683 tp->t_flags &= ~TF_SACK_PERMIT;
1684 }
1685 if (tp->t_flags & TF_FASTOPEN) {
1686 if ((to.to_flags & TOF_FASTOPEN) &&
1687 !(tp->t_flags & TF_NOOPT)) {
1688 uint16_t mss;
1689
1690 if (to.to_flags & TOF_MSS) {
1691 mss = to.to_mss;
1692 } else {
1693 if ((inp->inp_vflag & INP_IPV6) != 0) {
1694 mss = TCP6_MSS;
1695 } else {
1696 mss = TCP_MSS;
1697 }
1698 }
1699 tcp_fastopen_update_cache(tp, mss,
1700 to.to_tfo_len, to.to_tfo_cookie);
1701 } else {
1702 tcp_fastopen_disable_path(tp);
1703 }
1704 }
1705 }
1706
1707 /*
1708 * If timestamps were negotiated during SYN/ACK and a
1709 * segment without a timestamp is received, silently drop
1710 * the segment, unless it is a RST segment or missing timestamps are
1711 * tolerated.
1712 * See section 3.2 of RFC 7323.
1713 */
1714 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1715 if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) {
1716 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1717 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1718 "segment processed normally\n",
1719 s, __func__);
1720 free(s, M_TCPLOG);
1721 }
1722 } else {
1723 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1724 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1725 "segment silently dropped\n", s, __func__);
1726 free(s, M_TCPLOG);
1727 }
1728 goto drop;
1729 }
1730 }
1731 /*
1732 * If timestamps were not negotiated during SYN/ACK and a
1733 * segment with a timestamp is received, ignore the
1734 * timestamp and process the packet normally.
1735 * See section 3.2 of RFC 7323.
1736 */
1737 if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1738 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1739 log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1740 "segment processed normally\n", s, __func__);
1741 free(s, M_TCPLOG);
1742 }
1743 }
1744
1745 /*
1746 * Header prediction: check for the two common cases
1747 * of a uni-directional data xfer. If the packet has
1748 * no control flags, is in-sequence, the window didn't
1749 * change and we're not retransmitting, it's a
1750 * candidate. If the length is zero and the ack moved
1751 * forward, we're the sender side of the xfer. Just
1752 * free the data acked & wake any higher level process
1753 * that was blocked waiting for space. If the length
1754 * is non-zero and the ack didn't move, we're the
1755 * receiver side. If we're getting packets in-order
1756 * (the reassembly queue is empty), add the data to
1757 * the socket buffer and note that we need a delayed ack.
1758 * Make sure that the hidden state-flags are also off.
1759 * Since we check for TCPS_ESTABLISHED first, it can only
1760 * be TH_NEEDSYN.
1761 */
1762 if (tp->t_state == TCPS_ESTABLISHED &&
1763 th->th_seq == tp->rcv_nxt &&
1764 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1765 tp->snd_nxt == tp->snd_max &&
1766 tiwin && tiwin == tp->snd_wnd &&
1767 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1768 SEGQ_EMPTY(tp) &&
1769 ((to.to_flags & TOF_TS) == 0 ||
1770 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1771 /*
1772 * If last ACK falls within this segment's sequence numbers,
1773 * record the timestamp.
1774 * NOTE that the test is modified according to the latest
1775 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1776 */
1777 if ((to.to_flags & TOF_TS) != 0 &&
1778 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1779 tp->ts_recent_age = tcp_ts_getticks();
1780 tp->ts_recent = to.to_tsval;
1781 }
1782
1783 if (tlen == 0) {
1784 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1785 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1786 !IN_RECOVERY(tp->t_flags) &&
1787 (to.to_flags & TOF_SACK) == 0 &&
1788 TAILQ_EMPTY(&tp->snd_holes)) {
1789 /*
1790 * This is a pure ack for outstanding data.
1791 */
1792 TCPSTAT_INC(tcps_predack);
1793
1794 /*
1795 * "bad retransmit" recovery without timestamps.
1796 */
1797 if ((to.to_flags & TOF_TS) == 0 &&
1798 tp->t_rxtshift == 1 &&
1799 tp->t_flags & TF_PREVVALID &&
1800 tp->t_badrxtwin != 0 &&
1801 TSTMP_LT(ticks, tp->t_badrxtwin)) {
1802 cc_cong_signal(tp, th, CC_RTO_ERR);
1803 }
1804
1805 /*
1806 * Recalculate the transmit timer / rtt.
1807 *
1808 * Some boxes send broken timestamp replies
1809 * during the SYN+ACK phase, ignore
1810 * timestamps of 0 or we could calculate a
1811 * huge RTT and blow up the retransmit timer.
1812 */
1813 if ((to.to_flags & TOF_TS) != 0 &&
1814 to.to_tsecr) {
1815 uint32_t t;
1816
1817 t = tcp_ts_getticks() - to.to_tsecr;
1818 if (!tp->t_rttlow || tp->t_rttlow > t)
1819 tp->t_rttlow = t;
1820 tcp_xmit_timer(tp,
1821 TCP_TS_TO_TICKS(t) + 1);
1822 } else if (tp->t_rtttime &&
1823 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1824 if (!tp->t_rttlow ||
1825 tp->t_rttlow > ticks - tp->t_rtttime)
1826 tp->t_rttlow = ticks - tp->t_rtttime;
1827 tcp_xmit_timer(tp,
1828 ticks - tp->t_rtttime);
1829 }
1830 acked = BYTES_THIS_ACK(tp, th);
1831
1832 #ifdef TCP_HHOOK
1833 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1834 hhook_run_tcp_est_in(tp, th, &to);
1835 #endif
1836
1837 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1838 TCPSTAT_ADD(tcps_rcvackbyte, acked);
1839 sbdrop(&so->so_snd, acked);
1840 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1841 SEQ_LEQ(th->th_ack, tp->snd_recover))
1842 tp->snd_recover = th->th_ack - 1;
1843
1844 /*
1845 * Let the congestion control algorithm update
1846 * congestion control related information. This
1847 * typically means increasing the congestion
1848 * window.
1849 */
1850 cc_ack_received(tp, th, nsegs, CC_ACK);
1851
1852 tp->snd_una = th->th_ack;
1853 /*
1854 * Pull snd_wl2 up to prevent seq wrap relative
1855 * to th_ack.
1856 */
1857 tp->snd_wl2 = th->th_ack;
1858 tp->t_dupacks = 0;
1859 m_freem(m);
1860
1861 /*
1862 * If all outstanding data are acked, stop
1863 * retransmit timer, otherwise restart timer
1864 * using current (possibly backed-off) value.
1865 * If process is waiting for space,
1866 * wakeup/selwakeup/signal. If data
1867 * are ready to send, let tcp_output
1868 * decide between more output or persist.
1869 */
1870 TCP_PROBE3(debug__input, tp, th, m);
1871 /*
1872 * Clear t_acktime if remote side has ACKd
1873 * all data in the socket buffer.
1874 * Otherwise, update t_acktime if we received
1875 * a sufficiently large ACK.
1876 */
1877 if (sbavail(&so->so_snd) == 0)
1878 tp->t_acktime = 0;
1879 else if (acked > 1)
1880 tp->t_acktime = ticks;
1881 if (tp->snd_una == tp->snd_max)
1882 tcp_timer_activate(tp, TT_REXMT, 0);
1883 else if (!tcp_timer_active(tp, TT_PERSIST))
1884 tcp_timer_activate(tp, TT_REXMT,
1885 TP_RXTCUR(tp));
1886 sowwakeup(so);
1887 /*
1888 * Only call tcp_output when there
1889 * is new data available to be sent
1890 * or we need to send an ACK.
1891 */
1892 if ((tp->t_flags & TF_ACKNOW) ||
1893 (sbavail(&so->so_snd) >=
1894 SEQ_SUB(tp->snd_max, tp->snd_una))) {
1895 (void) tcp_output(tp);
1896 }
1897 goto check_delack;
1898 }
1899 } else if (th->th_ack == tp->snd_una &&
1900 tlen <= sbspace(&so->so_rcv)) {
1901 int newsize = 0; /* automatic sockbuf scaling */
1902
1903 /*
1904 * This is a pure, in-sequence data packet with
1905 * nothing on the reassembly queue and we have enough
1906 * buffer space to take it.
1907 */
1908 /* Clean receiver SACK report if present */
1909 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1910 tcp_clean_sackreport(tp);
1911 TCPSTAT_INC(tcps_preddat);
1912 tp->rcv_nxt += tlen;
1913 if (tlen &&
1914 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
1915 (tp->t_fbyte_in == 0)) {
1916 tp->t_fbyte_in = ticks;
1917 if (tp->t_fbyte_in == 0)
1918 tp->t_fbyte_in = 1;
1919 if (tp->t_fbyte_out && tp->t_fbyte_in)
1920 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
1921 }
1922 /*
1923 * Pull snd_wl1 up to prevent seq wrap relative to
1924 * th_seq.
1925 */
1926 tp->snd_wl1 = th->th_seq;
1927 /*
1928 * Pull rcv_up up to prevent seq wrap relative to
1929 * rcv_nxt.
1930 */
1931 tp->rcv_up = tp->rcv_nxt;
1932 TCPSTAT_ADD(tcps_rcvpack, nsegs);
1933 TCPSTAT_ADD(tcps_rcvbyte, tlen);
1934 TCP_PROBE3(debug__input, tp, th, m);
1935
1936 newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1937
1938 /* Add data to socket buffer. */
1939 SOCK_RECVBUF_LOCK(so);
1940 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1941 m_freem(m);
1942 } else {
1943 /*
1944 * Set new socket buffer size.
1945 * Give up when limit is reached.
1946 */
1947 if (newsize)
1948 if (!sbreserve_locked(so, SO_RCV,
1949 newsize, NULL))
1950 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1951 m_adj(m, drop_hdrlen); /* delayed header drop */
1952 sbappendstream_locked(&so->so_rcv, m, 0);
1953 }
1954 /* NB: sorwakeup_locked() does an implicit unlock. */
1955 sorwakeup_locked(so);
1956 if (DELAY_ACK(tp, tlen)) {
1957 tp->t_flags |= TF_DELACK;
1958 } else {
1959 tp->t_flags |= TF_ACKNOW;
1960 (void) tcp_output(tp);
1961 }
1962 goto check_delack;
1963 }
1964 }
1965
1966 /*
1967 * Calculate amount of space in receive window,
1968 * and then do TCP input processing.
1969 * Receive window is amount of space in rcv queue,
1970 * but not less than advertised window.
1971 */
1972 win = sbspace(&so->so_rcv);
1973 if (win < 0)
1974 win = 0;
1975 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1976
1977 switch (tp->t_state) {
1978 /*
1979 * If the state is SYN_RECEIVED:
1980 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1981 */
1982 case TCPS_SYN_RECEIVED:
1983 if (thflags & TH_RST) {
1984 /* Handle RST segments later. */
1985 break;
1986 }
1987 if ((thflags & TH_ACK) &&
1988 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1989 SEQ_GT(th->th_ack, tp->snd_max))) {
1990 rstreason = BANDLIM_RST_OPENPORT;
1991 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1992 goto dropwithreset;
1993 }
1994 if (tp->t_flags & TF_FASTOPEN) {
1995 /*
1996 * When a TFO connection is in SYN_RECEIVED, the
1997 * only valid packets are the initial SYN, a
1998 * retransmit/copy of the initial SYN (possibly with
1999 * a subset of the original data), a valid ACK, a
2000 * FIN, or a RST.
2001 */
2002 if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
2003 rstreason = BANDLIM_RST_OPENPORT;
2004 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2005 goto dropwithreset;
2006 } else if (thflags & TH_SYN) {
2007 /* non-initial SYN is ignored */
2008 if ((tcp_timer_active(tp, TT_DELACK) ||
2009 tcp_timer_active(tp, TT_REXMT)))
2010 goto drop;
2011 } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
2012 goto drop;
2013 }
2014 }
2015 break;
2016
2017 /*
2018 * If the state is SYN_SENT:
2019 * if seg contains a RST with valid ACK (SEQ.ACK has already
2020 * been verified), then drop the connection.
2021 * if seg contains a RST without an ACK, drop the seg.
2022 * if seg does not contain SYN, then drop the seg.
2023 * Otherwise this is an acceptable SYN segment
2024 * initialize tp->rcv_nxt and tp->irs
2025 * if seg contains ack then advance tp->snd_una
2026 * if seg contains an ECE and ECN support is enabled, the stream
2027 * is ECN capable.
2028 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2029 * arrange for segment to be acked (eventually)
2030 * continue processing rest of data/controls, beginning with URG
2031 */
2032 case TCPS_SYN_SENT:
2033 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2034 TCP_PROBE5(connect__refused, NULL, tp,
2035 m, tp, th);
2036 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2037 tp = tcp_drop(tp, ECONNREFUSED);
2038 }
2039 if (thflags & TH_RST)
2040 goto drop;
2041 if (!(thflags & TH_SYN))
2042 goto drop;
2043
2044 tp->irs = th->th_seq;
2045 tcp_rcvseqinit(tp);
2046 if (thflags & TH_ACK) {
2047 int tfo_partial_ack = 0;
2048
2049 TCPSTAT_INC(tcps_connects);
2050 soisconnected(so);
2051 #ifdef MAC
2052 mac_socketpeer_set_from_mbuf(m, so);
2053 #endif
2054 /* Do window scaling on this connection? */
2055 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2056 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2057 tp->rcv_scale = tp->request_r_scale;
2058 }
2059 tp->rcv_adv += min(tp->rcv_wnd,
2060 TCP_MAXWIN << tp->rcv_scale);
2061 tp->snd_una++; /* SYN is acked */
2062 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2063 tp->snd_nxt = tp->snd_una;
2064 /*
2065 * If not all the data that was sent in the TFO SYN
2066 * has been acked, resend the remainder right away.
2067 */
2068 if ((tp->t_flags & TF_FASTOPEN) &&
2069 (tp->snd_una != tp->snd_max)) {
2070 tp->snd_nxt = th->th_ack;
2071 tfo_partial_ack = 1;
2072 }
2073 /*
2074 * If there's data, delay ACK; if there's also a FIN
2075 * ACKNOW will be turned on later.
2076 */
2077 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2078 tcp_timer_activate(tp, TT_DELACK,
2079 tcp_delacktime);
2080 else
2081 tp->t_flags |= TF_ACKNOW;
2082
2083 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2084
2085 /*
2086 * Received <SYN,ACK> in SYN_SENT[*] state.
2087 * Transitions:
2088 * SYN_SENT --> ESTABLISHED
2089 * SYN_SENT* --> FIN_WAIT_1
2090 */
2091 tp->t_starttime = ticks;
2092 if (tp->t_flags & TF_NEEDFIN) {
2093 tp->t_acktime = ticks;
2094 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2095 tp->t_flags &= ~TF_NEEDFIN;
2096 thflags &= ~TH_SYN;
2097 } else {
2098 tcp_state_change(tp, TCPS_ESTABLISHED);
2099 TCP_PROBE5(connect__established, NULL, tp,
2100 m, tp, th);
2101 cc_conn_init(tp);
2102 tcp_timer_activate(tp, TT_KEEP,
2103 TP_KEEPIDLE(tp));
2104 }
2105 } else {
2106 /*
2107 * Received initial SYN in SYN-SENT[*] state =>
2108 * simultaneous open.
2109 * If it succeeds, connection is * half-synchronized.
2110 * Otherwise, do 3-way handshake:
2111 * SYN-SENT -> SYN-RECEIVED
2112 * SYN-SENT* -> SYN-RECEIVED*
2113 */
2114 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
2115 tcp_timer_activate(tp, TT_REXMT, 0);
2116 tcp_state_change(tp, TCPS_SYN_RECEIVED);
2117 }
2118
2119 /*
2120 * Advance th->th_seq to correspond to first data byte.
2121 * If data, trim to stay within window,
2122 * dropping FIN if necessary.
2123 */
2124 th->th_seq++;
2125 if (tlen > tp->rcv_wnd) {
2126 todrop = tlen - tp->rcv_wnd;
2127 m_adj(m, -todrop);
2128 tlen = tp->rcv_wnd;
2129 thflags &= ~TH_FIN;
2130 TCPSTAT_INC(tcps_rcvpackafterwin);
2131 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2132 }
2133 tp->snd_wl1 = th->th_seq - 1;
2134 tp->rcv_up = th->th_seq;
2135 /*
2136 * Client side of transaction: already sent SYN and data.
2137 * If the remote host used T/TCP to validate the SYN,
2138 * our data will be ACK'd; if so, enter normal data segment
2139 * processing in the middle of step 5, ack processing.
2140 * Otherwise, goto step 6.
2141 */
2142 if (thflags & TH_ACK)
2143 goto process_ACK;
2144
2145 goto step6;
2146 }
2147
2148 /*
2149 * States other than LISTEN or SYN_SENT.
2150 * First check the RST flag and sequence number since reset segments
2151 * are exempt from the timestamp and connection count tests. This
2152 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2153 * below which allowed reset segments in half the sequence space
2154 * to fall though and be processed (which gives forged reset
2155 * segments with a random sequence number a 50 percent chance of
2156 * killing a connection).
2157 * Then check timestamp, if present.
2158 * Then check the connection count, if present.
2159 * Then check that at least some bytes of segment are within
2160 * receive window. If segment begins before rcv_nxt,
2161 * drop leading data (and SYN); if nothing left, just ack.
2162 */
2163 if (thflags & TH_RST) {
2164 /*
2165 * RFC5961 Section 3.2
2166 *
2167 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2168 * - If RST is in window, we send challenge ACK.
2169 *
2170 * Note: to take into account delayed ACKs, we should
2171 * test against last_ack_sent instead of rcv_nxt.
2172 * Note 2: we handle special case of closed window, not
2173 * covered by the RFC.
2174 */
2175 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2176 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2177 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2178 KASSERT(tp->t_state != TCPS_SYN_SENT,
2179 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2180 __func__, th, tp));
2181
2182 if (V_tcp_insecure_rst ||
2183 tp->last_ack_sent == th->th_seq) {
2184 TCPSTAT_INC(tcps_drops);
2185 /* Drop the connection. */
2186 switch (tp->t_state) {
2187 case TCPS_SYN_RECEIVED:
2188 so->so_error = ECONNREFUSED;
2189 goto close;
2190 case TCPS_ESTABLISHED:
2191 case TCPS_FIN_WAIT_1:
2192 case TCPS_FIN_WAIT_2:
2193 case TCPS_CLOSE_WAIT:
2194 case TCPS_CLOSING:
2195 case TCPS_LAST_ACK:
2196 so->so_error = ECONNRESET;
2197 close:
2198 /* FALLTHROUGH */
2199 default:
2200 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
2201 tp = tcp_close(tp);
2202 }
2203 } else {
2204 TCPSTAT_INC(tcps_badrst);
2205 tcp_send_challenge_ack(tp, th, m);
2206 m = NULL;
2207 }
2208 }
2209 goto drop;
2210 }
2211
2212 /*
2213 * RFC5961 Section 4.2
2214 * Send challenge ACK for any SYN in synchronized state.
2215 */
2216 if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2217 tp->t_state != TCPS_SYN_RECEIVED) {
2218 TCPSTAT_INC(tcps_badsyn);
2219 if (V_tcp_insecure_syn &&
2220 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2221 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2222 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2223 tp = tcp_drop(tp, ECONNRESET);
2224 rstreason = BANDLIM_UNLIMITED;
2225 } else {
2226 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2227 tcp_send_challenge_ack(tp, th, m);
2228 m = NULL;
2229 }
2230 goto drop;
2231 }
2232
2233 /*
2234 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2235 * and it's less than ts_recent, drop it.
2236 */
2237 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2238 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2239 /* Check to see if ts_recent is over 24 days old. */
2240 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2241 /*
2242 * Invalidate ts_recent. If this segment updates
2243 * ts_recent, the age will be reset later and ts_recent
2244 * will get a valid value. If it does not, setting
2245 * ts_recent to zero will at least satisfy the
2246 * requirement that zero be placed in the timestamp
2247 * echo reply when ts_recent isn't valid. The
2248 * age isn't reset until we get a valid ts_recent
2249 * because we don't want out-of-order segments to be
2250 * dropped when ts_recent is old.
2251 */
2252 tp->ts_recent = 0;
2253 } else {
2254 TCPSTAT_INC(tcps_rcvduppack);
2255 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2256 TCPSTAT_INC(tcps_pawsdrop);
2257 if (tlen)
2258 goto dropafterack;
2259 goto drop;
2260 }
2261 }
2262
2263 /*
2264 * In the SYN-RECEIVED state, validate that the packet belongs to
2265 * this connection before trimming the data to fit the receive
2266 * window. Check the sequence number versus IRS since we know
2267 * the sequence numbers haven't wrapped. This is a partial fix
2268 * for the "LAND" DoS attack.
2269 */
2270 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2271 rstreason = BANDLIM_RST_OPENPORT;
2272 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2273 goto dropwithreset;
2274 }
2275
2276 todrop = tp->rcv_nxt - th->th_seq;
2277 if (todrop > 0) {
2278 if (thflags & TH_SYN) {
2279 thflags &= ~TH_SYN;
2280 th->th_seq++;
2281 if (th->th_urp > 1)
2282 th->th_urp--;
2283 else
2284 thflags &= ~TH_URG;
2285 todrop--;
2286 }
2287 /*
2288 * Following if statement from Stevens, vol. 2, p. 960.
2289 */
2290 if (todrop > tlen
2291 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2292 /*
2293 * Any valid FIN must be to the left of the window.
2294 * At this point the FIN must be a duplicate or out
2295 * of sequence; drop it.
2296 */
2297 thflags &= ~TH_FIN;
2298
2299 /*
2300 * Send an ACK to resynchronize and drop any data.
2301 * But keep on processing for RST or ACK.
2302 */
2303 tp->t_flags |= TF_ACKNOW;
2304 todrop = tlen;
2305 TCPSTAT_INC(tcps_rcvduppack);
2306 TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2307 } else {
2308 TCPSTAT_INC(tcps_rcvpartduppack);
2309 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2310 }
2311 /*
2312 * DSACK - add SACK block for dropped range
2313 */
2314 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2315 tcp_update_sack_list(tp, th->th_seq,
2316 th->th_seq + todrop);
2317 /*
2318 * ACK now, as the next in-sequence segment
2319 * will clear the DSACK block again
2320 */
2321 tp->t_flags |= TF_ACKNOW;
2322 }
2323 drop_hdrlen += todrop; /* drop from the top afterwards */
2324 th->th_seq += todrop;
2325 tlen -= todrop;
2326 if (th->th_urp > todrop)
2327 th->th_urp -= todrop;
2328 else {
2329 thflags &= ~TH_URG;
2330 th->th_urp = 0;
2331 }
2332 }
2333
2334 /*
2335 * If new data are received on a connection after the
2336 * user processes are gone, then RST the other end if
2337 * no FIN has been processed.
2338 */
2339 if ((tp->t_flags & TF_CLOSED) && tlen > 0 &&
2340 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2341 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2342 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2343 "after socket was closed, "
2344 "sending RST and removing tcpcb\n",
2345 s, __func__, tcpstates[tp->t_state], tlen);
2346 free(s, M_TCPLOG);
2347 }
2348 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
2349 /* tcp_close will kill the inp pre-log the Reset */
2350 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2351 tp = tcp_close(tp);
2352 TCPSTAT_INC(tcps_rcvafterclose);
2353 rstreason = BANDLIM_UNLIMITED;
2354 goto dropwithreset;
2355 }
2356
2357 /*
2358 * If segment ends after window, drop trailing data
2359 * (and PUSH and FIN); if nothing left, just ACK.
2360 */
2361 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2362 if (todrop > 0) {
2363 TCPSTAT_INC(tcps_rcvpackafterwin);
2364 if (todrop >= tlen) {
2365 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2366 /*
2367 * If window is closed can only take segments at
2368 * window edge, and have to drop data and PUSH from
2369 * incoming segments. Continue processing, but
2370 * remember to ack. Otherwise, drop segment
2371 * and ack.
2372 */
2373 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2374 tp->t_flags |= TF_ACKNOW;
2375 TCPSTAT_INC(tcps_rcvwinprobe);
2376 } else
2377 goto dropafterack;
2378 } else
2379 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2380 m_adj(m, -todrop);
2381 tlen -= todrop;
2382 thflags &= ~(TH_PUSH|TH_FIN);
2383 }
2384
2385 /*
2386 * If last ACK falls within this segment's sequence numbers,
2387 * record its timestamp.
2388 * NOTE:
2389 * 1) That the test incorporates suggestions from the latest
2390 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2391 * 2) That updating only on newer timestamps interferes with
2392 * our earlier PAWS tests, so this check should be solely
2393 * predicated on the sequence space of this segment.
2394 * 3) That we modify the segment boundary check to be
2395 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2396 * instead of RFC1323's
2397 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2398 * This modified check allows us to overcome RFC1323's
2399 * limitations as described in Stevens TCP/IP Illustrated
2400 * Vol. 2 p.869. In such cases, we can still calculate the
2401 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2402 */
2403 if ((to.to_flags & TOF_TS) != 0 &&
2404 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2405 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2406 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
2407 tp->ts_recent_age = tcp_ts_getticks();
2408 tp->ts_recent = to.to_tsval;
2409 }
2410
2411 /*
2412 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
2413 * flag is on (half-synchronized state), then queue data for
2414 * later processing; else drop segment and return.
2415 */
2416 if ((thflags & TH_ACK) == 0) {
2417 if (tp->t_state == TCPS_SYN_RECEIVED ||
2418 (tp->t_flags & TF_NEEDSYN)) {
2419 if (tp->t_state == TCPS_SYN_RECEIVED &&
2420 (tp->t_flags & TF_FASTOPEN)) {
2421 tp->snd_wnd = tiwin;
2422 cc_conn_init(tp);
2423 }
2424 goto step6;
2425 } else if (tp->t_flags & TF_ACKNOW)
2426 goto dropafterack;
2427 else
2428 goto drop;
2429 }
2430
2431 /*
2432 * Ack processing.
2433 */
2434 if (SEQ_GEQ(tp->snd_una, tp->iss + (TCP_MAXWIN << tp->snd_scale))) {
2435 /* Checking SEG.ACK against ISS is definitely redundant. */
2436 tp->t_flags2 |= TF2_NO_ISS_CHECK;
2437 }
2438 if (!V_tcp_insecure_ack) {
2439 tcp_seq seq_min;
2440 bool ghost_ack_check;
2441
2442 if (tp->t_flags2 & TF2_NO_ISS_CHECK) {
2443 /* Check for too old ACKs (RFC 5961, Section 5.2). */
2444 seq_min = tp->snd_una - tp->max_sndwnd;
2445 ghost_ack_check = false;
2446 } else {
2447 if (SEQ_GT(tp->iss + 1, tp->snd_una - tp->max_sndwnd)) {
2448 /* Checking for ghost ACKs is stricter. */
2449 seq_min = tp->iss + 1;
2450 ghost_ack_check = true;
2451 } else {
2452 /*
2453 * Checking for too old ACKs (RFC 5961,
2454 * Section 5.2) is stricter.
2455 */
2456 seq_min = tp->snd_una - tp->max_sndwnd;
2457 ghost_ack_check = false;
2458 }
2459 }
2460 if (SEQ_LT(th->th_ack, seq_min)) {
2461 if (ghost_ack_check)
2462 TCPSTAT_INC(tcps_rcvghostack);
2463 else
2464 TCPSTAT_INC(tcps_rcvacktooold);
2465 tcp_send_challenge_ack(tp, th, m);
2466 m = NULL;
2467 goto drop;
2468 }
2469 }
2470 switch (tp->t_state) {
2471 /*
2472 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2473 * ESTABLISHED state and continue processing.
2474 * The ACK was checked above.
2475 */
2476 case TCPS_SYN_RECEIVED:
2477
2478 TCPSTAT_INC(tcps_connects);
2479 if (tp->t_flags & TF_SONOTCONN) {
2480 /*
2481 * Usually SYN_RECEIVED had been created from a LISTEN,
2482 * and solisten_enqueue() has already marked the socket
2483 * layer as connected. If it didn't, which can happen
2484 * only with an accept_filter(9), then the tp is marked
2485 * with TF_SONOTCONN. The other reason for this mark
2486 * to be set is a simultaneous open, a SYN_RECEIVED
2487 * that had been created from SYN_SENT.
2488 */
2489 tp->t_flags &= ~TF_SONOTCONN;
2490 soisconnected(so);
2491 }
2492 /* Do window scaling? */
2493 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2494 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2495 tp->rcv_scale = tp->request_r_scale;
2496 }
2497 tp->snd_wnd = tiwin;
2498 /*
2499 * Make transitions:
2500 * SYN-RECEIVED -> ESTABLISHED
2501 * SYN-RECEIVED* -> FIN-WAIT-1
2502 */
2503 tp->t_starttime = ticks;
2504 if ((tp->t_flags & TF_FASTOPEN) && tp->t_tfo_pending) {
2505 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2506 tp->t_tfo_pending = NULL;
2507 }
2508 if (tp->t_flags & TF_NEEDFIN) {
2509 tp->t_acktime = ticks;
2510 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2511 tp->t_flags &= ~TF_NEEDFIN;
2512 } else {
2513 tcp_state_change(tp, TCPS_ESTABLISHED);
2514 TCP_PROBE5(accept__established, NULL, tp,
2515 m, tp, th);
2516 /*
2517 * TFO connections call cc_conn_init() during SYN
2518 * processing. Calling it again here for such
2519 * connections is not harmless as it would undo the
2520 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2521 * is retransmitted.
2522 */
2523 if (!(tp->t_flags & TF_FASTOPEN))
2524 cc_conn_init(tp);
2525 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2526 }
2527 /*
2528 * Account for the ACK of our SYN prior to
2529 * regular ACK processing below, except for
2530 * simultaneous SYN, which is handled later.
2531 */
2532 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
2533 incforsyn = 1;
2534 /*
2535 * If segment contains data or ACK, will call tcp_reass()
2536 * later; if not, do so now to pass queued data to user.
2537 */
2538 if (tlen == 0 && (thflags & TH_FIN) == 0) {
2539 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2540 (struct mbuf *)0);
2541 tcp_handle_wakeup(tp);
2542 }
2543 tp->snd_wl1 = th->th_seq - 1;
2544 /* FALLTHROUGH */
2545
2546 /*
2547 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2548 * ACKs. If the ack is in the range
2549 * tp->snd_una < th->th_ack <= tp->snd_max
2550 * then advance tp->snd_una to th->th_ack and drop
2551 * data from the retransmission queue. If this ACK reflects
2552 * more up to date window information we update our window information.
2553 */
2554 case TCPS_ESTABLISHED:
2555 case TCPS_FIN_WAIT_1:
2556 case TCPS_FIN_WAIT_2:
2557 case TCPS_CLOSE_WAIT:
2558 case TCPS_CLOSING:
2559 case TCPS_LAST_ACK:
2560 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2561 TCPSTAT_INC(tcps_rcvacktoomuch);
2562 goto dropafterack;
2563 }
2564 if (tcp_is_sack_recovery(tp, &to)) {
2565 sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2566 if ((sack_changed != SACK_NOCHANGE) &&
2567 (tp->t_flags & TF_LRD)) {
2568 tcp_sack_lost_retransmission(tp, th);
2569 }
2570 } else
2571 /*
2572 * Reset the value so that previous (valid) value
2573 * from the last ack with SACK doesn't get used.
2574 */
2575 tp->sackhint.sacked_bytes = 0;
2576
2577 #ifdef TCP_HHOOK
2578 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2579 hhook_run_tcp_est_in(tp, th, &to);
2580 #endif
2581
2582 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2583 maxseg = tcp_maxseg(tp);
2584 if (tlen == 0 &&
2585 (tiwin == tp->snd_wnd ||
2586 (tp->t_flags & TF_SACK_PERMIT))) {
2587 /*
2588 * If this is the first time we've seen a
2589 * FIN from the remote, this is not a
2590 * duplicate and it needs to be processed
2591 * normally. This happens during a
2592 * simultaneous close.
2593 */
2594 if ((thflags & TH_FIN) &&
2595 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2596 tp->t_dupacks = 0;
2597 break;
2598 }
2599 TCPSTAT_INC(tcps_rcvdupack);
2600 /*
2601 * If we have outstanding data (other than
2602 * a window probe), this is a completely
2603 * duplicate ack (ie, window info didn't
2604 * change and FIN isn't set),
2605 * the ack is the biggest we've
2606 * seen and we've seen exactly our rexmt
2607 * threshold of them, assume a packet
2608 * has been dropped and retransmit it.
2609 * Kludge snd_nxt & the congestion
2610 * window so we send only this one
2611 * packet.
2612 *
2613 * We know we're losing at the current
2614 * window size so do congestion avoidance
2615 * (set ssthresh to half the current window
2616 * and pull our congestion window back to
2617 * the new ssthresh).
2618 *
2619 * Dup acks mean that packets have left the
2620 * network (they're now cached at the receiver)
2621 * so bump cwnd by the amount in the receiver
2622 * to keep a constant cwnd packets in the
2623 * network.
2624 *
2625 * When using TCP ECN, notify the peer that
2626 * we reduced the cwnd.
2627 */
2628 /*
2629 * Following 2 kinds of acks should not affect
2630 * dupack counting:
2631 * 1) Old acks
2632 * 2) Acks with SACK but without any new SACK
2633 * information in them. These could result from
2634 * any anomaly in the network like a switch
2635 * duplicating packets or a possible DoS attack.
2636 */
2637 if (th->th_ack != tp->snd_una ||
2638 (tcp_is_sack_recovery(tp, &to) &&
2639 (sack_changed == SACK_NOCHANGE))) {
2640 break;
2641 } else if (!tcp_timer_active(tp, TT_REXMT)) {
2642 tp->t_dupacks = 0;
2643 } else if (++tp->t_dupacks > tcprexmtthresh ||
2644 IN_FASTRECOVERY(tp->t_flags)) {
2645 cc_ack_received(tp, th, nsegs,
2646 CC_DUPACK);
2647 if (V_tcp_do_prr &&
2648 IN_FASTRECOVERY(tp->t_flags) &&
2649 (tp->t_flags & TF_SACK_PERMIT)) {
2650 tcp_do_prr_ack(tp, th, &to,
2651 sack_changed, &maxseg);
2652 } else if (tcp_is_sack_recovery(tp, &to) &&
2653 IN_FASTRECOVERY(tp->t_flags) &&
2654 (tp->snd_nxt == tp->snd_max)) {
2655 int awnd;
2656
2657 /*
2658 * Compute the amount of data in flight first.
2659 * We can inject new data into the pipe iff
2660 * we have less than ssthresh
2661 * worth of data in flight.
2662 */
2663 if (V_tcp_do_newsack) {
2664 awnd = tcp_compute_pipe(tp);
2665 } else {
2666 awnd = (tp->snd_nxt - tp->snd_fack) +
2667 tp->sackhint.sack_bytes_rexmit;
2668 }
2669 if (awnd < tp->snd_ssthresh) {
2670 tp->snd_cwnd += imax(maxseg,
2671 imin(2 * maxseg,
2672 tp->sackhint.delivered_data));
2673 if (tp->snd_cwnd > tp->snd_ssthresh)
2674 tp->snd_cwnd = tp->snd_ssthresh;
2675 }
2676 } else if (tcp_is_sack_recovery(tp, &to) &&
2677 IN_FASTRECOVERY(tp->t_flags) &&
2678 SEQ_LT(tp->snd_nxt, tp->snd_max)) {
2679 tp->snd_cwnd += imax(maxseg,
2680 imin(2 * maxseg,
2681 tp->sackhint.delivered_data));
2682 } else {
2683 tp->snd_cwnd += maxseg;
2684 }
2685 (void) tcp_output(tp);
2686 goto drop;
2687 } else if (tp->t_dupacks == tcprexmtthresh ||
2688 (tp->t_flags & TF_SACK_PERMIT &&
2689 V_tcp_do_newsack &&
2690 tp->sackhint.sacked_bytes >
2691 (tcprexmtthresh - 1) * maxseg)) {
2692 enter_recovery:
2693 /*
2694 * Above is the RFC6675 trigger condition of
2695 * more than (dupthresh-1)*maxseg sacked data.
2696 * If the count of holes in the
2697 * scoreboard is >= dupthresh, we could
2698 * also enter loss recovery, but don't
2699 * have that value readily available.
2700 */
2701 tp->t_dupacks = tcprexmtthresh;
2702 tcp_seq onxt = tp->snd_nxt;
2703
2704 /*
2705 * If we're doing sack, check to
2706 * see if we're already in sack
2707 * recovery. If we're not doing sack,
2708 * check to see if we're in newreno
2709 * recovery.
2710 */
2711 if (tcp_is_sack_recovery(tp, &to)) {
2712 if (IN_FASTRECOVERY(tp->t_flags)) {
2713 tp->t_dupacks = 0;
2714 break;
2715 }
2716 } else {
2717 if (SEQ_LEQ(th->th_ack,
2718 tp->snd_recover)) {
2719 tp->t_dupacks = 0;
2720 break;
2721 }
2722 }
2723 /* Congestion signal before ack. */
2724 cc_cong_signal(tp, th, CC_NDUPACK);
2725 cc_ack_received(tp, th, nsegs,
2726 CC_DUPACK);
2727 tcp_timer_activate(tp, TT_REXMT, 0);
2728 tp->t_rtttime = 0;
2729 if (V_tcp_do_prr) {
2730 /*
2731 * snd_ssthresh and snd_recover are
2732 * already updated by cc_cong_signal.
2733 */
2734 if (tcp_is_sack_recovery(tp, &to)) {
2735 /*
2736 * Include Limited Transmit
2737 * segments here
2738 */
2739 tp->sackhint.prr_delivered =
2740 imin(tp->snd_max - th->th_ack,
2741 (tp->snd_limited + 1) * maxseg);
2742 } else {
2743 tp->sackhint.prr_delivered =
2744 maxseg;
2745 }
2746 tp->sackhint.recover_fs = max(1,
2747 tp->snd_nxt - tp->snd_una);
2748 }
2749 tp->snd_limited = 0;
2750 if (tcp_is_sack_recovery(tp, &to)) {
2751 TCPSTAT_INC(tcps_sack_recovery_episode);
2752 /*
2753 * When entering LR after RTO due to
2754 * Duplicate ACKs, retransmit existing
2755 * holes from the scoreboard.
2756 */
2757 tcp_resend_sackholes(tp);
2758 /* Avoid inflating cwnd in tcp_output */
2759 tp->snd_nxt = tp->snd_max;
2760 tp->snd_cwnd = tcp_compute_pipe(tp) +
2761 maxseg;
2762 (void) tcp_output(tp);
2763 /* Set cwnd to the expected flightsize */
2764 tp->snd_cwnd = tp->snd_ssthresh;
2765 if (SEQ_GT(th->th_ack, tp->snd_una)) {
2766 goto resume_partialack;
2767 }
2768 goto drop;
2769 }
2770 tp->snd_nxt = th->th_ack;
2771 tp->snd_cwnd = maxseg;
2772 (void) tcp_output(tp);
2773 KASSERT(tp->snd_limited <= 2,
2774 ("%s: tp->snd_limited too big",
2775 __func__));
2776 tp->snd_cwnd = tp->snd_ssthresh +
2777 maxseg *
2778 (tp->t_dupacks - tp->snd_limited);
2779 if (SEQ_GT(onxt, tp->snd_nxt))
2780 tp->snd_nxt = onxt;
2781 goto drop;
2782 } else if (V_tcp_do_rfc3042) {
2783 /*
2784 * Process first and second duplicate
2785 * ACKs. Each indicates a segment
2786 * leaving the network, creating room
2787 * for more. Make sure we can send a
2788 * packet on reception of each duplicate
2789 * ACK by increasing snd_cwnd by one
2790 * segment. Restore the original
2791 * snd_cwnd after packet transmission.
2792 */
2793 cc_ack_received(tp, th, nsegs, CC_DUPACK);
2794 uint32_t oldcwnd = tp->snd_cwnd;
2795 tcp_seq oldsndmax = tp->snd_max;
2796 u_int sent;
2797 int avail;
2798
2799 KASSERT(tp->t_dupacks == 1 ||
2800 tp->t_dupacks == 2,
2801 ("%s: dupacks not 1 or 2",
2802 __func__));
2803 if (tp->t_dupacks == 1)
2804 tp->snd_limited = 0;
2805 if ((tp->snd_nxt == tp->snd_max) &&
2806 (tp->t_rxtshift == 0))
2807 tp->snd_cwnd =
2808 SEQ_SUB(tp->snd_nxt,
2809 tp->snd_una) -
2810 tcp_sack_adjust(tp);
2811 tp->snd_cwnd +=
2812 (tp->t_dupacks - tp->snd_limited) *
2813 maxseg - tcp_sack_adjust(tp);
2814 /*
2815 * Only call tcp_output when there
2816 * is new data available to be sent
2817 * or we need to send an ACK.
2818 */
2819 SOCK_SENDBUF_LOCK(so);
2820 avail = sbavail(&so->so_snd);
2821 SOCK_SENDBUF_UNLOCK(so);
2822 if (tp->t_flags & TF_ACKNOW ||
2823 (avail >=
2824 SEQ_SUB(tp->snd_nxt, tp->snd_una))) {
2825 (void) tcp_output(tp);
2826 }
2827 sent = SEQ_SUB(tp->snd_max, oldsndmax);
2828 if (sent > maxseg) {
2829 KASSERT((tp->t_dupacks == 2 &&
2830 tp->snd_limited == 0) ||
2831 (sent == maxseg + 1 &&
2832 tp->t_flags & TF_SENTFIN),
2833 ("%s: sent too much",
2834 __func__));
2835 tp->snd_limited = 2;
2836 } else if (sent > 0) {
2837 ++tp->snd_limited;
2838 }
2839 tp->snd_cwnd = oldcwnd;
2840 goto drop;
2841 }
2842 }
2843 break;
2844 } else {
2845 /*
2846 * This ack is advancing the left edge, reset the
2847 * counter.
2848 */
2849 tp->t_dupacks = 0;
2850 /*
2851 * If this ack also has new SACK info, increment the
2852 * counter as per rfc6675. The variable
2853 * sack_changed tracks all changes to the SACK
2854 * scoreboard, including when partial ACKs without
2855 * SACK options are received, and clear the scoreboard
2856 * from the left side. Such partial ACKs should not be
2857 * counted as dupacks here.
2858 */
2859 if (tcp_is_sack_recovery(tp, &to) &&
2860 (((tp->t_rxtshift == 0) && (sack_changed != SACK_NOCHANGE)) ||
2861 ((tp->t_rxtshift > 0) && (sack_changed == SACK_NEWLOSS))) &&
2862 (tp->snd_nxt == tp->snd_max)) {
2863 tp->t_dupacks++;
2864 /* limit overhead by setting maxseg last */
2865 if (!IN_FASTRECOVERY(tp->t_flags) &&
2866 (tp->sackhint.sacked_bytes >
2867 ((tcprexmtthresh - 1) *
2868 (maxseg = tcp_maxseg(tp))))) {
2869 goto enter_recovery;
2870 }
2871 }
2872 }
2873
2874 resume_partialack:
2875 KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2876 ("%s: th_ack <= snd_una", __func__));
2877
2878 /*
2879 * If the congestion window was inflated to account
2880 * for the other side's cached packets, retract it.
2881 */
2882 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2883 if (IN_FASTRECOVERY(tp->t_flags)) {
2884 if (tp->t_flags & TF_SACK_PERMIT) {
2885 if (V_tcp_do_prr &&
2886 (to.to_flags & TOF_SACK)) {
2887 tcp_timer_activate(tp,
2888 TT_REXMT, 0);
2889 tp->t_rtttime = 0;
2890 tcp_do_prr_ack(tp, th, &to,
2891 sack_changed, &maxseg);
2892 tp->t_flags |= TF_ACKNOW;
2893 (void) tcp_output(tp);
2894 } else {
2895 tcp_sack_partialack(tp, th,
2896 &maxseg);
2897 }
2898 } else {
2899 tcp_newreno_partial_ack(tp, th);
2900 }
2901 } else if (IN_CONGRECOVERY(tp->t_flags) &&
2902 (V_tcp_do_prr)) {
2903 tp->sackhint.delivered_data =
2904 BYTES_THIS_ACK(tp, th);
2905 tp->snd_fack = th->th_ack;
2906 /*
2907 * During ECN cwnd reduction
2908 * always use PRR-SSRB
2909 */
2910 tcp_do_prr_ack(tp, th, &to, SACK_CHANGE,
2911 &maxseg);
2912 (void) tcp_output(tp);
2913 }
2914 }
2915 /*
2916 * If we reach this point, ACK is not a duplicate,
2917 * i.e., it ACKs something we sent.
2918 */
2919 if (tp->t_flags & TF_NEEDSYN) {
2920 /*
2921 * T/TCP: Connection was half-synchronized, and our
2922 * SYN has been ACK'd (so connection is now fully
2923 * synchronized). Go to non-starred state,
2924 * increment snd_una for ACK of SYN, and check if
2925 * we can do window scaling.
2926 */
2927 tp->t_flags &= ~TF_NEEDSYN;
2928 tp->snd_una++;
2929 /* Do window scaling? */
2930 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2931 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2932 tp->rcv_scale = tp->request_r_scale;
2933 /* Send window already scaled. */
2934 }
2935 }
2936
2937 process_ACK:
2938 INP_WLOCK_ASSERT(inp);
2939
2940 /*
2941 * Adjust for the SYN bit in sequence space,
2942 * but don't account for it in cwnd calculations.
2943 * This is for the SYN_RECEIVED, non-simultaneous
2944 * SYN case. SYN_SENT and simultaneous SYN are
2945 * treated elsewhere.
2946 */
2947 if (incforsyn)
2948 tp->snd_una++;
2949 acked = BYTES_THIS_ACK(tp, th);
2950 KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2951 "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2952 tp->snd_una, th->th_ack, tp, m));
2953 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2954 TCPSTAT_ADD(tcps_rcvackbyte, acked);
2955
2956 /*
2957 * If we just performed our first retransmit, and the ACK
2958 * arrives within our recovery window, then it was a mistake
2959 * to do the retransmit in the first place. Recover our
2960 * original cwnd and ssthresh, and proceed to transmit where
2961 * we left off.
2962 */
2963 if (tp->t_rxtshift == 1 &&
2964 tp->t_flags & TF_PREVVALID &&
2965 tp->t_badrxtwin != 0 &&
2966 to.to_flags & TOF_TS &&
2967 to.to_tsecr != 0 &&
2968 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin))
2969 cc_cong_signal(tp, th, CC_RTO_ERR);
2970
2971 /*
2972 * If we have a timestamp reply, update smoothed
2973 * round trip time. If no timestamp is present but
2974 * transmit timer is running and timed sequence
2975 * number was acked, update smoothed round trip time.
2976 * Since we now have an rtt measurement, cancel the
2977 * timer backoff (cf., Phil Karn's retransmit alg.).
2978 * Recompute the initial retransmit timer.
2979 *
2980 * Some boxes send broken timestamp replies
2981 * during the SYN+ACK phase, ignore
2982 * timestamps of 0 or we could calculate a
2983 * huge RTT and blow up the retransmit timer.
2984 */
2985 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2986 uint32_t t;
2987
2988 t = tcp_ts_getticks() - to.to_tsecr;
2989 if (!tp->t_rttlow || tp->t_rttlow > t)
2990 tp->t_rttlow = t;
2991 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2992 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2993 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2994 tp->t_rttlow = ticks - tp->t_rtttime;
2995 tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2996 }
2997
2998 SOCK_SENDBUF_LOCK(so);
2999 /*
3000 * Clear t_acktime if remote side has ACKd all data in the
3001 * socket buffer and FIN (if applicable).
3002 * Otherwise, update t_acktime if we received a sufficiently
3003 * large ACK.
3004 */
3005 if ((tp->t_state <= TCPS_CLOSE_WAIT &&
3006 acked == sbavail(&so->so_snd)) ||
3007 acked > sbavail(&so->so_snd))
3008 tp->t_acktime = 0;
3009 else if (acked > 1)
3010 tp->t_acktime = ticks;
3011
3012 /*
3013 * If all outstanding data is acked, stop retransmit
3014 * timer and remember to restart (more output or persist).
3015 * If there is more data to be acked, restart retransmit
3016 * timer, using current (possibly backed-off) value.
3017 */
3018 if (th->th_ack == tp->snd_max) {
3019 tcp_timer_activate(tp, TT_REXMT, 0);
3020 needoutput = 1;
3021 } else if (!tcp_timer_active(tp, TT_PERSIST))
3022 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
3023
3024 /*
3025 * If no data (only SYN) was ACK'd,
3026 * skip rest of ACK processing.
3027 */
3028 if (acked == 0) {
3029 SOCK_SENDBUF_UNLOCK(so);
3030 goto step6;
3031 }
3032
3033 /*
3034 * Let the congestion control algorithm update congestion
3035 * control related information. This typically means increasing
3036 * the congestion window.
3037 */
3038 cc_ack_received(tp, th, nsegs, CC_ACK);
3039
3040 if (acked > sbavail(&so->so_snd)) {
3041 if (tp->snd_wnd >= sbavail(&so->so_snd))
3042 tp->snd_wnd -= sbavail(&so->so_snd);
3043 else
3044 tp->snd_wnd = 0;
3045 mfree = sbcut_locked(&so->so_snd,
3046 (int)sbavail(&so->so_snd));
3047 ourfinisacked = 1;
3048 } else {
3049 mfree = sbcut_locked(&so->so_snd, acked);
3050 if (tp->snd_wnd >= (uint32_t) acked)
3051 tp->snd_wnd -= acked;
3052 else
3053 tp->snd_wnd = 0;
3054 ourfinisacked = 0;
3055 }
3056 /* NB: sowwakeup_locked() does an implicit unlock. */
3057 sowwakeup_locked(so);
3058 m_freem(mfree);
3059 /* Detect una wraparound. */
3060 if (!IN_RECOVERY(tp->t_flags) &&
3061 SEQ_GT(tp->snd_una, tp->snd_recover) &&
3062 SEQ_LEQ(th->th_ack, tp->snd_recover))
3063 tp->snd_recover = th->th_ack - 1;
3064 tp->snd_una = th->th_ack;
3065 if (IN_RECOVERY(tp->t_flags) &&
3066 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
3067 cc_post_recovery(tp, th);
3068 }
3069 if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
3070 tp->snd_recover = tp->snd_una;
3071 }
3072 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3073 tp->snd_nxt = tp->snd_una;
3074
3075 switch (tp->t_state) {
3076 /*
3077 * In FIN_WAIT_1 STATE in addition to the processing
3078 * for the ESTABLISHED state if our FIN is now acknowledged
3079 * then enter FIN_WAIT_2.
3080 */
3081 case TCPS_FIN_WAIT_1:
3082 if (ourfinisacked) {
3083 /*
3084 * If we can't receive any more
3085 * data, then closing user can proceed.
3086 * Starting the timer is contrary to the
3087 * specification, but if we don't get a FIN
3088 * we'll hang forever.
3089 */
3090 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3091 tcp_free_sackholes(tp);
3092 soisdisconnected(so);
3093 tcp_timer_activate(tp, TT_2MSL,
3094 (tcp_fast_finwait2_recycle ?
3095 tcp_finwait2_timeout :
3096 TP_MAXIDLE(tp)));
3097 }
3098 tcp_state_change(tp, TCPS_FIN_WAIT_2);
3099 }
3100 break;
3101
3102 /*
3103 * In CLOSING STATE in addition to the processing for
3104 * the ESTABLISHED state if the ACK acknowledges our FIN
3105 * then enter the TIME-WAIT state, otherwise ignore
3106 * the segment.
3107 */
3108 case TCPS_CLOSING:
3109 if (ourfinisacked) {
3110 tcp_twstart(tp);
3111 m_freem(m);
3112 return;
3113 }
3114 break;
3115
3116 /*
3117 * In LAST_ACK, we may still be waiting for data to drain
3118 * and/or to be acked, as well as for the ack of our FIN.
3119 * If our FIN is now acknowledged, delete the TCB,
3120 * enter the closed state and return.
3121 */
3122 case TCPS_LAST_ACK:
3123 if (ourfinisacked) {
3124 tp = tcp_close(tp);
3125 goto drop;
3126 }
3127 break;
3128 }
3129 }
3130
3131 step6:
3132 INP_WLOCK_ASSERT(inp);
3133
3134 /*
3135 * Update window information.
3136 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3137 */
3138 if ((thflags & TH_ACK) &&
3139 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3140 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3141 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3142 /* keep track of pure window updates */
3143 if (tlen == 0 &&
3144 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3145 TCPSTAT_INC(tcps_rcvwinupd);
3146 tp->snd_wnd = tiwin;
3147 tp->snd_wl1 = th->th_seq;
3148 tp->snd_wl2 = th->th_ack;
3149 if (tp->snd_wnd > tp->max_sndwnd)
3150 tp->max_sndwnd = tp->snd_wnd;
3151 needoutput = 1;
3152 }
3153
3154 /*
3155 * Process segments with URG.
3156 */
3157 if ((thflags & TH_URG) && th->th_urp &&
3158 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3159 /*
3160 * This is a kludge, but if we receive and accept
3161 * random urgent pointers, we'll crash in
3162 * soreceive. It's hard to imagine someone
3163 * actually wanting to send this much urgent data.
3164 */
3165 SOCK_RECVBUF_LOCK(so);
3166 if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3167 th->th_urp = 0; /* XXX */
3168 thflags &= ~TH_URG; /* XXX */
3169 SOCK_RECVBUF_UNLOCK(so); /* XXX */
3170 goto dodata; /* XXX */
3171 }
3172 /*
3173 * If this segment advances the known urgent pointer,
3174 * then mark the data stream. This should not happen
3175 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3176 * a FIN has been received from the remote side.
3177 * In these states we ignore the URG.
3178 *
3179 * According to RFC961 (Assigned Protocols),
3180 * the urgent pointer points to the last octet
3181 * of urgent data. We continue, however,
3182 * to consider it to indicate the first octet
3183 * of data past the urgent section as the original
3184 * spec states (in one of two places).
3185 */
3186 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3187 tp->rcv_up = th->th_seq + th->th_urp;
3188 so->so_oobmark = sbavail(&so->so_rcv) +
3189 (tp->rcv_up - tp->rcv_nxt) - 1;
3190 if (so->so_oobmark == 0)
3191 so->so_rcv.sb_state |= SBS_RCVATMARK;
3192 sohasoutofband(so);
3193 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3194 }
3195 SOCK_RECVBUF_UNLOCK(so);
3196 /*
3197 * Remove out of band data so doesn't get presented to user.
3198 * This can happen independent of advancing the URG pointer,
3199 * but if two URG's are pending at once, some out-of-band
3200 * data may creep in... ick.
3201 */
3202 if (th->th_urp <= (uint32_t)tlen &&
3203 !(so->so_options & SO_OOBINLINE)) {
3204 /* hdr drop is delayed */
3205 tcp_pulloutofband(so, th, m, drop_hdrlen);
3206 }
3207 } else {
3208 /*
3209 * If no out of band data is expected,
3210 * pull receive urgent pointer along
3211 * with the receive window.
3212 */
3213 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3214 tp->rcv_up = tp->rcv_nxt;
3215 }
3216 dodata: /* XXX */
3217 INP_WLOCK_ASSERT(inp);
3218
3219 /*
3220 * Process the segment text, merging it into the TCP sequencing queue,
3221 * and arranging for acknowledgment of receipt if necessary.
3222 * This process logically involves adjusting tp->rcv_wnd as data
3223 * is presented to the user (this happens in tcp_usrreq.c,
3224 * case PRU_RCVD). If a FIN has already been received on this
3225 * connection then we just ignore the text.
3226 */
3227 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3228 (tp->t_flags & TF_FASTOPEN));
3229 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
3230 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3231 tcp_seq save_start = th->th_seq;
3232 tcp_seq save_rnxt = tp->rcv_nxt;
3233 int save_tlen = tlen;
3234 m_adj(m, drop_hdrlen); /* delayed header drop */
3235 /*
3236 * Insert segment which includes th into TCP reassembly queue
3237 * with control block tp. Set thflags to whether reassembly now
3238 * includes a segment with FIN. This handles the common case
3239 * inline (segment is the next to be received on an established
3240 * connection, and the queue is empty), avoiding linkage into
3241 * and removal from the queue and repetition of various
3242 * conversions.
3243 * Set DELACK for segments received in order, but ack
3244 * immediately when segments are out of order (so
3245 * fast retransmit can work).
3246 */
3247 if (th->th_seq == tp->rcv_nxt &&
3248 SEGQ_EMPTY(tp) &&
3249 (TCPS_HAVEESTABLISHED(tp->t_state) ||
3250 tfo_syn)) {
3251 if (DELAY_ACK(tp, tlen) || tfo_syn)
3252 tp->t_flags |= TF_DELACK;
3253 else
3254 tp->t_flags |= TF_ACKNOW;
3255 tp->rcv_nxt += tlen;
3256 if (tlen &&
3257 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
3258 (tp->t_fbyte_in == 0)) {
3259 tp->t_fbyte_in = ticks;
3260 if (tp->t_fbyte_in == 0)
3261 tp->t_fbyte_in = 1;
3262 if (tp->t_fbyte_out && tp->t_fbyte_in)
3263 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
3264 }
3265 thflags = tcp_get_flags(th) & TH_FIN;
3266 TCPSTAT_INC(tcps_rcvpack);
3267 TCPSTAT_ADD(tcps_rcvbyte, tlen);
3268 SOCK_RECVBUF_LOCK(so);
3269 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3270 m_freem(m);
3271 else
3272 sbappendstream_locked(&so->so_rcv, m, 0);
3273 tp->t_flags |= TF_WAKESOR;
3274 } else {
3275 /*
3276 * XXX: Due to the header drop above "th" is
3277 * theoretically invalid by now. Fortunately
3278 * m_adj() doesn't actually frees any mbufs
3279 * when trimming from the head.
3280 */
3281 tcp_seq temp = save_start;
3282
3283 thflags = tcp_reass(tp, th, &temp, &tlen, m);
3284 tp->t_flags |= TF_ACKNOW;
3285 }
3286 if ((tp->t_flags & TF_SACK_PERMIT) &&
3287 (save_tlen > 0) &&
3288 TCPS_HAVEESTABLISHED(tp->t_state)) {
3289 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3290 /*
3291 * DSACK actually handled in the fastpath
3292 * above.
3293 */
3294 tcp_update_sack_list(tp, save_start,
3295 save_start + save_tlen);
3296 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3297 if ((tp->rcv_numsacks >= 1) &&
3298 (tp->sackblks[0].end == save_start)) {
3299 /*
3300 * Partial overlap, recorded at todrop
3301 * above.
3302 */
3303 tcp_update_sack_list(tp,
3304 tp->sackblks[0].start,
3305 tp->sackblks[0].end);
3306 } else {
3307 tcp_update_dsack_list(tp, save_start,
3308 save_start + save_tlen);
3309 }
3310 } else if (tlen >= save_tlen) {
3311 /* Update of sackblks. */
3312 tcp_update_dsack_list(tp, save_start,
3313 save_start + save_tlen);
3314 } else if (tlen > 0) {
3315 tcp_update_dsack_list(tp, save_start,
3316 save_start + tlen);
3317 }
3318 }
3319 tcp_handle_wakeup(tp);
3320 #if 0
3321 /*
3322 * Note the amount of data that peer has sent into
3323 * our window, in order to estimate the sender's
3324 * buffer size.
3325 * XXX: Unused.
3326 */
3327 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3328 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3329 else
3330 len = so->so_rcv.sb_hiwat;
3331 #endif
3332 } else {
3333 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
3334 if (tlen > 0) {
3335 if ((thflags & TH_FIN) != 0) {
3336 log(LOG_DEBUG, "%s; %s: %s: "
3337 "Received %d bytes of data and FIN "
3338 "after having received a FIN, "
3339 "just dropping both\n",
3340 s, __func__,
3341 tcpstates[tp->t_state], tlen);
3342 } else {
3343 log(LOG_DEBUG, "%s; %s: %s: "
3344 "Received %d bytes of data "
3345 "after having received a FIN, "
3346 "just dropping it\n",
3347 s, __func__,
3348 tcpstates[tp->t_state], tlen);
3349 }
3350 } else {
3351 if ((thflags & TH_FIN) != 0) {
3352 log(LOG_DEBUG, "%s; %s: %s: "
3353 "Received FIN "
3354 "after having received a FIN, "
3355 "just dropping it\n",
3356 s, __func__,
3357 tcpstates[tp->t_state]);
3358 }
3359 }
3360 free(s, M_TCPLOG);
3361 }
3362 m_freem(m);
3363 thflags &= ~TH_FIN;
3364 }
3365
3366 /*
3367 * If FIN is received ACK the FIN and let the user know
3368 * that the connection is closing.
3369 */
3370 if (thflags & TH_FIN) {
3371 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3372 /* The socket upcall is handled by socantrcvmore. */
3373 socantrcvmore(so);
3374 /*
3375 * If connection is half-synchronized
3376 * (ie NEEDSYN flag on) then delay ACK,
3377 * so it may be piggybacked when SYN is sent.
3378 * Otherwise, since we received a FIN then no
3379 * more input can be expected, send ACK now.
3380 */
3381 if (tp->t_flags & TF_NEEDSYN)
3382 tp->t_flags |= TF_DELACK;
3383 else
3384 tp->t_flags |= TF_ACKNOW;
3385 tp->rcv_nxt++;
3386 }
3387 switch (tp->t_state) {
3388 /*
3389 * In SYN_RECEIVED and ESTABLISHED STATES
3390 * enter the CLOSE_WAIT state.
3391 */
3392 case TCPS_SYN_RECEIVED:
3393 tp->t_starttime = ticks;
3394 /* FALLTHROUGH */
3395 case TCPS_ESTABLISHED:
3396 tcp_state_change(tp, TCPS_CLOSE_WAIT);
3397 break;
3398
3399 /*
3400 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3401 * enter the CLOSING state.
3402 */
3403 case TCPS_FIN_WAIT_1:
3404 tcp_state_change(tp, TCPS_CLOSING);
3405 break;
3406
3407 /*
3408 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3409 * starting the time-wait timer, turning off the other
3410 * standard timers.
3411 */
3412 case TCPS_FIN_WAIT_2:
3413 tcp_twstart(tp);
3414 return;
3415 }
3416 }
3417 TCP_PROBE3(debug__input, tp, th, m);
3418
3419 /*
3420 * Return any desired output.
3421 */
3422 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3423 (void) tcp_output(tp);
3424 }
3425 check_delack:
3426 INP_WLOCK_ASSERT(inp);
3427
3428 if (tp->t_flags & TF_DELACK) {
3429 tp->t_flags &= ~TF_DELACK;
3430 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3431 }
3432 INP_WUNLOCK(inp);
3433 return;
3434
3435 dropafterack:
3436 /*
3437 * Generate an ACK dropping incoming segment if it occupies
3438 * sequence space, where the ACK reflects our state.
3439 *
3440 * We can now skip the test for the RST flag since all
3441 * paths to this code happen after packets containing
3442 * RST have been dropped.
3443 *
3444 * In the SYN-RECEIVED state, don't send an ACK unless the
3445 * segment we received passes the SYN-RECEIVED ACK test.
3446 * If it fails send a RST. This breaks the loop in the
3447 * "LAND" DoS attack, and also prevents an ACK storm
3448 * between two listening ports that have been sent forged
3449 * SYN segments, each with the source address of the other.
3450 */
3451 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3452 (SEQ_GT(tp->snd_una, th->th_ack) ||
3453 SEQ_GT(th->th_ack, tp->snd_max)) ) {
3454 rstreason = BANDLIM_RST_OPENPORT;
3455 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
3456 goto dropwithreset;
3457 }
3458 TCP_PROBE3(debug__input, tp, th, m);
3459 tp->t_flags |= TF_ACKNOW;
3460 (void) tcp_output(tp);
3461 INP_WUNLOCK(inp);
3462 m_freem(m);
3463 return;
3464
3465 dropwithreset:
3466 if (tp != NULL) {
3467 tcp_dropwithreset(m, th, tp, tlen, rstreason);
3468 INP_WUNLOCK(inp);
3469 } else
3470 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3471 return;
3472
3473 drop:
3474 /*
3475 * Drop space held by incoming segment and return.
3476 */
3477 TCP_PROBE3(debug__input, tp, th, m);
3478 if (tp != NULL) {
3479 INP_WUNLOCK(inp);
3480 }
3481 m_freem(m);
3482 }
3483
3484 /*
3485 * Issue RST and make ACK acceptable to originator of segment.
3486 * The mbuf must still include the original packet header.
3487 * tp may be NULL.
3488 */
3489 void
tcp_dropwithreset(struct mbuf * m,struct tcphdr * th,struct tcpcb * tp,int tlen,int rstreason)3490 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3491 int tlen, int rstreason)
3492 {
3493 #ifdef INET
3494 struct ip *ip;
3495 #endif
3496 #ifdef INET6
3497 struct ip6_hdr *ip6;
3498 #endif
3499
3500 if (tp != NULL) {
3501 INP_LOCK_ASSERT(tptoinpcb(tp));
3502 }
3503
3504 /* Don't bother if destination was broadcast/multicast. */
3505 if ((tcp_get_flags(th) & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3506 goto drop;
3507 #ifdef INET6
3508 if (mtod(m, struct ip *)->ip_v == 6) {
3509 ip6 = mtod(m, struct ip6_hdr *);
3510 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3511 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3512 goto drop;
3513 /* IPv6 anycast check is done at tcp6_input() */
3514 }
3515 #endif
3516 #if defined(INET) && defined(INET6)
3517 else
3518 #endif
3519 #ifdef INET
3520 {
3521 ip = mtod(m, struct ip *);
3522 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3523 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3524 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3525 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3526 goto drop;
3527 }
3528 #endif
3529
3530 /* Perform bandwidth limiting. */
3531 if (badport_bandlim(rstreason) < 0)
3532 goto drop;
3533
3534 /* tcp_respond consumes the mbuf chain. */
3535 if (tcp_get_flags(th) & TH_ACK) {
3536 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3537 th->th_ack, TH_RST);
3538 } else {
3539 if (tcp_get_flags(th) & TH_SYN)
3540 tlen++;
3541 if (tcp_get_flags(th) & TH_FIN)
3542 tlen++;
3543 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3544 (tcp_seq)0, TH_RST|TH_ACK);
3545 }
3546 return;
3547 drop:
3548 m_freem(m);
3549 }
3550
3551 /*
3552 * Parse TCP options and place in tcpopt.
3553 */
3554 void
tcp_dooptions(struct tcpopt * to,u_char * cp,int cnt,int flags)3555 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3556 {
3557 int opt, optlen;
3558
3559 to->to_flags = 0;
3560 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3561 opt = cp[0];
3562 if (opt == TCPOPT_EOL)
3563 break;
3564 if (opt == TCPOPT_NOP)
3565 optlen = 1;
3566 else {
3567 if (cnt < 2)
3568 break;
3569 optlen = cp[1];
3570 if (optlen < 2 || optlen > cnt)
3571 break;
3572 }
3573 switch (opt) {
3574 case TCPOPT_MAXSEG:
3575 if (optlen != TCPOLEN_MAXSEG)
3576 continue;
3577 if (!(flags & TO_SYN))
3578 continue;
3579 to->to_flags |= TOF_MSS;
3580 bcopy((char *)cp + 2,
3581 (char *)&to->to_mss, sizeof(to->to_mss));
3582 to->to_mss = ntohs(to->to_mss);
3583 break;
3584 case TCPOPT_WINDOW:
3585 if (optlen != TCPOLEN_WINDOW)
3586 continue;
3587 if (!(flags & TO_SYN))
3588 continue;
3589 to->to_flags |= TOF_SCALE;
3590 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3591 break;
3592 case TCPOPT_TIMESTAMP:
3593 if (optlen != TCPOLEN_TIMESTAMP)
3594 continue;
3595 to->to_flags |= TOF_TS;
3596 bcopy((char *)cp + 2,
3597 (char *)&to->to_tsval, sizeof(to->to_tsval));
3598 to->to_tsval = ntohl(to->to_tsval);
3599 bcopy((char *)cp + 6,
3600 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3601 to->to_tsecr = ntohl(to->to_tsecr);
3602 break;
3603 case TCPOPT_SIGNATURE:
3604 /*
3605 * In order to reply to a host which has set the
3606 * TCP_SIGNATURE option in its initial SYN, we have
3607 * to record the fact that the option was observed
3608 * here for the syncache code to perform the correct
3609 * response.
3610 */
3611 if (optlen != TCPOLEN_SIGNATURE)
3612 continue;
3613 to->to_flags |= TOF_SIGNATURE;
3614 to->to_signature = cp + 2;
3615 break;
3616 case TCPOPT_SACK_PERMITTED:
3617 if (optlen != TCPOLEN_SACK_PERMITTED)
3618 continue;
3619 if (!(flags & TO_SYN))
3620 continue;
3621 if (!V_tcp_do_sack)
3622 continue;
3623 to->to_flags |= TOF_SACKPERM;
3624 break;
3625 case TCPOPT_SACK:
3626 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3627 continue;
3628 if (flags & TO_SYN)
3629 continue;
3630 to->to_flags |= TOF_SACK;
3631 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3632 to->to_sacks = cp + 2;
3633 TCPSTAT_INC(tcps_sack_rcv_blocks);
3634 break;
3635 case TCPOPT_FAST_OPEN:
3636 /*
3637 * Cookie length validation is performed by the
3638 * server side cookie checking code or the client
3639 * side cookie cache update code.
3640 */
3641 if (!(flags & TO_SYN))
3642 continue;
3643 if (!V_tcp_fastopen_client_enable &&
3644 !V_tcp_fastopen_server_enable)
3645 continue;
3646 to->to_flags |= TOF_FASTOPEN;
3647 to->to_tfo_len = optlen - 2;
3648 to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3649 break;
3650 default:
3651 continue;
3652 }
3653 }
3654 }
3655
3656 /*
3657 * Pull out of band byte out of a segment so
3658 * it doesn't appear in the user's data queue.
3659 * It is still reflected in the segment length for
3660 * sequencing purposes.
3661 */
3662 void
tcp_pulloutofband(struct socket * so,struct tcphdr * th,struct mbuf * m,int off)3663 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3664 int off)
3665 {
3666 int cnt = off + th->th_urp - 1;
3667
3668 while (cnt >= 0) {
3669 if (m->m_len > cnt) {
3670 char *cp = mtod(m, caddr_t) + cnt;
3671 struct tcpcb *tp = sototcpcb(so);
3672
3673 INP_WLOCK_ASSERT(tptoinpcb(tp));
3674
3675 tp->t_iobc = *cp;
3676 tp->t_oobflags |= TCPOOB_HAVEDATA;
3677 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3678 m->m_len--;
3679 if (m->m_flags & M_PKTHDR)
3680 m->m_pkthdr.len--;
3681 return;
3682 }
3683 cnt -= m->m_len;
3684 m = m->m_next;
3685 if (m == NULL)
3686 break;
3687 }
3688 panic("tcp_pulloutofband");
3689 }
3690
3691 /*
3692 * Collect new round-trip time estimate
3693 * and update averages and current timeout.
3694 */
3695 void
tcp_xmit_timer(struct tcpcb * tp,int rtt)3696 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3697 {
3698 int delta;
3699
3700 INP_WLOCK_ASSERT(tptoinpcb(tp));
3701
3702 TCPSTAT_INC(tcps_rttupdated);
3703 if (tp->t_rttupdated < UCHAR_MAX)
3704 tp->t_rttupdated++;
3705 #ifdef STATS
3706 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3707 imax(0, rtt * 1000 / hz));
3708 #endif
3709 if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3710 /*
3711 * srtt is stored as fixed point with 5 bits after the
3712 * binary point (i.e., scaled by 8). The following magic
3713 * is equivalent to the smoothing algorithm in rfc793 with
3714 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3715 * point). Adjust rtt to origin 0.
3716 */
3717 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3718 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3719
3720 if ((tp->t_srtt += delta) <= 0)
3721 tp->t_srtt = 1;
3722
3723 /*
3724 * We accumulate a smoothed rtt variance (actually, a
3725 * smoothed mean difference), then set the retransmit
3726 * timer to smoothed rtt + 4 times the smoothed variance.
3727 * rttvar is stored as fixed point with 4 bits after the
3728 * binary point (scaled by 16). The following is
3729 * equivalent to rfc793 smoothing with an alpha of .75
3730 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3731 * rfc793's wired-in beta.
3732 */
3733 if (delta < 0)
3734 delta = -delta;
3735 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3736 if ((tp->t_rttvar += delta) <= 0)
3737 tp->t_rttvar = 1;
3738 } else {
3739 /*
3740 * No rtt measurement yet - use the unsmoothed rtt.
3741 * Set the variance to half the rtt (so our first
3742 * retransmit happens at 3*rtt).
3743 */
3744 tp->t_srtt = rtt << TCP_RTT_SHIFT;
3745 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3746 }
3747 tp->t_rtttime = 0;
3748 tp->t_rxtshift = 0;
3749
3750 /*
3751 * the retransmit should happen at rtt + 4 * rttvar.
3752 * Because of the way we do the smoothing, srtt and rttvar
3753 * will each average +1/2 tick of bias. When we compute
3754 * the retransmit timer, we want 1/2 tick of rounding and
3755 * 1 extra tick because of +-1/2 tick uncertainty in the
3756 * firing of the timer. The bias will give us exactly the
3757 * 1.5 tick we need. But, because the bias is
3758 * statistical, we have to test that we don't drop below
3759 * the minimum feasible timer (which is 2 ticks).
3760 */
3761 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3762 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3763
3764 /*
3765 * We received an ack for a packet that wasn't retransmitted;
3766 * it is probably safe to discard any error indications we've
3767 * received recently. This isn't quite right, but close enough
3768 * for now (a route might have failed after we sent a segment,
3769 * and the return path might not be symmetrical).
3770 */
3771 tp->t_softerror = 0;
3772 }
3773
3774 /*
3775 * Determine a reasonable value for maxseg size.
3776 * If the route is known, check route for mtu.
3777 * If none, use an mss that can be handled on the outgoing interface
3778 * without forcing IP to fragment. If no route is found, route has no mtu,
3779 * or the destination isn't local, use a default, hopefully conservative
3780 * size (usually 512 or the default IP max size, but no more than the mtu
3781 * of the interface), as we can't discover anything about intervening
3782 * gateways or networks. We also initialize the congestion/slow start
3783 * window to be a single segment if the destination isn't local.
3784 * While looking at the routing entry, we also initialize other path-dependent
3785 * parameters from pre-set or cached values in the routing entry.
3786 *
3787 * NOTE that resulting t_maxseg doesn't include space for TCP options or
3788 * IP options, e.g. IPSEC data, since length of this data may vary, and
3789 * thus it is calculated for every segment separately in tcp_output().
3790 *
3791 * NOTE that this routine is only called when we process an incoming
3792 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3793 * settings are handled in tcp_mssopt().
3794 */
3795 void
tcp_mss_update(struct tcpcb * tp,int offer,int mtuoffer,struct hc_metrics_lite * metricptr,struct tcp_ifcap * cap)3796 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3797 struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3798 {
3799 int mss = 0;
3800 uint32_t maxmtu = 0;
3801 struct inpcb *inp = tptoinpcb(tp);
3802 struct hc_metrics_lite metrics;
3803 #ifdef INET6
3804 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3805 size_t min_protoh = isipv6 ?
3806 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3807 sizeof (struct tcpiphdr);
3808 #else
3809 size_t min_protoh = sizeof(struct tcpiphdr);
3810 #endif
3811
3812 INP_WLOCK_ASSERT(inp);
3813
3814 if (tp->t_port)
3815 min_protoh += V_tcp_udp_tunneling_overhead;
3816 if (mtuoffer != -1) {
3817 KASSERT(offer == -1, ("%s: conflict", __func__));
3818 offer = mtuoffer - min_protoh;
3819 }
3820
3821 /* Initialize. */
3822 #ifdef INET6
3823 if (isipv6) {
3824 maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3825 tp->t_maxseg = V_tcp_v6mssdflt;
3826 }
3827 #endif
3828 #if defined(INET) && defined(INET6)
3829 else
3830 #endif
3831 #ifdef INET
3832 {
3833 maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3834 tp->t_maxseg = V_tcp_mssdflt;
3835 }
3836 #endif
3837
3838 /*
3839 * No route to sender, stay with default mss and return.
3840 */
3841 if (maxmtu == 0) {
3842 /*
3843 * In case we return early we need to initialize metrics
3844 * to a defined state as tcp_hc_get() would do for us
3845 * if there was no cache hit.
3846 */
3847 if (metricptr != NULL)
3848 bzero(metricptr, sizeof(struct hc_metrics_lite));
3849 return;
3850 }
3851
3852 /* What have we got? */
3853 switch (offer) {
3854 case 0:
3855 /*
3856 * Offer == 0 means that there was no MSS on the SYN
3857 * segment, in this case we use tcp_mssdflt as
3858 * already assigned to t_maxseg above.
3859 */
3860 offer = tp->t_maxseg;
3861 break;
3862
3863 case -1:
3864 /*
3865 * Offer == -1 means that we didn't receive SYN yet.
3866 */
3867 /* FALLTHROUGH */
3868
3869 default:
3870 /*
3871 * Prevent DoS attack with too small MSS. Round up
3872 * to at least minmss.
3873 */
3874 offer = max(offer, V_tcp_minmss);
3875 }
3876
3877 if (metricptr == NULL)
3878 metricptr = &metrics;
3879 tcp_hc_get(&inp->inp_inc, metricptr);
3880
3881 /*
3882 * If there's a discovered mtu in tcp hostcache, use it.
3883 * Else, use the link mtu.
3884 */
3885 if (metricptr->hc_mtu)
3886 mss = min(metricptr->hc_mtu, maxmtu) - min_protoh;
3887 else {
3888 #ifdef INET6
3889 if (isipv6) {
3890 mss = maxmtu - min_protoh;
3891 if (!V_path_mtu_discovery &&
3892 !in6_localaddr(&inp->in6p_faddr))
3893 mss = min(mss, V_tcp_v6mssdflt);
3894 }
3895 #endif
3896 #if defined(INET) && defined(INET6)
3897 else
3898 #endif
3899 #ifdef INET
3900 {
3901 mss = maxmtu - min_protoh;
3902 if (!V_path_mtu_discovery &&
3903 !in_localaddr(inp->inp_faddr))
3904 mss = min(mss, V_tcp_mssdflt);
3905 }
3906 #endif
3907 /*
3908 * XXX - The above conditional (mss = maxmtu - min_protoh)
3909 * probably violates the TCP spec.
3910 * The problem is that, since we don't know the
3911 * other end's MSS, we are supposed to use a conservative
3912 * default. But, if we do that, then MTU discovery will
3913 * never actually take place, because the conservative
3914 * default is much less than the MTUs typically seen
3915 * on the Internet today. For the moment, we'll sweep
3916 * this under the carpet.
3917 *
3918 * The conservative default might not actually be a problem
3919 * if the only case this occurs is when sending an initial
3920 * SYN with options and data to a host we've never talked
3921 * to before. Then, they will reply with an MSS value which
3922 * will get recorded and the new parameters should get
3923 * recomputed. For Further Study.
3924 */
3925 }
3926 mss = min(mss, offer);
3927
3928 /*
3929 * Sanity check: make sure that maxseg will be large
3930 * enough to allow some data on segments even if the
3931 * all the option space is used (40bytes). Otherwise
3932 * funny things may happen in tcp_output.
3933 *
3934 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3935 */
3936 mss = max(mss, 64);
3937
3938 tp->t_maxseg = mss;
3939 if (tp->t_maxseg < V_tcp_mssdflt) {
3940 /*
3941 * The MSS is so small we should not process incoming
3942 * SACK's since we are subject to attack in such a
3943 * case.
3944 */
3945 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3946 } else {
3947 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3948 }
3949
3950 }
3951
3952 void
tcp_mss(struct tcpcb * tp,int offer)3953 tcp_mss(struct tcpcb *tp, int offer)
3954 {
3955 int mss;
3956 uint32_t bufsize;
3957 struct inpcb *inp = tptoinpcb(tp);
3958 struct socket *so;
3959 struct hc_metrics_lite metrics;
3960 struct tcp_ifcap cap;
3961
3962 KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3963
3964 bzero(&cap, sizeof(cap));
3965 tcp_mss_update(tp, offer, -1, &metrics, &cap);
3966
3967 mss = tp->t_maxseg;
3968
3969 /*
3970 * If there's a pipesize, change the socket buffer to that size,
3971 * don't change if sb_hiwat is different than default (then it
3972 * has been changed on purpose with setsockopt).
3973 * Make the socket buffers an integral number of mss units;
3974 * if the mss is larger than the socket buffer, decrease the mss.
3975 */
3976 so = inp->inp_socket;
3977 SOCK_SENDBUF_LOCK(so);
3978 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.hc_sendpipe)
3979 bufsize = metrics.hc_sendpipe;
3980 else
3981 bufsize = so->so_snd.sb_hiwat;
3982 if (bufsize < mss)
3983 mss = bufsize;
3984 else {
3985 bufsize = roundup(bufsize, mss);
3986 if (bufsize > sb_max)
3987 bufsize = sb_max;
3988 if (bufsize > so->so_snd.sb_hiwat)
3989 (void)sbreserve_locked(so, SO_SND, bufsize, NULL);
3990 }
3991 SOCK_SENDBUF_UNLOCK(so);
3992 /*
3993 * Sanity check: make sure that maxseg will be large
3994 * enough to allow some data on segments even if the
3995 * all the option space is used (40bytes). Otherwise
3996 * funny things may happen in tcp_output.
3997 *
3998 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3999 */
4000 tp->t_maxseg = max(mss, 64);
4001 if (tp->t_maxseg < V_tcp_mssdflt) {
4002 /*
4003 * The MSS is so small we should not process incoming
4004 * SACK's since we are subject to attack in such a
4005 * case.
4006 */
4007 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
4008 } else {
4009 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
4010 }
4011
4012 SOCK_RECVBUF_LOCK(so);
4013 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.hc_recvpipe)
4014 bufsize = metrics.hc_recvpipe;
4015 else
4016 bufsize = so->so_rcv.sb_hiwat;
4017 if (bufsize > mss) {
4018 bufsize = roundup(bufsize, mss);
4019 if (bufsize > sb_max)
4020 bufsize = sb_max;
4021 if (bufsize > so->so_rcv.sb_hiwat)
4022 (void)sbreserve_locked(so, SO_RCV, bufsize, NULL);
4023 }
4024 SOCK_RECVBUF_UNLOCK(so);
4025
4026 /* Check the interface for TSO capabilities. */
4027 if (cap.ifcap & CSUM_TSO) {
4028 tp->t_flags |= TF_TSO;
4029 tp->t_tsomax = cap.tsomax;
4030 tp->t_tsomaxsegcount = cap.tsomaxsegcount;
4031 tp->t_tsomaxsegsize = cap.tsomaxsegsize;
4032 if (cap.ipsec_tso)
4033 tp->t_flags2 |= TF2_IPSEC_TSO;
4034 }
4035 }
4036
4037 /*
4038 * Determine the MSS option to send on an outgoing SYN.
4039 */
4040 int
tcp_mssopt(struct in_conninfo * inc)4041 tcp_mssopt(struct in_conninfo *inc)
4042 {
4043 int mss = 0;
4044 uint32_t thcmtu = 0;
4045 uint32_t maxmtu = 0;
4046 size_t min_protoh;
4047
4048 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
4049
4050 #ifdef INET6
4051 if (inc->inc_flags & INC_ISIPV6) {
4052 mss = V_tcp_v6mssdflt;
4053 maxmtu = tcp_maxmtu6(inc, NULL);
4054 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
4055 }
4056 #endif
4057 #if defined(INET) && defined(INET6)
4058 else
4059 #endif
4060 #ifdef INET
4061 {
4062 mss = V_tcp_mssdflt;
4063 maxmtu = tcp_maxmtu(inc, NULL);
4064 min_protoh = sizeof(struct tcpiphdr);
4065 }
4066 #endif
4067 #if defined(INET6) || defined(INET)
4068 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
4069 #endif
4070
4071 if (maxmtu && thcmtu)
4072 mss = min(maxmtu, thcmtu) - min_protoh;
4073 else if (maxmtu || thcmtu)
4074 mss = max(maxmtu, thcmtu) - min_protoh;
4075
4076 return (mss);
4077 }
4078
4079 void
tcp_do_prr_ack(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to,sackstatus_t sack_changed,u_int * maxsegp)4080 tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to,
4081 sackstatus_t sack_changed, u_int *maxsegp)
4082 {
4083 int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0;
4084 u_int maxseg;
4085
4086 INP_WLOCK_ASSERT(tptoinpcb(tp));
4087
4088 if (*maxsegp == 0) {
4089 *maxsegp = tcp_maxseg(tp);
4090 }
4091 maxseg = *maxsegp;
4092 /*
4093 * Compute the amount of data that this ACK is indicating
4094 * (del_data) and an estimate of how many bytes are in the
4095 * network.
4096 */
4097 if (tcp_is_sack_recovery(tp, to) ||
4098 (IN_CONGRECOVERY(tp->t_flags) &&
4099 !IN_FASTRECOVERY(tp->t_flags))) {
4100 del_data = tp->sackhint.delivered_data;
4101 if (V_tcp_do_newsack)
4102 pipe = tcp_compute_pipe(tp);
4103 else
4104 pipe = (tp->snd_nxt - tp->snd_fack) +
4105 tp->sackhint.sack_bytes_rexmit;
4106 } else {
4107 if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg +
4108 tp->snd_recover - tp->snd_una)) {
4109 del_data = maxseg;
4110 }
4111 pipe = imax(0, tp->snd_max - tp->snd_una -
4112 imin(INT_MAX / 65536, tp->t_dupacks) * maxseg);
4113 }
4114 tp->sackhint.prr_delivered += del_data;
4115 /*
4116 * Proportional Rate Reduction
4117 */
4118 if (pipe >= tp->snd_ssthresh) {
4119 if (tp->sackhint.recover_fs == 0)
4120 tp->sackhint.recover_fs =
4121 imax(1, tp->snd_nxt - tp->snd_una);
4122 snd_cnt = howmany((long)tp->sackhint.prr_delivered *
4123 tp->snd_ssthresh, tp->sackhint.recover_fs) -
4124 tp->sackhint.prr_out + maxseg - 1;
4125 } else {
4126 /*
4127 * PRR 6937bis heuristic:
4128 * - A partial ack without SACK block beneath snd_recover
4129 * indicates further loss.
4130 * - An SACK scoreboard update adding a new hole indicates
4131 * further loss, so be conservative and send at most one
4132 * segment.
4133 * - Prevent ACK splitting attacks, by being conservative
4134 * when no new data is acked.
4135 */
4136 if ((sack_changed == SACK_NEWLOSS) || (del_data == 0)) {
4137 limit = tp->sackhint.prr_delivered -
4138 tp->sackhint.prr_out;
4139 } else {
4140 limit = imax(tp->sackhint.prr_delivered -
4141 tp->sackhint.prr_out, del_data) +
4142 maxseg;
4143 }
4144 snd_cnt = imin((tp->snd_ssthresh - pipe), limit);
4145 }
4146 snd_cnt = imax(snd_cnt, 0) / maxseg;
4147 /*
4148 * Send snd_cnt new data into the network in response to this ack.
4149 * If there is going to be a SACK retransmission, adjust snd_cwnd
4150 * accordingly.
4151 */
4152 if (IN_FASTRECOVERY(tp->t_flags)) {
4153 if (tcp_is_sack_recovery(tp, to)) {
4154 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4155 } else {
4156 tp->snd_cwnd = (tp->snd_max - tp->snd_una) +
4157 (snd_cnt * maxseg);
4158 }
4159 } else if (IN_CONGRECOVERY(tp->t_flags)) {
4160 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4161 }
4162 tp->snd_cwnd = imax(maxseg, tp->snd_cwnd);
4163 }
4164
4165 /*
4166 * On a partial ack arrives, force the retransmission of the
4167 * next unacknowledged segment. Do not clear tp->t_dupacks.
4168 * By setting snd_nxt to ti_ack, this forces retransmission timer to
4169 * be started again.
4170 */
4171 void
tcp_newreno_partial_ack(struct tcpcb * tp,struct tcphdr * th)4172 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
4173 {
4174 tcp_seq onxt = tp->snd_nxt;
4175 uint32_t ocwnd = tp->snd_cwnd;
4176 u_int maxseg = tcp_maxseg(tp);
4177
4178 INP_WLOCK_ASSERT(tptoinpcb(tp));
4179
4180 tcp_timer_activate(tp, TT_REXMT, 0);
4181 tp->t_rtttime = 0;
4182 if (IN_FASTRECOVERY(tp->t_flags)) {
4183 tp->snd_nxt = th->th_ack;
4184 /*
4185 * Set snd_cwnd to one segment beyond acknowledged offset.
4186 * (tp->snd_una has not yet been updated when this function is called.)
4187 */
4188 tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
4189 tp->t_flags |= TF_ACKNOW;
4190 (void) tcp_output(tp);
4191 tp->snd_cwnd = ocwnd;
4192 if (SEQ_GT(onxt, tp->snd_nxt))
4193 tp->snd_nxt = onxt;
4194 }
4195 /*
4196 * Partial window deflation. Relies on fact that tp->snd_una
4197 * not updated yet.
4198 */
4199 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
4200 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
4201 else
4202 tp->snd_cwnd = 0;
4203 tp->snd_cwnd += maxseg;
4204 }
4205
4206 int
tcp_compute_pipe(struct tcpcb * tp)4207 tcp_compute_pipe(struct tcpcb *tp)
4208 {
4209 if (tp->t_fb->tfb_compute_pipe == NULL) {
4210 return (tp->snd_max - tp->snd_una +
4211 tp->sackhint.sack_bytes_rexmit -
4212 tp->sackhint.sacked_bytes -
4213 tp->sackhint.lost_bytes);
4214 } else {
4215 return((*tp->t_fb->tfb_compute_pipe)(tp));
4216 }
4217 }
4218
4219 uint32_t
tcp_compute_initwnd(uint32_t maxseg)4220 tcp_compute_initwnd(uint32_t maxseg)
4221 {
4222 /*
4223 * Calculate the Initial Window, also used as Restart Window
4224 *
4225 * RFC5681 Section 3.1 specifies the default conservative values.
4226 * RFC3390 specifies slightly more aggressive values.
4227 * RFC6928 increases it to ten segments.
4228 * Support for user specified value for initial flight size.
4229 */
4230 if (V_tcp_initcwnd_segments)
4231 return min(V_tcp_initcwnd_segments * maxseg,
4232 max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
4233 else if (V_tcp_do_rfc3390)
4234 return min(4 * maxseg, max(2 * maxseg, 4380));
4235 else {
4236 /* Per RFC5681 Section 3.1 */
4237 if (maxseg > 2190)
4238 return (2 * maxseg);
4239 else if (maxseg > 1095)
4240 return (3 * maxseg);
4241 else
4242 return (4 * maxseg);
4243 }
4244 }
4245