xref: /linux/net/ipv4/tcp_fastopen.c (revision 5c8013ae2e86ec36b07500ba4cacb14ab4d6f728)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/tcp.h>
4 #include <linux/rcupdate.h>
5 #include <net/tcp.h>
6 #include <net/busy_poll.h>
7 
tcp_fastopen_init_key_once(struct net * net)8 void tcp_fastopen_init_key_once(struct net *net)
9 {
10 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
11 	struct tcp_fastopen_context *ctxt;
12 
13 	rcu_read_lock();
14 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
15 	if (ctxt) {
16 		rcu_read_unlock();
17 		return;
18 	}
19 	rcu_read_unlock();
20 
21 	/* tcp_fastopen_reset_cipher publishes the new context
22 	 * atomically, so we allow this race happening here.
23 	 *
24 	 * All call sites of tcp_fastopen_cookie_gen also check
25 	 * for a valid cookie, so this is an acceptable risk.
26 	 */
27 	get_random_bytes(key, sizeof(key));
28 	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
29 }
30 
tcp_fastopen_ctx_free(struct rcu_head * head)31 static void tcp_fastopen_ctx_free(struct rcu_head *head)
32 {
33 	struct tcp_fastopen_context *ctx =
34 	    container_of(head, struct tcp_fastopen_context, rcu);
35 
36 	kfree_sensitive(ctx);
37 }
38 
tcp_fastopen_destroy_cipher(struct sock * sk)39 void tcp_fastopen_destroy_cipher(struct sock *sk)
40 {
41 	struct tcp_fastopen_context *ctx;
42 
43 	ctx = rcu_dereference_protected(
44 			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
45 	if (ctx)
46 		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
47 }
48 
tcp_fastopen_ctx_destroy(struct net * net)49 void tcp_fastopen_ctx_destroy(struct net *net)
50 {
51 	struct tcp_fastopen_context *ctxt;
52 
53 	ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL));
54 
55 	if (ctxt)
56 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
57 }
58 
tcp_fastopen_reset_cipher(struct net * net,struct sock * sk,void * primary_key,void * backup_key)59 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
60 			      void *primary_key, void *backup_key)
61 {
62 	struct tcp_fastopen_context *ctx, *octx;
63 	struct fastopen_queue *q;
64 	int err = 0;
65 
66 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
67 	if (!ctx) {
68 		err = -ENOMEM;
69 		goto out;
70 	}
71 
72 	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
73 	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
74 	if (backup_key) {
75 		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
76 		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
77 		ctx->num = 2;
78 	} else {
79 		ctx->num = 1;
80 	}
81 
82 	if (sk) {
83 		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
84 		octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx)));
85 	} else {
86 		octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx,
87 					  RCU_INITIALIZER(ctx)));
88 	}
89 
90 	if (octx)
91 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
92 out:
93 	return err;
94 }
95 
tcp_fastopen_get_cipher(struct net * net,struct inet_connection_sock * icsk,u64 * key)96 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
97 			    u64 *key)
98 {
99 	struct tcp_fastopen_context *ctx;
100 	int n_keys = 0, i;
101 
102 	rcu_read_lock();
103 	if (icsk)
104 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
105 	else
106 		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
107 	if (ctx) {
108 		n_keys = tcp_fastopen_context_len(ctx);
109 		for (i = 0; i < n_keys; i++) {
110 			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
111 			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
112 		}
113 	}
114 	rcu_read_unlock();
115 
116 	return n_keys;
117 }
118 
__tcp_fastopen_cookie_gen_cipher(struct request_sock * req,struct sk_buff * syn,const siphash_key_t * key,struct tcp_fastopen_cookie * foc)119 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
120 					     struct sk_buff *syn,
121 					     const siphash_key_t *key,
122 					     struct tcp_fastopen_cookie *foc)
123 {
124 	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
125 
126 	if (req->rsk_ops->family == AF_INET) {
127 		const struct iphdr *iph = ip_hdr(syn);
128 
129 		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
130 					  sizeof(iph->saddr) +
131 					  sizeof(iph->daddr),
132 					  key));
133 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
134 		return true;
135 	}
136 #if IS_ENABLED(CONFIG_IPV6)
137 	if (req->rsk_ops->family == AF_INET6) {
138 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
139 
140 		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
141 					  sizeof(ip6h->saddr) +
142 					  sizeof(ip6h->daddr),
143 					  key));
144 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
145 		return true;
146 	}
147 #endif
148 	return false;
149 }
150 
151 /* Generate the fastopen cookie by applying SipHash to both the source and
152  * destination addresses.
153  */
tcp_fastopen_cookie_gen(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * foc)154 static void tcp_fastopen_cookie_gen(struct sock *sk,
155 				    struct request_sock *req,
156 				    struct sk_buff *syn,
157 				    struct tcp_fastopen_cookie *foc)
158 {
159 	struct tcp_fastopen_context *ctx;
160 
161 	rcu_read_lock();
162 	ctx = tcp_fastopen_get_ctx(sk);
163 	if (ctx)
164 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
165 	rcu_read_unlock();
166 }
167 
168 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
169  * queue this additional data / FIN.
170  */
tcp_fastopen_add_skb(struct sock * sk,struct sk_buff * skb)171 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
172 {
173 	struct tcp_sock *tp = tcp_sk(sk);
174 
175 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
176 		return;
177 
178 	skb = skb_clone(skb, GFP_ATOMIC);
179 	if (!skb)
180 		return;
181 
182 	tcp_cleanup_skb(skb);
183 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
184 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
185 	 * to avoid double counting.  Also, tcp_segs_in() expects
186 	 * skb->len to include the tcp_hdrlen.  Hence, it should
187 	 * be called before __skb_pull().
188 	 */
189 	tp->segs_in = 0;
190 	tcp_segs_in(tp, skb);
191 	__skb_pull(skb, tcp_hdrlen(skb));
192 	sk_forced_mem_schedule(sk, skb->truesize);
193 	skb_set_owner_r(skb, sk);
194 
195 	TCP_SKB_CB(skb)->seq++;
196 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
197 
198 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
199 	tcp_add_receive_queue(sk, skb);
200 	tp->syn_data_acked = 1;
201 
202 	/* u64_stats_update_begin(&tp->syncp) not needed here,
203 	 * as we certainly are not changing upper 32bit value (0)
204 	 */
205 	tp->bytes_received = skb->len;
206 
207 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
208 		tcp_fin(sk);
209 }
210 
211 /* returns 0 - no key match, 1 for primary, 2 for backup */
tcp_fastopen_cookie_gen_check(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * orig,struct tcp_fastopen_cookie * valid_foc)212 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
213 					 struct request_sock *req,
214 					 struct sk_buff *syn,
215 					 struct tcp_fastopen_cookie *orig,
216 					 struct tcp_fastopen_cookie *valid_foc)
217 {
218 	struct tcp_fastopen_cookie search_foc = { .len = -1 };
219 	struct tcp_fastopen_cookie *foc = valid_foc;
220 	struct tcp_fastopen_context *ctx;
221 	int i, ret = 0;
222 
223 	rcu_read_lock();
224 	ctx = tcp_fastopen_get_ctx(sk);
225 	if (!ctx)
226 		goto out;
227 	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
228 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
229 		if (tcp_fastopen_cookie_match(foc, orig)) {
230 			ret = i + 1;
231 			goto out;
232 		}
233 		foc = &search_foc;
234 	}
235 out:
236 	rcu_read_unlock();
237 	return ret;
238 }
239 
tcp_fastopen_create_child(struct sock * sk,struct sk_buff * skb,struct request_sock * req)240 static struct sock *tcp_fastopen_create_child(struct sock *sk,
241 					      struct sk_buff *skb,
242 					      struct request_sock *req)
243 {
244 	struct tcp_sock *tp;
245 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
246 	struct sock *child;
247 	bool own_req;
248 
249 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
250 							 NULL, &own_req);
251 	if (!child)
252 		return NULL;
253 
254 	spin_lock(&queue->fastopenq.lock);
255 	queue->fastopenq.qlen++;
256 	spin_unlock(&queue->fastopenq.lock);
257 
258 	/* Initialize the child socket. Have to fix some values to take
259 	 * into account the child is a Fast Open socket and is created
260 	 * only out of the bits carried in the SYN packet.
261 	 */
262 	tp = tcp_sk(child);
263 
264 	rcu_assign_pointer(tp->fastopen_rsk, req);
265 	tcp_rsk(req)->tfo_listener = true;
266 
267 	/* RFC1323: The window in SYN & SYN/ACK segments is never
268 	 * scaled. So correct it appropriately.
269 	 */
270 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
271 	tp->max_window = tp->snd_wnd;
272 
273 	/* Activate the retrans timer so that SYNACK can be retransmitted.
274 	 * The request socket is not added to the ehash
275 	 * because it's been added to the accept queue directly.
276 	 */
277 	req->timeout = tcp_timeout_init(child);
278 	tcp_reset_xmit_timer(child, ICSK_TIME_RETRANS,
279 			     req->timeout, false);
280 
281 	refcount_set(&req->rsk_refcnt, 2);
282 
283 	sk_mark_napi_id_set(child, skb);
284 
285 	/* Now finish processing the fastopen child socket. */
286 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
287 
288 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
289 
290 	tcp_fastopen_add_skb(child, skb);
291 
292 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
293 	tp->rcv_wup = tp->rcv_nxt;
294 	/* tcp_conn_request() is sending the SYNACK,
295 	 * and queues the child into listener accept queue.
296 	 */
297 	return child;
298 }
299 
tcp_fastopen_queue_check(struct sock * sk)300 static bool tcp_fastopen_queue_check(struct sock *sk)
301 {
302 	struct fastopen_queue *fastopenq;
303 	int max_qlen;
304 
305 	/* Make sure the listener has enabled fastopen, and we don't
306 	 * exceed the max # of pending TFO requests allowed before trying
307 	 * to validating the cookie in order to avoid burning CPU cycles
308 	 * unnecessarily.
309 	 *
310 	 * XXX (TFO) - The implication of checking the max_qlen before
311 	 * processing a cookie request is that clients can't differentiate
312 	 * between qlen overflow causing Fast Open to be disabled
313 	 * temporarily vs a server not supporting Fast Open at all.
314 	 */
315 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
316 	max_qlen = READ_ONCE(fastopenq->max_qlen);
317 	if (max_qlen == 0)
318 		return false;
319 
320 	if (fastopenq->qlen >= max_qlen) {
321 		struct request_sock *req1;
322 		spin_lock(&fastopenq->lock);
323 		req1 = fastopenq->rskq_rst_head;
324 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
325 			__NET_INC_STATS(sock_net(sk),
326 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
327 			spin_unlock(&fastopenq->lock);
328 			return false;
329 		}
330 		fastopenq->rskq_rst_head = req1->dl_next;
331 		fastopenq->qlen--;
332 		spin_unlock(&fastopenq->lock);
333 		reqsk_put(req1);
334 	}
335 	return true;
336 }
337 
tcp_fastopen_no_cookie(const struct sock * sk,const struct dst_entry * dst,int flag)338 static bool tcp_fastopen_no_cookie(const struct sock *sk,
339 				   const struct dst_entry *dst,
340 				   int flag)
341 {
342 	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
343 	       tcp_sk(sk)->fastopen_no_cookie ||
344 	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
345 }
346 
347 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
348  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
349  * cookie request (foc->len == 0).
350  */
tcp_try_fastopen(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct tcp_fastopen_cookie * foc,const struct dst_entry * dst)351 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
352 			      struct request_sock *req,
353 			      struct tcp_fastopen_cookie *foc,
354 			      const struct dst_entry *dst)
355 {
356 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
357 	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
358 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
359 	struct sock *child;
360 	int ret = 0;
361 
362 	if (foc->len == 0) /* Client requests a cookie */
363 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
364 
365 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
366 	      (syn_data || foc->len >= 0) &&
367 	      tcp_fastopen_queue_check(sk))) {
368 		foc->len = -1;
369 		return NULL;
370 	}
371 
372 	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
373 		goto fastopen;
374 
375 	if (foc->len == 0) {
376 		/* Client requests a cookie. */
377 		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
378 	} else if (foc->len > 0) {
379 		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
380 						    &valid_foc);
381 		if (!ret) {
382 			NET_INC_STATS(sock_net(sk),
383 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
384 		} else {
385 			/* Cookie is valid. Create a (full) child socket to
386 			 * accept the data in SYN before returning a SYN-ACK to
387 			 * ack the data. If we fail to create the socket, fall
388 			 * back and ack the ISN only but includes the same
389 			 * cookie.
390 			 *
391 			 * Note: Data-less SYN with valid cookie is allowed to
392 			 * send data in SYN_RECV state.
393 			 */
394 fastopen:
395 			child = tcp_fastopen_create_child(sk, skb, req);
396 			if (child) {
397 				if (ret == 2) {
398 					valid_foc.exp = foc->exp;
399 					*foc = valid_foc;
400 					NET_INC_STATS(sock_net(sk),
401 						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
402 				} else {
403 					foc->len = -1;
404 				}
405 				NET_INC_STATS(sock_net(sk),
406 					      LINUX_MIB_TCPFASTOPENPASSIVE);
407 				tcp_sk(child)->syn_fastopen_child = 1;
408 				return child;
409 			}
410 			NET_INC_STATS(sock_net(sk),
411 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
412 		}
413 	}
414 	valid_foc.exp = foc->exp;
415 	*foc = valid_foc;
416 	return NULL;
417 }
418 
tcp_fastopen_cookie_check(struct sock * sk,u16 * mss,struct tcp_fastopen_cookie * cookie)419 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
420 			       struct tcp_fastopen_cookie *cookie)
421 {
422 	const struct dst_entry *dst;
423 
424 	tcp_fastopen_cache_get(sk, mss, cookie);
425 
426 	/* Firewall blackhole issue check */
427 	if (tcp_fastopen_active_should_disable(sk)) {
428 		cookie->len = -1;
429 		return false;
430 	}
431 
432 	dst = __sk_dst_get(sk);
433 
434 	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
435 		cookie->len = -1;
436 		return true;
437 	}
438 	if (cookie->len > 0)
439 		return true;
440 	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
441 	return false;
442 }
443 
444 /* This function checks if we want to defer sending SYN until the first
445  * write().  We defer under the following conditions:
446  * 1. fastopen_connect sockopt is set
447  * 2. we have a valid cookie
448  * Return value: return true if we want to defer until application writes data
449  *               return false if we want to send out SYN immediately
450  */
tcp_fastopen_defer_connect(struct sock * sk,int * err)451 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
452 {
453 	struct tcp_fastopen_cookie cookie = { .len = 0 };
454 	struct tcp_sock *tp = tcp_sk(sk);
455 	u16 mss;
456 
457 	if (tp->fastopen_connect && !tp->fastopen_req) {
458 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
459 			inet_set_bit(DEFER_CONNECT, sk);
460 			return true;
461 		}
462 
463 		/* Alloc fastopen_req in order for FO option to be included
464 		 * in SYN
465 		 */
466 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
467 					   sk->sk_allocation);
468 		if (tp->fastopen_req)
469 			tp->fastopen_req->cookie = cookie;
470 		else
471 			*err = -ENOBUFS;
472 	}
473 	return false;
474 }
475 EXPORT_IPV6_MOD(tcp_fastopen_defer_connect);
476 
477 /*
478  * The following code block is to deal with middle box issues with TFO:
479  * Middlebox firewall issues can potentially cause server's data being
480  * blackholed after a successful 3WHS using TFO.
481  * The proposed solution is to disable active TFO globally under the
482  * following circumstances:
483  *   1. client side TFO socket receives out of order FIN
484  *   2. client side TFO socket receives out of order RST
485  *   3. client side TFO socket has timed out three times consecutively during
486  *      or after handshake
487  * We disable active side TFO globally for 1hr at first. Then if it
488  * happens again, we disable it for 2h, then 4h, 8h, ...
489  * And we reset the timeout back to 1hr when we see a successful active
490  * TFO connection with data exchanges.
491  */
492 
493 /* Disable active TFO and record current jiffies and
494  * tfo_active_disable_times
495  */
tcp_fastopen_active_disable(struct sock * sk)496 void tcp_fastopen_active_disable(struct sock *sk)
497 {
498 	struct net *net = sock_net(sk);
499 
500 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
501 		return;
502 
503 	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
504 	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
505 
506 	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
507 	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
508 	 */
509 	smp_mb__before_atomic();
510 	atomic_inc(&net->ipv4.tfo_active_disable_times);
511 
512 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
513 }
514 
515 /* Calculate timeout for tfo active disable
516  * Return true if we are still in the active TFO disable period
517  * Return false if timeout already expired and we should use active TFO
518  */
tcp_fastopen_active_should_disable(struct sock * sk)519 bool tcp_fastopen_active_should_disable(struct sock *sk)
520 {
521 	unsigned int tfo_bh_timeout =
522 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
523 	unsigned long timeout;
524 	int tfo_da_times;
525 	int multiplier;
526 
527 	if (!tfo_bh_timeout)
528 		return false;
529 
530 	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
531 	if (!tfo_da_times)
532 		return false;
533 
534 	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
535 	smp_rmb();
536 
537 	/* Limit timeout to max: 2^6 * initial timeout */
538 	multiplier = 1 << min(tfo_da_times - 1, 6);
539 
540 	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
541 	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
542 		  multiplier * tfo_bh_timeout * HZ;
543 	if (time_before(jiffies, timeout))
544 		return true;
545 
546 	/* Mark check bit so we can check for successful active TFO
547 	 * condition and reset tfo_active_disable_times
548 	 */
549 	tcp_sk(sk)->syn_fastopen_ch = 1;
550 	return false;
551 }
552 
553 /* Disable active TFO if FIN is the only packet in the ofo queue
554  * and no data is received.
555  * Also check if we can reset tfo_active_disable_times if data is
556  * received successfully on a marked active TFO sockets opened on
557  * a non-loopback interface
558  */
tcp_fastopen_active_disable_ofo_check(struct sock * sk)559 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
560 {
561 	struct tcp_sock *tp = tcp_sk(sk);
562 	struct dst_entry *dst;
563 	struct sk_buff *skb;
564 
565 	if (!tp->syn_fastopen)
566 		return;
567 
568 	if (!tp->data_segs_in) {
569 		skb = skb_rb_first(&tp->out_of_order_queue);
570 		if (skb && !skb_rb_next(skb)) {
571 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
572 				tcp_fastopen_active_disable(sk);
573 				return;
574 			}
575 		}
576 	} else if (tp->syn_fastopen_ch &&
577 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
578 		dst = sk_dst_get(sk);
579 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
580 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
581 		dst_release(dst);
582 	}
583 }
584 
tcp_fastopen_active_detect_blackhole(struct sock * sk,bool expired)585 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
586 {
587 	u32 timeouts = inet_csk(sk)->icsk_retransmits;
588 	struct tcp_sock *tp = tcp_sk(sk);
589 
590 	/* Broken middle-boxes may black-hole Fast Open connection during or
591 	 * even after the handshake. Be extremely conservative and pause
592 	 * Fast Open globally after hitting the third consecutive timeout or
593 	 * exceeding the configured timeout limit.
594 	 */
595 	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
596 	    (timeouts == 2 || (timeouts < 2 && expired))) {
597 		tcp_fastopen_active_disable(sk);
598 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
599 	}
600 }
601