1 /*-
2 * Copyright (c) 2016-2018 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26 #include <sys/cdefs.h>
27 #include "opt_inet.h"
28 #include "opt_inet6.h"
29 #include "opt_rss.h"
30
31 /**
32 * Some notes about usage.
33 *
34 * The tcp_hpts system is designed to provide a high precision timer
35 * system for tcp. Its main purpose is to provide a mechanism for
36 * pacing packets out onto the wire. It can be used in two ways
37 * by a given TCP stack (and those two methods can be used simultaneously).
38 *
39 * First, and probably the main thing its used by Rack and BBR, it can
40 * be used to call tcp_output() of a transport stack at some time in the future.
41 * The normal way this is done is that tcp_output() of the stack schedules
42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
43 * slot is the time from now that the stack wants to be called but it
44 * must be converted to tcp_hpts's notion of slot. This is done with
45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
46 * call from the tcp_output() routine might look like:
47 *
48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
49 *
50 * The above would schedule tcp_output() to be called in 550 useconds.
51 * Note that if using this mechanism the stack will want to add near
52 * its top a check to prevent unwanted calls (from user land or the
53 * arrival of incoming ack's). So it would add something like:
54 *
55 * if (tcp_in_hpts(inp))
56 * return;
57 *
58 * to prevent output processing until the time alotted has gone by.
59 * Of course this is a bare bones example and the stack will probably
60 * have more consideration then just the above.
61 *
62 * In order to run input queued segments from the HPTS context the
63 * tcp stack must define an input function for
64 * tfb_do_queued_segments(). This function understands
65 * how to dequeue a array of packets that were input and
66 * knows how to call the correct processing routine.
67 *
68 * Locking in this is important as well so most likely the
69 * stack will need to define the tfb_do_segment_nounlock()
70 * splitting tfb_do_segment() into two parts. The main processing
71 * part that does not unlock the INP and returns a value of 1 or 0.
72 * It returns 0 if all is well and the lock was not released. It
73 * returns 1 if we had to destroy the TCB (a reset received etc).
74 * The remains of tfb_do_segment() then become just a simple call
75 * to the tfb_do_segment_nounlock() function and check the return
76 * code and possibly unlock.
77 *
78 * The stack must also set the flag on the INP that it supports this
79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
80 * this flag as well and will queue packets when it is set.
81 * There are other flags as well INP_MBUF_QUEUE_READY and
82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
83 * that we are in the pacer for output so there is no
84 * need to wake up the hpts system to get immediate
85 * input. The second tells the LRO code that its okay
86 * if a SACK arrives you can still defer input and let
87 * the current hpts timer run (this is usually set when
88 * a rack timer is up so we know SACK's are happening
89 * on the connection already and don't want to wakeup yet).
90 *
91 * There is a common functions within the rack_bbr_common code
92 * version i.e. ctf_do_queued_segments(). This function
93 * knows how to take the input queue of packets from tp->t_inqueue
94 * and process them digging out all the arguments, calling any bpf tap and
95 * calling into tfb_do_segment_nounlock(). The common
96 * function (ctf_do_queued_segments()) requires that
97 * you have defined the tfb_do_segment_nounlock() as
98 * described above.
99 */
100
101 #include <sys/param.h>
102 #include <sys/bus.h>
103 #include <sys/interrupt.h>
104 #include <sys/module.h>
105 #include <sys/kernel.h>
106 #include <sys/hhook.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/proc.h> /* for proc0 declaration */
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/refcount.h>
115 #include <sys/sched.h>
116 #include <sys/queue.h>
117 #include <sys/smp.h>
118 #include <sys/counter.h>
119 #include <sys/time.h>
120 #include <sys/kthread.h>
121 #include <sys/kern_prefetch.h>
122
123 #include <vm/uma.h>
124 #include <vm/vm.h>
125
126 #include <net/route.h>
127 #include <net/vnet.h>
128
129 #ifdef RSS
130 #include <net/netisr.h>
131 #include <net/rss_config.h>
132 #endif
133
134 #define TCPSTATES /* for logging */
135
136 #include <netinet/in.h>
137 #include <netinet/in_kdtrace.h>
138 #include <netinet/in_pcb.h>
139 #include <netinet/ip.h>
140 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
141 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
142 #include <netinet/ip_var.h>
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet/tcp.h>
147 #include <netinet/tcp_fsm.h>
148 #include <netinet/tcp_seq.h>
149 #include <netinet/tcp_timer.h>
150 #include <netinet/tcp_var.h>
151 #include <netinet/tcpip.h>
152 #include <netinet/cc/cc.h>
153 #include <netinet/tcp_hpts.h>
154 #include <netinet/tcp_log_buf.h>
155
156 #ifdef tcp_offload
157 #include <netinet/tcp_offload.h>
158 #endif
159
160 /*
161 * The hpts uses a 102400 wheel. The wheel
162 * defines the time in 10 usec increments (102400 x 10).
163 * This gives a range of 10usec - 1024ms to place
164 * an entry within. If the user requests more than
165 * 1.024 second, a remaineder is attached and the hpts
166 * when seeing the remainder will re-insert the
167 * inpcb forward in time from where it is until
168 * the remainder is zero.
169 */
170
171 #define NUM_OF_HPTSI_SLOTS 102400
172
173 /* Each hpts has its own p_mtx which is used for locking */
174 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED)
175 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx)
176 #define HPTS_TRYLOCK(hpts) mtx_trylock(&(hpts)->p_mtx)
177 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx)
178 struct tcp_hpts_entry {
179 /* Cache line 0x00 */
180 struct mtx p_mtx; /* Mutex for hpts */
181 struct timeval p_mysleep; /* Our min sleep time */
182 uint64_t syscall_cnt;
183 uint64_t sleeping; /* What the actual sleep was (if sleeping) */
184 uint16_t p_hpts_active; /* Flag that says hpts is awake */
185 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
186 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */
187 uint32_t p_runningslot; /* Current tick we are at if we are running */
188 uint32_t p_prev_slot; /* Previous slot we were on */
189 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */
190 uint32_t p_nxt_slot; /* The next slot outside the current range of
191 * slots that the hpts is running on. */
192 int32_t p_on_queue_cnt; /* Count on queue in this hpts */
193 uint32_t p_lasttick; /* Last tick before the current one */
194 uint8_t p_direct_wake :1, /* boolean */
195 p_on_min_sleep:1, /* boolean */
196 p_hpts_wake_scheduled:1, /* boolean */
197 hit_callout_thresh:1,
198 p_avail:4;
199 uint8_t p_fill[3]; /* Fill to 32 bits */
200 /* Cache line 0x40 */
201 struct hptsh {
202 TAILQ_HEAD(, tcpcb) head;
203 uint32_t count;
204 uint32_t gencnt;
205 } *p_hptss; /* Hptsi wheel */
206 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max
207 * of 255ms */
208 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */
209 uint32_t saved_lasttick; /* for logging */
210 uint32_t saved_curtick; /* for logging */
211 uint32_t saved_curslot; /* for logging */
212 uint32_t saved_prev_slot; /* for logging */
213 uint32_t p_delayed_by; /* How much were we delayed by */
214 /* Cache line 0x80 */
215 struct sysctl_ctx_list hpts_ctx;
216 struct sysctl_oid *hpts_root;
217 struct intr_event *ie;
218 void *ie_cookie;
219 uint16_t p_num; /* The hpts number one per cpu */
220 uint16_t p_cpu; /* The hpts CPU */
221 /* There is extra space in here */
222 /* Cache line 0x100 */
223 struct callout co __aligned(CACHE_LINE_SIZE);
224 } __aligned(CACHE_LINE_SIZE);
225
226 static struct tcp_hptsi {
227 struct cpu_group **grps;
228 struct tcp_hpts_entry **rp_ent; /* Array of hptss */
229 uint32_t *cts_last_ran;
230 uint32_t grp_cnt;
231 uint32_t rp_num_hptss; /* Number of hpts threads */
232 } tcp_pace;
233
234 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
235 #ifdef RSS
236 static int tcp_bind_threads = 1;
237 #else
238 static int tcp_bind_threads = 2;
239 #endif
240 static int tcp_use_irq_cpu = 0;
241 static int hpts_does_tp_logging = 0;
242
243 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout);
244 static void tcp_hpts_thread(void *ctx);
245
246 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
247 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
248 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
249 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
250
251
252 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
253 "TCP Hpts controls");
254 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
255 "TCP Hpts statistics");
256
257 #define timersub(tvp, uvp, vvp) \
258 do { \
259 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
260 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
261 if ((vvp)->tv_usec < 0) { \
262 (vvp)->tv_sec--; \
263 (vvp)->tv_usec += 1000000; \
264 } \
265 } while (0)
266
267 static int32_t tcp_hpts_precision = 120;
268
269 static struct hpts_domain_info {
270 int count;
271 int cpu[MAXCPU];
272 } hpts_domains[MAXMEMDOM];
273
274 counter_u64_t hpts_hopelessly_behind;
275
276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
277 &hpts_hopelessly_behind,
278 "Number of times hpts could not catch up and was behind hopelessly");
279
280 counter_u64_t hpts_loops;
281
282 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
283 &hpts_loops, "Number of times hpts had to loop to catch up");
284
285 counter_u64_t back_tosleep;
286
287 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
288 &back_tosleep, "Number of times hpts found no tcbs");
289
290 counter_u64_t combined_wheel_wrap;
291
292 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
293 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
294
295 counter_u64_t wheel_wrap;
296
297 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
298 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
299
300 counter_u64_t hpts_direct_call;
301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
302 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
303
304 counter_u64_t hpts_wake_timeout;
305
306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
307 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
308
309 counter_u64_t hpts_direct_awakening;
310
311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
312 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
313
314 counter_u64_t hpts_back_tosleep;
315
316 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
317 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
318
319 counter_u64_t cpu_uses_flowid;
320 counter_u64_t cpu_uses_random;
321
322 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
323 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
325 &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
326
327 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
328 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
329 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
330 &tcp_bind_threads, 2,
331 "Thread Binding tunable");
332 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
333 &tcp_use_irq_cpu, 0,
334 "Use of irq CPU tunable");
335 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
336 &tcp_hpts_precision, 120,
337 "Value for PRE() precision of callout");
338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
339 &conn_cnt_thresh, 0,
340 "How many connections (below) make us use the callout based mechanism");
341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
342 &hpts_does_tp_logging, 0,
343 "Do we add to any tp that has logging on pacer logs");
344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
345 &dynamic_min_sleep, 250,
346 "What is the dynamic minsleep value?");
347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
348 &dynamic_max_sleep, 5000,
349 "What is the dynamic maxsleep value?");
350
351 static int32_t max_pacer_loops = 10;
352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
353 &max_pacer_loops, 10,
354 "What is the maximum number of times the pacer will loop trying to catch up");
355
356 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
357
358 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
359
360 static int
sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)361 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
362 {
363 int error;
364 uint32_t new;
365
366 new = hpts_sleep_max;
367 error = sysctl_handle_int(oidp, &new, 0, req);
368 if (error == 0 && req->newptr) {
369 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
370 (new > HPTS_MAX_SLEEP_ALLOWED))
371 error = EINVAL;
372 else
373 hpts_sleep_max = new;
374 }
375 return (error);
376 }
377
378 static int
sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)379 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
380 {
381 int error;
382 uint32_t new;
383
384 new = tcp_min_hptsi_time;
385 error = sysctl_handle_int(oidp, &new, 0, req);
386 if (error == 0 && req->newptr) {
387 if (new < LOWEST_SLEEP_ALLOWED)
388 error = EINVAL;
389 else
390 tcp_min_hptsi_time = new;
391 }
392 return (error);
393 }
394
395 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
396 CTLTYPE_UINT | CTLFLAG_RW,
397 &hpts_sleep_max, 0,
398 &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
399 "Maximum time hpts will sleep in slots");
400
401 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
402 CTLTYPE_UINT | CTLFLAG_RW,
403 &tcp_min_hptsi_time, 0,
404 &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
405 "The minimum time the hpts must sleep before processing more slots");
406
407 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
408 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
409 static int tcp_hpts_no_wake_over_thresh = 1;
410
411 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
412 &ticks_indicate_more_sleep, 0,
413 "If we only process this many or less on a timeout, we need longer sleep on the next callout");
414 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
415 &ticks_indicate_less_sleep, 0,
416 "If we process this many or more on a timeout, we need less sleep on the next callout");
417 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
418 &tcp_hpts_no_wake_over_thresh, 0,
419 "When we are over the threshold on the pacer do we prohibit wakeups?");
420
421 static uint16_t
hpts_random_cpu(void)422 hpts_random_cpu(void)
423 {
424 uint16_t cpuid;
425 uint32_t ran;
426
427 ran = arc4random();
428 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
429 return (cpuid);
430 }
431
432 static void
tcp_hpts_log(struct tcp_hpts_entry * hpts,struct tcpcb * tp,struct timeval * tv,int slots_to_run,int idx,bool from_callout)433 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
434 int slots_to_run, int idx, bool from_callout)
435 {
436 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
437 union tcp_log_stackspecific log;
438 /*
439 * Unused logs are
440 * 64 bit - delRate, rttProp, bw_inuse
441 * 16 bit - cwnd_gain
442 * 8 bit - bbr_state, bbr_substate, inhpts;
443 */
444 memset(&log, 0, sizeof(log));
445 log.u_bbr.flex1 = hpts->p_nxt_slot;
446 log.u_bbr.flex2 = hpts->p_cur_slot;
447 log.u_bbr.flex3 = hpts->p_prev_slot;
448 log.u_bbr.flex4 = idx;
449 log.u_bbr.flex5 = hpts->p_curtick;
450 log.u_bbr.flex6 = hpts->p_on_queue_cnt;
451 log.u_bbr.flex7 = hpts->p_cpu;
452 log.u_bbr.flex8 = (uint8_t)from_callout;
453 log.u_bbr.inflight = slots_to_run;
454 log.u_bbr.applimited = hpts->overidden_sleep;
455 log.u_bbr.delivered = hpts->saved_curtick;
456 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
457 log.u_bbr.epoch = hpts->saved_curslot;
458 log.u_bbr.lt_epoch = hpts->saved_prev_slot;
459 log.u_bbr.pkts_out = hpts->p_delayed_by;
460 log.u_bbr.lost = hpts->p_hpts_sleep_time;
461 log.u_bbr.pacing_gain = hpts->p_cpu;
462 log.u_bbr.pkt_epoch = hpts->p_runningslot;
463 log.u_bbr.use_lt_bw = 1;
464 TCP_LOG_EVENTP(tp, NULL,
465 &tptosocket(tp)->so_rcv,
466 &tptosocket(tp)->so_snd,
467 BBR_LOG_HPTSDIAG, 0,
468 0, &log, false, tv);
469 }
470 }
471
472 static void
tcp_wakehpts(struct tcp_hpts_entry * hpts)473 tcp_wakehpts(struct tcp_hpts_entry *hpts)
474 {
475 HPTS_MTX_ASSERT(hpts);
476
477 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
478 hpts->p_direct_wake = 0;
479 return;
480 }
481 if (hpts->p_hpts_wake_scheduled == 0) {
482 hpts->p_hpts_wake_scheduled = 1;
483 swi_sched(hpts->ie_cookie, 0);
484 }
485 }
486
487 static void
hpts_timeout_swi(void * arg)488 hpts_timeout_swi(void *arg)
489 {
490 struct tcp_hpts_entry *hpts;
491
492 hpts = (struct tcp_hpts_entry *)arg;
493 swi_sched(hpts->ie_cookie, 0);
494 }
495
496 static void
tcp_hpts_insert_internal(struct tcpcb * tp,struct tcp_hpts_entry * hpts)497 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
498 {
499 struct inpcb *inp = tptoinpcb(tp);
500 struct hptsh *hptsh;
501
502 INP_WLOCK_ASSERT(inp);
503 HPTS_MTX_ASSERT(hpts);
504 MPASS(hpts->p_cpu == tp->t_hpts_cpu);
505 MPASS(!(inp->inp_flags & INP_DROPPED));
506
507 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
508
509 if (tp->t_in_hpts == IHPTS_NONE) {
510 tp->t_in_hpts = IHPTS_ONQUEUE;
511 in_pcbref(inp);
512 } else if (tp->t_in_hpts == IHPTS_MOVING) {
513 tp->t_in_hpts = IHPTS_ONQUEUE;
514 } else
515 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
516 tp->t_hpts_gencnt = hptsh->gencnt;
517
518 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
519 hptsh->count++;
520 hpts->p_on_queue_cnt++;
521 }
522
523 static struct tcp_hpts_entry *
tcp_hpts_lock(struct tcpcb * tp)524 tcp_hpts_lock(struct tcpcb *tp)
525 {
526 struct tcp_hpts_entry *hpts;
527
528 INP_LOCK_ASSERT(tptoinpcb(tp));
529
530 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu];
531 HPTS_LOCK(hpts);
532
533 return (hpts);
534 }
535
536 static void
tcp_hpts_release(struct tcpcb * tp)537 tcp_hpts_release(struct tcpcb *tp)
538 {
539 bool released __diagused;
540
541 tp->t_in_hpts = IHPTS_NONE;
542 released = in_pcbrele_wlocked(tptoinpcb(tp));
543 MPASS(released == false);
544 }
545
546 /*
547 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU
548 * is preferred on the first incoming packet. Before that avoid crowding
549 * a single CPU with newborn connections and use a random one.
550 * This initialization is normally called on a newborn tcpcb, but potentially
551 * can be called once again if stack is switched. In that case we inherit CPU
552 * that the previous stack has set, be it random or not. In extreme cases,
553 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state
554 * and has never received a first packet.
555 */
556 void
tcp_hpts_init(struct tcpcb * tp)557 tcp_hpts_init(struct tcpcb *tp)
558 {
559
560 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) {
561 tp->t_hpts_cpu = hpts_random_cpu();
562 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
563 }
564 }
565
566 /*
567 * Called normally with the INP_LOCKED but it
568 * does not matter, the hpts lock is the key
569 * but the lock order allows us to hold the
570 * INP lock and then get the hpts lock.
571 */
572 void
tcp_hpts_remove(struct tcpcb * tp)573 tcp_hpts_remove(struct tcpcb *tp)
574 {
575 struct tcp_hpts_entry *hpts;
576 struct hptsh *hptsh;
577
578 INP_WLOCK_ASSERT(tptoinpcb(tp));
579
580 hpts = tcp_hpts_lock(tp);
581 if (tp->t_in_hpts == IHPTS_ONQUEUE) {
582 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
583 tp->t_hpts_request = 0;
584 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
585 TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
586 MPASS(hptsh->count > 0);
587 hptsh->count--;
588 MPASS(hpts->p_on_queue_cnt > 0);
589 hpts->p_on_queue_cnt--;
590 tcp_hpts_release(tp);
591 } else {
592 /*
593 * tcp_hptsi() now owns the TAILQ head of this inp.
594 * Can't TAILQ_REMOVE, just mark it.
595 */
596 #ifdef INVARIANTS
597 struct tcpcb *tmp;
598
599 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
600 MPASS(tmp != tp);
601 #endif
602 tp->t_in_hpts = IHPTS_MOVING;
603 tp->t_hpts_slot = -1;
604 }
605 } else if (tp->t_in_hpts == IHPTS_MOVING) {
606 /*
607 * Handle a special race condition:
608 * tcp_hptsi() moves inpcb to detached tailq
609 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
610 * tcp_hpts_insert() sets slot to a meaningful value
611 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
612 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
613 */
614 tp->t_hpts_slot = -1;
615 }
616 HPTS_UNLOCK(hpts);
617 }
618
619 static inline int
hpts_slot(uint32_t wheel_slot,uint32_t plus)620 hpts_slot(uint32_t wheel_slot, uint32_t plus)
621 {
622 /*
623 * Given a slot on the wheel, what slot
624 * is that plus ticks out?
625 */
626 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
627 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
628 }
629
630 static inline int
tick_to_wheel(uint32_t cts_in_wticks)631 tick_to_wheel(uint32_t cts_in_wticks)
632 {
633 /*
634 * Given a timestamp in ticks (so by
635 * default to get it to a real time one
636 * would multiply by 10.. i.e the number
637 * of ticks in a slot) map it to our limited
638 * space wheel.
639 */
640 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
641 }
642
643 static inline int
hpts_slots_diff(int prev_slot,int slot_now)644 hpts_slots_diff(int prev_slot, int slot_now)
645 {
646 /*
647 * Given two slots that are someplace
648 * on our wheel. How far are they apart?
649 */
650 if (slot_now > prev_slot)
651 return (slot_now - prev_slot);
652 else if (slot_now == prev_slot)
653 /*
654 * Special case, same means we can go all of our
655 * wheel less one slot.
656 */
657 return (NUM_OF_HPTSI_SLOTS - 1);
658 else
659 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
660 }
661
662 /*
663 * Given a slot on the wheel that is the current time
664 * mapped to the wheel (wheel_slot), what is the maximum
665 * distance forward that can be obtained without
666 * wrapping past either prev_slot or running_slot
667 * depending on the htps state? Also if passed
668 * a uint32_t *, fill it with the slot location.
669 *
670 * Note if you do not give this function the current
671 * time (that you think it is) mapped to the wheel slot
672 * then the results will not be what you expect and
673 * could lead to invalid inserts.
674 */
675 static inline int32_t
max_slots_available(struct tcp_hpts_entry * hpts,uint32_t wheel_slot,uint32_t * target_slot)676 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
677 {
678 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
679
680 if ((hpts->p_hpts_active == 1) &&
681 (hpts->p_wheel_complete == 0)) {
682 end_slot = hpts->p_runningslot;
683 /* Back up one tick */
684 if (end_slot == 0)
685 end_slot = NUM_OF_HPTSI_SLOTS - 1;
686 else
687 end_slot--;
688 if (target_slot)
689 *target_slot = end_slot;
690 } else {
691 /*
692 * For the case where we are
693 * not active, or we have
694 * completed the pass over
695 * the wheel, we can use the
696 * prev tick and subtract one from it. This puts us
697 * as far out as possible on the wheel.
698 */
699 end_slot = hpts->p_prev_slot;
700 if (end_slot == 0)
701 end_slot = NUM_OF_HPTSI_SLOTS - 1;
702 else
703 end_slot--;
704 if (target_slot)
705 *target_slot = end_slot;
706 /*
707 * Now we have close to the full wheel left minus the
708 * time it has been since the pacer went to sleep. Note
709 * that wheel_tick, passed in, should be the current time
710 * from the perspective of the caller, mapped to the wheel.
711 */
712 if (hpts->p_prev_slot != wheel_slot)
713 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
714 else
715 dis_to_travel = 1;
716 /*
717 * dis_to_travel in this case is the space from when the
718 * pacer stopped (p_prev_slot) and where our wheel_slot
719 * is now. To know how many slots we can put it in we
720 * subtract from the wheel size. We would not want
721 * to place something after p_prev_slot or it will
722 * get ran too soon.
723 */
724 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
725 }
726 /*
727 * So how many slots are open between p_runningslot -> p_cur_slot
728 * that is what is currently un-available for insertion. Special
729 * case when we are at the last slot, this gets 1, so that
730 * the answer to how many slots are available is all but 1.
731 */
732 if (hpts->p_runningslot == hpts->p_cur_slot)
733 dis_to_travel = 1;
734 else
735 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
736 /*
737 * How long has the pacer been running?
738 */
739 if (hpts->p_cur_slot != wheel_slot) {
740 /* The pacer is a bit late */
741 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
742 } else {
743 /* The pacer is right on time, now == pacers start time */
744 pacer_to_now = 0;
745 }
746 /*
747 * To get the number left we can insert into we simply
748 * subtract the distance the pacer has to run from how
749 * many slots there are.
750 */
751 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
752 /*
753 * Now how many of those we will eat due to the pacer's
754 * time (p_cur_slot) of start being behind the
755 * real time (wheel_slot)?
756 */
757 if (avail_on_wheel <= pacer_to_now) {
758 /*
759 * Wheel wrap, we can't fit on the wheel, that
760 * is unusual the system must be way overloaded!
761 * Insert into the assured slot, and return special
762 * "0".
763 */
764 counter_u64_add(combined_wheel_wrap, 1);
765 if (target_slot)
766 *target_slot = hpts->p_nxt_slot;
767 return (0);
768 } else {
769 /*
770 * We know how many slots are open
771 * on the wheel (the reverse of what
772 * is left to run. Take away the time
773 * the pacer started to now (wheel_slot)
774 * and that tells you how many slots are
775 * open that can be inserted into that won't
776 * be touched by the pacer until later.
777 */
778 return (avail_on_wheel - pacer_to_now);
779 }
780 }
781
782
783 #ifdef INVARIANTS
784 static void
check_if_slot_would_be_wrong(struct tcp_hpts_entry * hpts,struct tcpcb * tp,uint32_t hptsslot,int line)785 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
786 uint32_t hptsslot, int line)
787 {
788 /*
789 * Sanity checks for the pacer with invariants
790 * on insert.
791 */
792 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
793 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
794 if ((hpts->p_hpts_active) &&
795 (hpts->p_wheel_complete == 0)) {
796 /*
797 * If the pacer is processing a arc
798 * of the wheel, we need to make
799 * sure we are not inserting within
800 * that arc.
801 */
802 int distance, yet_to_run;
803
804 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
805 if (hpts->p_runningslot != hpts->p_cur_slot)
806 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
807 else
808 yet_to_run = 0; /* processing last slot */
809 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
810 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
811 hptsslot, distance, yet_to_run, hpts->p_runningslot,
812 hpts->p_cur_slot));
813 }
814 }
815 #endif
816
817 uint32_t
tcp_hpts_insert_diag(struct tcpcb * tp,uint32_t slot,int32_t line,struct hpts_diag * diag)818 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag)
819 {
820 struct tcp_hpts_entry *hpts;
821 struct timeval tv;
822 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
823 int32_t wheel_slot, maxslots;
824 bool need_wakeup = false;
825
826 INP_WLOCK_ASSERT(tptoinpcb(tp));
827 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
828 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE));
829
830 /*
831 * We now return the next-slot the hpts will be on, beyond its
832 * current run (if up) or where it was when it stopped if it is
833 * sleeping.
834 */
835 hpts = tcp_hpts_lock(tp);
836 microuptime(&tv);
837 if (diag) {
838 memset(diag, 0, sizeof(struct hpts_diag));
839 diag->p_hpts_active = hpts->p_hpts_active;
840 diag->p_prev_slot = hpts->p_prev_slot;
841 diag->p_runningslot = hpts->p_runningslot;
842 diag->p_nxt_slot = hpts->p_nxt_slot;
843 diag->p_cur_slot = hpts->p_cur_slot;
844 diag->p_curtick = hpts->p_curtick;
845 diag->p_lasttick = hpts->p_lasttick;
846 diag->slot_req = slot;
847 diag->p_on_min_sleep = hpts->p_on_min_sleep;
848 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
849 }
850 if (slot == 0) {
851 /* Ok we need to set it on the hpts in the current slot */
852 tp->t_hpts_request = 0;
853 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
854 /*
855 * A sleeping hpts we want in next slot to run
856 * note that in this state p_prev_slot == p_cur_slot
857 */
858 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
859 if ((hpts->p_on_min_sleep == 0) &&
860 (hpts->p_hpts_active == 0))
861 need_wakeup = true;
862 } else
863 tp->t_hpts_slot = hpts->p_runningslot;
864 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
865 tcp_hpts_insert_internal(tp, hpts);
866 if (need_wakeup) {
867 /*
868 * Activate the hpts if it is sleeping and its
869 * timeout is not 1.
870 */
871 hpts->p_direct_wake = 1;
872 tcp_wakehpts(hpts);
873 }
874 slot_on = hpts->p_nxt_slot;
875 HPTS_UNLOCK(hpts);
876
877 return (slot_on);
878 }
879 /* Get the current time relative to the wheel */
880 wheel_cts = tcp_tv_to_hptstick(&tv);
881 /* Map it onto the wheel */
882 wheel_slot = tick_to_wheel(wheel_cts);
883 /* Now what's the max we can place it at? */
884 maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
885 if (diag) {
886 diag->wheel_slot = wheel_slot;
887 diag->maxslots = maxslots;
888 diag->wheel_cts = wheel_cts;
889 }
890 if (maxslots == 0) {
891 /* The pacer is in a wheel wrap behind, yikes! */
892 if (slot > 1) {
893 /*
894 * Reduce by 1 to prevent a forever loop in
895 * case something else is wrong. Note this
896 * probably does not hurt because the pacer
897 * if its true is so far behind we will be
898 * > 1second late calling anyway.
899 */
900 slot--;
901 }
902 tp->t_hpts_slot = last_slot;
903 tp->t_hpts_request = slot;
904 } else if (maxslots >= slot) {
905 /* It all fits on the wheel */
906 tp->t_hpts_request = 0;
907 tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
908 } else {
909 /* It does not fit */
910 tp->t_hpts_request = slot - maxslots;
911 tp->t_hpts_slot = last_slot;
912 }
913 if (diag) {
914 diag->slot_remaining = tp->t_hpts_request;
915 diag->inp_hptsslot = tp->t_hpts_slot;
916 }
917 #ifdef INVARIANTS
918 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line);
919 #endif
920 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
921 tcp_hpts_insert_internal(tp, hpts);
922 if ((hpts->p_hpts_active == 0) &&
923 (tp->t_hpts_request == 0) &&
924 (hpts->p_on_min_sleep == 0)) {
925 /*
926 * The hpts is sleeping and NOT on a minimum
927 * sleep time, we need to figure out where
928 * it will wake up at and if we need to reschedule
929 * its time-out.
930 */
931 uint32_t have_slept, yet_to_sleep;
932
933 /* Now do we need to restart the hpts's timer? */
934 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
935 if (have_slept < hpts->p_hpts_sleep_time)
936 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
937 else {
938 /* We are over-due */
939 yet_to_sleep = 0;
940 need_wakeup = 1;
941 }
942 if (diag) {
943 diag->have_slept = have_slept;
944 diag->yet_to_sleep = yet_to_sleep;
945 }
946 if (yet_to_sleep &&
947 (yet_to_sleep > slot)) {
948 /*
949 * We need to reschedule the hpts's time-out.
950 */
951 hpts->p_hpts_sleep_time = slot;
952 need_new_to = slot * HPTS_TICKS_PER_SLOT;
953 }
954 }
955 /*
956 * Now how far is the hpts sleeping to? if active is 1, its
957 * up and ticking we do nothing, otherwise we may need to
958 * reschedule its callout if need_new_to is set from above.
959 */
960 if (need_wakeup) {
961 hpts->p_direct_wake = 1;
962 tcp_wakehpts(hpts);
963 if (diag) {
964 diag->need_new_to = 0;
965 diag->co_ret = 0xffff0000;
966 }
967 } else if (need_new_to) {
968 int32_t co_ret;
969 struct timeval tv;
970 sbintime_t sb;
971
972 tv.tv_sec = 0;
973 tv.tv_usec = 0;
974 while (need_new_to > HPTS_USEC_IN_SEC) {
975 tv.tv_sec++;
976 need_new_to -= HPTS_USEC_IN_SEC;
977 }
978 tv.tv_usec = need_new_to;
979 sb = tvtosbt(tv);
980 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
981 hpts_timeout_swi, hpts, hpts->p_cpu,
982 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
983 if (diag) {
984 diag->need_new_to = need_new_to;
985 diag->co_ret = co_ret;
986 }
987 }
988 slot_on = hpts->p_nxt_slot;
989 HPTS_UNLOCK(hpts);
990
991 return (slot_on);
992 }
993
994 static uint16_t
hpts_cpuid(struct tcpcb * tp,int * failed)995 hpts_cpuid(struct tcpcb *tp, int *failed)
996 {
997 struct inpcb *inp = tptoinpcb(tp);
998 u_int cpuid;
999 #ifdef NUMA
1000 struct hpts_domain_info *di;
1001 #endif
1002
1003 *failed = 0;
1004 if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
1005 return (tp->t_hpts_cpu);
1006 }
1007 /*
1008 * If we are using the irq cpu set by LRO or
1009 * the driver then it overrides all other domains.
1010 */
1011 if (tcp_use_irq_cpu) {
1012 if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1013 *failed = 1;
1014 return (0);
1015 }
1016 return (tp->t_lro_cpu);
1017 }
1018 /* If one is set the other must be the same */
1019 #ifdef RSS
1020 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1021 if (cpuid == NETISR_CPUID_NONE)
1022 return (hpts_random_cpu());
1023 else
1024 return (cpuid);
1025 #endif
1026 /*
1027 * We don't have a flowid -> cpuid mapping, so cheat and just map
1028 * unknown cpuids to curcpu. Not the best, but apparently better
1029 * than defaulting to swi 0.
1030 */
1031 if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1032 counter_u64_add(cpu_uses_random, 1);
1033 return (hpts_random_cpu());
1034 }
1035 /*
1036 * Hash to a thread based on the flowid. If we are using numa,
1037 * then restrict the hash to the numa domain where the inp lives.
1038 */
1039
1040 #ifdef NUMA
1041 if ((vm_ndomains == 1) ||
1042 (inp->inp_numa_domain == M_NODOM)) {
1043 #endif
1044 cpuid = inp->inp_flowid % mp_ncpus;
1045 #ifdef NUMA
1046 } else {
1047 /* Hash into the cpu's that use that domain */
1048 di = &hpts_domains[inp->inp_numa_domain];
1049 cpuid = di->cpu[inp->inp_flowid % di->count];
1050 }
1051 #endif
1052 counter_u64_add(cpu_uses_flowid, 1);
1053 return (cpuid);
1054 }
1055
1056 static void
tcp_hpts_set_max_sleep(struct tcp_hpts_entry * hpts,int wrap_loop_cnt)1057 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1058 {
1059 uint32_t t = 0, i;
1060
1061 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1062 /*
1063 * Find next slot that is occupied and use that to
1064 * be the sleep time.
1065 */
1066 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1067 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1068 break;
1069 }
1070 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1071 }
1072 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1073 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1074 } else {
1075 /* No one on the wheel sleep for all but 400 slots or sleep max */
1076 hpts->p_hpts_sleep_time = hpts_sleep_max;
1077 }
1078 }
1079
1080 static int32_t
tcp_hptsi(struct tcp_hpts_entry * hpts,bool from_callout)1081 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout)
1082 {
1083 struct tcpcb *tp;
1084 struct timeval tv;
1085 int32_t slots_to_run, i, error;
1086 int32_t loop_cnt = 0;
1087 int32_t did_prefetch = 0;
1088 int32_t prefetch_tp = 0;
1089 int32_t wrap_loop_cnt = 0;
1090 int32_t slot_pos_of_endpoint = 0;
1091 int32_t orig_exit_slot;
1092 bool completed_measure, seen_endpoint;
1093
1094 completed_measure = false;
1095 seen_endpoint = false;
1096
1097 HPTS_MTX_ASSERT(hpts);
1098 NET_EPOCH_ASSERT();
1099 /* record previous info for any logging */
1100 hpts->saved_lasttick = hpts->p_lasttick;
1101 hpts->saved_curtick = hpts->p_curtick;
1102 hpts->saved_curslot = hpts->p_cur_slot;
1103 hpts->saved_prev_slot = hpts->p_prev_slot;
1104
1105 hpts->p_lasttick = hpts->p_curtick;
1106 hpts->p_curtick = tcp_gethptstick(&tv);
1107 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1108 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1109 if ((hpts->p_on_queue_cnt == 0) ||
1110 (hpts->p_lasttick == hpts->p_curtick)) {
1111 /*
1112 * No time has yet passed,
1113 * or nothing to do.
1114 */
1115 hpts->p_prev_slot = hpts->p_cur_slot;
1116 hpts->p_lasttick = hpts->p_curtick;
1117 goto no_run;
1118 }
1119 again:
1120 hpts->p_wheel_complete = 0;
1121 HPTS_MTX_ASSERT(hpts);
1122 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1123 if (((hpts->p_curtick - hpts->p_lasttick) >
1124 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1125 (hpts->p_on_queue_cnt != 0)) {
1126 /*
1127 * Wheel wrap is occuring, basically we
1128 * are behind and the distance between
1129 * run's has spread so much it has exceeded
1130 * the time on the wheel (1.024 seconds). This
1131 * is ugly and should NOT be happening. We
1132 * need to run the entire wheel. We last processed
1133 * p_prev_slot, so that needs to be the last slot
1134 * we run. The next slot after that should be our
1135 * reserved first slot for new, and then starts
1136 * the running position. Now the problem is the
1137 * reserved "not to yet" place does not exist
1138 * and there may be inp's in there that need
1139 * running. We can merge those into the
1140 * first slot at the head.
1141 */
1142 wrap_loop_cnt++;
1143 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1144 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1145 /*
1146 * Adjust p_cur_slot to be where we are starting from
1147 * hopefully we will catch up (fat chance if something
1148 * is broken this bad :( )
1149 */
1150 hpts->p_cur_slot = hpts->p_prev_slot;
1151 /*
1152 * The next slot has guys to run too, and that would
1153 * be where we would normally start, lets move them into
1154 * the next slot (p_prev_slot + 2) so that we will
1155 * run them, the extra 10usecs of late (by being
1156 * put behind) does not really matter in this situation.
1157 */
1158 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1159 t_hpts) {
1160 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1161 MPASS(tp->t_hpts_gencnt ==
1162 hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1163 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1164
1165 /*
1166 * Update gencnt and nextslot accordingly to match
1167 * the new location. This is safe since it takes both
1168 * the INP lock and the pacer mutex to change the
1169 * t_hptsslot and t_hpts_gencnt.
1170 */
1171 tp->t_hpts_gencnt =
1172 hpts->p_hptss[hpts->p_runningslot].gencnt;
1173 tp->t_hpts_slot = hpts->p_runningslot;
1174 }
1175 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1176 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1177 hpts->p_hptss[hpts->p_runningslot].count +=
1178 hpts->p_hptss[hpts->p_nxt_slot].count;
1179 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1180 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1181 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1182 counter_u64_add(wheel_wrap, 1);
1183 } else {
1184 /*
1185 * Nxt slot is always one after p_runningslot though
1186 * its not used usually unless we are doing wheel wrap.
1187 */
1188 hpts->p_nxt_slot = hpts->p_prev_slot;
1189 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1190 }
1191 if (hpts->p_on_queue_cnt == 0) {
1192 goto no_one;
1193 }
1194 for (i = 0; i < slots_to_run; i++) {
1195 struct tcpcb *tp, *ntp;
1196 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1197 struct hptsh *hptsh;
1198 uint32_t runningslot;
1199
1200 /*
1201 * Calculate our delay, if there are no extra ticks there
1202 * was not any (i.e. if slots_to_run == 1, no delay).
1203 */
1204 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1205 HPTS_TICKS_PER_SLOT;
1206
1207 runningslot = hpts->p_runningslot;
1208 hptsh = &hpts->p_hptss[runningslot];
1209 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1210 hpts->p_on_queue_cnt -= hptsh->count;
1211 hptsh->count = 0;
1212 hptsh->gencnt++;
1213
1214 HPTS_UNLOCK(hpts);
1215
1216 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1217 struct inpcb *inp = tptoinpcb(tp);
1218 bool set_cpu;
1219
1220 if (ntp != NULL) {
1221 /*
1222 * If we have a next tcpcb, see if we can
1223 * prefetch it. Note this may seem
1224 * "risky" since we have no locks (other
1225 * than the previous inp) and there no
1226 * assurance that ntp was not pulled while
1227 * we were processing tp and freed. If this
1228 * occurred it could mean that either:
1229 *
1230 * a) Its NULL (which is fine we won't go
1231 * here) <or> b) Its valid (which is cool we
1232 * will prefetch it) <or> c) The inp got
1233 * freed back to the slab which was
1234 * reallocated. Then the piece of memory was
1235 * re-used and something else (not an
1236 * address) is in inp_ppcb. If that occurs
1237 * we don't crash, but take a TLB shootdown
1238 * performance hit (same as if it was NULL
1239 * and we tried to pre-fetch it).
1240 *
1241 * Considering that the likelyhood of <c> is
1242 * quite rare we will take a risk on doing
1243 * this. If performance drops after testing
1244 * we can always take this out. NB: the
1245 * kern_prefetch on amd64 actually has
1246 * protection against a bad address now via
1247 * the DMAP_() tests. This will prevent the
1248 * TLB hit, and instead if <c> occurs just
1249 * cause us to load cache with a useless
1250 * address (to us).
1251 *
1252 * XXXGL: this comment and the prefetch action
1253 * could be outdated after tp == inp change.
1254 */
1255 kern_prefetch(ntp, &prefetch_tp);
1256 prefetch_tp = 1;
1257 }
1258
1259 /* For debugging */
1260 if (!seen_endpoint) {
1261 seen_endpoint = true;
1262 orig_exit_slot = slot_pos_of_endpoint =
1263 runningslot;
1264 } else if (!completed_measure) {
1265 /* Record the new position */
1266 orig_exit_slot = runningslot;
1267 }
1268
1269 INP_WLOCK(inp);
1270 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1271 set_cpu = true;
1272 } else {
1273 set_cpu = false;
1274 }
1275
1276 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1277 if (tp->t_hpts_slot == -1) {
1278 tp->t_in_hpts = IHPTS_NONE;
1279 if (in_pcbrele_wlocked(inp) == false)
1280 INP_WUNLOCK(inp);
1281 } else {
1282 HPTS_LOCK(hpts);
1283 tcp_hpts_insert_internal(tp, hpts);
1284 HPTS_UNLOCK(hpts);
1285 INP_WUNLOCK(inp);
1286 }
1287 continue;
1288 }
1289
1290 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1291 MPASS(!(inp->inp_flags & INP_DROPPED));
1292 KASSERT(runningslot == tp->t_hpts_slot,
1293 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1294 hpts, inp, runningslot, tp->t_hpts_slot));
1295
1296 if (tp->t_hpts_request) {
1297 /*
1298 * This guy is deferred out further in time
1299 * then our wheel had available on it.
1300 * Push him back on the wheel or run it
1301 * depending.
1302 */
1303 uint32_t maxslots, last_slot, remaining_slots;
1304
1305 remaining_slots = slots_to_run - (i + 1);
1306 if (tp->t_hpts_request > remaining_slots) {
1307 HPTS_LOCK(hpts);
1308 /*
1309 * How far out can we go?
1310 */
1311 maxslots = max_slots_available(hpts,
1312 hpts->p_cur_slot, &last_slot);
1313 if (maxslots >= tp->t_hpts_request) {
1314 /* We can place it finally to
1315 * be processed. */
1316 tp->t_hpts_slot = hpts_slot(
1317 hpts->p_runningslot,
1318 tp->t_hpts_request);
1319 tp->t_hpts_request = 0;
1320 } else {
1321 /* Work off some more time */
1322 tp->t_hpts_slot = last_slot;
1323 tp->t_hpts_request -=
1324 maxslots;
1325 }
1326 tcp_hpts_insert_internal(tp, hpts);
1327 HPTS_UNLOCK(hpts);
1328 INP_WUNLOCK(inp);
1329 continue;
1330 }
1331 tp->t_hpts_request = 0;
1332 /* Fall through we will so do it now */
1333 }
1334
1335 tcp_hpts_release(tp);
1336 if (set_cpu) {
1337 /*
1338 * Setup so the next time we will move to
1339 * the right CPU. This should be a rare
1340 * event. It will sometimes happens when we
1341 * are the client side (usually not the
1342 * server). Somehow tcp_output() gets called
1343 * before the tcp_do_segment() sets the
1344 * intial state. This means the r_cpu and
1345 * r_hpts_cpu is 0. We get on the hpts, and
1346 * then tcp_input() gets called setting up
1347 * the r_cpu to the correct value. The hpts
1348 * goes off and sees the mis-match. We
1349 * simply correct it here and the CPU will
1350 * switch to the new hpts nextime the tcb
1351 * gets added to the hpts (not this one)
1352 * :-)
1353 */
1354 tcp_set_hpts(tp);
1355 }
1356 CURVNET_SET(inp->inp_vnet);
1357 /* Lets do any logging that we might want to */
1358 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1359
1360 if (tp->t_fb_ptr != NULL) {
1361 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1362 did_prefetch = 1;
1363 }
1364 /*
1365 * We set TF2_HPTS_CALLS before any possible output.
1366 * The contract with the transport is that if it cares
1367 * about hpts calling it should clear the flag. That
1368 * way next time it is called it will know it is hpts.
1369 *
1370 * We also only call tfb_do_queued_segments() <or>
1371 * tcp_output(). It is expected that if segments are
1372 * queued and come in that the final input mbuf will
1373 * cause a call to output if it is needed so we do
1374 * not need a second call to tcp_output(). So we do
1375 * one or the other but not both.
1376 *
1377 * XXXGL: some KPI abuse here. tfb_do_queued_segments
1378 * returns unlocked with positive error (always 1) and
1379 * tcp_output returns unlocked with negative error.
1380 */
1381 tp->t_flags2 |= TF2_HPTS_CALLS;
1382 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1383 !STAILQ_EMPTY(&tp->t_inqueue))
1384 error = -(*tp->t_fb->tfb_do_queued_segments)(tp,
1385 0);
1386 else
1387 error = tcp_output(tp);
1388 if (__predict_true(error >= 0))
1389 INP_WUNLOCK(inp);
1390 CURVNET_RESTORE();
1391 }
1392 if (seen_endpoint) {
1393 /*
1394 * We now have a accurate distance between
1395 * slot_pos_of_endpoint <-> orig_exit_slot
1396 * to tell us how late we were, orig_exit_slot
1397 * is where we calculated the end of our cycle to
1398 * be when we first entered.
1399 */
1400 completed_measure = true;
1401 }
1402 HPTS_LOCK(hpts);
1403 hpts->p_runningslot++;
1404 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1405 hpts->p_runningslot = 0;
1406 }
1407 }
1408 no_one:
1409 HPTS_MTX_ASSERT(hpts);
1410 hpts->p_delayed_by = 0;
1411 /*
1412 * Check to see if we took an excess amount of time and need to run
1413 * more ticks (if we did not hit eno-bufs).
1414 */
1415 hpts->p_prev_slot = hpts->p_cur_slot;
1416 hpts->p_lasttick = hpts->p_curtick;
1417 if (!from_callout || (loop_cnt > max_pacer_loops)) {
1418 /*
1419 * Something is serious slow we have
1420 * looped through processing the wheel
1421 * and by the time we cleared the
1422 * needs to run max_pacer_loops time
1423 * we still needed to run. That means
1424 * the system is hopelessly behind and
1425 * can never catch up :(
1426 *
1427 * We will just lie to this thread
1428 * and let it thing p_curtick is
1429 * correct. When it next awakens
1430 * it will find itself further behind.
1431 */
1432 if (from_callout)
1433 counter_u64_add(hpts_hopelessly_behind, 1);
1434 goto no_run;
1435 }
1436 hpts->p_curtick = tcp_gethptstick(&tv);
1437 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1438 if (!seen_endpoint) {
1439 /* We saw no endpoint but we may be looping */
1440 orig_exit_slot = hpts->p_cur_slot;
1441 }
1442 if ((wrap_loop_cnt < 2) &&
1443 (hpts->p_lasttick != hpts->p_curtick)) {
1444 counter_u64_add(hpts_loops, 1);
1445 loop_cnt++;
1446 goto again;
1447 }
1448 no_run:
1449 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1450 /*
1451 * Set flag to tell that we are done for
1452 * any slot input that happens during
1453 * input.
1454 */
1455 hpts->p_wheel_complete = 1;
1456 /*
1457 * Now did we spend too long running input and need to run more ticks?
1458 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1459 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1460 * is greater than 2, then the condtion most likely are *not* true.
1461 * Also if we are called not from the callout, we don't run the wheel
1462 * multiple times so the slots may not align either.
1463 */
1464 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1465 (wrap_loop_cnt >= 2) || !from_callout),
1466 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1467 hpts->p_prev_slot, hpts->p_cur_slot));
1468 KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1469 || (wrap_loop_cnt >= 2) || !from_callout),
1470 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1471 hpts->p_lasttick, hpts->p_curtick));
1472 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1473 hpts->p_curtick = tcp_gethptstick(&tv);
1474 counter_u64_add(hpts_loops, 1);
1475 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1476 goto again;
1477 }
1478
1479 if (from_callout) {
1480 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1481 }
1482 if (seen_endpoint)
1483 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1484 else
1485 return (0);
1486 }
1487
1488 void
tcp_set_hpts(struct tcpcb * tp)1489 tcp_set_hpts(struct tcpcb *tp)
1490 {
1491 struct tcp_hpts_entry *hpts;
1492 int failed;
1493
1494 INP_WLOCK_ASSERT(tptoinpcb(tp));
1495
1496 hpts = tcp_hpts_lock(tp);
1497 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1498 tp->t_hpts_cpu = hpts_cpuid(tp, &failed);
1499 if (failed == 0)
1500 tp->t_flags2 |= TF2_HPTS_CPU_SET;
1501 }
1502 HPTS_UNLOCK(hpts);
1503 }
1504
1505 static struct tcp_hpts_entry *
tcp_choose_hpts_to_run(void)1506 tcp_choose_hpts_to_run(void)
1507 {
1508 int i, oldest_idx, start, end;
1509 uint32_t cts, time_since_ran, calc;
1510
1511 cts = tcp_get_usecs(NULL);
1512 time_since_ran = 0;
1513 /* Default is all one group */
1514 start = 0;
1515 end = tcp_pace.rp_num_hptss;
1516 /*
1517 * If we have more than one L3 group figure out which one
1518 * this CPU is in.
1519 */
1520 if (tcp_pace.grp_cnt > 1) {
1521 for (i = 0; i < tcp_pace.grp_cnt; i++) {
1522 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1523 start = tcp_pace.grps[i]->cg_first;
1524 end = (tcp_pace.grps[i]->cg_last + 1);
1525 break;
1526 }
1527 }
1528 }
1529 oldest_idx = -1;
1530 for (i = start; i < end; i++) {
1531 if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i]))
1532 calc = cts - tcp_pace.cts_last_ran[i];
1533 else
1534 calc = 0;
1535 if (calc > time_since_ran) {
1536 oldest_idx = i;
1537 time_since_ran = calc;
1538 }
1539 }
1540 if (oldest_idx >= 0)
1541 return(tcp_pace.rp_ent[oldest_idx]);
1542 else
1543 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1544 }
1545
1546 static void
__tcp_run_hpts(void)1547 __tcp_run_hpts(void)
1548 {
1549 struct epoch_tracker et;
1550 struct tcp_hpts_entry *hpts;
1551 int ticks_ran;
1552
1553 hpts = tcp_choose_hpts_to_run();
1554
1555 if (hpts->p_hpts_active) {
1556 /* Already active */
1557 return;
1558 }
1559 if (!HPTS_TRYLOCK(hpts)) {
1560 /* Someone else got the lock */
1561 return;
1562 }
1563 NET_EPOCH_ENTER(et);
1564 if (hpts->p_hpts_active)
1565 goto out_with_mtx;
1566 hpts->syscall_cnt++;
1567 counter_u64_add(hpts_direct_call, 1);
1568 hpts->p_hpts_active = 1;
1569 ticks_ran = tcp_hptsi(hpts, false);
1570 /* We may want to adjust the sleep values here */
1571 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1572 if (ticks_ran > ticks_indicate_less_sleep) {
1573 struct timeval tv;
1574 sbintime_t sb;
1575
1576 hpts->p_mysleep.tv_usec /= 2;
1577 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1578 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1579 /* Reschedule with new to value */
1580 tcp_hpts_set_max_sleep(hpts, 0);
1581 tv.tv_sec = 0;
1582 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1583 /* Validate its in the right ranges */
1584 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1585 hpts->overidden_sleep = tv.tv_usec;
1586 tv.tv_usec = hpts->p_mysleep.tv_usec;
1587 } else if (tv.tv_usec > dynamic_max_sleep) {
1588 /* Lets not let sleep get above this value */
1589 hpts->overidden_sleep = tv.tv_usec;
1590 tv.tv_usec = dynamic_max_sleep;
1591 }
1592 /*
1593 * In this mode the timer is a backstop to
1594 * all the userret/lro_flushes so we use
1595 * the dynamic value and set the on_min_sleep
1596 * flag so we will not be awoken.
1597 */
1598 sb = tvtosbt(tv);
1599 /* Store off to make visible the actual sleep time */
1600 hpts->sleeping = tv.tv_usec;
1601 callout_reset_sbt_on(&hpts->co, sb, 0,
1602 hpts_timeout_swi, hpts, hpts->p_cpu,
1603 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1604 } else if (ticks_ran < ticks_indicate_more_sleep) {
1605 /* For the further sleep, don't reschedule hpts */
1606 hpts->p_mysleep.tv_usec *= 2;
1607 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1608 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1609 }
1610 hpts->p_on_min_sleep = 1;
1611 }
1612 hpts->p_hpts_active = 0;
1613 out_with_mtx:
1614 HPTS_UNLOCK(hpts);
1615 NET_EPOCH_EXIT(et);
1616 }
1617
1618 static void
tcp_hpts_thread(void * ctx)1619 tcp_hpts_thread(void *ctx)
1620 {
1621 struct tcp_hpts_entry *hpts;
1622 struct epoch_tracker et;
1623 struct timeval tv;
1624 sbintime_t sb;
1625 int ticks_ran;
1626
1627 hpts = (struct tcp_hpts_entry *)ctx;
1628 HPTS_LOCK(hpts);
1629 if (hpts->p_direct_wake) {
1630 /* Signaled by input or output with low occupancy count. */
1631 callout_stop(&hpts->co);
1632 counter_u64_add(hpts_direct_awakening, 1);
1633 } else {
1634 /* Timed out, the normal case. */
1635 counter_u64_add(hpts_wake_timeout, 1);
1636 if (callout_pending(&hpts->co) ||
1637 !callout_active(&hpts->co)) {
1638 HPTS_UNLOCK(hpts);
1639 return;
1640 }
1641 }
1642 callout_deactivate(&hpts->co);
1643 hpts->p_hpts_wake_scheduled = 0;
1644 NET_EPOCH_ENTER(et);
1645 if (hpts->p_hpts_active) {
1646 /*
1647 * We are active already. This means that a syscall
1648 * trap or LRO is running in behalf of hpts. In that case
1649 * we need to double our timeout since there seems to be
1650 * enough activity in the system that we don't need to
1651 * run as often (if we were not directly woken).
1652 */
1653 tv.tv_sec = 0;
1654 if (hpts->p_direct_wake == 0) {
1655 counter_u64_add(hpts_back_tosleep, 1);
1656 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1657 hpts->p_mysleep.tv_usec *= 2;
1658 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1659 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1660 tv.tv_usec = hpts->p_mysleep.tv_usec;
1661 hpts->p_on_min_sleep = 1;
1662 } else {
1663 /*
1664 * Here we have low count on the wheel, but
1665 * somehow we still collided with one of the
1666 * connections. Lets go back to sleep for a
1667 * min sleep time, but clear the flag so we
1668 * can be awoken by insert.
1669 */
1670 hpts->p_on_min_sleep = 0;
1671 tv.tv_usec = tcp_min_hptsi_time;
1672 }
1673 } else {
1674 /*
1675 * Directly woken most likely to reset the
1676 * callout time.
1677 */
1678 tv.tv_usec = hpts->p_mysleep.tv_usec;
1679 }
1680 goto back_to_sleep;
1681 }
1682 hpts->sleeping = 0;
1683 hpts->p_hpts_active = 1;
1684 ticks_ran = tcp_hptsi(hpts, true);
1685 tv.tv_sec = 0;
1686 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1687 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) {
1688 hpts->hit_callout_thresh = 1;
1689 atomic_add_int(&hpts_that_need_softclock, 1);
1690 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) {
1691 hpts->hit_callout_thresh = 0;
1692 atomic_subtract_int(&hpts_that_need_softclock, 1);
1693 }
1694 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1695 if(hpts->p_direct_wake == 0) {
1696 /*
1697 * Only adjust sleep time if we were
1698 * called from the callout i.e. direct_wake == 0.
1699 */
1700 if (ticks_ran < ticks_indicate_more_sleep) {
1701 hpts->p_mysleep.tv_usec *= 2;
1702 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1703 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1704 } else if (ticks_ran > ticks_indicate_less_sleep) {
1705 hpts->p_mysleep.tv_usec /= 2;
1706 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1707 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1708 }
1709 }
1710 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1711 hpts->overidden_sleep = tv.tv_usec;
1712 tv.tv_usec = hpts->p_mysleep.tv_usec;
1713 } else if (tv.tv_usec > dynamic_max_sleep) {
1714 /* Lets not let sleep get above this value */
1715 hpts->overidden_sleep = tv.tv_usec;
1716 tv.tv_usec = dynamic_max_sleep;
1717 }
1718 /*
1719 * In this mode the timer is a backstop to
1720 * all the userret/lro_flushes so we use
1721 * the dynamic value and set the on_min_sleep
1722 * flag so we will not be awoken.
1723 */
1724 hpts->p_on_min_sleep = 1;
1725 } else if (hpts->p_on_queue_cnt == 0) {
1726 /*
1727 * No one on the wheel, please wake us up
1728 * if you insert on the wheel.
1729 */
1730 hpts->p_on_min_sleep = 0;
1731 hpts->overidden_sleep = 0;
1732 } else {
1733 /*
1734 * We hit here when we have a low number of
1735 * clients on the wheel (our else clause).
1736 * We may need to go on min sleep, if we set
1737 * the flag we will not be awoken if someone
1738 * is inserted ahead of us. Clearing the flag
1739 * means we can be awoken. This is "old mode"
1740 * where the timer is what runs hpts mainly.
1741 */
1742 if (tv.tv_usec < tcp_min_hptsi_time) {
1743 /*
1744 * Yes on min sleep, which means
1745 * we cannot be awoken.
1746 */
1747 hpts->overidden_sleep = tv.tv_usec;
1748 tv.tv_usec = tcp_min_hptsi_time;
1749 hpts->p_on_min_sleep = 1;
1750 } else {
1751 /* Clear the min sleep flag */
1752 hpts->overidden_sleep = 0;
1753 hpts->p_on_min_sleep = 0;
1754 }
1755 }
1756 HPTS_MTX_ASSERT(hpts);
1757 hpts->p_hpts_active = 0;
1758 back_to_sleep:
1759 hpts->p_direct_wake = 0;
1760 sb = tvtosbt(tv);
1761 /* Store off to make visible the actual sleep time */
1762 hpts->sleeping = tv.tv_usec;
1763 callout_reset_sbt_on(&hpts->co, sb, 0,
1764 hpts_timeout_swi, hpts, hpts->p_cpu,
1765 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1766 NET_EPOCH_EXIT(et);
1767 HPTS_UNLOCK(hpts);
1768 }
1769
1770 #undef timersub
1771
1772 static int32_t
hpts_count_level(struct cpu_group * cg)1773 hpts_count_level(struct cpu_group *cg)
1774 {
1775 int32_t count_l3, i;
1776
1777 count_l3 = 0;
1778 if (cg->cg_level == CG_SHARE_L3)
1779 count_l3++;
1780 /* Walk all the children looking for L3 */
1781 for (i = 0; i < cg->cg_children; i++) {
1782 count_l3 += hpts_count_level(&cg->cg_child[i]);
1783 }
1784 return (count_l3);
1785 }
1786
1787 static void
hpts_gather_grps(struct cpu_group ** grps,int32_t * at,int32_t max,struct cpu_group * cg)1788 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1789 {
1790 int32_t idx, i;
1791
1792 idx = *at;
1793 if (cg->cg_level == CG_SHARE_L3) {
1794 grps[idx] = cg;
1795 idx++;
1796 if (idx == max) {
1797 *at = idx;
1798 return;
1799 }
1800 }
1801 *at = idx;
1802 /* Walk all the children looking for L3 */
1803 for (i = 0; i < cg->cg_children; i++) {
1804 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1805 }
1806 }
1807
1808 static void
tcp_hpts_mod_load(void)1809 tcp_hpts_mod_load(void)
1810 {
1811 struct cpu_group *cpu_top;
1812 int32_t error __diagused;
1813 int32_t i, j, bound = 0, created = 0;
1814 size_t sz, asz;
1815 struct timeval tv;
1816 sbintime_t sb;
1817 struct tcp_hpts_entry *hpts;
1818 struct pcpu *pc;
1819 char unit[16];
1820 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1821 int count, domain;
1822
1823 #ifdef SMP
1824 cpu_top = smp_topo();
1825 #else
1826 cpu_top = NULL;
1827 #endif
1828 tcp_pace.rp_num_hptss = ncpus;
1829 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1830 hpts_loops = counter_u64_alloc(M_WAITOK);
1831 back_tosleep = counter_u64_alloc(M_WAITOK);
1832 combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1833 wheel_wrap = counter_u64_alloc(M_WAITOK);
1834 hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1835 hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1836 hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1837 hpts_direct_call = counter_u64_alloc(M_WAITOK);
1838 cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1839 cpu_uses_random = counter_u64_alloc(M_WAITOK);
1840
1841 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1842 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1843 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1844 tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1845 tcp_pace.grp_cnt = 0;
1846 if (cpu_top == NULL) {
1847 tcp_pace.grp_cnt = 1;
1848 } else {
1849 /* Find out how many cache level 3 domains we have */
1850 count = 0;
1851 tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1852 if (tcp_pace.grp_cnt == 0) {
1853 tcp_pace.grp_cnt = 1;
1854 }
1855 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1856 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1857 /* Now populate the groups */
1858 if (tcp_pace.grp_cnt == 1) {
1859 /*
1860 * All we need is the top level all cpu's are in
1861 * the same cache so when we use grp[0]->cg_mask
1862 * with the cg_first <-> cg_last it will include
1863 * all cpu's in it. The level here is probably
1864 * zero which is ok.
1865 */
1866 tcp_pace.grps[0] = cpu_top;
1867 } else {
1868 /*
1869 * Here we must find all the level three cache domains
1870 * and setup our pointers to them.
1871 */
1872 count = 0;
1873 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1874 }
1875 }
1876 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1877 for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1878 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1879 M_TCPHPTS, M_WAITOK | M_ZERO);
1880 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1881 hpts = tcp_pace.rp_ent[i];
1882 /*
1883 * Init all the hpts structures that are not specifically
1884 * zero'd by the allocations. Also lets attach them to the
1885 * appropriate sysctl block as well.
1886 */
1887 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1888 "hpts", MTX_DEF | MTX_DUPOK);
1889 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1890 TAILQ_INIT(&hpts->p_hptss[j].head);
1891 hpts->p_hptss[j].count = 0;
1892 hpts->p_hptss[j].gencnt = 0;
1893 }
1894 sysctl_ctx_init(&hpts->hpts_ctx);
1895 sprintf(unit, "%d", i);
1896 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1897 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1898 OID_AUTO,
1899 unit,
1900 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1901 "");
1902 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1903 SYSCTL_CHILDREN(hpts->hpts_root),
1904 OID_AUTO, "out_qcnt", CTLFLAG_RD,
1905 &hpts->p_on_queue_cnt, 0,
1906 "Count TCB's awaiting output processing");
1907 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1908 SYSCTL_CHILDREN(hpts->hpts_root),
1909 OID_AUTO, "active", CTLFLAG_RD,
1910 &hpts->p_hpts_active, 0,
1911 "Is the hpts active");
1912 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1913 SYSCTL_CHILDREN(hpts->hpts_root),
1914 OID_AUTO, "curslot", CTLFLAG_RD,
1915 &hpts->p_cur_slot, 0,
1916 "What the current running pacers goal");
1917 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1918 SYSCTL_CHILDREN(hpts->hpts_root),
1919 OID_AUTO, "runtick", CTLFLAG_RD,
1920 &hpts->p_runningslot, 0,
1921 "What the running pacers current slot is");
1922 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1923 SYSCTL_CHILDREN(hpts->hpts_root),
1924 OID_AUTO, "curtick", CTLFLAG_RD,
1925 &hpts->p_curtick, 0,
1926 "What the running pacers last tick mapped to the wheel was");
1927 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1928 SYSCTL_CHILDREN(hpts->hpts_root),
1929 OID_AUTO, "lastran", CTLFLAG_RD,
1930 &tcp_pace.cts_last_ran[i], 0,
1931 "The last usec tick that this hpts ran");
1932 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1933 SYSCTL_CHILDREN(hpts->hpts_root),
1934 OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1935 &hpts->p_mysleep.tv_usec,
1936 "What the running pacers is using for p_mysleep.tv_usec");
1937 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1938 SYSCTL_CHILDREN(hpts->hpts_root),
1939 OID_AUTO, "now_sleeping", CTLFLAG_RD,
1940 &hpts->sleeping, 0,
1941 "What the running pacers is actually sleeping for");
1942 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1943 SYSCTL_CHILDREN(hpts->hpts_root),
1944 OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1945 &hpts->syscall_cnt, 0,
1946 "How many times we had syscalls on this hpts");
1947
1948 hpts->p_hpts_sleep_time = hpts_sleep_max;
1949 hpts->p_num = i;
1950 hpts->p_curtick = tcp_gethptstick(&tv);
1951 tcp_pace.cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1952 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1953 hpts->p_cpu = 0xffff;
1954 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1955 callout_init(&hpts->co, 1);
1956 }
1957 /* Don't try to bind to NUMA domains if we don't have any */
1958 if (vm_ndomains == 1 && tcp_bind_threads == 2)
1959 tcp_bind_threads = 0;
1960
1961 /*
1962 * Now lets start ithreads to handle the hptss.
1963 */
1964 for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1965 hpts = tcp_pace.rp_ent[i];
1966 hpts->p_cpu = i;
1967
1968 error = swi_add(&hpts->ie, "hpts",
1969 tcp_hpts_thread, (void *)hpts,
1970 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1971 KASSERT(error == 0,
1972 ("Can't add hpts:%p i:%d err:%d",
1973 hpts, i, error));
1974 created++;
1975 hpts->p_mysleep.tv_sec = 0;
1976 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1977 if (tcp_bind_threads == 1) {
1978 if (intr_event_bind(hpts->ie, i) == 0)
1979 bound++;
1980 } else if (tcp_bind_threads == 2) {
1981 /* Find the group for this CPU (i) and bind into it */
1982 for (j = 0; j < tcp_pace.grp_cnt; j++) {
1983 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1984 if (intr_event_bind_ithread_cpuset(hpts->ie,
1985 &tcp_pace.grps[j]->cg_mask) == 0) {
1986 bound++;
1987 pc = pcpu_find(i);
1988 domain = pc->pc_domain;
1989 count = hpts_domains[domain].count;
1990 hpts_domains[domain].cpu[count] = i;
1991 hpts_domains[domain].count++;
1992 break;
1993 }
1994 }
1995 }
1996 }
1997 tv.tv_sec = 0;
1998 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1999 hpts->sleeping = tv.tv_usec;
2000 sb = tvtosbt(tv);
2001 callout_reset_sbt_on(&hpts->co, sb, 0,
2002 hpts_timeout_swi, hpts, hpts->p_cpu,
2003 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2004 }
2005 /*
2006 * If we somehow have an empty domain, fall back to choosing
2007 * among all htps threads.
2008 */
2009 for (i = 0; i < vm_ndomains; i++) {
2010 if (hpts_domains[i].count == 0) {
2011 tcp_bind_threads = 0;
2012 break;
2013 }
2014 }
2015 tcp_hpts_softclock = __tcp_run_hpts;
2016 tcp_lro_hpts_init();
2017 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2018 created, bound,
2019 tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2020 }
2021
2022 static void
tcp_hpts_mod_unload(void)2023 tcp_hpts_mod_unload(void)
2024 {
2025 int rv __diagused;
2026
2027 tcp_lro_hpts_uninit();
2028 atomic_store_ptr(&tcp_hpts_softclock, NULL);
2029
2030 for (int i = 0; i < tcp_pace.rp_num_hptss; i++) {
2031 struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i];
2032
2033 rv = callout_drain(&hpts->co);
2034 MPASS(rv != 0);
2035
2036 rv = swi_remove(hpts->ie_cookie);
2037 MPASS(rv == 0);
2038
2039 rv = sysctl_ctx_free(&hpts->hpts_ctx);
2040 MPASS(rv == 0);
2041
2042 mtx_destroy(&hpts->p_mtx);
2043 free(hpts->p_hptss, M_TCPHPTS);
2044 free(hpts, M_TCPHPTS);
2045 }
2046
2047 free(tcp_pace.rp_ent, M_TCPHPTS);
2048 free(tcp_pace.cts_last_ran, M_TCPHPTS);
2049 #ifdef SMP
2050 free(tcp_pace.grps, M_TCPHPTS);
2051 #endif
2052
2053 counter_u64_free(hpts_hopelessly_behind);
2054 counter_u64_free(hpts_loops);
2055 counter_u64_free(back_tosleep);
2056 counter_u64_free(combined_wheel_wrap);
2057 counter_u64_free(wheel_wrap);
2058 counter_u64_free(hpts_wake_timeout);
2059 counter_u64_free(hpts_direct_awakening);
2060 counter_u64_free(hpts_back_tosleep);
2061 counter_u64_free(hpts_direct_call);
2062 counter_u64_free(cpu_uses_flowid);
2063 counter_u64_free(cpu_uses_random);
2064 }
2065
2066 static int
tcp_hpts_modevent(module_t mod,int what,void * arg)2067 tcp_hpts_modevent(module_t mod, int what, void *arg)
2068 {
2069
2070 switch (what) {
2071 case MOD_LOAD:
2072 tcp_hpts_mod_load();
2073 return (0);
2074 case MOD_QUIESCE:
2075 /*
2076 * Since we are a dependency of TCP stack modules, they should
2077 * already be unloaded, and the HPTS ring is empty. However,
2078 * function pointer manipulations aren't 100% safe. Although,
2079 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't.
2080 * Thus, allow only forced unload of HPTS.
2081 */
2082 return (EBUSY);
2083 case MOD_UNLOAD:
2084 tcp_hpts_mod_unload();
2085 return (0);
2086 default:
2087 return (EINVAL);
2088 };
2089 }
2090
2091 static moduledata_t tcp_hpts_module = {
2092 .name = "tcphpts",
2093 .evhand = tcp_hpts_modevent,
2094 };
2095
2096 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY);
2097 MODULE_VERSION(tcphpts, 1);
2098