1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2007-2008,2010
7 * Swinburne University of Technology, Melbourne, Australia.
8 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9 * Copyright (c) 2010 The FreeBSD Foundation
10 * Copyright (c) 2010-2011 Juniper Networks, Inc.
11 * All rights reserved.
12 *
13 * Portions of this software were developed at the Centre for Advanced Internet
14 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15 * James Healy and David Hayes, made possible in part by a grant from the Cisco
16 * University Research Program Fund at Community Foundation Silicon Valley.
17 *
18 * Portions of this software were developed at the Centre for Advanced
19 * Internet Architectures, Swinburne University of Technology, Melbourne,
20 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21 *
22 * Portions of this software were developed by Robert N. M. Watson under
23 * contract to Juniper Networks, Inc.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. Neither the name of the University nor the names of its contributors
34 * may be used to endorse or promote products derived from this software
35 * without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
48 */
49
50 #include <sys/cdefs.h>
51 #include "opt_inet.h"
52 #include "opt_inet6.h"
53 #include "opt_ipsec.h"
54 #include "opt_rss.h"
55
56 #include <sys/param.h>
57 #include <sys/arb.h>
58 #include <sys/kernel.h>
59 #ifdef TCP_HHOOK
60 #include <sys/hhook.h>
61 #endif
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h> /* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/qmath.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 #include <sys/stats.h>
75
76 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
77
78 #include <vm/uma.h>
79
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #define TCPSTATES /* for logging */
87
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_rss.h>
92 #include <netinet/in_systm.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
95 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
96 #include <netinet/ip_var.h>
97 #include <netinet/ip_options.h>
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_rss.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #include <netinet6/nd6.h>
105 #include <netinet/tcp.h>
106 #include <netinet/tcp_fsm.h>
107 #include <netinet/tcp_seq.h>
108 #include <netinet/tcp_timer.h>
109 #include <netinet/tcp_var.h>
110 #include <netinet/tcp_log_buf.h>
111 #include <netinet6/tcp6_var.h>
112 #include <netinet/tcpip.h>
113 #include <netinet/cc/cc.h>
114 #include <netinet/tcp_fastopen.h>
115 #ifdef TCPPCAP
116 #include <netinet/tcp_pcap.h>
117 #endif
118 #include <netinet/tcp_syncache.h>
119 #ifdef TCP_OFFLOAD
120 #include <netinet/tcp_offload.h>
121 #endif
122 #include <netinet/tcp_ecn.h>
123 #include <netinet/udp.h>
124
125 #include <netipsec/ipsec_support.h>
126
127 #include <machine/in_cksum.h>
128
129 #include <security/mac/mac_framework.h>
130
131 const int tcprexmtthresh = 3;
132
133 VNET_DEFINE(int, tcp_log_in_vain) = 0;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
135 &VNET_NAME(tcp_log_in_vain), 0,
136 "Log all incoming TCP segments to closed ports");
137
138 VNET_DEFINE(int, blackhole) = 0;
139 #define V_blackhole VNET(blackhole)
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
141 &VNET_NAME(blackhole), 0,
142 "Do not send RST on segments to closed ports");
143
144 VNET_DEFINE(bool, blackhole_local) = false;
145 #define V_blackhole_local VNET(blackhole_local)
146 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
147 CTLFLAG_RW, &VNET_NAME(blackhole_local), false,
148 "Enforce net.inet.tcp.blackhole for locally originated packets");
149
150 VNET_DEFINE(int, tcp_delack_enabled) = 1;
151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
152 &VNET_NAME(tcp_delack_enabled), 0,
153 "Delay ACK to try and piggyback it onto a data packet");
154
155 VNET_DEFINE(int, drop_synfin) = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
157 &VNET_NAME(drop_synfin), 0,
158 "Drop TCP packets with SYN+FIN set");
159
160 VNET_DEFINE(int, tcp_do_prr) = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW,
162 &VNET_NAME(tcp_do_prr), 1,
163 "Enable Proportional Rate Reduction per RFC 6937");
164
165 VNET_DEFINE(int, tcp_do_newcwv) = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
167 &VNET_NAME(tcp_do_newcwv), 0,
168 "Enable New Congestion Window Validation per RFC7661");
169
170 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
172 &VNET_NAME(tcp_do_rfc3042), 0,
173 "Enable RFC 3042 (Limited Transmit)");
174
175 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
177 &VNET_NAME(tcp_do_rfc3390), 0,
178 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
179
180 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
182 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
183 "Slow-start flight size (initial congestion window) in number of segments");
184
185 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
187 &VNET_NAME(tcp_do_rfc3465), 0,
188 "Enable RFC 3465 (Appropriate Byte Counting)");
189
190 VNET_DEFINE(int, tcp_abc_l_var) = 2;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
192 &VNET_NAME(tcp_abc_l_var), 2,
193 "Cap the max cwnd increment during slow-start to this number of segments");
194
195 VNET_DEFINE(int, tcp_insecure_syn) = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
197 &VNET_NAME(tcp_insecure_syn), 0,
198 "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
199
200 VNET_DEFINE(int, tcp_insecure_rst) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
202 &VNET_NAME(tcp_insecure_rst), 0,
203 "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
204
205 VNET_DEFINE(int, tcp_insecure_ack) = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_ack, CTLFLAG_VNET | CTLFLAG_RW,
207 &VNET_NAME(tcp_insecure_ack), 0,
208 "Follow RFC793 criteria for validating SEG.ACK");
209
210 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
211 #define V_tcp_recvspace VNET(tcp_recvspace)
212 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
213 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
214
215 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
217 &VNET_NAME(tcp_do_autorcvbuf), 0,
218 "Enable automatic receive buffer sizing");
219
220 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
222 &VNET_NAME(tcp_autorcvbuf_max), 0,
223 "Max size of automatic receive buffer");
224
225 VNET_DEFINE(struct inpcbinfo, tcbinfo);
226
227 /*
228 * TCP statistics are stored in an array of counter(9)s, which size matches
229 * size of struct tcpstat. TCP running connection count is a regular array.
230 */
231 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
232 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
233 tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
234 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
235 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
236 CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
237 "TCP connection counts by TCP state");
238
239 /*
240 * Kernel module interface for updating tcpstat. The first argument is an index
241 * into tcpstat treated as an array.
242 */
243 void
kmod_tcpstat_add(int statnum,int val)244 kmod_tcpstat_add(int statnum, int val)
245 {
246
247 counter_u64_add(VNET(tcpstat)[statnum], val);
248 }
249
250 /*
251 * Make sure that we only start a SACK loss recovery when
252 * receiving a duplicate ACK with a SACK block, and also
253 * complete SACK loss recovery in case the other end
254 * reneges.
255 */
256 static bool inline
tcp_is_sack_recovery(struct tcpcb * tp,struct tcpopt * to)257 tcp_is_sack_recovery(struct tcpcb *tp, struct tcpopt *to)
258 {
259 return ((tp->t_flags & TF_SACK_PERMIT) &&
260 ((to->to_flags & TOF_SACK) ||
261 (!TAILQ_EMPTY(&tp->snd_holes))));
262 }
263
264 #ifdef TCP_HHOOK
265 /*
266 * Wrapper for the TCP established input helper hook.
267 */
268 void
hhook_run_tcp_est_in(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to)269 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
270 {
271 struct tcp_hhook_data hhook_data;
272
273 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
274 hhook_data.tp = tp;
275 hhook_data.th = th;
276 hhook_data.to = to;
277
278 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
279 &tp->t_osd);
280 }
281 }
282 #endif
283
284 /*
285 * CC wrapper hook functions
286 */
287 void
cc_ack_received(struct tcpcb * tp,struct tcphdr * th,uint16_t nsegs,uint16_t type)288 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
289 uint16_t type)
290 {
291 #ifdef STATS
292 int32_t gput;
293 #endif
294
295 INP_WLOCK_ASSERT(tptoinpcb(tp));
296
297 tp->t_ccv.nsegs = nsegs;
298 tp->t_ccv.bytes_this_ack = BYTES_THIS_ACK(tp, th);
299 if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
300 (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
301 (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
302 tp->t_ccv.flags |= CCF_CWND_LIMITED;
303 else
304 tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
305
306 if (type == CC_ACK) {
307 #ifdef STATS
308 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
309 ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
310 if (!IN_RECOVERY(tp->t_flags))
311 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
312 tp->t_ccv.bytes_this_ack / (tcp_maxseg(tp) * nsegs));
313 if ((tp->t_flags & TF_GPUTINPROG) &&
314 SEQ_GEQ(th->th_ack, tp->gput_ack)) {
315 /*
316 * Compute goodput in bits per millisecond.
317 */
318 gput = (((int64_t)SEQ_SUB(th->th_ack, tp->gput_seq)) << 3) /
319 max(1, tcp_ts_getticks() - tp->gput_ts);
320 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
321 gput);
322 /*
323 * XXXLAS: This is a temporary hack, and should be
324 * chained off VOI_TCP_GPUT when stats(9) grows an API
325 * to deal with chained VOIs.
326 */
327 if (tp->t_stats_gput_prev > 0)
328 stats_voi_update_abs_s32(tp->t_stats,
329 VOI_TCP_GPUT_ND,
330 ((gput - tp->t_stats_gput_prev) * 100) /
331 tp->t_stats_gput_prev);
332 tp->t_flags &= ~TF_GPUTINPROG;
333 tp->t_stats_gput_prev = gput;
334 }
335 #endif /* STATS */
336 if (tp->snd_cwnd > tp->snd_ssthresh) {
337 tp->t_bytes_acked += tp->t_ccv.bytes_this_ack;
338 if (tp->t_bytes_acked >= tp->snd_cwnd) {
339 tp->t_bytes_acked -= tp->snd_cwnd;
340 tp->t_ccv.flags |= CCF_ABC_SENTAWND;
341 }
342 } else {
343 tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
344 tp->t_bytes_acked = 0;
345 }
346 }
347
348 if (CC_ALGO(tp)->ack_received != NULL) {
349 /* XXXLAS: Find a way to live without this */
350 tp->t_ccv.curack = th->th_ack;
351 CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
352 }
353 #ifdef STATS
354 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
355 #endif
356 }
357
358 void
cc_conn_init(struct tcpcb * tp)359 cc_conn_init(struct tcpcb *tp)
360 {
361 struct hc_metrics_lite metrics;
362 struct inpcb *inp = tptoinpcb(tp);
363 u_int maxseg;
364 int rtt;
365
366 INP_WLOCK_ASSERT(inp);
367
368 tcp_hc_get(&inp->inp_inc, &metrics);
369 maxseg = tcp_maxseg(tp);
370
371 if (tp->t_srtt == 0 && (rtt = metrics.hc_rtt)) {
372 tp->t_srtt = rtt;
373 TCPSTAT_INC(tcps_usedrtt);
374 if (metrics.hc_rttvar) {
375 tp->t_rttvar = metrics.hc_rttvar;
376 TCPSTAT_INC(tcps_usedrttvar);
377 } else {
378 /* default variation is +- 1 rtt */
379 tp->t_rttvar =
380 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
381 }
382 TCPT_RANGESET(tp->t_rxtcur,
383 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
384 tp->t_rttmin, TCPTV_REXMTMAX);
385 }
386 if (metrics.hc_ssthresh) {
387 /*
388 * There's some sort of gateway or interface
389 * buffer limit on the path. Use this to set
390 * the slow start threshold, but set the
391 * threshold to no less than 2*mss.
392 */
393 tp->snd_ssthresh = max(2 * maxseg, metrics.hc_ssthresh);
394 TCPSTAT_INC(tcps_usedssthresh);
395 }
396
397 /*
398 * Set the initial slow-start flight size.
399 *
400 * If a SYN or SYN/ACK was lost and retransmitted, we have to
401 * reduce the initial CWND to one segment as congestion is likely
402 * requiring us to be cautious.
403 */
404 if (tp->snd_cwnd == 1)
405 tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */
406 else
407 tp->snd_cwnd = tcp_compute_initwnd(maxseg);
408
409 if (CC_ALGO(tp)->conn_init != NULL)
410 CC_ALGO(tp)->conn_init(&tp->t_ccv);
411 }
412
413 void inline
cc_cong_signal(struct tcpcb * tp,struct tcphdr * th,uint32_t type)414 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
415 {
416 INP_WLOCK_ASSERT(tptoinpcb(tp));
417
418 #ifdef STATS
419 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
420 #endif
421
422 switch(type) {
423 case CC_NDUPACK:
424 if (!IN_FASTRECOVERY(tp->t_flags)) {
425 tp->snd_recover = tp->snd_max;
426 if (tp->t_flags2 & TF2_ECN_PERMIT)
427 tp->t_flags2 |= TF2_ECN_SND_CWR;
428 }
429 break;
430 case CC_ECN:
431 if (!IN_CONGRECOVERY(tp->t_flags) ||
432 /*
433 * Allow ECN reaction on ACK to CWR, if
434 * that data segment was also CE marked.
435 */
436 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
437 EXIT_CONGRECOVERY(tp->t_flags);
438 TCPSTAT_INC(tcps_ecn_rcwnd);
439 tp->snd_recover = tp->snd_max + 1;
440 if (tp->t_flags2 & TF2_ECN_PERMIT)
441 tp->t_flags2 |= TF2_ECN_SND_CWR;
442 }
443 break;
444 case CC_RTO:
445 tp->t_dupacks = 0;
446 tp->t_bytes_acked = 0;
447 EXIT_RECOVERY(tp->t_flags);
448 if (tp->t_flags2 & TF2_ECN_PERMIT)
449 tp->t_flags2 |= TF2_ECN_SND_CWR;
450 break;
451 case CC_RTO_ERR:
452 TCPSTAT_INC(tcps_sndrexmitbad);
453 /* RTO was unnecessary, so reset everything. */
454 tp->snd_cwnd = tp->snd_cwnd_prev;
455 tp->snd_ssthresh = tp->snd_ssthresh_prev;
456 tp->snd_recover = tp->snd_recover_prev;
457 if (tp->t_flags & TF_WASFRECOVERY)
458 ENTER_FASTRECOVERY(tp->t_flags);
459 if (tp->t_flags & TF_WASCRECOVERY)
460 ENTER_CONGRECOVERY(tp->t_flags);
461 tp->snd_nxt = tp->snd_max;
462 tp->t_flags &= ~TF_PREVVALID;
463 tp->t_badrxtwin = 0;
464 break;
465 }
466 if (SEQ_LT(tp->snd_fack, tp->snd_una) ||
467 SEQ_GT(tp->snd_fack, tp->snd_max)) {
468 tp->snd_fack = tp->snd_una;
469 }
470
471 if (CC_ALGO(tp)->cong_signal != NULL) {
472 if (th != NULL)
473 tp->t_ccv.curack = th->th_ack;
474 CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
475 }
476 }
477
478 void inline
cc_post_recovery(struct tcpcb * tp,struct tcphdr * th)479 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
480 {
481 INP_WLOCK_ASSERT(tptoinpcb(tp));
482
483 if (CC_ALGO(tp)->post_recovery != NULL) {
484 if (SEQ_LT(tp->snd_fack, th->th_ack) ||
485 SEQ_GT(tp->snd_fack, tp->snd_max)) {
486 tp->snd_fack = th->th_ack;
487 }
488 tp->t_ccv.curack = th->th_ack;
489 CC_ALGO(tp)->post_recovery(&tp->t_ccv);
490 }
491 EXIT_RECOVERY(tp->t_flags);
492
493 tp->t_bytes_acked = 0;
494 tp->sackhint.delivered_data = 0;
495 tp->sackhint.prr_delivered = 0;
496 tp->sackhint.prr_out = 0;
497 }
498
499 /*
500 * Indicate whether this ack should be delayed. We can delay the ack if
501 * following conditions are met:
502 * - There is no delayed ack timer in progress.
503 * - Our last ack wasn't a 0-sized window. We never want to delay
504 * the ack that opens up a 0-sized window.
505 * - LRO wasn't used for this segment. We make sure by checking that the
506 * segment size is not larger than the MSS.
507 */
508 #define DELAY_ACK(tp, tlen) \
509 ((!tcp_timer_active(tp, TT_DELACK) && \
510 (tp->t_flags & TF_RXWIN0SENT) == 0) && \
511 (tlen <= tp->t_maxseg) && \
512 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
513
514 void inline
cc_ecnpkt_handler_flags(struct tcpcb * tp,uint16_t flags,uint8_t iptos)515 cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos)
516 {
517 INP_WLOCK_ASSERT(tptoinpcb(tp));
518
519 if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
520 switch (iptos & IPTOS_ECN_MASK) {
521 case IPTOS_ECN_CE:
522 tp->t_ccv.flags |= CCF_IPHDR_CE;
523 break;
524 case IPTOS_ECN_ECT0:
525 /* FALLTHROUGH */
526 case IPTOS_ECN_ECT1:
527 /* FALLTHROUGH */
528 case IPTOS_ECN_NOTECT:
529 tp->t_ccv.flags &= ~CCF_IPHDR_CE;
530 break;
531 }
532
533 if (flags & TH_CWR)
534 tp->t_ccv.flags |= CCF_TCPHDR_CWR;
535 else
536 tp->t_ccv.flags &= ~CCF_TCPHDR_CWR;
537
538 CC_ALGO(tp)->ecnpkt_handler(&tp->t_ccv);
539
540 if (tp->t_ccv.flags & CCF_ACKNOW) {
541 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
542 tp->t_flags |= TF_ACKNOW;
543 }
544 }
545 }
546
547 void inline
cc_ecnpkt_handler(struct tcpcb * tp,struct tcphdr * th,uint8_t iptos)548 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
549 {
550 cc_ecnpkt_handler_flags(tp, tcp_get_flags(th), iptos);
551 }
552
553 /*
554 * TCP input handling is split into multiple parts:
555 * tcp6_input is a thin wrapper around tcp_input for the extended
556 * ip6_protox[] call format in ip6_input
557 * tcp_input handles primary segment validation, inpcb lookup and
558 * SYN processing on listen sockets
559 * tcp_do_segment processes the ACK and text of the segment for
560 * establishing, established and closing connections
561 */
562 #ifdef INET6
563 int
tcp6_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)564 tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
565 {
566 struct mbuf *m;
567 struct in6_ifaddr *ia6;
568 struct ip6_hdr *ip6;
569
570 m = *mp;
571 if (m->m_len < *offp + sizeof(struct tcphdr)) {
572 m = m_pullup(m, *offp + sizeof(struct tcphdr));
573 if (m == NULL) {
574 *mp = m;
575 TCPSTAT_INC(tcps_rcvshort);
576 return (IPPROTO_DONE);
577 }
578 }
579
580 /*
581 * draft-itojun-ipv6-tcp-to-anycast
582 * better place to put this in?
583 */
584 ip6 = mtod(m, struct ip6_hdr *);
585 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
586 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
587 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
588 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
589 *mp = NULL;
590 return (IPPROTO_DONE);
591 }
592
593 *mp = m;
594 return (tcp_input_with_port(mp, offp, proto, port));
595 }
596
597 int
tcp6_input(struct mbuf ** mp,int * offp,int proto)598 tcp6_input(struct mbuf **mp, int *offp, int proto)
599 {
600
601 return(tcp6_input_with_port(mp, offp, proto, 0));
602 }
603 #endif /* INET6 */
604
605 int
tcp_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)606 tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
607 {
608 struct mbuf *m = *mp;
609 struct tcphdr *th = NULL;
610 struct ip *ip = NULL;
611 struct inpcb *inp = NULL;
612 struct tcpcb *tp = NULL;
613 struct socket *so = NULL;
614 u_char *optp = NULL;
615 int off0;
616 int optlen = 0;
617 #ifdef INET
618 int len;
619 uint8_t ipttl;
620 #endif
621 int tlen = 0, off;
622 int drop_hdrlen;
623 int thflags;
624 int rstreason = 0; /* For badport_bandlim accounting purposes */
625 int lookupflag;
626 uint8_t iptos;
627 struct m_tag *fwd_tag = NULL;
628 #ifdef INET6
629 struct ip6_hdr *ip6 = NULL;
630 int isipv6;
631 #else
632 const void *ip6 = NULL;
633 #endif /* INET6 */
634 struct tcpopt to; /* options in this segment */
635 char *s = NULL; /* address and port logging */
636
637 NET_EPOCH_ASSERT();
638
639 #ifdef INET6
640 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
641 #endif
642
643 off0 = *offp;
644 m = *mp;
645 *mp = NULL;
646 to.to_flags = 0;
647 TCPSTAT_INC(tcps_rcvtotal);
648
649 m->m_pkthdr.tcp_tun_port = port;
650 #ifdef INET6
651 if (isipv6) {
652 ip6 = mtod(m, struct ip6_hdr *);
653 th = (struct tcphdr *)((caddr_t)ip6 + off0);
654 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
655 if (port)
656 goto skip6_csum;
657 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
658 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
659 th->th_sum = m->m_pkthdr.csum_data;
660 else
661 th->th_sum = in6_cksum_pseudo(ip6, tlen,
662 IPPROTO_TCP, m->m_pkthdr.csum_data);
663 th->th_sum ^= 0xffff;
664 } else
665 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
666 if (th->th_sum) {
667 TCPSTAT_INC(tcps_rcvbadsum);
668 goto drop;
669 }
670 skip6_csum:
671 /*
672 * Be proactive about unspecified IPv6 address in source.
673 * As we use all-zero to indicate unbounded/unconnected pcb,
674 * unspecified IPv6 address can be used to confuse us.
675 *
676 * Note that packets with unspecified IPv6 destination is
677 * already dropped in ip6_input.
678 */
679 KASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst),
680 ("%s: unspecified destination v6 address", __func__));
681 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
682 IP6STAT_INC(ip6s_badscope); /* XXX */
683 goto drop;
684 }
685 iptos = IPV6_TRAFFIC_CLASS(ip6);
686 }
687 #endif
688 #if defined(INET) && defined(INET6)
689 else
690 #endif
691 #ifdef INET
692 {
693 /*
694 * Get IP and TCP header together in first mbuf.
695 * Note: IP leaves IP header in first mbuf.
696 */
697 if (off0 > sizeof (struct ip)) {
698 ip_stripoptions(m);
699 off0 = sizeof(struct ip);
700 }
701 if (m->m_len < sizeof (struct tcpiphdr)) {
702 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
703 == NULL) {
704 TCPSTAT_INC(tcps_rcvshort);
705 return (IPPROTO_DONE);
706 }
707 }
708 ip = mtod(m, struct ip *);
709 th = (struct tcphdr *)((caddr_t)ip + off0);
710 tlen = ntohs(ip->ip_len) - off0;
711
712 iptos = ip->ip_tos;
713 if (port)
714 goto skip_csum;
715 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
716 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
717 th->th_sum = m->m_pkthdr.csum_data;
718 else
719 th->th_sum = in_pseudo(ip->ip_src.s_addr,
720 ip->ip_dst.s_addr,
721 htonl(m->m_pkthdr.csum_data + tlen +
722 IPPROTO_TCP));
723 th->th_sum ^= 0xffff;
724 } else {
725 struct ipovly *ipov = (struct ipovly *)ip;
726
727 /*
728 * Checksum extended TCP header and data.
729 */
730 len = off0 + tlen;
731 ipttl = ip->ip_ttl;
732 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
733 ipov->ih_len = htons(tlen);
734 th->th_sum = in_cksum(m, len);
735 /* Reset length for SDT probes. */
736 ip->ip_len = htons(len);
737 /* Reset TOS bits */
738 ip->ip_tos = iptos;
739 /* Re-initialization for later version check */
740 ip->ip_ttl = ipttl;
741 ip->ip_v = IPVERSION;
742 ip->ip_hl = off0 >> 2;
743 }
744 skip_csum:
745 if (th->th_sum && (port == 0)) {
746 TCPSTAT_INC(tcps_rcvbadsum);
747 goto drop;
748 }
749 KASSERT(ip->ip_dst.s_addr != INADDR_ANY,
750 ("%s: unspecified destination v4 address", __func__));
751 if (__predict_false(ip->ip_src.s_addr == INADDR_ANY)) {
752 IPSTAT_INC(ips_badaddr);
753 goto drop;
754 }
755 }
756 #endif /* INET */
757
758 /*
759 * Check that TCP offset makes sense,
760 * pull out TCP options and adjust length. XXX
761 */
762 off = th->th_off << 2;
763 if (off < sizeof (struct tcphdr) || off > tlen) {
764 TCPSTAT_INC(tcps_rcvbadoff);
765 goto drop;
766 }
767 tlen -= off; /* tlen is used instead of ti->ti_len */
768 if (off > sizeof (struct tcphdr)) {
769 #ifdef INET6
770 if (isipv6) {
771 if (m->m_len < off0 + off) {
772 m = m_pullup(m, off0 + off);
773 if (m == NULL) {
774 TCPSTAT_INC(tcps_rcvshort);
775 return (IPPROTO_DONE);
776 }
777 }
778 ip6 = mtod(m, struct ip6_hdr *);
779 th = (struct tcphdr *)((caddr_t)ip6 + off0);
780 }
781 #endif
782 #if defined(INET) && defined(INET6)
783 else
784 #endif
785 #ifdef INET
786 {
787 if (m->m_len < sizeof(struct ip) + off) {
788 if ((m = m_pullup(m, sizeof (struct ip) + off))
789 == NULL) {
790 TCPSTAT_INC(tcps_rcvshort);
791 return (IPPROTO_DONE);
792 }
793 ip = mtod(m, struct ip *);
794 th = (struct tcphdr *)((caddr_t)ip + off0);
795 }
796 }
797 #endif
798 optlen = off - sizeof (struct tcphdr);
799 optp = (u_char *)(th + 1);
800 }
801 thflags = tcp_get_flags(th);
802
803 /*
804 * Convert TCP protocol specific fields to host format.
805 */
806 tcp_fields_to_host(th);
807
808 /*
809 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
810 */
811 drop_hdrlen = off0 + off;
812
813 /*
814 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
815 */
816 if (
817 #ifdef INET6
818 (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
819 #ifdef INET
820 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
821 #endif
822 #endif
823 #if defined(INET) && !defined(INET6)
824 (m->m_flags & M_IP_NEXTHOP)
825 #endif
826 )
827 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
828
829 /*
830 * For initial SYN packets we don't need write lock on matching
831 * PCB, be it a listening one or a synchronized one. The packet
832 * shall not modify its state.
833 */
834 lookupflag = INPLOOKUP_WILDCARD |
835 ((thflags & (TH_ACK|TH_SYN)) == TH_SYN ?
836 INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB);
837 findpcb:
838 tp = NULL;
839 #ifdef INET6
840 if (isipv6 && fwd_tag != NULL) {
841 struct sockaddr_in6 *next_hop6;
842
843 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
844 /*
845 * Transparently forwarded. Pretend to be the destination.
846 * Already got one like this?
847 */
848 inp = in6_pcblookup_mbuf(&V_tcbinfo,
849 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
850 lookupflag & ~INPLOOKUP_WILDCARD, m->m_pkthdr.rcvif, m);
851 if (!inp) {
852 /*
853 * It's new. Try to find the ambushing socket.
854 * Because we've rewritten the destination address,
855 * any hardware-generated hash is ignored.
856 */
857 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
858 th->th_sport, &next_hop6->sin6_addr,
859 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
860 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
861 }
862 } else if (isipv6) {
863 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
864 th->th_sport, &ip6->ip6_dst, th->th_dport, lookupflag,
865 m->m_pkthdr.rcvif, m);
866 }
867 #endif /* INET6 */
868 #if defined(INET6) && defined(INET)
869 else
870 #endif
871 #ifdef INET
872 if (fwd_tag != NULL) {
873 struct sockaddr_in *next_hop;
874
875 next_hop = (struct sockaddr_in *)(fwd_tag+1);
876 /*
877 * Transparently forwarded. Pretend to be the destination.
878 * already got one like this?
879 */
880 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
881 ip->ip_dst, th->th_dport, lookupflag & ~INPLOOKUP_WILDCARD,
882 m->m_pkthdr.rcvif, m);
883 if (!inp) {
884 /*
885 * It's new. Try to find the ambushing socket.
886 * Because we've rewritten the destination address,
887 * any hardware-generated hash is ignored.
888 */
889 inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
890 th->th_sport, next_hop->sin_addr,
891 next_hop->sin_port ? ntohs(next_hop->sin_port) :
892 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
893 }
894 } else
895 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
896 th->th_sport, ip->ip_dst, th->th_dport, lookupflag,
897 m->m_pkthdr.rcvif, m);
898 #endif /* INET */
899
900 /*
901 * If the INPCB does not exist then all data in the incoming
902 * segment is discarded and an appropriate RST is sent back.
903 * XXX MRT Send RST using which routing table?
904 */
905 if (inp == NULL) {
906 if (rstreason != 0) {
907 /* We came here after second (safety) lookup. */
908 MPASS((lookupflag & INPLOOKUP_WILDCARD) == 0);
909 goto dropwithreset;
910 }
911 /*
912 * Log communication attempts to ports that are not
913 * in use.
914 */
915 if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
916 V_tcp_log_in_vain == 2) {
917 if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
918 log(LOG_INFO, "%s; %s: Connection attempt "
919 "to closed port\n", s, __func__);
920 }
921 rstreason = BANDLIM_RST_CLOSEDPORT;
922 goto dropwithreset;
923 }
924 INP_LOCK_ASSERT(inp);
925
926 if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
927 !SOLISTENING(inp->inp_socket)) {
928 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
929 inp->inp_flowid = m->m_pkthdr.flowid;
930 inp->inp_flowtype = M_HASHTYPE_GET(m);
931 #ifdef RSS
932 } else {
933 /* assign flowid by software RSS hash */
934 #ifdef INET6
935 if (isipv6) {
936 rss_proto_software_hash_v6(&inp->in6p_faddr,
937 &inp->in6p_laddr,
938 inp->inp_fport,
939 inp->inp_lport,
940 IPPROTO_TCP,
941 &inp->inp_flowid,
942 &inp->inp_flowtype);
943 } else
944 #endif /* INET6 */
945 {
946 rss_proto_software_hash_v4(inp->inp_faddr,
947 inp->inp_laddr,
948 inp->inp_fport,
949 inp->inp_lport,
950 IPPROTO_TCP,
951 &inp->inp_flowid,
952 &inp->inp_flowtype);
953 }
954 #endif /* RSS */
955 }
956 }
957 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
958 #ifdef INET6
959 if (isipv6 && IPSEC_ENABLED(ipv6) &&
960 IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
961 goto dropunlock;
962 }
963 #ifdef INET
964 else
965 #endif
966 #endif /* INET6 */
967 #ifdef INET
968 if (IPSEC_ENABLED(ipv4) &&
969 IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
970 goto dropunlock;
971 }
972 #endif /* INET */
973 #endif /* IPSEC */
974
975 /*
976 * Check the minimum TTL for socket.
977 */
978 if (inp->inp_ip_minttl != 0) {
979 #ifdef INET6
980 if (isipv6) {
981 if (inp->inp_ip_minttl > ip6->ip6_hlim)
982 goto dropunlock;
983 } else
984 #endif
985 if (inp->inp_ip_minttl > ip->ip_ttl)
986 goto dropunlock;
987 }
988
989 tp = intotcpcb(inp);
990 switch (tp->t_state) {
991 case TCPS_TIME_WAIT:
992 /*
993 * A previous connection in TIMEWAIT state is supposed to catch
994 * stray or duplicate segments arriving late. If this segment
995 * was a legitimate new connection attempt, the old INPCB gets
996 * removed and we can try again to find a listening socket.
997 */
998 tcp_dooptions(&to, optp, optlen,
999 (thflags & TH_SYN) ? TO_SYN : 0);
1000 /*
1001 * tcp_twcheck unlocks the inp always, and frees the m if fails.
1002 */
1003 if (tcp_twcheck(inp, &to, th, m, tlen))
1004 goto findpcb;
1005 return (IPPROTO_DONE);
1006 case TCPS_CLOSED:
1007 /*
1008 * The TCPCB may no longer exist if the connection is winding
1009 * down or it is in the CLOSED state. Either way we drop the
1010 * segment and send an appropriate response.
1011 */
1012 rstreason = BANDLIM_RST_CLOSEDPORT;
1013 goto dropwithreset;
1014 }
1015
1016 if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) {
1017 rstreason = BANDLIM_RST_CLOSEDPORT;
1018 goto dropwithreset;
1019 }
1020
1021 #ifdef TCP_OFFLOAD
1022 if (tp->t_flags & TF_TOE) {
1023 tcp_offload_input(tp, m);
1024 m = NULL; /* consumed by the TOE driver */
1025 goto dropunlock;
1026 }
1027 #endif
1028
1029 #ifdef MAC
1030 if (mac_inpcb_check_deliver(inp, m))
1031 goto dropunlock;
1032 #endif
1033 so = inp->inp_socket;
1034 KASSERT(so != NULL, ("%s: so == NULL", __func__));
1035 /*
1036 * When the socket is accepting connections (the INPCB is in LISTEN
1037 * state) we look into the SYN cache if this is a new connection
1038 * attempt or the completion of a previous one.
1039 */
1040 KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so),
1041 ("%s: so accepting but tp %p not listening", __func__, tp));
1042 if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) {
1043 struct in_conninfo inc;
1044
1045 bzero(&inc, sizeof(inc));
1046 #ifdef INET6
1047 if (isipv6) {
1048 inc.inc_flags |= INC_ISIPV6;
1049 if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1050 inc.inc_flags |= INC_IPV6MINMTU;
1051 inc.inc6_faddr = ip6->ip6_src;
1052 inc.inc6_laddr = ip6->ip6_dst;
1053 } else
1054 #endif
1055 {
1056 inc.inc_faddr = ip->ip_src;
1057 inc.inc_laddr = ip->ip_dst;
1058 }
1059 inc.inc_fport = th->th_sport;
1060 inc.inc_lport = th->th_dport;
1061 inc.inc_fibnum = so->so_fibnum;
1062
1063 /*
1064 * Check for an existing connection attempt in syncache if
1065 * the flag is only ACK. A successful lookup creates a new
1066 * socket appended to the listen queue in SYN_RECEIVED state.
1067 */
1068 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1069 /*
1070 * Parse the TCP options here because
1071 * syncookies need access to the reflected
1072 * timestamp.
1073 */
1074 tcp_dooptions(&to, optp, optlen, 0);
1075 /*
1076 * NB: syncache_expand() doesn't unlock inp.
1077 */
1078 rstreason = syncache_expand(&inc, &to, th, &so, m, port);
1079 if (rstreason < 0) {
1080 /*
1081 * A failing TCP MD5 signature comparison
1082 * must result in the segment being dropped
1083 * and must not produce any response back
1084 * to the sender.
1085 */
1086 goto dropunlock;
1087 } else if (rstreason == 0) {
1088 /*
1089 * No syncache entry, or ACK was not for our
1090 * SYN/ACK. Do our protection against double
1091 * ACK. If peer sent us 2 ACKs, then for the
1092 * first one syncache_expand() successfully
1093 * converted syncache entry into a socket,
1094 * while we were waiting on the inpcb lock. We
1095 * don't want to sent RST for the second ACK,
1096 * so we perform second lookup without wildcard
1097 * match, hoping to find the new socket. If
1098 * the ACK is stray indeed, rstreason would
1099 * hint the above code that the lookup was a
1100 * second attempt.
1101 *
1102 * NB: syncache did its own logging
1103 * of the failure cause.
1104 */
1105 INP_WUNLOCK(inp);
1106 rstreason = BANDLIM_RST_OPENPORT;
1107 lookupflag &= ~INPLOOKUP_WILDCARD;
1108 goto findpcb;
1109 }
1110 tfo_socket_result:
1111 if (so == NULL) {
1112 /*
1113 * We completed the 3-way handshake
1114 * but could not allocate a socket
1115 * either due to memory shortage,
1116 * listen queue length limits or
1117 * global socket limits. Send RST
1118 * or wait and have the remote end
1119 * retransmit the ACK for another
1120 * try.
1121 */
1122 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1123 log(LOG_DEBUG, "%s; %s: Listen socket: "
1124 "Socket allocation failed due to "
1125 "limits or memory shortage, %s\n",
1126 s, __func__,
1127 V_tcp_sc_rst_sock_fail ?
1128 "sending RST" : "try again");
1129 if (V_tcp_sc_rst_sock_fail) {
1130 rstreason = BANDLIM_UNLIMITED;
1131 goto dropwithreset;
1132 } else
1133 goto dropunlock;
1134 }
1135 /*
1136 * Socket is created in state SYN_RECEIVED.
1137 * Unlock the listen socket, lock the newly
1138 * created socket and update the tp variable.
1139 * If we came here via jump to tfo_socket_result,
1140 * then listening socket is read-locked.
1141 */
1142 INP_UNLOCK(inp); /* listen socket */
1143 inp = sotoinpcb(so);
1144 /*
1145 * New connection inpcb is already locked by
1146 * syncache_expand().
1147 */
1148 INP_WLOCK_ASSERT(inp);
1149 tp = intotcpcb(inp);
1150 KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1151 ("%s: ", __func__));
1152 /*
1153 * Process the segment and the data it
1154 * contains. tcp_do_segment() consumes
1155 * the mbuf chain and unlocks the inpcb.
1156 */
1157 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1158 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen,
1159 tlen, iptos);
1160 return (IPPROTO_DONE);
1161 }
1162 /*
1163 * Segment flag validation for new connection attempts:
1164 *
1165 * Our (SYN|ACK) response was rejected.
1166 * Check with syncache and remove entry to prevent
1167 * retransmits.
1168 *
1169 * NB: syncache_chkrst does its own logging of failure
1170 * causes.
1171 */
1172 if (thflags & TH_RST) {
1173 syncache_chkrst(&inc, th, m, port);
1174 goto dropunlock;
1175 }
1176 /*
1177 * We can't do anything without SYN.
1178 */
1179 if ((thflags & TH_SYN) == 0) {
1180 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1181 log(LOG_DEBUG, "%s; %s: Listen socket: "
1182 "SYN is missing, segment ignored\n",
1183 s, __func__);
1184 TCPSTAT_INC(tcps_badsyn);
1185 goto dropunlock;
1186 }
1187 /*
1188 * (SYN|ACK) is bogus on a listen socket.
1189 */
1190 if (thflags & TH_ACK) {
1191 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1192 log(LOG_DEBUG, "%s; %s: Listen socket: "
1193 "SYN|ACK invalid, segment rejected\n",
1194 s, __func__);
1195 syncache_badack(&inc, port); /* XXX: Not needed! */
1196 TCPSTAT_INC(tcps_badsyn);
1197 rstreason = BANDLIM_RST_OPENPORT;
1198 goto dropwithreset;
1199 }
1200 /*
1201 * If the drop_synfin option is enabled, drop all
1202 * segments with both the SYN and FIN bits set.
1203 * This prevents e.g. nmap from identifying the
1204 * TCP/IP stack.
1205 * XXX: Poor reasoning. nmap has other methods
1206 * and is constantly refining its stack detection
1207 * strategies.
1208 * XXX: This is a violation of the TCP specification
1209 * and was used by RFC1644.
1210 */
1211 if ((thflags & TH_FIN) && V_drop_synfin) {
1212 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1213 log(LOG_DEBUG, "%s; %s: Listen socket: "
1214 "SYN|FIN segment ignored (based on "
1215 "sysctl setting)\n", s, __func__);
1216 TCPSTAT_INC(tcps_badsyn);
1217 goto dropunlock;
1218 }
1219 /*
1220 * Segment's flags are (SYN) or (SYN|FIN).
1221 *
1222 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1223 * as they do not affect the state of the TCP FSM.
1224 * The data pointed to by TH_URG and th_urp is ignored.
1225 */
1226 KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1227 ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1228 KASSERT(thflags & (TH_SYN),
1229 ("%s: Listen socket: TH_SYN not set", __func__));
1230 INP_RLOCK_ASSERT(inp);
1231 #ifdef INET6
1232 /*
1233 * If deprecated address is forbidden,
1234 * we do not accept SYN to deprecated interface
1235 * address to prevent any new inbound connection from
1236 * getting established.
1237 * When we do not accept SYN, we send a TCP RST,
1238 * with deprecated source address (instead of dropping
1239 * it). We compromise it as it is much better for peer
1240 * to send a RST, and RST will be the final packet
1241 * for the exchange.
1242 *
1243 * If we do not forbid deprecated addresses, we accept
1244 * the SYN packet. RFC2462 does not suggest dropping
1245 * SYN in this case.
1246 * If we decipher RFC2462 5.5.4, it says like this:
1247 * 1. use of deprecated addr with existing
1248 * communication is okay - "SHOULD continue to be
1249 * used"
1250 * 2. use of it with new communication:
1251 * (2a) "SHOULD NOT be used if alternate address
1252 * with sufficient scope is available"
1253 * (2b) nothing mentioned otherwise.
1254 * Here we fall into (2b) case as we have no choice in
1255 * our source address selection - we must obey the peer.
1256 *
1257 * The wording in RFC2462 is confusing, and there are
1258 * multiple description text for deprecated address
1259 * handling - worse, they are not exactly the same.
1260 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1261 */
1262 if (isipv6 && !V_ip6_use_deprecated) {
1263 struct in6_ifaddr *ia6;
1264
1265 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
1266 if (ia6 != NULL &&
1267 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1268 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1269 log(LOG_DEBUG, "%s; %s: Listen socket: "
1270 "Connection attempt to deprecated "
1271 "IPv6 address rejected\n",
1272 s, __func__);
1273 rstreason = BANDLIM_RST_OPENPORT;
1274 goto dropwithreset;
1275 }
1276 }
1277 #endif /* INET6 */
1278 /*
1279 * Basic sanity checks on incoming SYN requests:
1280 * Don't respond if the destination is a link layer
1281 * broadcast according to RFC1122 4.2.3.10, p. 104.
1282 * If it is from this socket it must be forged.
1283 * Don't respond if the source or destination is a
1284 * global or subnet broad- or multicast address.
1285 * Note that it is quite possible to receive unicast
1286 * link-layer packets with a broadcast IP address. Use
1287 * in_broadcast() to find them.
1288 */
1289 if (m->m_flags & (M_BCAST|M_MCAST)) {
1290 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1291 log(LOG_DEBUG, "%s; %s: Listen socket: "
1292 "Connection attempt from broad- or multicast "
1293 "link layer address ignored\n", s, __func__);
1294 goto dropunlock;
1295 }
1296 #ifdef INET6
1297 if (isipv6) {
1298 if (th->th_dport == th->th_sport &&
1299 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1300 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1301 log(LOG_DEBUG, "%s; %s: Listen socket: "
1302 "Connection attempt to/from self "
1303 "ignored\n", s, __func__);
1304 goto dropunlock;
1305 }
1306 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1307 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1308 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1309 log(LOG_DEBUG, "%s; %s: Listen socket: "
1310 "Connection attempt from/to multicast "
1311 "address ignored\n", s, __func__);
1312 goto dropunlock;
1313 }
1314 }
1315 #endif
1316 #if defined(INET) && defined(INET6)
1317 else
1318 #endif
1319 #ifdef INET
1320 {
1321 if (th->th_dport == th->th_sport &&
1322 ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1323 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1324 log(LOG_DEBUG, "%s; %s: Listen socket: "
1325 "Connection attempt from/to self "
1326 "ignored\n", s, __func__);
1327 goto dropunlock;
1328 }
1329 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1330 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1331 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1332 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1333 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1334 log(LOG_DEBUG, "%s; %s: Listen socket: "
1335 "Connection attempt from/to broad- "
1336 "or multicast address ignored\n",
1337 s, __func__);
1338 goto dropunlock;
1339 }
1340 }
1341 #endif
1342 /*
1343 * SYN appears to be valid. Create compressed TCP state
1344 * for syncache.
1345 */
1346 TCP_PROBE3(debug__input, tp, th, m);
1347 tcp_dooptions(&to, optp, optlen, TO_SYN);
1348 if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL,
1349 iptos, port)) != NULL)
1350 goto tfo_socket_result;
1351
1352 /*
1353 * Entry added to syncache and mbuf consumed.
1354 * Only the listen socket is unlocked by syncache_add().
1355 */
1356 return (IPPROTO_DONE);
1357 }
1358 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1359 if (tp->t_flags & TF_SIGNATURE) {
1360 tcp_dooptions(&to, optp, optlen, thflags);
1361 if ((to.to_flags & TOF_SIGNATURE) == 0) {
1362 TCPSTAT_INC(tcps_sig_err_nosigopt);
1363 goto dropunlock;
1364 }
1365 if (!TCPMD5_ENABLED() ||
1366 TCPMD5_INPUT(m, th, to.to_signature) != 0)
1367 goto dropunlock;
1368 }
1369 #endif
1370 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1371
1372 /*
1373 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1374 * state. tcp_do_segment() always consumes the mbuf chain, unlocks
1375 * the inpcb, and unlocks pcbinfo.
1376 *
1377 * XXXGL: in case of a pure SYN arriving on existing connection
1378 * TCP stacks won't need to modify the PCB, they would either drop
1379 * the segment silently, or send a challenge ACK. However, we try
1380 * to upgrade the lock, because calling convention for stacks is
1381 * write-lock on PCB. If upgrade fails, drop the SYN.
1382 */
1383 if ((lookupflag & INPLOOKUP_RLOCKPCB) && INP_TRY_UPGRADE(inp) == 0)
1384 goto dropunlock;
1385
1386 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, tlen, iptos);
1387 return (IPPROTO_DONE);
1388
1389 dropwithreset:
1390 /*
1391 * When blackholing do not respond with a RST but
1392 * completely ignore the segment and drop it.
1393 */
1394 if (((rstreason == BANDLIM_RST_OPENPORT && V_blackhole == 3) ||
1395 (rstreason == BANDLIM_RST_CLOSEDPORT &&
1396 ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole > 1))) &&
1397 (V_blackhole_local || (
1398 #ifdef INET6
1399 isipv6 ? !in6_localaddr(&ip6->ip6_src) :
1400 #endif
1401 #ifdef INET
1402 !in_localip(ip->ip_src)
1403 #else
1404 true
1405 #endif
1406 )))
1407 goto dropunlock;
1408 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1409 tcp_dropwithreset(m, th, tp, tlen, rstreason);
1410 m = NULL; /* mbuf chain got consumed. */
1411
1412 dropunlock:
1413 if (m != NULL)
1414 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1415
1416 if (inp != NULL)
1417 INP_UNLOCK(inp);
1418
1419 drop:
1420 if (s != NULL)
1421 free(s, M_TCPLOG);
1422 if (m != NULL)
1423 m_freem(m);
1424 return (IPPROTO_DONE);
1425 }
1426
1427 /*
1428 * Automatic sizing of receive socket buffer. Often the send
1429 * buffer size is not optimally adjusted to the actual network
1430 * conditions at hand (delay bandwidth product). Setting the
1431 * buffer size too small limits throughput on links with high
1432 * bandwidth and high delay (eg. trans-continental/oceanic links).
1433 *
1434 * On the receive side the socket buffer memory is only rarely
1435 * used to any significant extent. This allows us to be much
1436 * more aggressive in scaling the receive socket buffer. For
1437 * the case that the buffer space is actually used to a large
1438 * extent and we run out of kernel memory we can simply drop
1439 * the new segments; TCP on the sender will just retransmit it
1440 * later. Setting the buffer size too big may only consume too
1441 * much kernel memory if the application doesn't read() from
1442 * the socket or packet loss or reordering makes use of the
1443 * reassembly queue.
1444 *
1445 * The criteria to step up the receive buffer one notch are:
1446 * 1. Application has not set receive buffer size with
1447 * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1448 * 2. the number of bytes received during 1/2 of an sRTT
1449 * is at least 3/8 of the current socket buffer size.
1450 * 3. receive buffer size has not hit maximal automatic size;
1451 *
1452 * If all of the criteria are met we increaset the socket buffer
1453 * by a 1/2 (bounded by the max). This allows us to keep ahead
1454 * of slow-start but also makes it so our peer never gets limited
1455 * by our rwnd which we then open up causing a burst.
1456 *
1457 * This algorithm does two steps per RTT at most and only if
1458 * we receive a bulk stream w/o packet losses or reorderings.
1459 * Shrinking the buffer during idle times is not necessary as
1460 * it doesn't consume any memory when idle.
1461 *
1462 * TODO: Only step up if the application is actually serving
1463 * the buffer to better manage the socket buffer resources.
1464 */
1465 int
tcp_autorcvbuf(struct mbuf * m,struct tcphdr * th,struct socket * so,struct tcpcb * tp,int tlen)1466 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1467 struct tcpcb *tp, int tlen)
1468 {
1469 int newsize = 0;
1470
1471 if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1472 tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1473 TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1474 ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1475 if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1476 so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1477 newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1478 }
1479 TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1480
1481 /* Start over with next RTT. */
1482 tp->rfbuf_ts = 0;
1483 tp->rfbuf_cnt = 0;
1484 } else {
1485 tp->rfbuf_cnt += tlen; /* add up */
1486 }
1487 return (newsize);
1488 }
1489
1490 int
tcp_input(struct mbuf ** mp,int * offp,int proto)1491 tcp_input(struct mbuf **mp, int *offp, int proto)
1492 {
1493 return(tcp_input_with_port(mp, offp, proto, 0));
1494 }
1495
1496 static void
tcp_handle_wakeup(struct tcpcb * tp)1497 tcp_handle_wakeup(struct tcpcb *tp)
1498 {
1499
1500 INP_WLOCK_ASSERT(tptoinpcb(tp));
1501
1502 if (tp->t_flags & TF_WAKESOR) {
1503 struct socket *so = tptosocket(tp);
1504
1505 tp->t_flags &= ~TF_WAKESOR;
1506 SOCK_RECVBUF_LOCK_ASSERT(so);
1507 sorwakeup_locked(so);
1508 }
1509 }
1510
1511 void
tcp_do_segment(struct tcpcb * tp,struct mbuf * m,struct tcphdr * th,int drop_hdrlen,int tlen,uint8_t iptos)1512 tcp_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
1513 int drop_hdrlen, int tlen, uint8_t iptos)
1514 {
1515 uint16_t thflags;
1516 int acked, ourfinisacked, needoutput = 0;
1517 sackstatus_t sack_changed;
1518 int rstreason, todrop, win, incforsyn = 0;
1519 uint32_t tiwin;
1520 uint16_t nsegs;
1521 char *s;
1522 struct inpcb *inp = tptoinpcb(tp);
1523 struct socket *so = tptosocket(tp);
1524 struct in_conninfo *inc = &inp->inp_inc;
1525 struct mbuf *mfree;
1526 struct tcpopt to;
1527 int tfo_syn;
1528 u_int maxseg = 0;
1529
1530 thflags = tcp_get_flags(th);
1531 tp->sackhint.last_sack_ack = 0;
1532 sack_changed = SACK_NOCHANGE;
1533 nsegs = max(1, m->m_pkthdr.lro_nsegs);
1534
1535 NET_EPOCH_ASSERT();
1536 INP_WLOCK_ASSERT(inp);
1537 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1538 __func__));
1539 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1540 __func__));
1541
1542 #ifdef TCPPCAP
1543 /* Save segment, if requested. */
1544 tcp_pcap_add(th, m, &(tp->t_inpkts));
1545 #endif
1546 TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1547 tlen, NULL, true);
1548
1549 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1550 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1551 log(LOG_DEBUG, "%s; %s: "
1552 "SYN|FIN segment ignored (based on "
1553 "sysctl setting)\n", s, __func__);
1554 free(s, M_TCPLOG);
1555 }
1556 goto drop;
1557 }
1558
1559 /*
1560 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1561 * check SEQ.ACK first.
1562 */
1563 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1564 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1565 rstreason = BANDLIM_UNLIMITED;
1566 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1567 goto dropwithreset;
1568 }
1569
1570 /*
1571 * Segment received on connection.
1572 * Reset idle time and keep-alive timer.
1573 * XXX: This should be done after segment
1574 * validation to ignore broken/spoofed segs.
1575 */
1576 if (tp->t_idle_reduce &&
1577 (tp->snd_max == tp->snd_una) &&
1578 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
1579 cc_after_idle(tp);
1580 tp->t_rcvtime = ticks;
1581
1582 if (thflags & TH_FIN)
1583 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
1584 /*
1585 * Scale up the window into a 32-bit value.
1586 * For the SYN_SENT state the scale is zero.
1587 */
1588 tiwin = th->th_win << tp->snd_scale;
1589 #ifdef STATS
1590 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1591 #endif
1592
1593 /*
1594 * TCP ECN processing.
1595 */
1596 if (tcp_ecn_input_segment(tp, thflags, tlen,
1597 tcp_packets_this_ack(tp, th->th_ack),
1598 iptos))
1599 cc_cong_signal(tp, th, CC_ECN);
1600
1601 /*
1602 * Parse options on any incoming segment.
1603 */
1604 tcp_dooptions(&to, (u_char *)(th + 1),
1605 (th->th_off << 2) - sizeof(struct tcphdr),
1606 (thflags & TH_SYN) ? TO_SYN : 0);
1607 if (tp->t_flags2 & TF2_PROC_SACK_PROHIBIT) {
1608 /*
1609 * We don't look at sack's from the
1610 * peer because the MSS is too small which
1611 * can subject us to an attack.
1612 */
1613 to.to_flags &= ~TOF_SACK;
1614 }
1615 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1616 if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1617 (to.to_flags & TOF_SIGNATURE) == 0) {
1618 TCPSTAT_INC(tcps_sig_err_sigopt);
1619 /* XXX: should drop? */
1620 }
1621 #endif
1622 /*
1623 * If echoed timestamp is later than the current time,
1624 * fall back to non RFC1323 RTT calculation. Normalize
1625 * timestamp if syncookies were used when this connection
1626 * was established.
1627 */
1628 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1629 to.to_tsecr -= tp->ts_offset;
1630 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) {
1631 to.to_tsecr = 0;
1632 } else if (tp->t_rxtshift == 1 &&
1633 tp->t_flags & TF_PREVVALID &&
1634 tp->t_badrxtwin != 0 &&
1635 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) {
1636 cc_cong_signal(tp, th, CC_RTO_ERR);
1637 }
1638 }
1639 /*
1640 * Process options only when we get SYN/ACK back. The SYN case
1641 * for incoming connections is handled in tcp_syncache.
1642 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1643 * or <SYN,ACK>) segment itself is never scaled.
1644 * XXX this is traditional behavior, may need to be cleaned up.
1645 */
1646 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1647 /* Handle parallel SYN for ECN */
1648 tcp_ecn_input_parallel_syn(tp, thflags, iptos);
1649 if ((to.to_flags & TOF_SCALE) &&
1650 (tp->t_flags & TF_REQ_SCALE) &&
1651 !(tp->t_flags & TF_NOOPT)) {
1652 tp->t_flags |= TF_RCVD_SCALE;
1653 tp->snd_scale = to.to_wscale;
1654 } else {
1655 tp->t_flags &= ~TF_REQ_SCALE;
1656 }
1657 /*
1658 * Initial send window. It will be updated with
1659 * the next incoming segment to the scaled value.
1660 */
1661 tp->snd_wnd = th->th_win;
1662 if ((to.to_flags & TOF_TS) &&
1663 (tp->t_flags & TF_REQ_TSTMP) &&
1664 !(tp->t_flags & TF_NOOPT)) {
1665 tp->t_flags |= TF_RCVD_TSTMP;
1666 tp->ts_recent = to.to_tsval;
1667 tp->ts_recent_age = tcp_ts_getticks();
1668 } else {
1669 tp->t_flags &= ~TF_REQ_TSTMP;
1670 }
1671 if (to.to_flags & TOF_MSS) {
1672 tcp_mss(tp, to.to_mss);
1673 }
1674 if ((tp->t_flags & TF_SACK_PERMIT) &&
1675 (!(to.to_flags & TOF_SACKPERM) ||
1676 (tp->t_flags & TF_NOOPT))) {
1677 tp->t_flags &= ~TF_SACK_PERMIT;
1678 }
1679 if (tp->t_flags & TF_FASTOPEN) {
1680 if ((to.to_flags & TOF_FASTOPEN) &&
1681 !(tp->t_flags & TF_NOOPT)) {
1682 uint16_t mss;
1683
1684 if (to.to_flags & TOF_MSS) {
1685 mss = to.to_mss;
1686 } else {
1687 if ((inp->inp_vflag & INP_IPV6) != 0) {
1688 mss = TCP6_MSS;
1689 } else {
1690 mss = TCP_MSS;
1691 }
1692 }
1693 tcp_fastopen_update_cache(tp, mss,
1694 to.to_tfo_len, to.to_tfo_cookie);
1695 } else {
1696 tcp_fastopen_disable_path(tp);
1697 }
1698 }
1699 }
1700
1701 /*
1702 * If timestamps were negotiated during SYN/ACK and a
1703 * segment without a timestamp is received, silently drop
1704 * the segment, unless it is a RST segment or missing timestamps are
1705 * tolerated.
1706 * See section 3.2 of RFC 7323.
1707 */
1708 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1709 if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) {
1710 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1711 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1712 "segment processed normally\n",
1713 s, __func__);
1714 free(s, M_TCPLOG);
1715 }
1716 } else {
1717 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1718 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1719 "segment silently dropped\n", s, __func__);
1720 free(s, M_TCPLOG);
1721 }
1722 goto drop;
1723 }
1724 }
1725 /*
1726 * If timestamps were not negotiated during SYN/ACK and a
1727 * segment with a timestamp is received, ignore the
1728 * timestamp and process the packet normally.
1729 * See section 3.2 of RFC 7323.
1730 */
1731 if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1732 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1733 log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1734 "segment processed normally\n", s, __func__);
1735 free(s, M_TCPLOG);
1736 }
1737 }
1738
1739 /*
1740 * Header prediction: check for the two common cases
1741 * of a uni-directional data xfer. If the packet has
1742 * no control flags, is in-sequence, the window didn't
1743 * change and we're not retransmitting, it's a
1744 * candidate. If the length is zero and the ack moved
1745 * forward, we're the sender side of the xfer. Just
1746 * free the data acked & wake any higher level process
1747 * that was blocked waiting for space. If the length
1748 * is non-zero and the ack didn't move, we're the
1749 * receiver side. If we're getting packets in-order
1750 * (the reassembly queue is empty), add the data to
1751 * the socket buffer and note that we need a delayed ack.
1752 * Make sure that the hidden state-flags are also off.
1753 * Since we check for TCPS_ESTABLISHED first, it can only
1754 * be TH_NEEDSYN.
1755 */
1756 if (tp->t_state == TCPS_ESTABLISHED &&
1757 th->th_seq == tp->rcv_nxt &&
1758 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1759 tp->snd_nxt == tp->snd_max &&
1760 tiwin && tiwin == tp->snd_wnd &&
1761 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1762 SEGQ_EMPTY(tp) &&
1763 ((to.to_flags & TOF_TS) == 0 ||
1764 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1765 /*
1766 * If last ACK falls within this segment's sequence numbers,
1767 * record the timestamp.
1768 * NOTE that the test is modified according to the latest
1769 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1770 */
1771 if ((to.to_flags & TOF_TS) != 0 &&
1772 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1773 tp->ts_recent_age = tcp_ts_getticks();
1774 tp->ts_recent = to.to_tsval;
1775 }
1776
1777 if (tlen == 0) {
1778 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1779 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1780 !IN_RECOVERY(tp->t_flags) &&
1781 (to.to_flags & TOF_SACK) == 0 &&
1782 TAILQ_EMPTY(&tp->snd_holes)) {
1783 /*
1784 * This is a pure ack for outstanding data.
1785 */
1786 TCPSTAT_INC(tcps_predack);
1787
1788 /*
1789 * "bad retransmit" recovery without timestamps.
1790 */
1791 if ((to.to_flags & TOF_TS) == 0 &&
1792 tp->t_rxtshift == 1 &&
1793 tp->t_flags & TF_PREVVALID &&
1794 tp->t_badrxtwin != 0 &&
1795 TSTMP_LT(ticks, tp->t_badrxtwin)) {
1796 cc_cong_signal(tp, th, CC_RTO_ERR);
1797 }
1798
1799 /*
1800 * Recalculate the transmit timer / rtt.
1801 *
1802 * Some boxes send broken timestamp replies
1803 * during the SYN+ACK phase, ignore
1804 * timestamps of 0 or we could calculate a
1805 * huge RTT and blow up the retransmit timer.
1806 */
1807 if ((to.to_flags & TOF_TS) != 0 &&
1808 to.to_tsecr) {
1809 uint32_t t;
1810
1811 t = tcp_ts_getticks() - to.to_tsecr;
1812 if (!tp->t_rttlow || tp->t_rttlow > t)
1813 tp->t_rttlow = t;
1814 tcp_xmit_timer(tp,
1815 TCP_TS_TO_TICKS(t) + 1);
1816 } else if (tp->t_rtttime &&
1817 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1818 if (!tp->t_rttlow ||
1819 tp->t_rttlow > ticks - tp->t_rtttime)
1820 tp->t_rttlow = ticks - tp->t_rtttime;
1821 tcp_xmit_timer(tp,
1822 ticks - tp->t_rtttime);
1823 }
1824 acked = BYTES_THIS_ACK(tp, th);
1825
1826 #ifdef TCP_HHOOK
1827 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1828 hhook_run_tcp_est_in(tp, th, &to);
1829 #endif
1830
1831 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1832 TCPSTAT_ADD(tcps_rcvackbyte, acked);
1833 sbdrop(&so->so_snd, acked);
1834 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1835 SEQ_LEQ(th->th_ack, tp->snd_recover))
1836 tp->snd_recover = th->th_ack - 1;
1837
1838 /*
1839 * Let the congestion control algorithm update
1840 * congestion control related information. This
1841 * typically means increasing the congestion
1842 * window.
1843 */
1844 cc_ack_received(tp, th, nsegs, CC_ACK);
1845
1846 tp->snd_una = th->th_ack;
1847 /*
1848 * Pull snd_wl2 up to prevent seq wrap relative
1849 * to th_ack.
1850 */
1851 tp->snd_wl2 = th->th_ack;
1852 tp->t_dupacks = 0;
1853 m_freem(m);
1854
1855 /*
1856 * If all outstanding data are acked, stop
1857 * retransmit timer, otherwise restart timer
1858 * using current (possibly backed-off) value.
1859 * If process is waiting for space,
1860 * wakeup/selwakeup/signal. If data
1861 * are ready to send, let tcp_output
1862 * decide between more output or persist.
1863 */
1864 TCP_PROBE3(debug__input, tp, th, m);
1865 /*
1866 * Clear t_acktime if remote side has ACKd
1867 * all data in the socket buffer.
1868 * Otherwise, update t_acktime if we received
1869 * a sufficiently large ACK.
1870 */
1871 if (sbavail(&so->so_snd) == 0)
1872 tp->t_acktime = 0;
1873 else if (acked > 1)
1874 tp->t_acktime = ticks;
1875 if (tp->snd_una == tp->snd_max)
1876 tcp_timer_activate(tp, TT_REXMT, 0);
1877 else if (!tcp_timer_active(tp, TT_PERSIST))
1878 tcp_timer_activate(tp, TT_REXMT,
1879 TP_RXTCUR(tp));
1880 sowwakeup(so);
1881 /*
1882 * Only call tcp_output when there
1883 * is new data available to be sent
1884 * or we need to send an ACK.
1885 */
1886 if ((tp->t_flags & TF_ACKNOW) ||
1887 (sbavail(&so->so_snd) >=
1888 SEQ_SUB(tp->snd_max, tp->snd_una))) {
1889 (void) tcp_output(tp);
1890 }
1891 goto check_delack;
1892 }
1893 } else if (th->th_ack == tp->snd_una &&
1894 tlen <= sbspace(&so->so_rcv)) {
1895 int newsize = 0; /* automatic sockbuf scaling */
1896
1897 /*
1898 * This is a pure, in-sequence data packet with
1899 * nothing on the reassembly queue and we have enough
1900 * buffer space to take it.
1901 */
1902 /* Clean receiver SACK report if present */
1903 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1904 tcp_clean_sackreport(tp);
1905 TCPSTAT_INC(tcps_preddat);
1906 tp->rcv_nxt += tlen;
1907 if (tlen &&
1908 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
1909 (tp->t_fbyte_in == 0)) {
1910 tp->t_fbyte_in = ticks;
1911 if (tp->t_fbyte_in == 0)
1912 tp->t_fbyte_in = 1;
1913 if (tp->t_fbyte_out && tp->t_fbyte_in)
1914 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
1915 }
1916 /*
1917 * Pull snd_wl1 up to prevent seq wrap relative to
1918 * th_seq.
1919 */
1920 tp->snd_wl1 = th->th_seq;
1921 /*
1922 * Pull rcv_up up to prevent seq wrap relative to
1923 * rcv_nxt.
1924 */
1925 tp->rcv_up = tp->rcv_nxt;
1926 TCPSTAT_ADD(tcps_rcvpack, nsegs);
1927 TCPSTAT_ADD(tcps_rcvbyte, tlen);
1928 TCP_PROBE3(debug__input, tp, th, m);
1929
1930 newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1931
1932 /* Add data to socket buffer. */
1933 SOCK_RECVBUF_LOCK(so);
1934 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1935 m_freem(m);
1936 } else {
1937 /*
1938 * Set new socket buffer size.
1939 * Give up when limit is reached.
1940 */
1941 if (newsize)
1942 if (!sbreserve_locked(so, SO_RCV,
1943 newsize, NULL))
1944 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1945 m_adj(m, drop_hdrlen); /* delayed header drop */
1946 sbappendstream_locked(&so->so_rcv, m, 0);
1947 }
1948 /* NB: sorwakeup_locked() does an implicit unlock. */
1949 sorwakeup_locked(so);
1950 if (DELAY_ACK(tp, tlen)) {
1951 tp->t_flags |= TF_DELACK;
1952 } else {
1953 tp->t_flags |= TF_ACKNOW;
1954 (void) tcp_output(tp);
1955 }
1956 goto check_delack;
1957 }
1958 }
1959
1960 /*
1961 * Calculate amount of space in receive window,
1962 * and then do TCP input processing.
1963 * Receive window is amount of space in rcv queue,
1964 * but not less than advertised window.
1965 */
1966 win = sbspace(&so->so_rcv);
1967 if (win < 0)
1968 win = 0;
1969 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1970
1971 switch (tp->t_state) {
1972 /*
1973 * If the state is SYN_RECEIVED:
1974 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1975 */
1976 case TCPS_SYN_RECEIVED:
1977 if (thflags & TH_RST) {
1978 /* Handle RST segments later. */
1979 break;
1980 }
1981 if ((thflags & TH_ACK) &&
1982 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1983 SEQ_GT(th->th_ack, tp->snd_max))) {
1984 rstreason = BANDLIM_RST_OPENPORT;
1985 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1986 goto dropwithreset;
1987 }
1988 if (tp->t_flags & TF_FASTOPEN) {
1989 /*
1990 * When a TFO connection is in SYN_RECEIVED, the
1991 * only valid packets are the initial SYN, a
1992 * retransmit/copy of the initial SYN (possibly with
1993 * a subset of the original data), a valid ACK, a
1994 * FIN, or a RST.
1995 */
1996 if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1997 rstreason = BANDLIM_RST_OPENPORT;
1998 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1999 goto dropwithreset;
2000 } else if (thflags & TH_SYN) {
2001 /* non-initial SYN is ignored */
2002 if ((tcp_timer_active(tp, TT_DELACK) ||
2003 tcp_timer_active(tp, TT_REXMT)))
2004 goto drop;
2005 } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
2006 goto drop;
2007 }
2008 }
2009 break;
2010
2011 /*
2012 * If the state is SYN_SENT:
2013 * if seg contains a RST with valid ACK (SEQ.ACK has already
2014 * been verified), then drop the connection.
2015 * if seg contains a RST without an ACK, drop the seg.
2016 * if seg does not contain SYN, then drop the seg.
2017 * Otherwise this is an acceptable SYN segment
2018 * initialize tp->rcv_nxt and tp->irs
2019 * if seg contains ack then advance tp->snd_una
2020 * if seg contains an ECE and ECN support is enabled, the stream
2021 * is ECN capable.
2022 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2023 * arrange for segment to be acked (eventually)
2024 * continue processing rest of data/controls, beginning with URG
2025 */
2026 case TCPS_SYN_SENT:
2027 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2028 TCP_PROBE5(connect__refused, NULL, tp,
2029 m, tp, th);
2030 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2031 tp = tcp_drop(tp, ECONNREFUSED);
2032 }
2033 if (thflags & TH_RST)
2034 goto drop;
2035 if (!(thflags & TH_SYN))
2036 goto drop;
2037
2038 tp->irs = th->th_seq;
2039 tcp_rcvseqinit(tp);
2040 if (thflags & TH_ACK) {
2041 int tfo_partial_ack = 0;
2042
2043 TCPSTAT_INC(tcps_connects);
2044 soisconnected(so);
2045 #ifdef MAC
2046 mac_socketpeer_set_from_mbuf(m, so);
2047 #endif
2048 /* Do window scaling on this connection? */
2049 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2050 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2051 tp->rcv_scale = tp->request_r_scale;
2052 }
2053 tp->rcv_adv += min(tp->rcv_wnd,
2054 TCP_MAXWIN << tp->rcv_scale);
2055 tp->snd_una++; /* SYN is acked */
2056 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2057 tp->snd_nxt = tp->snd_una;
2058 /*
2059 * If not all the data that was sent in the TFO SYN
2060 * has been acked, resend the remainder right away.
2061 */
2062 if ((tp->t_flags & TF_FASTOPEN) &&
2063 (tp->snd_una != tp->snd_max)) {
2064 tp->snd_nxt = th->th_ack;
2065 tfo_partial_ack = 1;
2066 }
2067 /*
2068 * If there's data, delay ACK; if there's also a FIN
2069 * ACKNOW will be turned on later.
2070 */
2071 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2072 tcp_timer_activate(tp, TT_DELACK,
2073 tcp_delacktime);
2074 else
2075 tp->t_flags |= TF_ACKNOW;
2076
2077 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2078
2079 /*
2080 * Received <SYN,ACK> in SYN_SENT[*] state.
2081 * Transitions:
2082 * SYN_SENT --> ESTABLISHED
2083 * SYN_SENT* --> FIN_WAIT_1
2084 */
2085 tp->t_starttime = ticks;
2086 if (tp->t_flags & TF_NEEDFIN) {
2087 tp->t_acktime = ticks;
2088 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2089 tp->t_flags &= ~TF_NEEDFIN;
2090 thflags &= ~TH_SYN;
2091 } else {
2092 tcp_state_change(tp, TCPS_ESTABLISHED);
2093 TCP_PROBE5(connect__established, NULL, tp,
2094 m, tp, th);
2095 cc_conn_init(tp);
2096 tcp_timer_activate(tp, TT_KEEP,
2097 TP_KEEPIDLE(tp));
2098 }
2099 } else {
2100 /*
2101 * Received initial SYN in SYN-SENT[*] state =>
2102 * simultaneous open.
2103 * If it succeeds, connection is * half-synchronized.
2104 * Otherwise, do 3-way handshake:
2105 * SYN-SENT -> SYN-RECEIVED
2106 * SYN-SENT* -> SYN-RECEIVED*
2107 */
2108 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
2109 tcp_timer_activate(tp, TT_REXMT, 0);
2110 tcp_state_change(tp, TCPS_SYN_RECEIVED);
2111 }
2112
2113 /*
2114 * Advance th->th_seq to correspond to first data byte.
2115 * If data, trim to stay within window,
2116 * dropping FIN if necessary.
2117 */
2118 th->th_seq++;
2119 if (tlen > tp->rcv_wnd) {
2120 todrop = tlen - tp->rcv_wnd;
2121 m_adj(m, -todrop);
2122 tlen = tp->rcv_wnd;
2123 thflags &= ~TH_FIN;
2124 TCPSTAT_INC(tcps_rcvpackafterwin);
2125 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2126 }
2127 tp->snd_wl1 = th->th_seq - 1;
2128 tp->rcv_up = th->th_seq;
2129 /*
2130 * Client side of transaction: already sent SYN and data.
2131 * If the remote host used T/TCP to validate the SYN,
2132 * our data will be ACK'd; if so, enter normal data segment
2133 * processing in the middle of step 5, ack processing.
2134 * Otherwise, goto step 6.
2135 */
2136 if (thflags & TH_ACK)
2137 goto process_ACK;
2138
2139 goto step6;
2140 }
2141
2142 /*
2143 * States other than LISTEN or SYN_SENT.
2144 * First check the RST flag and sequence number since reset segments
2145 * are exempt from the timestamp and connection count tests. This
2146 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2147 * below which allowed reset segments in half the sequence space
2148 * to fall though and be processed (which gives forged reset
2149 * segments with a random sequence number a 50 percent chance of
2150 * killing a connection).
2151 * Then check timestamp, if present.
2152 * Then check the connection count, if present.
2153 * Then check that at least some bytes of segment are within
2154 * receive window. If segment begins before rcv_nxt,
2155 * drop leading data (and SYN); if nothing left, just ack.
2156 */
2157 if (thflags & TH_RST) {
2158 /*
2159 * RFC5961 Section 3.2
2160 *
2161 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2162 * - If RST is in window, we send challenge ACK.
2163 *
2164 * Note: to take into account delayed ACKs, we should
2165 * test against last_ack_sent instead of rcv_nxt.
2166 * Note 2: we handle special case of closed window, not
2167 * covered by the RFC.
2168 */
2169 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2170 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2171 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2172 KASSERT(tp->t_state != TCPS_SYN_SENT,
2173 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2174 __func__, th, tp));
2175
2176 if (V_tcp_insecure_rst ||
2177 tp->last_ack_sent == th->th_seq) {
2178 TCPSTAT_INC(tcps_drops);
2179 /* Drop the connection. */
2180 switch (tp->t_state) {
2181 case TCPS_SYN_RECEIVED:
2182 so->so_error = ECONNREFUSED;
2183 goto close;
2184 case TCPS_ESTABLISHED:
2185 case TCPS_FIN_WAIT_1:
2186 case TCPS_FIN_WAIT_2:
2187 case TCPS_CLOSE_WAIT:
2188 case TCPS_CLOSING:
2189 case TCPS_LAST_ACK:
2190 so->so_error = ECONNRESET;
2191 close:
2192 /* FALLTHROUGH */
2193 default:
2194 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
2195 tp = tcp_close(tp);
2196 }
2197 } else {
2198 TCPSTAT_INC(tcps_badrst);
2199 tcp_send_challenge_ack(tp, th, m);
2200 m = NULL;
2201 }
2202 }
2203 goto drop;
2204 }
2205
2206 /*
2207 * RFC5961 Section 4.2
2208 * Send challenge ACK for any SYN in synchronized state.
2209 */
2210 if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2211 tp->t_state != TCPS_SYN_RECEIVED) {
2212 TCPSTAT_INC(tcps_badsyn);
2213 if (V_tcp_insecure_syn &&
2214 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2215 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2216 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2217 tp = tcp_drop(tp, ECONNRESET);
2218 rstreason = BANDLIM_UNLIMITED;
2219 } else {
2220 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2221 tcp_send_challenge_ack(tp, th, m);
2222 m = NULL;
2223 }
2224 goto drop;
2225 }
2226
2227 /*
2228 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2229 * and it's less than ts_recent, drop it.
2230 */
2231 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2232 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2233 /* Check to see if ts_recent is over 24 days old. */
2234 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2235 /*
2236 * Invalidate ts_recent. If this segment updates
2237 * ts_recent, the age will be reset later and ts_recent
2238 * will get a valid value. If it does not, setting
2239 * ts_recent to zero will at least satisfy the
2240 * requirement that zero be placed in the timestamp
2241 * echo reply when ts_recent isn't valid. The
2242 * age isn't reset until we get a valid ts_recent
2243 * because we don't want out-of-order segments to be
2244 * dropped when ts_recent is old.
2245 */
2246 tp->ts_recent = 0;
2247 } else {
2248 TCPSTAT_INC(tcps_rcvduppack);
2249 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2250 TCPSTAT_INC(tcps_pawsdrop);
2251 if (tlen)
2252 goto dropafterack;
2253 goto drop;
2254 }
2255 }
2256
2257 /*
2258 * In the SYN-RECEIVED state, validate that the packet belongs to
2259 * this connection before trimming the data to fit the receive
2260 * window. Check the sequence number versus IRS since we know
2261 * the sequence numbers haven't wrapped. This is a partial fix
2262 * for the "LAND" DoS attack.
2263 */
2264 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2265 rstreason = BANDLIM_RST_OPENPORT;
2266 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2267 goto dropwithreset;
2268 }
2269
2270 todrop = tp->rcv_nxt - th->th_seq;
2271 if (todrop > 0) {
2272 if (thflags & TH_SYN) {
2273 thflags &= ~TH_SYN;
2274 th->th_seq++;
2275 if (th->th_urp > 1)
2276 th->th_urp--;
2277 else
2278 thflags &= ~TH_URG;
2279 todrop--;
2280 }
2281 /*
2282 * Following if statement from Stevens, vol. 2, p. 960.
2283 */
2284 if (todrop > tlen
2285 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2286 /*
2287 * Any valid FIN must be to the left of the window.
2288 * At this point the FIN must be a duplicate or out
2289 * of sequence; drop it.
2290 */
2291 thflags &= ~TH_FIN;
2292
2293 /*
2294 * Send an ACK to resynchronize and drop any data.
2295 * But keep on processing for RST or ACK.
2296 */
2297 tp->t_flags |= TF_ACKNOW;
2298 todrop = tlen;
2299 TCPSTAT_INC(tcps_rcvduppack);
2300 TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2301 } else {
2302 TCPSTAT_INC(tcps_rcvpartduppack);
2303 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2304 }
2305 /*
2306 * DSACK - add SACK block for dropped range
2307 */
2308 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2309 tcp_update_sack_list(tp, th->th_seq,
2310 th->th_seq + todrop);
2311 /*
2312 * ACK now, as the next in-sequence segment
2313 * will clear the DSACK block again
2314 */
2315 tp->t_flags |= TF_ACKNOW;
2316 }
2317 drop_hdrlen += todrop; /* drop from the top afterwards */
2318 th->th_seq += todrop;
2319 tlen -= todrop;
2320 if (th->th_urp > todrop)
2321 th->th_urp -= todrop;
2322 else {
2323 thflags &= ~TH_URG;
2324 th->th_urp = 0;
2325 }
2326 }
2327
2328 /*
2329 * If new data are received on a connection after the
2330 * user processes are gone, then RST the other end if
2331 * no FIN has been processed.
2332 */
2333 if ((tp->t_flags & TF_CLOSED) && tlen > 0 &&
2334 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2335 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2336 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2337 "after socket was closed, "
2338 "sending RST and removing tcpcb\n",
2339 s, __func__, tcpstates[tp->t_state], tlen);
2340 free(s, M_TCPLOG);
2341 }
2342 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
2343 /* tcp_close will kill the inp pre-log the Reset */
2344 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2345 tp = tcp_close(tp);
2346 TCPSTAT_INC(tcps_rcvafterclose);
2347 rstreason = BANDLIM_UNLIMITED;
2348 goto dropwithreset;
2349 }
2350
2351 /*
2352 * If segment ends after window, drop trailing data
2353 * (and PUSH and FIN); if nothing left, just ACK.
2354 */
2355 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2356 if (todrop > 0) {
2357 TCPSTAT_INC(tcps_rcvpackafterwin);
2358 if (todrop >= tlen) {
2359 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2360 /*
2361 * If window is closed can only take segments at
2362 * window edge, and have to drop data and PUSH from
2363 * incoming segments. Continue processing, but
2364 * remember to ack. Otherwise, drop segment
2365 * and ack.
2366 */
2367 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2368 tp->t_flags |= TF_ACKNOW;
2369 TCPSTAT_INC(tcps_rcvwinprobe);
2370 } else
2371 goto dropafterack;
2372 } else
2373 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2374 m_adj(m, -todrop);
2375 tlen -= todrop;
2376 thflags &= ~(TH_PUSH|TH_FIN);
2377 }
2378
2379 /*
2380 * If last ACK falls within this segment's sequence numbers,
2381 * record its timestamp.
2382 * NOTE:
2383 * 1) That the test incorporates suggestions from the latest
2384 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2385 * 2) That updating only on newer timestamps interferes with
2386 * our earlier PAWS tests, so this check should be solely
2387 * predicated on the sequence space of this segment.
2388 * 3) That we modify the segment boundary check to be
2389 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2390 * instead of RFC1323's
2391 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2392 * This modified check allows us to overcome RFC1323's
2393 * limitations as described in Stevens TCP/IP Illustrated
2394 * Vol. 2 p.869. In such cases, we can still calculate the
2395 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2396 */
2397 if ((to.to_flags & TOF_TS) != 0 &&
2398 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2399 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2400 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
2401 tp->ts_recent_age = tcp_ts_getticks();
2402 tp->ts_recent = to.to_tsval;
2403 }
2404
2405 /*
2406 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
2407 * flag is on (half-synchronized state), then queue data for
2408 * later processing; else drop segment and return.
2409 */
2410 if ((thflags & TH_ACK) == 0) {
2411 if (tp->t_state == TCPS_SYN_RECEIVED ||
2412 (tp->t_flags & TF_NEEDSYN)) {
2413 if (tp->t_state == TCPS_SYN_RECEIVED &&
2414 (tp->t_flags & TF_FASTOPEN)) {
2415 tp->snd_wnd = tiwin;
2416 cc_conn_init(tp);
2417 }
2418 goto step6;
2419 } else if (tp->t_flags & TF_ACKNOW)
2420 goto dropafterack;
2421 else
2422 goto drop;
2423 }
2424
2425 /*
2426 * Ack processing.
2427 */
2428 if (SEQ_GEQ(tp->snd_una, tp->iss + (TCP_MAXWIN << tp->snd_scale))) {
2429 /* Checking SEG.ACK against ISS is definitely redundant. */
2430 tp->t_flags2 |= TF2_NO_ISS_CHECK;
2431 }
2432 if (!V_tcp_insecure_ack) {
2433 tcp_seq seq_min;
2434 bool ghost_ack_check;
2435
2436 if (tp->t_flags2 & TF2_NO_ISS_CHECK) {
2437 /* Check for too old ACKs (RFC 5961, Section 5.2). */
2438 seq_min = tp->snd_una - tp->max_sndwnd;
2439 ghost_ack_check = false;
2440 } else {
2441 if (SEQ_GT(tp->iss + 1, tp->snd_una - tp->max_sndwnd)) {
2442 /* Checking for ghost ACKs is stricter. */
2443 seq_min = tp->iss + 1;
2444 ghost_ack_check = true;
2445 } else {
2446 /*
2447 * Checking for too old ACKs (RFC 5961,
2448 * Section 5.2) is stricter.
2449 */
2450 seq_min = tp->snd_una - tp->max_sndwnd;
2451 ghost_ack_check = false;
2452 }
2453 }
2454 if (SEQ_LT(th->th_ack, seq_min)) {
2455 if (ghost_ack_check)
2456 TCPSTAT_INC(tcps_rcvghostack);
2457 else
2458 TCPSTAT_INC(tcps_rcvacktooold);
2459 tcp_send_challenge_ack(tp, th, m);
2460 m = NULL;
2461 goto drop;
2462 }
2463 }
2464 switch (tp->t_state) {
2465 /*
2466 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2467 * ESTABLISHED state and continue processing.
2468 * The ACK was checked above.
2469 */
2470 case TCPS_SYN_RECEIVED:
2471
2472 TCPSTAT_INC(tcps_connects);
2473 if (tp->t_flags & TF_SONOTCONN) {
2474 /*
2475 * Usually SYN_RECEIVED had been created from a LISTEN,
2476 * and solisten_enqueue() has already marked the socket
2477 * layer as connected. If it didn't, which can happen
2478 * only with an accept_filter(9), then the tp is marked
2479 * with TF_SONOTCONN. The other reason for this mark
2480 * to be set is a simultaneous open, a SYN_RECEIVED
2481 * that had been created from SYN_SENT.
2482 */
2483 tp->t_flags &= ~TF_SONOTCONN;
2484 soisconnected(so);
2485 }
2486 /* Do window scaling? */
2487 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2488 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2489 tp->rcv_scale = tp->request_r_scale;
2490 }
2491 tp->snd_wnd = tiwin;
2492 /*
2493 * Make transitions:
2494 * SYN-RECEIVED -> ESTABLISHED
2495 * SYN-RECEIVED* -> FIN-WAIT-1
2496 */
2497 tp->t_starttime = ticks;
2498 if ((tp->t_flags & TF_FASTOPEN) && tp->t_tfo_pending) {
2499 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2500 tp->t_tfo_pending = NULL;
2501 }
2502 if (tp->t_flags & TF_NEEDFIN) {
2503 tp->t_acktime = ticks;
2504 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2505 tp->t_flags &= ~TF_NEEDFIN;
2506 } else {
2507 tcp_state_change(tp, TCPS_ESTABLISHED);
2508 TCP_PROBE5(accept__established, NULL, tp,
2509 m, tp, th);
2510 /*
2511 * TFO connections call cc_conn_init() during SYN
2512 * processing. Calling it again here for such
2513 * connections is not harmless as it would undo the
2514 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2515 * is retransmitted.
2516 */
2517 if (!(tp->t_flags & TF_FASTOPEN))
2518 cc_conn_init(tp);
2519 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2520 }
2521 /*
2522 * Account for the ACK of our SYN prior to
2523 * regular ACK processing below, except for
2524 * simultaneous SYN, which is handled later.
2525 */
2526 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
2527 incforsyn = 1;
2528 /*
2529 * If segment contains data or ACK, will call tcp_reass()
2530 * later; if not, do so now to pass queued data to user.
2531 */
2532 if (tlen == 0 && (thflags & TH_FIN) == 0) {
2533 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2534 (struct mbuf *)0);
2535 tcp_handle_wakeup(tp);
2536 }
2537 tp->snd_wl1 = th->th_seq - 1;
2538 /* FALLTHROUGH */
2539
2540 /*
2541 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2542 * ACKs. If the ack is in the range
2543 * tp->snd_una < th->th_ack <= tp->snd_max
2544 * then advance tp->snd_una to th->th_ack and drop
2545 * data from the retransmission queue. If this ACK reflects
2546 * more up to date window information we update our window information.
2547 */
2548 case TCPS_ESTABLISHED:
2549 case TCPS_FIN_WAIT_1:
2550 case TCPS_FIN_WAIT_2:
2551 case TCPS_CLOSE_WAIT:
2552 case TCPS_CLOSING:
2553 case TCPS_LAST_ACK:
2554 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2555 TCPSTAT_INC(tcps_rcvacktoomuch);
2556 goto dropafterack;
2557 }
2558 if (tcp_is_sack_recovery(tp, &to)) {
2559 sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2560 if ((sack_changed != SACK_NOCHANGE) &&
2561 (tp->t_flags & TF_LRD)) {
2562 tcp_sack_lost_retransmission(tp, th);
2563 }
2564 } else
2565 /*
2566 * Reset the value so that previous (valid) value
2567 * from the last ack with SACK doesn't get used.
2568 */
2569 tp->sackhint.sacked_bytes = 0;
2570
2571 #ifdef TCP_HHOOK
2572 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2573 hhook_run_tcp_est_in(tp, th, &to);
2574 #endif
2575
2576 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2577 maxseg = tcp_maxseg(tp);
2578 if (tlen == 0 &&
2579 (tiwin == tp->snd_wnd ||
2580 (tp->t_flags & TF_SACK_PERMIT))) {
2581 /*
2582 * If this is the first time we've seen a
2583 * FIN from the remote, this is not a
2584 * duplicate and it needs to be processed
2585 * normally. This happens during a
2586 * simultaneous close.
2587 */
2588 if ((thflags & TH_FIN) &&
2589 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2590 tp->t_dupacks = 0;
2591 break;
2592 }
2593 TCPSTAT_INC(tcps_rcvdupack);
2594 /*
2595 * If we have outstanding data (other than
2596 * a window probe), this is a completely
2597 * duplicate ack (ie, window info didn't
2598 * change and FIN isn't set),
2599 * the ack is the biggest we've
2600 * seen and we've seen exactly our rexmt
2601 * threshold of them, assume a packet
2602 * has been dropped and retransmit it.
2603 * Kludge snd_nxt & the congestion
2604 * window so we send only this one
2605 * packet.
2606 *
2607 * We know we're losing at the current
2608 * window size so do congestion avoidance
2609 * (set ssthresh to half the current window
2610 * and pull our congestion window back to
2611 * the new ssthresh).
2612 *
2613 * Dup acks mean that packets have left the
2614 * network (they're now cached at the receiver)
2615 * so bump cwnd by the amount in the receiver
2616 * to keep a constant cwnd packets in the
2617 * network.
2618 *
2619 * When using TCP ECN, notify the peer that
2620 * we reduced the cwnd.
2621 */
2622 /*
2623 * Following 2 kinds of acks should not affect
2624 * dupack counting:
2625 * 1) Old acks
2626 * 2) Acks with SACK but without any new SACK
2627 * information in them. These could result from
2628 * any anomaly in the network like a switch
2629 * duplicating packets or a possible DoS attack.
2630 */
2631 if (th->th_ack != tp->snd_una ||
2632 (tcp_is_sack_recovery(tp, &to) &&
2633 (sack_changed == SACK_NOCHANGE))) {
2634 break;
2635 } else if (!tcp_timer_active(tp, TT_REXMT)) {
2636 tp->t_dupacks = 0;
2637 } else if (++tp->t_dupacks > tcprexmtthresh ||
2638 IN_FASTRECOVERY(tp->t_flags)) {
2639 cc_ack_received(tp, th, nsegs,
2640 CC_DUPACK);
2641 if (V_tcp_do_prr &&
2642 IN_FASTRECOVERY(tp->t_flags) &&
2643 (tp->t_flags & TF_SACK_PERMIT)) {
2644 tcp_do_prr_ack(tp, th, &to,
2645 sack_changed, &maxseg);
2646 } else if (tcp_is_sack_recovery(tp, &to) &&
2647 IN_FASTRECOVERY(tp->t_flags) &&
2648 (tp->snd_nxt == tp->snd_max)) {
2649 int awnd;
2650
2651 /*
2652 * Compute the amount of data in flight first.
2653 * We can inject new data into the pipe iff
2654 * we have less than ssthresh
2655 * worth of data in flight.
2656 */
2657 if (V_tcp_do_newsack) {
2658 awnd = tcp_compute_pipe(tp);
2659 } else {
2660 awnd = (tp->snd_nxt - tp->snd_fack) +
2661 tp->sackhint.sack_bytes_rexmit;
2662 }
2663 if (awnd < tp->snd_ssthresh) {
2664 tp->snd_cwnd += imax(maxseg,
2665 imin(2 * maxseg,
2666 tp->sackhint.delivered_data));
2667 if (tp->snd_cwnd > tp->snd_ssthresh)
2668 tp->snd_cwnd = tp->snd_ssthresh;
2669 }
2670 } else if (tcp_is_sack_recovery(tp, &to) &&
2671 IN_FASTRECOVERY(tp->t_flags) &&
2672 SEQ_LT(tp->snd_nxt, tp->snd_max)) {
2673 tp->snd_cwnd += imax(maxseg,
2674 imin(2 * maxseg,
2675 tp->sackhint.delivered_data));
2676 } else {
2677 tp->snd_cwnd += maxseg;
2678 }
2679 (void) tcp_output(tp);
2680 goto drop;
2681 } else if (tp->t_dupacks == tcprexmtthresh ||
2682 (tp->t_flags & TF_SACK_PERMIT &&
2683 V_tcp_do_newsack &&
2684 tp->sackhint.sacked_bytes >
2685 (tcprexmtthresh - 1) * maxseg)) {
2686 enter_recovery:
2687 /*
2688 * Above is the RFC6675 trigger condition of
2689 * more than (dupthresh-1)*maxseg sacked data.
2690 * If the count of holes in the
2691 * scoreboard is >= dupthresh, we could
2692 * also enter loss recovery, but don't
2693 * have that value readily available.
2694 */
2695 tp->t_dupacks = tcprexmtthresh;
2696 tcp_seq onxt = tp->snd_nxt;
2697
2698 /*
2699 * If we're doing sack, check to
2700 * see if we're already in sack
2701 * recovery. If we're not doing sack,
2702 * check to see if we're in newreno
2703 * recovery.
2704 */
2705 if (tcp_is_sack_recovery(tp, &to)) {
2706 if (IN_FASTRECOVERY(tp->t_flags)) {
2707 tp->t_dupacks = 0;
2708 break;
2709 }
2710 } else {
2711 if (SEQ_LEQ(th->th_ack,
2712 tp->snd_recover)) {
2713 tp->t_dupacks = 0;
2714 break;
2715 }
2716 }
2717 /* Congestion signal before ack. */
2718 cc_cong_signal(tp, th, CC_NDUPACK);
2719 cc_ack_received(tp, th, nsegs,
2720 CC_DUPACK);
2721 tcp_timer_activate(tp, TT_REXMT, 0);
2722 tp->t_rtttime = 0;
2723 if (V_tcp_do_prr) {
2724 /*
2725 * snd_ssthresh and snd_recover are
2726 * already updated by cc_cong_signal.
2727 */
2728 if (tcp_is_sack_recovery(tp, &to)) {
2729 /*
2730 * Include Limited Transmit
2731 * segments here
2732 */
2733 tp->sackhint.prr_delivered =
2734 imin(tp->snd_max - th->th_ack,
2735 (tp->snd_limited + 1) * maxseg);
2736 } else {
2737 tp->sackhint.prr_delivered =
2738 maxseg;
2739 }
2740 tp->sackhint.recover_fs = max(1,
2741 tp->snd_nxt - tp->snd_una);
2742 }
2743 tp->snd_limited = 0;
2744 if (tcp_is_sack_recovery(tp, &to)) {
2745 TCPSTAT_INC(tcps_sack_recovery_episode);
2746 /*
2747 * When entering LR after RTO due to
2748 * Duplicate ACKs, retransmit existing
2749 * holes from the scoreboard.
2750 */
2751 tcp_resend_sackholes(tp);
2752 /* Avoid inflating cwnd in tcp_output */
2753 tp->snd_nxt = tp->snd_max;
2754 tp->snd_cwnd = tcp_compute_pipe(tp) +
2755 maxseg;
2756 (void) tcp_output(tp);
2757 /* Set cwnd to the expected flightsize */
2758 tp->snd_cwnd = tp->snd_ssthresh;
2759 if (SEQ_GT(th->th_ack, tp->snd_una)) {
2760 goto resume_partialack;
2761 }
2762 goto drop;
2763 }
2764 tp->snd_nxt = th->th_ack;
2765 tp->snd_cwnd = maxseg;
2766 (void) tcp_output(tp);
2767 KASSERT(tp->snd_limited <= 2,
2768 ("%s: tp->snd_limited too big",
2769 __func__));
2770 tp->snd_cwnd = tp->snd_ssthresh +
2771 maxseg *
2772 (tp->t_dupacks - tp->snd_limited);
2773 if (SEQ_GT(onxt, tp->snd_nxt))
2774 tp->snd_nxt = onxt;
2775 goto drop;
2776 } else if (V_tcp_do_rfc3042) {
2777 /*
2778 * Process first and second duplicate
2779 * ACKs. Each indicates a segment
2780 * leaving the network, creating room
2781 * for more. Make sure we can send a
2782 * packet on reception of each duplicate
2783 * ACK by increasing snd_cwnd by one
2784 * segment. Restore the original
2785 * snd_cwnd after packet transmission.
2786 */
2787 cc_ack_received(tp, th, nsegs, CC_DUPACK);
2788 uint32_t oldcwnd = tp->snd_cwnd;
2789 tcp_seq oldsndmax = tp->snd_max;
2790 u_int sent;
2791 int avail;
2792
2793 KASSERT(tp->t_dupacks == 1 ||
2794 tp->t_dupacks == 2,
2795 ("%s: dupacks not 1 or 2",
2796 __func__));
2797 if (tp->t_dupacks == 1)
2798 tp->snd_limited = 0;
2799 if ((tp->snd_nxt == tp->snd_max) &&
2800 (tp->t_rxtshift == 0))
2801 tp->snd_cwnd =
2802 SEQ_SUB(tp->snd_nxt,
2803 tp->snd_una) -
2804 tcp_sack_adjust(tp);
2805 tp->snd_cwnd +=
2806 (tp->t_dupacks - tp->snd_limited) *
2807 maxseg - tcp_sack_adjust(tp);
2808 /*
2809 * Only call tcp_output when there
2810 * is new data available to be sent
2811 * or we need to send an ACK.
2812 */
2813 SOCK_SENDBUF_LOCK(so);
2814 avail = sbavail(&so->so_snd);
2815 SOCK_SENDBUF_UNLOCK(so);
2816 if (tp->t_flags & TF_ACKNOW ||
2817 (avail >=
2818 SEQ_SUB(tp->snd_nxt, tp->snd_una))) {
2819 (void) tcp_output(tp);
2820 }
2821 sent = SEQ_SUB(tp->snd_max, oldsndmax);
2822 if (sent > maxseg) {
2823 KASSERT((tp->t_dupacks == 2 &&
2824 tp->snd_limited == 0) ||
2825 (sent == maxseg + 1 &&
2826 tp->t_flags & TF_SENTFIN),
2827 ("%s: sent too much",
2828 __func__));
2829 tp->snd_limited = 2;
2830 } else if (sent > 0) {
2831 ++tp->snd_limited;
2832 }
2833 tp->snd_cwnd = oldcwnd;
2834 goto drop;
2835 }
2836 }
2837 break;
2838 } else {
2839 /*
2840 * This ack is advancing the left edge, reset the
2841 * counter.
2842 */
2843 tp->t_dupacks = 0;
2844 /*
2845 * If this ack also has new SACK info, increment the
2846 * counter as per rfc6675. The variable
2847 * sack_changed tracks all changes to the SACK
2848 * scoreboard, including when partial ACKs without
2849 * SACK options are received, and clear the scoreboard
2850 * from the left side. Such partial ACKs should not be
2851 * counted as dupacks here.
2852 */
2853 if (tcp_is_sack_recovery(tp, &to) &&
2854 (((tp->t_rxtshift == 0) && (sack_changed != SACK_NOCHANGE)) ||
2855 ((tp->t_rxtshift > 0) && (sack_changed == SACK_NEWLOSS))) &&
2856 (tp->snd_nxt == tp->snd_max)) {
2857 tp->t_dupacks++;
2858 /* limit overhead by setting maxseg last */
2859 if (!IN_FASTRECOVERY(tp->t_flags) &&
2860 (tp->sackhint.sacked_bytes >
2861 ((tcprexmtthresh - 1) *
2862 (maxseg = tcp_maxseg(tp))))) {
2863 goto enter_recovery;
2864 }
2865 }
2866 }
2867
2868 resume_partialack:
2869 KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2870 ("%s: th_ack <= snd_una", __func__));
2871
2872 /*
2873 * If the congestion window was inflated to account
2874 * for the other side's cached packets, retract it.
2875 */
2876 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2877 if (IN_FASTRECOVERY(tp->t_flags)) {
2878 if (tp->t_flags & TF_SACK_PERMIT) {
2879 if (V_tcp_do_prr &&
2880 (to.to_flags & TOF_SACK)) {
2881 tcp_timer_activate(tp,
2882 TT_REXMT, 0);
2883 tp->t_rtttime = 0;
2884 tcp_do_prr_ack(tp, th, &to,
2885 sack_changed, &maxseg);
2886 tp->t_flags |= TF_ACKNOW;
2887 (void) tcp_output(tp);
2888 } else {
2889 tcp_sack_partialack(tp, th,
2890 &maxseg);
2891 }
2892 } else {
2893 tcp_newreno_partial_ack(tp, th);
2894 }
2895 } else if (IN_CONGRECOVERY(tp->t_flags) &&
2896 (V_tcp_do_prr)) {
2897 tp->sackhint.delivered_data =
2898 BYTES_THIS_ACK(tp, th);
2899 tp->snd_fack = th->th_ack;
2900 /*
2901 * During ECN cwnd reduction
2902 * always use PRR-SSRB
2903 */
2904 tcp_do_prr_ack(tp, th, &to, SACK_CHANGE,
2905 &maxseg);
2906 (void) tcp_output(tp);
2907 }
2908 }
2909 /*
2910 * If we reach this point, ACK is not a duplicate,
2911 * i.e., it ACKs something we sent.
2912 */
2913 if (tp->t_flags & TF_NEEDSYN) {
2914 /*
2915 * T/TCP: Connection was half-synchronized, and our
2916 * SYN has been ACK'd (so connection is now fully
2917 * synchronized). Go to non-starred state,
2918 * increment snd_una for ACK of SYN, and check if
2919 * we can do window scaling.
2920 */
2921 tp->t_flags &= ~TF_NEEDSYN;
2922 tp->snd_una++;
2923 /* Do window scaling? */
2924 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2925 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2926 tp->rcv_scale = tp->request_r_scale;
2927 /* Send window already scaled. */
2928 }
2929 }
2930
2931 process_ACK:
2932 INP_WLOCK_ASSERT(inp);
2933
2934 /*
2935 * Adjust for the SYN bit in sequence space,
2936 * but don't account for it in cwnd calculations.
2937 * This is for the SYN_RECEIVED, non-simultaneous
2938 * SYN case. SYN_SENT and simultaneous SYN are
2939 * treated elsewhere.
2940 */
2941 if (incforsyn)
2942 tp->snd_una++;
2943 acked = BYTES_THIS_ACK(tp, th);
2944 KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2945 "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2946 tp->snd_una, th->th_ack, tp, m));
2947 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2948 TCPSTAT_ADD(tcps_rcvackbyte, acked);
2949
2950 /*
2951 * If we just performed our first retransmit, and the ACK
2952 * arrives within our recovery window, then it was a mistake
2953 * to do the retransmit in the first place. Recover our
2954 * original cwnd and ssthresh, and proceed to transmit where
2955 * we left off.
2956 */
2957 if (tp->t_rxtshift == 1 &&
2958 tp->t_flags & TF_PREVVALID &&
2959 tp->t_badrxtwin != 0 &&
2960 to.to_flags & TOF_TS &&
2961 to.to_tsecr != 0 &&
2962 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin))
2963 cc_cong_signal(tp, th, CC_RTO_ERR);
2964
2965 /*
2966 * If we have a timestamp reply, update smoothed
2967 * round trip time. If no timestamp is present but
2968 * transmit timer is running and timed sequence
2969 * number was acked, update smoothed round trip time.
2970 * Since we now have an rtt measurement, cancel the
2971 * timer backoff (cf., Phil Karn's retransmit alg.).
2972 * Recompute the initial retransmit timer.
2973 *
2974 * Some boxes send broken timestamp replies
2975 * during the SYN+ACK phase, ignore
2976 * timestamps of 0 or we could calculate a
2977 * huge RTT and blow up the retransmit timer.
2978 */
2979 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2980 uint32_t t;
2981
2982 t = tcp_ts_getticks() - to.to_tsecr;
2983 if (!tp->t_rttlow || tp->t_rttlow > t)
2984 tp->t_rttlow = t;
2985 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2986 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2987 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2988 tp->t_rttlow = ticks - tp->t_rtttime;
2989 tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2990 }
2991
2992 SOCK_SENDBUF_LOCK(so);
2993 /*
2994 * Clear t_acktime if remote side has ACKd all data in the
2995 * socket buffer and FIN (if applicable).
2996 * Otherwise, update t_acktime if we received a sufficiently
2997 * large ACK.
2998 */
2999 if ((tp->t_state <= TCPS_CLOSE_WAIT &&
3000 acked == sbavail(&so->so_snd)) ||
3001 acked > sbavail(&so->so_snd))
3002 tp->t_acktime = 0;
3003 else if (acked > 1)
3004 tp->t_acktime = ticks;
3005
3006 /*
3007 * If all outstanding data is acked, stop retransmit
3008 * timer and remember to restart (more output or persist).
3009 * If there is more data to be acked, restart retransmit
3010 * timer, using current (possibly backed-off) value.
3011 */
3012 if (th->th_ack == tp->snd_max) {
3013 tcp_timer_activate(tp, TT_REXMT, 0);
3014 needoutput = 1;
3015 } else if (!tcp_timer_active(tp, TT_PERSIST))
3016 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
3017
3018 /*
3019 * If no data (only SYN) was ACK'd,
3020 * skip rest of ACK processing.
3021 */
3022 if (acked == 0) {
3023 SOCK_SENDBUF_UNLOCK(so);
3024 goto step6;
3025 }
3026
3027 /*
3028 * Let the congestion control algorithm update congestion
3029 * control related information. This typically means increasing
3030 * the congestion window.
3031 */
3032 cc_ack_received(tp, th, nsegs, CC_ACK);
3033
3034 if (acked > sbavail(&so->so_snd)) {
3035 if (tp->snd_wnd >= sbavail(&so->so_snd))
3036 tp->snd_wnd -= sbavail(&so->so_snd);
3037 else
3038 tp->snd_wnd = 0;
3039 mfree = sbcut_locked(&so->so_snd,
3040 (int)sbavail(&so->so_snd));
3041 ourfinisacked = 1;
3042 } else {
3043 mfree = sbcut_locked(&so->so_snd, acked);
3044 if (tp->snd_wnd >= (uint32_t) acked)
3045 tp->snd_wnd -= acked;
3046 else
3047 tp->snd_wnd = 0;
3048 ourfinisacked = 0;
3049 }
3050 /* NB: sowwakeup_locked() does an implicit unlock. */
3051 sowwakeup_locked(so);
3052 m_freem(mfree);
3053 /* Detect una wraparound. */
3054 if (!IN_RECOVERY(tp->t_flags) &&
3055 SEQ_GT(tp->snd_una, tp->snd_recover) &&
3056 SEQ_LEQ(th->th_ack, tp->snd_recover))
3057 tp->snd_recover = th->th_ack - 1;
3058 tp->snd_una = th->th_ack;
3059 if (IN_RECOVERY(tp->t_flags) &&
3060 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
3061 cc_post_recovery(tp, th);
3062 }
3063 if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
3064 tp->snd_recover = tp->snd_una;
3065 }
3066 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3067 tp->snd_nxt = tp->snd_una;
3068
3069 switch (tp->t_state) {
3070 /*
3071 * In FIN_WAIT_1 STATE in addition to the processing
3072 * for the ESTABLISHED state if our FIN is now acknowledged
3073 * then enter FIN_WAIT_2.
3074 */
3075 case TCPS_FIN_WAIT_1:
3076 if (ourfinisacked) {
3077 /*
3078 * If we can't receive any more
3079 * data, then closing user can proceed.
3080 * Starting the timer is contrary to the
3081 * specification, but if we don't get a FIN
3082 * we'll hang forever.
3083 */
3084 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3085 tcp_free_sackholes(tp);
3086 soisdisconnected(so);
3087 tcp_timer_activate(tp, TT_2MSL,
3088 (tcp_fast_finwait2_recycle ?
3089 tcp_finwait2_timeout :
3090 TP_MAXIDLE(tp)));
3091 }
3092 tcp_state_change(tp, TCPS_FIN_WAIT_2);
3093 }
3094 break;
3095
3096 /*
3097 * In CLOSING STATE in addition to the processing for
3098 * the ESTABLISHED state if the ACK acknowledges our FIN
3099 * then enter the TIME-WAIT state, otherwise ignore
3100 * the segment.
3101 */
3102 case TCPS_CLOSING:
3103 if (ourfinisacked) {
3104 tcp_twstart(tp);
3105 m_freem(m);
3106 return;
3107 }
3108 break;
3109
3110 /*
3111 * In LAST_ACK, we may still be waiting for data to drain
3112 * and/or to be acked, as well as for the ack of our FIN.
3113 * If our FIN is now acknowledged, delete the TCB,
3114 * enter the closed state and return.
3115 */
3116 case TCPS_LAST_ACK:
3117 if (ourfinisacked) {
3118 tp = tcp_close(tp);
3119 goto drop;
3120 }
3121 break;
3122 }
3123 }
3124
3125 step6:
3126 INP_WLOCK_ASSERT(inp);
3127
3128 /*
3129 * Update window information.
3130 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3131 */
3132 if ((thflags & TH_ACK) &&
3133 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3134 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3135 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3136 /* keep track of pure window updates */
3137 if (tlen == 0 &&
3138 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3139 TCPSTAT_INC(tcps_rcvwinupd);
3140 tp->snd_wnd = tiwin;
3141 tp->snd_wl1 = th->th_seq;
3142 tp->snd_wl2 = th->th_ack;
3143 if (tp->snd_wnd > tp->max_sndwnd)
3144 tp->max_sndwnd = tp->snd_wnd;
3145 needoutput = 1;
3146 }
3147
3148 /*
3149 * Process segments with URG.
3150 */
3151 if ((thflags & TH_URG) && th->th_urp &&
3152 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3153 /*
3154 * This is a kludge, but if we receive and accept
3155 * random urgent pointers, we'll crash in
3156 * soreceive. It's hard to imagine someone
3157 * actually wanting to send this much urgent data.
3158 */
3159 SOCK_RECVBUF_LOCK(so);
3160 if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3161 th->th_urp = 0; /* XXX */
3162 thflags &= ~TH_URG; /* XXX */
3163 SOCK_RECVBUF_UNLOCK(so); /* XXX */
3164 goto dodata; /* XXX */
3165 }
3166 /*
3167 * If this segment advances the known urgent pointer,
3168 * then mark the data stream. This should not happen
3169 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3170 * a FIN has been received from the remote side.
3171 * In these states we ignore the URG.
3172 *
3173 * According to RFC961 (Assigned Protocols),
3174 * the urgent pointer points to the last octet
3175 * of urgent data. We continue, however,
3176 * to consider it to indicate the first octet
3177 * of data past the urgent section as the original
3178 * spec states (in one of two places).
3179 */
3180 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3181 tp->rcv_up = th->th_seq + th->th_urp;
3182 so->so_oobmark = sbavail(&so->so_rcv) +
3183 (tp->rcv_up - tp->rcv_nxt) - 1;
3184 if (so->so_oobmark == 0)
3185 so->so_rcv.sb_state |= SBS_RCVATMARK;
3186 sohasoutofband(so);
3187 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3188 }
3189 SOCK_RECVBUF_UNLOCK(so);
3190 /*
3191 * Remove out of band data so doesn't get presented to user.
3192 * This can happen independent of advancing the URG pointer,
3193 * but if two URG's are pending at once, some out-of-band
3194 * data may creep in... ick.
3195 */
3196 if (th->th_urp <= (uint32_t)tlen &&
3197 !(so->so_options & SO_OOBINLINE)) {
3198 /* hdr drop is delayed */
3199 tcp_pulloutofband(so, th, m, drop_hdrlen);
3200 }
3201 } else {
3202 /*
3203 * If no out of band data is expected,
3204 * pull receive urgent pointer along
3205 * with the receive window.
3206 */
3207 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3208 tp->rcv_up = tp->rcv_nxt;
3209 }
3210 dodata: /* XXX */
3211 INP_WLOCK_ASSERT(inp);
3212
3213 /*
3214 * Process the segment text, merging it into the TCP sequencing queue,
3215 * and arranging for acknowledgment of receipt if necessary.
3216 * This process logically involves adjusting tp->rcv_wnd as data
3217 * is presented to the user (this happens in tcp_usrreq.c,
3218 * case PRU_RCVD). If a FIN has already been received on this
3219 * connection then we just ignore the text.
3220 */
3221 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3222 (tp->t_flags & TF_FASTOPEN));
3223 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
3224 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3225 tcp_seq save_start = th->th_seq;
3226 tcp_seq save_rnxt = tp->rcv_nxt;
3227 int save_tlen = tlen;
3228 m_adj(m, drop_hdrlen); /* delayed header drop */
3229 /*
3230 * Insert segment which includes th into TCP reassembly queue
3231 * with control block tp. Set thflags to whether reassembly now
3232 * includes a segment with FIN. This handles the common case
3233 * inline (segment is the next to be received on an established
3234 * connection, and the queue is empty), avoiding linkage into
3235 * and removal from the queue and repetition of various
3236 * conversions.
3237 * Set DELACK for segments received in order, but ack
3238 * immediately when segments are out of order (so
3239 * fast retransmit can work).
3240 */
3241 if (th->th_seq == tp->rcv_nxt &&
3242 SEGQ_EMPTY(tp) &&
3243 (TCPS_HAVEESTABLISHED(tp->t_state) ||
3244 tfo_syn)) {
3245 if (DELAY_ACK(tp, tlen) || tfo_syn)
3246 tp->t_flags |= TF_DELACK;
3247 else
3248 tp->t_flags |= TF_ACKNOW;
3249 tp->rcv_nxt += tlen;
3250 if (tlen &&
3251 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
3252 (tp->t_fbyte_in == 0)) {
3253 tp->t_fbyte_in = ticks;
3254 if (tp->t_fbyte_in == 0)
3255 tp->t_fbyte_in = 1;
3256 if (tp->t_fbyte_out && tp->t_fbyte_in)
3257 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
3258 }
3259 thflags = tcp_get_flags(th) & TH_FIN;
3260 TCPSTAT_INC(tcps_rcvpack);
3261 TCPSTAT_ADD(tcps_rcvbyte, tlen);
3262 SOCK_RECVBUF_LOCK(so);
3263 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3264 m_freem(m);
3265 else
3266 sbappendstream_locked(&so->so_rcv, m, 0);
3267 tp->t_flags |= TF_WAKESOR;
3268 } else {
3269 /*
3270 * XXX: Due to the header drop above "th" is
3271 * theoretically invalid by now. Fortunately
3272 * m_adj() doesn't actually frees any mbufs
3273 * when trimming from the head.
3274 */
3275 tcp_seq temp = save_start;
3276
3277 thflags = tcp_reass(tp, th, &temp, &tlen, m);
3278 tp->t_flags |= TF_ACKNOW;
3279 }
3280 if ((tp->t_flags & TF_SACK_PERMIT) &&
3281 (save_tlen > 0) &&
3282 TCPS_HAVEESTABLISHED(tp->t_state)) {
3283 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3284 /*
3285 * DSACK actually handled in the fastpath
3286 * above.
3287 */
3288 tcp_update_sack_list(tp, save_start,
3289 save_start + save_tlen);
3290 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3291 if ((tp->rcv_numsacks >= 1) &&
3292 (tp->sackblks[0].end == save_start)) {
3293 /*
3294 * Partial overlap, recorded at todrop
3295 * above.
3296 */
3297 tcp_update_sack_list(tp,
3298 tp->sackblks[0].start,
3299 tp->sackblks[0].end);
3300 } else {
3301 tcp_update_dsack_list(tp, save_start,
3302 save_start + save_tlen);
3303 }
3304 } else if (tlen >= save_tlen) {
3305 /* Update of sackblks. */
3306 tcp_update_dsack_list(tp, save_start,
3307 save_start + save_tlen);
3308 } else if (tlen > 0) {
3309 tcp_update_dsack_list(tp, save_start,
3310 save_start + tlen);
3311 }
3312 }
3313 tcp_handle_wakeup(tp);
3314 #if 0
3315 /*
3316 * Note the amount of data that peer has sent into
3317 * our window, in order to estimate the sender's
3318 * buffer size.
3319 * XXX: Unused.
3320 */
3321 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3322 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3323 else
3324 len = so->so_rcv.sb_hiwat;
3325 #endif
3326 } else {
3327 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
3328 if (tlen > 0) {
3329 if ((thflags & TH_FIN) != 0) {
3330 log(LOG_DEBUG, "%s; %s: %s: "
3331 "Received %d bytes of data and FIN "
3332 "after having received a FIN, "
3333 "just dropping both\n",
3334 s, __func__,
3335 tcpstates[tp->t_state], tlen);
3336 } else {
3337 log(LOG_DEBUG, "%s; %s: %s: "
3338 "Received %d bytes of data "
3339 "after having received a FIN, "
3340 "just dropping it\n",
3341 s, __func__,
3342 tcpstates[tp->t_state], tlen);
3343 }
3344 } else {
3345 if ((thflags & TH_FIN) != 0) {
3346 log(LOG_DEBUG, "%s; %s: %s: "
3347 "Received FIN "
3348 "after having received a FIN, "
3349 "just dropping it\n",
3350 s, __func__,
3351 tcpstates[tp->t_state]);
3352 }
3353 }
3354 free(s, M_TCPLOG);
3355 }
3356 m_freem(m);
3357 thflags &= ~TH_FIN;
3358 }
3359
3360 /*
3361 * If FIN is received ACK the FIN and let the user know
3362 * that the connection is closing.
3363 */
3364 if (thflags & TH_FIN) {
3365 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3366 /* The socket upcall is handled by socantrcvmore. */
3367 socantrcvmore(so);
3368 /*
3369 * If connection is half-synchronized
3370 * (ie NEEDSYN flag on) then delay ACK,
3371 * so it may be piggybacked when SYN is sent.
3372 * Otherwise, since we received a FIN then no
3373 * more input can be expected, send ACK now.
3374 */
3375 if (tp->t_flags & TF_NEEDSYN)
3376 tp->t_flags |= TF_DELACK;
3377 else
3378 tp->t_flags |= TF_ACKNOW;
3379 tp->rcv_nxt++;
3380 }
3381 switch (tp->t_state) {
3382 /*
3383 * In SYN_RECEIVED and ESTABLISHED STATES
3384 * enter the CLOSE_WAIT state.
3385 */
3386 case TCPS_SYN_RECEIVED:
3387 tp->t_starttime = ticks;
3388 /* FALLTHROUGH */
3389 case TCPS_ESTABLISHED:
3390 tcp_state_change(tp, TCPS_CLOSE_WAIT);
3391 break;
3392
3393 /*
3394 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3395 * enter the CLOSING state.
3396 */
3397 case TCPS_FIN_WAIT_1:
3398 tcp_state_change(tp, TCPS_CLOSING);
3399 break;
3400
3401 /*
3402 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3403 * starting the time-wait timer, turning off the other
3404 * standard timers.
3405 */
3406 case TCPS_FIN_WAIT_2:
3407 tcp_twstart(tp);
3408 return;
3409 }
3410 }
3411 TCP_PROBE3(debug__input, tp, th, m);
3412
3413 /*
3414 * Return any desired output.
3415 */
3416 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3417 (void) tcp_output(tp);
3418 }
3419 check_delack:
3420 INP_WLOCK_ASSERT(inp);
3421
3422 if (tp->t_flags & TF_DELACK) {
3423 tp->t_flags &= ~TF_DELACK;
3424 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3425 }
3426 INP_WUNLOCK(inp);
3427 return;
3428
3429 dropafterack:
3430 /*
3431 * Generate an ACK dropping incoming segment if it occupies
3432 * sequence space, where the ACK reflects our state.
3433 *
3434 * We can now skip the test for the RST flag since all
3435 * paths to this code happen after packets containing
3436 * RST have been dropped.
3437 *
3438 * In the SYN-RECEIVED state, don't send an ACK unless the
3439 * segment we received passes the SYN-RECEIVED ACK test.
3440 * If it fails send a RST. This breaks the loop in the
3441 * "LAND" DoS attack, and also prevents an ACK storm
3442 * between two listening ports that have been sent forged
3443 * SYN segments, each with the source address of the other.
3444 */
3445 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3446 (SEQ_GT(tp->snd_una, th->th_ack) ||
3447 SEQ_GT(th->th_ack, tp->snd_max)) ) {
3448 rstreason = BANDLIM_RST_OPENPORT;
3449 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
3450 goto dropwithreset;
3451 }
3452 TCP_PROBE3(debug__input, tp, th, m);
3453 tp->t_flags |= TF_ACKNOW;
3454 (void) tcp_output(tp);
3455 INP_WUNLOCK(inp);
3456 m_freem(m);
3457 return;
3458
3459 dropwithreset:
3460 if (tp != NULL) {
3461 tcp_dropwithreset(m, th, tp, tlen, rstreason);
3462 INP_WUNLOCK(inp);
3463 } else
3464 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3465 return;
3466
3467 drop:
3468 /*
3469 * Drop space held by incoming segment and return.
3470 */
3471 TCP_PROBE3(debug__input, tp, th, m);
3472 if (tp != NULL) {
3473 INP_WUNLOCK(inp);
3474 }
3475 m_freem(m);
3476 }
3477
3478 /*
3479 * Issue RST and make ACK acceptable to originator of segment.
3480 * The mbuf must still include the original packet header.
3481 * tp may be NULL.
3482 */
3483 void
tcp_dropwithreset(struct mbuf * m,struct tcphdr * th,struct tcpcb * tp,int tlen,int rstreason)3484 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3485 int tlen, int rstreason)
3486 {
3487 #ifdef INET
3488 struct ip *ip;
3489 #endif
3490 #ifdef INET6
3491 struct ip6_hdr *ip6;
3492 #endif
3493
3494 if (tp != NULL) {
3495 INP_LOCK_ASSERT(tptoinpcb(tp));
3496 }
3497
3498 /* Don't bother if destination was broadcast/multicast. */
3499 if ((tcp_get_flags(th) & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3500 goto drop;
3501 #ifdef INET6
3502 if (mtod(m, struct ip *)->ip_v == 6) {
3503 ip6 = mtod(m, struct ip6_hdr *);
3504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3505 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3506 goto drop;
3507 /* IPv6 anycast check is done at tcp6_input() */
3508 }
3509 #endif
3510 #if defined(INET) && defined(INET6)
3511 else
3512 #endif
3513 #ifdef INET
3514 {
3515 ip = mtod(m, struct ip *);
3516 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3517 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3518 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3519 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3520 goto drop;
3521 }
3522 #endif
3523
3524 /* Perform bandwidth limiting. */
3525 if (badport_bandlim(rstreason) < 0)
3526 goto drop;
3527
3528 /* tcp_respond consumes the mbuf chain. */
3529 if (tcp_get_flags(th) & TH_ACK) {
3530 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3531 th->th_ack, TH_RST);
3532 } else {
3533 if (tcp_get_flags(th) & TH_SYN)
3534 tlen++;
3535 if (tcp_get_flags(th) & TH_FIN)
3536 tlen++;
3537 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3538 (tcp_seq)0, TH_RST|TH_ACK);
3539 }
3540 return;
3541 drop:
3542 m_freem(m);
3543 }
3544
3545 /*
3546 * Parse TCP options and place in tcpopt.
3547 */
3548 void
tcp_dooptions(struct tcpopt * to,u_char * cp,int cnt,int flags)3549 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3550 {
3551 int opt, optlen;
3552
3553 to->to_flags = 0;
3554 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3555 opt = cp[0];
3556 if (opt == TCPOPT_EOL)
3557 break;
3558 if (opt == TCPOPT_NOP)
3559 optlen = 1;
3560 else {
3561 if (cnt < 2)
3562 break;
3563 optlen = cp[1];
3564 if (optlen < 2 || optlen > cnt)
3565 break;
3566 }
3567 switch (opt) {
3568 case TCPOPT_MAXSEG:
3569 if (optlen != TCPOLEN_MAXSEG)
3570 continue;
3571 if (!(flags & TO_SYN))
3572 continue;
3573 to->to_flags |= TOF_MSS;
3574 bcopy((char *)cp + 2,
3575 (char *)&to->to_mss, sizeof(to->to_mss));
3576 to->to_mss = ntohs(to->to_mss);
3577 break;
3578 case TCPOPT_WINDOW:
3579 if (optlen != TCPOLEN_WINDOW)
3580 continue;
3581 if (!(flags & TO_SYN))
3582 continue;
3583 to->to_flags |= TOF_SCALE;
3584 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3585 break;
3586 case TCPOPT_TIMESTAMP:
3587 if (optlen != TCPOLEN_TIMESTAMP)
3588 continue;
3589 to->to_flags |= TOF_TS;
3590 bcopy((char *)cp + 2,
3591 (char *)&to->to_tsval, sizeof(to->to_tsval));
3592 to->to_tsval = ntohl(to->to_tsval);
3593 bcopy((char *)cp + 6,
3594 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3595 to->to_tsecr = ntohl(to->to_tsecr);
3596 break;
3597 case TCPOPT_SIGNATURE:
3598 /*
3599 * In order to reply to a host which has set the
3600 * TCP_SIGNATURE option in its initial SYN, we have
3601 * to record the fact that the option was observed
3602 * here for the syncache code to perform the correct
3603 * response.
3604 */
3605 if (optlen != TCPOLEN_SIGNATURE)
3606 continue;
3607 to->to_flags |= TOF_SIGNATURE;
3608 to->to_signature = cp + 2;
3609 break;
3610 case TCPOPT_SACK_PERMITTED:
3611 if (optlen != TCPOLEN_SACK_PERMITTED)
3612 continue;
3613 if (!(flags & TO_SYN))
3614 continue;
3615 if (!V_tcp_do_sack)
3616 continue;
3617 to->to_flags |= TOF_SACKPERM;
3618 break;
3619 case TCPOPT_SACK:
3620 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3621 continue;
3622 if (flags & TO_SYN)
3623 continue;
3624 to->to_flags |= TOF_SACK;
3625 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3626 to->to_sacks = cp + 2;
3627 TCPSTAT_INC(tcps_sack_rcv_blocks);
3628 break;
3629 case TCPOPT_FAST_OPEN:
3630 /*
3631 * Cookie length validation is performed by the
3632 * server side cookie checking code or the client
3633 * side cookie cache update code.
3634 */
3635 if (!(flags & TO_SYN))
3636 continue;
3637 if (!V_tcp_fastopen_client_enable &&
3638 !V_tcp_fastopen_server_enable)
3639 continue;
3640 to->to_flags |= TOF_FASTOPEN;
3641 to->to_tfo_len = optlen - 2;
3642 to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3643 break;
3644 default:
3645 continue;
3646 }
3647 }
3648 }
3649
3650 /*
3651 * Pull out of band byte out of a segment so
3652 * it doesn't appear in the user's data queue.
3653 * It is still reflected in the segment length for
3654 * sequencing purposes.
3655 */
3656 void
tcp_pulloutofband(struct socket * so,struct tcphdr * th,struct mbuf * m,int off)3657 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3658 int off)
3659 {
3660 int cnt = off + th->th_urp - 1;
3661
3662 while (cnt >= 0) {
3663 if (m->m_len > cnt) {
3664 char *cp = mtod(m, caddr_t) + cnt;
3665 struct tcpcb *tp = sototcpcb(so);
3666
3667 INP_WLOCK_ASSERT(tptoinpcb(tp));
3668
3669 tp->t_iobc = *cp;
3670 tp->t_oobflags |= TCPOOB_HAVEDATA;
3671 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3672 m->m_len--;
3673 if (m->m_flags & M_PKTHDR)
3674 m->m_pkthdr.len--;
3675 return;
3676 }
3677 cnt -= m->m_len;
3678 m = m->m_next;
3679 if (m == NULL)
3680 break;
3681 }
3682 panic("tcp_pulloutofband");
3683 }
3684
3685 /*
3686 * Collect new round-trip time estimate
3687 * and update averages and current timeout.
3688 */
3689 void
tcp_xmit_timer(struct tcpcb * tp,int rtt)3690 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3691 {
3692 int delta;
3693
3694 INP_WLOCK_ASSERT(tptoinpcb(tp));
3695
3696 TCPSTAT_INC(tcps_rttupdated);
3697 if (tp->t_rttupdated < UCHAR_MAX)
3698 tp->t_rttupdated++;
3699 #ifdef STATS
3700 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3701 imax(0, rtt * 1000 / hz));
3702 #endif
3703 if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3704 /*
3705 * srtt is stored as fixed point with 5 bits after the
3706 * binary point (i.e., scaled by 8). The following magic
3707 * is equivalent to the smoothing algorithm in rfc793 with
3708 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3709 * point). Adjust rtt to origin 0.
3710 */
3711 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3712 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3713
3714 if ((tp->t_srtt += delta) <= 0)
3715 tp->t_srtt = 1;
3716
3717 /*
3718 * We accumulate a smoothed rtt variance (actually, a
3719 * smoothed mean difference), then set the retransmit
3720 * timer to smoothed rtt + 4 times the smoothed variance.
3721 * rttvar is stored as fixed point with 4 bits after the
3722 * binary point (scaled by 16). The following is
3723 * equivalent to rfc793 smoothing with an alpha of .75
3724 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3725 * rfc793's wired-in beta.
3726 */
3727 if (delta < 0)
3728 delta = -delta;
3729 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3730 if ((tp->t_rttvar += delta) <= 0)
3731 tp->t_rttvar = 1;
3732 } else {
3733 /*
3734 * No rtt measurement yet - use the unsmoothed rtt.
3735 * Set the variance to half the rtt (so our first
3736 * retransmit happens at 3*rtt).
3737 */
3738 tp->t_srtt = rtt << TCP_RTT_SHIFT;
3739 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3740 }
3741 tp->t_rtttime = 0;
3742 tp->t_rxtshift = 0;
3743
3744 /*
3745 * the retransmit should happen at rtt + 4 * rttvar.
3746 * Because of the way we do the smoothing, srtt and rttvar
3747 * will each average +1/2 tick of bias. When we compute
3748 * the retransmit timer, we want 1/2 tick of rounding and
3749 * 1 extra tick because of +-1/2 tick uncertainty in the
3750 * firing of the timer. The bias will give us exactly the
3751 * 1.5 tick we need. But, because the bias is
3752 * statistical, we have to test that we don't drop below
3753 * the minimum feasible timer (which is 2 ticks).
3754 */
3755 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3756 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3757
3758 /*
3759 * We received an ack for a packet that wasn't retransmitted;
3760 * it is probably safe to discard any error indications we've
3761 * received recently. This isn't quite right, but close enough
3762 * for now (a route might have failed after we sent a segment,
3763 * and the return path might not be symmetrical).
3764 */
3765 tp->t_softerror = 0;
3766 }
3767
3768 /*
3769 * Determine a reasonable value for maxseg size.
3770 * If the route is known, check route for mtu.
3771 * If none, use an mss that can be handled on the outgoing interface
3772 * without forcing IP to fragment. If no route is found, route has no mtu,
3773 * or the destination isn't local, use a default, hopefully conservative
3774 * size (usually 512 or the default IP max size, but no more than the mtu
3775 * of the interface), as we can't discover anything about intervening
3776 * gateways or networks. We also initialize the congestion/slow start
3777 * window to be a single segment if the destination isn't local.
3778 * While looking at the routing entry, we also initialize other path-dependent
3779 * parameters from pre-set or cached values in the routing entry.
3780 *
3781 * NOTE that resulting t_maxseg doesn't include space for TCP options or
3782 * IP options, e.g. IPSEC data, since length of this data may vary, and
3783 * thus it is calculated for every segment separately in tcp_output().
3784 *
3785 * NOTE that this routine is only called when we process an incoming
3786 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3787 * settings are handled in tcp_mssopt().
3788 */
3789 void
tcp_mss_update(struct tcpcb * tp,int offer,int mtuoffer,struct hc_metrics_lite * metricptr,struct tcp_ifcap * cap)3790 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3791 struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3792 {
3793 int mss = 0;
3794 uint32_t maxmtu = 0;
3795 struct inpcb *inp = tptoinpcb(tp);
3796 struct hc_metrics_lite metrics;
3797 #ifdef INET6
3798 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3799 size_t min_protoh = isipv6 ?
3800 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3801 sizeof (struct tcpiphdr);
3802 #else
3803 size_t min_protoh = sizeof(struct tcpiphdr);
3804 #endif
3805
3806 INP_WLOCK_ASSERT(inp);
3807
3808 if (tp->t_port)
3809 min_protoh += V_tcp_udp_tunneling_overhead;
3810 if (mtuoffer != -1) {
3811 KASSERT(offer == -1, ("%s: conflict", __func__));
3812 offer = mtuoffer - min_protoh;
3813 }
3814
3815 /* Initialize. */
3816 #ifdef INET6
3817 if (isipv6) {
3818 maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3819 tp->t_maxseg = V_tcp_v6mssdflt;
3820 }
3821 #endif
3822 #if defined(INET) && defined(INET6)
3823 else
3824 #endif
3825 #ifdef INET
3826 {
3827 maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3828 tp->t_maxseg = V_tcp_mssdflt;
3829 }
3830 #endif
3831
3832 /*
3833 * No route to sender, stay with default mss and return.
3834 */
3835 if (maxmtu == 0) {
3836 /*
3837 * In case we return early we need to initialize metrics
3838 * to a defined state as tcp_hc_get() would do for us
3839 * if there was no cache hit.
3840 */
3841 if (metricptr != NULL)
3842 bzero(metricptr, sizeof(struct hc_metrics_lite));
3843 return;
3844 }
3845
3846 /* What have we got? */
3847 switch (offer) {
3848 case 0:
3849 /*
3850 * Offer == 0 means that there was no MSS on the SYN
3851 * segment, in this case we use tcp_mssdflt as
3852 * already assigned to t_maxseg above.
3853 */
3854 offer = tp->t_maxseg;
3855 break;
3856
3857 case -1:
3858 /*
3859 * Offer == -1 means that we didn't receive SYN yet.
3860 */
3861 /* FALLTHROUGH */
3862
3863 default:
3864 /*
3865 * Prevent DoS attack with too small MSS. Round up
3866 * to at least minmss.
3867 */
3868 offer = max(offer, V_tcp_minmss);
3869 }
3870
3871 if (metricptr == NULL)
3872 metricptr = &metrics;
3873 tcp_hc_get(&inp->inp_inc, metricptr);
3874
3875 /*
3876 * If there's a discovered mtu in tcp hostcache, use it.
3877 * Else, use the link mtu.
3878 */
3879 if (metricptr->hc_mtu)
3880 mss = min(metricptr->hc_mtu, maxmtu) - min_protoh;
3881 else {
3882 #ifdef INET6
3883 if (isipv6) {
3884 mss = maxmtu - min_protoh;
3885 if (!V_path_mtu_discovery &&
3886 !in6_localaddr(&inp->in6p_faddr))
3887 mss = min(mss, V_tcp_v6mssdflt);
3888 }
3889 #endif
3890 #if defined(INET) && defined(INET6)
3891 else
3892 #endif
3893 #ifdef INET
3894 {
3895 mss = maxmtu - min_protoh;
3896 if (!V_path_mtu_discovery &&
3897 !in_localaddr(inp->inp_faddr))
3898 mss = min(mss, V_tcp_mssdflt);
3899 }
3900 #endif
3901 /*
3902 * XXX - The above conditional (mss = maxmtu - min_protoh)
3903 * probably violates the TCP spec.
3904 * The problem is that, since we don't know the
3905 * other end's MSS, we are supposed to use a conservative
3906 * default. But, if we do that, then MTU discovery will
3907 * never actually take place, because the conservative
3908 * default is much less than the MTUs typically seen
3909 * on the Internet today. For the moment, we'll sweep
3910 * this under the carpet.
3911 *
3912 * The conservative default might not actually be a problem
3913 * if the only case this occurs is when sending an initial
3914 * SYN with options and data to a host we've never talked
3915 * to before. Then, they will reply with an MSS value which
3916 * will get recorded and the new parameters should get
3917 * recomputed. For Further Study.
3918 */
3919 }
3920 mss = min(mss, offer);
3921
3922 /*
3923 * Sanity check: make sure that maxseg will be large
3924 * enough to allow some data on segments even if the
3925 * all the option space is used (40bytes). Otherwise
3926 * funny things may happen in tcp_output.
3927 *
3928 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3929 */
3930 mss = max(mss, 64);
3931
3932 tp->t_maxseg = mss;
3933 if (tp->t_maxseg < V_tcp_mssdflt) {
3934 /*
3935 * The MSS is so small we should not process incoming
3936 * SACK's since we are subject to attack in such a
3937 * case.
3938 */
3939 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3940 } else {
3941 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3942 }
3943
3944 }
3945
3946 void
tcp_mss(struct tcpcb * tp,int offer)3947 tcp_mss(struct tcpcb *tp, int offer)
3948 {
3949 int mss;
3950 uint32_t bufsize;
3951 struct inpcb *inp = tptoinpcb(tp);
3952 struct socket *so;
3953 struct hc_metrics_lite metrics;
3954 struct tcp_ifcap cap;
3955
3956 KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3957
3958 bzero(&cap, sizeof(cap));
3959 tcp_mss_update(tp, offer, -1, &metrics, &cap);
3960
3961 mss = tp->t_maxseg;
3962
3963 /*
3964 * If there's a pipesize, change the socket buffer to that size,
3965 * don't change if sb_hiwat is different than default (then it
3966 * has been changed on purpose with setsockopt).
3967 * Make the socket buffers an integral number of mss units;
3968 * if the mss is larger than the socket buffer, decrease the mss.
3969 */
3970 so = inp->inp_socket;
3971 SOCK_SENDBUF_LOCK(so);
3972 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.hc_sendpipe)
3973 bufsize = metrics.hc_sendpipe;
3974 else
3975 bufsize = so->so_snd.sb_hiwat;
3976 if (bufsize < mss)
3977 mss = bufsize;
3978 else {
3979 bufsize = roundup(bufsize, mss);
3980 if (bufsize > sb_max)
3981 bufsize = sb_max;
3982 if (bufsize > so->so_snd.sb_hiwat)
3983 (void)sbreserve_locked(so, SO_SND, bufsize, NULL);
3984 }
3985 SOCK_SENDBUF_UNLOCK(so);
3986 /*
3987 * Sanity check: make sure that maxseg will be large
3988 * enough to allow some data on segments even if the
3989 * all the option space is used (40bytes). Otherwise
3990 * funny things may happen in tcp_output.
3991 *
3992 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3993 */
3994 tp->t_maxseg = max(mss, 64);
3995 if (tp->t_maxseg < V_tcp_mssdflt) {
3996 /*
3997 * The MSS is so small we should not process incoming
3998 * SACK's since we are subject to attack in such a
3999 * case.
4000 */
4001 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
4002 } else {
4003 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
4004 }
4005
4006 SOCK_RECVBUF_LOCK(so);
4007 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.hc_recvpipe)
4008 bufsize = metrics.hc_recvpipe;
4009 else
4010 bufsize = so->so_rcv.sb_hiwat;
4011 if (bufsize > mss) {
4012 bufsize = roundup(bufsize, mss);
4013 if (bufsize > sb_max)
4014 bufsize = sb_max;
4015 if (bufsize > so->so_rcv.sb_hiwat)
4016 (void)sbreserve_locked(so, SO_RCV, bufsize, NULL);
4017 }
4018 SOCK_RECVBUF_UNLOCK(so);
4019
4020 /* Check the interface for TSO capabilities. */
4021 if (cap.ifcap & CSUM_TSO) {
4022 tp->t_flags |= TF_TSO;
4023 tp->t_tsomax = cap.tsomax;
4024 tp->t_tsomaxsegcount = cap.tsomaxsegcount;
4025 tp->t_tsomaxsegsize = cap.tsomaxsegsize;
4026 if (cap.ipsec_tso)
4027 tp->t_flags2 |= TF2_IPSEC_TSO;
4028 }
4029 }
4030
4031 /*
4032 * Determine the MSS option to send on an outgoing SYN.
4033 */
4034 int
tcp_mssopt(struct in_conninfo * inc)4035 tcp_mssopt(struct in_conninfo *inc)
4036 {
4037 int mss = 0;
4038 uint32_t thcmtu = 0;
4039 uint32_t maxmtu = 0;
4040 size_t min_protoh;
4041
4042 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
4043
4044 #ifdef INET6
4045 if (inc->inc_flags & INC_ISIPV6) {
4046 mss = V_tcp_v6mssdflt;
4047 maxmtu = tcp_maxmtu6(inc, NULL);
4048 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
4049 }
4050 #endif
4051 #if defined(INET) && defined(INET6)
4052 else
4053 #endif
4054 #ifdef INET
4055 {
4056 mss = V_tcp_mssdflt;
4057 maxmtu = tcp_maxmtu(inc, NULL);
4058 min_protoh = sizeof(struct tcpiphdr);
4059 }
4060 #endif
4061 #if defined(INET6) || defined(INET)
4062 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
4063 #endif
4064
4065 if (maxmtu && thcmtu)
4066 mss = min(maxmtu, thcmtu) - min_protoh;
4067 else if (maxmtu || thcmtu)
4068 mss = max(maxmtu, thcmtu) - min_protoh;
4069
4070 return (mss);
4071 }
4072
4073 void
tcp_do_prr_ack(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to,sackstatus_t sack_changed,u_int * maxsegp)4074 tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to,
4075 sackstatus_t sack_changed, u_int *maxsegp)
4076 {
4077 int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0;
4078 u_int maxseg;
4079
4080 INP_WLOCK_ASSERT(tptoinpcb(tp));
4081
4082 if (*maxsegp == 0) {
4083 *maxsegp = tcp_maxseg(tp);
4084 }
4085 maxseg = *maxsegp;
4086 /*
4087 * Compute the amount of data that this ACK is indicating
4088 * (del_data) and an estimate of how many bytes are in the
4089 * network.
4090 */
4091 if (tcp_is_sack_recovery(tp, to) ||
4092 (IN_CONGRECOVERY(tp->t_flags) &&
4093 !IN_FASTRECOVERY(tp->t_flags))) {
4094 del_data = tp->sackhint.delivered_data;
4095 if (V_tcp_do_newsack)
4096 pipe = tcp_compute_pipe(tp);
4097 else
4098 pipe = (tp->snd_nxt - tp->snd_fack) +
4099 tp->sackhint.sack_bytes_rexmit;
4100 } else {
4101 if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg +
4102 tp->snd_recover - tp->snd_una)) {
4103 del_data = maxseg;
4104 }
4105 pipe = imax(0, tp->snd_max - tp->snd_una -
4106 imin(INT_MAX / 65536, tp->t_dupacks) * maxseg);
4107 }
4108 tp->sackhint.prr_delivered += del_data;
4109 /*
4110 * Proportional Rate Reduction
4111 */
4112 if (pipe >= tp->snd_ssthresh) {
4113 if (tp->sackhint.recover_fs == 0)
4114 tp->sackhint.recover_fs =
4115 imax(1, tp->snd_nxt - tp->snd_una);
4116 snd_cnt = howmany((long)tp->sackhint.prr_delivered *
4117 tp->snd_ssthresh, tp->sackhint.recover_fs) -
4118 tp->sackhint.prr_out + maxseg - 1;
4119 } else {
4120 /*
4121 * PRR 6937bis heuristic:
4122 * - A partial ack without SACK block beneath snd_recover
4123 * indicates further loss.
4124 * - An SACK scoreboard update adding a new hole indicates
4125 * further loss, so be conservative and send at most one
4126 * segment.
4127 * - Prevent ACK splitting attacks, by being conservative
4128 * when no new data is acked.
4129 */
4130 if ((sack_changed == SACK_NEWLOSS) || (del_data == 0)) {
4131 limit = tp->sackhint.prr_delivered -
4132 tp->sackhint.prr_out;
4133 } else {
4134 limit = imax(tp->sackhint.prr_delivered -
4135 tp->sackhint.prr_out, del_data) +
4136 maxseg;
4137 }
4138 snd_cnt = imin((tp->snd_ssthresh - pipe), limit);
4139 }
4140 snd_cnt = imax(snd_cnt, 0) / maxseg;
4141 /*
4142 * Send snd_cnt new data into the network in response to this ack.
4143 * If there is going to be a SACK retransmission, adjust snd_cwnd
4144 * accordingly.
4145 */
4146 if (IN_FASTRECOVERY(tp->t_flags)) {
4147 if (tcp_is_sack_recovery(tp, to)) {
4148 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4149 } else {
4150 tp->snd_cwnd = (tp->snd_max - tp->snd_una) +
4151 (snd_cnt * maxseg);
4152 }
4153 } else if (IN_CONGRECOVERY(tp->t_flags)) {
4154 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4155 }
4156 tp->snd_cwnd = imax(maxseg, tp->snd_cwnd);
4157 }
4158
4159 /*
4160 * On a partial ack arrives, force the retransmission of the
4161 * next unacknowledged segment. Do not clear tp->t_dupacks.
4162 * By setting snd_nxt to ti_ack, this forces retransmission timer to
4163 * be started again.
4164 */
4165 void
tcp_newreno_partial_ack(struct tcpcb * tp,struct tcphdr * th)4166 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
4167 {
4168 tcp_seq onxt = tp->snd_nxt;
4169 uint32_t ocwnd = tp->snd_cwnd;
4170 u_int maxseg = tcp_maxseg(tp);
4171
4172 INP_WLOCK_ASSERT(tptoinpcb(tp));
4173
4174 tcp_timer_activate(tp, TT_REXMT, 0);
4175 tp->t_rtttime = 0;
4176 if (IN_FASTRECOVERY(tp->t_flags)) {
4177 tp->snd_nxt = th->th_ack;
4178 /*
4179 * Set snd_cwnd to one segment beyond acknowledged offset.
4180 * (tp->snd_una has not yet been updated when this function is called.)
4181 */
4182 tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
4183 tp->t_flags |= TF_ACKNOW;
4184 (void) tcp_output(tp);
4185 tp->snd_cwnd = ocwnd;
4186 if (SEQ_GT(onxt, tp->snd_nxt))
4187 tp->snd_nxt = onxt;
4188 }
4189 /*
4190 * Partial window deflation. Relies on fact that tp->snd_una
4191 * not updated yet.
4192 */
4193 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
4194 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
4195 else
4196 tp->snd_cwnd = 0;
4197 tp->snd_cwnd += maxseg;
4198 }
4199
4200 int
tcp_compute_pipe(struct tcpcb * tp)4201 tcp_compute_pipe(struct tcpcb *tp)
4202 {
4203 if (tp->t_fb->tfb_compute_pipe == NULL) {
4204 return (tp->snd_max - tp->snd_una +
4205 tp->sackhint.sack_bytes_rexmit -
4206 tp->sackhint.sacked_bytes -
4207 tp->sackhint.lost_bytes);
4208 } else {
4209 return((*tp->t_fb->tfb_compute_pipe)(tp));
4210 }
4211 }
4212
4213 uint32_t
tcp_compute_initwnd(uint32_t maxseg)4214 tcp_compute_initwnd(uint32_t maxseg)
4215 {
4216 /*
4217 * Calculate the Initial Window, also used as Restart Window
4218 *
4219 * RFC5681 Section 3.1 specifies the default conservative values.
4220 * RFC3390 specifies slightly more aggressive values.
4221 * RFC6928 increases it to ten segments.
4222 * Support for user specified value for initial flight size.
4223 */
4224 if (V_tcp_initcwnd_segments)
4225 return min(V_tcp_initcwnd_segments * maxseg,
4226 max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
4227 else if (V_tcp_do_rfc3390)
4228 return min(4 * maxseg, max(2 * maxseg, 4380));
4229 else {
4230 /* Per RFC5681 Section 3.1 */
4231 if (maxseg > 2190)
4232 return (2 * maxseg);
4233 else if (maxseg > 1095)
4234 return (3 * maxseg);
4235 else
4236 return (4 * maxseg);
4237 }
4238 }
4239