1 /*-
2 * Copyright (c) 2016-2018 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26 #include <sys/cdefs.h>
27 #include "opt_inet.h"
28 #include "opt_inet6.h"
29 #include "opt_rss.h"
30
31 /**
32 * Some notes about usage.
33 *
34 * The tcp_hpts system is designed to provide a high precision timer
35 * system for tcp. Its main purpose is to provide a mechanism for
36 * pacing packets out onto the wire. It can be used in two ways
37 * by a given TCP stack (and those two methods can be used simultaneously).
38 *
39 * First, and probably the main thing its used by Rack and BBR, it can
40 * be used to call tcp_output() of a transport stack at some time in the future.
41 * The normal way this is done is that tcp_output() of the stack schedules
42 * itself to be called again by calling tcp_hpts_insert(tcpcb, usecs). The
43 * usecs is the time from now that the stack wants to be called and is
44 * passing time directly in microseconds. So a typical
45 * call from the tcp_output() routine might look like:
46 *
47 * tcp_hpts_insert(tp, 550, NULL);
48 *
49 * The above would schedule tcp_output() to be called in 550 microseconds.
50 * Note that if using this mechanism the stack will want to add near
51 * its top a check to prevent unwanted calls (from user land or the
52 * arrival of incoming ack's). So it would add something like:
53 *
54 * if (tcp_in_hpts(inp))
55 * return;
56 *
57 * to prevent output processing until the time alotted has gone by.
58 * Of course this is a bare bones example and the stack will probably
59 * have more consideration then just the above.
60 *
61 * In order to run input queued segments from the HPTS context the
62 * tcp stack must define an input function for
63 * tfb_do_queued_segments(). This function understands
64 * how to dequeue a array of packets that were input and
65 * knows how to call the correct processing routine.
66 *
67 * Locking in this is important as well so most likely the
68 * stack will need to define the tfb_do_segment_nounlock()
69 * splitting tfb_do_segment() into two parts. The main processing
70 * part that does not unlock the INP and returns a value of 1 or 0.
71 * It returns 0 if all is well and the lock was not released. It
72 * returns 1 if we had to destroy the TCB (a reset received etc).
73 * The remains of tfb_do_segment() then become just a simple call
74 * to the tfb_do_segment_nounlock() function and check the return
75 * code and possibly unlock.
76 *
77 * The stack must also set the flag on the INP that it supports this
78 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
79 * this flag as well and will queue packets when it is set.
80 * There are other flags as well INP_MBUF_QUEUE_READY and
81 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
82 * that we are in the pacer for output so there is no
83 * need to wake up the hpts system to get immediate
84 * input. The second tells the LRO code that its okay
85 * if a SACK arrives you can still defer input and let
86 * the current hpts timer run (this is usually set when
87 * a rack timer is up so we know SACK's are happening
88 * on the connection already and don't want to wakeup yet).
89 *
90 * There is a common functions within the rack_bbr_common code
91 * version i.e. ctf_do_queued_segments(). This function
92 * knows how to take the input queue of packets from tp->t_inqueue
93 * and process them digging out all the arguments, calling any bpf tap and
94 * calling into tfb_do_segment_nounlock(). The common
95 * function (ctf_do_queued_segments()) requires that
96 * you have defined the tfb_do_segment_nounlock() as
97 * described above.
98 */
99
100 #include <sys/param.h>
101 #include <sys/bus.h>
102 #include <sys/interrupt.h>
103 #include <sys/module.h>
104 #include <sys/kernel.h>
105 #include <sys/hhook.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/proc.h> /* for proc0 declaration */
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 #include <sys/refcount.h>
114 #include <sys/sched.h>
115 #include <sys/queue.h>
116 #include <sys/smp.h>
117 #include <sys/counter.h>
118 #include <sys/time.h>
119 #include <sys/kthread.h>
120 #include <sys/kern_prefetch.h>
121
122 #include <vm/uma.h>
123 #include <vm/vm.h>
124
125 #include <net/route.h>
126 #include <net/vnet.h>
127
128 #ifdef RSS
129 #include <net/netisr.h>
130 #include <net/rss_config.h>
131 #endif
132
133 #define TCPSTATES /* for logging */
134
135 #include <netinet/in.h>
136 #include <netinet/in_kdtrace.h>
137 #include <netinet/in_pcb.h>
138 #include <netinet/ip.h>
139 #include <netinet/ip_var.h>
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet/tcp.h>
144 #include <netinet/tcp_fsm.h>
145 #include <netinet/tcp_seq.h>
146 #include <netinet/tcp_timer.h>
147 #include <netinet/tcp_var.h>
148 #include <netinet/tcpip.h>
149 #include <netinet/cc/cc.h>
150 #include <netinet/tcp_hpts.h>
151 #include <netinet/tcp_hpts_internal.h>
152 #include <netinet/tcp_log_buf.h>
153
154 #ifdef tcp_offload
155 #include <netinet/tcp_offload.h>
156 #endif
157
158 /* Global instance for TCP HPTS */
159 struct tcp_hptsi *tcp_hptsi_pace;
160
161 /* Default function table for production use. */
162 const struct tcp_hptsi_funcs tcp_hptsi_default_funcs = {
163 .microuptime = microuptime,
164 .swi_add = swi_add,
165 .swi_remove = swi_remove,
166 .swi_sched = swi_sched,
167 .intr_event_bind = intr_event_bind,
168 .intr_event_bind_ithread_cpuset = intr_event_bind_ithread_cpuset,
169 .callout_init = callout_init,
170 .callout_reset_sbt_on = callout_reset_sbt_on,
171 ._callout_stop_safe = _callout_stop_safe,
172 };
173
174 #ifdef TCP_HPTS_KTEST
175 #define microuptime pace->funcs->microuptime
176 #define swi_add pace->funcs->swi_add
177 #define swi_remove pace->funcs->swi_remove
178 #define swi_sched pace->funcs->swi_sched
179 #define intr_event_bind pace->funcs->intr_event_bind
180 #define intr_event_bind_ithread_cpuset pace->funcs->intr_event_bind_ithread_cpuset
181 #define callout_init pace->funcs->callout_init
182 #define callout_reset_sbt_on pace->funcs->callout_reset_sbt_on
183 #define _callout_stop_safe pace->funcs->_callout_stop_safe
184 #endif
185
186 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
187
188 static void tcp_hpts_thread(void *ctx);
189
190 /*
191 * When using the hpts, a TCP stack must make sure
192 * that once a INP_DROPPED flag is applied to a INP
193 * that it does not expect tcp_output() to ever be
194 * called by the hpts. The hpts will *not* call
195 * any output (or input) functions on a TCB that
196 * is in the DROPPED state.
197 *
198 * This implies final ACK's and RST's that might
199 * be sent when a TCB is still around must be
200 * sent from a routine like tcp_respond().
201 */
202 #define LOWEST_SLEEP_ALLOWED 50
203 #define DEFAULT_MIN_SLEEP 250 /* How many usec's is default for hpts sleep
204 * this determines min granularity of the
205 * hpts. If 1, granularity is 10useconds at
206 * the cost of more CPU (context switching).
207 * Note do not set this to 0.
208 */
209 #define DYNAMIC_MIN_SLEEP DEFAULT_MIN_SLEEP
210 #define DYNAMIC_MAX_SLEEP 5000 /* 5ms */
211
212 /* Thresholds for raising/lowering sleep */
213 #define SLOTS_INDICATE_MORE_SLEEP 100 /* This would be 1ms */
214 #define SLOTS_INDICATE_LESS_SLEEP 1000 /* This would indicate 10ms */
215 /**
216 *
217 * Dynamic adjustment of sleeping times is done in "new" mode
218 * where we are depending on syscall returns and lro returns
219 * to push hpts forward mainly and the timer is only a backstop.
220 *
221 * When we are in the "new" mode i.e. conn_cnt > conn_cnt_thresh
222 * then we do a dynamic adjustment on the time we sleep.
223 * Our threshold is if the lateness of the first client served (in slots) is
224 * greater than or equal too slots_indicate_more_sleep (10ms
225 * or 10000 slots). If we were that late, the actual sleep time
226 * is adjusted down by 50%. If the slots_ran is less than
227 * slots_indicate_more_sleep (100 slots or 1000usecs).
228 *
229 */
230
231 #ifdef RSS
232 int tcp_bind_threads = 1;
233 #else
234 int tcp_bind_threads = 2;
235 #endif
236 static int tcp_use_irq_cpu = 0;
237 static int hpts_does_tp_logging = 0;
238 static int32_t tcp_hpts_precision = 120;
239 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
240 static int conn_cnt_thresh = DEFAULT_CONNECTION_THRESHOLD;
241 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
242 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
243
244 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
245 "TCP Hpts controls");
246 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
247 "TCP Hpts statistics");
248
249 counter_u64_t hpts_hopelessly_behind;
250
251 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
252 &hpts_hopelessly_behind,
253 "Number of times hpts could not catch up and was behind hopelessly");
254
255 counter_u64_t hpts_loops;
256
257 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
258 &hpts_loops, "Number of times hpts had to loop to catch up");
259
260 counter_u64_t back_tosleep;
261
262 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
263 &back_tosleep, "Number of times hpts found no tcbs");
264
265 counter_u64_t combined_wheel_wrap;
266
267 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
268 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
269
270 counter_u64_t wheel_wrap;
271
272 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
273 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
274
275 counter_u64_t hpts_direct_call;
276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
277 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
278
279 counter_u64_t hpts_wake_timeout;
280
281 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
282 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
283
284 counter_u64_t hpts_direct_awakening;
285
286 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
287 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
288
289 counter_u64_t hpts_back_tosleep;
290
291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
292 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
293
294 counter_u64_t cpu_uses_flowid;
295 counter_u64_t cpu_uses_random;
296
297 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
298 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
299 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
300 &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
301
302 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
303 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
304 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
305 &tcp_bind_threads, 2,
306 "Thread Binding tunable");
307 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
308 &tcp_use_irq_cpu, 0,
309 "Use of irq CPU tunable");
310 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
311 &tcp_hpts_precision, 120,
312 "Value for PRE() precision of callout");
313 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
314 &conn_cnt_thresh, 0,
315 "How many connections (below) make us use the callout based mechanism");
316 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
317 &hpts_does_tp_logging, 0,
318 "Do we add to any tp that has logging on pacer logs");
319 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
320 &dynamic_min_sleep, 250,
321 "What is the dynamic minsleep value?");
322 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
323 &dynamic_max_sleep, 5000,
324 "What is the dynamic maxsleep value?");
325
326 static int32_t max_pacer_loops = 10;
327 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
328 &max_pacer_loops, 10,
329 "What is the maximum number of times the pacer will loop trying to catch up");
330
331 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
332
333 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
334
335 static int
sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)336 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
337 {
338 int error;
339 uint32_t new;
340
341 new = hpts_sleep_max;
342 error = sysctl_handle_int(oidp, &new, 0, req);
343 if (error == 0 && req->newptr) {
344 if ((new < (dynamic_min_sleep/HPTS_USECS_PER_SLOT)) ||
345 (new > HPTS_MAX_SLEEP_ALLOWED))
346 error = EINVAL;
347 else
348 hpts_sleep_max = new;
349 }
350 return (error);
351 }
352
353 static int
sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)354 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
355 {
356 int error;
357 uint32_t new;
358
359 new = tcp_min_hptsi_time;
360 error = sysctl_handle_int(oidp, &new, 0, req);
361 if (error == 0 && req->newptr) {
362 if (new < LOWEST_SLEEP_ALLOWED)
363 error = EINVAL;
364 else
365 tcp_min_hptsi_time = new;
366 }
367 return (error);
368 }
369
370 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
371 CTLTYPE_UINT | CTLFLAG_RW,
372 &hpts_sleep_max, 0,
373 &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
374 "Maximum time hpts will sleep in slots");
375
376 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
377 CTLTYPE_UINT | CTLFLAG_RW,
378 &tcp_min_hptsi_time, 0,
379 &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
380 "The minimum time the hpts must sleep before processing more slots");
381
382 static int slots_indicate_more_sleep = SLOTS_INDICATE_MORE_SLEEP;
383 static int slots_indicate_less_sleep = SLOTS_INDICATE_LESS_SLEEP;
384 static int tcp_hpts_no_wake_over_thresh = 1;
385
386 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
387 &slots_indicate_more_sleep, 0,
388 "If we only process this many or less on a timeout, we need longer sleep on the next callout");
389 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
390 &slots_indicate_less_sleep, 0,
391 "If we process this many or more on a timeout, we need less sleep on the next callout");
392 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
393 &tcp_hpts_no_wake_over_thresh, 0,
394 "When we are over the threshold on the pacer do we prohibit wakeups?");
395
396 uint16_t
tcp_hptsi_random_cpu(struct tcp_hptsi * pace)397 tcp_hptsi_random_cpu(struct tcp_hptsi *pace)
398 {
399 uint16_t cpuid;
400 uint32_t ran;
401
402 ran = arc4random();
403 cpuid = (((ran & 0xffff) % mp_ncpus) % pace->rp_num_hptss);
404 return (cpuid);
405 }
406
407 static void
tcp_hpts_log(struct tcp_hpts_entry * hpts,struct tcpcb * tp,struct timeval * tv,int slots_to_run,int idx,bool from_callout)408 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
409 int slots_to_run, int idx, bool from_callout)
410 {
411 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
412 union tcp_log_stackspecific log;
413 /*
414 * Unused logs are
415 * 64 bit - delRate, rttProp, bw_inuse
416 * 16 bit - cwnd_gain
417 * 8 bit - bbr_state, bbr_substate, inhpts;
418 */
419 memset(&log, 0, sizeof(log));
420 log.u_bbr.flex1 = hpts->p_nxt_slot;
421 log.u_bbr.flex2 = hpts->p_cur_slot;
422 log.u_bbr.flex3 = hpts->p_prev_slot;
423 log.u_bbr.flex4 = idx;
424 log.u_bbr.flex6 = hpts->p_on_queue_cnt;
425 log.u_bbr.flex7 = hpts->p_cpu;
426 log.u_bbr.flex8 = (uint8_t)from_callout;
427 log.u_bbr.inflight = slots_to_run;
428 log.u_bbr.applimited = hpts->overidden_sleep;
429 log.u_bbr.timeStamp = tcp_tv_to_usec(tv);
430 log.u_bbr.epoch = hpts->saved_curslot;
431 log.u_bbr.lt_epoch = hpts->saved_prev_slot;
432 log.u_bbr.pkts_out = hpts->p_delayed_by;
433 log.u_bbr.lost = hpts->p_hpts_sleep_time;
434 log.u_bbr.pacing_gain = hpts->p_cpu;
435 log.u_bbr.pkt_epoch = hpts->p_runningslot;
436 log.u_bbr.use_lt_bw = 1;
437 TCP_LOG_EVENTP(tp, NULL,
438 &tptosocket(tp)->so_rcv,
439 &tptosocket(tp)->so_snd,
440 BBR_LOG_HPTSDIAG, 0,
441 0, &log, false, tv);
442 }
443 }
444
445 /*
446 * Timeout handler for the HPTS sleep callout. It immediately schedules the SWI
447 * for the HPTS entry to run.
448 */
449 static void
tcp_hpts_sleep_timeout(void * arg)450 tcp_hpts_sleep_timeout(void *arg)
451 {
452 #ifdef TCP_HPTS_KTEST
453 struct tcp_hptsi *pace;
454 #endif
455 struct tcp_hpts_entry *hpts;
456
457 hpts = (struct tcp_hpts_entry *)arg;
458 #ifdef TCP_HPTS_KTEST
459 pace = hpts->p_hptsi;
460 #endif
461 swi_sched(hpts->ie_cookie, 0);
462 }
463
464 /*
465 * Reset the HPTS callout timer with the provided timeval. Returns the results
466 * of the callout_reset_sbt_on() function.
467 */
468 static int
tcp_hpts_sleep(struct tcp_hpts_entry * hpts,struct timeval * tv)469 tcp_hpts_sleep(struct tcp_hpts_entry *hpts, struct timeval *tv)
470 {
471 #ifdef TCP_HPTS_KTEST
472 struct tcp_hptsi *pace;
473 #endif
474 sbintime_t sb;
475
476 #ifdef TCP_HPTS_KTEST
477 pace = hpts->p_hptsi;
478 #endif
479
480 /* Store off to make visible the actual sleep time */
481 hpts->sleeping = tv->tv_usec;
482
483 sb = tvtosbt(*tv);
484 return (callout_reset_sbt_on(
485 &hpts->co, sb, 0, tcp_hpts_sleep_timeout, hpts, hpts->p_cpu,
486 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))));
487 }
488
489 /*
490 * Schedules the SWI for the HTPS entry to run, if not already scheduled or
491 * running.
492 */
493 void
tcp_hpts_wake(struct tcp_hpts_entry * hpts)494 tcp_hpts_wake(struct tcp_hpts_entry *hpts)
495 {
496 #ifdef TCP_HPTS_KTEST
497 struct tcp_hptsi *pace;
498 #endif
499
500 HPTS_MTX_ASSERT(hpts);
501
502 #ifdef TCP_HPTS_KTEST
503 pace = hpts->p_hptsi;
504 #endif
505
506 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
507 hpts->p_direct_wake = 0;
508 return;
509 }
510 if (hpts->p_hpts_wake_scheduled == 0) {
511 hpts->p_hpts_wake_scheduled = 1;
512 swi_sched(hpts->ie_cookie, 0);
513 }
514 }
515
516 static void
tcp_hpts_insert_internal(struct tcpcb * tp,struct tcp_hpts_entry * hpts)517 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
518 {
519 struct inpcb *inp = tptoinpcb(tp);
520 struct hptsh *hptsh;
521
522 INP_WLOCK_ASSERT(inp);
523 HPTS_MTX_ASSERT(hpts);
524 MPASS(hpts->p_cpu == tp->t_hpts_cpu);
525 MPASS(!(inp->inp_flags & INP_DROPPED));
526
527 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
528
529 if (tp->t_in_hpts == IHPTS_NONE) {
530 tp->t_in_hpts = IHPTS_ONQUEUE;
531 in_pcbref(inp);
532 } else if (tp->t_in_hpts == IHPTS_MOVING) {
533 tp->t_in_hpts = IHPTS_ONQUEUE;
534 } else
535 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
536 tp->t_hpts_gencnt = hptsh->gencnt;
537
538 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
539 hptsh->count++;
540 hpts->p_on_queue_cnt++;
541 }
542
543 static struct tcp_hpts_entry *
tcp_hpts_lock(struct tcp_hptsi * pace,struct tcpcb * tp)544 tcp_hpts_lock(struct tcp_hptsi *pace, struct tcpcb *tp)
545 {
546 struct tcp_hpts_entry *hpts;
547
548 INP_LOCK_ASSERT(tptoinpcb(tp));
549
550 hpts = pace->rp_ent[tp->t_hpts_cpu];
551 HPTS_LOCK(hpts);
552
553 return (hpts);
554 }
555
556 static void
tcp_hpts_release(struct tcpcb * tp)557 tcp_hpts_release(struct tcpcb *tp)
558 {
559 bool released __diagused;
560
561 tp->t_in_hpts = IHPTS_NONE;
562 released = in_pcbrele_wlocked(tptoinpcb(tp));
563 MPASS(released == false);
564 }
565
566 /*
567 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU
568 * is preferred on the first incoming packet. Before that avoid crowding
569 * a single CPU with newborn connections and use a random one.
570 * This initialization is normally called on a newborn tcpcb, but potentially
571 * can be called once again if stack is switched. In that case we inherit CPU
572 * that the previous stack has set, be it random or not. In extreme cases,
573 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state
574 * and has never received a first packet.
575 */
576 void
__tcp_hpts_init(struct tcp_hptsi * pace,struct tcpcb * tp)577 __tcp_hpts_init(struct tcp_hptsi *pace, struct tcpcb *tp)
578 {
579 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) {
580 tp->t_hpts_cpu = tcp_hptsi_random_cpu(pace);
581 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
582 }
583 }
584
585 /*
586 * Called normally with the INP_LOCKED but it
587 * does not matter, the hpts lock is the key
588 * but the lock order allows us to hold the
589 * INP lock and then get the hpts lock.
590 */
591 void
__tcp_hpts_remove(struct tcp_hptsi * pace,struct tcpcb * tp)592 __tcp_hpts_remove(struct tcp_hptsi *pace, struct tcpcb *tp)
593 {
594 struct tcp_hpts_entry *hpts;
595 struct hptsh *hptsh;
596
597 INP_WLOCK_ASSERT(tptoinpcb(tp));
598
599 hpts = tcp_hpts_lock(pace, tp);
600 if (tp->t_in_hpts == IHPTS_ONQUEUE) {
601 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
602 tp->t_hpts_request = 0;
603 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
604 TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
605 MPASS(hptsh->count > 0);
606 hptsh->count--;
607 MPASS(hpts->p_on_queue_cnt > 0);
608 hpts->p_on_queue_cnt--;
609 tcp_hpts_release(tp);
610 } else {
611 /*
612 * tcp_hptsi() now owns the TAILQ head of this inp.
613 * Can't TAILQ_REMOVE, just mark it.
614 */
615 #ifdef INVARIANTS
616 struct tcpcb *tmp;
617
618 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
619 MPASS(tmp != tp);
620 #endif
621 tp->t_in_hpts = IHPTS_MOVING;
622 tp->t_hpts_slot = -1;
623 }
624 } else if (tp->t_in_hpts == IHPTS_MOVING) {
625 /*
626 * Handle a special race condition:
627 * tcp_hptsi() moves inpcb to detached tailq
628 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
629 * tcp_hpts_insert() sets slot to a meaningful value
630 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
631 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
632 */
633 tp->t_hpts_slot = -1;
634 }
635 HPTS_UNLOCK(hpts);
636 }
637
638 static inline int
hpts_slot(uint32_t wheel_slot,uint32_t plus)639 hpts_slot(uint32_t wheel_slot, uint32_t plus)
640 {
641 /*
642 * Given a slot on the wheel, what slot
643 * is that plus slots out?
644 */
645 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid slot %u not on wheel", wheel_slot));
646 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
647 }
648
649 static inline int
cts_to_wheel(uint32_t cts)650 cts_to_wheel(uint32_t cts)
651 {
652 /*
653 * Given a timestamp in useconds map it to our limited space wheel.
654 */
655 return ((cts / HPTS_USECS_PER_SLOT) % NUM_OF_HPTSI_SLOTS);
656 }
657
658 static inline int
hpts_slots_diff(int prev_slot,int slot_now)659 hpts_slots_diff(int prev_slot, int slot_now)
660 {
661 /*
662 * Given two slots that are someplace
663 * on our wheel. How far are they apart?
664 */
665 if (slot_now > prev_slot)
666 return (slot_now - prev_slot);
667 else if (slot_now == prev_slot)
668 /*
669 * Special case, same means we can go all of our
670 * wheel less one slot.
671 */
672 return (NUM_OF_HPTSI_SLOTS - 1);
673 else
674 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
675 }
676
677 /*
678 * Given a slot on the wheel that is the current time
679 * mapped to the wheel (wheel_slot), what is the maximum
680 * distance forward that can be obtained without
681 * wrapping past either prev_slot or running_slot
682 * depending on the htps state? Also if passed
683 * a uint32_t *, fill it with the slot location.
684 *
685 * Note if you do not give this function the current
686 * time (that you think it is) mapped to the wheel slot
687 * then the results will not be what you expect and
688 * could lead to invalid inserts.
689 */
690 static inline int32_t
max_slots_available(struct tcp_hpts_entry * hpts,uint32_t wheel_slot,uint32_t * target_slot)691 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
692 {
693 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
694
695 if ((hpts->p_hpts_active == 1) &&
696 (hpts->p_wheel_complete == 0)) {
697 end_slot = hpts->p_runningslot;
698 /* Back up one slot */
699 if (end_slot == 0)
700 end_slot = NUM_OF_HPTSI_SLOTS - 1;
701 else
702 end_slot--;
703 if (target_slot)
704 *target_slot = end_slot;
705 } else {
706 /*
707 * For the case where we are
708 * not active, or we have
709 * completed the pass over
710 * the wheel, we can use the
711 * prev slot and subtract one from it. This puts us
712 * as far out as possible on the wheel.
713 */
714 end_slot = hpts->p_prev_slot;
715 if (end_slot == 0)
716 end_slot = NUM_OF_HPTSI_SLOTS - 1;
717 else
718 end_slot--;
719 if (target_slot)
720 *target_slot = end_slot;
721 /*
722 * Now we have close to the full wheel left minus the
723 * time it has been since the pacer went to sleep. Note
724 * that wheel_slot, passed in, should be the current time
725 * from the perspective of the caller, mapped to the wheel.
726 */
727 if (hpts->p_prev_slot != wheel_slot)
728 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
729 else
730 dis_to_travel = 1;
731 /*
732 * dis_to_travel in this case is the space from when the
733 * pacer stopped (p_prev_slot) and where our wheel_slot
734 * is now. To know how many slots we can put it in we
735 * subtract from the wheel size. We would not want
736 * to place something after p_prev_slot or it will
737 * get ran too soon.
738 */
739 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
740 }
741 /*
742 * So how many slots are open between p_runningslot -> p_cur_slot
743 * that is what is currently un-available for insertion. Special
744 * case when we are at the last slot, this gets 1, so that
745 * the answer to how many slots are available is all but 1.
746 */
747 if (hpts->p_runningslot == hpts->p_cur_slot)
748 dis_to_travel = 1;
749 else
750 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
751 /*
752 * How long has the pacer been running?
753 */
754 if (hpts->p_cur_slot != wheel_slot) {
755 /* The pacer is a bit late */
756 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
757 } else {
758 /* The pacer is right on time, now == pacers start time */
759 pacer_to_now = 0;
760 }
761 /*
762 * To get the number left we can insert into we simply
763 * subtract the distance the pacer has to run from how
764 * many slots there are.
765 */
766 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
767 /*
768 * Now how many of those we will eat due to the pacer's
769 * time (p_cur_slot) of start being behind the
770 * real time (wheel_slot)?
771 */
772 if (avail_on_wheel <= pacer_to_now) {
773 /*
774 * Wheel wrap, we can't fit on the wheel, that
775 * is unusual the system must be way overloaded!
776 * Insert into the assured slot, and return special
777 * "0".
778 */
779 counter_u64_add(combined_wheel_wrap, 1);
780 if (target_slot)
781 *target_slot = hpts->p_nxt_slot;
782 return (0);
783 } else {
784 /*
785 * We know how many slots are open
786 * on the wheel (the reverse of what
787 * is left to run. Take away the time
788 * the pacer started to now (wheel_slot)
789 * and that tells you how many slots are
790 * open that can be inserted into that won't
791 * be touched by the pacer until later.
792 */
793 return (avail_on_wheel - pacer_to_now);
794 }
795 }
796
797
798 #ifdef INVARIANTS
799 static void
check_if_slot_would_be_wrong(struct tcp_hpts_entry * hpts,struct tcpcb * tp,uint32_t hptsslot)800 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
801 uint32_t hptsslot)
802 {
803 /*
804 * Sanity checks for the pacer with invariants
805 * on insert.
806 */
807 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
808 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
809 if ((hpts->p_hpts_active) &&
810 (hpts->p_wheel_complete == 0)) {
811 /*
812 * If the pacer is processing a arc
813 * of the wheel, we need to make
814 * sure we are not inserting within
815 * that arc.
816 */
817 int distance, yet_to_run;
818
819 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
820 if (hpts->p_runningslot != hpts->p_cur_slot)
821 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
822 else
823 yet_to_run = 0; /* processing last slot */
824 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
825 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
826 hptsslot, distance, yet_to_run, hpts->p_runningslot,
827 hpts->p_cur_slot));
828 }
829 }
830 #endif
831
832 void
__tcp_hpts_insert(struct tcp_hptsi * pace,struct tcpcb * tp,uint32_t usecs,struct hpts_diag * diag)833 __tcp_hpts_insert(struct tcp_hptsi *pace, struct tcpcb *tp, uint32_t usecs,
834 struct hpts_diag *diag)
835 {
836 struct tcp_hpts_entry *hpts;
837 struct timeval tv;
838 uint32_t slot, wheel_cts, last_slot, need_new_to = 0;
839 int32_t wheel_slot, maxslots;
840 bool need_wakeup = false;
841
842 INP_WLOCK_ASSERT(tptoinpcb(tp));
843 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
844 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE));
845
846 /*
847 * Convert microseconds to slots for internal use.
848 * We now return the next-slot the hpts will be on, beyond its
849 * current run (if up) or where it was when it stopped if it is
850 * sleeping.
851 */
852 slot = HPTS_USEC_TO_SLOTS(usecs);
853 hpts = tcp_hpts_lock(pace, tp);
854 microuptime(&tv);
855 if (diag) {
856 memset(diag, 0, sizeof(struct hpts_diag));
857 diag->p_hpts_active = hpts->p_hpts_active;
858 diag->p_prev_slot = hpts->p_prev_slot;
859 diag->p_runningslot = hpts->p_runningslot;
860 diag->p_nxt_slot = hpts->p_nxt_slot;
861 diag->p_cur_slot = hpts->p_cur_slot;
862 diag->slot_req = slot;
863 diag->p_on_min_sleep = hpts->p_on_min_sleep;
864 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
865 }
866 if (slot == 0) {
867 /* Ok we need to set it on the hpts in the current slot */
868 tp->t_hpts_request = 0;
869 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
870 /*
871 * A sleeping hpts we want in next slot to run
872 * note that in this state p_prev_slot == p_cur_slot
873 */
874 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
875 if ((hpts->p_on_min_sleep == 0) &&
876 (hpts->p_hpts_active == 0))
877 need_wakeup = true;
878 } else
879 tp->t_hpts_slot = hpts->p_runningslot;
880 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
881 tcp_hpts_insert_internal(tp, hpts);
882 if (need_wakeup) {
883 /*
884 * Activate the hpts if it is sleeping and its
885 * timeout is not 1.
886 */
887 hpts->p_direct_wake = 1;
888 tcp_hpts_wake(hpts);
889 }
890 HPTS_UNLOCK(hpts);
891
892 return;
893 }
894 /* Get the current time stamp and map it onto the wheel */
895 wheel_cts = tcp_tv_to_usec(&tv);
896 wheel_slot = cts_to_wheel(wheel_cts);
897 /* Now what's the max we can place it at? */
898 maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
899 if (diag) {
900 diag->wheel_slot = wheel_slot;
901 diag->maxslots = maxslots;
902 diag->wheel_cts = wheel_cts;
903 }
904 if (maxslots == 0) {
905 /* The pacer is in a wheel wrap behind, yikes! */
906 if (slot > 1) {
907 /*
908 * Reduce by 1 to prevent a forever loop in
909 * case something else is wrong. Note this
910 * probably does not hurt because the pacer
911 * if its true is so far behind we will be
912 * > 1second late calling anyway.
913 */
914 slot--;
915 }
916 tp->t_hpts_slot = last_slot;
917 tp->t_hpts_request = slot;
918 } else if (maxslots >= slot) {
919 /* It all fits on the wheel */
920 tp->t_hpts_request = 0;
921 tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
922 } else {
923 /* It does not fit */
924 tp->t_hpts_request = slot - maxslots;
925 tp->t_hpts_slot = last_slot;
926 }
927 if (diag) {
928 diag->time_remaining = tp->t_hpts_request;
929 diag->inp_hptsslot = tp->t_hpts_slot;
930 }
931 #ifdef INVARIANTS
932 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot);
933 #endif
934 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
935 tcp_hpts_insert_internal(tp, hpts);
936 if ((hpts->p_hpts_active == 0) &&
937 (tp->t_hpts_request == 0) &&
938 (hpts->p_on_min_sleep == 0)) {
939 /*
940 * The hpts is sleeping and NOT on a minimum
941 * sleep time, we need to figure out where
942 * it will wake up at and if we need to reschedule
943 * its time-out.
944 */
945 uint32_t have_slept, yet_to_sleep;
946
947 /* Now do we need to restart the hpts's timer? */
948 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
949 if (have_slept < hpts->p_hpts_sleep_time)
950 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
951 else {
952 /* We are over-due */
953 yet_to_sleep = 0;
954 need_wakeup = 1;
955 }
956 if (diag) {
957 diag->have_slept = have_slept;
958 diag->yet_to_sleep = yet_to_sleep;
959 }
960 if (yet_to_sleep &&
961 (yet_to_sleep > slot)) {
962 /*
963 * We need to reschedule the hpts's time-out.
964 */
965 hpts->p_hpts_sleep_time = slot;
966 need_new_to = slot * HPTS_USECS_PER_SLOT;
967 }
968 }
969 /*
970 * Now how far is the hpts sleeping to? if active is 1, its
971 * up and running we do nothing, otherwise we may need to
972 * reschedule its callout if need_new_to is set from above.
973 */
974 if (need_wakeup) {
975 hpts->p_direct_wake = 1;
976 tcp_hpts_wake(hpts);
977 if (diag) {
978 diag->need_new_to = 0;
979 diag->co_ret = 0xffff0000;
980 }
981 } else if (need_new_to) {
982 int32_t co_ret;
983 struct timeval tv;
984
985 tv.tv_sec = 0;
986 tv.tv_usec = 0;
987 while (need_new_to > HPTS_USEC_IN_SEC) {
988 tv.tv_sec++;
989 need_new_to -= HPTS_USEC_IN_SEC;
990 }
991 tv.tv_usec = need_new_to; /* XXX: Why is this sleeping over the max? */
992 co_ret = tcp_hpts_sleep(hpts, &tv);
993 if (diag) {
994 diag->need_new_to = need_new_to;
995 diag->co_ret = co_ret;
996 }
997 }
998 HPTS_UNLOCK(hpts);
999 }
1000
1001 static uint16_t
hpts_cpuid(struct tcp_hptsi * pace,struct tcpcb * tp,int * failed)1002 hpts_cpuid(struct tcp_hptsi *pace, struct tcpcb *tp, int *failed)
1003 {
1004 struct inpcb *inp = tptoinpcb(tp);
1005 u_int cpuid;
1006 #ifdef NUMA
1007 struct hpts_domain_info *di;
1008 #endif
1009
1010 *failed = 0;
1011 if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
1012 return (tp->t_hpts_cpu);
1013 }
1014 /*
1015 * If we are using the irq cpu set by LRO or
1016 * the driver then it overrides all other domains.
1017 */
1018 if (tcp_use_irq_cpu) {
1019 if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1020 *failed = 1;
1021 return (0);
1022 }
1023 return (tp->t_lro_cpu);
1024 }
1025 /* If one is set the other must be the same */
1026 #ifdef RSS
1027 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1028 if (cpuid == NETISR_CPUID_NONE)
1029 return (tcp_hptsi_random_cpu(pace));
1030 else
1031 return (cpuid);
1032 #endif
1033 /*
1034 * We don't have a flowid -> cpuid mapping, so cheat and just map
1035 * unknown cpuids to curcpu. Not the best, but apparently better
1036 * than defaulting to swi 0.
1037 */
1038 if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1039 counter_u64_add(cpu_uses_random, 1);
1040 return (tcp_hptsi_random_cpu(pace));
1041 }
1042 /*
1043 * Hash to a thread based on the flowid. If we are using numa,
1044 * then restrict the hash to the numa domain where the inp lives.
1045 */
1046
1047 #ifdef NUMA
1048 if ((vm_ndomains == 1) ||
1049 (inp->inp_numa_domain == M_NODOM)) {
1050 #endif
1051 cpuid = inp->inp_flowid % mp_ncpus;
1052 #ifdef NUMA
1053 } else {
1054 /* Hash into the cpu's that use that domain */
1055 di = &pace->domains[inp->inp_numa_domain];
1056 cpuid = di->cpu[inp->inp_flowid % di->count];
1057 }
1058 #endif
1059 counter_u64_add(cpu_uses_flowid, 1);
1060 return (cpuid);
1061 }
1062
1063 static void
tcp_hpts_set_max_sleep(struct tcp_hpts_entry * hpts,int wrap_loop_cnt)1064 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1065 {
1066 uint32_t t = 0, i;
1067
1068 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1069 /*
1070 * Find next slot that is occupied and use that to
1071 * be the sleep time.
1072 */
1073 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1074 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1075 break;
1076 }
1077 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1078 }
1079 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1080 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1081 } else {
1082 /* No one on the wheel sleep for all but 400 slots or sleep max */
1083 hpts->p_hpts_sleep_time = hpts_sleep_max;
1084 }
1085 }
1086
1087 static bool
tcp_hpts_different_slots(uint32_t cts,uint32_t cts_last_run)1088 tcp_hpts_different_slots(uint32_t cts, uint32_t cts_last_run)
1089 {
1090 return ((cts / HPTS_USECS_PER_SLOT) != (cts_last_run / HPTS_USECS_PER_SLOT));
1091 }
1092
1093 int32_t
tcp_hptsi(struct tcp_hpts_entry * hpts,bool from_callout)1094 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout)
1095 {
1096 struct tcp_hptsi *pace;
1097 struct tcpcb *tp;
1098 struct timeval tv;
1099 int32_t slots_to_run, i, error;
1100 int32_t loop_cnt = 0;
1101 int32_t did_prefetch = 0;
1102 int32_t prefetch_tp = 0;
1103 int32_t wrap_loop_cnt = 0;
1104 int32_t slot_pos_of_endpoint = 0;
1105 int32_t orig_exit_slot;
1106 uint32_t cts, cts_last_run;
1107 bool completed_measure, seen_endpoint;
1108
1109 completed_measure = false;
1110 seen_endpoint = false;
1111
1112 HPTS_MTX_ASSERT(hpts);
1113 NET_EPOCH_ASSERT();
1114
1115 pace = hpts->p_hptsi;
1116 MPASS(pace != NULL);
1117
1118 /* record previous info for any logging */
1119 hpts->saved_curslot = hpts->p_cur_slot;
1120 hpts->saved_prev_slot = hpts->p_prev_slot;
1121
1122 microuptime(&tv);
1123 cts_last_run = pace->cts_last_ran[hpts->p_cpu];
1124 pace->cts_last_ran[hpts->p_cpu] = cts = tcp_tv_to_usec(&tv);
1125
1126 orig_exit_slot = hpts->p_cur_slot = cts_to_wheel(cts);
1127 if ((hpts->p_on_queue_cnt == 0) ||
1128 !tcp_hpts_different_slots(cts, cts_last_run)) {
1129 /*
1130 * Not enough time has yet passed or nothing to do.
1131 */
1132 hpts->p_prev_slot = hpts->p_cur_slot;
1133 goto no_run;
1134 }
1135 again:
1136 hpts->p_wheel_complete = 0;
1137 HPTS_MTX_ASSERT(hpts);
1138 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1139 if ((hpts->p_on_queue_cnt != 0) &&
1140 ((cts - cts_last_run) >
1141 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_USECS_PER_SLOT))) {
1142 /*
1143 * Wheel wrap is occuring, basically we
1144 * are behind and the distance between
1145 * run's has spread so much it has exceeded
1146 * the time on the wheel (1.024 seconds). This
1147 * is ugly and should NOT be happening. We
1148 * need to run the entire wheel. We last processed
1149 * p_prev_slot, so that needs to be the last slot
1150 * we run. The next slot after that should be our
1151 * reserved first slot for new, and then starts
1152 * the running position. Now the problem is the
1153 * reserved "not to yet" place does not exist
1154 * and there may be inp's in there that need
1155 * running. We can merge those into the
1156 * first slot at the head.
1157 */
1158 wrap_loop_cnt++;
1159 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1160 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1161 /*
1162 * Adjust p_cur_slot to be where we are starting from
1163 * hopefully we will catch up (fat chance if something
1164 * is broken this bad :( )
1165 */
1166 hpts->p_cur_slot = hpts->p_prev_slot;
1167 /*
1168 * The next slot has guys to run too, and that would
1169 * be where we would normally start, lets move them into
1170 * the next slot (p_prev_slot + 2) so that we will
1171 * run them, the extra 10usecs of late (by being
1172 * put behind) does not really matter in this situation.
1173 */
1174 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1175 t_hpts) {
1176 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1177 MPASS(tp->t_hpts_gencnt ==
1178 hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1179 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1180
1181 /*
1182 * Update gencnt and nextslot accordingly to match
1183 * the new location. This is safe since it takes both
1184 * the INP lock and the pacer mutex to change the
1185 * t_hptsslot and t_hpts_gencnt.
1186 */
1187 tp->t_hpts_gencnt =
1188 hpts->p_hptss[hpts->p_runningslot].gencnt;
1189 tp->t_hpts_slot = hpts->p_runningslot;
1190 }
1191 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1192 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1193 hpts->p_hptss[hpts->p_runningslot].count +=
1194 hpts->p_hptss[hpts->p_nxt_slot].count;
1195 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1196 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1197 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1198 counter_u64_add(wheel_wrap, 1);
1199 } else {
1200 /*
1201 * Nxt slot is always one after p_runningslot though
1202 * its not used usually unless we are doing wheel wrap.
1203 */
1204 hpts->p_nxt_slot = hpts->p_prev_slot;
1205 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1206 }
1207 if (hpts->p_on_queue_cnt == 0) {
1208 goto no_one;
1209 }
1210 for (i = 0; i < slots_to_run; i++) {
1211 struct tcpcb *tp, *ntp;
1212 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1213 struct hptsh *hptsh;
1214 uint32_t runningslot;
1215
1216 /*
1217 * Calculate our delay, if there are no extra slots there
1218 * was not any (i.e. if slots_to_run == 1, no delay).
1219 */
1220 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1221 HPTS_USECS_PER_SLOT;
1222
1223 runningslot = hpts->p_runningslot;
1224 hptsh = &hpts->p_hptss[runningslot];
1225 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1226 hpts->p_on_queue_cnt -= hptsh->count;
1227 hptsh->count = 0;
1228 hptsh->gencnt++;
1229
1230 HPTS_UNLOCK(hpts);
1231
1232 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1233 struct inpcb *inp = tptoinpcb(tp);
1234 bool set_cpu;
1235
1236 if (ntp != NULL) {
1237 /*
1238 * If we have a next tcpcb, see if we can
1239 * prefetch it. Note this may seem
1240 * "risky" since we have no locks (other
1241 * than the previous inp) and there no
1242 * assurance that ntp was not pulled while
1243 * we were processing tp and freed. If this
1244 * occurred it could mean that either:
1245 *
1246 * a) Its NULL (which is fine we won't go
1247 * here) <or> b) Its valid (which is cool we
1248 * will prefetch it) <or> c) The inp got
1249 * freed back to the slab which was
1250 * reallocated. Then the piece of memory was
1251 * re-used and something else (not an
1252 * address) is in inp_ppcb. If that occurs
1253 * we don't crash, but take a TLB shootdown
1254 * performance hit (same as if it was NULL
1255 * and we tried to pre-fetch it).
1256 *
1257 * Considering that the likelyhood of <c> is
1258 * quite rare we will take a risk on doing
1259 * this. If performance drops after testing
1260 * we can always take this out. NB: the
1261 * kern_prefetch on amd64 actually has
1262 * protection against a bad address now via
1263 * the DMAP_() tests. This will prevent the
1264 * TLB hit, and instead if <c> occurs just
1265 * cause us to load cache with a useless
1266 * address (to us).
1267 *
1268 * XXXGL: this comment and the prefetch action
1269 * could be outdated after tp == inp change.
1270 */
1271 kern_prefetch(ntp, &prefetch_tp);
1272 prefetch_tp = 1;
1273 }
1274
1275 /* For debugging */
1276 if (!seen_endpoint) {
1277 seen_endpoint = true;
1278 orig_exit_slot = slot_pos_of_endpoint =
1279 runningslot;
1280 } else if (!completed_measure) {
1281 /* Record the new position */
1282 orig_exit_slot = runningslot;
1283 }
1284
1285 INP_WLOCK(inp);
1286 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1287 set_cpu = true;
1288 } else {
1289 set_cpu = false;
1290 }
1291
1292 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1293 if (tp->t_hpts_slot == -1) {
1294 tp->t_in_hpts = IHPTS_NONE;
1295 if (in_pcbrele_wlocked(inp) == false)
1296 INP_WUNLOCK(inp);
1297 } else {
1298 HPTS_LOCK(hpts);
1299 tcp_hpts_insert_internal(tp, hpts);
1300 HPTS_UNLOCK(hpts);
1301 INP_WUNLOCK(inp);
1302 }
1303 continue;
1304 }
1305
1306 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1307 MPASS(!(inp->inp_flags & INP_DROPPED));
1308 KASSERT(runningslot == tp->t_hpts_slot,
1309 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1310 hpts, inp, runningslot, tp->t_hpts_slot));
1311
1312 if (tp->t_hpts_request) {
1313 /*
1314 * This guy is deferred out further in time
1315 * then our wheel had available on it.
1316 * Push him back on the wheel or run it
1317 * depending.
1318 */
1319 uint32_t maxslots, last_slot, remaining_slots;
1320
1321 remaining_slots = slots_to_run - (i + 1);
1322 if (tp->t_hpts_request > remaining_slots) {
1323 HPTS_LOCK(hpts);
1324 /*
1325 * How far out can we go?
1326 */
1327 maxslots = max_slots_available(hpts,
1328 hpts->p_cur_slot, &last_slot);
1329 if (maxslots >= tp->t_hpts_request) {
1330 /* We can place it finally to
1331 * be processed. */
1332 tp->t_hpts_slot = hpts_slot(
1333 hpts->p_runningslot,
1334 tp->t_hpts_request);
1335 tp->t_hpts_request = 0;
1336 } else {
1337 /* Work off some more time */
1338 tp->t_hpts_slot = last_slot;
1339 tp->t_hpts_request -=
1340 maxslots;
1341 }
1342 tcp_hpts_insert_internal(tp, hpts);
1343 HPTS_UNLOCK(hpts);
1344 INP_WUNLOCK(inp);
1345 continue;
1346 }
1347 tp->t_hpts_request = 0;
1348 /* Fall through we will so do it now */
1349 }
1350
1351 tcp_hpts_release(tp);
1352 if (set_cpu) {
1353 /*
1354 * Setup so the next time we will move to
1355 * the right CPU. This should be a rare
1356 * event. It will sometimes happens when we
1357 * are the client side (usually not the
1358 * server). Somehow tcp_output() gets called
1359 * before the tcp_do_segment() sets the
1360 * intial state. This means the r_cpu and
1361 * r_hpts_cpu is 0. We get on the hpts, and
1362 * then tcp_input() gets called setting up
1363 * the r_cpu to the correct value. The hpts
1364 * goes off and sees the mis-match. We
1365 * simply correct it here and the CPU will
1366 * switch to the new hpts nextime the tcb
1367 * gets added to the hpts (not this one)
1368 * :-)
1369 */
1370 __tcp_set_hpts(pace, tp);
1371 }
1372 CURVNET_SET(inp->inp_vnet);
1373 /* Lets do any logging that we might want to */
1374 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1375
1376 if (tp->t_fb_ptr != NULL) {
1377 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1378 did_prefetch = 1;
1379 }
1380 /*
1381 * We set TF2_HPTS_CALLS before any possible output.
1382 * The contract with the transport is that if it cares
1383 * about hpts calling it should clear the flag. That
1384 * way next time it is called it will know it is hpts.
1385 *
1386 * We also only call tfb_do_queued_segments() <or>
1387 * tcp_output(). It is expected that if segments are
1388 * queued and come in that the final input mbuf will
1389 * cause a call to output if it is needed so we do
1390 * not need a second call to tcp_output(). So we do
1391 * one or the other but not both.
1392 *
1393 * XXXGL: some KPI abuse here. tfb_do_queued_segments
1394 * returns unlocked with positive error (always 1) and
1395 * tcp_output returns unlocked with negative error.
1396 */
1397 tp->t_flags2 |= TF2_HPTS_CALLS;
1398 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1399 !STAILQ_EMPTY(&tp->t_inqueue))
1400 error = -(*tp->t_fb->tfb_do_queued_segments)(tp,
1401 0);
1402 else
1403 error = tcp_output(tp);
1404 if (__predict_true(error >= 0))
1405 INP_WUNLOCK(inp);
1406 CURVNET_RESTORE();
1407 }
1408 if (seen_endpoint) {
1409 /*
1410 * We now have a accurate distance between
1411 * slot_pos_of_endpoint <-> orig_exit_slot
1412 * to tell us how late we were, orig_exit_slot
1413 * is where we calculated the end of our cycle to
1414 * be when we first entered.
1415 */
1416 completed_measure = true;
1417 }
1418 HPTS_LOCK(hpts);
1419 hpts->p_runningslot++;
1420 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1421 hpts->p_runningslot = 0;
1422 }
1423 }
1424 no_one:
1425 HPTS_MTX_ASSERT(hpts);
1426 hpts->p_delayed_by = 0;
1427 /*
1428 * Check to see if we took an excess amount of time and need to run
1429 * more slots (if we did not hit eno-bufs).
1430 */
1431 hpts->p_prev_slot = hpts->p_cur_slot;
1432 microuptime(&tv);
1433 cts_last_run = cts;
1434 cts = tcp_tv_to_usec(&tv);
1435 if (!from_callout || (loop_cnt > max_pacer_loops)) {
1436 /*
1437 * Something is serious slow we have
1438 * looped through processing the wheel
1439 * and by the time we cleared the
1440 * needs to run max_pacer_loops time
1441 * we still needed to run. That means
1442 * the system is hopelessly behind and
1443 * can never catch up :(
1444 *
1445 * We will just lie to this thread
1446 * and let it think p_curslot is
1447 * correct. When it next awakens
1448 * it will find itself further behind.
1449 */
1450 if (from_callout)
1451 counter_u64_add(hpts_hopelessly_behind, 1);
1452 goto no_run;
1453 }
1454
1455 hpts->p_cur_slot = cts_to_wheel(cts);
1456 if (!seen_endpoint) {
1457 /* We saw no endpoint but we may be looping */
1458 orig_exit_slot = hpts->p_cur_slot;
1459 }
1460 if ((wrap_loop_cnt < 2) && tcp_hpts_different_slots(cts, cts_last_run)) {
1461 counter_u64_add(hpts_loops, 1);
1462 loop_cnt++;
1463 goto again;
1464 }
1465 no_run:
1466 pace->cts_last_ran[hpts->p_cpu] = cts;
1467 /*
1468 * Set flag to tell that we are done for
1469 * any slot input that happens during
1470 * input.
1471 */
1472 hpts->p_wheel_complete = 1;
1473 /*
1474 * If enough time has elapsed that we should be processing the next
1475 * slot(s), then we should have kept running and not marked the wheel as
1476 * complete.
1477 *
1478 * But there are several other conditions where we would have stopped
1479 * processing, so the prev/cur slots and cts variables won't match.
1480 * These conditions are:
1481 *
1482 * - Calls not from callouts don't run multiple times
1483 * - The wheel is empty
1484 * - We've processed more than max_pacer_loops times
1485 * - We've wrapped more than 2 times
1486 *
1487 * This assert catches when the logic above has violated this design.
1488 *
1489 */
1490 KASSERT((!from_callout || (hpts->p_on_queue_cnt == 0) ||
1491 (loop_cnt > max_pacer_loops) || (wrap_loop_cnt >= 2) ||
1492 ((hpts->p_prev_slot == hpts->p_cur_slot) &&
1493 !tcp_hpts_different_slots(cts, cts_last_run))),
1494 ("H:%p Shouldn't be done! prev_slot:%u, cur_slot:%u, "
1495 "cts_last_run:%u, cts:%u, loop_cnt:%d, wrap_loop_cnt:%d",
1496 hpts, hpts->p_prev_slot, hpts->p_cur_slot,
1497 cts_last_run, cts, loop_cnt, wrap_loop_cnt));
1498
1499 if (from_callout && tcp_hpts_different_slots(cts, cts_last_run)) {
1500 microuptime(&tv);
1501 cts = tcp_tv_to_usec(&tv);
1502 hpts->p_cur_slot = cts_to_wheel(cts);
1503 counter_u64_add(hpts_loops, 1);
1504 goto again;
1505 }
1506
1507 if (from_callout) {
1508 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1509 }
1510 if (seen_endpoint)
1511 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1512 else
1513 return (0);
1514 }
1515
1516 void
__tcp_set_hpts(struct tcp_hptsi * pace,struct tcpcb * tp)1517 __tcp_set_hpts(struct tcp_hptsi *pace, struct tcpcb *tp)
1518 {
1519 struct tcp_hpts_entry *hpts;
1520 int failed;
1521
1522 INP_WLOCK_ASSERT(tptoinpcb(tp));
1523
1524 hpts = tcp_hpts_lock(pace, tp);
1525 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1526 tp->t_hpts_cpu = hpts_cpuid(pace, tp, &failed);
1527 if (failed == 0)
1528 tp->t_flags2 |= TF2_HPTS_CPU_SET;
1529 }
1530 HPTS_UNLOCK(hpts);
1531 }
1532
1533 static struct tcp_hpts_entry *
tcp_choose_hpts_to_run(struct tcp_hptsi * pace)1534 tcp_choose_hpts_to_run(struct tcp_hptsi *pace)
1535 {
1536 struct timeval tv;
1537 int i, oldest_idx, start, end;
1538 uint32_t cts, time_since_ran, calc;
1539
1540 microuptime(&tv);
1541 cts = tcp_tv_to_usec(&tv);
1542 time_since_ran = 0;
1543 /* Default is all one group */
1544 start = 0;
1545 end = pace->rp_num_hptss;
1546 /*
1547 * If we have more than one L3 group figure out which one
1548 * this CPU is in.
1549 */
1550 if (pace->grp_cnt > 1) {
1551 for (i = 0; i < pace->grp_cnt; i++) {
1552 if (CPU_ISSET(curcpu, &pace->grps[i]->cg_mask)) {
1553 start = pace->grps[i]->cg_first;
1554 end = (pace->grps[i]->cg_last + 1);
1555 break;
1556 }
1557 }
1558 }
1559 oldest_idx = -1;
1560 for (i = start; i < end; i++) {
1561 if (TSTMP_GT(cts, pace->cts_last_ran[i]))
1562 calc = cts - pace->cts_last_ran[i];
1563 else
1564 calc = 0;
1565 if (calc > time_since_ran) {
1566 oldest_idx = i;
1567 time_since_ran = calc;
1568 }
1569 }
1570 if (oldest_idx >= 0)
1571 return(pace->rp_ent[oldest_idx]);
1572 else
1573 return(pace->rp_ent[(curcpu % pace->rp_num_hptss)]);
1574 }
1575
1576 static void
__tcp_run_hpts(void)1577 __tcp_run_hpts(void)
1578 {
1579 struct epoch_tracker et;
1580 struct tcp_hpts_entry *hpts;
1581 int slots_ran;
1582
1583 hpts = tcp_choose_hpts_to_run(tcp_hptsi_pace);
1584
1585 if (hpts->p_hpts_active) {
1586 /* Already active */
1587 return;
1588 }
1589 if (!HPTS_TRYLOCK(hpts)) {
1590 /* Someone else got the lock */
1591 return;
1592 }
1593 NET_EPOCH_ENTER(et);
1594 if (hpts->p_hpts_active)
1595 goto out_with_mtx;
1596 hpts->syscall_cnt++;
1597 counter_u64_add(hpts_direct_call, 1);
1598 hpts->p_hpts_active = 1;
1599 slots_ran = tcp_hptsi(hpts, false);
1600 /* We may want to adjust the sleep values here */
1601 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1602 if (slots_ran > slots_indicate_less_sleep) {
1603 struct timeval tv;
1604
1605 hpts->p_mysleep.tv_usec /= 2;
1606 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1607 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1608 /* Reschedule with new to value */
1609 tcp_hpts_set_max_sleep(hpts, 0);
1610 tv.tv_sec = 0;
1611 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
1612 /* Validate its in the right ranges */
1613 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1614 hpts->overidden_sleep = tv.tv_usec;
1615 tv.tv_usec = hpts->p_mysleep.tv_usec;
1616 } else if (tv.tv_usec > dynamic_max_sleep) {
1617 /* Lets not let sleep get above this value */
1618 hpts->overidden_sleep = tv.tv_usec;
1619 tv.tv_usec = dynamic_max_sleep;
1620 }
1621 /*
1622 * In this mode the timer is a backstop to
1623 * all the userret/lro_flushes so we use
1624 * the dynamic value and set the on_min_sleep
1625 * flag so we will not be awoken.
1626 */
1627 (void)tcp_hpts_sleep(hpts, &tv);
1628 } else if (slots_ran < slots_indicate_more_sleep) {
1629 /* For the further sleep, don't reschedule hpts */
1630 hpts->p_mysleep.tv_usec *= 2;
1631 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1632 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1633 }
1634 hpts->p_on_min_sleep = 1;
1635 }
1636 hpts->p_hpts_active = 0;
1637 out_with_mtx:
1638 HPTS_UNLOCK(hpts);
1639 NET_EPOCH_EXIT(et);
1640 }
1641
1642 static void
tcp_hpts_thread(void * ctx)1643 tcp_hpts_thread(void *ctx)
1644 {
1645 #ifdef TCP_HPTS_KTEST
1646 struct tcp_hptsi *pace;
1647 #endif
1648 struct tcp_hpts_entry *hpts;
1649 struct epoch_tracker et;
1650 struct timeval tv;
1651 int slots_ran;
1652
1653 hpts = (struct tcp_hpts_entry *)ctx;
1654 #ifdef TCP_HPTS_KTEST
1655 pace = hpts->p_hptsi;
1656 #endif
1657 HPTS_LOCK(hpts);
1658 if (hpts->p_direct_wake) {
1659 /* Signaled by input or output with low occupancy count. */
1660 _callout_stop_safe(&hpts->co, 0);
1661 counter_u64_add(hpts_direct_awakening, 1);
1662 } else {
1663 /* Timed out, the normal case. */
1664 counter_u64_add(hpts_wake_timeout, 1);
1665 if (callout_pending(&hpts->co) ||
1666 !callout_active(&hpts->co)) {
1667 HPTS_UNLOCK(hpts);
1668 return;
1669 }
1670 }
1671 callout_deactivate(&hpts->co);
1672 hpts->p_hpts_wake_scheduled = 0;
1673 NET_EPOCH_ENTER(et);
1674 if (hpts->p_hpts_active) {
1675 /*
1676 * We are active already. This means that a syscall
1677 * trap or LRO is running in behalf of hpts. In that case
1678 * we need to double our timeout since there seems to be
1679 * enough activity in the system that we don't need to
1680 * run as often (if we were not directly woken).
1681 */
1682 tv.tv_sec = 0;
1683 if (hpts->p_direct_wake == 0) {
1684 counter_u64_add(hpts_back_tosleep, 1);
1685 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1686 hpts->p_mysleep.tv_usec *= 2;
1687 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1688 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1689 tv.tv_usec = hpts->p_mysleep.tv_usec;
1690 hpts->p_on_min_sleep = 1;
1691 } else {
1692 /*
1693 * Here we have low count on the wheel, but
1694 * somehow we still collided with one of the
1695 * connections. Lets go back to sleep for a
1696 * min sleep time, but clear the flag so we
1697 * can be awoken by insert.
1698 */
1699 hpts->p_on_min_sleep = 0;
1700 tv.tv_usec = tcp_min_hptsi_time;
1701 }
1702 } else {
1703 /*
1704 * Directly woken most likely to reset the
1705 * callout time.
1706 */
1707 tv.tv_usec = hpts->p_mysleep.tv_usec;
1708 }
1709 goto back_to_sleep;
1710 }
1711 hpts->sleeping = 0;
1712 hpts->p_hpts_active = 1;
1713 slots_ran = tcp_hptsi(hpts, true);
1714 tv.tv_sec = 0;
1715 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
1716 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) {
1717 hpts->hit_callout_thresh = 1;
1718 atomic_add_int(&hpts_that_need_softclock, 1);
1719 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) {
1720 hpts->hit_callout_thresh = 0;
1721 atomic_subtract_int(&hpts_that_need_softclock, 1);
1722 }
1723 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1724 if(hpts->p_direct_wake == 0) {
1725 /*
1726 * Only adjust sleep time if we were
1727 * called from the callout i.e. direct_wake == 0.
1728 */
1729 if (slots_ran < slots_indicate_more_sleep) {
1730 hpts->p_mysleep.tv_usec *= 2;
1731 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1732 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1733 } else if (slots_ran > slots_indicate_less_sleep) {
1734 hpts->p_mysleep.tv_usec /= 2;
1735 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1736 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1737 }
1738 }
1739 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1740 hpts->overidden_sleep = tv.tv_usec;
1741 tv.tv_usec = hpts->p_mysleep.tv_usec;
1742 } else if (tv.tv_usec > dynamic_max_sleep) {
1743 /* Lets not let sleep get above this value */
1744 hpts->overidden_sleep = tv.tv_usec;
1745 tv.tv_usec = dynamic_max_sleep;
1746 }
1747 /*
1748 * In this mode the timer is a backstop to
1749 * all the userret/lro_flushes so we use
1750 * the dynamic value and set the on_min_sleep
1751 * flag so we will not be awoken.
1752 */
1753 hpts->p_on_min_sleep = 1;
1754 } else if (hpts->p_on_queue_cnt == 0) {
1755 /*
1756 * No one on the wheel, please wake us up
1757 * if you insert on the wheel.
1758 */
1759 hpts->p_on_min_sleep = 0;
1760 hpts->overidden_sleep = 0;
1761 } else {
1762 /*
1763 * We hit here when we have a low number of
1764 * clients on the wheel (our else clause).
1765 * We may need to go on min sleep, if we set
1766 * the flag we will not be awoken if someone
1767 * is inserted ahead of us. Clearing the flag
1768 * means we can be awoken. This is "old mode"
1769 * where the timer is what runs hpts mainly.
1770 */
1771 if (tv.tv_usec < tcp_min_hptsi_time) {
1772 /*
1773 * Yes on min sleep, which means
1774 * we cannot be awoken.
1775 */
1776 hpts->overidden_sleep = tv.tv_usec;
1777 tv.tv_usec = tcp_min_hptsi_time;
1778 hpts->p_on_min_sleep = 1;
1779 } else {
1780 /* Clear the min sleep flag */
1781 hpts->overidden_sleep = 0;
1782 hpts->p_on_min_sleep = 0;
1783 }
1784 }
1785 HPTS_MTX_ASSERT(hpts);
1786 hpts->p_hpts_active = 0;
1787 back_to_sleep:
1788 hpts->p_direct_wake = 0;
1789 (void)tcp_hpts_sleep(hpts, &tv);
1790 NET_EPOCH_EXIT(et);
1791 HPTS_UNLOCK(hpts);
1792 }
1793
1794 static int32_t
hpts_count_level(struct cpu_group * cg)1795 hpts_count_level(struct cpu_group *cg)
1796 {
1797 int32_t count_l3, i;
1798
1799 count_l3 = 0;
1800 if (cg->cg_level == CG_SHARE_L3)
1801 count_l3++;
1802 /* Walk all the children looking for L3 */
1803 for (i = 0; i < cg->cg_children; i++) {
1804 count_l3 += hpts_count_level(&cg->cg_child[i]);
1805 }
1806 return (count_l3);
1807 }
1808
1809 static void
hpts_gather_grps(struct cpu_group ** grps,int32_t * at,int32_t max,struct cpu_group * cg)1810 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1811 {
1812 int32_t idx, i;
1813
1814 idx = *at;
1815 if (cg->cg_level == CG_SHARE_L3) {
1816 grps[idx] = cg;
1817 idx++;
1818 if (idx == max) {
1819 *at = idx;
1820 return;
1821 }
1822 }
1823 *at = idx;
1824 /* Walk all the children looking for L3 */
1825 for (i = 0; i < cg->cg_children; i++) {
1826 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1827 }
1828 }
1829
1830 /*
1831 * Initialize a tcp_hptsi structure. This performs the core initialization
1832 * without starting threads.
1833 */
1834 struct tcp_hptsi*
tcp_hptsi_create(const struct tcp_hptsi_funcs * funcs,bool enable_sysctl)1835 tcp_hptsi_create(const struct tcp_hptsi_funcs *funcs, bool enable_sysctl)
1836 {
1837 struct tcp_hptsi *pace;
1838 struct cpu_group *cpu_top;
1839 uint32_t i, j, cts;
1840 int32_t count;
1841 size_t sz, asz;
1842 struct timeval tv;
1843 struct tcp_hpts_entry *hpts;
1844 char unit[16];
1845 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1846
1847 KASSERT(funcs != NULL, ("funcs is NULL"));
1848
1849 /* Allocate the main structure */
1850 pace = malloc(sizeof(struct tcp_hptsi), M_TCPHPTS, M_WAITOK | M_ZERO);
1851 if (pace == NULL)
1852 return (NULL);
1853
1854 memset(pace, 0, sizeof(*pace));
1855 pace->funcs = funcs;
1856
1857 /* Setup CPU topology information */
1858 #ifdef SMP
1859 cpu_top = smp_topo();
1860 #else
1861 cpu_top = NULL;
1862 #endif
1863 pace->rp_num_hptss = ncpus;
1864
1865 /* Allocate hpts entry array */
1866 sz = (pace->rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1867 pace->rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1868
1869 /* Allocate timestamp tracking array */
1870 sz = (sizeof(uint32_t) * pace->rp_num_hptss);
1871 pace->cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1872
1873 /* Setup CPU groups */
1874 if (cpu_top == NULL) {
1875 pace->grp_cnt = 1;
1876 } else {
1877 /* Find out how many cache level 3 domains we have */
1878 count = 0;
1879 pace->grp_cnt = hpts_count_level(cpu_top);
1880 if (pace->grp_cnt == 0) {
1881 pace->grp_cnt = 1;
1882 }
1883 sz = (pace->grp_cnt * sizeof(struct cpu_group *));
1884 pace->grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1885 /* Now populate the groups */
1886 if (pace->grp_cnt == 1) {
1887 /*
1888 * All we need is the top level all cpu's are in
1889 * the same cache so when we use grp[0]->cg_mask
1890 * with the cg_first <-> cg_last it will include
1891 * all cpu's in it. The level here is probably
1892 * zero which is ok.
1893 */
1894 pace->grps[0] = cpu_top;
1895 } else {
1896 /*
1897 * Here we must find all the level three cache domains
1898 * and setup our pointers to them.
1899 */
1900 count = 0;
1901 hpts_gather_grps(pace->grps, &count, pace->grp_cnt, cpu_top);
1902 }
1903 }
1904
1905 /* Cache the current time for initializing the hpts entries */
1906 microuptime(&tv);
1907 cts = tcp_tv_to_usec(&tv);
1908
1909 /* Initialize each hpts entry */
1910 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1911 for (i = 0; i < pace->rp_num_hptss; i++) {
1912 pace->rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1913 M_TCPHPTS, M_WAITOK | M_ZERO);
1914 pace->rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS,
1915 M_WAITOK | M_ZERO);
1916 hpts = pace->rp_ent[i];
1917
1918 /* Basic initialization */
1919 hpts->p_hpts_sleep_time = hpts_sleep_max;
1920 hpts->p_cpu = i;
1921 pace->cts_last_ran[i] = cts;
1922 hpts->p_cur_slot = cts_to_wheel(cts);
1923 hpts->p_prev_slot = hpts->p_cur_slot;
1924 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1925 callout_init(&hpts->co, 1);
1926 hpts->p_hptsi = pace;
1927 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", "hpts",
1928 MTX_DEF | MTX_DUPOK);
1929 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1930 TAILQ_INIT(&hpts->p_hptss[j].head);
1931 }
1932
1933 /* Setup SYSCTL if requested */
1934 if (enable_sysctl) {
1935 sysctl_ctx_init(&hpts->hpts_ctx);
1936 sprintf(unit, "%d", i);
1937 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1938 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1939 OID_AUTO,
1940 unit,
1941 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1942 "");
1943 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1944 SYSCTL_CHILDREN(hpts->hpts_root),
1945 OID_AUTO, "out_qcnt", CTLFLAG_RD,
1946 &hpts->p_on_queue_cnt, 0,
1947 "Count TCB's awaiting output processing");
1948 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1949 SYSCTL_CHILDREN(hpts->hpts_root),
1950 OID_AUTO, "active", CTLFLAG_RD,
1951 &hpts->p_hpts_active, 0,
1952 "Is the hpts active");
1953 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1954 SYSCTL_CHILDREN(hpts->hpts_root),
1955 OID_AUTO, "curslot", CTLFLAG_RD,
1956 &hpts->p_cur_slot, 0,
1957 "What the current running pacers goal");
1958 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1959 SYSCTL_CHILDREN(hpts->hpts_root),
1960 OID_AUTO, "runslot", CTLFLAG_RD,
1961 &hpts->p_runningslot, 0,
1962 "What the running pacers current slot is");
1963 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1964 SYSCTL_CHILDREN(hpts->hpts_root),
1965 OID_AUTO, "lastran", CTLFLAG_RD,
1966 &pace->cts_last_ran[i], 0,
1967 "The last usec timestamp that this hpts ran");
1968 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1969 SYSCTL_CHILDREN(hpts->hpts_root),
1970 OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1971 &hpts->p_mysleep.tv_usec,
1972 "What the running pacers is using for p_mysleep.tv_usec");
1973 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1974 SYSCTL_CHILDREN(hpts->hpts_root),
1975 OID_AUTO, "now_sleeping", CTLFLAG_RD,
1976 &hpts->sleeping, 0,
1977 "What the running pacers is actually sleeping for");
1978 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1979 SYSCTL_CHILDREN(hpts->hpts_root),
1980 OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1981 &hpts->syscall_cnt, 0,
1982 "How many times we had syscalls on this hpts");
1983 }
1984 }
1985
1986 return (pace);
1987 }
1988
1989 /*
1990 * Create threads for a tcp_hptsi structure and starts timers for the current
1991 * (minimum) sleep interval.
1992 */
1993 void
tcp_hptsi_start(struct tcp_hptsi * pace)1994 tcp_hptsi_start(struct tcp_hptsi *pace)
1995 {
1996 struct tcp_hpts_entry *hpts;
1997 struct pcpu *pc;
1998 struct timeval tv;
1999 uint32_t i, j;
2000 int count, domain;
2001 int error __diagused;
2002
2003 KASSERT(pace != NULL, ("tcp_hptsi_start: pace is NULL"));
2004
2005 /* Start threads for each hpts entry */
2006 for (i = 0; i < pace->rp_num_hptss; i++) {
2007 hpts = pace->rp_ent[i];
2008
2009 KASSERT(hpts->ie_cookie == NULL,
2010 ("tcp_hptsi_start: hpts[%d]->ie_cookie is not NULL", i));
2011
2012 error = swi_add(&hpts->ie, "hpts",
2013 tcp_hpts_thread, (void *)hpts,
2014 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
2015 KASSERT(error == 0,
2016 ("Can't add hpts:%p i:%d err:%d", hpts, i, error));
2017
2018 if (tcp_bind_threads == 1) {
2019 (void)intr_event_bind(hpts->ie, i);
2020 } else if (tcp_bind_threads == 2) {
2021 /* Find the group for this CPU (i) and bind into it */
2022 for (j = 0; j < pace->grp_cnt; j++) {
2023 if (CPU_ISSET(i, &pace->grps[j]->cg_mask)) {
2024 if (intr_event_bind_ithread_cpuset(hpts->ie,
2025 &pace->grps[j]->cg_mask) == 0) {
2026 pc = pcpu_find(i);
2027 domain = pc->pc_domain;
2028 count = pace->domains[domain].count;
2029 pace->domains[domain].cpu[count] = i;
2030 pace->domains[domain].count++;
2031 break;
2032 }
2033 }
2034 }
2035 }
2036
2037 hpts->p_mysleep.tv_sec = 0;
2038 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
2039 tv.tv_sec = 0;
2040 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
2041 (void)tcp_hpts_sleep(hpts, &tv);
2042 }
2043 }
2044
2045 /*
2046 * Stop all callouts/threads for a tcp_hptsi structure.
2047 */
2048 void
tcp_hptsi_stop(struct tcp_hptsi * pace)2049 tcp_hptsi_stop(struct tcp_hptsi *pace)
2050 {
2051 struct tcp_hpts_entry *hpts;
2052 int rv __diagused;
2053 uint32_t i;
2054
2055 KASSERT(pace != NULL, ("tcp_hptsi_stop: pace is NULL"));
2056
2057 for (i = 0; i < pace->rp_num_hptss; i++) {
2058 hpts = pace->rp_ent[i];
2059 KASSERT(hpts != NULL, ("tcp_hptsi_stop: hpts[%d] is NULL", i));
2060 KASSERT(hpts->ie_cookie != NULL,
2061 ("tcp_hptsi_stop: hpts[%d]->ie_cookie is NULL", i));
2062
2063 rv = _callout_stop_safe(&hpts->co, CS_DRAIN);
2064 MPASS(rv != 0);
2065
2066 rv = swi_remove(hpts->ie_cookie);
2067 MPASS(rv == 0);
2068 hpts->ie_cookie = NULL;
2069 }
2070 }
2071
2072 /*
2073 * Destroy a tcp_hptsi structure initialized by tcp_hptsi_create.
2074 */
2075 void
tcp_hptsi_destroy(struct tcp_hptsi * pace)2076 tcp_hptsi_destroy(struct tcp_hptsi *pace)
2077 {
2078 struct tcp_hpts_entry *hpts;
2079 uint32_t i;
2080
2081 KASSERT(pace != NULL, ("tcp_hptsi_destroy: pace is NULL"));
2082 KASSERT(pace->rp_ent != NULL, ("tcp_hptsi_destroy: pace->rp_ent is NULL"));
2083
2084 /* Cleanup each hpts entry */
2085 for (i = 0; i < pace->rp_num_hptss; i++) {
2086 hpts = pace->rp_ent[i];
2087 if (hpts != NULL) {
2088 /* Cleanup SYSCTL if it was initialized */
2089 if (hpts->hpts_root != NULL) {
2090 sysctl_ctx_free(&hpts->hpts_ctx);
2091 }
2092
2093 mtx_destroy(&hpts->p_mtx);
2094 free(hpts->p_hptss, M_TCPHPTS);
2095 free(hpts, M_TCPHPTS);
2096 }
2097 }
2098
2099 /* Cleanup main arrays */
2100 free(pace->rp_ent, M_TCPHPTS);
2101 free(pace->cts_last_ran, M_TCPHPTS);
2102 #ifdef SMP
2103 free(pace->grps, M_TCPHPTS);
2104 #endif
2105
2106 /* Free the main structure */
2107 free(pace, M_TCPHPTS);
2108 }
2109
2110 static int
tcp_hpts_mod_load(void)2111 tcp_hpts_mod_load(void)
2112 {
2113 int i;
2114
2115 /* Don't try to bind to NUMA domains if we don't have any */
2116 if (vm_ndomains == 1 && tcp_bind_threads == 2)
2117 tcp_bind_threads = 0;
2118
2119 /* Create the tcp_hptsi structure */
2120 tcp_hptsi_pace = tcp_hptsi_create(&tcp_hptsi_default_funcs, true);
2121 if (tcp_hptsi_pace == NULL)
2122 return (ENOMEM);
2123
2124 /* Initialize global counters */
2125 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
2126 hpts_loops = counter_u64_alloc(M_WAITOK);
2127 back_tosleep = counter_u64_alloc(M_WAITOK);
2128 combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
2129 wheel_wrap = counter_u64_alloc(M_WAITOK);
2130 hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
2131 hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
2132 hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
2133 hpts_direct_call = counter_u64_alloc(M_WAITOK);
2134 cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
2135 cpu_uses_random = counter_u64_alloc(M_WAITOK);
2136
2137 /* Start the threads */
2138 tcp_hptsi_start(tcp_hptsi_pace);
2139
2140 /* Enable the global HPTS softclock function */
2141 tcp_hpts_softclock = __tcp_run_hpts;
2142
2143 /* Initialize LRO HPTS */
2144 tcp_lro_hpts_init();
2145
2146 /*
2147 * If we somehow have an empty domain, fall back to choosing among all
2148 * HPTS threads.
2149 */
2150 for (i = 0; i < vm_ndomains; i++) {
2151 if (tcp_hptsi_pace->domains[i].count == 0) {
2152 tcp_bind_threads = 0;
2153 break;
2154 }
2155 }
2156
2157 printf("TCP HPTS started %u (%s) swi interrupt threads\n",
2158 tcp_hptsi_pace->rp_num_hptss, (tcp_bind_threads == 0) ?
2159 "(unbounded)" :
2160 (tcp_bind_threads == 1 ? "per-cpu" : "per-NUMA-domain"));
2161
2162 return (0);
2163 }
2164
2165 static void
tcp_hpts_mod_unload(void)2166 tcp_hpts_mod_unload(void)
2167 {
2168 tcp_lro_hpts_uninit();
2169
2170 /* Disable the global HPTS softclock function */
2171 atomic_store_ptr(&tcp_hpts_softclock, NULL);
2172
2173 tcp_hptsi_stop(tcp_hptsi_pace);
2174 tcp_hptsi_destroy(tcp_hptsi_pace);
2175 tcp_hptsi_pace = NULL;
2176
2177 /* Cleanup global counters */
2178 counter_u64_free(hpts_hopelessly_behind);
2179 counter_u64_free(hpts_loops);
2180 counter_u64_free(back_tosleep);
2181 counter_u64_free(combined_wheel_wrap);
2182 counter_u64_free(wheel_wrap);
2183 counter_u64_free(hpts_wake_timeout);
2184 counter_u64_free(hpts_direct_awakening);
2185 counter_u64_free(hpts_back_tosleep);
2186 counter_u64_free(hpts_direct_call);
2187 counter_u64_free(cpu_uses_flowid);
2188 counter_u64_free(cpu_uses_random);
2189 }
2190
2191 static int
tcp_hpts_mod_event(module_t mod,int what,void * arg)2192 tcp_hpts_mod_event(module_t mod, int what, void *arg)
2193 {
2194 switch (what) {
2195 case MOD_LOAD:
2196 return (tcp_hpts_mod_load());
2197 case MOD_QUIESCE:
2198 /*
2199 * Since we are a dependency of TCP stack modules, they should
2200 * already be unloaded, and the HPTS ring is empty. However,
2201 * function pointer manipulations aren't 100% safe. Although,
2202 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't.
2203 * Thus, allow only forced unload of HPTS.
2204 */
2205 return (EBUSY);
2206 case MOD_UNLOAD:
2207 tcp_hpts_mod_unload();
2208 return (0);
2209 default:
2210 return (EINVAL);
2211 };
2212 }
2213
2214 static moduledata_t tcp_hpts_module = {
2215 .name = "tcphpts",
2216 .evhand = tcp_hpts_mod_event,
2217 };
2218
2219 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY);
2220 MODULE_VERSION(tcphpts, 1);
2221