1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013,2014 by Delphix. All rights reserved.
27 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
28 */
29 /* Copyright (c) 1990 Mentat Inc. */
30
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define _SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/timod.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/suntpi.h>
43 #include <sys/xti_inet.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/sdt.h>
47 #include <sys/vtrace.h>
48 #include <sys/kmem.h>
49 #include <sys/ethernet.h>
50 #include <sys/cpuvar.h>
51 #include <sys/dlpi.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/proto_set.h>
82 #include <inet/mib2.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/tcp_cluster.h>
89 #include <inet/udp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipdrop.h>
92
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_rts.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue_impl.h>
101 #include <sys/squeue.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106
107 /*
108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109 *
110 * (Read the detailed design doc in PSARC case directory)
111 *
112 * The entire tcp state is contained in tcp_t and conn_t structure
113 * which are allocated in tandem using ipcl_conn_create() and passing
114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
115 * the references on the tcp_t. The tcp_t structure is never compressed
116 * and packets always land on the correct TCP perimeter from the time
117 * eager is created till the time tcp_t dies (as such the old mentat
118 * TCP global queue is not used for detached state and no IPSEC checking
119 * is required). The global queue is still allocated to send out resets
120 * for connection which have no listeners and IP directly calls
121 * tcp_xmit_listeners_reset() which does any policy check.
122 *
123 * Protection and Synchronisation mechanism:
124 *
125 * The tcp data structure does not use any kind of lock for protecting
126 * its state but instead uses 'squeues' for mutual exclusion from various
127 * read and write side threads. To access a tcp member, the thread should
128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130 * can pass any tcp function having prototype of edesc_t as argument
131 * (different from traditional STREAMs model where packets come in only
132 * designated entry points). The list of functions that can be directly
133 * called via squeue are listed before the usual function prototype.
134 *
135 * Referencing:
136 *
137 * TCP is MT-Hot and we use a reference based scheme to make sure that the
138 * tcp structure doesn't disappear when its needed. When the application
139 * creates an outgoing connection or accepts an incoming connection, we
140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141 * The IP reference is just a symbolic reference since ip_tcpclose()
142 * looks at tcp structure after tcp_close_output() returns which could
143 * have dropped the last TCP reference. So as long as the connection is
144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145 * conn_t. The classifier puts its own reference when the connection is
146 * inserted in listen or connected hash. Anytime a thread needs to enter
147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148 * on write side or by doing a classify on read side and then puts a
149 * reference on the conn before doing squeue_enter/tryenter/fill. For
150 * read side, the classifier itself puts the reference under fanout lock
151 * to make sure that tcp can't disappear before it gets processed. The
152 * squeue will drop this reference automatically so the called function
153 * doesn't have to do a DEC_REF.
154 *
155 * Opening a new connection:
156 *
157 * The outgoing connection open is pretty simple. tcp_open() does the
158 * work in creating the conn/tcp structure and initializing it. The
159 * squeue assignment is done based on the CPU the application
160 * is running on. So for outbound connections, processing is always done
161 * on application CPU which might be different from the incoming CPU
162 * being interrupted by the NIC. An optimal way would be to figure out
163 * the NIC <-> CPU binding at listen time, and assign the outgoing
164 * connection to the squeue attached to the CPU that will be interrupted
165 * for incoming packets (we know the NIC based on the bind IP address).
166 * This might seem like a problem if more data is going out but the
167 * fact is that in most cases the transmit is ACK driven transmit where
168 * the outgoing data normally sits on TCP's xmit queue waiting to be
169 * transmitted.
170 *
171 * Accepting a connection:
172 *
173 * This is a more interesting case because of various races involved in
174 * establishing a eager in its own perimeter. Read the meta comment on
175 * top of tcp_input_listener(). But briefly, the squeue is picked by
176 * ip_fanout based on the ring or the sender (if loopback).
177 *
178 * Closing a connection:
179 *
180 * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181 * via squeue to do the close and mark the tcp as detached if the connection
182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183 * reference but tcp_close() drop IP's reference always. So if tcp was
184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185 * and 1 because it is in classifier's connected hash. This is the condition
186 * we use to determine that its OK to clean up the tcp outside of squeue
187 * when time wait expires (check the ref under fanout and conn_lock and
188 * if it is 2, remove it from fanout hash and kill it).
189 *
190 * Although close just drops the necessary references and marks the
191 * tcp_detached state, tcp_close needs to know the tcp_detached has been
192 * set (under squeue) before letting the STREAM go away (because a
193 * inbound packet might attempt to go up the STREAM while the close
194 * has happened and tcp_detached is not set). So a special lock and
195 * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197 * tcp_detached.
198 *
199 * Special provisions and fast paths:
200 *
201 * We make special provisions for sockfs by marking tcp_issocket
202 * whenever we have only sockfs on top of TCP. This allows us to skip
203 * putting the tcp in acceptor hash since a sockfs listener can never
204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
205 * since eager has already been allocated and the accept now happens
206 * on acceptor STREAM. There is a big blob of comment on top of
207 * tcp_input_listener explaining the new accept. When socket is POP'd,
208 * sockfs sends us an ioctl to mark the fact and we go back to old
209 * behaviour. Once tcp_issocket is unset, its never set for the
210 * life of that connection.
211 *
212 * IPsec notes :
213 *
214 * Since a packet is always executed on the correct TCP perimeter
215 * all IPsec processing is defered to IP including checking new
216 * connections and setting IPSEC policies for new connection. The
217 * only exception is tcp_xmit_listeners_reset() which is called
218 * directly from IP and needs to policy check to see if TH_RST
219 * can be sent out.
220 */
221
222 /*
223 * Values for squeue switch:
224 * 1: SQ_NODRAIN
225 * 2: SQ_PROCESS
226 * 3: SQ_FILL
227 */
228 int tcp_squeue_wput = 2; /* /etc/systems */
229 int tcp_squeue_flag;
230
231 /*
232 * To prevent memory hog, limit the number of entries in tcp_free_list
233 * to 1% of available memory / number of cpus
234 */
235 uint_t tcp_free_list_max_cnt = 0;
236
237 #define TIDUSZ 4096 /* transport interface data unit size */
238
239 /*
240 * Size of acceptor hash list. It has to be a power of 2 for hashing.
241 */
242 #define TCP_ACCEPTOR_FANOUT_SIZE 512
243
244 #ifdef _ILP32
245 #define TCP_ACCEPTOR_HASH(accid) \
246 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
247 #else
248 #define TCP_ACCEPTOR_HASH(accid) \
249 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
250 #endif /* _ILP32 */
251
252 /*
253 * Minimum number of connections which can be created per listener. Used
254 * when the listener connection count is in effect.
255 */
256 static uint32_t tcp_min_conn_listener = 2;
257
258 uint32_t tcp_early_abort = 30;
259
260 /* TCP Timer control structure */
261 typedef struct tcpt_s {
262 pfv_t tcpt_pfv; /* The routine we are to call */
263 tcp_t *tcpt_tcp; /* The parameter we are to pass in */
264 } tcpt_t;
265
266 /*
267 * Functions called directly via squeue having a prototype of edesc_t.
268 */
269 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
270 ip_recv_attr_t *ira);
271 void tcp_input_data(void *arg, mblk_t *mp, void *arg2,
272 ip_recv_attr_t *ira);
273 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
274 ip_recv_attr_t *dummy);
275
276
277 /* Prototype for TCP functions */
278 static void tcp_random_init(void);
279 int tcp_random(void);
280 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
281 in_port_t dstport, uint_t srcid);
282 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
283 in_port_t dstport, uint32_t flowinfo,
284 uint_t srcid, uint32_t scope_id);
285 static void tcp_iss_init(tcp_t *tcp);
286 static void tcp_reinit(tcp_t *tcp);
287 static void tcp_reinit_values(tcp_t *tcp);
288
289 static void tcp_wsrv(queue_t *q);
290 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
291 static void tcp_update_zcopy(tcp_t *tcp);
292 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
293 ixa_notify_arg_t);
294 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns);
295 static void tcp_stack_fini(netstackid_t stackid, void *arg);
296
297 static int tcp_squeue_switch(int);
298
299 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
300 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
301 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
302
303 static void tcp_squeue_add(squeue_t *);
304
305 struct module_info tcp_rinfo = {
306 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
307 };
308
309 static struct module_info tcp_winfo = {
310 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
311 };
312
313 /*
314 * Entry points for TCP as a device. The normal case which supports
315 * the TCP functionality.
316 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
317 */
318 struct qinit tcp_rinitv4 = {
319 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
320 };
321
322 struct qinit tcp_rinitv6 = {
323 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
324 };
325
326 struct qinit tcp_winit = {
327 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
328 };
329
330 /* Initial entry point for TCP in socket mode. */
331 struct qinit tcp_sock_winit = {
332 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
333 };
334
335 /* TCP entry point during fallback */
336 struct qinit tcp_fallback_sock_winit = {
337 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
338 };
339
340 /*
341 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
342 * an accept. Avoid allocating data structures since eager has already
343 * been created.
344 */
345 struct qinit tcp_acceptor_rinit = {
346 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
347 };
348
349 struct qinit tcp_acceptor_winit = {
350 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
351 };
352
353 /* For AF_INET aka /dev/tcp */
354 struct streamtab tcpinfov4 = {
355 &tcp_rinitv4, &tcp_winit
356 };
357
358 /* For AF_INET6 aka /dev/tcp6 */
359 struct streamtab tcpinfov6 = {
360 &tcp_rinitv6, &tcp_winit
361 };
362
363 /*
364 * Following assumes TPI alignment requirements stay along 32 bit
365 * boundaries
366 */
367 #define ROUNDUP32(x) \
368 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
369
370 /* Template for response to info request. */
371 struct T_info_ack tcp_g_t_info_ack = {
372 T_INFO_ACK, /* PRIM_type */
373 0, /* TSDU_size */
374 T_INFINITE, /* ETSDU_size */
375 T_INVALID, /* CDATA_size */
376 T_INVALID, /* DDATA_size */
377 sizeof (sin_t), /* ADDR_size */
378 0, /* OPT_size - not initialized here */
379 TIDUSZ, /* TIDU_size */
380 T_COTS_ORD, /* SERV_type */
381 TCPS_IDLE, /* CURRENT_state */
382 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
383 };
384
385 struct T_info_ack tcp_g_t_info_ack_v6 = {
386 T_INFO_ACK, /* PRIM_type */
387 0, /* TSDU_size */
388 T_INFINITE, /* ETSDU_size */
389 T_INVALID, /* CDATA_size */
390 T_INVALID, /* DDATA_size */
391 sizeof (sin6_t), /* ADDR_size */
392 0, /* OPT_size - not initialized here */
393 TIDUSZ, /* TIDU_size */
394 T_COTS_ORD, /* SERV_type */
395 TCPS_IDLE, /* CURRENT_state */
396 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
397 };
398
399 /*
400 * TCP tunables related declarations. Definitions are in tcp_tunables.c
401 */
402 extern mod_prop_info_t tcp_propinfo_tbl[];
403 extern int tcp_propinfo_count;
404
405 #define IS_VMLOANED_MBLK(mp) \
406 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
407
408 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */
409
410 /*
411 * Forces all connections to obey the value of the tcps_maxpsz_multiplier
412 * tunable settable via NDD. Otherwise, the per-connection behavior is
413 * determined dynamically during tcp_set_destination(), which is the default.
414 */
415 boolean_t tcp_static_maxpsz = B_FALSE;
416
417 /*
418 * If the receive buffer size is changed, this function is called to update
419 * the upper socket layer on the new delayed receive wake up threshold.
420 */
421 static void
tcp_set_recv_threshold(tcp_t * tcp,uint32_t new_rcvthresh)422 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
423 {
424 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
425
426 if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
427 conn_t *connp = tcp->tcp_connp;
428 struct sock_proto_props sopp;
429
430 /*
431 * only increase rcvthresh upto default_threshold
432 */
433 if (new_rcvthresh > default_threshold)
434 new_rcvthresh = default_threshold;
435
436 sopp.sopp_flags = SOCKOPT_RCVTHRESH;
437 sopp.sopp_rcvthresh = new_rcvthresh;
438
439 (*connp->conn_upcalls->su_set_proto_props)
440 (connp->conn_upper_handle, &sopp);
441 }
442 }
443
444 /*
445 * Figure out the value of window scale opton. Note that the rwnd is
446 * ASSUMED to be rounded up to the nearest MSS before the calculation.
447 * We cannot find the scale value and then do a round up of tcp_rwnd
448 * because the scale value may not be correct after that.
449 *
450 * Set the compiler flag to make this function inline.
451 */
452 void
tcp_set_ws_value(tcp_t * tcp)453 tcp_set_ws_value(tcp_t *tcp)
454 {
455 int i;
456 uint32_t rwnd = tcp->tcp_rwnd;
457
458 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
459 i++, rwnd >>= 1)
460 ;
461 tcp->tcp_rcv_ws = i;
462 }
463
464 /*
465 * Remove cached/latched IPsec references.
466 */
467 void
tcp_ipsec_cleanup(tcp_t * tcp)468 tcp_ipsec_cleanup(tcp_t *tcp)
469 {
470 conn_t *connp = tcp->tcp_connp;
471
472 ASSERT(connp->conn_flags & IPCL_TCPCONN);
473
474 if (connp->conn_latch != NULL) {
475 IPLATCH_REFRELE(connp->conn_latch);
476 connp->conn_latch = NULL;
477 }
478 if (connp->conn_latch_in_policy != NULL) {
479 IPPOL_REFRELE(connp->conn_latch_in_policy);
480 connp->conn_latch_in_policy = NULL;
481 }
482 if (connp->conn_latch_in_action != NULL) {
483 IPACT_REFRELE(connp->conn_latch_in_action);
484 connp->conn_latch_in_action = NULL;
485 }
486 if (connp->conn_policy != NULL) {
487 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
488 connp->conn_policy = NULL;
489 }
490 }
491
492 /*
493 * Cleaup before placing on free list.
494 * Disassociate from the netstack/tcp_stack_t since the freelist
495 * is per squeue and not per netstack.
496 */
497 void
tcp_cleanup(tcp_t * tcp)498 tcp_cleanup(tcp_t *tcp)
499 {
500 mblk_t *mp;
501 conn_t *connp = tcp->tcp_connp;
502 tcp_stack_t *tcps = tcp->tcp_tcps;
503 netstack_t *ns = tcps->tcps_netstack;
504 mblk_t *tcp_rsrv_mp;
505
506 tcp_bind_hash_remove(tcp);
507
508 /* Cleanup that which needs the netstack first */
509 tcp_ipsec_cleanup(tcp);
510 ixa_cleanup(connp->conn_ixa);
511
512 if (connp->conn_ht_iphc != NULL) {
513 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
514 connp->conn_ht_iphc = NULL;
515 connp->conn_ht_iphc_allocated = 0;
516 connp->conn_ht_iphc_len = 0;
517 connp->conn_ht_ulp = NULL;
518 connp->conn_ht_ulp_len = 0;
519 tcp->tcp_ipha = NULL;
520 tcp->tcp_ip6h = NULL;
521 tcp->tcp_tcpha = NULL;
522 }
523
524 /* We clear any IP_OPTIONS and extension headers */
525 ip_pkt_free(&connp->conn_xmit_ipp);
526
527 tcp_free(tcp);
528
529 /*
530 * Since we will bzero the entire structure, we need to
531 * remove it and reinsert it in global hash list. We
532 * know the walkers can't get to this conn because we
533 * had set CONDEMNED flag earlier and checked reference
534 * under conn_lock so walker won't pick it and when we
535 * go the ipcl_globalhash_remove() below, no walker
536 * can get to it.
537 */
538 ipcl_globalhash_remove(connp);
539
540 /* Save some state */
541 mp = tcp->tcp_timercache;
542
543 tcp_rsrv_mp = tcp->tcp_rsrv_mp;
544
545 if (connp->conn_cred != NULL) {
546 crfree(connp->conn_cred);
547 connp->conn_cred = NULL;
548 }
549 ipcl_conn_cleanup(connp);
550 connp->conn_flags = IPCL_TCPCONN;
551
552 /*
553 * Now it is safe to decrement the reference counts.
554 * This might be the last reference on the netstack
555 * in which case it will cause the freeing of the IP Instance.
556 */
557 connp->conn_netstack = NULL;
558 connp->conn_ixa->ixa_ipst = NULL;
559 netstack_rele(ns);
560 ASSERT(tcps != NULL);
561 tcp->tcp_tcps = NULL;
562
563 bzero(tcp, sizeof (tcp_t));
564
565 /* restore the state */
566 tcp->tcp_timercache = mp;
567
568 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
569
570 tcp->tcp_connp = connp;
571
572 ASSERT(connp->conn_tcp == tcp);
573 ASSERT(connp->conn_flags & IPCL_TCPCONN);
574 connp->conn_state_flags = CONN_INCIPIENT;
575 ASSERT(connp->conn_proto == IPPROTO_TCP);
576 ASSERT(connp->conn_ref == 1);
577 }
578
579 /*
580 * Adapt to the information, such as rtt and rtt_sd, provided from the
581 * DCE and IRE maintained by IP.
582 *
583 * Checks for multicast and broadcast destination address.
584 * Returns zero if ok; an errno on failure.
585 *
586 * Note that the MSS calculation here is based on the info given in
587 * the DCE and IRE. We do not do any calculation based on TCP options. They
588 * will be handled in tcp_input_data() when TCP knows which options to use.
589 *
590 * Note on how TCP gets its parameters for a connection.
591 *
592 * When a tcp_t structure is allocated, it gets all the default parameters.
593 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
594 * spipe, rpipe, ... from the route metrics. Route metric overrides the
595 * default.
596 *
597 * An incoming SYN with a multicast or broadcast destination address is dropped
598 * in ip_fanout_v4/v6.
599 *
600 * An incoming SYN with a multicast or broadcast source address is always
601 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
602 * conn_connect.
603 * The same logic in tcp_set_destination also serves to
604 * reject an attempt to connect to a broadcast or multicast (destination)
605 * address.
606 */
607 int
tcp_set_destination(tcp_t * tcp)608 tcp_set_destination(tcp_t *tcp)
609 {
610 uint32_t mss_max;
611 uint32_t mss;
612 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
613 conn_t *connp = tcp->tcp_connp;
614 tcp_stack_t *tcps = tcp->tcp_tcps;
615 iulp_t uinfo;
616 int error;
617 uint32_t flags;
618
619 flags = IPDF_LSO | IPDF_ZCOPY;
620 /*
621 * Make sure we have a dce for the destination to avoid dce_ident
622 * contention for connected sockets.
623 */
624 flags |= IPDF_UNIQUE_DCE;
625
626 if (!tcps->tcps_ignore_path_mtu)
627 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
628
629 /* Use conn_lock to satify ASSERT; tcp is already serialized */
630 mutex_enter(&connp->conn_lock);
631 error = conn_connect(connp, &uinfo, flags);
632 mutex_exit(&connp->conn_lock);
633 if (error != 0)
634 return (error);
635
636 error = tcp_build_hdrs(tcp);
637 if (error != 0)
638 return (error);
639
640 tcp->tcp_localnet = uinfo.iulp_localnet;
641
642 if (uinfo.iulp_rtt != 0) {
643 clock_t rto;
644
645 tcp->tcp_rtt_sa = uinfo.iulp_rtt;
646 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
647 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
648 tcps->tcps_rexmit_interval_extra +
649 (tcp->tcp_rtt_sa >> 5);
650
651 TCP_SET_RTO(tcp, rto);
652 }
653 if (uinfo.iulp_ssthresh != 0)
654 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
655 else
656 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
657 if (uinfo.iulp_spipe > 0) {
658 connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
659 tcps->tcps_max_buf);
660 if (tcps->tcps_snd_lowat_fraction != 0) {
661 connp->conn_sndlowat = connp->conn_sndbuf /
662 tcps->tcps_snd_lowat_fraction;
663 }
664 (void) tcp_maxpsz_set(tcp, B_TRUE);
665 }
666 /*
667 * Note that up till now, acceptor always inherits receive
668 * window from the listener. But if there is a metrics
669 * associated with a host, we should use that instead of
670 * inheriting it from listener. Thus we need to pass this
671 * info back to the caller.
672 */
673 if (uinfo.iulp_rpipe > 0) {
674 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
675 tcps->tcps_max_buf);
676 }
677
678 if (uinfo.iulp_rtomax > 0) {
679 tcp->tcp_second_timer_threshold =
680 uinfo.iulp_rtomax;
681 }
682
683 /*
684 * Use the metric option settings, iulp_tstamp_ok and
685 * iulp_wscale_ok, only for active open. What this means
686 * is that if the other side uses timestamp or window
687 * scale option, TCP will also use those options. That
688 * is for passive open. If the application sets a
689 * large window, window scale is enabled regardless of
690 * the value in iulp_wscale_ok. This is the behavior
691 * since 2.6. So we keep it.
692 * The only case left in passive open processing is the
693 * check for SACK.
694 * For ECN, it should probably be like SACK. But the
695 * current value is binary, so we treat it like the other
696 * cases. The metric only controls active open.For passive
697 * open, the ndd param, tcp_ecn_permitted, controls the
698 * behavior.
699 */
700 if (!tcp_detached) {
701 /*
702 * The if check means that the following can only
703 * be turned on by the metrics only IRE, but not off.
704 */
705 if (uinfo.iulp_tstamp_ok)
706 tcp->tcp_snd_ts_ok = B_TRUE;
707 if (uinfo.iulp_wscale_ok)
708 tcp->tcp_snd_ws_ok = B_TRUE;
709 if (uinfo.iulp_sack == 2)
710 tcp->tcp_snd_sack_ok = B_TRUE;
711 if (uinfo.iulp_ecn_ok)
712 tcp->tcp_ecn_ok = B_TRUE;
713 } else {
714 /*
715 * Passive open.
716 *
717 * As above, the if check means that SACK can only be
718 * turned on by the metric only IRE.
719 */
720 if (uinfo.iulp_sack > 0) {
721 tcp->tcp_snd_sack_ok = B_TRUE;
722 }
723 }
724
725 /*
726 * XXX Note that currently, iulp_mtu can be as small as 68
727 * because of PMTUd. So tcp_mss may go to negative if combined
728 * length of all those options exceeds 28 bytes. But because
729 * of the tcp_mss_min check below, we may not have a problem if
730 * tcp_mss_min is of a reasonable value. The default is 1 so
731 * the negative problem still exists. And the check defeats PMTUd.
732 * In fact, if PMTUd finds that the MSS should be smaller than
733 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
734 * value.
735 *
736 * We do not deal with that now. All those problems related to
737 * PMTUd will be fixed later.
738 */
739 ASSERT(uinfo.iulp_mtu != 0);
740 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
741
742 /* Sanity check for MSS value. */
743 if (connp->conn_ipversion == IPV4_VERSION)
744 mss_max = tcps->tcps_mss_max_ipv4;
745 else
746 mss_max = tcps->tcps_mss_max_ipv6;
747
748 if (tcp->tcp_ipsec_overhead == 0)
749 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
750
751 mss -= tcp->tcp_ipsec_overhead;
752
753 if (mss < tcps->tcps_mss_min)
754 mss = tcps->tcps_mss_min;
755 if (mss > mss_max)
756 mss = mss_max;
757
758 /* Note that this is the maximum MSS, excluding all options. */
759 tcp->tcp_mss = mss;
760
761 /*
762 * Update the tcp connection with LSO capability.
763 */
764 tcp_update_lso(tcp, connp->conn_ixa);
765
766 /*
767 * Initialize the ISS here now that we have the full connection ID.
768 * The RFC 1948 method of initial sequence number generation requires
769 * knowledge of the full connection ID before setting the ISS.
770 */
771 tcp_iss_init(tcp);
772
773 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
774
775 /*
776 * Make sure that conn is not marked incipient
777 * for incoming connections. A blind
778 * removal of incipient flag is cheaper than
779 * check and removal.
780 */
781 mutex_enter(&connp->conn_lock);
782 connp->conn_state_flags &= ~CONN_INCIPIENT;
783 mutex_exit(&connp->conn_lock);
784 return (0);
785 }
786
787 /*
788 * tcp_clean_death / tcp_close_detached must not be called more than once
789 * on a tcp. Thus every function that potentially calls tcp_clean_death
790 * must check for the tcp state before calling tcp_clean_death.
791 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
792 * tcp_timer_handler, all check for the tcp state.
793 */
794 /* ARGSUSED */
795 void
tcp_clean_death_wrapper(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
797 ip_recv_attr_t *dummy)
798 {
799 tcp_t *tcp = ((conn_t *)arg)->conn_tcp;
800
801 freemsg(mp);
802 if (tcp->tcp_state > TCPS_BOUND)
803 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
804 }
805
806 /*
807 * We are dying for some reason. Try to do it gracefully. (May be called
808 * as writer.)
809 *
810 * Return -1 if the structure was not cleaned up (if the cleanup had to be
811 * done by a service procedure).
812 * TBD - Should the return value distinguish between the tcp_t being
813 * freed and it being reinitialized?
814 */
815 int
tcp_clean_death(tcp_t * tcp,int err)816 tcp_clean_death(tcp_t *tcp, int err)
817 {
818 mblk_t *mp;
819 queue_t *q;
820 conn_t *connp = tcp->tcp_connp;
821 tcp_stack_t *tcps = tcp->tcp_tcps;
822
823 if (tcp->tcp_fused)
824 tcp_unfuse(tcp);
825
826 if (tcp->tcp_linger_tid != 0 &&
827 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
828 tcp_stop_lingering(tcp);
829 }
830
831 ASSERT(tcp != NULL);
832 ASSERT((connp->conn_family == AF_INET &&
833 connp->conn_ipversion == IPV4_VERSION) ||
834 (connp->conn_family == AF_INET6 &&
835 (connp->conn_ipversion == IPV4_VERSION ||
836 connp->conn_ipversion == IPV6_VERSION)));
837
838 if (TCP_IS_DETACHED(tcp)) {
839 if (tcp->tcp_hard_binding) {
840 /*
841 * Its an eager that we are dealing with. We close the
842 * eager but in case a conn_ind has already gone to the
843 * listener, let tcp_accept_finish() send a discon_ind
844 * to the listener and drop the last reference. If the
845 * listener doesn't even know about the eager i.e. the
846 * conn_ind hasn't gone up, blow away the eager and drop
847 * the last reference as well. If the conn_ind has gone
848 * up, state should be BOUND. tcp_accept_finish
849 * will figure out that the connection has received a
850 * RST and will send a DISCON_IND to the application.
851 */
852 tcp_closei_local(tcp);
853 if (!tcp->tcp_tconnind_started) {
854 CONN_DEC_REF(connp);
855 } else {
856 tcp->tcp_state = TCPS_BOUND;
857 DTRACE_TCP6(state__change, void, NULL,
858 ip_xmit_attr_t *, connp->conn_ixa,
859 void, NULL, tcp_t *, tcp, void, NULL,
860 int32_t, TCPS_CLOSED);
861 }
862 } else {
863 tcp_close_detached(tcp);
864 }
865 return (0);
866 }
867
868 TCP_STAT(tcps, tcp_clean_death_nondetached);
869
870 /*
871 * The connection is dead. Decrement listener connection counter if
872 * necessary.
873 */
874 if (tcp->tcp_listen_cnt != NULL)
875 TCP_DECR_LISTEN_CNT(tcp);
876
877 /*
878 * When a connection is moved to TIME_WAIT state, the connection
879 * counter is already decremented. So no need to decrement here
880 * again. See SET_TIME_WAIT() macro.
881 */
882 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
883 tcp->tcp_state < TCPS_TIME_WAIT) {
884 TCPS_CONN_DEC(tcps);
885 }
886
887 q = connp->conn_rq;
888
889 /* Trash all inbound data */
890 if (!IPCL_IS_NONSTR(connp)) {
891 ASSERT(q != NULL);
892 flushq(q, FLUSHALL);
893 }
894
895 /*
896 * If we are at least part way open and there is error
897 * (err==0 implies no error)
898 * notify our client by a T_DISCON_IND.
899 */
900 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
901 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
902 !TCP_IS_SOCKET(tcp)) {
903 /*
904 * Send M_FLUSH according to TPI. Because sockets will
905 * (and must) ignore FLUSHR we do that only for TPI
906 * endpoints and sockets in STREAMS mode.
907 */
908 (void) putnextctl1(q, M_FLUSH, FLUSHR);
909 }
910 if (connp->conn_debug) {
911 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
912 "tcp_clean_death: discon err %d", err);
913 }
914 if (IPCL_IS_NONSTR(connp)) {
915 /* Direct socket, use upcall */
916 (*connp->conn_upcalls->su_disconnected)(
917 connp->conn_upper_handle, tcp->tcp_connid, err);
918 } else {
919 mp = mi_tpi_discon_ind(NULL, err, 0);
920 if (mp != NULL) {
921 putnext(q, mp);
922 } else {
923 if (connp->conn_debug) {
924 (void) strlog(TCP_MOD_ID, 0, 1,
925 SL_ERROR|SL_TRACE,
926 "tcp_clean_death, sending M_ERROR");
927 }
928 (void) putnextctl1(q, M_ERROR, EPROTO);
929 }
930 }
931 if (tcp->tcp_state <= TCPS_SYN_RCVD) {
932 /* SYN_SENT or SYN_RCVD */
933 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
934 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
935 /* ESTABLISHED or CLOSE_WAIT */
936 TCPS_BUMP_MIB(tcps, tcpEstabResets);
937 }
938 }
939
940 /*
941 * ESTABLISHED non-STREAMS eagers are not 'detached' because
942 * an upper handle is obtained when the SYN-ACK comes in. So it
943 * should receive the 'disconnected' upcall, but tcp_reinit should
944 * not be called since this is an eager.
945 */
946 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
947 tcp_closei_local(tcp);
948 tcp->tcp_state = TCPS_BOUND;
949 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
950 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
951 int32_t, TCPS_CLOSED);
952 return (0);
953 }
954
955 tcp_reinit(tcp);
956 if (IPCL_IS_NONSTR(connp))
957 (void) tcp_do_unbind(connp);
958
959 return (-1);
960 }
961
962 /*
963 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
964 * to expire, stop the wait and finish the close.
965 */
966 void
tcp_stop_lingering(tcp_t * tcp)967 tcp_stop_lingering(tcp_t *tcp)
968 {
969 clock_t delta = 0;
970 tcp_stack_t *tcps = tcp->tcp_tcps;
971 conn_t *connp = tcp->tcp_connp;
972
973 tcp->tcp_linger_tid = 0;
974 if (tcp->tcp_state > TCPS_LISTEN) {
975 tcp_acceptor_hash_remove(tcp);
976 mutex_enter(&tcp->tcp_non_sq_lock);
977 if (tcp->tcp_flow_stopped) {
978 tcp_clrqfull(tcp);
979 }
980 mutex_exit(&tcp->tcp_non_sq_lock);
981
982 if (tcp->tcp_timer_tid != 0) {
983 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
984 tcp->tcp_timer_tid = 0;
985 }
986 /*
987 * Need to cancel those timers which will not be used when
988 * TCP is detached. This has to be done before the conn_wq
989 * is cleared.
990 */
991 tcp_timers_stop(tcp);
992
993 tcp->tcp_detached = B_TRUE;
994 connp->conn_rq = NULL;
995 connp->conn_wq = NULL;
996
997 if (tcp->tcp_state == TCPS_TIME_WAIT) {
998 tcp_time_wait_append(tcp);
999 TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1000 goto finish;
1001 }
1002
1003 /*
1004 * If delta is zero the timer event wasn't executed and was
1005 * successfully canceled. In this case we need to restart it
1006 * with the minimal delta possible.
1007 */
1008 if (delta >= 0) {
1009 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1010 delta ? delta : 1);
1011 }
1012 } else {
1013 tcp_closei_local(tcp);
1014 CONN_DEC_REF(connp);
1015 }
1016 finish:
1017 tcp->tcp_detached = B_TRUE;
1018 connp->conn_rq = NULL;
1019 connp->conn_wq = NULL;
1020
1021 /* Signal closing thread that it can complete close */
1022 mutex_enter(&tcp->tcp_closelock);
1023 tcp->tcp_closed = 1;
1024 cv_signal(&tcp->tcp_closecv);
1025 mutex_exit(&tcp->tcp_closelock);
1026
1027 /* If we have an upper handle (socket), release it */
1028 if (IPCL_IS_NONSTR(connp)) {
1029 ASSERT(connp->conn_upper_handle != NULL);
1030 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1031 connp->conn_upper_handle = NULL;
1032 connp->conn_upcalls = NULL;
1033 }
1034 }
1035
1036 void
tcp_close_common(conn_t * connp,int flags)1037 tcp_close_common(conn_t *connp, int flags)
1038 {
1039 tcp_t *tcp = connp->conn_tcp;
1040 mblk_t *mp = &tcp->tcp_closemp;
1041 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
1042 mblk_t *bp;
1043
1044 ASSERT(connp->conn_ref >= 2);
1045
1046 /*
1047 * Mark the conn as closing. ipsq_pending_mp_add will not
1048 * add any mp to the pending mp list, after this conn has
1049 * started closing.
1050 */
1051 mutex_enter(&connp->conn_lock);
1052 connp->conn_state_flags |= CONN_CLOSING;
1053 if (connp->conn_oper_pending_ill != NULL)
1054 conn_ioctl_cleanup_reqd = B_TRUE;
1055 CONN_INC_REF_LOCKED(connp);
1056 mutex_exit(&connp->conn_lock);
1057 tcp->tcp_closeflags = (uint8_t)flags;
1058 ASSERT(connp->conn_ref >= 3);
1059
1060 /*
1061 * tcp_closemp_used is used below without any protection of a lock
1062 * as we don't expect any one else to use it concurrently at this
1063 * point otherwise it would be a major defect.
1064 */
1065
1066 if (mp->b_prev == NULL)
1067 tcp->tcp_closemp_used = B_TRUE;
1068 else
1069 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1070 "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1071
1072 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1073
1074 /*
1075 * Cleanup any queued ioctls here. This must be done before the wq/rq
1076 * are re-written by tcp_close_output().
1077 */
1078 if (conn_ioctl_cleanup_reqd)
1079 conn_ioctl_cleanup(connp);
1080
1081 /*
1082 * As CONN_CLOSING is set, no further ioctls should be passed down to
1083 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1084 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1085 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1086 * was still in flight at the time, we wait for it here. See comments
1087 * for CONN_INC_IOCTLREF in ip.h for details.
1088 */
1089 mutex_enter(&connp->conn_lock);
1090 while (connp->conn_ioctlref > 0)
1091 cv_wait(&connp->conn_cv, &connp->conn_lock);
1092 ASSERT(connp->conn_ioctlref == 0);
1093 ASSERT(connp->conn_oper_pending_ill == NULL);
1094 mutex_exit(&connp->conn_lock);
1095
1096 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1097 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1098
1099 /*
1100 * For non-STREAMS sockets, the normal case is that the conn makes
1101 * an upcall when it's finally closed, so there is no need to wait
1102 * in the protocol. But in case of SO_LINGER the thread sleeps here
1103 * so it can properly deal with the thread being interrupted.
1104 */
1105 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1106 goto nowait;
1107
1108 mutex_enter(&tcp->tcp_closelock);
1109 while (!tcp->tcp_closed) {
1110 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1111 /*
1112 * The cv_wait_sig() was interrupted. We now do the
1113 * following:
1114 *
1115 * 1) If the endpoint was lingering, we allow this
1116 * to be interrupted by cancelling the linger timeout
1117 * and closing normally.
1118 *
1119 * 2) Revert to calling cv_wait()
1120 *
1121 * We revert to using cv_wait() to avoid an
1122 * infinite loop which can occur if the calling
1123 * thread is higher priority than the squeue worker
1124 * thread and is bound to the same cpu.
1125 */
1126 if (connp->conn_linger && connp->conn_lingertime > 0) {
1127 mutex_exit(&tcp->tcp_closelock);
1128 /* Entering squeue, bump ref count. */
1129 CONN_INC_REF(connp);
1130 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1131 SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1132 tcp_linger_interrupted, connp, NULL,
1133 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1134 mutex_enter(&tcp->tcp_closelock);
1135 }
1136 break;
1137 }
1138 }
1139 while (!tcp->tcp_closed)
1140 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1141 mutex_exit(&tcp->tcp_closelock);
1142
1143 /*
1144 * In the case of listener streams that have eagers in the q or q0
1145 * we wait for the eagers to drop their reference to us. conn_rq and
1146 * conn_wq of the eagers point to our queues. By waiting for the
1147 * refcnt to drop to 1, we are sure that the eagers have cleaned
1148 * up their queue pointers and also dropped their references to us.
1149 *
1150 * For non-STREAMS sockets we do not have to wait here; the
1151 * listener will instead make a su_closed upcall when the last
1152 * reference is dropped.
1153 */
1154 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1155 mutex_enter(&connp->conn_lock);
1156 while (connp->conn_ref != 1) {
1157 cv_wait(&connp->conn_cv, &connp->conn_lock);
1158 }
1159 mutex_exit(&connp->conn_lock);
1160 }
1161
1162 nowait:
1163 connp->conn_cpid = NOPID;
1164 }
1165
1166 /*
1167 * Called by tcp_close() routine via squeue when lingering is
1168 * interrupted by a signal.
1169 */
1170
1171 /* ARGSUSED */
1172 static void
tcp_linger_interrupted(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)1173 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1174 {
1175 conn_t *connp = (conn_t *)arg;
1176 tcp_t *tcp = connp->conn_tcp;
1177
1178 freeb(mp);
1179 if (tcp->tcp_linger_tid != 0 &&
1180 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1181 tcp_stop_lingering(tcp);
1182 tcp->tcp_client_errno = EINTR;
1183 }
1184 }
1185
1186 /*
1187 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1188 * Some stream heads get upset if they see these later on as anything but NULL.
1189 */
1190 void
tcp_close_mpp(mblk_t ** mpp)1191 tcp_close_mpp(mblk_t **mpp)
1192 {
1193 mblk_t *mp;
1194
1195 if ((mp = *mpp) != NULL) {
1196 do {
1197 mp->b_next = NULL;
1198 mp->b_prev = NULL;
1199 } while ((mp = mp->b_cont) != NULL);
1200
1201 mp = *mpp;
1202 *mpp = NULL;
1203 freemsg(mp);
1204 }
1205 }
1206
1207 /* Do detached close. */
1208 void
tcp_close_detached(tcp_t * tcp)1209 tcp_close_detached(tcp_t *tcp)
1210 {
1211 if (tcp->tcp_fused)
1212 tcp_unfuse(tcp);
1213
1214 /*
1215 * Clustering code serializes TCP disconnect callbacks and
1216 * cluster tcp list walks by blocking a TCP disconnect callback
1217 * if a cluster tcp list walk is in progress. This ensures
1218 * accurate accounting of TCPs in the cluster code even though
1219 * the TCP list walk itself is not atomic.
1220 */
1221 tcp_closei_local(tcp);
1222 CONN_DEC_REF(tcp->tcp_connp);
1223 }
1224
1225 /*
1226 * The tcp_t is going away. Remove it from all lists and set it
1227 * to TCPS_CLOSED. The freeing up of memory is deferred until
1228 * tcp_inactive. This is needed since a thread in tcp_rput might have
1229 * done a CONN_INC_REF on this structure before it was removed from the
1230 * hashes.
1231 */
1232 void
tcp_closei_local(tcp_t * tcp)1233 tcp_closei_local(tcp_t *tcp)
1234 {
1235 conn_t *connp = tcp->tcp_connp;
1236 tcp_stack_t *tcps = tcp->tcp_tcps;
1237 int32_t oldstate;
1238
1239 if (!TCP_IS_SOCKET(tcp))
1240 tcp_acceptor_hash_remove(tcp);
1241
1242 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1243 tcp->tcp_ibsegs = 0;
1244 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1245 tcp->tcp_obsegs = 0;
1246
1247 /*
1248 * This can be called via tcp_time_wait_processing() if TCP gets a
1249 * SYN with sequence number outside the TIME-WAIT connection's
1250 * window. So we need to check for TIME-WAIT state here as the
1251 * connection counter is already decremented. See SET_TIME_WAIT()
1252 * macro
1253 */
1254 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1255 tcp->tcp_state < TCPS_TIME_WAIT) {
1256 TCPS_CONN_DEC(tcps);
1257 }
1258
1259 /*
1260 * If we are an eager connection hanging off a listener that
1261 * hasn't formally accepted the connection yet, get off his
1262 * list and blow off any data that we have accumulated.
1263 */
1264 if (tcp->tcp_listener != NULL) {
1265 tcp_t *listener = tcp->tcp_listener;
1266 mutex_enter(&listener->tcp_eager_lock);
1267 /*
1268 * tcp_tconnind_started == B_TRUE means that the
1269 * conn_ind has already gone to listener. At
1270 * this point, eager will be closed but we
1271 * leave it in listeners eager list so that
1272 * if listener decides to close without doing
1273 * accept, we can clean this up. In tcp_tli_accept
1274 * we take care of the case of accept on closed
1275 * eager.
1276 */
1277 if (!tcp->tcp_tconnind_started) {
1278 tcp_eager_unlink(tcp);
1279 mutex_exit(&listener->tcp_eager_lock);
1280 /*
1281 * We don't want to have any pointers to the
1282 * listener queue, after we have released our
1283 * reference on the listener
1284 */
1285 ASSERT(tcp->tcp_detached);
1286 connp->conn_rq = NULL;
1287 connp->conn_wq = NULL;
1288 CONN_DEC_REF(listener->tcp_connp);
1289 } else {
1290 mutex_exit(&listener->tcp_eager_lock);
1291 }
1292 }
1293
1294 /* Stop all the timers */
1295 tcp_timers_stop(tcp);
1296
1297 if (tcp->tcp_state == TCPS_LISTEN) {
1298 if (tcp->tcp_ip_addr_cache) {
1299 kmem_free((void *)tcp->tcp_ip_addr_cache,
1300 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1301 tcp->tcp_ip_addr_cache = NULL;
1302 }
1303 }
1304
1305 /* Decrement listerner connection counter if necessary. */
1306 if (tcp->tcp_listen_cnt != NULL)
1307 TCP_DECR_LISTEN_CNT(tcp);
1308
1309 mutex_enter(&tcp->tcp_non_sq_lock);
1310 if (tcp->tcp_flow_stopped)
1311 tcp_clrqfull(tcp);
1312 mutex_exit(&tcp->tcp_non_sq_lock);
1313
1314 tcp_bind_hash_remove(tcp);
1315 /*
1316 * If the tcp_time_wait_collector (which runs outside the squeue)
1317 * is trying to remove this tcp from the time wait list, we will
1318 * block in tcp_time_wait_remove while trying to acquire the
1319 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1320 * requires the ipcl_hash_remove to be ordered after the
1321 * tcp_time_wait_remove for the refcnt checks to work correctly.
1322 */
1323 if (tcp->tcp_state == TCPS_TIME_WAIT)
1324 (void) tcp_time_wait_remove(tcp, NULL);
1325 CL_INET_DISCONNECT(connp);
1326 ipcl_hash_remove(connp);
1327 oldstate = tcp->tcp_state;
1328 tcp->tcp_state = TCPS_CLOSED;
1329 /* Need to probe before ixa_cleanup() is called */
1330 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1331 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1332 int32_t, oldstate);
1333 ixa_cleanup(connp->conn_ixa);
1334
1335 /*
1336 * Mark the conn as CONDEMNED
1337 */
1338 mutex_enter(&connp->conn_lock);
1339 connp->conn_state_flags |= CONN_CONDEMNED;
1340 mutex_exit(&connp->conn_lock);
1341
1342 ASSERT(tcp->tcp_time_wait_next == NULL);
1343 ASSERT(tcp->tcp_time_wait_prev == NULL);
1344 ASSERT(tcp->tcp_time_wait_expire == 0);
1345
1346 tcp_ipsec_cleanup(tcp);
1347 }
1348
1349 /*
1350 * tcp is dying (called from ipcl_conn_destroy and error cases).
1351 * Free the tcp_t in either case.
1352 */
1353 void
tcp_free(tcp_t * tcp)1354 tcp_free(tcp_t *tcp)
1355 {
1356 mblk_t *mp;
1357 conn_t *connp = tcp->tcp_connp;
1358
1359 ASSERT(tcp != NULL);
1360 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1361
1362 connp->conn_rq = NULL;
1363 connp->conn_wq = NULL;
1364
1365 tcp_close_mpp(&tcp->tcp_xmit_head);
1366 tcp_close_mpp(&tcp->tcp_reass_head);
1367 if (tcp->tcp_rcv_list != NULL) {
1368 /* Free b_next chain */
1369 tcp_close_mpp(&tcp->tcp_rcv_list);
1370 }
1371 if ((mp = tcp->tcp_urp_mp) != NULL) {
1372 freemsg(mp);
1373 }
1374 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1375 freemsg(mp);
1376 }
1377
1378 if (tcp->tcp_fused_sigurg_mp != NULL) {
1379 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1380 freeb(tcp->tcp_fused_sigurg_mp);
1381 tcp->tcp_fused_sigurg_mp = NULL;
1382 }
1383
1384 if (tcp->tcp_ordrel_mp != NULL) {
1385 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1386 freeb(tcp->tcp_ordrel_mp);
1387 tcp->tcp_ordrel_mp = NULL;
1388 }
1389
1390 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1391 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1392
1393 if (tcp->tcp_hopopts != NULL) {
1394 mi_free(tcp->tcp_hopopts);
1395 tcp->tcp_hopopts = NULL;
1396 tcp->tcp_hopoptslen = 0;
1397 }
1398 ASSERT(tcp->tcp_hopoptslen == 0);
1399 if (tcp->tcp_dstopts != NULL) {
1400 mi_free(tcp->tcp_dstopts);
1401 tcp->tcp_dstopts = NULL;
1402 tcp->tcp_dstoptslen = 0;
1403 }
1404 ASSERT(tcp->tcp_dstoptslen == 0);
1405 if (tcp->tcp_rthdrdstopts != NULL) {
1406 mi_free(tcp->tcp_rthdrdstopts);
1407 tcp->tcp_rthdrdstopts = NULL;
1408 tcp->tcp_rthdrdstoptslen = 0;
1409 }
1410 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1411 if (tcp->tcp_rthdr != NULL) {
1412 mi_free(tcp->tcp_rthdr);
1413 tcp->tcp_rthdr = NULL;
1414 tcp->tcp_rthdrlen = 0;
1415 }
1416 ASSERT(tcp->tcp_rthdrlen == 0);
1417
1418 /*
1419 * Following is really a blowing away a union.
1420 * It happens to have exactly two members of identical size
1421 * the following code is enough.
1422 */
1423 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1424
1425 /*
1426 * If this is a non-STREAM socket still holding on to an upper
1427 * handle, release it. As a result of fallback we might also see
1428 * STREAMS based conns with upper handles, in which case there is
1429 * nothing to do other than clearing the field.
1430 */
1431 if (connp->conn_upper_handle != NULL) {
1432 if (IPCL_IS_NONSTR(connp)) {
1433 (*connp->conn_upcalls->su_closed)(
1434 connp->conn_upper_handle);
1435 tcp->tcp_detached = B_TRUE;
1436 }
1437 connp->conn_upper_handle = NULL;
1438 connp->conn_upcalls = NULL;
1439 }
1440 }
1441
1442 /*
1443 * tcp_get_conn/tcp_free_conn
1444 *
1445 * tcp_get_conn is used to get a clean tcp connection structure.
1446 * It tries to reuse the connections put on the freelist by the
1447 * time_wait_collector failing which it goes to kmem_cache. This
1448 * way has two benefits compared to just allocating from and
1449 * freeing to kmem_cache.
1450 * 1) The time_wait_collector can free (which includes the cleanup)
1451 * outside the squeue. So when the interrupt comes, we have a clean
1452 * connection sitting in the freelist. Obviously, this buys us
1453 * performance.
1454 *
1455 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1456 * has multiple disadvantages - tying up the squeue during alloc.
1457 * But allocating the conn/tcp in IP land is also not the best since
1458 * we can't check the 'q' and 'q0' which are protected by squeue and
1459 * blindly allocate memory which might have to be freed here if we are
1460 * not allowed to accept the connection. By using the freelist and
1461 * putting the conn/tcp back in freelist, we don't pay a penalty for
1462 * allocating memory without checking 'q/q0' and freeing it if we can't
1463 * accept the connection.
1464 *
1465 * Care should be taken to put the conn back in the same squeue's freelist
1466 * from which it was allocated. Best results are obtained if conn is
1467 * allocated from listener's squeue and freed to the same. Time wait
1468 * collector will free up the freelist is the connection ends up sitting
1469 * there for too long.
1470 */
1471 void *
tcp_get_conn(void * arg,tcp_stack_t * tcps)1472 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1473 {
1474 tcp_t *tcp = NULL;
1475 conn_t *connp = NULL;
1476 squeue_t *sqp = (squeue_t *)arg;
1477 tcp_squeue_priv_t *tcp_time_wait;
1478 netstack_t *ns;
1479 mblk_t *tcp_rsrv_mp = NULL;
1480
1481 tcp_time_wait =
1482 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1483
1484 mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1485 tcp = tcp_time_wait->tcp_free_list;
1486 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1487 if (tcp != NULL) {
1488 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1489 tcp_time_wait->tcp_free_list_cnt--;
1490 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1491 tcp->tcp_time_wait_next = NULL;
1492 connp = tcp->tcp_connp;
1493 connp->conn_flags |= IPCL_REUSED;
1494
1495 ASSERT(tcp->tcp_tcps == NULL);
1496 ASSERT(connp->conn_netstack == NULL);
1497 ASSERT(tcp->tcp_rsrv_mp != NULL);
1498 ns = tcps->tcps_netstack;
1499 netstack_hold(ns);
1500 connp->conn_netstack = ns;
1501 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1502 tcp->tcp_tcps = tcps;
1503 ipcl_globalhash_insert(connp);
1504
1505 connp->conn_ixa->ixa_notify_cookie = tcp;
1506 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1507 connp->conn_recv = tcp_input_data;
1508 ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1509 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1510 return ((void *)connp);
1511 }
1512 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1513 /*
1514 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1515 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1516 */
1517 tcp_rsrv_mp = allocb(0, BPRI_HI);
1518 if (tcp_rsrv_mp == NULL)
1519 return (NULL);
1520
1521 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1522 tcps->tcps_netstack)) == NULL) {
1523 freeb(tcp_rsrv_mp);
1524 return (NULL);
1525 }
1526
1527 tcp = connp->conn_tcp;
1528 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1529 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1530
1531 tcp->tcp_tcps = tcps;
1532
1533 connp->conn_recv = tcp_input_data;
1534 connp->conn_recvicmp = tcp_icmp_input;
1535 connp->conn_verifyicmp = tcp_verifyicmp;
1536
1537 /*
1538 * Register tcp_notify to listen to capability changes detected by IP.
1539 * This upcall is made in the context of the call to conn_ip_output
1540 * thus it is inside the squeue.
1541 */
1542 connp->conn_ixa->ixa_notify = tcp_notify;
1543 connp->conn_ixa->ixa_notify_cookie = tcp;
1544
1545 return ((void *)connp);
1546 }
1547
1548 /*
1549 * Handle connect to IPv4 destinations, including connections for AF_INET6
1550 * sockets connecting to IPv4 mapped IPv6 destinations.
1551 * Returns zero if OK, a positive errno, or a negative TLI error.
1552 */
1553 static int
tcp_connect_ipv4(tcp_t * tcp,ipaddr_t * dstaddrp,in_port_t dstport,uint_t srcid)1554 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1555 uint_t srcid)
1556 {
1557 ipaddr_t dstaddr = *dstaddrp;
1558 uint16_t lport;
1559 conn_t *connp = tcp->tcp_connp;
1560 tcp_stack_t *tcps = tcp->tcp_tcps;
1561 int error;
1562
1563 ASSERT(connp->conn_ipversion == IPV4_VERSION);
1564
1565 /* Check for attempt to connect to INADDR_ANY */
1566 if (dstaddr == INADDR_ANY) {
1567 /*
1568 * SunOS 4.x and 4.3 BSD allow an application
1569 * to connect a TCP socket to INADDR_ANY.
1570 * When they do this, the kernel picks the
1571 * address of one interface and uses it
1572 * instead. The kernel usually ends up
1573 * picking the address of the loopback
1574 * interface. This is an undocumented feature.
1575 * However, we provide the same thing here
1576 * in order to have source and binary
1577 * compatibility with SunOS 4.x.
1578 * Update the T_CONN_REQ (sin/sin6) since it is used to
1579 * generate the T_CONN_CON.
1580 */
1581 dstaddr = htonl(INADDR_LOOPBACK);
1582 *dstaddrp = dstaddr;
1583 }
1584
1585 /* Handle __sin6_src_id if socket not bound to an IP address */
1586 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1587 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1588 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
1589 /* Mismatch - conn_laddr_v6 would be v6 address. */
1590 return (EADDRNOTAVAIL);
1591 }
1592 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1593 }
1594
1595 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1596 connp->conn_fport = dstport;
1597
1598 /*
1599 * At this point the remote destination address and remote port fields
1600 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1601 * have to see which state tcp was in so we can take appropriate action.
1602 */
1603 if (tcp->tcp_state == TCPS_IDLE) {
1604 /*
1605 * We support a quick connect capability here, allowing
1606 * clients to transition directly from IDLE to SYN_SENT
1607 * tcp_bindi will pick an unused port, insert the connection
1608 * in the bind hash and transition to BOUND state.
1609 */
1610 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1611 tcp, B_TRUE);
1612 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1613 B_FALSE, B_FALSE);
1614 if (lport == 0)
1615 return (-TNOADDR);
1616 }
1617
1618 /*
1619 * Lookup the route to determine a source address and the uinfo.
1620 * Setup TCP parameters based on the metrics/DCE.
1621 */
1622 error = tcp_set_destination(tcp);
1623 if (error != 0)
1624 return (error);
1625
1626 /*
1627 * Don't let an endpoint connect to itself.
1628 */
1629 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1630 connp->conn_fport == connp->conn_lport)
1631 return (-TBADADDR);
1632
1633 tcp->tcp_state = TCPS_SYN_SENT;
1634
1635 return (ipcl_conn_insert_v4(connp));
1636 }
1637
1638 /*
1639 * Handle connect to IPv6 destinations.
1640 * Returns zero if OK, a positive errno, or a negative TLI error.
1641 */
1642 static int
tcp_connect_ipv6(tcp_t * tcp,in6_addr_t * dstaddrp,in_port_t dstport,uint32_t flowinfo,uint_t srcid,uint32_t scope_id)1643 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1644 uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1645 {
1646 uint16_t lport;
1647 conn_t *connp = tcp->tcp_connp;
1648 tcp_stack_t *tcps = tcp->tcp_tcps;
1649 int error;
1650
1651 ASSERT(connp->conn_family == AF_INET6);
1652
1653 /*
1654 * If we're here, it means that the destination address is a native
1655 * IPv6 address. Return an error if conn_ipversion is not IPv6. A
1656 * reason why it might not be IPv6 is if the socket was bound to an
1657 * IPv4-mapped IPv6 address.
1658 */
1659 if (connp->conn_ipversion != IPV6_VERSION)
1660 return (-TBADADDR);
1661
1662 /*
1663 * Interpret a zero destination to mean loopback.
1664 * Update the T_CONN_REQ (sin/sin6) since it is used to
1665 * generate the T_CONN_CON.
1666 */
1667 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1668 *dstaddrp = ipv6_loopback;
1669
1670 /* Handle __sin6_src_id if socket not bound to an IP address */
1671 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1672 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1673 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
1674 /* Mismatch - conn_laddr_v6 would be v4-mapped. */
1675 return (EADDRNOTAVAIL);
1676 }
1677 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1678 }
1679
1680 /*
1681 * Take care of the scope_id now.
1682 */
1683 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1684 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1685 connp->conn_ixa->ixa_scopeid = scope_id;
1686 } else {
1687 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1688 }
1689
1690 connp->conn_flowinfo = flowinfo;
1691 connp->conn_faddr_v6 = *dstaddrp;
1692 connp->conn_fport = dstport;
1693
1694 /*
1695 * At this point the remote destination address and remote port fields
1696 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1697 * have to see which state tcp was in so we can take appropriate action.
1698 */
1699 if (tcp->tcp_state == TCPS_IDLE) {
1700 /*
1701 * We support a quick connect capability here, allowing
1702 * clients to transition directly from IDLE to SYN_SENT
1703 * tcp_bindi will pick an unused port, insert the connection
1704 * in the bind hash and transition to BOUND state.
1705 */
1706 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1707 tcp, B_TRUE);
1708 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1709 B_FALSE, B_FALSE);
1710 if (lport == 0)
1711 return (-TNOADDR);
1712 }
1713
1714 /*
1715 * Lookup the route to determine a source address and the uinfo.
1716 * Setup TCP parameters based on the metrics/DCE.
1717 */
1718 error = tcp_set_destination(tcp);
1719 if (error != 0)
1720 return (error);
1721
1722 /*
1723 * Don't let an endpoint connect to itself.
1724 */
1725 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1726 connp->conn_fport == connp->conn_lport)
1727 return (-TBADADDR);
1728
1729 tcp->tcp_state = TCPS_SYN_SENT;
1730
1731 return (ipcl_conn_insert_v6(connp));
1732 }
1733
1734 /*
1735 * Disconnect
1736 * Note that unlike other functions this returns a positive tli error
1737 * when it fails; it never returns an errno.
1738 */
1739 static int
tcp_disconnect_common(tcp_t * tcp,t_scalar_t seqnum)1740 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1741 {
1742 conn_t *lconnp;
1743 tcp_stack_t *tcps = tcp->tcp_tcps;
1744 conn_t *connp = tcp->tcp_connp;
1745
1746 /*
1747 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1748 * when the stream is in BOUND state. Do not send a reset,
1749 * since the destination IP address is not valid, and it can
1750 * be the initialized value of all zeros (broadcast address).
1751 */
1752 if (tcp->tcp_state <= TCPS_BOUND) {
1753 if (connp->conn_debug) {
1754 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1755 "tcp_disconnect: bad state, %d", tcp->tcp_state);
1756 }
1757 return (TOUTSTATE);
1758 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1759 TCPS_CONN_DEC(tcps);
1760 }
1761
1762 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1763
1764 /*
1765 * According to TPI, for non-listeners, ignore seqnum
1766 * and disconnect.
1767 * Following interpretation of -1 seqnum is historical
1768 * and implied TPI ? (TPI only states that for T_CONN_IND,
1769 * a valid seqnum should not be -1).
1770 *
1771 * -1 means disconnect everything
1772 * regardless even on a listener.
1773 */
1774
1775 int old_state = tcp->tcp_state;
1776 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1777
1778 /*
1779 * The connection can't be on the tcp_time_wait_head list
1780 * since it is not detached.
1781 */
1782 ASSERT(tcp->tcp_time_wait_next == NULL);
1783 ASSERT(tcp->tcp_time_wait_prev == NULL);
1784 ASSERT(tcp->tcp_time_wait_expire == 0);
1785 /*
1786 * If it used to be a listener, check to make sure no one else
1787 * has taken the port before switching back to LISTEN state.
1788 */
1789 if (connp->conn_ipversion == IPV4_VERSION) {
1790 lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1791 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1792 } else {
1793 uint_t ifindex = 0;
1794
1795 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1796 ifindex = connp->conn_ixa->ixa_scopeid;
1797
1798 /* Allow conn_bound_if listeners? */
1799 lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1800 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1801 ipst);
1802 }
1803 if (tcp->tcp_conn_req_max && lconnp == NULL) {
1804 tcp->tcp_state = TCPS_LISTEN;
1805 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1806 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1807 NULL, int32_t, old_state);
1808 } else if (old_state > TCPS_BOUND) {
1809 tcp->tcp_conn_req_max = 0;
1810 tcp->tcp_state = TCPS_BOUND;
1811 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1812 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1813 NULL, int32_t, old_state);
1814
1815 /*
1816 * If this end point is not going to become a listener,
1817 * decrement the listener connection count if
1818 * necessary. Note that we do not do this if it is
1819 * going to be a listner (the above if case) since
1820 * then it may remove the counter struct.
1821 */
1822 if (tcp->tcp_listen_cnt != NULL)
1823 TCP_DECR_LISTEN_CNT(tcp);
1824 }
1825 if (lconnp != NULL)
1826 CONN_DEC_REF(lconnp);
1827 switch (old_state) {
1828 case TCPS_SYN_SENT:
1829 case TCPS_SYN_RCVD:
1830 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1831 break;
1832 case TCPS_ESTABLISHED:
1833 case TCPS_CLOSE_WAIT:
1834 TCPS_BUMP_MIB(tcps, tcpEstabResets);
1835 break;
1836 }
1837
1838 if (tcp->tcp_fused)
1839 tcp_unfuse(tcp);
1840
1841 mutex_enter(&tcp->tcp_eager_lock);
1842 if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1843 (tcp->tcp_conn_req_cnt_q != 0)) {
1844 tcp_eager_cleanup(tcp, 0);
1845 }
1846 mutex_exit(&tcp->tcp_eager_lock);
1847
1848 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1849 tcp->tcp_rnxt, TH_RST | TH_ACK);
1850
1851 tcp_reinit(tcp);
1852
1853 return (0);
1854 } else if (!tcp_eager_blowoff(tcp, seqnum)) {
1855 return (TBADSEQ);
1856 }
1857 return (0);
1858 }
1859
1860 /*
1861 * Our client hereby directs us to reject the connection request
1862 * that tcp_input_listener() marked with 'seqnum'. Rejection consists
1863 * of sending the appropriate RST, not an ICMP error.
1864 */
1865 void
tcp_disconnect(tcp_t * tcp,mblk_t * mp)1866 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1867 {
1868 t_scalar_t seqnum;
1869 int error;
1870 conn_t *connp = tcp->tcp_connp;
1871
1872 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1873 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1874 tcp_err_ack(tcp, mp, TPROTO, 0);
1875 return;
1876 }
1877 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1878 error = tcp_disconnect_common(tcp, seqnum);
1879 if (error != 0)
1880 tcp_err_ack(tcp, mp, error, 0);
1881 else {
1882 if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1883 /* Send M_FLUSH according to TPI */
1884 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1885 }
1886 mp = mi_tpi_ok_ack_alloc(mp);
1887 if (mp != NULL)
1888 putnext(connp->conn_rq, mp);
1889 }
1890 }
1891
1892 /*
1893 * Handle reinitialization of a tcp structure.
1894 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1895 */
1896 static void
tcp_reinit(tcp_t * tcp)1897 tcp_reinit(tcp_t *tcp)
1898 {
1899 mblk_t *mp;
1900 tcp_stack_t *tcps = tcp->tcp_tcps;
1901 conn_t *connp = tcp->tcp_connp;
1902 int32_t oldstate;
1903
1904 /* tcp_reinit should never be called for detached tcp_t's */
1905 ASSERT(tcp->tcp_listener == NULL);
1906 ASSERT((connp->conn_family == AF_INET &&
1907 connp->conn_ipversion == IPV4_VERSION) ||
1908 (connp->conn_family == AF_INET6 &&
1909 (connp->conn_ipversion == IPV4_VERSION ||
1910 connp->conn_ipversion == IPV6_VERSION)));
1911
1912 /* Cancel outstanding timers */
1913 tcp_timers_stop(tcp);
1914
1915 /*
1916 * Reset everything in the state vector, after updating global
1917 * MIB data from instance counters.
1918 */
1919 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1920 tcp->tcp_ibsegs = 0;
1921 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1922 tcp->tcp_obsegs = 0;
1923
1924 tcp_close_mpp(&tcp->tcp_xmit_head);
1925 if (tcp->tcp_snd_zcopy_aware)
1926 tcp_zcopy_notify(tcp);
1927 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1928 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1929 mutex_enter(&tcp->tcp_non_sq_lock);
1930 if (tcp->tcp_flow_stopped &&
1931 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1932 tcp_clrqfull(tcp);
1933 }
1934 mutex_exit(&tcp->tcp_non_sq_lock);
1935 tcp_close_mpp(&tcp->tcp_reass_head);
1936 tcp->tcp_reass_tail = NULL;
1937 if (tcp->tcp_rcv_list != NULL) {
1938 /* Free b_next chain */
1939 tcp_close_mpp(&tcp->tcp_rcv_list);
1940 tcp->tcp_rcv_last_head = NULL;
1941 tcp->tcp_rcv_last_tail = NULL;
1942 tcp->tcp_rcv_cnt = 0;
1943 }
1944 tcp->tcp_rcv_last_tail = NULL;
1945
1946 if ((mp = tcp->tcp_urp_mp) != NULL) {
1947 freemsg(mp);
1948 tcp->tcp_urp_mp = NULL;
1949 }
1950 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1951 freemsg(mp);
1952 tcp->tcp_urp_mark_mp = NULL;
1953 }
1954 if (tcp->tcp_fused_sigurg_mp != NULL) {
1955 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1956 freeb(tcp->tcp_fused_sigurg_mp);
1957 tcp->tcp_fused_sigurg_mp = NULL;
1958 }
1959 if (tcp->tcp_ordrel_mp != NULL) {
1960 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1961 freeb(tcp->tcp_ordrel_mp);
1962 tcp->tcp_ordrel_mp = NULL;
1963 }
1964
1965 /*
1966 * Following is a union with two members which are
1967 * identical types and size so the following cleanup
1968 * is enough.
1969 */
1970 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1971
1972 CL_INET_DISCONNECT(connp);
1973
1974 /*
1975 * The connection can't be on the tcp_time_wait_head list
1976 * since it is not detached.
1977 */
1978 ASSERT(tcp->tcp_time_wait_next == NULL);
1979 ASSERT(tcp->tcp_time_wait_prev == NULL);
1980 ASSERT(tcp->tcp_time_wait_expire == 0);
1981
1982 /*
1983 * Reset/preserve other values
1984 */
1985 tcp_reinit_values(tcp);
1986 ipcl_hash_remove(connp);
1987 /* Note that ixa_cred gets cleared in ixa_cleanup */
1988 ixa_cleanup(connp->conn_ixa);
1989 tcp_ipsec_cleanup(tcp);
1990
1991 connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1992 connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1993 oldstate = tcp->tcp_state;
1994
1995 if (tcp->tcp_conn_req_max != 0) {
1996 /*
1997 * This is the case when a TLI program uses the same
1998 * transport end point to accept a connection. This
1999 * makes the TCP both a listener and acceptor. When
2000 * this connection is closed, we need to set the state
2001 * back to TCPS_LISTEN. Make sure that the eager list
2002 * is reinitialized.
2003 *
2004 * Note that this stream is still bound to the four
2005 * tuples of the previous connection in IP. If a new
2006 * SYN with different foreign address comes in, IP will
2007 * not find it and will send it to the global queue. In
2008 * the global queue, TCP will do a tcp_lookup_listener()
2009 * to find this stream. This works because this stream
2010 * is only removed from connected hash.
2011 *
2012 */
2013 tcp->tcp_state = TCPS_LISTEN;
2014 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2015 tcp->tcp_eager_next_drop_q0 = tcp;
2016 tcp->tcp_eager_prev_drop_q0 = tcp;
2017 /*
2018 * Initially set conn_recv to tcp_input_listener_unbound to try
2019 * to pick a good squeue for the listener when the first SYN
2020 * arrives. tcp_input_listener_unbound sets it to
2021 * tcp_input_listener on that first SYN.
2022 */
2023 connp->conn_recv = tcp_input_listener_unbound;
2024
2025 connp->conn_proto = IPPROTO_TCP;
2026 connp->conn_faddr_v6 = ipv6_all_zeros;
2027 connp->conn_fport = 0;
2028
2029 (void) ipcl_bind_insert(connp);
2030 } else {
2031 tcp->tcp_state = TCPS_BOUND;
2032 }
2033
2034 /*
2035 * Initialize to default values
2036 */
2037 tcp_init_values(tcp, NULL);
2038
2039 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2040 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2041 int32_t, oldstate);
2042
2043 ASSERT(tcp->tcp_ptpbhn != NULL);
2044 tcp->tcp_rwnd = connp->conn_rcvbuf;
2045 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2046 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2047 }
2048
2049 /*
2050 * Force values to zero that need be zero.
2051 * Do not touch values asociated with the BOUND or LISTEN state
2052 * since the connection will end up in that state after the reinit.
2053 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2054 * structure!
2055 */
2056 static void
tcp_reinit_values(tcp)2057 tcp_reinit_values(tcp)
2058 tcp_t *tcp;
2059 {
2060 tcp_stack_t *tcps = tcp->tcp_tcps;
2061 conn_t *connp = tcp->tcp_connp;
2062
2063 #ifndef lint
2064 #define DONTCARE(x)
2065 #define PRESERVE(x)
2066 #else
2067 #define DONTCARE(x) ((x) = (x))
2068 #define PRESERVE(x) ((x) = (x))
2069 #endif /* lint */
2070
2071 PRESERVE(tcp->tcp_bind_hash_port);
2072 PRESERVE(tcp->tcp_bind_hash);
2073 PRESERVE(tcp->tcp_ptpbhn);
2074 PRESERVE(tcp->tcp_acceptor_hash);
2075 PRESERVE(tcp->tcp_ptpahn);
2076
2077 /* Should be ASSERT NULL on these with new code! */
2078 ASSERT(tcp->tcp_time_wait_next == NULL);
2079 ASSERT(tcp->tcp_time_wait_prev == NULL);
2080 ASSERT(tcp->tcp_time_wait_expire == 0);
2081 PRESERVE(tcp->tcp_state);
2082 PRESERVE(connp->conn_rq);
2083 PRESERVE(connp->conn_wq);
2084
2085 ASSERT(tcp->tcp_xmit_head == NULL);
2086 ASSERT(tcp->tcp_xmit_last == NULL);
2087 ASSERT(tcp->tcp_unsent == 0);
2088 ASSERT(tcp->tcp_xmit_tail == NULL);
2089 ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2090
2091 tcp->tcp_snxt = 0; /* Displayed in mib */
2092 tcp->tcp_suna = 0; /* Displayed in mib */
2093 tcp->tcp_swnd = 0;
2094 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */
2095
2096 ASSERT(tcp->tcp_ibsegs == 0);
2097 ASSERT(tcp->tcp_obsegs == 0);
2098
2099 if (connp->conn_ht_iphc != NULL) {
2100 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2101 connp->conn_ht_iphc = NULL;
2102 connp->conn_ht_iphc_allocated = 0;
2103 connp->conn_ht_iphc_len = 0;
2104 connp->conn_ht_ulp = NULL;
2105 connp->conn_ht_ulp_len = 0;
2106 tcp->tcp_ipha = NULL;
2107 tcp->tcp_ip6h = NULL;
2108 tcp->tcp_tcpha = NULL;
2109 }
2110
2111 /* We clear any IP_OPTIONS and extension headers */
2112 ip_pkt_free(&connp->conn_xmit_ipp);
2113
2114 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */
2115 DONTCARE(tcp->tcp_ipha);
2116 DONTCARE(tcp->tcp_ip6h);
2117 DONTCARE(tcp->tcp_tcpha);
2118 tcp->tcp_valid_bits = 0;
2119
2120 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */
2121 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */
2122 tcp->tcp_last_rcv_lbolt = 0;
2123
2124 tcp->tcp_init_cwnd = 0;
2125
2126 tcp->tcp_urp_last_valid = 0;
2127 tcp->tcp_hard_binding = 0;
2128
2129 tcp->tcp_fin_acked = 0;
2130 tcp->tcp_fin_rcvd = 0;
2131 tcp->tcp_fin_sent = 0;
2132 tcp->tcp_ordrel_done = 0;
2133
2134 tcp->tcp_detached = 0;
2135
2136 tcp->tcp_snd_ws_ok = B_FALSE;
2137 tcp->tcp_snd_ts_ok = B_FALSE;
2138 tcp->tcp_zero_win_probe = 0;
2139
2140 tcp->tcp_loopback = 0;
2141 tcp->tcp_localnet = 0;
2142 tcp->tcp_syn_defense = 0;
2143 tcp->tcp_set_timer = 0;
2144
2145 tcp->tcp_active_open = 0;
2146 tcp->tcp_rexmit = B_FALSE;
2147 tcp->tcp_xmit_zc_clean = B_FALSE;
2148
2149 tcp->tcp_snd_sack_ok = B_FALSE;
2150 tcp->tcp_hwcksum = B_FALSE;
2151
2152 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */
2153
2154 tcp->tcp_conn_def_q0 = 0;
2155 tcp->tcp_ip_forward_progress = B_FALSE;
2156 tcp->tcp_ecn_ok = B_FALSE;
2157
2158 tcp->tcp_cwr = B_FALSE;
2159 tcp->tcp_ecn_echo_on = B_FALSE;
2160 tcp->tcp_is_wnd_shrnk = B_FALSE;
2161
2162 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2163 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2164
2165 tcp->tcp_rcv_ws = 0;
2166 tcp->tcp_snd_ws = 0;
2167 tcp->tcp_ts_recent = 0;
2168 tcp->tcp_rnxt = 0; /* Displayed in mib */
2169 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */
2170 tcp->tcp_initial_pmtu = 0;
2171
2172 ASSERT(tcp->tcp_reass_head == NULL);
2173 ASSERT(tcp->tcp_reass_tail == NULL);
2174
2175 tcp->tcp_cwnd_cnt = 0;
2176
2177 ASSERT(tcp->tcp_rcv_list == NULL);
2178 ASSERT(tcp->tcp_rcv_last_head == NULL);
2179 ASSERT(tcp->tcp_rcv_last_tail == NULL);
2180 ASSERT(tcp->tcp_rcv_cnt == 0);
2181
2182 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2183 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */
2184 tcp->tcp_csuna = 0;
2185
2186 tcp->tcp_rto = 0; /* Displayed in MIB */
2187 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */
2188 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */
2189 tcp->tcp_rtt_update = 0;
2190
2191 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2192 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2193
2194 tcp->tcp_rack = 0; /* Displayed in mib */
2195 tcp->tcp_rack_cnt = 0;
2196 tcp->tcp_rack_cur_max = 0;
2197 tcp->tcp_rack_abs_max = 0;
2198
2199 tcp->tcp_max_swnd = 0;
2200
2201 ASSERT(tcp->tcp_listener == NULL);
2202
2203 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */
2204 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */
2205 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */
2206 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */
2207
2208 ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2209 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2210 PRESERVE(tcp->tcp_conn_req_max);
2211 PRESERVE(tcp->tcp_conn_req_seqnum);
2212
2213 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2214 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2215 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2216 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2217
2218 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */
2219 ASSERT(tcp->tcp_urp_mp == NULL);
2220 ASSERT(tcp->tcp_urp_mark_mp == NULL);
2221 ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2222
2223 ASSERT(tcp->tcp_eager_next_q == NULL);
2224 ASSERT(tcp->tcp_eager_last_q == NULL);
2225 ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2226 tcp->tcp_eager_prev_q0 == NULL) ||
2227 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2228 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2229
2230 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2231 tcp->tcp_eager_prev_drop_q0 == NULL) ||
2232 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2233
2234 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */
2235 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */
2236 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */
2237
2238 tcp->tcp_client_errno = 0;
2239
2240 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */
2241
2242 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */
2243
2244 PRESERVE(connp->conn_bound_addr_v6);
2245 tcp->tcp_last_sent_len = 0;
2246 tcp->tcp_dupack_cnt = 0;
2247
2248 connp->conn_fport = 0; /* Displayed in MIB */
2249 PRESERVE(connp->conn_lport);
2250
2251 PRESERVE(tcp->tcp_acceptor_lockp);
2252
2253 ASSERT(tcp->tcp_ordrel_mp == NULL);
2254 PRESERVE(tcp->tcp_acceptor_id);
2255 DONTCARE(tcp->tcp_ipsec_overhead);
2256
2257 PRESERVE(connp->conn_family);
2258 /* Remove any remnants of mapped address binding */
2259 if (connp->conn_family == AF_INET6) {
2260 connp->conn_ipversion = IPV6_VERSION;
2261 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2262 } else {
2263 connp->conn_ipversion = IPV4_VERSION;
2264 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2265 }
2266
2267 connp->conn_bound_if = 0;
2268 connp->conn_recv_ancillary.crb_all = 0;
2269 tcp->tcp_recvifindex = 0;
2270 tcp->tcp_recvhops = 0;
2271 tcp->tcp_closed = 0;
2272 if (tcp->tcp_hopopts != NULL) {
2273 mi_free(tcp->tcp_hopopts);
2274 tcp->tcp_hopopts = NULL;
2275 tcp->tcp_hopoptslen = 0;
2276 }
2277 ASSERT(tcp->tcp_hopoptslen == 0);
2278 if (tcp->tcp_dstopts != NULL) {
2279 mi_free(tcp->tcp_dstopts);
2280 tcp->tcp_dstopts = NULL;
2281 tcp->tcp_dstoptslen = 0;
2282 }
2283 ASSERT(tcp->tcp_dstoptslen == 0);
2284 if (tcp->tcp_rthdrdstopts != NULL) {
2285 mi_free(tcp->tcp_rthdrdstopts);
2286 tcp->tcp_rthdrdstopts = NULL;
2287 tcp->tcp_rthdrdstoptslen = 0;
2288 }
2289 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2290 if (tcp->tcp_rthdr != NULL) {
2291 mi_free(tcp->tcp_rthdr);
2292 tcp->tcp_rthdr = NULL;
2293 tcp->tcp_rthdrlen = 0;
2294 }
2295 ASSERT(tcp->tcp_rthdrlen == 0);
2296
2297 /* Reset fusion-related fields */
2298 tcp->tcp_fused = B_FALSE;
2299 tcp->tcp_unfusable = B_FALSE;
2300 tcp->tcp_fused_sigurg = B_FALSE;
2301 tcp->tcp_loopback_peer = NULL;
2302
2303 tcp->tcp_lso = B_FALSE;
2304
2305 tcp->tcp_in_ack_unsent = 0;
2306 tcp->tcp_cork = B_FALSE;
2307 tcp->tcp_tconnind_started = B_FALSE;
2308
2309 PRESERVE(tcp->tcp_squeue_bytes);
2310
2311 tcp->tcp_closemp_used = B_FALSE;
2312
2313 PRESERVE(tcp->tcp_rsrv_mp);
2314 PRESERVE(tcp->tcp_rsrv_mp_lock);
2315
2316 #ifdef DEBUG
2317 DONTCARE(tcp->tcmp_stk[0]);
2318 #endif
2319
2320 PRESERVE(tcp->tcp_connid);
2321
2322 ASSERT(tcp->tcp_listen_cnt == NULL);
2323 ASSERT(tcp->tcp_reass_tid == 0);
2324
2325 #undef DONTCARE
2326 #undef PRESERVE
2327 }
2328
2329 /*
2330 * Initialize the various fields in tcp_t. If parent (the listener) is non
2331 * NULL, certain values will be inheritted from it.
2332 */
2333 void
tcp_init_values(tcp_t * tcp,tcp_t * parent)2334 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2335 {
2336 tcp_stack_t *tcps = tcp->tcp_tcps;
2337 conn_t *connp = tcp->tcp_connp;
2338 clock_t rto;
2339
2340 ASSERT((connp->conn_family == AF_INET &&
2341 connp->conn_ipversion == IPV4_VERSION) ||
2342 (connp->conn_family == AF_INET6 &&
2343 (connp->conn_ipversion == IPV4_VERSION ||
2344 connp->conn_ipversion == IPV6_VERSION)));
2345
2346 if (parent == NULL) {
2347 tcp->tcp_naglim = tcps->tcps_naglim_def;
2348
2349 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2350 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2351 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2352
2353 tcp->tcp_first_ctimer_threshold =
2354 tcps->tcps_ip_notify_cinterval;
2355 tcp->tcp_second_ctimer_threshold =
2356 tcps->tcps_ip_abort_cinterval;
2357 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2358 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2359
2360 tcp->tcp_fin_wait_2_flush_interval =
2361 tcps->tcps_fin_wait_2_flush_interval;
2362
2363 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2364 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2365 tcp->tcp_ka_cnt = 0;
2366 tcp->tcp_ka_rinterval = 0;
2367
2368 /*
2369 * Default value of tcp_init_cwnd is 0, so no need to set here
2370 * if parent is NULL. But we need to inherit it from parent.
2371 */
2372 } else {
2373 /* Inherit various TCP parameters from the parent. */
2374 tcp->tcp_naglim = parent->tcp_naglim;
2375
2376 tcp->tcp_rto_initial = parent->tcp_rto_initial;
2377 tcp->tcp_rto_min = parent->tcp_rto_min;
2378 tcp->tcp_rto_max = parent->tcp_rto_max;
2379
2380 tcp->tcp_first_ctimer_threshold =
2381 parent->tcp_first_ctimer_threshold;
2382 tcp->tcp_second_ctimer_threshold =
2383 parent->tcp_second_ctimer_threshold;
2384 tcp->tcp_first_timer_threshold =
2385 parent->tcp_first_timer_threshold;
2386 tcp->tcp_second_timer_threshold =
2387 parent->tcp_second_timer_threshold;
2388
2389 tcp->tcp_fin_wait_2_flush_interval =
2390 parent->tcp_fin_wait_2_flush_interval;
2391
2392 tcp->tcp_ka_interval = parent->tcp_ka_interval;
2393 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2394 tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2395 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2396
2397 tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2398 }
2399
2400 /*
2401 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2402 * will be close to tcp_rexmit_interval_initial. By doing this, we
2403 * allow the algorithm to adjust slowly to large fluctuations of RTT
2404 * during first few transmissions of a connection as seen in slow
2405 * links.
2406 */
2407 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2408 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2409 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2410 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2411 tcps->tcps_conn_grace_period;
2412 TCP_SET_RTO(tcp, rto);
2413
2414 tcp->tcp_timer_backoff = 0;
2415 tcp->tcp_ms_we_have_waited = 0;
2416 tcp->tcp_last_recv_time = ddi_get_lbolt();
2417 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2418 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2419
2420 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2421
2422 /* NOTE: ISS is now set in tcp_set_destination(). */
2423
2424 /* Reset fusion-related fields */
2425 tcp->tcp_fused = B_FALSE;
2426 tcp->tcp_unfusable = B_FALSE;
2427 tcp->tcp_fused_sigurg = B_FALSE;
2428 tcp->tcp_loopback_peer = NULL;
2429
2430 /* We rebuild the header template on the next connect/conn_request */
2431
2432 connp->conn_mlp_type = mlptSingle;
2433
2434 /*
2435 * Init the window scale to the max so tcp_rwnd_set() won't pare
2436 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2437 */
2438 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2439 tcp->tcp_rwnd = connp->conn_rcvbuf;
2440
2441 tcp->tcp_cork = B_FALSE;
2442 /*
2443 * Init the tcp_debug option if it wasn't already set. This value
2444 * determines whether TCP
2445 * calls strlog() to print out debug messages. Doing this
2446 * initialization here means that this value is not inherited thru
2447 * tcp_reinit().
2448 */
2449 if (!connp->conn_debug)
2450 connp->conn_debug = tcps->tcps_dbg;
2451 }
2452
2453 /*
2454 * Update the TCP connection according to change of PMTU.
2455 *
2456 * Path MTU might have changed by either increase or decrease, so need to
2457 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2458 * or negative MSS, since tcp_mss_set() will do it.
2459 */
2460 void
tcp_update_pmtu(tcp_t * tcp,boolean_t decrease_only)2461 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2462 {
2463 uint32_t pmtu;
2464 int32_t mss;
2465 conn_t *connp = tcp->tcp_connp;
2466 ip_xmit_attr_t *ixa = connp->conn_ixa;
2467 iaflags_t ixaflags;
2468
2469 if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2470 return;
2471
2472 if (tcp->tcp_state < TCPS_ESTABLISHED)
2473 return;
2474
2475 /*
2476 * Always call ip_get_pmtu() to make sure that IP has updated
2477 * ixa_flags properly.
2478 */
2479 pmtu = ip_get_pmtu(ixa);
2480 ixaflags = ixa->ixa_flags;
2481
2482 /*
2483 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2484 * IPsec overhead if applied. Make sure to use the most recent
2485 * IPsec information.
2486 */
2487 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2488
2489 /*
2490 * Nothing to change, so just return.
2491 */
2492 if (mss == tcp->tcp_mss)
2493 return;
2494
2495 /*
2496 * Currently, for ICMP errors, only PMTU decrease is handled.
2497 */
2498 if (mss > tcp->tcp_mss && decrease_only)
2499 return;
2500
2501 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2502
2503 /*
2504 * Update ixa_fragsize and ixa_pmtu.
2505 */
2506 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2507
2508 /*
2509 * Adjust MSS and all relevant variables.
2510 */
2511 tcp_mss_set(tcp, mss);
2512
2513 /*
2514 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2515 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2516 * has a (potentially different) min size we do the same. Make sure to
2517 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2518 * fragment the packet.
2519 *
2520 * LSO over IPv6 can not be fragmented. So need to disable LSO
2521 * when IPv6 fragmentation is needed.
2522 */
2523 if (mss < tcp->tcp_tcps->tcps_mss_min)
2524 ixaflags |= IXAF_PMTU_TOO_SMALL;
2525
2526 if (ixaflags & IXAF_PMTU_TOO_SMALL)
2527 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2528
2529 if ((connp->conn_ipversion == IPV4_VERSION) &&
2530 !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2531 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2532 }
2533 ixa->ixa_flags = ixaflags;
2534 }
2535
2536 int
tcp_maxpsz_set(tcp_t * tcp,boolean_t set_maxblk)2537 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2538 {
2539 conn_t *connp = tcp->tcp_connp;
2540 queue_t *q = connp->conn_rq;
2541 int32_t mss = tcp->tcp_mss;
2542 int maxpsz;
2543
2544 if (TCP_IS_DETACHED(tcp))
2545 return (mss);
2546 if (tcp->tcp_fused) {
2547 maxpsz = tcp_fuse_maxpsz(tcp);
2548 mss = INFPSZ;
2549 } else if (tcp->tcp_maxpsz_multiplier == 0) {
2550 /*
2551 * Set the sd_qn_maxpsz according to the socket send buffer
2552 * size, and sd_maxblk to INFPSZ (-1). This will essentially
2553 * instruct the stream head to copyin user data into contiguous
2554 * kernel-allocated buffers without breaking it up into smaller
2555 * chunks. We round up the buffer size to the nearest SMSS.
2556 */
2557 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2558 mss = INFPSZ;
2559 } else {
2560 /*
2561 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2562 * (and a multiple of the mss). This instructs the stream
2563 * head to break down larger than SMSS writes into SMSS-
2564 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2565 */
2566 maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2567 if (maxpsz > connp->conn_sndbuf / 2) {
2568 maxpsz = connp->conn_sndbuf / 2;
2569 /* Round up to nearest mss */
2570 maxpsz = MSS_ROUNDUP(maxpsz, mss);
2571 }
2572 }
2573
2574 (void) proto_set_maxpsz(q, connp, maxpsz);
2575 if (!(IPCL_IS_NONSTR(connp)))
2576 connp->conn_wq->q_maxpsz = maxpsz;
2577 if (set_maxblk)
2578 (void) proto_set_tx_maxblk(q, connp, mss);
2579 return (mss);
2580 }
2581
2582 /* For /dev/tcp aka AF_INET open */
2583 static int
tcp_openv4(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)2584 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2585 {
2586 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2587 }
2588
2589 /* For /dev/tcp6 aka AF_INET6 open */
2590 static int
tcp_openv6(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)2591 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2592 {
2593 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2594 }
2595
2596 conn_t *
tcp_create_common(cred_t * credp,boolean_t isv6,boolean_t issocket,int * errorp)2597 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2598 int *errorp)
2599 {
2600 tcp_t *tcp = NULL;
2601 conn_t *connp;
2602 zoneid_t zoneid;
2603 tcp_stack_t *tcps;
2604 squeue_t *sqp;
2605
2606 ASSERT(errorp != NULL);
2607 /*
2608 * Find the proper zoneid and netstack.
2609 */
2610 /*
2611 * Special case for install: miniroot needs to be able to
2612 * access files via NFS as though it were always in the
2613 * global zone.
2614 */
2615 if (credp == kcred && nfs_global_client_only != 0) {
2616 zoneid = GLOBAL_ZONEID;
2617 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2618 netstack_tcp;
2619 ASSERT(tcps != NULL);
2620 } else {
2621 netstack_t *ns;
2622 int err;
2623
2624 if ((err = secpolicy_basic_net_access(credp)) != 0) {
2625 *errorp = err;
2626 return (NULL);
2627 }
2628
2629 ns = netstack_find_by_cred(credp);
2630 ASSERT(ns != NULL);
2631 tcps = ns->netstack_tcp;
2632 ASSERT(tcps != NULL);
2633
2634 /*
2635 * For exclusive stacks we set the zoneid to zero
2636 * to make TCP operate as if in the global zone.
2637 */
2638 if (tcps->tcps_netstack->netstack_stackid !=
2639 GLOBAL_NETSTACKID)
2640 zoneid = GLOBAL_ZONEID;
2641 else
2642 zoneid = crgetzoneid(credp);
2643 }
2644
2645 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2646 connp = (conn_t *)tcp_get_conn(sqp, tcps);
2647 /*
2648 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2649 * so we drop it by one.
2650 */
2651 netstack_rele(tcps->tcps_netstack);
2652 if (connp == NULL) {
2653 *errorp = ENOSR;
2654 return (NULL);
2655 }
2656 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2657
2658 connp->conn_sqp = sqp;
2659 connp->conn_initial_sqp = connp->conn_sqp;
2660 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2661 tcp = connp->conn_tcp;
2662
2663 /*
2664 * Besides asking IP to set the checksum for us, have conn_ip_output
2665 * to do the following checks when necessary:
2666 *
2667 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2668 * IXAF_VERIFY_PMTU: verify PMTU changes
2669 * IXAF_VERIFY_LSO: verify LSO capability changes
2670 */
2671 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2672 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2673
2674 if (!tcps->tcps_dev_flow_ctl)
2675 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2676
2677 if (isv6) {
2678 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2679 connp->conn_ipversion = IPV6_VERSION;
2680 connp->conn_family = AF_INET6;
2681 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2682 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2683 } else {
2684 connp->conn_ipversion = IPV4_VERSION;
2685 connp->conn_family = AF_INET;
2686 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2687 connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2688 }
2689 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2690
2691 crhold(credp);
2692 connp->conn_cred = credp;
2693 connp->conn_cpid = curproc->p_pid;
2694 connp->conn_open_time = ddi_get_lbolt64();
2695
2696 /* Cache things in the ixa without any refhold */
2697 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2698 connp->conn_ixa->ixa_cred = credp;
2699 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2700
2701 connp->conn_zoneid = zoneid;
2702 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2703 connp->conn_ixa->ixa_zoneid = zoneid;
2704 connp->conn_mlp_type = mlptSingle;
2705 ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2706 ASSERT(tcp->tcp_tcps == tcps);
2707
2708 /*
2709 * If the caller has the process-wide flag set, then default to MAC
2710 * exempt mode. This allows read-down to unlabeled hosts.
2711 */
2712 if (getpflags(NET_MAC_AWARE, credp) != 0)
2713 connp->conn_mac_mode = CONN_MAC_AWARE;
2714
2715 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2716
2717 if (issocket) {
2718 tcp->tcp_issocket = 1;
2719 }
2720
2721 connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2722 connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2723 if (tcps->tcps_snd_lowat_fraction != 0) {
2724 connp->conn_sndlowat = connp->conn_sndbuf /
2725 tcps->tcps_snd_lowat_fraction;
2726 } else {
2727 connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2728 }
2729 connp->conn_so_type = SOCK_STREAM;
2730 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2731 tcps->tcps_wroff_xtra;
2732
2733 SOCK_CONNID_INIT(tcp->tcp_connid);
2734 /* DTrace ignores this - it isn't a tcp:::state-change */
2735 tcp->tcp_state = TCPS_IDLE;
2736 tcp_init_values(tcp, NULL);
2737 return (connp);
2738 }
2739
2740 static int
tcp_open(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp,boolean_t isv6)2741 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2742 boolean_t isv6)
2743 {
2744 tcp_t *tcp = NULL;
2745 conn_t *connp = NULL;
2746 int err;
2747 vmem_t *minor_arena = NULL;
2748 dev_t conn_dev;
2749 boolean_t issocket;
2750
2751 if (q->q_ptr != NULL)
2752 return (0);
2753
2754 if (sflag == MODOPEN)
2755 return (EINVAL);
2756
2757 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2758 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2759 minor_arena = ip_minor_arena_la;
2760 } else {
2761 /*
2762 * Either minor numbers in the large arena were exhausted
2763 * or a non socket application is doing the open.
2764 * Try to allocate from the small arena.
2765 */
2766 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2767 return (EBUSY);
2768 }
2769 minor_arena = ip_minor_arena_sa;
2770 }
2771
2772 ASSERT(minor_arena != NULL);
2773
2774 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2775
2776 if (flag & SO_FALLBACK) {
2777 /*
2778 * Non streams socket needs a stream to fallback to
2779 */
2780 RD(q)->q_ptr = (void *)conn_dev;
2781 WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2782 WR(q)->q_ptr = (void *)minor_arena;
2783 qprocson(q);
2784 return (0);
2785 } else if (flag & SO_ACCEPTOR) {
2786 q->q_qinfo = &tcp_acceptor_rinit;
2787 /*
2788 * the conn_dev and minor_arena will be subsequently used by
2789 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2790 * the minor device number for this connection from the q_ptr.
2791 */
2792 RD(q)->q_ptr = (void *)conn_dev;
2793 WR(q)->q_qinfo = &tcp_acceptor_winit;
2794 WR(q)->q_ptr = (void *)minor_arena;
2795 qprocson(q);
2796 return (0);
2797 }
2798
2799 issocket = flag & SO_SOCKSTR;
2800 connp = tcp_create_common(credp, isv6, issocket, &err);
2801
2802 if (connp == NULL) {
2803 inet_minor_free(minor_arena, conn_dev);
2804 q->q_ptr = WR(q)->q_ptr = NULL;
2805 return (err);
2806 }
2807
2808 connp->conn_rq = q;
2809 connp->conn_wq = WR(q);
2810 q->q_ptr = WR(q)->q_ptr = connp;
2811
2812 connp->conn_dev = conn_dev;
2813 connp->conn_minor_arena = minor_arena;
2814
2815 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2816 ASSERT(WR(q)->q_qinfo == &tcp_winit);
2817
2818 tcp = connp->conn_tcp;
2819
2820 if (issocket) {
2821 WR(q)->q_qinfo = &tcp_sock_winit;
2822 } else {
2823 #ifdef _ILP32
2824 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2825 #else
2826 tcp->tcp_acceptor_id = conn_dev;
2827 #endif /* _ILP32 */
2828 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2829 }
2830
2831 /*
2832 * Put the ref for TCP. Ref for IP was already put
2833 * by ipcl_conn_create. Also Make the conn_t globally
2834 * visible to walkers
2835 */
2836 mutex_enter(&connp->conn_lock);
2837 CONN_INC_REF_LOCKED(connp);
2838 ASSERT(connp->conn_ref == 2);
2839 connp->conn_state_flags &= ~CONN_INCIPIENT;
2840 mutex_exit(&connp->conn_lock);
2841
2842 qprocson(q);
2843 return (0);
2844 }
2845
2846 /*
2847 * Build/update the tcp header template (in conn_ht_iphc) based on
2848 * conn_xmit_ipp. The headers include ip6_t, any extension
2849 * headers, and the maximum size tcp header (to avoid reallocation
2850 * on the fly for additional tcp options).
2851 *
2852 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2853 * Returns failure if can't allocate memory.
2854 */
2855 int
tcp_build_hdrs(tcp_t * tcp)2856 tcp_build_hdrs(tcp_t *tcp)
2857 {
2858 tcp_stack_t *tcps = tcp->tcp_tcps;
2859 conn_t *connp = tcp->tcp_connp;
2860 char buf[TCP_MAX_HDR_LENGTH];
2861 uint_t buflen;
2862 uint_t ulplen = TCP_MIN_HEADER_LENGTH;
2863 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2864 tcpha_t *tcpha;
2865 uint32_t cksum;
2866 int error;
2867
2868 /*
2869 * We might be called after the connection is set up, and we might
2870 * have TS options already in the TCP header. Thus we save any
2871 * existing tcp header.
2872 */
2873 buflen = connp->conn_ht_ulp_len;
2874 if (buflen != 0) {
2875 bcopy(connp->conn_ht_ulp, buf, buflen);
2876 extralen -= buflen - ulplen;
2877 ulplen = buflen;
2878 }
2879
2880 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2881 mutex_enter(&connp->conn_lock);
2882 error = conn_build_hdr_template(connp, ulplen, extralen,
2883 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2884 mutex_exit(&connp->conn_lock);
2885 if (error != 0)
2886 return (error);
2887
2888 /*
2889 * Any routing header/option has been massaged. The checksum difference
2890 * is stored in conn_sum for later use.
2891 */
2892 tcpha = (tcpha_t *)connp->conn_ht_ulp;
2893 tcp->tcp_tcpha = tcpha;
2894
2895 /* restore any old tcp header */
2896 if (buflen != 0) {
2897 bcopy(buf, connp->conn_ht_ulp, buflen);
2898 } else {
2899 tcpha->tha_sum = 0;
2900 tcpha->tha_urp = 0;
2901 tcpha->tha_ack = 0;
2902 tcpha->tha_offset_and_reserved = (5 << 4);
2903 tcpha->tha_lport = connp->conn_lport;
2904 tcpha->tha_fport = connp->conn_fport;
2905 }
2906
2907 /*
2908 * IP wants our header length in the checksum field to
2909 * allow it to perform a single pseudo-header+checksum
2910 * calculation on behalf of TCP.
2911 * Include the adjustment for a source route once IP_OPTIONS is set.
2912 */
2913 cksum = sizeof (tcpha_t) + connp->conn_sum;
2914 cksum = (cksum >> 16) + (cksum & 0xFFFF);
2915 ASSERT(cksum < 0x10000);
2916 tcpha->tha_sum = htons(cksum);
2917
2918 if (connp->conn_ipversion == IPV4_VERSION)
2919 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2920 else
2921 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2922
2923 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2924 connp->conn_wroff) {
2925 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2926 tcps->tcps_wroff_xtra;
2927 (void) proto_set_tx_wroff(connp->conn_rq, connp,
2928 connp->conn_wroff);
2929 }
2930 return (0);
2931 }
2932
2933 /*
2934 * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2935 * We do not allow the receive window to shrink. After setting rwnd,
2936 * set the flow control hiwat of the stream.
2937 *
2938 * This function is called in 2 cases:
2939 *
2940 * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2941 * connection (passive open) and in tcp_input_data() for active connect.
2942 * This is called after tcp_mss_set() when the desired MSS value is known.
2943 * This makes sure that our window size is a mutiple of the other side's
2944 * MSS.
2945 * 2) Handling SO_RCVBUF option.
2946 *
2947 * It is ASSUMED that the requested size is a multiple of the current MSS.
2948 *
2949 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2950 * user requests so.
2951 */
2952 int
tcp_rwnd_set(tcp_t * tcp,uint32_t rwnd)2953 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2954 {
2955 uint32_t mss = tcp->tcp_mss;
2956 uint32_t old_max_rwnd;
2957 uint32_t max_transmittable_rwnd;
2958 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
2959 tcp_stack_t *tcps = tcp->tcp_tcps;
2960 conn_t *connp = tcp->tcp_connp;
2961
2962 /*
2963 * Insist on a receive window that is at least
2964 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2965 * funny TCP interactions of Nagle algorithm, SWS avoidance
2966 * and delayed acknowledgement.
2967 */
2968 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2969
2970 if (tcp->tcp_fused) {
2971 size_t sth_hiwat;
2972 tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2973
2974 ASSERT(peer_tcp != NULL);
2975 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2976 if (!tcp_detached) {
2977 (void) proto_set_rx_hiwat(connp->conn_rq, connp,
2978 sth_hiwat);
2979 tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2980 }
2981
2982 /* Caller could have changed tcp_rwnd; update tha_win */
2983 if (tcp->tcp_tcpha != NULL) {
2984 tcp->tcp_tcpha->tha_win =
2985 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2986 }
2987 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2988 tcp->tcp_cwnd_max = rwnd;
2989
2990 /*
2991 * In the fusion case, the maxpsz stream head value of
2992 * our peer is set according to its send buffer size
2993 * and our receive buffer size; since the latter may
2994 * have changed we need to update the peer's maxpsz.
2995 */
2996 (void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2997 return (sth_hiwat);
2998 }
2999
3000 if (tcp_detached)
3001 old_max_rwnd = tcp->tcp_rwnd;
3002 else
3003 old_max_rwnd = connp->conn_rcvbuf;
3004
3005
3006 /*
3007 * If window size info has already been exchanged, TCP should not
3008 * shrink the window. Shrinking window is doable if done carefully.
3009 * We may add that support later. But so far there is not a real
3010 * need to do that.
3011 */
3012 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3013 /* MSS may have changed, do a round up again. */
3014 rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3015 }
3016
3017 /*
3018 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3019 * can be applied even before the window scale option is decided.
3020 */
3021 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3022 if (rwnd > max_transmittable_rwnd) {
3023 rwnd = max_transmittable_rwnd -
3024 (max_transmittable_rwnd % mss);
3025 if (rwnd < mss)
3026 rwnd = max_transmittable_rwnd;
3027 /*
3028 * If we're over the limit we may have to back down tcp_rwnd.
3029 * The increment below won't work for us. So we set all three
3030 * here and the increment below will have no effect.
3031 */
3032 tcp->tcp_rwnd = old_max_rwnd = rwnd;
3033 }
3034 if (tcp->tcp_localnet) {
3035 tcp->tcp_rack_abs_max =
3036 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3037 } else {
3038 /*
3039 * For a remote host on a different subnet (through a router),
3040 * we ack every other packet to be conforming to RFC1122.
3041 * tcp_deferred_acks_max is default to 2.
3042 */
3043 tcp->tcp_rack_abs_max =
3044 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3045 }
3046 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3047 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3048 else
3049 tcp->tcp_rack_cur_max = 0;
3050 /*
3051 * Increment the current rwnd by the amount the maximum grew (we
3052 * can not overwrite it since we might be in the middle of a
3053 * connection.)
3054 */
3055 tcp->tcp_rwnd += rwnd - old_max_rwnd;
3056 connp->conn_rcvbuf = rwnd;
3057
3058 /* Are we already connected? */
3059 if (tcp->tcp_tcpha != NULL) {
3060 tcp->tcp_tcpha->tha_win =
3061 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3062 }
3063
3064 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3065 tcp->tcp_cwnd_max = rwnd;
3066
3067 if (tcp_detached)
3068 return (rwnd);
3069
3070 tcp_set_recv_threshold(tcp, rwnd >> 3);
3071
3072 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3073 return (rwnd);
3074 }
3075
3076 int
tcp_do_unbind(conn_t * connp)3077 tcp_do_unbind(conn_t *connp)
3078 {
3079 tcp_t *tcp = connp->conn_tcp;
3080 int32_t oldstate;
3081
3082 switch (tcp->tcp_state) {
3083 case TCPS_BOUND:
3084 case TCPS_LISTEN:
3085 break;
3086 default:
3087 return (-TOUTSTATE);
3088 }
3089
3090 /*
3091 * Need to clean up all the eagers since after the unbind, segments
3092 * will no longer be delivered to this listener stream.
3093 */
3094 mutex_enter(&tcp->tcp_eager_lock);
3095 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3096 tcp_eager_cleanup(tcp, 0);
3097 }
3098 mutex_exit(&tcp->tcp_eager_lock);
3099
3100 /* Clean up the listener connection counter if necessary. */
3101 if (tcp->tcp_listen_cnt != NULL)
3102 TCP_DECR_LISTEN_CNT(tcp);
3103 connp->conn_laddr_v6 = ipv6_all_zeros;
3104 connp->conn_saddr_v6 = ipv6_all_zeros;
3105 tcp_bind_hash_remove(tcp);
3106 oldstate = tcp->tcp_state;
3107 tcp->tcp_state = TCPS_IDLE;
3108 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3109 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3110 int32_t, oldstate);
3111
3112 ip_unbind(connp);
3113 bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3114
3115 return (0);
3116 }
3117
3118 /*
3119 * Collect protocol properties to send to the upper handle.
3120 */
3121 void
tcp_get_proto_props(tcp_t * tcp,struct sock_proto_props * sopp)3122 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3123 {
3124 conn_t *connp = tcp->tcp_connp;
3125
3126 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3127 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3128
3129 sopp->sopp_rxhiwat = tcp->tcp_fused ?
3130 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3131 connp->conn_rcvbuf;
3132 /*
3133 * Determine what write offset value to use depending on SACK and
3134 * whether the endpoint is fused or not.
3135 */
3136 if (tcp->tcp_fused) {
3137 ASSERT(tcp->tcp_loopback);
3138 ASSERT(tcp->tcp_loopback_peer != NULL);
3139 /*
3140 * For fused tcp loopback, set the stream head's write
3141 * offset value to zero since we won't be needing any room
3142 * for TCP/IP headers. This would also improve performance
3143 * since it would reduce the amount of work done by kmem.
3144 * Non-fused tcp loopback case is handled separately below.
3145 */
3146 sopp->sopp_wroff = 0;
3147 /*
3148 * Update the peer's transmit parameters according to
3149 * our recently calculated high water mark value.
3150 */
3151 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3152 } else if (tcp->tcp_snd_sack_ok) {
3153 sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3154 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3155 } else {
3156 sopp->sopp_wroff = connp->conn_ht_iphc_len +
3157 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3158 }
3159
3160 if (tcp->tcp_loopback) {
3161 sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3162 sopp->sopp_loopback = B_TRUE;
3163 }
3164 }
3165
3166 /*
3167 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3168 */
3169 boolean_t
tcp_zcopy_check(tcp_t * tcp)3170 tcp_zcopy_check(tcp_t *tcp)
3171 {
3172 conn_t *connp = tcp->tcp_connp;
3173 ip_xmit_attr_t *ixa = connp->conn_ixa;
3174 boolean_t zc_enabled = B_FALSE;
3175 tcp_stack_t *tcps = tcp->tcp_tcps;
3176
3177 if (do_tcpzcopy == 2)
3178 zc_enabled = B_TRUE;
3179 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3180 zc_enabled = B_TRUE;
3181
3182 tcp->tcp_snd_zcopy_on = zc_enabled;
3183 if (!TCP_IS_DETACHED(tcp)) {
3184 if (zc_enabled) {
3185 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3186 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3187 ZCVMSAFE);
3188 TCP_STAT(tcps, tcp_zcopy_on);
3189 } else {
3190 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3191 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3192 ZCVMUNSAFE);
3193 TCP_STAT(tcps, tcp_zcopy_off);
3194 }
3195 }
3196 return (zc_enabled);
3197 }
3198
3199 /*
3200 * Backoff from a zero-copy message by copying data to a new allocated
3201 * message and freeing the original desballoca'ed segmapped message.
3202 *
3203 * This function is called by following two callers:
3204 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3205 * the origial desballoca'ed message and notify sockfs. This is in re-
3206 * transmit state.
3207 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3208 * to be copied to new message.
3209 */
3210 mblk_t *
tcp_zcopy_backoff(tcp_t * tcp,mblk_t * bp,boolean_t fix_xmitlist)3211 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3212 {
3213 mblk_t *nbp;
3214 mblk_t *head = NULL;
3215 mblk_t *tail = NULL;
3216 tcp_stack_t *tcps = tcp->tcp_tcps;
3217
3218 ASSERT(bp != NULL);
3219 while (bp != NULL) {
3220 if (IS_VMLOANED_MBLK(bp)) {
3221 TCP_STAT(tcps, tcp_zcopy_backoff);
3222 if ((nbp = copyb(bp)) == NULL) {
3223 tcp->tcp_xmit_zc_clean = B_FALSE;
3224 if (tail != NULL)
3225 tail->b_cont = bp;
3226 return ((head == NULL) ? bp : head);
3227 }
3228
3229 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3230 if (fix_xmitlist)
3231 tcp_zcopy_notify(tcp);
3232 else
3233 nbp->b_datap->db_struioflag |=
3234 STRUIO_ZCNOTIFY;
3235 }
3236 nbp->b_cont = bp->b_cont;
3237
3238 /*
3239 * Copy saved information and adjust tcp_xmit_tail
3240 * if needed.
3241 */
3242 if (fix_xmitlist) {
3243 nbp->b_prev = bp->b_prev;
3244 nbp->b_next = bp->b_next;
3245
3246 if (tcp->tcp_xmit_tail == bp)
3247 tcp->tcp_xmit_tail = nbp;
3248 }
3249
3250 /* Free the original message. */
3251 bp->b_prev = NULL;
3252 bp->b_next = NULL;
3253 freeb(bp);
3254
3255 bp = nbp;
3256 }
3257
3258 if (head == NULL) {
3259 head = bp;
3260 }
3261 if (tail == NULL) {
3262 tail = bp;
3263 } else {
3264 tail->b_cont = bp;
3265 tail = bp;
3266 }
3267
3268 /* Move forward. */
3269 bp = bp->b_cont;
3270 }
3271
3272 if (fix_xmitlist) {
3273 tcp->tcp_xmit_last = tail;
3274 tcp->tcp_xmit_zc_clean = B_TRUE;
3275 }
3276
3277 return (head);
3278 }
3279
3280 void
tcp_zcopy_notify(tcp_t * tcp)3281 tcp_zcopy_notify(tcp_t *tcp)
3282 {
3283 struct stdata *stp;
3284 conn_t *connp;
3285
3286 if (tcp->tcp_detached)
3287 return;
3288 connp = tcp->tcp_connp;
3289 if (IPCL_IS_NONSTR(connp)) {
3290 (*connp->conn_upcalls->su_zcopy_notify)
3291 (connp->conn_upper_handle);
3292 return;
3293 }
3294 stp = STREAM(connp->conn_rq);
3295 mutex_enter(&stp->sd_lock);
3296 stp->sd_flag |= STZCNOTIFY;
3297 cv_broadcast(&stp->sd_zcopy_wait);
3298 mutex_exit(&stp->sd_lock);
3299 }
3300
3301 /*
3302 * Update the TCP connection according to change of LSO capability.
3303 */
3304 static void
tcp_update_lso(tcp_t * tcp,ip_xmit_attr_t * ixa)3305 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3306 {
3307 /*
3308 * We check against IPv4 header length to preserve the old behavior
3309 * of only enabling LSO when there are no IP options.
3310 * But this restriction might not be necessary at all. Before removing
3311 * it, need to verify how LSO is handled for source routing case, with
3312 * which IP does software checksum.
3313 *
3314 * For IPv6, whenever any extension header is needed, LSO is supressed.
3315 */
3316 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3317 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3318 return;
3319
3320 /*
3321 * Either the LSO capability newly became usable, or it has changed.
3322 */
3323 if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3324 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab;
3325
3326 ASSERT(lsoc->ill_lso_max > 0);
3327 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3328
3329 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3330 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3331
3332 /*
3333 * If LSO to be enabled, notify the STREAM header with larger
3334 * data block.
3335 */
3336 if (!tcp->tcp_lso)
3337 tcp->tcp_maxpsz_multiplier = 0;
3338
3339 tcp->tcp_lso = B_TRUE;
3340 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3341 } else { /* LSO capability is not usable any more. */
3342 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3343 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3344
3345 /*
3346 * If LSO to be disabled, notify the STREAM header with smaller
3347 * data block. And need to restore fragsize to PMTU.
3348 */
3349 if (tcp->tcp_lso) {
3350 tcp->tcp_maxpsz_multiplier =
3351 tcp->tcp_tcps->tcps_maxpsz_multiplier;
3352 ixa->ixa_fragsize = ixa->ixa_pmtu;
3353 tcp->tcp_lso = B_FALSE;
3354 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3355 }
3356 }
3357
3358 (void) tcp_maxpsz_set(tcp, B_TRUE);
3359 }
3360
3361 /*
3362 * Update the TCP connection according to change of ZEROCOPY capability.
3363 */
3364 static void
tcp_update_zcopy(tcp_t * tcp)3365 tcp_update_zcopy(tcp_t *tcp)
3366 {
3367 conn_t *connp = tcp->tcp_connp;
3368 tcp_stack_t *tcps = tcp->tcp_tcps;
3369
3370 if (tcp->tcp_snd_zcopy_on) {
3371 tcp->tcp_snd_zcopy_on = B_FALSE;
3372 if (!TCP_IS_DETACHED(tcp)) {
3373 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3374 ZCVMUNSAFE);
3375 TCP_STAT(tcps, tcp_zcopy_off);
3376 }
3377 } else {
3378 tcp->tcp_snd_zcopy_on = B_TRUE;
3379 if (!TCP_IS_DETACHED(tcp)) {
3380 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3381 ZCVMSAFE);
3382 TCP_STAT(tcps, tcp_zcopy_on);
3383 }
3384 }
3385 }
3386
3387 /*
3388 * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3389 * so it's safe to update the TCP connection.
3390 */
3391 /* ARGSUSED1 */
3392 static void
tcp_notify(void * arg,ip_xmit_attr_t * ixa,ixa_notify_type_t ntype,ixa_notify_arg_t narg)3393 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3394 ixa_notify_arg_t narg)
3395 {
3396 tcp_t *tcp = (tcp_t *)arg;
3397 conn_t *connp = tcp->tcp_connp;
3398
3399 switch (ntype) {
3400 case IXAN_LSO:
3401 tcp_update_lso(tcp, connp->conn_ixa);
3402 break;
3403 case IXAN_PMTU:
3404 tcp_update_pmtu(tcp, B_FALSE);
3405 break;
3406 case IXAN_ZCOPY:
3407 tcp_update_zcopy(tcp);
3408 break;
3409 default:
3410 break;
3411 }
3412 }
3413
3414 /*
3415 * The TCP write service routine should never be called...
3416 */
3417 /* ARGSUSED */
3418 static void
tcp_wsrv(queue_t * q)3419 tcp_wsrv(queue_t *q)
3420 {
3421 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;
3422
3423 TCP_STAT(tcps, tcp_wsrv_called);
3424 }
3425
3426 /*
3427 * Hash list lookup routine for tcp_t structures.
3428 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3429 */
3430 tcp_t *
tcp_acceptor_hash_lookup(t_uscalar_t id,tcp_stack_t * tcps)3431 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3432 {
3433 tf_t *tf;
3434 tcp_t *tcp;
3435
3436 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3437 mutex_enter(&tf->tf_lock);
3438 for (tcp = tf->tf_tcp; tcp != NULL;
3439 tcp = tcp->tcp_acceptor_hash) {
3440 if (tcp->tcp_acceptor_id == id) {
3441 CONN_INC_REF(tcp->tcp_connp);
3442 mutex_exit(&tf->tf_lock);
3443 return (tcp);
3444 }
3445 }
3446 mutex_exit(&tf->tf_lock);
3447 return (NULL);
3448 }
3449
3450 /*
3451 * Hash list insertion routine for tcp_t structures.
3452 */
3453 void
tcp_acceptor_hash_insert(t_uscalar_t id,tcp_t * tcp)3454 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3455 {
3456 tf_t *tf;
3457 tcp_t **tcpp;
3458 tcp_t *tcpnext;
3459 tcp_stack_t *tcps = tcp->tcp_tcps;
3460
3461 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3462
3463 if (tcp->tcp_ptpahn != NULL)
3464 tcp_acceptor_hash_remove(tcp);
3465 tcpp = &tf->tf_tcp;
3466 mutex_enter(&tf->tf_lock);
3467 tcpnext = tcpp[0];
3468 if (tcpnext)
3469 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3470 tcp->tcp_acceptor_hash = tcpnext;
3471 tcp->tcp_ptpahn = tcpp;
3472 tcpp[0] = tcp;
3473 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */
3474 mutex_exit(&tf->tf_lock);
3475 }
3476
3477 /*
3478 * Hash list removal routine for tcp_t structures.
3479 */
3480 void
tcp_acceptor_hash_remove(tcp_t * tcp)3481 tcp_acceptor_hash_remove(tcp_t *tcp)
3482 {
3483 tcp_t *tcpnext;
3484 kmutex_t *lockp;
3485
3486 /*
3487 * Extract the lock pointer in case there are concurrent
3488 * hash_remove's for this instance.
3489 */
3490 lockp = tcp->tcp_acceptor_lockp;
3491
3492 if (tcp->tcp_ptpahn == NULL)
3493 return;
3494
3495 ASSERT(lockp != NULL);
3496 mutex_enter(lockp);
3497 if (tcp->tcp_ptpahn) {
3498 tcpnext = tcp->tcp_acceptor_hash;
3499 if (tcpnext) {
3500 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3501 tcp->tcp_acceptor_hash = NULL;
3502 }
3503 *tcp->tcp_ptpahn = tcpnext;
3504 tcp->tcp_ptpahn = NULL;
3505 }
3506 mutex_exit(lockp);
3507 tcp->tcp_acceptor_lockp = NULL;
3508 }
3509
3510 /*
3511 * Type three generator adapted from the random() function in 4.4 BSD:
3512 */
3513
3514 /*
3515 * Copyright (c) 1983, 1993
3516 * The Regents of the University of California. All rights reserved.
3517 *
3518 * Redistribution and use in source and binary forms, with or without
3519 * modification, are permitted provided that the following conditions
3520 * are met:
3521 * 1. Redistributions of source code must retain the above copyright
3522 * notice, this list of conditions and the following disclaimer.
3523 * 2. Redistributions in binary form must reproduce the above copyright
3524 * notice, this list of conditions and the following disclaimer in the
3525 * documentation and/or other materials provided with the distribution.
3526 * 3. All advertising materials mentioning features or use of this software
3527 * must display the following acknowledgement:
3528 * This product includes software developed by the University of
3529 * California, Berkeley and its contributors.
3530 * 4. Neither the name of the University nor the names of its contributors
3531 * may be used to endorse or promote products derived from this software
3532 * without specific prior written permission.
3533 *
3534 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3535 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3536 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3537 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3538 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3539 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3540 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3541 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3542 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3543 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3544 * SUCH DAMAGE.
3545 */
3546
3547 /* Type 3 -- x**31 + x**3 + 1 */
3548 #define DEG_3 31
3549 #define SEP_3 3
3550
3551
3552 /* Protected by tcp_random_lock */
3553 static int tcp_randtbl[DEG_3 + 1];
3554
3555 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3556 static int *tcp_random_rptr = &tcp_randtbl[1];
3557
3558 static int *tcp_random_state = &tcp_randtbl[1];
3559 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3560
3561 kmutex_t tcp_random_lock;
3562
3563 void
tcp_random_init(void)3564 tcp_random_init(void)
3565 {
3566 int i;
3567 hrtime_t hrt;
3568 time_t wallclock;
3569 uint64_t result;
3570
3571 /*
3572 * Use high-res timer and current time for seed. Gethrtime() returns
3573 * a longlong, which may contain resolution down to nanoseconds.
3574 * The current time will either be a 32-bit or a 64-bit quantity.
3575 * XOR the two together in a 64-bit result variable.
3576 * Convert the result to a 32-bit value by multiplying the high-order
3577 * 32-bits by the low-order 32-bits.
3578 */
3579
3580 hrt = gethrtime();
3581 (void) drv_getparm(TIME, &wallclock);
3582 result = (uint64_t)wallclock ^ (uint64_t)hrt;
3583 mutex_enter(&tcp_random_lock);
3584 tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3585 (result & 0xffffffff);
3586
3587 for (i = 1; i < DEG_3; i++)
3588 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3589 + 12345;
3590 tcp_random_fptr = &tcp_random_state[SEP_3];
3591 tcp_random_rptr = &tcp_random_state[0];
3592 mutex_exit(&tcp_random_lock);
3593 for (i = 0; i < 10 * DEG_3; i++)
3594 (void) tcp_random();
3595 }
3596
3597 /*
3598 * tcp_random: Return a random number in the range [1 - (128K + 1)].
3599 * This range is selected to be approximately centered on TCP_ISS / 2,
3600 * and easy to compute. We get this value by generating a 32-bit random
3601 * number, selecting out the high-order 17 bits, and then adding one so
3602 * that we never return zero.
3603 */
3604 int
tcp_random(void)3605 tcp_random(void)
3606 {
3607 int i;
3608
3609 mutex_enter(&tcp_random_lock);
3610 *tcp_random_fptr += *tcp_random_rptr;
3611
3612 /*
3613 * The high-order bits are more random than the low-order bits,
3614 * so we select out the high-order 17 bits and add one so that
3615 * we never return zero.
3616 */
3617 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3618 if (++tcp_random_fptr >= tcp_random_end_ptr) {
3619 tcp_random_fptr = tcp_random_state;
3620 ++tcp_random_rptr;
3621 } else if (++tcp_random_rptr >= tcp_random_end_ptr)
3622 tcp_random_rptr = tcp_random_state;
3623
3624 mutex_exit(&tcp_random_lock);
3625 return (i);
3626 }
3627
3628 /*
3629 * Split this function out so that if the secret changes, I'm okay.
3630 *
3631 * Initialize the tcp_iss_cookie and tcp_iss_key.
3632 */
3633
3634 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */
3635
3636 void
tcp_iss_key_init(uint8_t * phrase,int len,tcp_stack_t * tcps)3637 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3638 {
3639 struct {
3640 int32_t current_time;
3641 uint32_t randnum;
3642 uint16_t pad;
3643 uint8_t ether[6];
3644 uint8_t passwd[PASSWD_SIZE];
3645 } tcp_iss_cookie;
3646 time_t t;
3647
3648 /*
3649 * Start with the current absolute time.
3650 */
3651 (void) drv_getparm(TIME, &t);
3652 tcp_iss_cookie.current_time = t;
3653
3654 /*
3655 * XXX - Need a more random number per RFC 1750, not this crap.
3656 * OTOH, if what follows is pretty random, then I'm in better shape.
3657 */
3658 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3659 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */
3660
3661 /*
3662 * The cpu_type_info is pretty non-random. Ugggh. It does serve
3663 * as a good template.
3664 */
3665 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3666 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3667
3668 /*
3669 * The pass-phrase. Normally this is supplied by user-called NDD.
3670 */
3671 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3672
3673 /*
3674 * See 4010593 if this section becomes a problem again,
3675 * but the local ethernet address is useful here.
3676 */
3677 (void) localetheraddr(NULL,
3678 (struct ether_addr *)&tcp_iss_cookie.ether);
3679
3680 /*
3681 * Hash 'em all together. The MD5Final is called per-connection.
3682 */
3683 mutex_enter(&tcps->tcps_iss_key_lock);
3684 MD5Init(&tcps->tcps_iss_key);
3685 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3686 sizeof (tcp_iss_cookie));
3687 mutex_exit(&tcps->tcps_iss_key_lock);
3688 }
3689
3690 /*
3691 * Called by IP when IP is loaded into the kernel
3692 */
3693 void
tcp_ddi_g_init(void)3694 tcp_ddi_g_init(void)
3695 {
3696 tcp_timercache = kmem_cache_create("tcp_timercache",
3697 sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3698 NULL, NULL, NULL, NULL, NULL, 0);
3699
3700 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3701 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3702
3703 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3704
3705 /* Initialize the random number generator */
3706 tcp_random_init();
3707
3708 /* A single callback independently of how many netstacks we have */
3709 ip_squeue_init(tcp_squeue_add);
3710
3711 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3712
3713 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3714
3715 /*
3716 * We want to be informed each time a stack is created or
3717 * destroyed in the kernel, so we can maintain the
3718 * set of tcp_stack_t's.
3719 */
3720 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3721 }
3722
3723
3724 #define INET_NAME "ip"
3725
3726 /*
3727 * Initialize the TCP stack instance.
3728 */
3729 static void *
tcp_stack_init(netstackid_t stackid,netstack_t * ns)3730 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3731 {
3732 tcp_stack_t *tcps;
3733 int i;
3734 int error = 0;
3735 major_t major;
3736 size_t arrsz;
3737
3738 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3739 tcps->tcps_netstack = ns;
3740
3741 /* Initialize locks */
3742 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3743 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3744
3745 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3746 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3747 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3748 tcps->tcps_min_anonpriv_port = 512;
3749
3750 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3751 TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3752 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3753 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3754
3755 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3756 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3757 MUTEX_DEFAULT, NULL);
3758 }
3759
3760 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3761 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3762 MUTEX_DEFAULT, NULL);
3763 }
3764
3765 /* TCP's IPsec code calls the packet dropper. */
3766 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3767
3768 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3769 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3770 KM_SLEEP);
3771 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3772
3773 /*
3774 * Note: To really walk the device tree you need the devinfo
3775 * pointer to your device which is only available after probe/attach.
3776 * The following is safe only because it uses ddi_root_node()
3777 */
3778 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3779 tcp_opt_obj.odb_opt_arr_cnt);
3780
3781 /*
3782 * Initialize RFC 1948 secret values. This will probably be reset once
3783 * by the boot scripts.
3784 *
3785 * Use NULL name, as the name is caught by the new lockstats.
3786 *
3787 * Initialize with some random, non-guessable string, like the global
3788 * T_INFO_ACK.
3789 */
3790
3791 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3792 sizeof (tcp_g_t_info_ack), tcps);
3793
3794 tcps->tcps_kstat = tcp_kstat2_init(stackid);
3795 tcps->tcps_mibkp = tcp_kstat_init(stackid);
3796
3797 major = mod_name_to_major(INET_NAME);
3798 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3799 ASSERT(error == 0);
3800 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3801 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3802 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3803 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3804 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3805
3806 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3807 tcps->tcps_reclaim = B_FALSE;
3808 tcps->tcps_reclaim_tid = 0;
3809 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3810
3811 /*
3812 * ncpus is the current number of CPUs, which can be bigger than
3813 * boot_ncpus. But we don't want to use ncpus to allocate all the
3814 * tcp_stats_cpu_t at system boot up time since it will be 1. While
3815 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3816 * there are many CPUs as we will be adding them 1 by 1.
3817 *
3818 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3819 * are not freed until the stack is going away. So there is no need
3820 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3821 */
3822 mutex_enter(&cpu_lock);
3823 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3824 mutex_exit(&cpu_lock);
3825 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *),
3826 KM_SLEEP);
3827 for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3828 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3829 KM_SLEEP);
3830 }
3831
3832 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3833 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3834 offsetof(tcp_listener_t, tl_link));
3835
3836 return (tcps);
3837 }
3838
3839 /*
3840 * Called when the IP module is about to be unloaded.
3841 */
3842 void
tcp_ddi_g_destroy(void)3843 tcp_ddi_g_destroy(void)
3844 {
3845 tcp_g_kstat_fini(tcp_g_kstat);
3846 tcp_g_kstat = NULL;
3847 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3848
3849 mutex_destroy(&tcp_random_lock);
3850
3851 kmem_cache_destroy(tcp_timercache);
3852 kmem_cache_destroy(tcp_notsack_blk_cache);
3853
3854 netstack_unregister(NS_TCP);
3855 }
3856
3857 /*
3858 * Free the TCP stack instance.
3859 */
3860 static void
tcp_stack_fini(netstackid_t stackid,void * arg)3861 tcp_stack_fini(netstackid_t stackid, void *arg)
3862 {
3863 tcp_stack_t *tcps = (tcp_stack_t *)arg;
3864 int i;
3865
3866 freeb(tcps->tcps_ixa_cleanup_mp);
3867 tcps->tcps_ixa_cleanup_mp = NULL;
3868 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3869 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3870 mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3871
3872 /*
3873 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3874 * the timer.
3875 */
3876 mutex_enter(&tcps->tcps_reclaim_lock);
3877 tcps->tcps_reclaim = B_FALSE;
3878 mutex_exit(&tcps->tcps_reclaim_lock);
3879 if (tcps->tcps_reclaim_tid != 0)
3880 (void) untimeout(tcps->tcps_reclaim_tid);
3881 mutex_destroy(&tcps->tcps_reclaim_lock);
3882
3883 tcp_listener_conf_cleanup(tcps);
3884
3885 for (i = 0; i < tcps->tcps_sc_cnt; i++)
3886 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3887 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3888
3889 kmem_free(tcps->tcps_propinfo_tbl,
3890 tcp_propinfo_count * sizeof (mod_prop_info_t));
3891 tcps->tcps_propinfo_tbl = NULL;
3892
3893 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3894 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3895 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3896 }
3897
3898 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3899 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3900 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3901 }
3902
3903 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3904 tcps->tcps_bind_fanout = NULL;
3905
3906 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3907 TCP_ACCEPTOR_FANOUT_SIZE);
3908 tcps->tcps_acceptor_fanout = NULL;
3909
3910 mutex_destroy(&tcps->tcps_iss_key_lock);
3911 mutex_destroy(&tcps->tcps_epriv_port_lock);
3912
3913 ip_drop_unregister(&tcps->tcps_dropper);
3914
3915 tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3916 tcps->tcps_kstat = NULL;
3917
3918 tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3919 tcps->tcps_mibkp = NULL;
3920
3921 ldi_ident_release(tcps->tcps_ldi_ident);
3922 kmem_free(tcps, sizeof (*tcps));
3923 }
3924
3925 /*
3926 * Generate ISS, taking into account NDD changes may happen halfway through.
3927 * (If the iss is not zero, set it.)
3928 */
3929
3930 static void
tcp_iss_init(tcp_t * tcp)3931 tcp_iss_init(tcp_t *tcp)
3932 {
3933 MD5_CTX context;
3934 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3935 uint32_t answer[4];
3936 tcp_stack_t *tcps = tcp->tcp_tcps;
3937 conn_t *connp = tcp->tcp_connp;
3938
3939 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3940 tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3941 switch (tcps->tcps_strong_iss) {
3942 case 2:
3943 mutex_enter(&tcps->tcps_iss_key_lock);
3944 context = tcps->tcps_iss_key;
3945 mutex_exit(&tcps->tcps_iss_key_lock);
3946 arg.ports = connp->conn_ports;
3947 arg.src = connp->conn_laddr_v6;
3948 arg.dst = connp->conn_faddr_v6;
3949 MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3950 MD5Final((uchar_t *)answer, &context);
3951 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3952 /*
3953 * Now that we've hashed into a unique per-connection sequence
3954 * space, add a random increment per strong_iss == 1. So I
3955 * guess we'll have to...
3956 */
3957 /* FALLTHRU */
3958 case 1:
3959 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3960 break;
3961 default:
3962 tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3963 tcps->tcps_iss_incr;
3964 break;
3965 }
3966 tcp->tcp_valid_bits = TCP_ISS_VALID;
3967 tcp->tcp_fss = tcp->tcp_iss - 1;
3968 tcp->tcp_suna = tcp->tcp_iss;
3969 tcp->tcp_snxt = tcp->tcp_iss + 1;
3970 tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3971 tcp->tcp_csuna = tcp->tcp_snxt;
3972 }
3973
3974 /*
3975 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3976 * on the specified backing STREAMS q. Note, the caller may make the
3977 * decision to call based on the tcp_t.tcp_flow_stopped value which
3978 * when check outside the q's lock is only an advisory check ...
3979 */
3980 void
tcp_setqfull(tcp_t * tcp)3981 tcp_setqfull(tcp_t *tcp)
3982 {
3983 tcp_stack_t *tcps = tcp->tcp_tcps;
3984 conn_t *connp = tcp->tcp_connp;
3985
3986 if (tcp->tcp_closed)
3987 return;
3988
3989 conn_setqfull(connp, &tcp->tcp_flow_stopped);
3990 if (tcp->tcp_flow_stopped)
3991 TCP_STAT(tcps, tcp_flwctl_on);
3992 }
3993
3994 void
tcp_clrqfull(tcp_t * tcp)3995 tcp_clrqfull(tcp_t *tcp)
3996 {
3997 conn_t *connp = tcp->tcp_connp;
3998
3999 if (tcp->tcp_closed)
4000 return;
4001 conn_clrqfull(connp, &tcp->tcp_flow_stopped);
4002 }
4003
4004 static int
tcp_squeue_switch(int val)4005 tcp_squeue_switch(int val)
4006 {
4007 int rval = SQ_FILL;
4008
4009 switch (val) {
4010 case 1:
4011 rval = SQ_NODRAIN;
4012 break;
4013 case 2:
4014 rval = SQ_PROCESS;
4015 break;
4016 default:
4017 break;
4018 }
4019 return (rval);
4020 }
4021
4022 /*
4023 * This is called once for each squeue - globally for all stack
4024 * instances.
4025 */
4026 static void
tcp_squeue_add(squeue_t * sqp)4027 tcp_squeue_add(squeue_t *sqp)
4028 {
4029 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4030 sizeof (tcp_squeue_priv_t), KM_SLEEP);
4031
4032 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4033 if (tcp_free_list_max_cnt == 0) {
4034 int tcp_ncpus = ((boot_max_ncpus == -1) ?
4035 max_ncpus : boot_max_ncpus);
4036
4037 /*
4038 * Limit number of entries to 1% of availble memory / tcp_ncpus
4039 */
4040 tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4041 (tcp_ncpus * sizeof (tcp_t) * 100);
4042 }
4043 tcp_time_wait->tcp_free_list_cnt = 0;
4044 }
4045 /*
4046 * Return unix error is tli error is TSYSERR, otherwise return a negative
4047 * tli error.
4048 */
4049 int
tcp_do_bind(conn_t * connp,struct sockaddr * sa,socklen_t len,cred_t * cr,boolean_t bind_to_req_port_only)4050 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4051 boolean_t bind_to_req_port_only)
4052 {
4053 int error;
4054 tcp_t *tcp = connp->conn_tcp;
4055
4056 if (tcp->tcp_state >= TCPS_BOUND) {
4057 if (connp->conn_debug) {
4058 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4059 "tcp_bind: bad state, %d", tcp->tcp_state);
4060 }
4061 return (-TOUTSTATE);
4062 }
4063
4064 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4065 if (error != 0)
4066 return (error);
4067
4068 ASSERT(tcp->tcp_state == TCPS_BOUND);
4069 tcp->tcp_conn_req_max = 0;
4070 return (0);
4071 }
4072
4073 /*
4074 * If the return value from this function is positive, it's a UNIX error.
4075 * Otherwise, if it's negative, then the absolute value is a TLI error.
4076 * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4077 */
4078 int
tcp_do_connect(conn_t * connp,const struct sockaddr * sa,socklen_t len,cred_t * cr,pid_t pid)4079 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4080 cred_t *cr, pid_t pid)
4081 {
4082 tcp_t *tcp = connp->conn_tcp;
4083 sin_t *sin = (sin_t *)sa;
4084 sin6_t *sin6 = (sin6_t *)sa;
4085 ipaddr_t *dstaddrp;
4086 in_port_t dstport;
4087 uint_t srcid;
4088 int error;
4089 uint32_t mss;
4090 mblk_t *syn_mp;
4091 tcp_stack_t *tcps = tcp->tcp_tcps;
4092 int32_t oldstate;
4093 ip_xmit_attr_t *ixa = connp->conn_ixa;
4094
4095 oldstate = tcp->tcp_state;
4096
4097 switch (len) {
4098 default:
4099 /*
4100 * Should never happen
4101 */
4102 return (EINVAL);
4103
4104 case sizeof (sin_t):
4105 sin = (sin_t *)sa;
4106 if (sin->sin_port == 0) {
4107 return (-TBADADDR);
4108 }
4109 if (connp->conn_ipv6_v6only) {
4110 return (EAFNOSUPPORT);
4111 }
4112 break;
4113
4114 case sizeof (sin6_t):
4115 sin6 = (sin6_t *)sa;
4116 if (sin6->sin6_port == 0) {
4117 return (-TBADADDR);
4118 }
4119 break;
4120 }
4121 /*
4122 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4123 * make sure that the conn_ipversion is IPV4_VERSION. We
4124 * need to this before we call tcp_bindi() so that the port lookup
4125 * code will look for ports in the correct port space (IPv4 and
4126 * IPv6 have separate port spaces).
4127 */
4128 if (connp->conn_family == AF_INET6 &&
4129 connp->conn_ipversion == IPV6_VERSION &&
4130 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4131 if (connp->conn_ipv6_v6only)
4132 return (EADDRNOTAVAIL);
4133
4134 connp->conn_ipversion = IPV4_VERSION;
4135 }
4136
4137 switch (tcp->tcp_state) {
4138 case TCPS_LISTEN:
4139 /*
4140 * Listening sockets are not allowed to issue connect().
4141 */
4142 if (IPCL_IS_NONSTR(connp))
4143 return (EOPNOTSUPP);
4144 /* FALLTHRU */
4145 case TCPS_IDLE:
4146 /*
4147 * We support quick connect, refer to comments in
4148 * tcp_connect_*()
4149 */
4150 /* FALLTHRU */
4151 case TCPS_BOUND:
4152 break;
4153 default:
4154 return (-TOUTSTATE);
4155 }
4156
4157 /*
4158 * We update our cred/cpid based on the caller of connect
4159 */
4160 if (connp->conn_cred != cr) {
4161 crhold(cr);
4162 crfree(connp->conn_cred);
4163 connp->conn_cred = cr;
4164 }
4165 connp->conn_cpid = pid;
4166
4167 /* Cache things in the ixa without any refhold */
4168 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4169 ixa->ixa_cred = cr;
4170 ixa->ixa_cpid = pid;
4171 if (is_system_labeled()) {
4172 /* We need to restart with a label based on the cred */
4173 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4174 }
4175
4176 if (connp->conn_family == AF_INET6) {
4177 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4178 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4179 sin6->sin6_port, sin6->sin6_flowinfo,
4180 sin6->__sin6_src_id, sin6->sin6_scope_id);
4181 } else {
4182 /*
4183 * Destination adress is mapped IPv6 address.
4184 * Source bound address should be unspecified or
4185 * IPv6 mapped address as well.
4186 */
4187 if (!IN6_IS_ADDR_UNSPECIFIED(
4188 &connp->conn_bound_addr_v6) &&
4189 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4190 return (EADDRNOTAVAIL);
4191 }
4192 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4193 dstport = sin6->sin6_port;
4194 srcid = sin6->__sin6_src_id;
4195 error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4196 srcid);
4197 }
4198 } else {
4199 dstaddrp = &sin->sin_addr.s_addr;
4200 dstport = sin->sin_port;
4201 srcid = 0;
4202 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4203 }
4204
4205 if (error != 0)
4206 goto connect_failed;
4207
4208 CL_INET_CONNECT(connp, B_TRUE, error);
4209 if (error != 0)
4210 goto connect_failed;
4211
4212 /* connect succeeded */
4213 TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4214 tcp->tcp_active_open = 1;
4215
4216 /*
4217 * tcp_set_destination() does not adjust for TCP/IP header length.
4218 */
4219 mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4220
4221 /*
4222 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4223 * to the nearest MSS.
4224 *
4225 * We do the round up here because we need to get the interface MTU
4226 * first before we can do the round up.
4227 */
4228 tcp->tcp_rwnd = connp->conn_rcvbuf;
4229 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4230 tcps->tcps_recv_hiwat_minmss * mss);
4231 connp->conn_rcvbuf = tcp->tcp_rwnd;
4232 tcp_set_ws_value(tcp);
4233 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4234 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4235 tcp->tcp_snd_ws_ok = B_TRUE;
4236
4237 /*
4238 * Set tcp_snd_ts_ok to true
4239 * so that tcp_xmit_mp will
4240 * include the timestamp
4241 * option in the SYN segment.
4242 */
4243 if (tcps->tcps_tstamp_always ||
4244 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4245 tcp->tcp_snd_ts_ok = B_TRUE;
4246 }
4247
4248 /*
4249 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4250 * the SACK metric is set. So here we just check the per stack SACK
4251 * permitted param.
4252 */
4253 if (tcps->tcps_sack_permitted == 2) {
4254 ASSERT(tcp->tcp_num_sack_blk == 0);
4255 ASSERT(tcp->tcp_notsack_list == NULL);
4256 tcp->tcp_snd_sack_ok = B_TRUE;
4257 }
4258
4259 /*
4260 * Should we use ECN? Note that the current
4261 * default value (SunOS 5.9) of tcp_ecn_permitted
4262 * is 1. The reason for doing this is that there
4263 * are equipments out there that will drop ECN
4264 * enabled IP packets. Setting it to 1 avoids
4265 * compatibility problems.
4266 */
4267 if (tcps->tcps_ecn_permitted == 2)
4268 tcp->tcp_ecn_ok = B_TRUE;
4269
4270 /* Trace change from BOUND -> SYN_SENT here */
4271 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4272 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4273 int32_t, TCPS_BOUND);
4274
4275 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4276 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4277 tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4278 if (syn_mp != NULL) {
4279 /*
4280 * We must bump the generation before sending the syn
4281 * to ensure that we use the right generation in case
4282 * this thread issues a "connected" up call.
4283 */
4284 SOCK_CONNID_BUMP(tcp->tcp_connid);
4285 /*
4286 * DTrace sending the first SYN as a
4287 * tcp:::connect-request event.
4288 */
4289 DTRACE_TCP5(connect__request, mblk_t *, NULL,
4290 ip_xmit_attr_t *, connp->conn_ixa,
4291 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4292 tcph_t *,
4293 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4294 tcp_send_data(tcp, syn_mp);
4295 }
4296
4297 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4298 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4299 return (0);
4300
4301 connect_failed:
4302 connp->conn_faddr_v6 = ipv6_all_zeros;
4303 connp->conn_fport = 0;
4304 tcp->tcp_state = oldstate;
4305 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4306 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4307 return (error);
4308 }
4309
4310 int
tcp_do_listen(conn_t * connp,struct sockaddr * sa,socklen_t len,int backlog,cred_t * cr,boolean_t bind_to_req_port_only)4311 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4312 int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4313 {
4314 tcp_t *tcp = connp->conn_tcp;
4315 int error = 0;
4316 tcp_stack_t *tcps = tcp->tcp_tcps;
4317 int32_t oldstate;
4318
4319 /* All Solaris components should pass a cred for this operation. */
4320 ASSERT(cr != NULL);
4321
4322 if (tcp->tcp_state >= TCPS_BOUND) {
4323 if ((tcp->tcp_state == TCPS_BOUND ||
4324 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4325 /*
4326 * Handle listen() increasing backlog.
4327 * This is more "liberal" then what the TPI spec
4328 * requires but is needed to avoid a t_unbind
4329 * when handling listen() since the port number
4330 * might be "stolen" between the unbind and bind.
4331 */
4332 goto do_listen;
4333 }
4334 if (connp->conn_debug) {
4335 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4336 "tcp_listen: bad state, %d", tcp->tcp_state);
4337 }
4338 return (-TOUTSTATE);
4339 } else {
4340 sin6_t addr;
4341 sin_t *sin;
4342 sin6_t *sin6;
4343
4344 if (sa == NULL) {
4345 ASSERT(IPCL_IS_NONSTR(connp));
4346 /* Do an implicit bind: Request for a generic port. */
4347 if (connp->conn_family == AF_INET) {
4348 len = sizeof (sin_t);
4349 sin = (sin_t *)&addr;
4350 *sin = sin_null;
4351 sin->sin_family = AF_INET;
4352 } else {
4353 ASSERT(connp->conn_family == AF_INET6);
4354 len = sizeof (sin6_t);
4355 sin6 = (sin6_t *)&addr;
4356 *sin6 = sin6_null;
4357 sin6->sin6_family = AF_INET6;
4358 }
4359 sa = (struct sockaddr *)&addr;
4360 }
4361
4362 error = tcp_bind_check(connp, sa, len, cr,
4363 bind_to_req_port_only);
4364 if (error)
4365 return (error);
4366 /* Fall through and do the fanout insertion */
4367 }
4368
4369 do_listen:
4370 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4371 tcp->tcp_conn_req_max = backlog;
4372 if (tcp->tcp_conn_req_max) {
4373 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4374 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4375 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4376 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4377 /*
4378 * If this is a listener, do not reset the eager list
4379 * and other stuffs. Note that we don't check if the
4380 * existing eager list meets the new tcp_conn_req_max
4381 * requirement.
4382 */
4383 if (tcp->tcp_state != TCPS_LISTEN) {
4384 tcp->tcp_state = TCPS_LISTEN;
4385 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4386 connp->conn_ixa, void, NULL, tcp_t *, tcp,
4387 void, NULL, int32_t, TCPS_BOUND);
4388 /* Initialize the chain. Don't need the eager_lock */
4389 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4390 tcp->tcp_eager_next_drop_q0 = tcp;
4391 tcp->tcp_eager_prev_drop_q0 = tcp;
4392 tcp->tcp_second_ctimer_threshold =
4393 tcps->tcps_ip_abort_linterval;
4394 }
4395 }
4396
4397 /*
4398 * We need to make sure that the conn_recv is set to a non-null
4399 * value before we insert the conn into the classifier table.
4400 * This is to avoid a race with an incoming packet which does an
4401 * ipcl_classify().
4402 * We initially set it to tcp_input_listener_unbound to try to
4403 * pick a good squeue for the listener when the first SYN arrives.
4404 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4405 * first SYN.
4406 */
4407 connp->conn_recv = tcp_input_listener_unbound;
4408
4409 /* Insert the listener in the classifier table */
4410 error = ip_laddr_fanout_insert(connp);
4411 if (error != 0) {
4412 /* Undo the bind - release the port number */
4413 oldstate = tcp->tcp_state;
4414 tcp->tcp_state = TCPS_IDLE;
4415 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4416 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4417 int32_t, oldstate);
4418 connp->conn_bound_addr_v6 = ipv6_all_zeros;
4419
4420 connp->conn_laddr_v6 = ipv6_all_zeros;
4421 connp->conn_saddr_v6 = ipv6_all_zeros;
4422 connp->conn_ports = 0;
4423
4424 if (connp->conn_anon_port) {
4425 zone_t *zone;
4426
4427 zone = crgetzone(cr);
4428 connp->conn_anon_port = B_FALSE;
4429 (void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4430 connp->conn_proto, connp->conn_lport, B_FALSE);
4431 }
4432 connp->conn_mlp_type = mlptSingle;
4433
4434 tcp_bind_hash_remove(tcp);
4435 return (error);
4436 } else {
4437 /*
4438 * If there is a connection limit, allocate and initialize
4439 * the counter struct. Note that since listen can be called
4440 * multiple times, the struct may have been allready allocated.
4441 */
4442 if (!list_is_empty(&tcps->tcps_listener_conf) &&
4443 tcp->tcp_listen_cnt == NULL) {
4444 tcp_listen_cnt_t *tlc;
4445 uint32_t ratio;
4446
4447 ratio = tcp_find_listener_conf(tcps,
4448 ntohs(connp->conn_lport));
4449 if (ratio != 0) {
4450 uint32_t mem_ratio, tot_buf;
4451
4452 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4453 KM_SLEEP);
4454 /*
4455 * Calculate the connection limit based on
4456 * the configured ratio and maxusers. Maxusers
4457 * are calculated based on memory size,
4458 * ~ 1 user per MB. Note that the conn_rcvbuf
4459 * and conn_sndbuf may change after a
4460 * connection is accepted. So what we have
4461 * is only an approximation.
4462 */
4463 if ((tot_buf = connp->conn_rcvbuf +
4464 connp->conn_sndbuf) < MB) {
4465 mem_ratio = MB / tot_buf;
4466 tlc->tlc_max = maxusers / ratio *
4467 mem_ratio;
4468 } else {
4469 mem_ratio = tot_buf / MB;
4470 tlc->tlc_max = maxusers / ratio /
4471 mem_ratio;
4472 }
4473 /* At least we should allow two connections! */
4474 if (tlc->tlc_max <= tcp_min_conn_listener)
4475 tlc->tlc_max = tcp_min_conn_listener;
4476 tlc->tlc_cnt = 1;
4477 tlc->tlc_drop = 0;
4478 tcp->tcp_listen_cnt = tlc;
4479 }
4480 }
4481 }
4482 return (error);
4483 }
4484